

> fresutes to
> (1)w filmary
> af the

Zluinersity of Tormato
10:

```
L.V.Mills, EEq.,
r Trizrn Tr:il,
Trnt, ntri.
```


Digitized by the Internet Archive in 2009 with funding from
 Ontario Council of University Libraries

ENCYCLOPEDIA BRITANNICA

DICTIONARY

of

Arts, Sciences, and General Literature

THE R. S. PEALE REPRINT

WITH NEW Maps and original american articles by eminent writers

WITH AMERICAN REVISIONS AND ADDITIONS
By W. II. Depuy, D.D., LA.D.,
Bringing each Volume Up to Date.

VOLUME IV

CHICAGO
R. S. PEALE COMPANY

7086s 7

Encyclopædia Britannica. VOL. IV -(BOK-CAN).

Toral number of Articles, 727.

PRINCIPAL CONTENTS.

bolivia. Erith Johnston, Fellow of tho Geographical Society.
bOMBAY. Hon. T. W. Hunter, LL.D., Director of Statistics to the Goverament of India book. R patbfax Taylor
Bookbinding. Jayrs Paton, Corporation Oalleries, Glasgow.
Booke eeping. F. Hating Carter, Cbartered Accountant, Edinburyh
BORNEO. H. A Webster
BOETON. O. E. Ellis, D.D.; Boston.
botany. Di J. Hition Balfoct, F.R.S., Lato Keepar of Botayic Garden, Edinburgh.
BOTTICELLL Prof. Sidney Colvin, University of Cambridge.
BOWLS. E. F. Wilennson.
BRACHIOPODA. Tgos. Davtoson,. LL.D., F.E.S.
BRAHMANISM. Julios Eggzina, Ph.D., Frofessor of Sanskritand Comparative Philology, University of Edin.
BRAKE. A. B. W. Kbmizdy, Professor of Engineering, University College, London
BRASS. Jayrs Paroi.
BRAZIL Kith Jomeston.
Breeds. Francts Darwin, M.P., F.R.S.
bregon law. Sit Samurl Frretson, Lil D., Q.C., Depaty Eoeper of Public Recond, Dublio
BRETSCHNEIDER Rev. F. Cbombir, D.D., Professor of Divinity, etc., University of St Addrews
BREWING. S. A. WTLIR
BRICK A. B. MACDOWALL
BRIDGES. Fleemino Jenkin, F. R.S., Professor of Fingineenng, Univeraity of Edinburgh
BRITANNIA. A. W. K. MLlerr, British Maseam.
BRONCHITIS. DT J. O. Arfleok, Royal Collego of Physicisng, Edinburgh
bronge a. B. Maomowall and A. Sttart Mtrray.
brouoham Henby Rrbve, C.B.
browning, mRs. Georgr Barnett Smita.
bucoaneers. Thomas Shaf, LL. B., Adrocato.
buokingham, duke of. Prof. S. Ratron Gardiner, Anthor of "The History of Eigland, 1824-28."
bockle, henry. Robert Flint, D.D., Ftofessor of Divinity, Uaivetsity of Edinburgh
BUDDHISM. T. TV. Rhys Davids, LLLD.
BJFFON. F. Alitint. Nionolson, M.D., Professor of Natural History, University of Aburdech.
building. Wyatt Parwoeth.
building societies. Euward W. Brabrook.
BUNSEN. G. von Buxgey, Berlin.
BURKE Join Moslemp, M.P., Editor of the "Mcn of Leiters" Serics.
burns. Joes Nicaol, LLLD., Professor of English Language, University of Glaggow.
BCTLER, BISHOP. Prof. Fobert ADassox, Owens College, Manchester
BUTLER, SAMUEL. Georce Sarstsgury, M.A.
BUTTERFLIES. Joun Giesos, Industrial Maseam, Edioburgh.
BUTTON. J. J. Lase
BYRON. W. Mnro, M.A., Professor of Logic, University of Aberdeon
ByZantine historians. In Garmett, LL.D.
oable. Thros Moriey, Fellow of Institute of Niaral Architects.
OACTUS. Teos. Mooré, late Curator, Chelsea Botanic Ga:den.
Cedmon. Tromas Aenold, M.A.
Cesar Osoar Rrownino, Fellow of Ling's Collego, Cambridge.
Calculatrig maciines. P. R. S. Lavo, M. A., Profesor of Mathematics, University of Et Audews.
calcutta lion. W. W. Musiter, LL.D.
caledonia. Jayes Macdonald, Ll.d.
CALENDAR W. S. B. Woolmouse, Author of "Measures and Weights of all Nations"
calico printing. J. Paton.
gallfornia Prof. Joshae D. Whitsey.
calvin. W. Lindsay alexander, D. D., one of the bible heveets.
CaMBODIA. Col. Yule, C.b.
Jamisards. W. C. Saith, LL B., Advocate.
Damoens. F. W. Cosens.
CaNaANITES. Rev. Canor Cieyxe, M.A., Ore? Prufessor of Exegesis, Uaiversity of Osiord
canada. Prof. Dastel Wilson, Toronto.
canal Datid Stevenson, C.E.
canary islands. J. Yate Johnson.
CANNIBALISM. E. B. TrLor, LL.D., Author of " "rimitive Culture."
Canoe. Join MacGregos Author of "The Rob Kuy ul the Juidan."

ENCYCLOPÆDIA BRITANNICA.

B 0 K H A RA

Bokhara, Buemara, or Bukbaria, a country and khanate of Central Asia, in Turkistan or Independent Tartary, lying between lat. 37° and $41^{\circ} \mathrm{N}$., and long. 62° and $69^{\circ} \mathrm{E}$. Its extent bas been greatiy diminished during recent years both on the N. and S.,--in the former dircetion by the conquests of Russia, and in the latter by the encroachments of Afghanistan. A considerable stretch of country, including the important towns of Ealkh, Andkhoi, and Meimene, was at various times regarded as an integral part of the khanate ; but at present the River Oxus forms for the most part its southern boundary. To the W. it is conterminous with the khanate of Khiva and the desert of Kbaream, which now form part of the liussian empire ; and on the \mathbf{E}. it stretches to the khanates of Kunduz and Khokand. Its area is estimated at 100,000 square miles. A large part of the western balf of the land consists of a desolate steppe of argillaceous clay, broken by hills of slate and bare granite rocks ; the eastern parts are occupied by offshoots of the Hindu-Koh and Tien-shan ranges, and the Pamir steppe. The cultivated land is confined almost entirely to the inmediate neighbourhood of the rivers, of which the mnst important are the Aaru or Oxus, the ZerAffshan, and the Karshee. The Amu(Jihon or Kohik), whicb only belongs to the khanate in the middle part of its conrse, flows from S.E. to N.W, and varies in width from 300 to upwards of 800 yards. The Zer-Affshan, inferior to the Amu in the volurae of its waters, and superior to it in the populousness and cultivation of its banks, rises in the high lands east of Sumarkand, and, passing north of that city and of Bokhara, forms a lake in the province of Karakul about 25 miles in length. Its whole course is about 340 miles. The Karshee rises in the monntaius to the S.E. of Samarkand, and passes through Shehr-Sehz and Karshee, telow which it is lost in the desert.
There are no gold mines in Bobhara, but that metal is lound among the sands of the Oxus in greater abundance, perbaps, than in any of the other rivers which flow from the Hindu-Kob. The elimate of Bokhara is exposed to great variations. Io summer the heat is often very great, and in winter the cold is proportionally severe. The frosts commence about the end of November, and continue till towards the end of April. The Amu is generaliy frozen over for sowe weeks in winter so as to be passable for
caravans. In the desert the heat in suamer exceeds 100° Fahr. Thunder-storms and earthquakes are not unfrequent, especially in the spring; and there are sometimes violent toraadoes, generally blowing from the N.W.

The population of Bolhara, composed of Tadjils, Arabs, Uzbeks, Turkomans, Persians, Merri, and Jens, may be estimated at between $1,000,000$ and $2,000,000$. Neyendorff estimates it at $2,478,000$, Khanikoff at from $2,000,000$ to $2,500,000$, Burnes at less than $1,000,000$, and Wolf at $1,200,000$. The Tadjiks are the aborigines of the country, and are said to bave come from the west, and settled ou the banks of the Zer-Affshan at a time when the country was uniohabited, and a jungle of reeds coverel the place where the town of Bokhara now stands. Except in the town of Bekhara, where they constitute the majority of the population, there are fer ' Cadjiks nuw in the khanate. They are mostly engaged in commerce, are peaceful or even corardly in their disposition, and are characterized by avariee, faithlessness, and deceit. They are usually tall, with handsome and regular features, fair complexion, and black eyes and hair. The number of Arabs, thongh not considerable, exceeds that of the Tadjiks. They are the desceniants of the followers of Kutribe, who conquered the conntry about the beginning of the 8th century, and compelled the inbabitants to adopt the Nahometan faith. Their numbers are stated at 60,000 , and they inhalit the northern part of the khanate, especially the neighbourhood of Vardanzi and Vafkend. Like their ancestors they still continue to lead a wandering life, their chief occupation being the teading of their flocks. Their moral qualities seem to be of a bigher character than thuse of the Tadjiks. The Uzbeks, the last people that conquered this conntry, are the most numerous, and are at present the dominant race. They are divided into a number of tribes, of which the principal is that of Manghit. To it the reigning dynasty belonga Some of the Uzbeks are nomadic in their babits, others are engaged in agriculture or live in towns. They are mere bold and straightforward io their manners than the Tadjiks, but hare uufortunately degenerated from contact with that race. There are a considerabic number of Persians in Boklara, most of whom have been brought as slaves from their native country. They are readily distinguished by the regularity of itcir features, and their busby llack

IV - I .
hair. Large numbers of them rise by their intelligence and faithfulaess to occupy important situations. Although outwardly conforming to the faith and manners of the country, they cordially hate the native races, and are ready to bail with joy any political revolution which might shake the power of the Uzbeks. The Jews, though long established in the country, form but a very inconsiderable part of its inhabitants. They are chiefly to be found in Bokhara and some of the larger towns, where they have separate quarters assigned to them. Their privileges are very restricted The Mervi, who number about 40,000, are the people who were transplanted from the city of Merv on its destruction about 1810 by Emir Said Khan. The Turkoman and Kirghiz part of the popalation is wholly nomadic, and is chiefly to be found in the regions sonth of the Oxus.

The orchards in the neighbourhood of the larger towns are numerous and highly cultivated. They produce grapes, figs, peaches, pomegranates, apricots, plums, apples, pears, and quidces. The cultivation of cotton, tobaceo, and lucerne is extensively carried on, as is also that of the mulberry, beet, cabbage, carrots, radishes, onions, cacumbers, pease, beans, lentils, melons, and pumpkins. The soil being of a saline eature reguires to be cultivated with some care, so that it is found to be much more profitably laid out in gardens than in fields; indeed, the returns from the former exceed by sevenfold the returns from the same quantity of the latter. Wheat, rice, barley, millet, and juar (Sorghum vulgare) are the principal kinds of grain grown. The last-named is one of the most useful productions of the khanate, and as it is cheap and nutritious, it forms the chief subsistence of the poor.
Animals " The horses of Bokhara are numerous, but are more remarkable for strength than for beauty. Asses are also very plentiful, and are large and sturdy. The camels, by means of which the entire traffic of Bokhara is carried on, are rearcd chiefly by the wandcring tribes, particularly the Turkomans. They have a sleek coat as fine as that of a horse, and shed their hair in summer; from the hair a fine waterproof cloth of close and rather heavy texture is manufactured. The geats are about the common size, of a dark colour, and yield a sbawl-wool inferior only to that of Kashmir. The bulls and cows are miserably small, and in very wretched condition. The rearing of sheep is much attended t, particularly by the Arabs. There is a peculiar breed, said to thrive only in the district of Karakul, which produces a jet-black curly fleece that is much valued, The wild animals are few. Tigers of a diminutive species are found in the valley of the Oxus; wild hogs, herds of deer, antelopes, and the wild ass roam on the plains ; and foxes, wolves, jackals, and ounces are found in some parts. All kinds of game are scarce. The scorpion is cominon. The most valuable insect is the silkworm, which is reared in all parts of the khanate where there is water-every rivulet being lined with the mulberry.

Bokhara owes its importance to its central position. Lying on the route between Europe and the richest part of Asia it is the seat of a considerable transit trade. The Goverament bas established eustom-houses, built caravanserais, and constructed cisterns along such caravan roads as are insufficiently supplied with water, but otherwise does nothing to encourage traffic; and the roads are generally in a wretched condition. Religious fanaticism formerly rendered it impossiblo for any except Mahometan merchants to trade with safety in the couptry; but since 1868 all at least who are in any way under the protection of Russia have full freedom to import or transpert their wares throughout the country. Bokhara carries on an extensive trade with Russia by mcans of caravans, which travel by the following routes, viz., -hy the route of Khiva to the shores of and across the Cuspun from and to

Astrakhan; by the route to and from Orenburg by land in sixty days, through Orghenj in Khiva; to and from Troidska io Tobolsk, by the route east of the Sea of Aral, in forty-nine days; and to and from Petropavlosk (Kizij Djar) io binety days. From 5000 to 6000 camels are annually employed in this trade. Bokhara exports to. Russia, besides cotton, which is the principal item, dried fruits, rice, raw and dyed silks, indigo, silk sashes, tarquoises, shawls, and furs. It imports muslins, calicoes, chintzes, some silk stuffs, broad cloth, orocades, hides, irán, and other metals. The trade with Khiva emploss oddy frow 1000 to 1500 camels, and consists chiefly io exporting to Bukhara Rossian goods, of wbich there is always au available surplus in the markcts of Khiva. Three, and occasionally four, caravans arrive annually from Meshid in Persia, bringing cotton and silk stafis, calicoes, chintzes, muslins, carpets, shawls, tarquoises and opiun, and receiving in return lambskins, cotton, rice, dic. From Herat aad liashmir is imported a considerable quantity of shawls and Indian produce and English manufactures from Kabul. A brisk traffic is also cartied on with Khokand, Tashkand, liashgar, and Yarkand. The central points of commerce are Bokhara and Karshee; and trade is principally conducted at the marts and fairs that are beld in varions parts of the country. Almost the only manufactures carried on in Bokhara are those of cotton goods, silks, carpets, leather, hardware, and jewellery: There is one manufactory of cast-iron articles. Swords and knives are fabricated at Hissar and liarshee, and exce!lent paper of raw silk at Bokhara.

Bokhara bas for ages been reckoned the centre of elacation Mussulman erudition; and if we look at the number of its schools and the state of education among its people, we cannot but admit that, in that respect, it ranks first among the states of Central Asia. About one-fourth of the population is said to be able to read and write. The primary schools are numerous in the capital, as well as in the other cities, and even in villages. The course in these schools extends over about seven years. Those wishing to continue their studics then enter the medresses, or seminaries; in which they pursue a higher course of studies, chiefly theological, under one or two professors who have acquired the right to give lectures. Each establisbment has a fixed number of students, according to the extent of the building. Fifteen or even twenty years are reckoned iusufficient to go through a complete course in these institutions. The people are, however, very superstitious, bclieving in witcheraft, omens, spirits, snd the evil eye.

The Goverument is a hereditary despotism, the khan Govero having the power of life and death over his subjects. The ment. civil administration is in the hands of the clergy, and is founded on tho Koran and the commenteries upon it. The military and civil dignitarics are divided into three grades. The troops of the khan are estimated at about $40,000 \mathrm{men}$, but of these not more than one-third are completely armed. The languages in use are the Persian and Turkoman; the latter is spoken by the Uzbeks, and the wandering tribes south of the Oxns.

Bokhara was known to the ancients under the name of Sogdiana. It was too far removed to the cast ever to be brought under the dominion of Rome, but it has shared deeply in all the various and bloody revolutions of Asia. It is mentioned by the earliest historical writers of Persia; and the foundation of the capital is ascribed to Efrasiab, the great Persian hero. About the jear 856, Yacub-bin-Lcis is said to have been invested with the government of that province by the caliph. About twenty years later it was conquered by Ismael, the first sovercign of the Sassanean dynasty, whose successers held it until the renowned Malek Shah, third of the Seljuk dynasty
of Persia, passea the Oxiss about the end of the lith century, and subdned the whole country matered by tiat river and the Jaxartes. In 1216 Bodhara was again sub. dued by the celebrated Mahonet Shah Kharezm, who onjoyed his conquest but a short time ere it was wrested from him by Genghis Khan in 1220. The country was wasted by the fury of this savage conqueror, but recovered something of its former prosperity under Octai Khan, his fon, whose disposition was humane and benevolont. His posterity kept possession till about 1400, when Tiwur bore down everything before him. His descendants ruled in the country until about 1500 , when it was overrun by the Usbek Tatars, under Elulkhier Khan, the founder of the Sheibani dynasty, with which the bistory of Bokbara properly commences. The most remarkable representativo of this family was Abdullah Khan, who greatly extended the limits of his kingdom by the conquest of Badablishan, Herat, and Meshed, and greatly increased its prosperity by the public works which he authorized. Before the close of the century, however, the dynasty was extinct, and Bokhara was at once desolated by a Kirghiz invasion and distracted by a disputed succession. At length, in 1598, Baki Mehemet Khan, of the Astrakhan branch of the Timur fanily, mounted the throne, and thus introduced the dynasty of the Ashtarklanides. The principal event of his reign was the defeat he inflicted on Shah ibbas of Persia in the neighbourhood of Balkh. His brother Veli Mehcmet, who succeeded Baki in 1605 , suon alienated his subjects, and was supplanted by bis nephew Imarnkuli. After a highly prosperous reign this prince resigned in favour of his brother, Nezr Mehemet, under whom the country was greatly troubled by the rebellion of his sons, who continucd to quarrel with each other after their father's death. Meanwhile the district of Khiva, previously subject to Bok hara, was made an independent thanate by Abdulgazi Bahadur Khan; and in the reign of Subhankuli, who ascended the throne in 1680, the political power of Bokhara was still further lessened, though it continued to cnjoy the unbounded respect of the Sunnite Mahometans. Sublankuli died in 1702 at the age of 80 , and a nar of succession broke out between his two sons, who were supported by the rivalry of two Usbels tribes. After five scars the contest terminated in favour of Obeidullah, who was litle better than a puppet in the hands of Relim Bi Atalik, bis vizier. The in vasion of Nadir Shah came to complete the degradation of the land; and in 1740 the feeble king Ebulfeiz paid bomage to the conqueror, and was soon after enurdered and supplautcd by his vizier. The time of the Ashtarkhanides had been for the most part a time of diseolution and decay; fanaticism and imbecility went band in hand. On its fall the throne was seized by the Manghit family in the person of Mir Maasum, who pretended to the most extravagant sanctity, and proved by his military career that he had no small amount of ability. He turned bis attention to the encroachmeuts of the Afghans, and in 1781 reconquered the greater part of what had been lost to the south of the Oxus. Dying in 1802 he was succeeded by Said, who in bigotry and fanaticism was a true son of bis father. In 1826 Nasrullah Bahuder mounted the throne, and began with the murder of his brother a reign of continued oppression and cruelty. Meanwhile Bokhara became an object of rivalry to Russia and England, and envogs were sent by both nations to cultivate the farour of the emir, who treated the Russians with arrogance and the English with contempt. The Russian armies were gradually advancing, and at last they appeared in Khokand; but the new emir, Mozaffer-eddin, instead of attempting to expiate the insults of bis predecessor, sent a letter to General Chernayeff summoning bim to evacuate the country,
and threatening to raise all the faithful against him. In 1866 the Russians invaded the territory of Bokhara proper, and a decisive battle was fought on 20th May at Irdjsr on the left bank of the Jaxartes. The Bokharians were defeated; butafter a period of reluctant peace they forced the emir to renew the war. In 1868 the Russians entered Samarkand (May 14) and the emir was constrained to submit to the terms of the conqueror. Bokhara, though still nominally independent, is in reality subject to Russia, which must ere long absorb it completely.
Hitherto European intercourse with Bokhara has been very slight, and few travellers have personally visitcd it. The Brothers Pole were there in the time of Borak Iihan (1264-1274) and Anthony Jenkinson in 1558-9, Cladishell in 1740, Meyendorfi and Nagri in 1820 , Burncs in 1832 , Wood in 1838, Khanikoff and Lelmann in 1841-2, Stnduart and Conolly in 1842, Danilersky in 1842-3, and Vambery
in 1863 .
See Khanikoff's Eokhara, translated by no Bode (1845); Vambery,
 History, of Dokhara (1S73); Fedclento's "Sketch of the Zara, slaa Valley" in Joumi R. Gcogr. Soc. for 1570; Hellwald, Die Liussen in
Central Asicu (1873) Central Asien (1873).
Bokbara, or Bukbara, the capital of the above thamate, is situated six or seven miles fron the left bank of the ZerAfshan, in $39^{\circ} 48^{\prime} \mathrm{N}$. lat. and $64^{\circ} 26^{\prime}$ E. long. It is about eight miles in circumference, has a triangular shape, and is surrounded by an earthen wall about 20 feet high, which is pierced by eleven gates. It is divided into two main portions known as the Dcruni Shelr and Beruni Shehr, or tho inner and onter city, and these are subdivided into several districts. Of the former splendours of "Bokhara the Noble," the remains are comparatively few, and the general appearance of the city is very disappointing. Vambery describes it as one of the dirtiest and most unheajthy places in all Asia. The streets are extremely narrow, and the houses, flat-roufed and built of sun-dried bricks on frameworks of wood, are small and only one story in beight. The bazaars are very numerous, and each trade has its own. There are about thirty small caravanserais throughout the city, which serve partly as store-roons and partly as inns. The largest building in Bokhara is the Mosque of Kelan, which was originally built by Timur, and mas restored by Abdullah Khan. It occupies a square of 300 feet, and is surmounted by a dome 100 feet bigh. There the blan comes to pay his devotions on Fridays in the midst of his subjects. Among the other nosques, which are fabulously said by the inhabitants to number 365 , the most important are the Mesdjidi Mogak, a subterranean building of uncertain origin, and the Divanbeghi, which dates from 1629 , In the neighbourhood of the latter is an open square, witi a reservoir in the middle, which forms one of the favourite lounges of the people of Bokhara. On the opposite side rises the ark or palace of the klian, a ghoomy building on an elevated site. Boklara has long been regarded as tho intellectual centre of Central Asia, and possesses a largo number of educational establishnnents. There is hardly n street without its school, and the number of colleges or medresses, set down too at 365 by the inhabitants, is really about 80 . Of these the handsomest is Abdullah's which was built in 1372, and contains about 100 cells. Others date from 1426, 1529, and 1582; and one was founded by the Empress Catherine of Russia. The water supply of Bokhara is very defective, and the canals that convey it from the river are left in such an extreme stato of filthiness, as readily to account for the prevalence of many forms of disease. The population was estimated by Meyendorff at about 70,000 , and in this he was supported by Moorcroft and Khanikoff. Burnes raised the number to 150,000 , and Wolf to 180,000 : but it is now stated by Vaubery at no more than 30,000 .

BOLBEC, a tomn of France, capital of a canton in the deparment of Lower Seine, 18 milea E.N.E. from Havre on the railway to Paris, which here passes over bigh embankments and a viaduet. It was burned almest to the ground in 1765, but is now a flourishing brick-built manufacturing town, well supplied with water-pewer by the Belbec stream. The principal manufactures are cotton goods, weellen cloth, fad leather; there are also linen factories and dye-werks. Population in 1872, 9019.

BOLEYN, Anne, or, as the name is rariously spelled, Bullen, Bouleyu, Boullan, or Boulain, queen of England, and secend wife of Henry VIIL., was the daughter of Sir Thomas Boleyn, a distinguished politician, and Lady Elizabeth Howard, daughter of the earl of Surrey, afterwards duke of Nerfolk. Considerable obscurity rests over the date of her birth, which has been variously stated as 1501 and 1507 ; perhaps the earlier date is the mere probable. She received a very careful education, and in 1514 became maid-in-waiting to Mary Tuder, then the affanced bride of Louis XII. of France. She cressed io France in Mary's train, but did not return with her, having eatered the service of Qucen Claude, where she was celebrated for her beauty, talents, and accomplishments. The period of her return to England has becn.matter tî diapute ; some, following Herbert and others, would mate tho date about 1522, ethers 1527 . It unay be assumed with some confidence that she returncd about the earlier dote. About this time occurred her love affair with Percy, afterwards carl of Northumberland, which was broken off by Wolsey, acting apparently under the directions of the jealous king. Henry seems already to lave begun to direct his affections towards the fair Boleyn, who was then one of the maids of honour attached to his consort, Ketherine of Aragen. He advanced her family, but is said to have been repulsed by her when he made an offer of his love. In 1527, after some absence from the court, she seems to bave returned, and Henry's attentions to ber became mere marked than before. His passion seen opened his eyes more clearly to the sin of his marriage with bis doceased brother's wife, and the subject of the divorce began to be seriously discussed. Towards 1530 Anne Boleya was accustomed to kecp state almost as queen; in 1532 she was raised to the peerage with the title of marchieness of Pembreke, and accompanied Henry in his visit to France. On January 25, 1533, according to a contemporary repart, her ambition was crowned by a private marriage with Henry. On the 12th of April she was openly proclaimed queed, and the marriage was again eolemazed; and on the 8th of May the hing's previous marriage was declared to bave been null and woid. The cerenation took place on the 19th of May, and on the 7th September, a princess, the famous Elizabeth, was bern.

Little is knern of the now queen's married life. She to some cxtent favoured the Refriners, and conntenenced the translation of the bible. In January 1536 she gave birth to a prince, still-born. It is said that this mishap was occasioued by her suddenly becoming aware of Henry's attentions te Lady Jane Seymour. However this may be, Henry's superstitious fears semn to have been roused oy the want of a male leeir, and his fancy for Ame Boleyn bad been replaced by a new passion. In April 1536 a committec sat privately to inguire into certain aceusations of ndultery against the quectl. A special cummission was called on the 24 th A pril, and orders were issucd for the arrest of the Viscount liochford, the quech's brather, Sir lleary Norris, Sir Win. Brereton, Sir Francis Weston, and Mark Smeton, all her alleged paramours. At the same time writs were issucd for n ner: parliament. On the 2d May the queen was arrested and summoned before the privy council.

Sulcton, Norris, and Weston were afterwards examined, and of these Smeton confessed, though it was said under torture. Norris is thought to have made some admission, which, however, he afterwards withdrew. All three were committed to the Tewer, to an apartment in which tbo queen was also consigned. Henry wrote to her. holding out hepes of pardon if she would be epen and benest. Her reply, howevcr, strongly affirms ber innecence, and its gencral tone gees far in her favour. (The authenticity of the queen's letter has been doubted, though on slight grounds, by Mr Froude.) The juries of Middlesex and Kent, before whom proceedings opened, found true writs charging the queen with adultery, committed with the above named Kechford, Brereton, Westen, Norris, and Smeton, and all with conspiring against the king's life. On the 12th May, Brereton, Norris, Weston, and Smeten were tried at Westminster, feund guilty, and condenmed. On the 15th Anno Bolcyn and her brother were tried before twenty-seven peers, found guilty, and sentenced. On the 17th Smeton was hanged, the others beheaded. Their remarks on the scaffold were general, and can be interpreted fairly in neither way. Before the queen's execation she is said to hare confessed to Cranmer some previous impediment which rendered her marriage with the kiag null and void, but what the cenfession was is absolutely unknown. On the I9th May she suffered death on Teiver Green. On the neat day Henry was married to Jane Ecymour. Over the wholo episode of Anne Boleyn's trial \&nd execution the deepest obscurity rests. All traces of the evidence bave vanished, and the cenflicting judgments of bistorians, it must be confessed, secm generally to be determined by the bias of the individual writer.

Sce Slute Trinls, where Burnet and the older mriters we equotod; Strickland, Lives of the Queens of England; Miss Binger, Life of A Dolcyn; and the histories of Lingard and Froude.

BOLI, a town of Asiatic Turkey, in Anatolia, situated about 85 miles N. W. of Angera, on the Philios Cbai, to the south of the Beli Dagh, in $31^{\circ} 40^{\prime}$ E. long. and $40^{5} 45^{\circ} \mathrm{N}$. lat. It is the capital of a sandjak and the seat of a governor, and contains a ruined castle and numerous mosques and baths, nowise remarkable in their structure. Cotten and leather are manufactured; the country around is fertile, and in the neigabourhood is a forest, from which Constantinople is largely supplied with weed. . There are warm springs in the vicinity. Boli is built not far from what is regarded by Lcake as the ruins of Hadrisnopolis, where many marble frazments with Greck juscriptions are still feund. The population is conjecturally stated at 10,000 .

BOLINGBROKE, Henry St John, Viscount, was born in October 1678. IIis father, Sir Henry St Jobn, the descendant of an old and noble family, was a noted rake of the Restoration period, whe continued to live his life of pleasure and indelence for upwards of ninety years. Of his mother little is known, save that she was ad daughter of the earl of Warmick. The education of her son was entrusted to the care of his grandmother, Lady St John, who was a professed Furitan and of a piens disposition. IIis tutor was a Dr Burgess, then renowned for his wit not less than for his piety, whese instructions in divinity seem to have bcen semewhat distasteful, if we are to accept the pupil's acceunt of the dreary studies le was compelled to engago in. At an carly age he was sent to Eton, where he appears to have been it sehool-fellow, though hardly a rival, of Walpole, aud then procceded to Christ Church, Oxford. The life he led at the university was typical of his later earcer. His brilliant talents and urusually retentive menory enabled him to amass an immense amount of information-more, indeed, than he was given eredit for; while at the same timo be began to.
acquire an equally high reputation for dissipation and. licentiousness. He was the Rochester of the period, with more than Rochester's abilities. He sought and gained the fame of a modern Alcibiades or Petronius. Amidst all his excesses. however, he maintained a real interest in literature. He was intimate with Dryden, and prefixed a laudatory poem to the first edition of the translation of Virgil The verses did net hold out high promise of peetic power; and his later efforts in the same direction did little for his literary reputation His most considerahle production, Almahide, an Ode, is a miserable tawdry affair; the light ode to the equally light Clara is very much better, and has some vivacity and sparkle. He seems to have beed conscious of his want of poetic genius, for his verse remains are not numerous.

For two years, from 1698 to 1700 , he resided on the Contineot, and during that tine acquired the thorough mastery of the French language which was afterwards of so much service to him. On his return his friends, in the hope of withdrawing him to some extent from his loose mode of life, negotiated a marriage with the wealthy daughter of Sir Heory Winchescomb, a baronet of Berkshira Marriage, however, effected little or oo change in St John, and, though his wife never formally separated from him, and aiways ratained a true affection for her husband, their married life was unhappy and divided. In February of the year following he entered Parliament as member for Wootton-Basset

The Tory party, from a combination of circumstances, were then all-powerful in the House of Commons. The Partition Treaty, a measure for which, indeed, little cso be said, had not met with popular favour, while William's large grants to foreigoers, together with the general coldness and repulsiveness of his manners, had rendered him most unpopular. A perfect storm of discontent had arisen, and the Tories were nearly bewildered with the power which had been ouddenly placed in their hands. Harley, perhaps, at that time, from bis moderation, the most influential man of the party, led the House as speaker. St John enrolled himself amoog the Tories with the utmost enthusiasm, and from the first displayed such brilliant powers as placed him at once in the front rank, and gave him an almost upique position. His youth and high birth, his handsome and commanding presence, and his agreeable address, no doubt contributed largely to his rapid elevation, but what above all secured for him an unequalled euccess was his wooderful eloquence. The powers be unexpectedly evinced as an orator and debater were unrivalled then: and, if we are to take contemporary reports as our authority, had never been equalled, and have seldom, if ever, been surpassed. Not a fragment of his many speeches has come down to us, but from the critictsms of those who heard him speak, and from his published writings, some idea of their general quality may be gathered. The most prominent characteristics seem to have been copiouspess and readiness, extreme fluency, and spontaneity, combined with a brilliant felicity of phrase, the right expression seeming to spring up naturally along with the thought to be expressed. His sentences are mostly massivo and halanced, yet never heavy; llowing, but rarely redundant. He is, perhaps, the first British statesman whose parliamentary oratory has been really a power; and with such aplendid qualifications it was little wonder that he readily became the protagonist of the Tory party. He was their mouthpiece; he gave expression to their half-articulate *rishes, hounded them on in their insano attacks on the great Whig leaders, and barbed their iovectives with his own treachant wit. Eut, as he has hiuself admitted it would be difficult to discover what object the Turies really had in view. Their only desire seems to have been to
revenge themselves upon their political opponents and indirectly to assail the king. A definite policy they had not cither at that time or throughout the succeeding reign. The Whigs had so far a basis of operations; they held by the Protestant succession, and were in favour of a war with Fraoce. The Tories, who, if thoroughgoing, were really Jacobites, were averse to the French war, because it indirectly weakened their party, and they did not favour the succession. But consistent adherence to priaciple is a thing ode looks for in rain among the majority of statesmen in the reign of Anse. There never was a time in British history when the movements of politicians were regulated by such petty causes, and when great talents had to be tursed to such paltry purposes. Politics became but a grand game, in which success meant office, power, wealth, and dignity; and to secure such success few besitated at the most dishonourable meads. Treason was a thiog of common occurreoce, and many oames among the highest in English history are tarnished by acts of grossest treachery. Bolingbroke participates to the full in the spirit of his time. Never throughout his whole career can one observa the operation of a consisteat pelicy, or trace the action of any motive higher than personal ambition. Mentally and morally he was well qualified to take a prominent place in the political struggle of the time.

The rush of pepular farour to the Tory party was checked by Louis's acknowledgment of the Pretender as legitimate king of England. There was no opposition made to the proposed war, which was not interrupted by the death of William and the accession of Ance. Godolphin and Marlhorough, both moderate Tories, were strongly in favour of the war, and consequently fouad themselves gradually drawn into harmony with the Whige rather than with the extreme members of their own party. Several of the latter were removed from the cabinet, and among the new officials were Harley, and, curiously enough, St Joho, the former being mado Secretary of State, the latter Secretary at War It has beeu doubted to what influence St John owed thes singular promotion. Harley's power was hardly great eoough to effect it, aod it is more thao probable that it was in great part, if not eotirely, the work of Marlborough, who had a very considerable affection and respect for St John, and who doubtless desired a friend of his to fill the office with which he had so many transac. tioos. As secretary St Joho discharged his duties with great efficiency, avi manifested the most enthusiastic admiration for Marlborough's military gemus and success Meantime Harley had been tampering with the secret springs which moved so much of the political machioery His relative Mrs Masham was supplanting the imperious duchess of Marlborough, and through ber iofluence the queen was becoming convinced that the interests of the nation should be confided to Harley and the Tories She was ready to dismiss Godolphin at the first opportunity, but the Whigs were as yet too strong, and Harley's schemes having been discovered, be was in 1708 compelled to resign St John, who can hardly be thought to have had no cognizance of what was afoot, resigned along with him, and spent two years in philosophucal retirement, studying diligently and living lonsely as before During these years a gradual undercurreat of feeling swelled up agaiast the Whig party The war was distasteful, and its prolongation was looked upon as altogether the work of Marlborough Above all, the queen was thoroughly alienated from her old friend and under the influence of Mrs Masham Yet the strength of the Whig party might have enabled them to carry through their policy successfully had not an act of sucidal imprudence completely ruined theta. The prusecution of Sacheverell was the signal for a perfect storm of insanely loyal feeling throughout the country a Tury ammery
rould evidently mect with popular approval, and Atro had therefore no hesitatioa in dismissiag Codo!phin and the Whigs. Harley became Chancellor of the Exchegver and virtually premiér; St John was mado Sccretary of State.

The political problem, how, under all contingeneies, to retaia power, was somewhat complicated. The queen's health mado the ouccession the main question. Now, the accession of the Elector meant the restoration of the Whigs to power. It was bardly possible for the Tory leaders to oust the Whig party from the graces of the House of Hanover, with whom their policy was so knit up. Prudeace, therefore, as well as principle, made them lean towards the esiled House of Stuart, and for a time extreme Tory was synenymous with Jacobite. But the hopes of James to a grest extent depended on the assistarce of France, and consequently peace with France became their primary object. To attain it they were urged also by the loudly expressed wishes of a large section of the people, and by their hatred of the Whigs, with whom the war was identified. Active steps in the matter were taken maialy by St Joha, and in the begianing of 1712 he had at last brought affairs to such a pass that the dulte of Ormond, who had superseded Marlborough, received secret orders not to attack the French, while private intimation of this order was seat to the Freuch Government. Arrangements were thea made with the French minister De Torcy, wherchy the fundamental articles of the league with the allies were broken, Britaia engaging to eater into a separate peace with France, receiviag certaia special advantages, and quietly abandoning some of the allies, as the Catalans. Nothing can possibly extenuate the baseness of these proceedings, and our judgment of them cannot be altered by our opinion as to the advisability of the peace. The Whig party were wholly unable to throw any obstacles ia the way; their majority in the House of Lords had been ewamped by the creation of twelve new peers; and Walpole had been impeached on a petty charge and committed to the Tower. Finally, St John, now Viscount Bolingbroke, visited Paris to push on negotiations so that peace might be announced to next Parliament. It has been said, though he binself denied it, that duriag this visit he had interviews with the Pretender. In April 1713 the famous treaty of Utrecht was signed, and the Parlicenent of that year had the articles read to them. This, however, had not the effect anticipated by Bolingbroke. There was a lurking feeling of discontent with regard to it, and the commercial aricles, bearing on trade with France, excited great indignation anong the mercantile classes

Bolingbruke and the Torics seemed, however, to he at the zenith of their pewer: but the foundations of that power were unstable, and there was dissension among the leaders. Harley had become earl of Oxford, and Bolingbroke was indigasnt at receiving only the rank of viscount. Ilis anger was increascd oa failing to receire the garter tacant by the desth of Godolphin. The disputes between the iormer allies became opess and violent. By unscrupulous tribery Bolingbroke managed to secure the interest of Mrs Masham, and throngt her wrought upon the queen. In the Parliament of 1714 he dealt the deatloblow to Osford's power, by compcling hin to rote upon tho Schisn Bill; and firaliy, on the 27th July, after a stormy discussion, which greatly exuited the queen, O:ford was dismissed. Bulingoruke, however, had but a brief taste of power, for on tha 30th the queen was seized with apoplexy. At the council held upon the emorgency the dukes of Argyle and Somerset boldy presented themselves, end proposcd and carried a resolution that the duke of Shrewsbury slould be recommended as Lord Treasurer. Bolingbroke was obliged to yieh. Aune was ablo to givo
assent; the Wibig paity iad already made all their arrangements, and immediately on the queen's death (Angust 1) the Elector was proclaimed king, and special messengers were despatched to briag him over. Bolingbrolee and his friecds seemed hewildered; they were, indeed, thoroughly takea by surprise, and their half-formed sehemes diseoncerted. Atterbury alose urged Boliagbroke boldly ta proclaim James, but cither the courage of the latter failed, or, as is more probable, his intentions were not sufficiently definite. It is not an uareasoubble supposition that, had a fair time been grasted to him, he tould have endeavoured to make favour with the House of 'Hanover. Any such hope was then out of the question; tin duties of his office were transferred temporarily to Addison, and within the month in which the queen died be was formally dismissed. It was soon known that the new Parlíament, who were mainly Whigs, inteaded to impeach Oxford and Bolingbroke for their share in the recent peace. From what we now know of the actual accusstion, it is piain that it did not amount to high treason. Had there been nothing further it would have been the best plan to have stayed and faced the trial. This, accordingly, was doase by Oxford; but Bolingbroke, after showing himself ostentatiously in public, Ifd over to France in disguise. even before the impeachment lad been made in the House. In the letter he left behind lim for Lord Lansdowne he gives as his excuse that he had certain and repeated informations from some who were in the secret of affairs that a resolution was taken to pursue him to the scaffold. In the famous letter to Sir Wm. Windhamehe talies somewhat different ground, and accounts for his flight from his intense dislike of Oxford, and his resolution not to be associated with himia any way. It was not till the 10th June that he was formally impeaclied: on 6th August he was attainted and summoned to appear before the 10th September. On the 16th September, he not having made his appearance, his name was struck off the list of peers, and seateace of bavishment was passed. Long before this, however, Bolingbroke had thrown in his lot with the Pretender. He Lad secret interviews with the duke of Berwick immediately after his arrival in Paris, while professing the most loyal sentiments to Lord Stair, the British embassador, and in the moath of July be was formally installed as Seeretary of State to the prince. Whaterer plans he might have hoped to carry through in this capacity were thoronghly "hwarted by tho numberless irregular agents and edvisers who swarmed about the petty court, and by the imprecticable disposition of the prince himself. The expedition to Scorland, undertsken against Boliagbroke's adrice, proved a complete failure; and in February 1716 he was dismissed with seant ceremony from the prince's service, while a formal impeachment was drawn up, accusing him of dilatoriness and want of cenergy: Rumour was busy with his name, and every species of treachery was imputted to him. The celebrated letter to Sir Wm. Windlam, in many respects the best of his writings, was drarn up in the following year, and contairs. an eiaborate sketch of the events of his political carecr and a justification of his procecdings. The letter may lave been circulated to a slight extent in print or in manuscript, but it was uadonbted!y not made public till 1:53, two years aiter Bolingbroke's death. It is a ekilful piece of mork, written with great apparent candour, but inconsistent with known facts, and throwing no satisfactory light on the complicated transactions in which the writer had been insolved.

His efforts to ingratiate himself with the new dynasty in England were unavailing, and from this time onwaris to his deach he led a life of enforced insctivity. Ho was for ever debarred from the riena of political strife, and tho: ${ }^{\text {an }}$ he inecssantly hóvered round the outskirts, he was unable to effect an entrance. He phunged decply into philosophical
atudies, and would lain bave had his friends believe that he had thoroughly and reluntarily resigned bimself to a life of studieus retirement. He took up his abode at La Source, and in 1720 , two years after the death of his first wife, married the Marquise de Villette, for whom he seems to bave had a sincere affection. In 1723, by bribing the duchess of Kendal, a removal of part of his sentence was attained; he was permitted to return to England, and, by a apecial bill, passed two years later, was allowed to enjoy his first wife's property. He bought a magnificent estate at Dawley; and, while keepiog up the appearance of singleminded devetion to study, plunged eagerly inte as much of political intrigue as was open to him. He had tried in rain to conciliate Walpole, and seems to have seen that during that minister's tenure of power ho conld never recover his position. He accordingly united himself to the dissatisfied section of the Whigs led by Pulteney, and tried to organize out of them and the remnant of the Tories an opposition to Walpole. His aid was lent not only in preparing speeches for Windham, Pulteney, and others, whe for a time were little mere than his mouthpieces, but in.written attacks upon the minister. His papers in the Craftsman, which gave that journal a circulation exceeding even that of the Spectator, are masterpieces of rigerous English. In their collected ferm as the Dissertation on Parties and Oldcastle's Remarks on. History, they are valuable contributions to our knowledge of the political movements of the period. At one time, indeed, it aeemed that the opprosition would succeed in driving Walpole from the field. The outcry against his Excise Bill was strong, and his majerity in the House was seriously diminished, but-he was too firmly reoted to be easily meved; and in 1735 be retaliated on Bolingbreke by a significant aud threatening speech. So crident was it that he had obtained an iesight into intrigues which could not stand investigation, that Belingbreke took alarm and a second time fied te France. Other motives, such as pecuniary embarrassments, may have cortributed to force him to this step, and there can be little doutt that his reputation was oi a nature seriously to damage any party with whom he united. He found that Pulteney was ansious to get rid of hin, and felt with some bitterness that, like an old acter, he must retire from the political stage before being hissed oft. After this second retreat he settled at Chanteloup, in Touraine, whence be paid two or three visits to Eagland Finally, in 1743, after the death of his father, be took up his residence at Battersea, and, fioding the new statesmen little disposed to hearken even to his counscls, endeavoured to derote himself entirely to philosephy. He died at Battersez on the 12th December 1751.

Of Bolingbreke as an author but little can be said. The question asked a very fer years after his death, "Whe now roads Bolingbroke ?" may be put with tenfeld significance now. The influence of his writings on English literature has been quite inappreciable, and probably the works of few men of such ability hare been so little read. let this neglect is in some respects undescrecd. His writings may be regarded in two aspects,- as specimens of English prose, and as positive contributions to history, politics, and philosophy. In the latter aspect their werth is indeed small. His histerical treatiscs, while containing much that is of interest and importance, are over-weighted by the constant reference to the peace of Utrecht, the defence of which is almost their sole object. It would be difficult to extract from the Dissertation on Parties, the Idea of a Patriot King, or the Letters on Patriotism anything like a consistent philosephy of government. No one has exponnded better than Belingbroke the fundamental principles of Thig policy, and yet his ideal of a king is a sovereign whe, from various qualities, is aile to retain
nearly absolute power, and to govern withent the intersention of party spirit. In philosophy he occupies but a suberdinate place in the long line of English writers whe drew their inspiration from Locke, and whe gave the key-note to the religious enlightenment of the 18 th cantury. He is a deist, and frem the basis of the sensational theory of knewledge attacks revealed religion with ferce quite inferior to Toland or Tindal. Belingbroke's philosophical works are indeed iasuferably wearisome, and it is only in them that his style ever flags and grews cumberseme, for his other writings are in many respects the perfection of English prose style, and can stand comparisen eren with the finished compesitions of Addison. For ease, grace, and oraterical vehemence and energf, the Letter to Sir IT. Tindham and the dedication of the Dissertation on Parties are nearly unsurpassed. Belingbreke clearly was at his best when roused by strong feeling, and his mest rigorous passages are these which would naturally have been spoken. That nose of his parliamentary orations have come down to us is matter of deepest regret, even though our estimate of them be lower than Pitt's.
Bolingbroke's works were published in 5 vols. 4to, by David Mallet, 1753-54. Later editions have generally prefired to them the Life by Goldsmith, a compilation of little alue. Two volumes of Correspondence were pulished by Parke in 1798 . Materials for Bolingbrobe's lifo are to be found in the Stuart papers, Marchmont papers, Coxe's Life of Mariborough, Switt's Journal and Fistory of the last Four Years of Quten Anne, Somerville's Queen Anne, and Stanbope's Reign of Qucen Anne and History of England, particularly rols. i. and ii. Some special information win be found in Do Torcy's Mémoires, and Mignet's Negociacions relatifs' al la Succession dEspagne. Sec also C. W. Cooke, Memoirs of Boingbroke, 2 vols., is 35; Rémusat, Anglelerre au دVIII Siccle, vol. i.; Machmight, Life of Bolingbroke, 1s63.
(R. AD.)

LOLIVAR, Sinos; the hero of South American inde. pendence, was bern in the city of Caracas, Venezuela, on the 24th July 1783. His father was Juan Yicente Bolivar y Pente, and his mether Maria Cencepcion Palacios y Sojo, hoth descended of noble families in Venezuela. After accuiring the elements of a liberal education at hewe, Bolivar was sent to Eurepe to prosecute his.studies, and with thls view repaired to Madrid, where he appears to have resided for several years. Having completed his cducation. he spent seme time in travelling, chiefly in the south of Europe, and risited the French capital, where ho was an egc-witness of some of the last scenes of the Revolution. Returning to Madrid, he married, in 1801, tha daughter of Don N . Tore, uncle of tha marquis of Tero in Caracas, and embarked with her fer America, intending, it is said, to devete himself to the improvement of his larga estate. But this plan was frustrated liy the premature death of his yeung wife, who fell a victim to yellow fever ; and Bolivar again visited Europe, in order, by change of scene, to alleriate the serrow occasioned by this bereavement.

On his return home in 1809 he passed through the United States, where, for the first time, he had an oppertunity of observing the working of free institutiens; and soon after his arrival in Tenezuela he appears te have identified himself with the cause of independence which had already agitated the Spanish colonics for some years. Being one of the promoters of the mevement at Caracas in April 1810, he received a colenel's commission from the revolutionary junta, and was associated with Luis Lopez Mendez in a mission to the court of Great Britain. Venezuela declared its independence of the mother country on July 5, 1811, and in the following year the war commenced in earnest by the advance of Mentererde with the Spanish treeps. Belivar was intrusted with the cemmand of the impertant post of Puerte Cabelle, but' net being supperted he had to evacuate the place; and ering to the inaction of Miranda the Spaniards recosered their hold orer the country.

Like others of the revolutionists Bolivar took to flightr.
and succeeded in reaching Curacao in safety Ile dill not, however, remain long in retirement, but in September 1812, bearing of important movements in New Granada, repaired to Carthagena, where he reeeived a commission to operate against the Spanish troops on the Magdalena liver. In this expedition he proved eminently suceessful, driving the Spaniards from post to post, until arriving at the confines of Venezuela he boldly determined to enter that province 2ild try conclusions with General Monteverde limself. llis troops did not number more than 500 men; but, in $E_{\text {q ite }}$ of many discouragements, he forced his way to Merida and Truxillo, towns of some importance in the west of Venezuela, and succeeded in raising the population to his support. Forming his increased forces into two divisions, he committed the charge of one to his colleague Rivas, and pushing on for Caracas the capital, issued his decree of "war to the death" A decisive battle ensued at Lastoguanes, where the Spanish troops under Monteverde sustained a crushing defeat. Caracas was entered in triumph on the 4th of August 1813, and Monteverde took refuge in Puerto Cabello. General Marino effected the liberation of the eastern district of Venezuela, and the patriots obtained entire possession of the country in January 1814. This success was, however, of rery brief duration. The royalists, effectually roused by the reverses they bad sustained, concentrated all their means, and a number of sanguinary encounters ensued Bolivar was eventually defeated by Boves near Cura, in the plains of La Puerta, and compelled to embark for Cumana with the shattered remains of his forces Caracas was retaken by the Spaniards in July; and before the end of the year 1814 the royalists were again the undisputed masters of Venezuela. From Cumana Bolivar repaired to Carthagena, and thence to Tunja, where the recolutionary congress of New Grenada was sitting. Here, notwithstanding bis misfortunes and the efforts of bis personal enemies, he was received and treated with great consideration. The congress appointed him to conduct an expedition against Santa Fé de Begota, where Don Cundinamarea bad refused to acknowledge the new coalition of the prorinces. In Decenber 1814 he appeared before Bogota with a force of 2000 men, and obliged the recalcitrant leaders to capitulate,-a service for which he reeeived the thanks of congress. In the meanwbile Santa Martha had unfortunately fallen into the hands of the royalists, and Bolivar was ordered to the relief of the place. In this, however, he was not successful, Geaeral Morillo having landed an averwhelming Spanish force. Hopeless of the attempt, he resigned his commission and embarked for Kingston, Jamaica, in May 1814. While residing there an attempt was made upon his life by a hired assassin, who, in mistake, murdered his secretary.

From Kingston Bolisar repaired to Aux Cayes in Hayti, where he was furnished with a small force by President I'tion. An expedition was organized, and landed on the mainland in May 1816, but proved a failure. Nothing daunted, however, he obtained remforcements at Aux Cayes, and in December landed first in Margarita, and then at larceluna. Here a provisional government was formed, and troops were assembled tu resist Morillo, who was then advancing at the head of a strong division. The hostile furces encountered each other on the 1 th of February 1817, when a desperate conflist ensued, which lasted during that and the two following days, and ended in the defeat of the royalists. Morillo retired in disorder, and being met on lis retreat by laez with his llancros, sufficed an additional and more complete orecthrow. Being now recormized as commander-in-chief, Bolivar proceeded in his career of vietory, and before the close of the year lad fixed his headquarters at Angostura on the Orinoco. At the opering of the congress which assembled in that eity on
the 15 th February 1819 he submitted an elaborate exposition of his views on government, and conctuded by surrendering his authority into the bands of congress. Being, however, required to resume his power, and retain it until the independence of the country had been completely established, he reorganized his troops, and set out fron Angostura, in order to cross the Cordilleras, effect a junction with General Santander, who commanded the republican force in New Grenada, and bring their united forces into action against the common enemy. This bold and original design was cromind with complete suceess. In July 1819 he encered Tunja, after a sharp action on the adjoining heights ; and on the 7th of August he gained the victory of Bojaca, which gave him immediate possession of Bogota and all New Grenada.

This campaign is unquestionably Bolivar's most brilhant achievement, and deserves much of the praise which has been lavished on it. His return to Angostura was a sort of national festival. He was bailed as the deliverer and father of his country, and all manner of distinctions and congratulations were heaped upon him. Availing hinself of the favourable moment, he obtained tha enactment of the fundamental law of 17 th December 1819, by which the republics of Venezuela and New Grenada were henceforth to be united in a single state, under his presidency, by the title of the Republic of Colombia. The seat of government was also transferred provisionally to Rosario de Cucuta, on the frontier of the two provinces, and Bolivar again took the field. Being now at the bead of the most numerous and best appointed army the republicans bad yet assembled, he gained important advantages over the Spaniards under Morillo, and on the 25th November 1820 concluded at Truxillo an armistice of sis months, probably in the hope that the Spaniards would come to terms, and that the further effusion of blood might be spared. If such were bis views, however, they were disappointed. Morillo was recalled, and General Torre assumed the command. The armistice was allowed to expire, and a renewal of the contest became inevitable. Bolivar therefore resolved, if possible, to strike a decisire blow; and this accordingly he did at CaraLobo, where, encountering Torre, he so completely routed the Spaniards, that the shattered renains of their army were forced to taka refuge in Puerto Cabello, where tro years after they surrendered to Paez. The battle of Carabobomay be considered as baving yut an end to the war in Venczuela. On the 29th June 1820 Bolivar entered Caracas, and by the close of the year the Spaniards were driven from every part of the province except Fuerto Cabello. The next step was to secure, by permanent political institutions, the independence which had been so dearly purchased; and, accordingly, on the 30th of August 1821, the constitution of Colombia was adopted with geteral approbation, Bolivar bimself being president, and Santander vice-president.

There was, however, more work for him to do. The Spaniards, though expelled from Culombia, still held prossession of the neighbouring provinces of Fcuador and Peru ; and Bohivar determined to complete the liberation of the whole country. Plaeing limself at the head of tha army, he marched on Quito in Eevador. A severe battle was fought at lichincha, where, by the prowess of his colleague Sucre, the Spauiarls were ronted, and Quito was cntered by the repuliticans in June 1820. Rolivar then marehed upon Linua, which the rovalists evacuated at his approach; and entering the eapial in trimph, he was invested with absolute power as dietafor, and authorized to call into action all the resources of the country. Owing, bowever, to the intrigucs of the republican factions in Peru he was foreed to withlraw to 'Iruxillo, leaving the capital to the merey of the spaniards under Canterac, to
whom it was immediately oceupied. But this misfortune proved only temporary. By June 1824 the liberating army was completely organized; and taking the field soon after: it ronted the vanguard of the enemy. Improving his advantage, Bolivar pressed forward, and on the 6th of August defeated Canterac on the plains of Junin, after which he returned to Lima, leaving Sucre to follow the royalists in their retreat to Upper Peru,-an exploit which the latter executed with equal ability and success, gaining a decisive vietory at Ayacucho, and thus completing the dispersion of the Spanish force. The possessions of the Spaniarls in Peru were now confined to the castles of Canao, whinh Rodil maintained for upwards of a year, in spite of all the means that could be employed for therr reduction. In June 1825 Bolivar visited Upper Peru, Which having detached itself from the government of Buenos Ayres, was formed into a separate state, called Bolivia, in honour of the libcrator. The first congress of che new republic assembled in August 1825, when Bolivar was declared perpetual protector, and requested to prepare for it a constitution of government.

We now come to that period in the liberator's eareer when his eare was directed to the administration of the affairs of the freed provinces. He had been successful in raising those distriets to the position of independent states, and now devoted himself to the framing of such laws as seemed to him most suitable to the inhalitants. His endeavours to satisfy his countrymen in this respeet did not always meet with encouragement, and sometimes exposed him to slander. In December 1824 Bolivar convoked a constituent congress for the February following ; but this body, taking into considcration the unsettled state of the country, thought it proper to invest him with dietatorial power for another ycar. A grant of a million dollars was offered him but deelined, and the congress adjourned, leaving the dictator absolute governor of Perv. Ilis project of a constitution for Lolivia was presented to the congress of that state on the 25 th May 1826, accompanied with an address, in which he ambodied his opinions respecting the form of government which he conceived most expedicnt for the newly established republies. This code, however, did not give satisfaction. Its most extraordinary feature consisted in the provision for lodging the executive authority in the hands of a president for life, without responsibility and with power to nominate his suceessor, a proposal which alarmed the friends of liberty, and excited lively apprehensions amongst the republicans of Buenos Ayres and Chili; whilst in Peru, Bolivar was aecused of a design to unite into one state Colombia, Peru, and Dolivia, and to render himse!f perpetual dietator of the ennfederaey.

In the meanwhile the affairs of Colombia had taken a turn which demanded the presence of Bolivar in his own country. During his absenee Santander had administered the government of the state ably and uprightly, and its independenee had been recognized by other countrics. But Pacz, who commanded in Venezucla, having been accused of arbitrary conduet in the enrolment of the eitizens of Caraeas in the militia, refused obedience to the oummons of the senate, and placed himself in a state of open rebellion against the Government, being encouraged by a disaffeeted party in the northern departments who desired separation irom the rest of the republic.

Accordingly, having intrusted the government to a couneil nominated by himself, with Santa-Cruz at its head, Bolivar set out from Lima in September 1826, and hastening to Bogota, arrived there on the 14 th November. lle immediately assumed the extraordinary powers which by the constitution the president was authorized to excreise in case of rebellion. After a short stay in the capital he
pressed forward to stop the effusion of blood in Veqezuela, where matters had gone much farther than he could have eontemplated. On the 31st December he reached Pucrto Cabello, and the following day he issued a decree offering a general amnesty. He had then a friendly meeting with Paez and soon after entered Caracas, where he fixed his headquartors, in order to check the northern departments, which had been the principal theatre of the disturbances. In the meanwhile Bulivar and Santander were re-elected to the respeetive offiees of president and vice-president, and by law they should have qualified as such in January 1827. In February, however, Bolivar formally resigned the presidency of the republie, at the same time expressing a determination to refute the mpuations of ambition which had been so freely east upon him, by retiring into private life, and spending the remainder of his days on has patrimonial estate. Santander combated this proposal, urging him to resume his station as constitutional president, and deelaring his own conviction that the troubles and agitations of the country could only be appeased liy the authority and personal influence of the liberator himself This view being confirmed by a resolution of congress, although it was not a unanimeus one, Bolivar decided to resume his functions, and he repaired to Bogota to take the oaths. Before his arrival, however, he issued simultancously three separate decrees,-one granting a gencral amnesty, another convoking a national convention at Ocaña, and a third for establishing constitutional order throughout Colombia. His arrival was accelerated by the occurrence of 'events in Peru and the southern departments, which struck at the very foundation of his power. Not long after his departure from Lima, the Bolivian code had been adopted as the constitution of Peru, and Bolivar had heen declared president for life on the 9th December 1826, th: anniversary of the battle of Ayacucho. At this time the Colombian auxiliary army was cantoned in Peru, and the. third division, stationed at Lima, eonsisting of veteran troops under Lara and Sands, beeame distrustful of Lolivar's designs on the frecdom of the republic. Accordingly, in about six weeks after the adoption of Bulivar's new constitution, a counter-revolution in the government of Peru was effected by this body of dissatisfied veterans, and the Peruvians, arailing themselves of the opportunity, abjured the Bolivian code, deposed the council appointed by the liberator, and procecded to organize a provisional government for themselves. After this boodless revolution the third division embarked at Callao on the 17th March 1827, and landed in the southern department of Colombia in the following month. Intelligence of these events reached Bolivar while in the north of Colombia, and he lost no time in preparing to marel against the refractory troops, who formerly luad placed such implicit confidence in him. But he was sparcd the necessity of coming to blows, for the leaders, finding the government in the hands of the national executive, had peaccably submitted to Gencral Ovando. In the meanwhile Bolivar had accepted the presidency, and resumed the functions belonging to his official position. But although Colombia was, to all external appearance, restored to tranquillity, the nation was divided into two parties. Bolivar had, no doubt, regained the personal confidence of the officers and soldiers of the third division; but the republican party, with Santander at their head, continued to regard with undisguised apprehension his ascendency over the army, suspecting him of a desire to imitate the career of Napoleon. In the meanwhile all parties looked anxiously to the convention of Ocaña, which was to assemble in March 1828, for a accided expression of the national will. The republicans hoped that the issue of its deliberations would be favourable to their views; whilst the military, on the other hand,
did not conceal their conviction that a stronger and more permanent form of goverument was essential to the public welfare.) The latter view seems to have prevailed. In tirtue of a decree, dated Bogota, the 27 th August 1828 , Bolivar assumed the supreme power in Colombia, and contunued to exercise it until his death, which took place at San Pedro, near Santa Martha, on the 17th December 1830.
In the career of this remarkable man, which was often embittcred and was perhaps shurtened by the suspicions and slanders of has colleagues in the work of liberation, certan crreumstances, apparently well established, stand out, whech deserve particular mention He expended moe-tenths of a splendid patrimony in the service of his country, and although he had for a considerable period
unlimited control over the revenues or chree countries,Colombia, Pern, and Bolivia,--he died without a shilling of the public moncy in his possession. He conquered the independence of three states, and called forth a spirit in the southern portion of the New World which can never be extinguished. He purified the administration of justice; he encouraged the arts and sciences; ho fosterea national interests; and be induced other countrues to recognize that independence which was in a great measure the fruit of his own exertions. Bolivar's remans were removed in 1842 to Caracas, where a monument was erected to his menory; and in I855 the Peruvians fullowed the example by erecting an equestrian statue of the liberator in Lima.

B 0 LIVIA

Plase XVII ! THIS name iras given in honour of Bolivar (see last article) to a state in South America, formed in 1825 from the provinces of Upper Peru which formerly constituted part of the vice-royalty of Buenos Ayres. The

Bu and-
aries and
avisiote bulk of the country extends from 10° to $23^{\circ} \mathrm{S}$. lat., and from 58° to $71^{\circ} \mathrm{W}$ long., and it 15 bounded on the N. by Peru and Brazil, on the E. by Brazil and Paraguay, on the S. by the Argentine Republic and Chili, and on the W. by the Pacific Ocean and Peru The greater part of Bolivia is a mountanous and elevated country, more particularly at its western and central parts; but towards the east it becomes much less so, and at length terminates in estensive plains, which are hounded on the east by Brazil From the Pacific cuast the sontbern boundary of Bolivia runs along the 24th parallel of latitude the hmit decided by treaty with Chili in August 1566), to as far as the crest of the Andes; turning S. it follows the lane of the mountans to $26^{\circ} \mathrm{S}$ lat., ta which parallel it crosses the plateau to the inner Cordillera, along which it hes N.N.E to the 22 plaralle:. This line of latitude forms the boundary of territory which is certanly Bolivian, as far as the River Paraguay; but Bolivia, in common with the Argentine Republic and Paraguay, bas clams on the unexplored terntory of the Gran Chacn, which hies sonth of thas hne, and between tho risers Pilcomayo and Paraguay From 22° on the Ruver Paraguay, the fronther with Brazil was decided, by troaty of March 1867, to be a hne tollowng that river northward to the Bahia Negra in $20^{\circ} 11$ along the Negra to its termination, and theace through the midst of the lagoons of Cacercs, Mandiore, Gmbat and Theraba (lying immediately west of the Paraguay River) to Consa Griande, thence im a straight lino to Boa V ista and the source of the Verde, down that river to the Guapore, and along the latter to where the Bem joins it in $10^{\circ} 20^{\circ} \mathrm{S}$ thence in a straght line towards the sonfee of the River Javary (on $7^{\circ} \mathrm{S}$.) 'lhe present Government of Dobiva appears inchned, bowever, to repudiate this lreaty, and to return to the oller fronticr, which included the tributaries of the Amazoms as far as $6^{\circ} 2 s^{\prime} S$ On the lernvian or western fromber the honndary follows a more or less uortberly direction from the mouth of the liver Loa in Atacama, along the Cordillera, crossing Lake Titicaca, aind passurg north thence to the lame pmang from the bem to the davary

Before the formatom of the repultic. Bolivia. or the former province of Charcas, consisted of four great districts "r "intendencas." whed were under the rule of the vaceroy of Kou de la Plata these were-

1 Santa Cruz. formed of the districts of its bishopricifopos Chquitos, Santa Cruz. Valle Grande, Misque, and Whe sperchat inrisdiction of its capual Cochabamba,
\& Las Paz, conssting of the doweses of its lishopric.
3. Potosi, comprising Tarija, Chichas, Lipez, Atacama, Porco, and Chayanta;
4. The province of La Plata, which embraced all remaining portions of the archbishopric.

At the present time the republic is divided politically into departments, provinces, and cantons. The departments, which are named la Paz de Ayacucho, Cochabamba, Potosí, Chuquisaca, Oruro, Santa Cruz de la Sierra, Taiija, Beni, and Atacama, have each one or 1 wo capital toms, the provinces and cantons have also each its chicf place Each department has a governor, who stands mi direct communication with the Government; the subdivisions bare their corregidors and alcaldes, who are subject to the governor.

The westerly departments of La Paz, Oruro, and l'otosi are sttuated in the highest regrons of the platean of Boliva, and are more valuable on account of their mineral ricbes than for their vegetable products, of which a coarse grass is characteristic. The first consists of a serjes of hyt ranges and decp valleys, in whech the climate and production vary with the elevaton; the second lies also in the high talie-land or Pana region; both are rich in veins of gold, silver, and tin, bue the minus of these has not yet been fully developed. The thurd, lootosi, belongs entirely to the highest regons of Bolivia, and is bare and dry, with a cold and rade but healthy climate; this is the greatest mining region of the conntry:
The central departments of Cochabamba, Chuquusaca, and Tarija lie partly ou the trigh platcan, partly on the lower slopes and plains eastward, and pass thus througb the whole serics of changing climates and zones of production. from the bare high land to the tropical regions of the low lands. The first is emmently the granary of Bolivia and southern Peru, excelling in the cultivation of wheat; the industries of woollon and cotton manufactures are also most highly developed in the department, but its mines are not worked. Chuquisaca, of wheh only a third part lies in the high land, is also a vegctable growing region, in wheh wheat, barley, rice, peas, whes, and all sorts of vegetables are cultivated ; cattle and horses are also numerous. The forests of this department and of Tarija, which slope down to the wooded and pastoral plans of the tributaries of the Paraguny, afford many specics of valuable tumber.

The deparments of liem (or Peni) and Santa Cruz de lo Sierra he altogether in the law lands of the east. stretchus to the Fro Madera and the Paraguay The former is as yet little explored, but is a land of troneal forests. nyers. and swamps, with an unlealthy chanate Santa Cruz is also characterized by a hot, damp at mosphere, but produes garden and fich fruits in astomshus richncss-contce, cocoa, vanilla, sugarcane, maze, and cottun. The ferests of luth of these degartments aftord an minuty of valable
uniber trees, and in the latter there 19 much pasture land well fitted for eattle breeding.

Thedepartment of Atacama, which belongs geographically cither toPeru or Chili, forms the only part of Bolivia which comes into contact with the ocean, and is situated between the Andes and the Pacific coast. It is almost entirely desert and sterile, has many voleanoes, and is characterized by rapid chauges of temperature, it is almost destitute of population, and is only inhabited in those parts of the coast in which valuable guano deposits are found, or where the atrate deposits and silver mines in the interior are worked. sear its northern limit is situated the small port of Cobija, - ife only avenue by which forergn artieles of commerce can "ter the Bolivian Republic without the payment of transit uties. It bas obtained pecular and valuable privileges is an encouragement to the introduction of merchandise by this route, in preference to the more convenient routes by the Puertos Intermedios, belonging to the Republie of Peru. But the arid nature of the surrounding country, and the great searcity of water, must greatly retard its advancement, since not only are the inhabitants scantily supplied with thes necessary of life, but tho mules employed in transporting goods mto the merior are exposed to great hardships.
Mruntana. Western Bolivia is the highest and most momntainons country of the two Americas Five separate systems of mountains, eurving from Peru in the north-west and passing south into Chilh, may be distinguashed as forming its bigh land. Nearest the Pacific is the range of the ontlying coast mountazus. whichdoes not exceed 5000 feet in altitude. The range of the true Autes rises farther mand, forming part of the vast chain which extends along the whole of America in Bolivia it attans antaverage height of 15,000 feet, and has a general width of $2(1$ miles, having its highest Enown point bere in the volcano of Sahama, 23.000 feet in elevation Next follows the central system of the Cordil. Iera Real, also maned the eastern Cordillera, presenting a succession of sharp, rugged preaks reachug up into the region of eternal se and snow. bigher generally than the Andes, but less massive : the peaks of Illmant (21,300 feet) and Sorata (24,800) teet) are its culmonatug pomes. Between the Andes and the Cordillera Real there are various Serrana or solated groups of mountams. and sangle cerros of less altitude, rising from the enelosed platean to 17,000 fect in mome mistances. The last system is that of the nomerous minot Cordilleras. wheh run south-eastward from the Cordillera Real moto the lowlands of eastern Bolivas, of wheb the most moportant is that of Cochabanba. stretching out to $62^{3} 40 \mathrm{E}$ long The elevation of the snow line 10 the highlands of Bolivia appears to vary hetween 16,000 and 18.000 leet. modified in many casess by the aspect of the mountams and the nature of the country surrounding thein heing rasen where heat is fowerfally reflected from the surlace of the bare bugh plans (or lowered where the mnuntans are exposed to cold southerly winds Volcanoes are Irequent in the Andes and coast ranges, those of Sahama and Isluga, with Tua, Olca, and Ollagua farther south, are constantly smoking.

These mountam systems divide Bolsua noto a high resuon, contaming many very elevated plams stretching hetween the enclosing berghts of the west, and a low land forming the eastern side of the country, beneath the monntams, and at a comparatively suall elevation above the sea. The high plains or basus of the plateau enclose a continental water system, from which there is no outlet to the oceann, the rivers terminating $1 n$ lakes, of which Lake Titreaca is the ehief, or in swamps, or in vast dried up salt delds,-rapid evaporation disposing of and balancing the supply of water fiowng to these by the monntan streams.

The valley or plateau which is uccupied by the Lake of Titicaca and the Rio Desaguadero forms the most ele-
vated table-land in the globe, with the exception of that of Thibet, which presents only mountain pastures, covered with sheep; while this table-land of the New World presents towns and populous cities, afords support to numerous herds of cattle, llamas, guanac and sheep, and is corered with harvests of maize, rye, larley, and wheat, at an elevation which has nothing to equal it in any other part of the world. The Lake of Taticaca or Chuquito, which occupies its northern extremity, is 12,600 feet above the level of the sea, and its extent is equal to fourtecu times that of the Lake of Genera, of 3220 square miles, the greatest depth being uprards of 700 feet. It is surrounded by numerous towns and villages, and a rich and fertile conntry, and contans several isiands, the largest of which is called Titicaca, and was long held in great seneration by the Peruvian Indians, in consequence of its baving been the place whence Manco Capac and bis consor Manco Oello Hoaco, the great founders of the empure of the Incas, issued, to spread civilization, industry, and gooa government among the surrounding nations. The labe of Tincaca is very arregular in its form. It admats of extensive navigation for stall vessels, though not unattended with danger, as it is subject to sudden stoms and violent gusts of wind from the neghbounng mountains. This lake commonicates meth the smaller Lake of Pansa, or of the "Pampa Aullagas," situated at the southern extremity of the valley, by means of the Rio Desaguadero, which Ilows out of the Lake of Titieaca, and has a breadth of from 80 to 100 yards. Thes river and lake form part of the western boundartes between the Republics of Lolivia and leru Over the river was formed, in the time of the Ineas, a suspension bridge, composed ol cables and cords made of the grass and rushes which grow on its borders; and the work was constantly renewed from tine to time, to obvate the effects of decay, as it constituted the only lane of commumeation between the oppeste sudes of the valley These lakes, with the Desaguader, form the orly receptacles for the water of thuse rivers and streams which descend from the surrounding mountams and enter tha cxtcusive phan, which has me rasble outlet whereby tus contents can escape otherwase than ly cuaporaton.

Those rafers which take therr rise trom the western Rivers dechuty of the Andes, and How moto the Pactic, are so inconsuderable in magmtude, and so shurt in their course, as scarcely to merit ubservation. and are only useful in supplyng the means of a partal irragation to the and plans which scparate these mountams fron the Pacifc. But those numeruas rivers takng ther armon on the eastem dechorty of the Cordillera Real, whoh is the main waterpartme of Bolivia. present a very different aspect, and are of much greater mifortance smec they commumeate with large navgable ruers, whob termmate in the Atlantic Oceall

The Ruver Pato or Ben, which takes its origm in the nergbonrmoad of the city of La F'az, and the Guajey, which rises near Cochabamba, and, swecpurg round the soutbern and eastern bases al the Cordillera of Cochabambia, untes itself to the Manore, flow to the north-cast to mugle with the watery of the Nadera and the mighiy Varanon of Amazons. while the Pilcomayo, which 1asco near Potosi and Cluquisaca, and the Vermcjo, from the valley of Tarija, hend their courses, at a consuderable dis. tance from each other, to the south east, untsl they join the Paraguay, which termmates in the Rio de la Flata. Possessing only a small extent of sea-boand, and that in a perfect desert difficult of jassage, and bethond which the lofty range of the Andes torias a buge barrer, the whole of the ruch provinces of easteri Holivia are land-locked and almoss isolated from communcation with the outer world. The mose natural outlets of the country apicar to be in the
rivers flowing to the great mediterranean navigation system of the Amazons in the uorth, or to the Pio de la Plate. More than forty years ago the importance of opening up a river highway from eastern Bolivia to the Fio Paragaay had impressed itself strongly on the Government, and large grants and privileges were offered in encouragement of this object, the rivers Otuquis, Tacabaca, and Latirequiqui, flowing to the Paraguay about the 20th parallel, being looked to as probably affording the desired navigable way. As yet, however, thongh this plan has been frequently revived, no definite progress has been made in this direction. An expedition sent down the Rio Pilcomayo in 1844 reperted it ianavigable. On the side of the Abazons, the rapids of the River Madeira, 18 in number, and extending over a distance of 230 miles, form a great natural barrier ; to overcome this. and to connect the navigable upper tributaries in Bolivia with the navigation of the lower Madeira, a company was recently formed for the construction of a railroad along the interrupted portion of the course of the Madeira: this scheme also is for the present in abeyance. It seems probable, however, that the recent opening of regular navigation on the Rio Vermejo from the Paragaay to the upper Argentine province of Jujuy on the sonthern frontier of Bolivia may to some extent afford an outlet, and tend to develop the resources of that part of the country.

Climate

Bolivia lies, as has been noticed, for the most part within climate and prodactions are dependent rather unon the elevation of different parts of the land than upon its geographical situation. In descending from the highest region of snow and iee to the low plains of rich tropical vegetation several zones or stages are distinguished. The name Puna brava is given to the appermost mountain regions which rise above 12,500 feet to the snow limit: these are searcely iohabited by man, and are characterized by mosses and hardier grasses,- the animal kingdom being represented by the vicuña, guanaco, llama, alpaca, viseacha, chinchilla, besides the condor and other birds of prey. The region between an elevation of 11,000 feet and the lower Puna brava is termed the Puna; less cold than the former, it is saited for the growth of potatoes, barley, and rush-like grasses, upon which sheep, llamas, vicuñas, \&e., may feed. This division embraces the whole of the high plains of Bolivia, which are but scantily peopled or cultivated. Several species of cactus are found in these elevated regions, and especially the Cactus peruvianus, which sometimes grows to a height of from 20 to 30 or even 40 feet, and is eerviceable for many purposes. Under the general name Cabesera de Valle are grouped the heads of the valleys descendiag to the lower lands, between 9500 and 11,000 feet in elevation, where the climate is temperate. These cultivable districts produce wheat, maize, and the ordinary vegetables. The l'alle or Medio Junga is the general name of the deeper portions of the valleys, between 9500 and 5000 feet, with warm climate, affording field and garden fruits in abundance. The Iunya, lastly, is the low tropical region, comprising all benenth 5000 feet, and producing all kinds of tropical fruits and vegetation.

In the punas the air is always dry and perceptibly cold, though the temperature may rise high in the sun, and cold, cutting blasts of air from the mountains aro of frequent occurrence. In the Valle and upper lunga a perpetual spring seems to reign, and night frosts are rare. The western side of the Andes is completely rainless, all moisture-bearing clouds rolling up from the ocean being quickly evaporated, or condensed in the higher mountain regions in snow or lanil ; but the whole of the remaining enstern region of bolivia hes arainfall. In the lowlande this is irregular in seasun; 1ut in the niper rewiots of the

Puna and the Cabezera de Valle, a rainy season generally begins in the middle of November and concludes in the beginning of March, often accompanied by furious thanderstorms, with hail and snow in the higker regions. The climate of Potosi, at an clevation of 13,300 to 13,600 feet, is so various that in one day it frequently exhibits the vicissitudes of the four seasons of the year. Thus, during the night and the carly part of the morning it is piercingly cold; in the forenoon it resembles our fine weather in March; in the afternoon the rays of the sun in so pure and attenuated an atmosphere are very powerful and scorchingly hot; while towards evening the air usually becomes mild and serene. Strangers on first arriving in these higher plaias are usually affected with difficulty of breathing, owing to the extreme rarity of the atmosphere; they are likewise sufferers from dysentery, which, however, for the most part soon disappears, and in general the highlands are by no means unhealthy. Travellers in the higher regions are exposed to great danger and hardships owing to the storms which oceasionally prevail, especially snow storms, which frequently produce the surumpi, or snow blindness, an affection which has proved fatal to some travellers. An infectious fever called "fiebre amarilla" sometimes breaks out in the Indiaa villages of the Puna, cansing great loss of life; coughs and lung diseases are prevalent among the children in the punas, and do mnch injury among grown people in the Valle and Yangas. In descending through the eastern provinces towards the plaias of Mojos and Chiquitos, all the gradations of climate are experienced down to that which characterizes the equinoctial regions of America, where intermittent "terciana" or cold fevers. dysenteries, and other diseases peculiar to warm climates prevail.

The animals which distinguish the more elevated parts Aalaita of Bolivia are the guanaco, the llama, the alpaca (the first supposed to be the original from which the second and third varieties have been domesticated), and the vicuña These animals, in their structure and habits, are all closcly allied to the camel of Africa. Thus, an examination of the structure of the stomach shows that they are eapable of existing during a considerable time without any supply of water, and in fact they are seldom seen to drink from the streams of their artive mountains. The camel seems peculiarly well calculated to live in the arid and burning deserts of the Old World, and the form of its feet is singularly adapted for traversing rapidly these extensive plains; whilst, on the other hand, the guanaco and the llama bave their feet so constracted as to enable them with facility to ascend and descend the abrupt declivities, and to traverse the rugged and uneven passes which abound in these mountains. They seem lukewise to frequent particularly those parts of the Cordillera of the Andes which are the most dry and arid, and which are least clothed with forests and shrubbery. Thus, in the Cordillera which separates the Arrontine Republic from Clitli, the guanacos are found in great numbers on the summits and eastern deelnaties, which are exceedingly arid and bare when compared with the westorn or Chili side, where the Andes in their whole extent are clothed to a ecrtain elevation with a broal belt of forest trees and evergreens, and where, at certain seasons of the year, there are heavy and continued rains. On this side guanacos aro of comparatively rare occurence. Their tiesh is savoury when yong, but not very palatable when full grown ; thear wool, however, is very valuable to the Indians, who manufacture it into hats and various kinds of voollen stuffs; and their skins, when tanned, are useful in making shoes and harness The munter of these animals in the country is estimated at nut less than three millions; about a thire pat of them, the fullgrewn males, are employed on
irastu of burden, alk the traffic of Bolivia being carried on liy means of them.

The vicuña (Camelus vicugna) is a smaller animal than the guanaco or the llama, and only useful for its fleece. The wool is long and fine, and forms a valuable article of commerce ; it is of a brownish colour, somewhat resembling that of a dried rose leaf; it has a soft, silky, and close texture, and is rell adapted for the manufacture of hats and warm clothing. The vicuña very much resembles the Hapa and guanaeo in its habits and dispositions, but cannot be usefully employed as a beast of burden. It usually frequents the highest parts of the mountains, is extremely timid, is gregarious, and runs very swiftly. The chinchilla (Chinchilla lanigera) is also an inhabitant of the mountainous parts of Bolivia. T'he skins, however, are of an inferior quality, although larger than those obtained from the northern parts of Chili; but still they form a very valuable article of commerce, on account of the great fineness and delicaey of their furs.

The sheep pasturing in the highlands of Bolivia are supposed to number about seven millions, and in the lower regions of the east horned cattlo are very numerous. The eastern or more thickly-wooded parts of Bolivia are inhabited by a variety of wild animals, such as the jaguar and the tapir, which are more or less common in Brazil and the other parts of intertropical America of inconsiderable elevation.

The geological structure of the colossal mountains situated in Bolivia has hitherto been very imperfectly examined. We learn from Humboldt, however, that the metalliferous mountains near Potosi are prineipally eomposed of trachytic porphyries; and Mr Pentland discovered trachyte also in the mountain of Pichu, one of the most elevated of the western Cordillera. In the same chain there likewise exist various voleanic mountains, some of whish are in an active giate. There is perhaps no part of the world which affords a more interesting field for the investigations of the geologist than Bolivia, not only on account of the great elevation which it attains, but also from the exhibitions of internal structure presented by volcanic agency and otherwise,not to mention the aid afforded by such inquiries in the prosecution of mining enterprises.

The great variety, extent, and value of the mincral productions of the mountainous districts of Bolivia have given to this part of America an importance aud celebrity which it would not otherwise have obtained, end have caused large and populous cities and tomns to be built at elevations where the rigours of the climate and the deficient vegetation would otherwise have afforded very few inducements for fixing the abodes of industry. Mining is, however, at the prescut time iu a ruinous state.

Gold is found in considerable quantities in the mountainous parts of Bolivia; but, owing to the expense of extracting the metal from the oro, the mines which produce it have not been worked to the extent of which they are capable. In these it is usually found in the form of grains or nodules, or intermixed with antimony; silver, and other substances, and is separated by reducing the whole to a fine powder, and by amalgamation with quicksilver. The mountain of Illimani is believed to contain great quantities of gold, in consequence of that metal having been found in a native state in considerable quantities in the lake of Illimani, situated at its base. In the 17 th century, likewise, an Indian found here, at a short distance from the eity of La Paz, a mass of native gold, which was said to have been detached from the mountain by the ageney of lightaing, and which, haring becu purchased for ihe sum of 11,269 dollars, was afterwards deposited in the \therefore binet of natural history at Madrid. But by far the greater rrt of the gold procured in Eolivia is oblained by means
of the lavaderos or gold-washings, in the beds of rivulets, where it is found in the form of grains. The most productive of these are the celebrated lavaderos of Tipuani, consisting of streams descending from the snow-capped summits of the Cordillera of Ancuma, situated about sisty leagues to the north-east of the city of La Paz, in the prorince of Larecaja. The gold is found in the form of grains or pepitas, at the depth of 10 or 12 yards below the surface, embedded in a stratum of clay of several feet in thickness. The gold-washings at Tipuani were worked in the time of the Peruvian Incas, as is evinced by their tools, which are occasionally found embedied in the alluvial soil, and almost incariably in such sit rations as prove the most productire. The gold-washings and quartz veins of Choquecamata, in the province of Ayopaya in Cochabamba, are also famons, and their sield up to 1847 was valued at $£ 8,000,000$. Several districts of the departments of Potosi, Chuquisaca, Sarta Cruz, and Tarija, are also nch in gold, but the greater part of the mines formerly worked have now been abandoned, or the known seins have not been explored.

Silver, horrever, has hitherto been the staple metallic silver. production of Bolivia, and has given to it that celebrity which it tas long possessed. In the rich mountains of Potosi alone, according to the records kept at Potosi of the quintas or royal duties from the year 1545 to the year 1800, no less than $823,950,509$ dollars were coined during that period; and if the other produce of the mines be taken into account, it is estimated that not less than 1, $647,901,018$ dollars must have been obtained from this source alone during those 255 jears.

The Cerro de Potosi, or argentiferous mountain of Potosi, has a somewhat conical iorm, resembling a colossal sugarloaf; its base being about three leagues in circumference, and its summit 15,977 feet above the level of the sea, and 2697 abore the level of the great square or plaza of the city of Potosi, which is situated at its base. At the foot of the Cerro is a smaller mountain called Huayna Potosi, or the Younger Potosi, likewise containing silver, but in less abundance than the other, and less accessible, from the numerous springs which there impede the operations of mining. The principal mountain has been worked as high up as within 105 feet of its summit. The labours of the miners have been principally confined to the upper half of the mountain, which bas been perforated by numerous excarations, with at least 5000 openings of mines, the greater number of which are however abandoned. The upper part of the mountain is cxhausted to a considerable extent of its valuable contents; but the lower part is still in a great measure untouched, as the springs are there more numerous, and the water accumulates in such quantities as mateially to interrupt the further progress of the miners. The mines of Potosi, according to Humboldt, rank next in importance to those of Guanaxuato in Mexico. The existence of silver in this place was first accidentally discovered by an Indian in the year 1545 , and ever since that time its mines have been worked. In 1858, twenty-two companies were working 46 silver mines and 4 tin shafts in the prorince of Potosi, and the yield in 1856 amounted to a value of nearly a million dollars.

The silver mines of Portugalete, in the province of Chichas, bave acquircd considerable celebrity on account of the richness as well as quantity of their ores, which yield from 60 to 80 merks of silver to the caxon, while those of Potosi only afford about 10 merks from the same quantity of ore. Besides these there are various other silver mines in the province of Chichas, but their salue is much diminished by the scarcity of water, and by their being situated in an almost desert and unproductive country. The mines of Laurani, in the province of Sicasica in La Paz, once famous,
are now abandoned; and those of the province of Arque in Cochabamba are not now regularly worked. The rich silver mines of Lipez also lie fallow, as do those of the department of Oruro. In 1870 great silver deposits were discovered at Caracoles, about 120 miles inland, in the desert provinee of Atacama, drawing thither a rush of miners from all parts of Chili and Peru.
Among the other mineral riches of Boliria copper takes the next rank, and is also widely distributed The province af ingavi in La Paz possesses mines from which 15,000 to 20.000 cwts eopper are annually taken. The departments of Potosi, Chuquisaca, Oruro, and Atacama are also rich in copper. Tin is mined to some extent in Potosi and Oruro, where it is found along with the silver. Lead is also frequently found in the neighbourhood of silver, as well as quieksilver. The methods hitherto employed for the ceduction of the ores of this country are cxceedingly imperfect and inefficient. More skill and capital are requisite to render them productive and remunerating Coal and iron have been found in the departments of Chuquisaca, Oruro, and Deni, though the extent or value of these products is yet unknown. Precious stones, chicfly the hyacinth and opal, have been found in the deparment of Santa Cruz, and diamonds in Bem.

Very valuable beds of guano extend along the Pacifie coast between 23° and $25^{\circ} \mathrm{S}$., those of Me:illones being specially famous. Nitrate of soda also exists in great quantity in the deserts of Atacama, and is profitably worked.

The roads which form the means of communication between Bolivia and the surrounding countries, and between the various provinces of the republic, are in no respeet sufficient for the important purposes which they are destined to serve. By inattention to the formation and preserration of roads, the Spaniards and their descendants have fallen greatly behind the ancient leruvans, whose mdustry and eivilization they affected to despise, and laboured hard to depreciate. The present route, for it can ecarcely be designated by the name of road, from Potosi to Jujuy, the first eity belonging to the Argentine Republic, is about 310 miles in length; and this place forms the point where a road commences for carriages and waggons as far as Buenos Ayres, an additional extent of land carriage of abont 1617 geographical niles. The rarious routes from Bolivia to the coast of the Pacifie, by the way of Cobija, by Tarapaca, and by Ornro to Tacna, can only be passed on mules or horseback ; and travellers are sometimes exposed to great perils and hardships from exposure to the storms which occasionally prevail at such great elerations. The President Ballitian, however, while in office, did much to obviate these difficulties, and initiated a new era of things by the construction of a splendid highway, whieh leads from Sucre, and passing Santa Cruz, connects Mojos and Chiquitos and the fertile plains of the Beni and Madeira. Although railroads are as yet unknown in the greater part of Bolivia, and though tho country presents the most formidable natural difficulties in the way of engineering, a beginning has been made in this drection. The only line at present eonstrueted in Lolivian territory is a short one from the bay of Antofagasta, south of that of Mexillones on the Pacific coast, in Ataeama, to the nitrate of soda works of Salar el Carmer, it is intended to extend this line inland to the nitrate fields and to the silver mines of Caracoles. It is also proposed to extend une of the southern Peruvian coast lines, starting from near the pomt of Iquque to Oruro in Polivia. At present one of the main outlets of western Bolivia is hy the Peruvian railroad from the port of Mollendo and Arequiga to Puno, on Lake Titicaca, completed in 1870. Puno, its inland terminas, is connected with Bolina by stean navgation aeross Iake Riticaca

The productions furnished by Bohivia as articles of Prodacta commeree are chiefly the precious metals, ricuña and alpaca and trada wool, guano, nitrate of soda, leather, coffee, cacao, and chinchona bark; but from the faet that no direct commereial intercourse has ever existed with the outer world, these products are frequently ascribed to the countries through which they must pass. Thus the metals and wools of Bolivia are looked upon as Peruvian, and the cinchona bark and gums passing out eastward are eredited to Brazil or the Argentine Republic. The rude and simple fabrics manufactured by the Peruvian Indians are usually appropriated to their own domestic uses; while the valuable vegetable productions, and the berds of cattle and mules which are reared in the eastern parts of the republic, have hitherto seareely been sufficient for the supply of the inhabitants of those populous mining districts that are principally dependent on them for subsistence.

Before the war of independence a rery extensive trafic was maintained between the upper provinces of Peru (or Bolivia) and the provinces of the Rio de la Plata for supplies of cattle and mulcs. These were reared in great numbers in all the interior Argentine provinces expressly for the use of those countries, and were first sent by easy journess to the luxuriant pastures of Salta and Jujuy, where they were earefully fed and tended during the winter, previous to their being conveyed to their final destination in Bolivia and Peru. Some idea may be formed of the extent of thas traffic from the statement that, besides all those furnished by the other Argentine provinces, the provinee of Salta alone supplied annually to Upper and Lower Peru from 60,000 to 80,000 mules, on all of which they realized eonsiderable profits, the prices being proportioned to the distance to which they were eonveyed. The customs derived from the import of cattle from the Argentine Republie still form an important souree of revenue. The trade 15 now in a great degrec diverted from the Argentine provinces to the ports of the Pacific called the Puertos Intermedios. Taena and Arequipa, with their respectire ports, hare now become the principal channels through which Bolivia recenves the produce and manofactures of other countries, the Bolirian port of Cobija being of little value, owing to the difficulties of transport from it by mules and llamas across the desert track and the mountains. There are no certain returns of the value of the trade of Bolivia; the importation by Taena and Arica is valued at 5 or 6 millions of dollars, that of Cobija at $1 \frac{1}{2}$ to 2 millions. A new and rery important channel of communiention for commerce will be opened between Bolivia and the Atlantie, whenever commercial enterprise and inereasing civilization shall have established steam navigation on the Rio de la Plata and its tributary streams, or from the mouth of the Amazons to its distant tributaries the Bent and the Mamore.

The population of Bolivia consists of a mixture of Population. various races, chiefly of the Spamards with the Indian natives. A third of then number lire in towns or "villas," the rest in smaller rillages, or in the open camp. Besides the native Indians there are in the eountry some descendants of African negro slares, and net a few Guaranis, who eame orer from the regions east of the Paraguay, and settling in the plains, have inereased in numbers. The Iulian population may be considered as the civilized, the half civilized, and the wild. To the first elass belong the Quichua and Aymara, or the Inea Indians, who are hy far the most numerous, who have come moat closely into contaet with the Spanish invaders, and who occupy chefly the highlands of the west. The Indians of Mojos and Chiquitos may be considered as representiag the half-civilized elass,-retaining part of the cisilization introduced among them in the 17 th century by the Jesnits. The nomadic or wild Indians of the eastern lowlands in

Bolivia belong to the iollowing trites :-The Sirionos, whe inhabit the banks of the Rio Grande or Guapay, and of the Rio Pirai; the Hichilos, who occupy the pampas nortl of San Carlos in the department of Beni ; the Penoquiquias, living in the upper or southern districts of the River Itonama or San Miguel ; the Guarañocas, inhabiting the western portion of the space between the rivers Tucabaca and Latiriquique; the Potororos in the north-west of the same district; and the Chiriguanes, occupying the country along the north of the upper Pilcomayo below the confluence of the Pilaya. To these may be added the Tobas, who though they generally occupy the lower basio of the Rio Vermejo in the Argentine portion of the Chaco, occasionally make raids into the departments of Tarija and Chuquisaca, plunderıng and destroying the villages, and carrying off women and cattle. The Quichua and Aymara have no relations or sympathies with the Indians of the plains, who in thear turn hold the civilized Indians in great contenpt. These descendants of the Peruvians under the empire of the Incas are still numerous, notwithstanding the many causes which have tended to diminish their numbers, and form a distinct race, preserving the lauguage and manuers of their ancestors, their habits having been only somewhat modified by the circumstances in which they have been placed since they came under the dominion of the Spaniards. The Quichuas are mild in character, apparently subdued and apathetic,-qualities which are but the natural result of the state of subjection and debasement in which they were long beld by their conquerors; they are, however, robust and muscular, and capable of great endurance, though little inclined to labour; their customs are rude and simple, their mode of living poor in the extreme. The Aymara are perhaps more mobile in character, but in other respects similar. Both are cultivators of the land according to their rude notions of husbaodry; vegetables, especially maize and potatoes, form the staple of their food, and they indulge freely in their favourite chicha, aniutoxicating liquor prepared from maize; many are employed as drivers of llama trains, or are breeders of the llama, sheep, or goats, which they possess in great numbers. Among the balf-bred population of Bolivia, who stand in relation of numbers to the Inca Indians as about one to two, there are distinguished the zambo, or half-negro halfIndian, powerful is frame and intelligent, but unfaithful and cunning ; the mulatto, or offspring of the Spamtard and aegro; and the cholo, the descendant of the alliances of the Spaniards with the Inca Indians. The last generally resemble their fathers in character, and occupy themselves chiefly in mining. It is to the Cholos that Bolivia owes its political independence.

The population of Bolivia has greatly mercased since the year of independence, 1825 , when the whole number did not exceed 979,000 ; in 1831 it excecded $1,000,000$; at the census of 1846 it had risen to $1,380,000$. The followung table shows the population of each department, as given by Ondarza in 1858. This is the most recent detailed statement of the population of Bolivia, but an estimate of the population of the ecclesiastical divisions of the country for 1874 is appended to it, the provinces noto which each department is divided are also named, on the authority of Herr Reck:-

Departmenes	Provinces	Population 1868
1.4 Paz	(La Paz	
	Omasuyos	
	lngari	
	Sicasica	475,322
	Muñecas	40.302
	Yungas	
	Larecaja	
	Carry forward.	425.368

		\rightarrow
Departmedts.	Provinces.	Population 81s8.
	Brought forward.	475,322
	Cochabamba	
	Clizs	
Cochabamba	\{ Tapacari	
	\{ Mizque	349,892
	Arque	
	(Ayopaya	
	(Potosi $)$	
	Prorca	
Potosi \{ Chayanta		281,229
	1 Chichas	
	(Lipez	
	(Iamparaes	
Cutoquisaca	\{Tomina-azero	223,608
	(Cinti	
Santa Crez	(Santa Cruz	153,164
	S Valle Granda	
SIERR.1	Chiquitos	
	(Cordilleza	
ORURO	()ruro	110,971
	$\{$ Paria or Poópo $\}$	
	(Caraugas	
TARIJA	- Tariz	88,900
	Salinas	
	(Conceprion	
	(lojos	
BENI	\{ Caupolican or A polobamba	53,973
BENT …….	(Juracares	
ATACAMA =	Upper and Lower Deserts...	5,273
	Wild Indians	1,742,352
		245,000
-		
	Total	1,937,352

The Archbishopric of La Plata, includung the departmente of Potosi, Chuquisaca, Oruro, Tarija, and Atacama, contained in 1874 706,989 inhabitants; the Bishopric of La Paz, the department of La Paz, 519,465; the Bishopric of Santa Cruz, the department of Santa Cruz, 205,131; and the Bishopric of Cochabamba, the department of Cochabamba, 379,783,-total, 1,811,368. Decrees of 1866 and 1867 ordered the formation of two new departments, viz., Melgarejo, to be furmed of part of the existing departnient of Cochabamba, and including the town of Tarata, and Mexillones, on the coast.

The populations of the chief towns, in 1858, were as follows :-La Paz, 76,372; Cochabaraba, 40,678; Chuquisaca or Sucre, 23,279; Potosi, 22,580; Sauta Cruz, 9780 ; Oruro (the seat of Government since 1869), 7980 ; Tarija, 5680; Trinidad, 4170; Cubija, 2380. Among the small number of foreigners in the country, Italians, Spaniards, and French are in a majority.

The area of Bolivia, hitherto very uncertain, on account Area of the iodefinite state of the frontier on the east and south, has been calculated at Gotha, on the basis of the recent determination of the boundary with Brazil, at 536,200 English square miles, or about ten times the extent of England.

The religion of the people is Roman Catholic. Since $i_{\text {ielipion. }}$ the commeacement of the republican government a con- Education. siderable part of the revenues of the minor convents and monastic establishments in Bolina has been diverted from their original purposes to form a fund for the establishment and support of seminaries of education. Colleges on improved modern principles are formed in each of the departments. A university having long existed at Chuquisaca for the education of the youth of Upper Peru, the utility of the establishment was greatly augmented, during the administration of General Sucre, by an improvement in the modes of instruction, and an increase in the number of the departments of education. In Potosi, likewise, efficient means were adopted by General Miller, while prefect of that department, to establish there a college for the study of mineralogy,-a branch of education of great importance in a place wholly dependent on mining.

The constitatiou given to the country by Bolivar, which, in the frequent revolutions of later tirres has often been modified and altered, and sometimes set aside altogether, is founded on the strictest principles of justice, in as far as regards the civil rights and privileres of the community, but in other respects, and particularly in reference to the supreme archical spirit. The supreme authority is vestell in a press dente vitalicio, or president for life, with the power of aming his successor. It guarantees to the Bolivians civil Liberty, security of persons aud property, and equality of rights; the free exercise and communication of thoughts and opiuions, either by the press or otherwise; liberty to remain or leave the territory of the repablic with their property, at their pleasure, but without prejudice to others; equality in the imposition of taxes and contributions, from the payment of which none can be exempted; and the abolition of all hereditary employmonts, privileges, and entails. No profession, trade, or employment can be probibited, unless repugnant to public feeling, or injurious to the health and security of the community; and every inventor is secured in the benefits of his discovery. No one can be arrested without previons information of the alleged fact of delinquency, unless when taken fagranti delicto. All trials and judgments are public; and in criminal cases none can be imprisoned more than forty-eight hours withont having presented to him the charges preferred againgt him, and being delivered over to the proper tribunal or judge.
By this constitution all legitimate power emanates directly from the people, and is in the first instance exercised by all who can justly claim the privilege of citizens. Of these every ten nominate an elector, who exercises his delegated authority for a period of four years. At the commencement of cach year all the electors assemble in the capitals of their respective provinces, and regulate their proceedings and the exercise of their various functions bya plurality of votes. They elect the members of the three legislative chambers, tho number of each amounting to thirty; those for the chamber of tribunes being nominated for four years, and renewed by moietics every two years; those for the senate ior eight gears, and renewed by moieties every four gears; and those for the chamber of censors being uominated for life.
The exccutive government consists of a prosident, ricepresident, and three secretarics of state. The president of the republie is named for the first time by a majority of the collective legislatore, and retains the dignity during life, with tho power of naming his successor. IIe is the chief of tho administration of the state, and is not responsible for the acts of tis alministration. The coustitutional privileges of the president are the most limited that have bcen intrusted to the supreme clief of any nation. They extend only to the nomination of the officers of the revenue, of peace, and of war, and the coramand of the army. The administration belonge wholly to the miuistry, which is respursible to the senate, and is subject to the jealous digilance of the legislators, magistrates, judges, and citizens. The jadicial department enjoys the most porfect independence, tho members composing it being proposed by the perplo, and ehosen by the legislature. Slavery in every form has long been abolished, and the exercise of religion is free from all restraints. The armed force is composed of the regular army, amounting to about 3000 officers and men, to garison and defend the froutiers; of the national militia to preserve internal order ; of the peventive service to protect the revenue; aul of a navy when circumstances may require its formation

The finarial budget of Dolivin for 1873-74 was as follows, the mount being ewen in Bolivian dollars of the value of al ate 3s. 3d sterling:-

Receipts-

Custoris $\left\{\begin{array}{l}\text { Arica } \\ \text { Cobija }\end{array}\right.$	408,000 250,003
Export of Silver.	193,675
Sale of Guano ...	300,005
Stamp3..	27,628
Cattle Customs (Argentine liepublic)	20,880
English Loan	650,000
Indian Tribute	686,307
Departmeety	396,423
	2,929,914
endiute.	4,505,504

Publis dett $1873=16,428,329$ bolivianos, including $£ 1,700,0 \mathrm{n}$ sterling of the loan for railways.

The early listory of that part of the empire of the Jucas which now forms the Republic of Bolivia is so intimately connected with that of Peru, that the consideration of it may with propriety be deferred until we come to treat of that country, in which Cuzeo, the capital of the Incas, is situated. Attention will therefore at present be directed chiefly to that period of its history which is more recent, and which has so materially intluenced its present condition.

The Peraviais, ever since the conquest of their country by the Spaniards in the 16 th century, have been subjected to a system of tyranny and oppression which has few parallels in the history of the universe. They were treated little better than beasts of burden. By their toil the gold and silver were obtained from the mines, the lands were cultivated, the flocks and herds were attended to, and all the domestic and menial offices performed. Yet the fruits of their labour, especially that of mining, which was attended with numerous privations, and often with great loss of life, were altogether devoted to enriching their oppressors.

One of their principal grievances was the mita, a compulsory kind of personal labour, either in the working of the mines or in the cultiration of the felds, exacted": retur the Indians gencrally for the space of one year. Tin, proprietors of mines and land to be worked or cultivatrot were privileged to claim as their undoubted right twe personal services of the Indian population of the distrat surrounding that in which their property was situated ley the regulations of the mita a proportional number of the Indians of the distriet were annually chosen by lot for the purposes required; and seme idea may be formed of the effects of such a regulation from the fact that 1400 mines were registered in Peru alone, and that every mine which remained unworked a year and a day became the property of the first claimant. So much was the labour of the mines dreaded by those persons on whom the lot fell, that they considerel it as equivalent to a sentence of death, and mado all their arrangements accordingly, carrying with them their wives and familics to their new aud dreaded $f^{\text {lace }}$ of abole. An estimate may be formed of the extent of this evil from 12,000 Indians having been aunually required by the mita of Potosi alone ; and it is calculated that, in the mines of Peru, no loss than $8,285,000$ Indians have perished in this manner. Besides the mita for the service of tho mines, the Indians were also compelled to labour for their superiors on their cultivated estates, their estancius or grazing farms, and also in their obrages or mamfacturies.
The tribite exacted by the Government from evesy Indian hetween the age of eighteen and fifteffire was a capitation tax of 8 dollars. This was levied 'rith tho greatest rigour, and the official persons charged with its collection frequently committed great injustice in domg so,-obliging the ludians to connmence these paymento at fiftern, and continue them until scenty gears of age, and putting the amount of tribute for the years before and aiter the legal period into their ows pockets In proof of
the extent to which tha evil was carried, and of the rapacity of the Spanish Government, it may be stated that a law was enacted for the express purpose of augmenting the number of the people liable to pay tribute. By it the Indians were ubliged to marry, the mes at the age of fftec , the wowen at thirteen. The governor of each province was respunsible to the Government for the amount of the tribute, which was regulated by a census of the tributary Indians, taken every seven years, and in this many frauds were practised, the actual number being often underrated.
Besides all these, the Peruvian Indians were long subjected to another syatem of extortion no lesa grierous and unjust,-the law of repartamiento. This was originally established with the best intentions,-the governors or sorregidors of the districts being intrusted with the charge of supplying the inhabitants under their care with such articles as they might require at a fair and equitable price. But the law, which had so plausible an origin, was shamefully abused, and it was made compulsory on the Indian ropulation to purchase worthless articles at an extrava. gant price

The constant and extensive operation of these demoralizing practices, although more immediately atfiecting the aboriginal population, could not fail to produce the most perricious effects on the Creoles or descendants of the Spaniards; but, in addition to these causes of debasement, the latter were subjected to numerous unjust and oppressive laws, all tending to paralyze tt eir advancement.
The raising of those vegetable products which form the prineipal objects of culture in Spain, as articles of commerec, was strictly prohibited to the South Americans, bowever favourable the soil and climate of their native country might bo for the prodection of them. No kind of manufacture of cloth or articles of clothing was permitted which could interfere with the commerce of Old Spain, cxcepting onty the coarse fabrics manufactured and worn by the Indians. Even the valuable mines of mercury and rron found in South America were, in a great measure, lurmetically sealed by prolibitory decrees, lest they might meerfere with tho traftic carricd on by Spain in these articles. And, not only was the commeree of South A merica confined entirely to Spain and prohbited with other nations, under the severest penaltics, but the colonies were not permitted to have any commerce with each other.

The grievances under which they suffered at length exceeded even the powers of endurance possessed by the pacifie Indians, and gave rise to the insurrection of 1780-81, led by the Inca Tupac Amari, who spread fire and sword against everything Spanish from Cuzco to Jujuy; twice tho eity of La Paz was besieged by a force of 20,000 Indians, and in the battle before that town Tupae Amarí was made prisoner and put to death in the most barbarous manner by the Spaniards. The insurrection was finally put down in 1782, and with it ended the last power of the Incas. The .boriginal population, baving falled in their arduous undertaking, after the destruction of great numbers of their nation, and finding their chains now rivetted with double force, never again recovered ther wonted energies. This accuunta for the comparative indifference with which they viewed the rise and progress of the war of independence.

From the causes already stated, the war of independence was principally earried' on, as regards Bolivia, by the resources of, and in concert with, the neighbouring provinces of the Rio de la Plata and Pern, all of which had equal cause to avenge themselves on their oppressors, lint were placed in circumstances somewhat more fortunate for accomplishing their purpose. When the patricts of Bueness Ayres had succeeded in liberating from the duminion of Spain the interior provinces of the Rio de la Plata, they turned their arnos against thpir enemies who held Uumer

Peru. An almost uninterrupted warfare followed, from July 1809 till August 1825, with alternate successea on the side of the Spanish or royalist and the South America" or patriot forees,-the scene of action lying chiefly between the Argentine provinces of Salta and Jujuy and the shores of Lake Titicaca. The first movement of the war was the successful invasion of Upper Peru by the army of Buenus Ayres, under General Balcarce, which, after twiee defeating the Spanish troops, was able to celebrate the first anmirer. sary of independence near Lake Títicaea, in May 1811. Soon, however, the patriot army, owing to the dissolute conduct and negligenee of its leaders, became disorganized, and was attacked and defeated, in June 1811, by the Spanish army under General Goyeneche, and driven back into Jujuy. Four years of warfare, in which victory was alternately with the Spaniards and the patriots, was ter minated in 1815 by the total rout of the latter in a battle which took place between Potosi and Oruro. To this suc ceeded a revalt of the Indians of the southern provinces on Teru, and the abject being the iudependence of the wholo country, it was joined by numerons Creqles. This insur. rection was, however, speedily put down by the royalists. In 1816 the Spanish general haserna, having been appointed commander-in-chief of Upper Yern, made an attempt to invade the Argentinc provinces, intending to marels on Bucnos Ayıes, but he was completely foiled in this by the activity of the irregular gaucho troops of Salta and Jujay. and was forced to retire. Dunng this tome and in the siz succeeding years a guerilla warfare was mmotaned by the patriots of Lpper Peru, who had taken refuge in the nountains, chietly of the province of Yungas, and who frequently larassed the royallis tropps. In June 1823 the espedition of Gencral Santa Cruz, prepared with great zeal and activity at Lima, marched in two divisums upon Upler Peru, and in the folluwng months of July and August the nhalo country letween La laz and Oruro was uccupied by has furces; but later, the madecision and want of judjume displayed by Santa Cruz allowed a retreat to be made before a smaller rayalist army, and a severe storu converted ther retreat into a precipitate flight, only a remiant of tho expechtion agnin reaching Lima. In 182d, after the great battle of Ayutucho wi Loner l'ern, Ceneral Sucre, whose valour had contributed so much to the patriot success of that day, marched with a part of the victorions anmy into Ufier Peru On the news of the victury a universal rising of the parrots took place, and tefore Sucre had reached Oruro and l'uno, in February 1825, 1.n 「az was nlready in their possession, and the royalist gartisons of several towns harl gone over to therr sude The Sparish gencral Olañeta, with a dumuished army of 2000 men, was confried to the Irovince of Iutusi, where he held out thll Mareh 1825, when he was mortally wounded 10 an action with some of his cwn tevelted troups
General Sucte was now myested with the supreme con mand in Upler Peru, antal the requisite measures whld be taken to establish in that cnuntry a regular and constututional government Defyties from the varlous phwnus to the number of fifty four were assembled at Chuquisaca, the capital, to decide upn the questinn proposed to them on the part of the Guverument of the Argentine prucinces, Whether they would or mould not remain separate fiom that country. In August 1825 they decided this question, deciaring it to be the national will that Upper Peru should in future constitute a distinet and judependent nation. This assembly continued their session, although the primary object of their meeting bad thus been iccomplished, and afterwards gare the name of Bolvia to the conitry,-issuing at the same time a formal deelaration of independence.

The first general assembly of deputies of Bolivia dissolved itself on the Gith if Otuher 1825, and a new congress
was summoned and formally installed at Chuquisaca on the 25th May 2826 , to take into consideration the constitution prepared by Bolivar for the new republic. A \{avourable report was made to that body by a committee apponted to examine it, on which it was approred by the congress, and declared to be the constitution of the republic; and as such, it was sworn to by the peoole. General Sucre was chosen president for life, according to the constitution, but only accepted the appointment for the space of two years, and on the express condition that 2000 Colombian troops should be permitted to remain with him.

The independence of the country, so dearly bought, did not, however, secure for it a peaceful future. Repeated risings occurred, till in tho end of $18: 7$ General Sucre and his Colombian tronps were driven from La Paz. A new congress was formed at Chuquisaca in April 18:28, which modified tho constitution giren by Bolivar, and chose Marshal Santa Cruz for president; but only a year later a revolution, led by General Dhanco, threw the country into disorder and for a timo orerturmed the Government. Quiet being arain restored in 1831, Santa Cruz promulgated the code of laws which bore his name, and brought the financial affairs of the country into somo order; he also concluded a treaty of commerce with Pern, and ior severa! years Bolivia remained in peace. In 1835, when a strugglo for tho chicf power had made two factions in the neighbouring republic of Peru, Santa Cruz was induced to take a part in the contest ; lie marched into that country, and! after defcating General Gamarra, the leader of one of the opposing parties, completed the pacification of Peru in the spring of 1836 , mamed himself its protector, and had in view a confederation of the two countries. At this juncture the Government of Chili interfered actively, and espousing the canse of Gamarra, sent troops into Peru. Three years of fighting ensued, till in a battle at Jungay in June 1839 Santa Cruz was defcated and exilod, Ganarra became president of Poru, and General Yelasco provisional chicf in Bolivia. The Santa Cruz party, however, remained strong in Boliria, and soon revolted successfully against the new head of tho Government, ultimately installing General Ballivian in the chief power. Taking advantage of the disturbed condition of Holivia, Gamarra mado an attenipt to annex the rich province of La Paz, invading it in August 1841 and besiegug the capital; but in a battle with Balfivian his army was totally routed, and Gamarra himself was killed. The Bolivian general was now in turn to in. vade Peru, when Chili again interfered to prevent him. Ballivian remained in tho presidency till 18.18 , when ho retired to Valparaiso, and in the end of that year Gencral Belau, after leading a successíul military revalution, took the chief power, and during bis presideney endeavoured to
promote agriculture, industry, and trade. General Jorge Cordora succeaded him, but bad not been long in office when a new revolt in September 1857 , originating wath the garrison of Oruro, spread over the land, and campelled him to quit the comntiy. His place was taken by Dr Jose Maria Limares, the orlginatur of the revolution, who taling into his own bands all the powers of Government, and acting with the greatest severity, caused limself to be pro claimed dictator in March 1855. Fresh disturbances led to the deposition of Limares in 1861, when Dr Maria de Acha was chosen president. In 1862 a treaty of peace and commerce with the United States of North Amernca was ratified, and in the following year a similin treaty was concluded with Lelgium; bat nes causes of disagreemen: with Chili had arisen in the discnvery of ach beds cot guano on tho eastern coast-land of the desert of Atacama, which threatencd warfare, and were only set at rest by the treaty of August 1806 , in which the 2 fth parallel of latitudo was adopted as the boumary between the twa republics. A new nilitary revolution, led by Naria Melgarejo, broke out in 1865, and in February of that year the troois of President Acha were defeated in a batile near Putosi, when Melgarejo took the dominnon of the country Ater deleating two revolutions, in 186.5 and 1866 , the new president declared a political ammesty, and in 1869, after imposing a revised constutution on the counary, he became its dictator till 1371 .

Such, in brief, are the rapidly succeding politucal changes and internal conflicts which have kept Bolwit far behind its neighbouring republics, and hase fresented the de. velopment of its matural wealth. Notwithstanding thesemats and revolutions whach rent the country, Bolwia had mantained itscif without foregn credit untsl the presidency of Melgarejo, when it was drawn nito disastrous sueculations aud coniracts which hare comprommed its credit and loaded the country with a heavy foreign delet.

Presitlent Morales was clected m 1871 , since that time a cevilian Government has succeeded to the mulitary ss tem, and attempts are beanio made to reiorm tho disordered affairs of the republic.
A. Wessalines dorbigny, Foynges dans l'fmerique merrdionale, 1826-1833, l'aris, 1835, and Descrepeton geografica, historica, y estadisticat de Bolivia, Pais. 1845 : Datence. Statistical Aecount of Boliva, 1846; Il. A Wedhell. Foynge dans le mord le la Bolime, Iratis, 1853 ; Manoel toaé Corles, Eusayo sobra la Mistorat de Bo. lwia, Sucre, 1 sol: Duwd Forbes. Feport on the Gioloyy of South Anerica, I.ondon, 1861; Ilugo Iicrk, "Geographe und Statisnk der Republik Bolivia," in Geogr. Mhtheilungen, Gotha, 1865, 1806, $181 \mathrm{~S}^{2}$: Avelino Aramayo, Projecto te una uueva via de communi. cacion eure Boluria y al occano Pacifio, London, 1863, -also Bolwia (extracts fron the last work, hanslated, with additions to 1874), London, 1871 ; Jose Domango Cortes, Bolivia, Paris. 1875.
(K. J.)
bOLLANDIST FATIIERS, Tue, the authors of tho Gamous Acta Sunctorum. During the Roman Catholic revival in the end of the 16th and beginsing of the 17th eenturies a great number of martyrologics wero published, and it occurred to a Jesuit father, Ileribert Rusweyd, to collect all the various legends about the martyrs and saints of the chureh into one great standard martyrology, which he proposed should fill 18 vols. follio. Rosweyd dicd in 1629 without baving been able to carry out his plan. His idea, however, was taken up by John Lolland, a Jesuit father of the Low Countries, who had settled in Antwerp. Ile begran an extensivo corrcspondence, writing to every one throughout Europo who ho supposed was able to lehp bim. The public librarics and the tibrarics of consents and churches were thoroughly examined for MiSS. aboat saints and martyrs, and on rovely material was found that the
original phan of tho work was soon widened. The groundplan of the undertaking was to form a huge calendar, giving the lifo and deeds of each sant under the heading of tho day set apart by the churchl for his honour. In 1643 the first two volumes were pubhshed, contaning the saints days in January: Bolland died soon after the beginning of his labour, but not untul ho bad sect the work fairiy started ; other deaths followed, but the work kas prosecuted in accordance with the original plan, and went on pros. peronsly until 1773, when the troubles wheh then overtook the Jesuits affected the Bollandists also. The little company struggled on, however, anind many difficulties until 179., when they were dist,creed; and the whole of the MS. collections were destroycd during the French invasion of tho Netherlands. Ac this time 5.4 vols. had been publishel, lringing the work down to the 15th of October.

In 1837 three Jesurt fathers made proposals to continue the Acta according to the original plan, and in 1838 pubhished a programme under the title De prosecutione operts Bollandian. They made some progress with the undertaking, but their work is much inferior to the earlier Acta. The 54 vols. of the older Bollandists, along with 6 vols. of the continuation, were published at Paris and Rome in 1863-7.

BOLOGNA, a province of northern Italy, baring an srea of 1385 square miles. It consists in the porth of a fertile plain, well watered by several tributanes of the Po, while the southern portion is occupied by tiue Apennines, which separate it from Tuscany. It is in a highly fourishing condition. The soil produces abundant crops of rice, barley, wheat, and pulse, besides hemp. flax, ohves, grapes, figs, almonds, chestnuts, and other fruits. The culture of silk is largely prosecuted ; and considerable numbers of cattle and swine are reared in the province.

Bologna, the chief city of the above province and the see of an archbishop, is situated between the rivers Reno (Rhemus) and Savena, at the foot of the lower slopes of the A pennmes, 399 fect above the level of the Adrantic, and 23 miles S. E. of Modena, on the main line of railway that runs across the north of Italy, in $44^{\circ} 30^{\circ} \mathrm{N}$. lat. and $11^{\circ} 21^{\circ}$ E. loug The city is about 2 miles in length and $1 \frac{1}{2}$ in breadth, and is surrounded by a lugh brick wall with

Ground.Plan of Bologna.

Iwelve gates The streets are clean and well paved, but are generally narrow and crooked; the houses are mostly three stories high with projecting roofs, and are very often surrounded with arcades. All the pubhe as well as private buildings are constructed of brick. The Piazza Vittono Emmanuele. formerly called Pıaza Maggiore or del Gigante, is the principal sfuare and has many fine edifices. In the centre is a fomitain adorned with a colossal statue of Neptune by Govaum da Bologna. The city contams no fewer than 130 churches, twenty convents, and sus bospitals. Of the churches the largest is San Petronio, an unfimshed but splendid structure dating from 1390 , and dedicated to the patron samt of the city. The cathedral or S Pletro, begun in 1605 , is surpassed not only by it but by S. Dommico, S. Gacomo Maggiore, and various nthers San Stefano is a curious collection of seven churches, with a good deal of autiquarian interest. (Vide Sureet's Brack and Marble on the Middle Ages, 1874.) Of the secular buildings the most important are the Palazzo Pubblico, founded in 1290, the Palazzo del Podesti, of slightly earher date, the Falazzo della Mercanzia, or Chamber of Commerce. and n few of the residences of the
great mediæval families. At the head of the educational institutions atande the unirersity, which was once the mos" celebrated in Italy, but is now attonded by only 400 or 500 students. The university library, which was at one time in the keeping of Cardinal Mezzofanti, numbers upwards of 140,000 volumes and 9000 MSS. The Accademia dello Bello Arte, situaied in what tras formerly the Jesuit's College, has a rich gallery of paintings, chiefly by native artists. There is a museum of antiquities in connect:on with the unveraity, as well as a botanical garden, and an observatory, and the city possesses besides a scientific institute, a philharmonic lyceum, and varıous intellectual institutions, many of which are due to the liberality of Count Ferdinand Marsigli, in the 17 th century. There are fire theatres (ihe Teatro del Commune, erected in 1756 by Bibrena, on the sate of the Palazzo Bent vogho, being one of the largest in Italy), a casino, and ε hall for playing the favourite game of ball. The leaning towers of Asmelli and Garisende are worthy of meuthon. They are situated quite near each other ; the former, which is 272 feet in height, deviates 5 feet from the per. pendicular, while the latter has a berght of 138 feet and a divergence of 9 . Bologna has long been famous for its Mortadelle sausages, its soap, and a kund of confection called terra catú; its manufactures also unclude crape, silk, glass, wax candles, paper, and musical instruments The people have a very pecular dialect. The city $1 s$ the birthplace of Domenichino, Guido Ren, the Carmacis, Rughan, Benedict XIV., and other famous men, and gave mse and name to the Bolognese achool of painting. Population in 1871, 115,957.

Bulogna is said to have been founded by an Etruscan king, and was orginally called Felsina after his name was beld for some tume by the Boian Gauls, and on thear expulsion became, in 189 b.c., a Roman colony under the name of Bonoma. Its importance rapidly increased, but it does not appear much in history till the time of the civil wars. The terms of the second trimmsirate were settled in 43 B.c. in an interview held luctween Octavius Antony and Lepidus on a ncighbouriug island. During the later empure the city was frequently an imperial residence, and in 410 4.D. it was still strong enough to resist the forces of Alaric. Is afterwards passed under the power of the Lombards, and on therr subjugation by Charlemagne it was united to his empire and made a free mperial city. In 962 it became an independent republic, which soon acquired an extensivo commerce and a powerful imlitary force. The Middle Ages form the period of its greatest celebrity and amportance In the Crusades the Bolognese took an active share, and after a long neutrality in the coutest between the Gbibellines and the Guelis, they suded with the latter and becarie deeply involved in struggles both foremgn and intestur In 1240 they defended themselses succesi.ully aganns Fredenck Il., and in 1247 expelled from their caty two Lampertazzı and Geremel with 1500 adherents During the rest of the 13 th century and the whole of the 14 th and 15th they passed from the domination of one powerful family to another-from the Pepol to the Bentivogh, from the Bentivogli to the Viscontl, prad back agan to the Bentivogh-till at last, in 1512, they were incorporated by Julius II. with the Papal States The French Revolutioi made Bologna part of the Cisalpue Fepablic, but on the fall of Napolicon it reverted to the propes $\ln 1821$ it was the centre of the republican insurrection, but had to yield in the followng year before the Austrian arms. The revolution of 1831 was equally short-lived, and in 1849 the city was forced, after rcjeated bombardment, to receive an Austrian garrison, which continued an possession till the formation of the Italian kangdom in 1859.
bologne, Jean (or Gioyanni Bulogna, as he was
styled in Itafy), a celebrated sculpror, was born at Doury in 1524, and died at Floresce in 1608 . He went early to Italy, and studied at Florence, where his best works still remain. His two most celebrated productions are the single bronze Ggure of Mercury, poised on one foot, resting on the head of a zephyr, as if in the act of springing into the air (in the Florentine gallery), and the famous marble group of the Rape of the Sabines, which received this name, Lanzi ioforms us, after it was fuished. It is now in the Loggia de Lanzi of the ducal jiazza. Giovanni was also employed at Genoa, where be esecuted various exestlent works, chiefly in bronze. All his pieces are characterized by great spirit and clegance.

BOLSENA, a toren of Italy; in the province of Rome, and the district of Viterbo, 10 mifes S by L. of Orvieto. It is situated on the north shore of the lake of the same name (Lago di Bolsena), and probably occupies the site of the Roman city of Volsinii. The principal remains are the ruios of an amphitheatre and those of a temple, whoh is popularly called il Tempio di Norzia after the Etrusean goddess Norsia, and there are numerous other relies sattered throngbout the city or built into the walls of its modern buildings. Volsinii was originally one of the most poworful of the Etruscan cities, and occupied a position among tho Lills; but after a series of struggles with the Romans, the Vulsinians were finally subilued about 280 B.c., their city was razed to the ground, and themselves obliged to settle in a less defensible site in the plain The only event of moterest in the histury of the new town was its leing the Lirthrlace of Sejams, the favourite of Tiberius. Its present primation is only e690 The Lake of Bulsena is about 10 wules in length by 8 in breadth, and is surrounded by well mooded bills. It contains two small islauds, lisentina and Martana, in the latter of which Atadasontha, the wife of Theodatus, bing of the Goths, was put to duath by his orders

BOLTON, or Boltun le Moors, a mumerpal and parlia mentary borough of Euglayd, in the county of Lancashire, 1 I mites N.W of Manchestor, in $53^{\circ} 35^{\circ} \mathrm{N}$ lat and $2^{\circ} 37$ W. long $f t$ is Jivided by the Croal, a small tratutary of the Irwell, into Great and Little Boltun, the former of which is situated on the south side of the strean. The tunn is m the wholo well arranged and well bult, and great improvements and evtersions have been effecteal since 1859 Anabumdat supply of wate 23 obtancel from the neghbuaring hills and stored in reservoira at belmont. Sharples; and Iteaton The water"worbs, formerly in the lands of a com. pany founded in 1821. have been the propurty of the corporation since 1847 The water tises by hutual pressure to a lught of 80 feet. Bulton posesses a lagge number of chmrehes, but few are remarkable for either antiquity or architecture. The parsish church of St leter's, a huiding of sumewhat early date, was rebuilt in an clabordte styleabout 1868. Amons tho educational establishments may be mentioned Lever's Gramanar School, founded in 1641, where Dr Amsworth, the Latn lesicographer, and hempriere, of the Clessical Dictionary, werufumerly masters A new tuwn-fall, a mathet ball, a foshmarket, an exchange, a theatre, and assembly roums, are among the chicf buildings. There are several public librasics and a mechanics' instutute, and in 1855 a large Church of England institute was crected. During the great cothen fanme the unemployed operatives were set to weuls on a latge pmblic park, which was opened in 1866. The cutton manufacture in varmos departments is still the most mpertant in the town, in 1871 it gave employment - 05708 men and 11,353 women of twenty yems of age and
upwards. Varnous other industries, howerer, me extensivel, carried on. In 1871, 1030 adult workmen were employed in the manufacture of machinery, and $252 \pm$ in the iron manufacture; while silk-weaving was the occupation of $\& \$ 1$, linen wearing of 289 , and paper-making of 306 . Dfeaching is atso extensively carried on, and there are chemical works, dye-works, and calico-printing establishments. The coal miues in the neighbourhood give employment to nearly 4000 miners Bolton is a place of sonie antiquity, but had little importance till the introduction of the weollen manufacture by Flemish immigrants about 1337. Several conturies afterwarls its industries received a farther development from a bedy of French refugees, driven from their own country by the Edict of Nantes Duriag the cisil war of the lith century the inhabitants espoused the popular side, and therr town was takeu by storm in litt by the royalists undar Pruce Rupert and the earl of Derby The 18 th century saw a great stimulus given not only iu Bulton but to ant England by the mentons of Arkwright and Crompton. Who were buth natives of the parish It was hare that cotton veltets nere made for the firat tume (in 1756) and muslins (1752) by means of machuery hu 1791 a canal was coustrncted from Manchester to Bolton, and in the followny year an Act of Parliament was passed for enclosing Boltoniluor This measure was seon succeceded by a large extension of the towo, wheln has since cournued to increase from yeat to year lhe munciral borough, with an area of 1748 acres, centained in 1851 10,394 mhabited houses for a population of 61,171 , aud in 1861 . 13,129 bouses for a population of 70,395 In 1871 the borouch, wath an moreased area of 1822 acres, meluded 16,286 houses, and the pupulation was 82,853 The parliamentary boruagh. Which owes its easstence to the heform Bill of 1802. , thans two mombers to parlathent
bOLZANO, Berviame. Catholie theulngan and fulu supher, was born at Prague on the 5th Octuber 1isl. He distinguished himself ly has proficiency in mathematic: a study for whelh he always retained a predilectron, and a philosophy At the age of twenty-four he touk orders, ano ras appeinted professor of the philusophy of religion at the philusuphien faculty in Prague flis fectures, in which he endeavoured so to present the system of Catholic theolugy as to show its comptete barmeny with rason, were received with eager interest ky the bounger gencration of thinkers But his vjews met with much upposition; and it was only through the lowaful protection of the lrince Archbistron Salm-Safm that fue we enalper to retain his chair. At last, in 1820 , he was accused of bemg connected with some of the students' sochetes, and was combelled to resign his professorship. Several ductrnes extracted from his works were condemmed at home, and he was suspended from his priestly fuctions The remainder of his life was devoted to literary worls He died at Prague m 1848. Dolzano's works are very mumerous, filling, accoding to Erdmann, twenty-five volumes. The most impurtant are the IIresenselkeftslehe (t vols., Sulabach, 1 1 37), containing some adnimable discussions on lugic, and the Ledurbuel der Religions-wissenschaft (4 vols., Sulzbach, 183 t), which contains a dhilusophie representation of all the dugnas of the Catholic theology. In some respects it lesembles the cartier work of Georg llermes, for whom Deltano laded a great veneration. Some of the best of his minur worhs are on the philusophy of mathematics; such are-betruchoung. en züber bitementaryometrie, Betrige aur beqränditeren Darstellany Ior. Wuthematik, Begriunduny der Ledree ron der dei Dim-nionerdes titans. (Sce Lebensbeschrcibung des Dr lintonu (:m antubography), $1=36$; Wisshaupt, Skizech uns dem letwa Dr liolechus, is50. Agood account of Bulzano's lhilnsuphica! position will lie found in

B 0 MBAY

BOMBAY, a Presidency and Governorship of British India, consisting partly of British districts, and partly of native states under the protection of Her Majesty's Indian Government. This territory extends from $28^{\circ} 32^{\prime}$ to $13^{\circ} 65^{\prime} \mathrm{N}$. lat., and from $66^{\circ} 43^{\prime}$ to $76^{\circ} 20^{\prime}$ E. long.; and is bounded on the N. by Beluchistan, the Panjab, and the native states of Rajputand ; on the $\cdot \mathbf{E}$ by the native state of Indor, tne Central Provinces, West Berar, and the Nizán's dominions ; on the S. by Madras and Mysor ; and on the W. by the Arabian Sea. Area, including Sindh, 188,195 square miles, viz., 124,943 British, and 63,252 under Native rule. Population, $25,624,696$ souls, viz., British districts, $16,352,623$; Native states, $9,272,073$. Bombay Presidency comprises three British divisions or commissionerships, the northern, the soutlern, and the Sindh divisions, with the following 24 districts:-Bombay, Ahmadábâd, Kairá, Pánch Mahals, Broach, Surat, Tânná, Kolábá, Khândesh, Násik, Ahmadnagar, Belganm, Kánârá, Dhârwâr, Káladgi, Púná, Ratnágiri, Sítária, Sholapur, Upper Sindh Frontier, Karachi, Haidaribad, Stikirpur, and Thar Párkar. The Native statcs are under the superrision of Eritsh pobtical officers, and are divided into 16 agencies, viz., Baroda, Kachh, Káthiâmêr, Kairá, Surat, Slolápur, Sátárá, Kolhápur, South Marlattá Country, Rewâkânta. Máhikánta, Páblanpur, Sâwantwárı, Tauná, Kolaláa, and Dharwar. The Presidency also includes the Portuguese possessions of Daman, Diu, and Goa.
Puysical Aspects.-The Bombay Presidency consists of a long strip of land along the Indian Ocean from the south of the Panjab to the north of Mysor, from 25° to $14^{\circ} 3^{\prime} \mathrm{N}$. lat. The coast is rock-bound and difficult of access; and though it contains several bays forming fair-weather ports for vessels engaged in the coasting trade, Bomlay, Karáchi in Sindh, and Karwir alone have harbours sufficiently landlocked to protect shipping during the prevalence of the south-west monsoon. The coast-line is regular and little broken, save by the Gulfs of Kambay and kachh, between whech lies the peninsula of Káthiáwar.

Mountains - Speaking generally, a range of hills, known as the Western Ghats (ghauts), runs down the coast, at places rising in splendid bluffs and precipices from the water's edge, at others retreating inland, and leaving a fart Fertile strip of 5 to 50 miles between their base and the oea. In the north of the Presidency on the right bank of the Indus, the Hala mountains, a continuation of the great Sulaman range, separate Pritish India from the dominions of the Klán of Khelat. Leaving Sindh, and passing ly the ridges of low sand bills,--the leading feature of thre desert east of the Indus, -and the isolated bills of Kecth and Káthâwár, which form geologically the western extremity of the Aravali range, the first extensive mountain range is that separating Gujarit from the states of Central India. The rugged and mountainous country south of the Taptu forms the northern extremity of the Sahyidri or Westeru Gháts. This great range of bills, sometimes over hanging the ocean, and generally running parallel to it at a distance nowhere exceeding 50 miles, with an averago elevation of about 1800 feet, contains individual peaks rising to more than double that height. They stretch eouthwards for upwards of 500 miles, with a breadth of 10 to 20 miles The western declivity is abrupt, the land at the base of the hills being but slightly raised above the level of the sea As is usually the case with the trap formation, they descend to the plains in terraces with ebrupt fronts. The landward slope is in many places very fentle, the crest of the ranve being cometimee luat slighlity
raised above tho level of the plateau of the Dakhin Their best-known elevation is Mabâbaleshwar, 4800 feet high, a fine plateau, 37 miles from Puna, covered with rich vegetation, and used by the Bombay Government as its summer retreat and sanitarium. In the neighbourbood of the Sáhyadri hills, particularly towards the northern extremity of the range, the country is rugged and broken, containing isolated peaks, masses of rock, and spurs, which, running eastward, form watersheds for the great rivers of the Dakhin. The Satpura bills separate the valley of the Taptif from the valley of the Narbada, and the district of Khándesh from the territories of Indor. The Satmala or Ajantá hills, which are rather the northern slope of the plateau than a distinct range of hills, separate Khândesh from the Nizam's dominions.

Plains.-The more level parts of Bombay consist of five well-demarcated tracts-Sindh, Gujarat, the Konkan, the Dakhin or Deccan, and the Karnatic. Sindh, or the lower ralley of the Indus, is very flat, with but scanty vegetation, and depending for productiveness entirely on irrigation. Gujarst, except on its northern parts, consists of rich, highly cultivated alluvial plains, watered by the Taptt and Narbada, but not much subject to inundation. The Konkan lies hetween the Western Clats and the sea. It is a rugged and difficult country, intersected by creèks, and abounding in isolated peaks and detached ranges of hills The plains of the Dakhin and Kbandesh are watered by large rivers, but as the raimfall is uncertain, they are gene rally, during the greater part of the year, bleak and devoid of vegetation. The liariatic plain, or the country south of the Niver Krishna, consists of extensive tracts of lack or cotton soil in a high state of cultivation.

Iiterers. - The chief river of Western India is the Indus, which enters the Fresidency from the north of Sindh. and flowing south in a tortuous course, falls into the Araban Sca by several mouths, such as the Ghirrt creek, Khudi creek, Pitinnf creek, Sisá creck, Hajámr! creek, Vatho creek, Mall creek, Warı creek, Bhitiáré creek, Sir creek, and Khori creek. Iu the dry season the bed varics at different places from 480 to 1600 yards. The flood season begus in Mareh and contimues till September, the average depth of the river rising from 9 to 24 feet, and the relocity of the current increasing from 3 to 7 miles an hour. Next to the Indus comes the Narbada. Rising in the Central Provinces, and traversing the dominions of Holkar, the Narbada enters the Presidency at the north-western extremity of the Khándest district, flows eastward, and after a course of 700 miles from its source, falls tato the Qulf of Kambay, forming near its month the alluvial plain of Broach, one of the richest districts of Rombay. For about 100 miles from the sea the Narbada is at all seasons narigable by small boats, and duning the rains by vessels of from 30 to 50 tons burden. The Tápiti enters the Pres, dency a few miles south of the town of Barhanpur, a station on the Great Indian Penusula Railway, flows east ward through the district of Khandesh, the mative state of Rewakanta, and the district of Surat, and falls into the Gulf of Kambay, a few miles west of the town of Surat. The Tapti drains about 250 miles of country, and is, in a comnercial point of riew, the most useful of the Gujarat rivers. Besides these there are many minor streams. The Banás and the Saraswati take their rise in the Aravali hills, and flowing eastward through the native state of Pablanpur, fall into the Rann of Kachh. The Sabarmati and the Máhi rise in the Mábikánta hills, and flowng southwards, drain the districts of Northern Gujarat, and fall inte the
sea near the head of the Gulf of Kambay. The stremms which, rising in the Salhyidri range, or Western Ghats, flow westward into the Arabian Sea, ate of little importance. During the rains they are formidable torrents, but with the return of the fair meather they dwindle away, and during the hot season, with a few exceptions, they almost dry up. Clear and rapid as they descend the hills, on reaching the lowlands of the Konkan they become muddy and brackish crecks. The Kanarese rivers have a larger body of rater and a more regular flow than the streams of the Konkan. One of them, the Sherimati, forcing its way through the western ridge of the Ghats, plunges from the high to the low country by a succession of falls, the prinelpal of which 1s. 890 feet in height. The Sáhyadri, or W'estera Cbáts, also thruw off to the eastward the two principal rivers of the Madras Presidency, the Godavart and the Krishad. These rivers collect comutless tributary streams, some of them of considerable size, aud dran the enture plan of the Dakhin as they pres eastward towards the Bay of Bengral.

Lakes.- The Manchar Lake is situated on the right lonk of the Ladus. Durmg inundations it attans a length of 20 miles, aud a breadth of 10 , covering a total area estimated at 180 square miles. But the most peculiar lacustrine feature of the Presidency is the Panun or Lake of Kacha (Cutch), which, accurding to the season of the year, is a salt marsh, an infand lake, or an arm of the sea. Its area is estimated at 8000 square miles. It forms the western boundary of the province of Gujarat, and when fluoded during the ranns, unites the Gulfs of Kadib (Cutch) aud Kambay, and converts the territory of Kachin mo an asland. In the dry season the soul is mopregnated with salt, the surface in some places being moist and mudy, and in others, like a dry never bed or seab-beach, stremn mith gravel or shingle. The Rann is now used as the great source of salt surply for the wholo Presidency. Its present condition is frobably the result of sume natural eonsulsion. Fat whether the Rann is an arm of the sea from which the waters have receded, or an inland lake whose seaward barrier has been swept away, still remans a matter of discussion.

Climate-Great varicties of chatate are met with in the Presidency. In its extreme dryness and heat, combined with the aridity of a saudy soll, Upper Sindh resembles the sultry deserts of Africa. The inem maximum temperature at Iadakiond, in lower Sindh, during the six bottest months of tho vear, is $95^{\circ} 5^{\prime}$ in the shale, and the water of the Indus reaches blom heat; in Upler Sindh it as even hotter, and the themometer has been known to register 130° in the shade la Kiachh and in Gugarat the beat, though less, is still very creat. The Konkan is hot and most, the fall of ram during the monsom sometimes approaching 300 inches. The table land of the Daktin above the Giluts, on the contrary, has an agrecable chinate except in the hot months, as has also the sonthern Marbatta country; aud in the hills of Mahabaleshwar, Singarh. and other detarbed hergts, Eurojeans may go ont at a!l bours with impunity. loubay Island itself, though in general cooled by the sea brecese, is uppressively hot during May and October. The soutb-west monsoon generally sets in about the first week in June, and pours down volumes of rain along the const. Frour June to October travelling is diffeult and unpleasant, except in Siodh, where the monsoon rains exert little influence.

Forests. - Mowlay Presideney possessus two ereat classes of forests-those of the halls and those of the allumat flames. The hill forests are seattered orer a whde area, exteudng from 23° to $14^{\circ} \mathrm{N}$. lat. Most of thim he amons the Sáhyadri hulds or Western Ghats The alluvhat furests he in Siadh, on or close to the banks of the lndus, and extend

trees in the forests are-teak; blackwood of two varieties (Dalbergia Sisu and Dalbergia latijolia), Dalbergia ujain. ensis, Pterocarpus Mursupium, Terminalia glabra, Acacia arubica, Acacia Cutechu, Nandes cordijolia, Fauclea pariv. folia, Bidelia sprnosa, Murdwickia binuta, Juga xillocarpa, Populus euphratica, and Tamamx indica. The forests contain many trees Which, on account of their froits, nuts. or berrics, are valuable, irrespective of the quality of thes timber. Among these are the mango (Afangtera indica); the jack (Aritncaryus antegriolus). Zisuphus Jujuba, Egle Marmetos, Termenalia Chelule, C'alophyllum Inophylhum, Bassue latefolea, and F'ongamese giabra. The jungle tribes collect gum from several raristies of trees, and in Sinds the Forest Department derires a small revenue from lac. The fuhms of the Presidency consist of cucoa-nut, date, palmyra, adod areca catechu.

Geology-Geologically the Bombay Presidency as dividea intu two tracts the nortb-western part, consisting of Sondb Kachb (Catch), and Guarat ; and the south-western, comprising the Marlatta country. Uudulatug sandy phains, whth seattered cracgy hills, are found in Gujatát; the 1 mi mense allumal dats to the north beng, for the most part. deserts of blown sand, and the fertile country consistuig of a telt alonat the buliers of the sea. Is Sindh, the couniry, except on the banks of the Indus, or where reelained by irngation, is an ard tract of gravel and sand, from which rise steep scarps of limestone rances. The rocles of Gajarat, Kachb, and Sinch, are only partially represented in the more soathern peninsula, and are continuous with the formations found in P'ersia and Arabia. In the Marhattá country the greater pertion of the surface is cumposed of nearly horzontal strata of basalt and similar rocks.

Porulation - The census of 1872 returns the cotal area of the Presidency, meluding Sindh, at 188,195 square miles, and the total popuation at $25,624,696$ souls. Detanls, homever, are ouly arailable fur the Eritsh part of tho Presidency, which contans an area of 124,943 square nules, and a total population of $16,252,623$-suals. The arurage density of pupalation in the British districts is 131 persons per sfuare male, but it varies from a maxtmum of $29,291.13$ in lionitay city to 1420 in Thar and Parkar. Tutal momber of houses in the Deritish districts, $2,164,338$; and average number of persens per house, 4.99 . Of the total population of the British portion, $12,440,659$, os 70.08 per cent., are Hindus; $2,517.356$, or 174 pet cent., Muhammadans; 192.245 , or 117 per eent., Buddhists; 106,133 , or 065 per cent., Christians; 67,115, or 0.41 per eche. Parsis: 603.830 , or 3.69 per cent., aborngines; and 94,879 , or $6: 58$ percent., of nuspecilied religiod or mathonlity. The mates number $8,547,100$, or 52 per cent. of the fupulatun; the femaies, $7,805,523$, or 48 per cent. The percentage of the total number of chidren under tuclue yeara of age is 3165 . The Hindus are thent mumeroms in satara, and fowest in the Upler Sindb Fronter district. The Muhammadans form nearly the Whole populaton of Siudh, and are least numerous in the lanch Mahals. Except in Sindh, the Budahasta are widely scattered throughout the whole Presideney. The Christians are chiefly confined to Bombay city, Tanna, the Indo-Portuguese passessions, and the larger cantommente. such as Puna. The British distrets of the Presidency codtan uprards of 26.800 villages, and 1.5 towns if upwards of 5000 mbabitants. Besides limulay city, these aro 213 mumerpalities established under Act 26 of 1850 Of these, 4 have an meeme of over $£ 10,000 ; 27$ of orer $41000 ; 22$ of uver $£ 500 ; 94$ of over $£ 100$; and 66 of under ± 100. Exclusive of the town of Bombay, the total mumcifal revenme realised in $187 \approx-73$ amounted to $£ 198,857$. Average rate of mumicipal taxation, Is. $1+d$ per head of the town population 'The primopal sources of manicipa'
refenue are the octroi dutles，house tax，and wheel tax．

Agricoltural Products．－The staple crops are as ful－ lows：－Joár（Sorghum vulgare）and bajjrá（Holcus spicatus） are the staple food grains in the Dakhin and Khándesh． Rice is the chief product of the Konkan．Wheat，generally grown in the northera part of the Presidency，but specially in Sindb and Gujarat，is exported to Eurupe in large quanti－ ties from Karáchi，and on a snaller scalo from Bumbay． Barley is principally grown in ths northern parts of the Presidency．Náchani（Eleusine coracana）and Kodrá（Pas－ palum serubiculatum），inferior grains grown on the hill sides， furnish food to the Kiulls，Bbils，Waralis，and other aburi－ ginal tribes．Of the pulses the most impurtant are gram （Cicer arietinum），tur（Cajanus indlcus），kulti（Dolichos biflorus），and mug（Phaseolus Mrungo）．Principal oil－seeds： til（Sesamzm orientale），mustard，castor－oil，safflewer，and linseed Of Gibres the most importaut are cotton，Dikhini bemp（Hbiscus cannabinus），and san or tag（C＇rotolaria juncea）．Much has been done of late years to imiprose the cotton of the Presidency．American varicties have been introduced with much advantage in the Whirwir collec． torate and other parts of the sonthern Marhatio country． In Khándesh tho indigenous plant frum which one of the lowest classes of cutton in the Bumbay market takes its name，has been almost entirely superseded by the suncrior Binganghat variety．Miscellancous crops：－Sugar－cane， requiring a rich soil and a perenaial water supply，and only grown in faroured localitios，red pepper，potatoes， turmeric，and tobaceo．In 1071－72，3，379，937 acres were under cotton cultivation，in 1572－73 the area increased to $3,715,945$ acres．The tulal out－turn was 260,444 cundies （ 560 b ）in 1872－73，against 221，144 in 1571－72 A legislative euactment has been passed to prevent adultera． tion of cotton，and in $1872-73,21$ persuns were convicted under it．In 1872－73，22S1 stean cuttun gith were at work with 158 steam presses．Two model forms have been established in the Presidency－one at Hath，wear Haidarabad，in Simdh，and the other in libindesh Ex． periments have been instituted in the culcisation of fabres and tubaceo．Large quantities of Carulima rice sced weve distribuled over the country，but the results hitherto eannot de deemed to have been successful．The same may be said of the endearours which have been aade to pro－ pagate the cinchona tree near Mahabaleshrar．Acreage under principal crops－Joar，6，552，385 acres，bajra， $4,560,271$ ；rice， $2,00 \div 1,115$ ；wheat， $1,322,835$ ，and pulses， 1，167，809 acres．The land system of the Presidency is conplicated，each proviuce having a variety of tenures of its own．But the most impurtant，and by far the most universal，is the surver tenure createal by the British administration，which gaves a right of mempancy to the holder on condition of his paymig the Guvernment demand

Public Wurks asid lisheway－ $\ln 187:-73$ tho sum of $£ 1,180,000$ was expuoded un atemnt of Public Works in the Bumbay Presidency，and the allotment urder thas head tends annuatly to merease．La the same year there were tive railways open－1 The Grcat Iodian Pemmsula Ralway：total miles open， $12 \pi \mathrm{~S}$ ，total capital insested， £25，509，568，total receipts durng the year，$£ 1,572$ ごロ Working expenses，$£ 1: 203,200$ ，net profit，flit？foet 2．The Bombay，Barmh，and Central India Raduay miles open， 359 ，capital moestul， $45,48,202$ ．vecupia， £564．931．workirg expenses， $\pm 338,7 \times 6$ ，net prosit． £22G，lis 3．The Khatigno State Ralway unles men， 8，capital iarested，$£ 48.530$ ，recents，$£ 1$ ï 41 ，nurking
 Way miles open，5t，eapitalinesten， 243,730 ，receipts， £2302；working expenses，£1241，net rrofit，£1061． 5 The Sindh section of the Siudh Paniab and Dehli Railmas
miles oped，106，capital invested，$£ 2,646,106$ ，receipts， £157，100；working expenses，$£ 118,934$ ；net proft， $£ 38,166$ ．Total miles opeu of the abure fire railways． $1786 \frac{1}{2}$ ；total capital inrested，$£ 36,726,136$ ，total receipts in $1872, £ 2,598,400$ ，tutal working expenses，$£ 1,662,723$ ； total net profit，$£ 950,667$ ．Besides these，the following railways are either in progress or about to be undertaken ： －（1），State line，Southern Marhattá country，（2），Native State line，Viráwal，Junágarh，and Dhuraji；（3），Pátrl Eranch（State hue，light rail），（t），Anand and Dázor Branch；（5），Migángánn and Dhabo Railway，（6），Wardha to Hinganghat and Warora（f），Wadi to Haidarabad， （8），Nhandwa to Indor In 187：－73 the Bombay Pele． graph Department had 4406 miles of wire in operation

Pust．Offices．－In 1872－73，it7 pust utices mere， distributed over the Presidency，total mileage of postal＇ liees， 10,208 males，total unmber of letters，parcels，d° ． despatchod and received， $17,601,982$

Anes and Quabries－The Presidency of Bombay though deficient in mmeral meath，is abnodantly supplici with stores of stone fitted for bualding and road niaking purposes．At Teagar，in the Dhárwar district，ironore is mined and stuelted，but the scarcity of fuel prevents opera． tions being cunducted on an extensive seale．There are also large slate quarties in Dhárwár．Mandarge hill is quarried estensirely for stone，the right of morking it leing annually sold by publie auction．In belgam district are quarties， from which building stones，stune bricks，or ohlong quad． rangular blocks of suft rock are obtaned in abuadance． Limestone is also found in the river buls of this district． There are a few trap and laternte quarrics ju the Ratuágin district The trap stone is used ior tank and well bulding， aud for the plintlis of houses；the laterate is used for houso bulding．Near karach are five guarries coutaining a spucties of limestone，largely used in buildings in that tuwn

Manufactures－The midgenous manufactures of tho country have rapidy declined since the inllus of Manchester goods．Sut cutton wearing is still carried on upen a smali scate in cuery village of any amprtance．Dyeing 19 prac－ tisal in most places where fresh water is prowurable．Brinted cotton gouds are namafactured in all the large tosne of Gugatat，and the farther the lueality is removed from the drece influence of ralways the better the work is．Thas is ownig to the competition of Ieuropean cuttor goods， Whach are sold much cheaper，and are more billiant in culuur，although less strung and durable，than the natwo manufactures Must of the luwer elasses sthll wear hone． spun and wosen goeds，bul the catun－mills erected in Bumbay，Bruach，and in other parts of the l＇ressilerecy，havo introdneal threads and cloths，whold are readily bought up，and apon whech the natue worknen daplay theis taste and skill The elorths uamufactured for the Marbata castes are of varmus kmals．Some are all coltun，or colton and salk，sume cuthon salk whly metallic threads，some silk with grht or silver thread Ahmadabid．Voulh，Ahmad． nagur，Malgaton，Máak，l’una，and lharwar，are all eclebrated for therr cottun guouly Carpety，ruges，horse－ clutho，tusels，napkins，de，hade of enten，are manu－ factued throughut the l＇restlency Ahmadnagar has an ancient reputation for the strength and durability of its enspets，Khándesh anil Lharwír for drugets，rugs，and Lulluck cluths a ruw future bas lately been opened to manufaturing cnersy ly the nitroduction of machinery from Fighland．The ancent products of the Presidency， above named，are chnefly bouschold industries．But large stam malls are now rapidly springhy up in Bombay city， Broach，Surat，and other stations on the railvay lines， especially in the eotiou districts Several of these employ oret 1500 hands，cre is rephrted to hare nearly double
that number, and tho low rates of ware, with the natural aptitude of the native for textile work, enables the Bombay nill-owners to compete with the Lancashire manufacturers, notwithstanding the heavy cost of mporting machinery and of European supervision Several of the mulls bave a capital of some bundreds of thousands sterling invested in them; and their supersor reputation for turning out unglazed and gemuine goods has almost driven the lower onalities of Manchester fabrics from the markct. In 1873 fifteen mills were at work in the town and island of Bomoay, and five in other parts of the Presidency. Most of them bave both spindles and luoms, and their yarn and piece goods find a ready market. In Ahmadábád, Surat, Yeola, Nasik, and Bombay, considerable quantities of salk goods are made, the sulk beng imported from China cither in the coenon or in skems Goll and slver thread enter largely into the manufacture of silk and cotton fabrics. The Kinkhab (kincub), the richest kind producei, is either gold thread and silt, or silver, gohl, and silk Embroileyy in silk cloth and cotton, and in gold, sulver, and silk thread, is carried on to some extent in llaidatabad, in Sindh, pincipally for Europan markets Fibres are used for the manufacture of paipei in Abmadábád, Baroda, Surat, Násik, Bombay, and Kulbapur Mats, beds, de , are manufacturel from cocoa nut fibre Leathes is wonked into a variety of aticles throngbout the Presidency The manufactures of minor umportance consist of patery, brass and copper utensils, cutlery. and agricultural implements, gold and olver orbaments carved wood wory work, \& C

Trade - Tbu cotal value of the exterual trade of the Presidency for 1872.73 was as follows - Bomlay !'ort - mports, $£^{\prime} 1 ;, 388,053$, expurts, $£ 19,117,1081$, 1 ex ports, $£ 5,140,92 t$, botal $£ 41$, fith,9is Minot ports-in ports, £ $£ 95,935$. cxports $£ 729,028$ rexperts, $£ 13,36 \mathrm{~B}$,
 exports, $£ 1,991,556$, total $£ 3.668,955$ dden-1mports £1 407 102, exports $£ 834.087$, thtal, $£ 2,241,189$ Total of the Presidenry - imports. $£ 20,865,692$, exports, £22,671,752. roexports, £5 154 202 total £48,694,736 In the sone year 5314 shops baving a tonnage of 902.157 tons, cleared from Bombay harbous and 5208 ships of 161,207 tons, from the minor ports Princpulaticles of commerce-cotion cotton pleregonds wool and woolfrn prece gonds, machines and machonery ofls ta, wones and spitits, metala coal, candles, pute and ganny cloths apparcl, sugar and sugar camly, twist hdes and skins, grain ani pulse, bullion, \&er In 1872 73 Mrwalle of 55,300 tons of cotton were amported into bumbay in the shape of Manchester goods and 143,017 tons of raw cotton exported from it

Revenue and Expenditere - The total revenue of the Presidency for the gear 187? i3 amounted to $£ 9,250,043$ and the expenditure to $£ 8,027,040$ The frimcipal hoads of revenue are as fullows - Land revenur, $£ 3,751,050$, tributes and contributions from native states, $202,337^{\prime}$, forests, $£ 111,610$, excise, $f+16 . i 40$, asmessed taves, $£ 110,098$ customa, £607.825, salt, £885,013, opium, $£ 2,614,897$, stamps, $£ 527,38 \div$, law and justice, $£ 29,677^{7}$, marme, $£ 61,455$, interest, $£ 103,209$ The settlement of the land revenue is usually made for thirty years. A revision of the thirty yeara' settlement of Poona, Nasik, and Sholápur districta, is now (187.4) in progress

Statistics of Protection - The unlitary strength of the Bornhay Presidency consists of 1250 European commissioned officers, 11,06i European non commissioucd officers and rank and file, 27,002 Native commissioned and noncommissioned olticers and rank and file, total, 39,319 The whole are under the control of a separate commander in ebiel for Bombay Ten ships constitute the strength of the Bembay marinc. The regular pallee of Rumbay con-
sisted in 18:2-7.3 of 18,16is uficers and men, mamtainet at a total cost of $£ 305,810$, the average being 1 uth to every 6.8 square nides of the area, and to 900 of tha population.

Education. - The Unwersity of Bombay, establisbed in 1857, is a body corporate, consisting of a chancellor, vicechancellor, and lellows The Govennor of Bombay is exofficio chancellor. The Educatunal Department is under a director of public instruction, who is responsible for the admanistration of the depatmont in accordance with the general educational pulicy of the state In 1872-73 the number of schools and culleges anded by the state or under its inspection was as follows -7 colleges, attended by $51:$ pupils, 4 professional schools with 275 pupils, 41 higit schools, 7167 pupils, 170 middle class schools. 16,612 pupils, 3505 lower class schools for boys, $1=2.147$ puilin. 25.3 lower class schools for girls, 10,885 pililis, 12 nomial schools, 602 rupils, total, 4088 schools, 218,166 pmila. The total cost for the schools was $£ 285,650$, of which the state contributed $£ 99,600$, the balance being obtaned from school fees, loca! contributions, private enduwments, dic. ,

History - The territories now comprising the Piesidency of Bombay fomed in ancient times several separate Itinde kingdoms, among which Mahárasbthra, Gujanasuthra, Sindbu. were the most unpertant A in other parts of ludia, the great majority of the people are Hindus, with more recent arcretions of Muhammalians, amd a srriakling of hill tribes practising nom-1lmelu tites, and representing the pre-Aryan races The first Mubanmadan invasiou of whicb we bave autbentic accounts is that of Mahmind of Ghazal, who m 102t AB, in vaded Gujarat with a large arniy, destroyed tho nationai Hondu idol of Sommath, and carried away an mmense booty Muhammad Glour also invaled Gilyarat, and left a garmson in its caputal but ut nas not thll after tho Musalmán power was firmly established in Northern india that the Mubammadar soverelgns of Dehli attompted the conquest of the seuth In 1294 the Emperor Ais ud dIn first invaded the Dakbin (Dcecan), and in 1297 the conquered Gujarat In 1312 the Muhammadan arms were trumphant through the Marbatia countis, and seven years later the whole of Nalatar fell a prey to the invaders. In the middle of the l Ith century the weakness of the Debil sovereigns tempred the governors of provinece to revolt agamst their distant master, and to form independuththg doms In the way the Dahmmi kingdom was established in the Dakhin, and cmbraced a part of the Pambay Pre sidency Ahmadnagar and Gujarát also becauc the seats of a new kingdom In 1533 Akbar conquered Gujarát and reannexed it to the empue, and in 1601 be effected the reconquest of Ahmadnagar anci K hindesh From tha tume the conntry was never trancuul, and Ahmadnagar be came the focus of constant rebellions During the later biart of the 17 ith century the Marhattís iose into power, and almost every part of the country now comprisug the Presidency of Bumbay fell umiler then sway

As early as 1532 a b the island of bembany nas occujued by the Portuguese The Iutch and English made an unsuccessful attempt to gan pessession of the sland in 1627 , and in 1653 proposals were suggested for us [urchaso from the Portuguese. In 1661 it was coled tothe Enghal Croms, as part of the dower of the luhatia Casherina on ber marnage with Charles II. So hghely was the acquisition esteemed in England, and so unsuccessful was the administration of the Crown officers, that in lifis Bombay was transferred to the Eas: India Comphny for an annual payment of $£ 10$ The popuation at that tume did not excced 10,000 souls, and so unheathy was the climate, that three years were regarded as the avcrage duration of the life of its European inhabutints At the time of the
transfer, powers for its defence and for the administration of justice were also conferred; a European regiment was enrolled; and the fortifications erected proved sufficient to deter the Dutch from their intended attack in 1673. In 1687 Bombay was placed at the head of all the Company's possessions in India; but in 1753 the Government of Bombay became oubordinate to that of Calcutta. The first English settlement in the Bombay Presidency was in 1618, when the East India Company established a factory at Surat, protected by a charter obtained from the Emperor Jahingir. After the termination of the second Marbatts war in 1803, the East India Company obtained the districts of Surat, Broach, Kairá, dc.; and on the overthrow of the Peshwá in 1813, they annexed Púná, Abmadnagar, Násik, Sholápur, Belgám, Káladgí, Dhárwár, \&ec. Sindh was conquered in 1843, and became a part of the British empire. The native states under the supervision of the Government of Bombay are divided, bistorically and geographically, into two main groups. The northern or Gujarát group includes the territories of the Gaikwár, with the smaller states which form the administrative divisions of Kachh, Páhlanpur, Rewá Kánta, and Mábi Kánta. These territories, with the exception of Kachh (Cutch), have an bistorical connection, as being the allies or tributaries of the Gaikwhr in 1805, when final engagements were concluded between that prince and the British Government. The southern or Marhattá group includes Kolbapur, Akalkot, Sáwantwári, and the Sátárá and southern Marhattá Jigírs, and has an historical bond of union in the friendship they showed to the British in their final struggle with the power of the Pesbwá in 1818. The remaining territories may conveniently be divided into a small cluster of independent zaminderis, situated in the wild and hilly tracts at the northern extremity of the Sáhyádri range, and certain principalities which, from their history or geographical position, are to some ertent isolated from the rest of tho Presidency.

Administration.-The Government of Pombay is ad. ministered by a Governor in Council, the latter consisting of the Governor as president, two ordinary civil members, and, as a rule, the commander-in-chicf of the Bombay army. These are the exccutive members of Government. For making laws there is a legislative council, consisting of the Governor and his Exccutive Council, with certain other persons, not fewer than four or moro than cight in number, nominated by the Governor to be members of council for legislative purposes only, and intended to represent the non-official European and Native communities. Each of the members of the Executive Council has in his charge one or two departments of the Government; and each department bas a secretary, an under-secretary, and an assistant secretary, with a numerous staff of clerks. The political administration of the native states is under the superintendence of British agents placed at the principal native courts; their position varies in different states according to the relstions in which the principalities stand with the paramount power. The administration of justice throughout the regulation districts of the Presidency is conducted by a High Court at Bombay, consisting of a Cbief Justice and seven Puisue judges, along with district and assistant judges throughout the districts of the Presidency. The revenue administration of the regulation districts is carried on by tro revenue commissioners, seventeen collectors, twenty assistant collectors, and a varying number of supernumerary assistants.
(w. W. в.)

Bombay City and Island.

The Tsland of Bombay, with an area slightly in excess of 22 square miles, is situated in $18^{\circ} 53^{\prime} 54^{\prime \prime} \mathrm{N}$. lat., and
$72^{\circ} 52^{\prime}$ E long. It consists of a plain about 11 miles longr by 3 broad, flanked by two parallel lines of low hills. A neck of land stretching towards the south-west forms the harbour on its eastern aide, sheltering it from the force of the open sea, and enclosing an expanse of water from 5 to 7 miles wide. At the south-west of the island, Back Bay, a shallow basin rather more than 2 miles in breadth, runs inland for about 3 miles between the extreme points of the two ranges of hills. On a slightly raised strip of land between the bead of Back Bay and the harbour is situated the fort, the nucleus of the city of Bombsy. From this point the land slopes west ward towards the central plain, a low lying tract, which before the construction of the embankment kuown as the Hornby Velard, used at high tide to be eubmerged by the sea. To the north and east, although causerays and railway embankments have now shut out the sea, a large ares of salt-marsh land still remains subject to inundation.

In the foregoing article on the Bombsy Presidency it is explained that Bombay lsland passed to the Enghsh Crown as part of the dower of the Infanta Cstherina, on her marriage with Charles Il., and that although the new acquisition was at first despised, it rose in 1687 to the chef importance in the East India Company's possessions. In the next century it declined before the growth of Calcutta, and sank into a subordinate settlement. The present century has again witnessed a revolution in its fortunes. Its splendid harbour and comparative nearness to the Suez Canal, with the system of ralways which now connect Bombay with the other Presidencies, bave marked out for it a career scarcely second, if at s \rfloor second in commercial importance, to that of Calcutta itself. The sudden densend for Indian cotton, which resulted from the American war, gave an unprecedented rapidity to its development. The cotton of Gujarat, Dharwir, and other parts of Bombsy, is much superior to the Bengal fibre. Scveral years of brilliaut prosperity culminated in 1866-67 in a financial crisıs, that left the commerce of Bombay in a shattered state. Depending as it docs chiefly on the one article of cotton, along with some export of grain and the Government opium, the trade of liombay rests on a narrower basis than that of Calcutta, which in years of misfortune has a large variety of staples to fall back upon, such ss tea, indigo, jute, rice, bides, oil-seeds, \&c. Moreover, Bombay has only the costly railway communication with the interior parts of Indis, while Calcutta commands the confuence of two of the greatest river systems in the world, the Erahmaputra and the Ganges. Nevertheless, Bombay is pressing close upon Calcutta as the commercial capital of India. lis inporto are about as great, and its exports not very far short. In 1871- $\boldsymbol{i} 2$ its total trade was $£ 50,384,929$ against a total of $£ 54,126,829$ in Calcutta. In that year the Bombay imports were $22 \frac{1}{3}$ millions sterling; the exports, $23 \frac{1}{2}$ millions, and the re-exports, $4 \frac{1}{2}$ millions: total, $50 \frac{1}{3}$ millions sterling.

In natural scenery and in the sanitary advantages of its position Bombsy ranks first among the cities of India The Bombay Island, or, as it ought to be more correctly called, the Bombay Peninsula, is now connected with the mainland by the railway causeways. It stands out from a coast ennobled by lofty mountains, and its barbour is studded by rocky islands and precipices, whose peaks rise to a great height. The approach from the sea discloses one of the finest panoramas in the world, the only European analogy being the Bay of Naples. The town itself consists of well-built and unusually handsome native bázárs, and of spacious streets devoted to European commerce. In the native bazár the houses rise three or four stories in height, with elaborately carved pillars and front work. Some of the Europear hotels and commercial
buildinge ard on the Anerican scale, and have no rival in any other city of India Tiue private houses of the European residents lie apart alike from the native and from the mercantile quarters of the town. As a rule, each is built in a large garden or compound; and although the style of architectnre is less imposing than that of the stately residences in Calcutta, it is well suited to the climate, and bas a beauty and comfort of its own. The favourite suburb is Malabar bill, a high rilge running out into the sea, and terraced to the top by handsome bouses, which command one of the finest views in the world. To the right of this ridge, looking towards the sea, runs another suburb known as Breach Cind ; built close upon the beach and mithin the refreshing sound of the vaves. To the left of Malabar hill the island forms a spacious bay, with a

Ground-Play of Rombay.
promontory at the other side, which tnarks the site of the old Bombay Fort. The fort is now a mere garrison, with emall pretensions to defensive capabilities. Its walls are demolished, and its area is chielly devoted to mercantile building3. Further round the island, beyond the fort, is Mazagon Bay, commanding the barbour, and the centre of maritime activity. The defences of the port consist chiefly in irenclan "Monitors" anchored off the town, with one or two fortified islanis, and the guns which etill line a portion of the oll fort walls that have been left standing towards the sca. The census of 1872 discluscia a porulation of 644,40, souls; of whom 405,600 , ur 6342 per cent., are Hindus: 138,815 , or 21.54 per cent, Mhhanmadans; 44,091, or 6.84 per cent., Pársis; 15,121 , Buduhists and Jains: 34,705 , or 539 per cent, Earopean. Afrimon.

Eurasian, and Native Christians, with 2993 classified uader the head of "others." Dyeing, tanning, and working in metals may be noticed as specially active trades, but the most progressive and important industry is the manufacture of yarn and cotton cloth. In 1873 there were 5 steam spinning and weaving mills in Dombay, giving employment to about 11,000 hands. In these factories 380,000 spindles and 5000 looms were at work. A considerable section of the population is supported by the cultivation of cocoa-nut trees and the preparation of intoxicating drinks from the juice of the different species of palm. Riee is the chief agricultural product, but many varietics of garden vege tables are profitably cultivated. Of these the most con:mon are onions, "Lhendis" (Abelmoschus esculentus), and gourds of different sorts. The imperial revenue from the town and island of Ecmbay is derived from two sonrces, -the one supervised by the collector of Eombay, the other by the commissioner of customs. The total receipts for thie past year, under the first head, amounted to $£ 148,287$, of which $£ 23,131$ was derived from land, $£ 17,250$ from excise, and $£ 107,906$ from stamps. The total amount collected by the commissioner of customs was $\mathfrak{E} 3,252,714$, of which the customs yielded $\mathfrak{f} 609,630$,
 difticulty of procuring colunists in the eally days of the settlement, the land is generally held on casy terms,-the payment to Gorernment being in most cases of the nature of a quit reut, free from enhancement or resettlement as lang as the land is used for cultivation only. Of the whole area, 13 miles are returned as cultivated, and 9 as unculturable. During the year 1872 there were 101 schionls in Bornbay, attended by 11,351 scholars, or 1 to every 56 of the entire population. The total strength of the local police force in 1572 was 1402 , or 1 policeman to every 459 :nhavitants. Of the cntire number, 1124 are municipal, and 275 Government police. Of the former, 35 are European, and 13 are mounted Native poolice. The Government police are employed on harbour duty and as guards for Government ofites. Eight of them are Europeans.
Municipal Spatistics.-The limits of the Bombay municipality estend over the whole of the island of Bom. bay, including, as stated above, a population of 644,405 souls. The total municipal revenue for the year 1873 amounted to $£ 314,645$, of which $£ 293,041$ was raised by taxation, $£ 59,958$ on account ci services reniered, and \&31,640 from municipal property and miscellancous receipts. The following are the main items under the head of tasation rroper:-House rate, $£ 73,587$; police rate, $£ 24,189$; lig'ting rate, $£ 21.179$; wheel taxes, $£ 23,197$; tobacco and liquor duty and licenses, $£ 28,690$; town duthes, $£ 45,200$; and additional rates from Port Trust, $£ 4000$. Under the head, Scrvice rendered, are included the Halilkar cess and the water rate, yielding respectively $£ 20,392$ and $£ 39,566$. The returns under the third head are chiefly receipts irom the Crawiord markets. The total expenditure was $£ 312,208$. Of this amount $\mathfrak{f 2 5 , 3 2 5}$ was spent on general supcrision: $£ 36,041$ in supporting the police and fre brigade. Under the head of public bealth, $£ 57,574$ was spent, and £S 4.835 on public works. The interest and sinking fund on the pelice deht consimal $5 i t, 430$. The incidence of municipal taxation per head of the population is 689 d . It is estinated that the gross anmual income of the crty is about 855 lakhs of rupees, or upwards of $8 \ddagger$ millions stering, on which sum the monetpal tazation proper amonnts to ahout 2.57 per cent., and the total municipal inconte and expenditure to about 304 per cent. The municipel debt at present amounts to aboct $£ 790,000$, or nealy of years' income.
(ш. w. в.)
bonald, louis Gabriel Ambroise, Vicomte de, philosopher and politician, was born at Monna, near Milhaud, in Rouergue, France, on the 2d October 1754. He served for some years in the king's musketeers, and after his marriage was made mayor of his native place. Dissatisfied with the revolutionary principles then being acted upon, he emigrated in 1791, and joined the army of the Prinee of Conde. Soon afterwards he settled, with his family, at Heidelberg, where he wrote his first important work, Thêorie du pouvoir politique et réligieux dans la Société civile, 3 vols., 1796, in which his conservatism and reactionary views are fully expounded and illustrated. In this work, too, be predicted the certain return of the Bourbons to France. The book was condemned by the Directory, and in France very few copies escaped detection. Naturally, on his return to his native country, M. de Bonald found himself an object of suspicion, and was obliged to live in retirement. Ife still continued to publish works of the same tendencies,his Essai analytique sur les Lois naturelles de l'ordre social appearing in 1800, the Legislation primitive in 1802, and the treatise $D^{\prime} u$ Divorce considéré an X1X" Siecle shortly after. In 1806 he was associated with Chateaubriand and Fiévée in the conduct of the Mercure de France; and two years later, after great persuasion, he allowed himself to be appointed councillor of the Imperial University, which he had often attacked. After the Restoration he was made member of the Couneil of Public Instruction, and from 1815 to 1822 he sat in the clamber as deputy. His specehes and votes mere invariably on the extreme Conservative side; he even advoeated a literary censorship. In 1822 he was made minister of state, anil presided over the commission in whose bands the censorship, rested. In the following year he was raised to the rank of peer, a dignity which be lost through refusing to take the oath in 1830. From 1816 onwards he had been a nember of the Academy. He took no part in public affairs after 1830, but retired to his country seat at Mouna, where he died on the 23d November 1840.

Bonald was one of the most able and vigorous writers of the theocratic or reactionary school, which comprehended among its numbers such men as De Ma:stre, De Lamennais, Ballanche, and DEckstein. The great bulk of his writurgs belong to the department of social or political philosophy; but all the results at which he arrives are deluctions from a few prineiples. The one truth which to him seemed, in fact, all-comprehensive was the divine origin of language. In his own somewhat enigmatic expression, L'honime pense sa parole avant de parler sa persié, words and thoughts are inextricably linked together; the first language con tained the essence of all truth. From this premise he drawe his proof for the existence of God, and for the divine origin and consequent supreme authority of the Holy Scriptures. The infallibility of the clurch as the exponent of spiritual truth readily follows. While this thought lies at the root of all his speculations there is a formula of constant and significant applieation. All relations are by him reduced to the triad of cause, means, and effect, which he sees constantly repeated throughout all mature. Thus, in the universe there are the first cause as mover, movement as tho means, and bodies as the result; in the state we have power as the cause, ministers as the means, and subjects as the effects; in the family we bave the same relation exemplified ly father, mother, and chilliren. It is also to be remarked that these three terms bear specifie relations to one another, the first is to the second as the second is to the third. Thus, in the great triall of the religious world,-God, the Mediator, and Man,-God is to the GodMan as the GodMan is to Man. It will be readily apparent how Bonald was able from these principles to onstruct a complete system of political absentitism, for the
sufficieucy of which only two things were manted,-wellgrounded premises instead of baseless hypotheses, and the harmony of the scheme with the wills of those who were to be subjected to it. Bonald's style is remarkably fine; ornate, but pure and vigorous. Many fruitful thoughts are scattered among bis works, which have been popular with a certain party; but his system scarcely deserves the name of a philosophy.
Besides the above-mentioned works, Bonald published Ficherches Philosophiques sur les premiers objects de Connazisances Morales, 3 vols., 1815 ; Melanges Litteraircs et politiques, Demonstration philo. sophique du principc constiultif de la socitte, 1830. The tirst col. Iected edition appeared in 12 vols., 1817-19; the latest is that in 3 vols, with introductory notice by the Abbé Migne. See Sotice sur M. le l'icome de Lionald, 1841 (by his son), and Damiron, Phil. En Frence un XIN Me Siccl.

BONAPARTE, or, as it was originally spelled, Buowaparte, the name of the Italian fanily from whon the great Napoleon ras desceaded. Tho father of the frst emperor, Carlo Maria Bonaparte, was born at Ajaccio in 1746. He was a lawyer by prolession, and took a vigorous part in Paoli's insurrection. In 1781 he was one of the members of the council of Corsican nobility; be also held the post of assessor of Ajaccio. In 1785 he died of cancer in the stomach at Montpellier, whither be had removed for his health. His wife, Letizia Ramolino, born in 1750, was celebrated for lier majestic beauty and resolute courage. She accompanicd her husband through the campaigns with Paoli, and in 1793 emigrated with her family to Marseilles, where for a time she lived in great penury. After ber son was made frat consul she removed to Paris, and, on the establishment of the empire, receired the title of Madane Mere. She carel little for display; and her frugal style of living frequently daspleased Napolean. After the battle of Waterloo slie took in her abode m Rome, where she contimed to reside till her death in 1835 . Of her large family of thirteen, eight survived their father and have become known in history. These in order of are are-
I. Josern, the ellest son, born on the ith January 1768. He was pheed, aiong with his younger brother Fapoleon, at the selivel of Autun, from which the latter mas soon afterwards withdrana. On compheting his cduca. tion he contemplated a multary carcer, but, on the death of his father. devoted himself to the care of his family. Ho studied law at the University of Pisa, and was reeeived as an advoeate in Cursica He and his brother eagerly embraced the revolutomary side; and in 1793 the whole family were compelled to emigrate to Marseilles. In the following year he married Mlle, Clary, daughter of a rieh merchant, whose younger sister afterwards becane the wife of Bernadutte. Two years later, when Napuluon was made general of the army of Italy, Joseph accompanied him as commissary general. In 1797 he was elected to the Counch of live Hundred, and sent as ambascallor to the Pope. On the establishment of the consulate tre was made councillor of state, and by his suave and courtcous mamers rendered good diplomatic serviee. He conducted the negotiations with the United States in 1800 , concluded the Treaty of Luneville in 1801, and was similarly cogaged at the Treaty of Amiens in 1802. In 1805, after refusing various pests offered by his brother, he was Icft in charge of the Goverument during the war in Germany. In the following year, however, he was compelled to tale command of the army of Naples, and soon alter he set out it was amouned to lim that he mast assume the throne of that kingdom. With consilerable reluctance he accepted the post, and soon found that, though nominally king, he was really but the viecroy of his bruther. He introduced many reforms, most of which mere well conceived, but which did not at all mect the wishes of Napolcon, who lurked upon Naples merely as a province of France, and thought it
uscful only in so far as it contributed to the suppurt of his own power. The Neapolitans soon discovered that their king was but a mouth-piece, and learned to despise him; and his rule was disturbed by constant insurrections. Ia che beginning of 1808 Napuleon began to communicate wath bis brother regarding the affairs of Spain ; and finally, on the 10th May, wrote to him that the Spanish throne was vacant, and that he had destined it for him. Joseph, with many furebodings, was obliged to accept; and for a short time matters seenied sufficiently smooth. But the smuuldering discontent soon broke out into open flame over the land, and the Spaniards, asssted by the British and Portuguese, made a struggle for freedom. Joseph's infuence in the bingdom was a nullity; the people had never accepted lim, and Napoleon, by giving absolute command to his various marshals, robbed his brother of all real power. Thrice the new king was compelled to ty from Madrid, and it was with difficulty that be escaped after the final battle of Vittoria. During the great struggle of 1814 Joseph acted as lieutenant-general of the empire, and as adviser-ia-chief to the empress regent. Under his brother's orders he sent of Maria Louisa and Ler son to Blois when the allied army approached Paris; and it was on bis authority that Marmont treated for the capitulation of the city. For these acts he bas sometimes been blamed, but with scant justice. While Napoleon was in Elba Joseph took up his residence in Switzorland; but he rejoiaed his brutber in Paris during the Hundred Days. After the abdication he had an interview with the fallicu emperor at the Isle of Aix, and generously offered to give up to him his cwa means of escape. The proposal not being accopted, be sailed for America and settled near Pbiladelphia, at Point-Breeze, on the banks of the Delaware. Here he lived for some years uader the title of Comte de Survilliers, codeqred to the inhabitants by his liberality and gracious manners. After the July revolution of 1830 he wrote a long and eloquent letter, advocating the claims of his nephew, the duke of Reichstadt, to the French throne. Two years later be visited England, where be resided for some years, and to which he paid a second visit in 2839 In 1841 he was permitted to enter Genoa and Florence where bis wife resided. In the latter sity he died on the 2 Sth July 1844. Joseph Bonaparte was of a bandsome figure and commanding presence; his manners were peculiarly suave and courleous. Of all the hrothers ho seems to have been the only one personally loved by Napoleon. His wife, the daughter of a Marseilies merchant, died on the 7 th April 1845. The elder of his two daughters, Zenaide Charlotte Julie (born 1801, died 1854), was married to her cousin Charles Eonaparte, son of Lucien; the youngcr, Charlette (born 1802, died 2839), was married to Napoleon Louis, second son of Louis Bonaparte.
II. Nafoleon, born 1769. Sce Napoleon I.

Ill. Lucien, Prince of Camino, was born at Ajaccin, 21st March 1775. He was educated at Autun, Brienne, and Aix, and rejoined his family in Corsica io 1792 . Already imbued with the prineples of the Revolution he turncu against Paoli when the latter declared against France, and was spokesman of the deputation sent to Marseilles to solcit aid from the republic. He did not returd to Corsica, as the whole Bovaparte famly scon afterwards emggrated to France, and he obtained cinployment in the commissariat at Saint Maximin. Here he married Mlle. Christine Boyer, of poor but good famly, and began to take the leading part in the popular meetugs of the place. He was elected president of the hepublican committee of the town, nud, by his moderation aud frm. ness, prevented excesoes such as occurred in other parts of the country. After the fall of Robespurre be was in
danger of being taken fur one of his partisàns, but resolutely maintained his ground, and declined to take refuge in flight. ln 1795 he left Saint Maximin for Saint Chamans, where he had been appointed inspector of military stores, and where te was arrested and confined for six moaths. His release was obtaiacd through his brother's infuence with Barras, and he retired for a time to Marseilles. Ia 1795 he was made commissary to the army of the north, and spent some time at Brussels and in Holland; but his heart was in the political warfare of Paris, and in 1796 he obtained permission to resign. He bad a short interview with Napoleon in Italy, and speat the two succeeding years in Corsica. In 1798 he was elected deputy to thi Council of Five Huadred, and at once set off for Paris. He was an ardent adherent of the constitution of 1795 (the jear III.), and sympathized rather with the Abbe Sieyes than with the extreme party. His abilities were soon recognized: be was an able and powerful speaker, with a calm courage that defied all popular tumult. His house, also, was the resort of the best literary society of Paris. It gradually became clear to him that the power of the Directory was divided and broken, and that a coup d'itat was required to prevent another sanguinary revolution. There was but one man ia a position to eflect this change-his lrother Napoleon, whose unexpected arrisal on the 10th October 1799 was received with the utmost joy. A week after, Lucien was elected president of the Council of Five Hundred. Careful preparations were made, aad oa the 19th Brumaire the principles of the Revolution ceased to bave a living power. On that day the coolness, promptitude, and courage of Lacien alone preserved Napoleon from destruction. He took part in preparing the new scheme of government, and was appointed to succeed La Place as minister of the interior. His competency for the post was undoubted, but differences with his brother had already begun, and these were fomented by the treacherous Fouché; so that, in little more than a year, he gave up office, and was sent as ambassador to Spain. He succceded in his negotiations, though not entirely to Napoleon's satisiactioa, and after his return to Paris took an active part in the arrangement of the Concordat and the establishment of a legion of honour. After the consulate had been settled on Napoleon for life Lucien was made a seator, and received the estate of Seppelsdorf. But his marriage in 1803 with the beautiful Mme. Jcuberthon was dispeasing to the First Consul, who already contemplated royal allances for his brothers. Lucien, who did not approve the project of making the consulate hereditary; thought it adrisable to leave France, and settled first at Miian, but finally at Rome. He lived in great magnifcence, indulging bis literary tastes, and apparently indifferent to the growth of the imperial power. After the peace of Tilsit Napoleon had an intersiew with him, and offcred him a king dom provided he would look upon it as in all respeets a proviuce of the empirc. Lucien refused, and his brother then gave him to understand that be must quit the Continent. He rithdrew frum Rome, and settled on the estate of Canino, whence he took bis title of prince, but snon came to the resolution of sailing for Amorica. He embarked on the lst August 1810, was captured by an Eaglish cruiser, and was carricd to England, where for some time he was kept under survellance in Ludlow Castle. He afterwards purchased a house near London, in which he resided till 1814, when be returned to Rone. lu two letters to Elba he offered assistance to his brother: and during the Hundred Days he sat in the Chamber of Feers as a French prince. After Waterlon he advised Napoleon to dissolve the asseablies and proclam himself dictator. and it was on his recommendation that the second abdication was made io farour of Napoleon's son. Au his efferts to obtain a
regency were unavaiing, and soon after parting from his brother on the 29th June, he left France. Arrested at Turin he was kept for three months in confinement before he was suffered to settle again at Rome. He passed the remainder of his life in Italy, surouoded by his family and busily engaged in literary and antiquarian labours. The grounds around Canino proved unnaually rich in gems and Etruscan curiosities, of which a valuable cabinet was formed. He died at Viterbo, 29th June 1840 Lucien was a man of high abilities, resolute to his purpose, and of great courage and presence of mind He was throughout his whole life a moderate or constitutional republicar As a literary man he eajoys considerable distinction, thoumh his great epıc, Charlemagne (2 vols. 4to, London, 1814), was a failure. His Mémoircs, unfurtunately, have not been completed He was twice married. By his first wife he had two daughters; by his secoad, four daughters and four sons. Of the sons the eldest, Charles Lucieo Jules Laurent (born 1803, died 1857), prince of Canino, is distinguished as a naturalist, and takes rank aloug with Wilson and Audubon. In 1822 he married his cousin, Zenaide, daughter of Joseph Bonaparte, whom he joined in America. He remained there till 1828 and gained high rcputation by his works on American ornithology. After his return to Italy lie began the publication of a magnificent work, Iconografia :Iella Pauna Italtca, 3 vols., 1833-41. On his father's death in 1840 he ancceeded to the title, and in 1847 began to interest hinself in politics He was ordered to lcavo the Austrian territories for having introduced political matter into a scientific congress, and in 18.18-49 he took part on tho Radical side io the disturbances at liome. Driven from that city by the arrival of French trong he landed at Marseilles. but received an order to quit l'reach territory. Not having paid any attention to this he was seized and conducted under escort to Havre, whence he was compelled to take ship for England. He returned once more to Paris, but did not again interlere in politice. Of the other sons of Lucien, Louis Lucien (boro in 1813) has distinguished himself as a philologist, and is known by his writings on the Basque language as well as on the dialcets of Italy and England; and Pierre Napoleon, commonly called Prince Pierro (born 1815), has lived a troubled life of adventuro in Itay, Ainerica, and France In January 1870 be shot and mortally wounded the journalist Victor Noir, who had called upon him to arrange preliminarics for a duel nith M. Paschal Grousset. This unfortunate affait did inconceivable harm to the Napoleonic cause. The prince was lound nat guilty, but was ordered to indeunify the family of Noir. From that tit te he took up his residence in Loadon

IV Marie Anve Elisa, horn at Ajaccio on the 3d January 1777. She married in 1797 Felix Bacciochi, captaio of infantry, who was poor but of good family. In 1805 Lucca and Piombino wero erected into a piacipality for her, and ahe gave such proc is of administratire ability es to be named the Semiramis of Lucca After the fall of Napoleon she lived for some time at Brunn, and latterly at Santc Andrea near Trieste, where she died in 1820.
V. Louis, the father of Napoleon III., was born at Ajaccio in 1778. He received the greater part of his military education at the school of Chalons, and accompanied his brother throughont the famona Italian campaigas. He distinguished himself in varions engagements, particularly at the battle of Arcola, but manifested little eathusiasm for a military career. He took part in the Egyptian expedition, and was sent back from Cairo to repurt the state of affars and solicit reinforcements. In 1802, with the greatest reluctanco, for he was enamoured of another, he was prevailed on to marry Hortease Bealubarnais. Josephine's daughter. The forced marriage proved
exceedingly unhappy. .Ifter the consulate he became general, and in 1804 was raised to the dignity of pince. He was commissioned to organize the army of the north in 1805, and performed his task to the complete satisfaction of Napoleon. Soon afterwards the States-general of Holland aent a deputation to the emperor praying that one of his brothers might be made their king. Iouis, who was selected for this diguity, consented with considerable reluctance, and was proclaimed on the 6th June 1806 But when he had assumed the reins of government he manilested the marmest interest in his new subjects. He procured the withdrawal of the French troops from Holland, and formed a cabinet consisting almost entirely of Dutch notahles. The decree blockadng the British Isles was extremely offensive to him in bis oew position, and he evaded it so far as possible. In 1807 the death of his eldest son cansed him to withdraw for a time to the south of France, and od his return Hortense did not accompany him. . The relations of the king with Napoleon were anything but satisfactory. The emperor complaned of rot receiving due assistanco from Holland, and in 1809 sent Bernadotte to take command of the army in that cuuntry. At the meeting of the two brothers in December 1809 there was a bitter guarrel; and Louis, who felt that his country was looked on as merely a province of the empire, was detained as a prisoner, whilo Holland was overrun with Erench traops. Befora obtainigg his release he was cotapelled to sign a new treaty with the emperor, which greatly curtailed his power. Matters were not improved after his return to Amsterdam, and on the lst July 1810 he abdicated at Harrlem in favour of his elder son Napoleon Louis. He then set out for Toplitz, whore be resided with the assumed itle of Comte de St Leu. His kingdom was soon united to the empire, and no attention was paid to the arrangement he had made. After the Russian campaig: he offerel his services to his brother, and tried again, but in vain, to resume his power in Holiad. In 1815 he iastituted pra. cecdiogs against his wife to obtain from her the custody of his elrier son, and gaired his cause. He refused to take any part in tho Hundred Days, and settled i:t Rome, Where ho passed most of the remainder of his lifs. His wifo was reunited to him, but the death of his elder son, in 1831, was a blow from which he never recovered. The unfortunate attempts of Louis Napoleon at Strasburg and Boulogne also affected him deeply; and be in vain attempted to procure his son's liberation from the prison of Itam. After the escape of the prince his father earnestly desired to sce him, but passports for Italy could not bo granted. Thio disappointment was too much for Lovis, who was seized wih apoplexy, and died on the 25th July 1840. H13 remains were conveyed to Saint Leu in 1547. Lonis was of a some what retiring and philosophic disposition, inchned to rule well had he been periaitted, and of decided litcraty tastes. Ho published several works-Marie, ou les i!oilandaises, a novel; Odes; Mimaire sur la versification: Histoire du Parlement Anglans; Dacuments historiques at roflexions sur la Gouvernement de la Mollande; Répoase u Sir ITFalter Scott; Yinveau recueil des poésies. Ha had three sons-Napoleon Charles, born 1802, died 1807 ; Napoleon Louis, born 1804, died 1831 ; Charles Louis Napoleoo (Napoleon III., q.v.), born 1808 , died 1873.
VI. Marie Paulint, born at Ajaccio 1780. In 1801 she was married to General Leclerc, whom she accompaniced in the same year to St Dumingo. Her hushand died there of yellow fever in 1802, and sho returned to France. On the 28th August 1803 she was married, through her bruther's influence, to Camillo, Prince Borghese, a wealily Italian nobleman. It was not long before they separated; and Fauline, with the rank of duchess of Guastalla, lived in a style of easy-magnificence. She was good tempered,
fond of art, and liberal. In 1810 Napoteon, athough be bad a great affection for Ler, bacished ber from court for her insulting bebatiour to Maria Louisa. Yet she joined Lim in the Isle of Elba in 1814, and would fain have accompanied him in bis exile at St Helena. She was reconciled to ber lusband shortly before her death on 9th June 1825 Pauline was Napleon's favourite sister. She was extremely beautiful, and hicr statue as Veous Vietrix, oy Canora, is a well-known work of art.
VII. Marie Avsoxctade Camolise, born at Ajaceio 1782. In 1500 she was married to Murat; in 1806 she became gland-duchess of lierg aud of Cleves, and in 180 s quees of Naples. In 1815, after the flight of her husband, she was compelled to leato the capital, and surrendered to the Austrians. She was fur a short time imprisoned at Trieste, and was then permitted to reside at Haimburg near Vieuna Sho afterwards obtained leave to take ul' ber abode at Trieste with Ler sister Elisa. In 1838 she oltained a peosion from the French Guvernment, but did not enjoy it long. She died on I8th May 1839.
VIII. JÉrôme, the youngest brothè of Napoleon, was born at Ajaceio in 1784 . In 1800 he entered the navy, and served in the Mediterranean, and uoder Villaret Jogeuse in the West Indies In 1802-3 be was recalled, but the port in which his ressel lay being blockaded by the English cruiscrs, he made lis way to Boston, whence Le intended to take a passage to France. He was well received in the United States, and fell violectly in love with a beauti ful young A merican, Miss Elizabeth Patersun, daugbter of a Baltimere merchant, whom he married on the 24 th Decemher 1803 He remained in America till 1805. Neanmbile Napoleon, exeessively displeased, had passed a decree annulling the marriage, and dectined to allow the lady to enter France Jérôme's sulmission was rewarded by high command in the uary, in which be shoved bimself a competent officer In 1806 be was made brigadier-general in the army, and distioguisbed himself in Silesia. On the Eth July of the following year he was made king of Westphatia; and, on the 22d August, be married the dauglter of Fiederick king of Wirternberg. He accompanier Napoleon on the Russian eampaign, but was disgraced for apfarent want of suecess in some engagement, and retired to lus kingdom. After the first aldication lre lived for some time at Tricste, but at once rejoined the emperor in 1815, and tonk a conspicuous part in the hurried crents of the Huudred Days. After Waterloo and the secund abdication, Jérôme retired to the kiugdom of his father in. law, where be lived in a sliccies of imprisunment He moved afterwards to Trieste, Rome, Florence, and Lausanne, and in 1847 was permitted to visit Paris. In the follow ing year lie was made governor of the Invalues, and an 1850 marsbal of France In 1852 lie was president of the sermate, but after that time he took no active part in fratitics He died on the 24th lune 1860 Of his clitidren the only one famura is Juseph Charles Paul, eommonly Luown as l'rnce Napoleon, turn in 1822.

Bיsides the vast maso of memoires and treatises relating to the Bonaparte family, the following special works may be noted -A du Casse, Nr-norese et carrecyponidance polithque et milunire du Rep Josspht, in vols, 1854 ; Miot de Melito, Memoires, 3 vols,, 1558 . Memoires de Lnceein Eonnpuree, 1836 , 1815 ; Documents h istoriquus et titcerions sur le Gonucrnemint de la Hollande (ty Lunis), 3 rols 1920.: Da Casse, Mevoures du roi Jecome: Wouter's Lis Bornapurth depris 1815 juspuit nos jours: Ierroll, Life of Nupolion III, vol I
bonayentura Joby of Fidanza, or Fidenza. more commonly known as St Bonaventura, was lurn at Bagnarca is the Papal States in the year li21 Me was at an early age destined lyy lis mother for the church, and is said to hare received hix cogmomen of Bonatentura frum St Francis of Assisi, who peiformed on him a miraculous core. He entered the Fronelscao order in lis twenty-second
year, and is said to bave studied at Paris uncier Aleazacier of Hales. This does not seem very probable, but he certainly studied under Alezander's successor, John of Rochelle, to whose chair be succeeded in 1253. Three years before that period his fane had ganced for limu permission to read upon the Sentenres, and in 1255 be received the degree of doctor. So Ligh was bis reputation buth for brilliancy of intellect and purity of mand that, in the fullowing year, he was eleted general of his order. He at once set binsell to mombo imtoduce lette discipline, and by lus mild regulations succeeded in effecting much good. He was an adrocate of asecticism, and louked ujon The monastic life as the surest means of grace. It is wortly of notice that by his orders Roger Dacon mas merdieted from lecturing at Osford, and compelled to put bimself under the surveillance of the order at Paris. Rumaventura was instrumental in frouring the election of Giegory X ., who rewarded him with the titles of cardinal and binhop of Albano, and insisted on his presence at the great Cuuncil of Lyons in the year 1274. At this meeting he died. Eonaventura's elaracter seems not unxertiy of the culogistic title, "Doctor Seraphicus," bestawed on him by his contempuraries, nur of the place assigred to Lim by Dante in Lis Paradiso. He was furmally eamonized in 1482 by Sistus : :

His works, as arranged in the Lyous editon (7 vols, folio). consist of expositions and semmuns, filling the first three volunts; of a commentary on the Sertences of Lombardus. in tro volumes, eelebrated aurong medieval theolugians as incomparably the best exposition of the third patt ; and of minor trestives filling the renaining two volumes, and including a life of St Finacis. The snaller norks are the most important, and of them the best are the famous Itinerarium Mentis ad Deun, Drcoulomium, De Reduc. tione Artum and Theologium, Solitoqum, and De septem itineribus atermetatis, in which most of what is individual in his teachiug is contained. In philosophy Ennaventura Fresents a marked contrast to his great contemporaries, Thomas Aquinas and Roger Bacon. While these may bo taken as reprosenting respectively physical scieace yet in its iniancs, and Aristotelian schoiasticism in its most perfect furna, he brings befole us the mystical and Flatonizing mod, of speculation which had already to some extent found expression m Huguand lichard of St Victor, and m Bernard of Clairvaux To bum the purely mitellectual element. though neser absent, is of afferior interest whin companed with the living power of the affections or the hrate He rejects the authority of Anstotle, to whase whence he ascribus much of the bereticul tendency of the age, and some of whene cardinal duetrines-surbia the etermity of the wordd-he combats vigorensly But the liatomsa be recersed was llato as underntenid by st Augustone, and an hee lead been lianded down hy the Aleamitran school and The authora of the myztwal works passmy under the name of Dionysus the Areophgite Donaschitura arcepts a, Flatomic the theors that whas do wot axist is eruna nutura, but as themghits of the dinne mind, acrording whill actual thangs were fonned, and thas concerthin tian
 scholastic dactio: he stants with the diseusson of the relations letween eason and forth all the sclences are but the bandinads of thenthey, reason can discover some of The moral truths whell from the groundnork of the Chrintinu system, but others it can unly seceive and at"ebend ibroug dime ollumanation Iri order to obtaio this thmmation the soul must employ the proper means, "hoch arp paste, the exectise of the wrtues, ohereby it is terdered fit to accept the dumpe light, and meditation whicb may rise even to eestatic unlon with Gid The supreme end of life is such union, union in contemplation or intellect
and in intense absorbing love, but it cannot be entaraly reached in this life, and remains as a hope for futurity. The mand in contempinting God bas three distuct aspects, stages, or grades, -the senses, giring empirical knowledge of what is without and discerming the traces (restiga of the divine in the world the reasun, which examines the soul itself, the image of the diviue Being, and lastly, pure intellect (intelligentza) which, in a transcendent act, grasps the Beang of the divine cause. To theso three correspond the three kinds of theology,-theolonra symbolica, theologia propria, and theologia mystica. Each stage is subdivided, for in contemplating the outer world we may use the senses or the imagination, we may rise to a snorledge of God per vestagia or in vestagus. In the first case tho three great properties of physical bodies-weight, aumber, measure,in the second the division of ereated things into the classes of those that have merely physical existence, those that have life, and those that have thought, irresistibly lead us to conclude the power, wisdum, and goodness of the Triune God So in tho second stage, we may ascend to the knowledge of God, per imaginem, by reason, or in emayine, by the pure understandarg (intellectus), in the one case the triple division-memory, understanding, and will,-m the other the Christian virtues-faith, bope, and charityleading again to the conception of a Trinty of divano qualities-eternity, truth, and goodness In the last stage we have first intelligentia, pure intellect, contemplatung the essental being of God, and finding itself compelled by necessity of thought to hold absolute benis as the first notion, for now-being cannot be conecived apart from bemg, of which it is but the privation. To thas nution of absolute being, whieh is perfect and the greatest of all, objective existence must be ascribed. In its last amd heghest furm of activity the mind rests in the contemplation of the unfinite goodness of God, which is apprehended by means of the highest faculty, the apex mentes, or synderesis. Thes spark of the divine illumination is comsnon to all forms of mysticism, but Bonaventura adds to to peculiarly Christian elements. The campleto yielling up of mind and heart to God is unattainable without divino grace, and nothing renders us so fit to recenve thes gift as the meditative and ascetic life of the closter The monastic life is the best means of grace.

Bonaventura, however, is not merely a meditatuve thanker, whoso works may form goad manuals of devotion, he is a dogmatic theologian of high rank, and on all the disputed questions of scholastic thought, such as umversala, matter, the principle of individualism, or the antellectus agens, be gives weighty and well-reasoned decisions. He agrees with Albert in regarding theology as a practical science, its truths, according to his view, are peculiarly adapted to influence the affections. He discusses very carefully the nature and meaming of the divine attributcs; considers universals to be the ideal forms pre-exnsting in the divine mind according to which taings were shaped; holds matter to be pure potentiality which receises individual being and determinateness from the formative power of Gol, acting according to the ideas; and finally maintans that the intellectus agens has no separate existence. On theso and on many other points of scholastic philusophy the Seraphic Doctor exhibits a combuation of subtilty and woderation which mates his works pecularly valuable.

Editions of Bonaventura's rorks are numerous The most conphete carly edition was that in 7 rols. fo., Nome, $1558-90$. They have also been published at Lyons, 7 vols., $16 G 8$, and at Vence, it vols., 1751, sq?. The best edition is that by A. C. Pelticr, begun In 1863. Of detached works the editions and translations are very numerous. The following aro perhap, the most important:Breviloguian et Lemerarium Mentis od Deumb ed. Hewte, Bl cd., 1862 ; Theologic Sirniphique, extrate et tradute des comeres de St B., ty Alix, 2 vols., 1853-56. For Bonaventura's phlusophs, seo Endmann. Hauriau, Stockl; the works od tho hivtory of myoticism by

Schmad, Gorres, Helferich, Noack, and Preger; and Ozanam, Dante ei la Philosophic Catholiquc au Xllime Sudele. There are two wonographs on him,-Margene (A. de), Essaz sur ta phibosophuc de St Bonaventure, 1855, and Hollenberg, Studicn $=«$ Eomavenhura, 1862. Notices of his life are grea in the Venice edition, and in that of Peltier, also in the llistoire Lill. de la France, vol. sis. (R. AD.)

BONDU, a kingdom of Western Africa lyiag to the W. of Banbouk, from which it is separated by the River Faleme, between 14° and $15^{\circ} \mathrm{N}$. lat., and 12° and $13^{\circ} \mathrm{W}$ long. The country is an clevated plateau, with hills in the southern and central parts. Theso are generally unproduc. tive, and covered with stunted wood, but the lower country is fertile, and finely clothed with the baobab, the tamarind, and various valuable frut-trecs. It is traversed by beds of torreuts, which flow rapidly durning the rans, but are empty in the dry scason. Culthvation, though it extends over only a comparatively small proportion of the whole surface, is carricd . on with a measure of aetivity. The products consist of graiu (four species), rice, cotton, andigo, water-meluns, cucumbers, tobaceo, and fruits. The workmea in the different parts display considerable dextenty, though they enploy very rude and defective tools. 'lhe people consist chiclly of Foulabs, though the country is mueh irequented ly Mandingoes and Serawoollies for purpuses of trade. The experts cunsist of provisions and cotion coth manufactured in the cumbry, and glaves and salt are mported. The carasans, branger the former from the mterior to the coast, lass usually throngh Bondu The rehgion and laws of inis country are llahometon, though the precepts of that fath are nut very rigorously observel. There are schools, however, in every tomn, where the Koran and the readng and writug of Arabse are taught, but the scholar is treated as the momal servant of the teacher Thebing is nearly absoiute, and commands a consuderable body of troops, who are mueh employed in predatory expedtions, chetly tor the purpuse of collectung slaves. 1 lis revenues are derived lrom a tenth part of the produce of the land, and of the sale mported, as also from duties on goods passing through his terntories, wath numerous presents expected or extorted. Park, who was the first European traveller tu visit the country, experienced to his cust the rapacity of the regmong prince, Leing obliged to grve up esen the coat which be wore. The royal resudence was thea at liatteconda, but when Major Gray visted Londu at dad been removed to Bulibani, a small town, with about 3000 of a popalatom, surrounded by a strong clay wall The jupulation of the rholo country is estumated at $1,500,000$
 jugubs), or Ansaus, a lortified town and seaport of Algeria, in the province of Constantine. 85 males N.E. of the city of that name, on a bay of the same name at the mouth of the Scybouse, all lat $36^{\circ} 54^{\prime} \mathrm{N}$ and long. $7^{\circ} 47^{\prime} \mathrm{E}$. The town is surromuled with a nodern rampart ereeted cutsude of the old Arab wall, the cumpass of whel was found too smail for the growth In other respects also it has been greaty Europeanized, nuth of the old town has heen demolished, and the ground vecupe by new buidings. The streets are wheand well laud out, but in some instances are very steep, owing to the furmation of the ground. All the ordinary eonveniences of a tlourishing Freneh city are met with,-bazaars, markets, coffee-houses, hotels, reading. rouns, a bank, a theatre, barracks, bospatals, an orphan asylum, and schools of varions kands. There is also a cathedral dedicated to St Augustime, as well as other Ruman Catholic churches, a nunnery for susters of mercy, handsome mosques, a symagogue, aud a Protestant chureh Bunce is an important seat of the coral fishery, and carries on a considerablo trade, the exports consisting chaelly of aron and lead ore, corn, coral, cattle and sheep, ohve oil, salt 6ib, and tubaceo. The manufactures comprise natuve garments,
tapestiy, leathen, and saddles, and of late its soap bas come into, repute In 1872 there enterel the port 461 French vessels, with a tonnage of $1.97,415$ tons, and 506 foreign ships with a tonnage of 40,822 The anchorage was logg insecure; but about 1870 a harbour, with an area of 195 acres, was construeted by means of two breakwaters, and an inner basin, surrounded with masonry quays, and baving an extent of nearly 25 acres. Tho marshes at the month of the ricer bave also been drained by a system of canals, to the great improsement of the sanitary condition of the town, which has the forther advantage of an abundant supply of water obtained from the neighbouring hills. There are cork-woods and marble-quarries in the vicinity, aud various other resources of the surrounding country are being rapidly developed. The woods, however, suffered sevecely from a conflagration in 1873 ; and it will be many years befure the produetion of cork can become as extensive as before Tho port will be rendered still more important by the railway in course of construction to various inlard towns. Bune is identified with the ancient Aphrodisium, the seaport of Mippo Reghus or Ul, name from the latter city, the ruins of which, consisting principally of large cisterns, and pait of the Roman walls, are still to be found about a mile to the south of the town. Hippo, the bishopric of Augustine, was burnt by the Vandals in 430, partially restored by Belisarius, and again sacked by the Arabs in the 7 th centary. The latter conquerors built the city of Bona, or Annaba, which has since passed through many vicissitudes. From the berinning of the 14 th to the mildle of the 15 th century it was frequented by ltalians and Spaniards, and in the 16th it was held for some time by Chatles V., who strengtheoed its Casbah or citadel, originally built in 1300 . From the time of Louis XIV. to the Revolution the French Compagnie d'Ajrique maintained a very active trade with the port. The town was finally captured by the Frencl in 1832, and its citadel was defended by a small body of marines for come months against the Turks Popalation in 1872. 16,196, about half of whom are European; in 1832 it was only 3000 or 4000 .

BONE, Hexry, R A, the most eminent enamel painter of Lis time in Great Britain, was born at Truro in 1755. Ho was much employed by London jewellers for small designs in enamel, before his meritz as an artist were rell known to the public. In 1800 the beauty of his pieces attracted the notice of the Royal Academy, of which be was then admitted as an associate; in 1811 he was made an academician. From the begioning of the centary to 1831, be exceuted many beantiful pieces of much larger size than had beer attempted before in England; among these his eighty-fise portraits of the time of Queen Elizabeth, of different sizes, from 5 by 4 to 13 by 8 inches, are most admired. They were disposed of by public sale after his death. which took place in 1834 His Bacchus and Ariadne, after Titian, painted on a plate, brought the great prico of 2200 guineas

BONFIGLI, Benedetro, an Italiao painter, whose reputation is not equal to his importance. One of the most remarkable cireamstances in the history of art io the peainsula is the sudden alrance marle by the school of the Unobrian province, which, until near the middle of the 15 th contary, was far bchied these of Florence and the North, but which, is tho persen of leragine and some of his followers, came into the very first rank. Critieism had been used te orerlook tho precursors and scuior companions of Perugine, whese improvements prepared the way for his signal excellences. But among these none holds a more distingurshed place than Beacdetto Bonfigli. The most important of his estant works are a series, in fresco, of the life of St Loniq of Toulouse, in the communal dalace
of bis uative city of Perugia. All his life (the dates ot which are not quite certain) was spent in honourable employment by the civic and religious bodies of Perugia and neighbouring towns.

BONGO, a people of Central Africa, who inhabit the country lying between 6° and 8° N. lat., and 27° and 29° E. long., which is watered by five important tributarics of the Babr-cl-Ghazel. The Bongo are a brachycephalous race of mediun beight, with a red-brown complexion and black hair. The grain most largely cultivated by them is sorghum; but they obtain a considetable part of their food from the fruits, tubers, and fungi with which the country naturally abounds. They also eat every living creature-bird, beast, and reptile-except the dog. Tobacco is universally cultivated aod sinoked They Lave ho cotton or tlax, and go for the most part with nu more clothing than an ornamental girdle about the loins. The domestic animals are goats, logs, and poultry; sheep and cattle are rare. Iron is abundant, and the people smelt and worls it with great skill; it forms the only currency of the country, and is extensively employed for all hinds of useful and ornamental purposes. Their spears, kmives, rings, and other articles are frequently fashioned with great aitistic claboration. They have a variety of musieal instraments, drums, stringed instraments, and horns, - in the practice of which they take great delight; and they indulge in a vocal recitative which seems intended to imitate a succession of natural sounds. Marriage is generally by purclase; and a man is allowed to aequire three wives, but not more. After marriage the women extend the under lip by the insertion of a peg of wood or bone, which is gradually increased. Tattonint is partially practised. Their metbod of sepulture resembles that of the Perusians, the curpse being bound in a crouching position with the knees drawn up to the chin; and their tombs are frequently ornamented with rough rooden figurcs inteaded to represent the deccased. Of the immortality of the soul they bave no notion; and their only approach to a lnowlodge of a deity cousists in a rague idea of lack. On the other hand they have a most intense belief in a great variety oi petty goblins and witches, which are identified with bats, owls, and other ominous animals. Their language is musical, and abounds in the vowels o and a; its vucabulary of concrete terms is very rich, but the sanie word bis often great variety of meanings. The grammatical structure is simple. The Bongo are now subject to the penjle of Khartoom, who have treated them with great injnstice, and greatly reduced the numbers of the popalation, which nuw hardly exceeds 100,000

BONL, a kingdom or confederation in the islami of Celebes, stretching along a part of the western shores of : great bay of the same name, which indeots the south side of the island to the depth of nearly 180 miles It has an arez of 450 square miles at most, and its present popula tion is estimated about 200,000 It was at one time the most powerful state of Celebes, all the other priaces lieing regarded as vassals of its king, but has latterly been prarti. cally reduced to a Dutch dependency, though this has not been brought about without trouble An espedition in 1825, uoder General van Geen, was not rery successful, but the war of 1859 was brought to a more satisfartory termiation for the insaders. The inbabitants, calleod Bugis, are one of the most remarkable of the penples uf the Eastern Arcbipelago. They speak a language allied in that of the Macassars, and write it with similar characters It has been studied and its letters reproduced in type ly Dr B F Matthes of the Netherlands Bible Suciety The Bugis are industrious and ingenious; they practise agriculture more extensively than the neighbouring tribes, and manufacture cotton cloth oot only for their own use, but alin
for export. They likewise carry on a considerable traffic in the mineral and vegetable productions of. their country, such as gold dust, tortoize-shell, pearls, nutmegs, camphor, and various medicinal preparations. Their towns are regularly built, and they have schools of their 0 wa. The king is elected generally for life, and always from therr own number, by the chiefs of the eight petty states that compose the confederation, and be cannot decide upon any public measure withont their consent. In some of the states the office of chief is bereditary; in others-any member of the privileged classes may aspire to the dignity, and it not unfrequently happens that the state comes to bc governed by a woman. The capital, also called Boni, is situated on the coast in $4^{\circ} 37^{\prime} \mathrm{S}$. lat. and $120^{\circ} 30^{\circ} \mathrm{E}$. loug., and is the residence of the king. Varrous Dutch settlements tave been formed round the bay. Of the history of Boni uot much is known. According to Temmenck, it first acquired importance in the year 166G, when the rajah Palakkah, whose father and grandfather bad been murdered by the family of Hassan, the tyrant of Sumatra, made commun cause with the Dutch against that despot. From that date till the beginning of the present century the Dutch influence in the kingdom remained undisputed. In 1814, bovever, Boni fell into the kands of the British, who rotained it for two years; but by the European treaties concluded on the downfall of Napoleon it reverted to ats original colonizers. See Celebes.
BONIFACE, Sx, the Apostle of Germany, whose rea! name was Winfrid, was born at Crediton in Devonsiure, in 680. He was of good family, and it was some what aganst bis fatber's wishes that he devoted himself at an carly age to the monastic life. He received his theological training in the convents of Exeter and Nutcell, and at the age of thirty became a priest. In 715 he set out on a missionary expedition to Fresland, but his efforts were frnstrated by the war then being carried on between Charles Martel and Radbod, king of the Frisians. Despute the wishes of his brethren, who desired to make him therr abbot, he again set out in 718 , visted Rome, and was commissioned by Gregory II. to preach to the pagans of Germany. For five years he laboured in Thuringia, IHessia, and Friesland, and then returned to Rome to report his success. Hc again set out for Germany, and, armed with full powers from the Pope, baptizcd thousands of the heathen, and brought back to the Charch of Rome many Christians who had in a neasure separated themselves from the fold. After another visit to Roine in 733 be procecded to Bavaria, and founded there the bishoprics of Salzburg, Regensburg, (Ratisbon), Freisingen, and Passau. Ile then resumed his labours in Germãny, where he crected the districts of Würzburg, Erfurt, and Burburg into bishoprics. IIe also organized provincial synods in the Frankish Church, and obtancd great influcnce over the king, Pepin, whom he crowned at Soissons. Boniface had becn created a bishop by Gregory II., and after the deposition of the bishep of Mainz in $\tilde{2} 45$, that bishopric was converted into a metropolis and conferred upon him, much against his own incluations. He bad never relinquisbed his bope of converting the Frisians, and in 755 he sot out with a small retinue for Friesland He baptized a great number, and summoned a general meeting for confrenation at a place not far from Dokkum, between Franeker and Groningen. Instead of bis converts, however, there appeared a mob of armed pagans, who fell upon the aged archbishop and slew him. His remains were fiuaily deposited in the famous abbey of Fulda, founded by himself.
The epistles of Boniface have been published by Serrarius, 1605, and by Würdtwein, 1790; his works by Giles, 2 vols., 1542. On hıs life and labours bee Lö̈ler, Bonifaciulus, 1812 ; 'Seiter, Bonijfcius, 1845; Rettberg. Eirchengeschichue Deutschlums, i.; Neander, Chured History, Bohz's transl., vol. 叉.

BONIFACE, the name of nine popes.
Boniface I., bishop of Rome from 418 to 422 , was a contemporary of St Augustine, who dedicated to him some of his works.

Bomiface II., 530-532, was by birth a Goth, and owed bis election to the influence of the Gothic king. He bad for some time an anti-pope, Dioscurus.

Boniface III., 15th February to 12 th November 606, obtained from Phocas recognition of the beadship of the Church at Rome.
boviface IV., 60S-615, received from Phocas the Pantheon at Rome, which was converted into a Christran church.

Bomiface V., 619-625, did much for the Cbristianizing of England.

Bowiface VI. was elected in April 897, and died fifteen days afterwards.

Boniface VII., who attained the Papal chair in 974, is sometimes styled an anti-pope. He is supposed to have put bis predecessor, Benedict VI., to death. A popular tumult compelled him to flee to Constantinople ; but ho carricd with him vast treasure, and in 984 he returned and removed, by murder, John XIV., who bad been elected in his room. He died in 985 or 986 .

Boniface VIII., Benedict Cajetan, a man of great ability, was elected in 1294, Celestune V. having been persuaded to resign. He meddled incessantly in foreign affars, and put iorward the strongest claims to temporal as well as spiritual snpremacy. His bittcrest quarrels were with the emperor, with the powerinl family of the Colonnas, and wuth Pbilip the Fair of France, whom be excommunicated in 1303. He was about to lay all France under an interdict when he was seized at Agnani by a party of horsemen under Nogaret, an agent of Philip, and Sciarra Colonna. After three days' captivity he was rescucd by the town's people, bnt the agitation he bad undergone cansed his death soon after, on the 11th October 1303. In 1300 Beniface instituted the jubilees, whech afterwards became such a source of profit and of seandal to the church.

Boniface 1X. was elected in 1390 and died in 1404. During his time the so-called Clement V. continued to hold state as pope in Avignon.

BONIFACIO, a town at the southern extremity of Corsica, in the arrondissement of Sartene, near the strait to which it gives its name. It 13 one of the most picturcsque and interesting places in the island, its white houses being built on the top of a white calcarcous rock that can only be reached on foot or ou horseback. It is woll fortified, has a sccure harbour, carries on some trade, and bas coral fisheries. The ruck is hollowed out inte vast caves that stretch below the town. Bonifacio was founded in 833 by the Tuscan Marquis whose name it bears, as a defence against the Saracen pirates. At the end of the 11 th century it became subject to Pisa, and in 1195 was taken by the Genoese, whose influence continues to affect the character of the population to this day. In 1421 :t heroically withstood a protracted slege by Alphonso of Aragon; bnt in 1553 it fell into the hands of the Franco. Turkish army. Population in 18T2, 3402. (Sce Gregoromis's Corsica, vol. ii.; Lear, Journ. in Corsica. p. 62.)

BONN, the chief town of a circle of Rhenish Prussia, situated on the left bank of the Rhine, about 16 miles by rail S.S.E of Colognc. The ceutral part is mostly conposed of very narrow streets, but the outskits contann numerous fine buldings, and the gencral appearance from the river is rather attractive. There are five Roman Catholic and two Protestant churches, tho most important of which is the Minster or St Cassius, an old building in
the Transition style, surmounted by five towers. The town also possesses a "Rathbans," of modern erection, a courtbonse, a bospital, a gymuasium, and a theatre. By far the Gnest of its buildingy, bowerer, $1 s$ its famons university, which occupies the larger part of the southern frontage of the town. The present establishment only dates from 1818 , and owes its existence to the king of Prussia; but as early as 1780 the academy which had been founded about nine years befure was ra1sed by Arehbishop Masimilian Frederich of Cologne to the rank of a university, and continued to exereise its functions till 1794, when it was dissolved by the last elector. The building now necupied was originally the electoral palace, constructed about 1717 ont of the materials of the old fortifications. It was remodelled after the town eame into Prussian possesslon. There are five facnities in the university-a legal, a medreal, and a philosophic, and one of Catholic and another of Protestant theology; in 1873 it was attended by 752 students, ranking as elghth among the German miversities. The library numbers upwards of 200,000 volumes; and the antiquarian moseum contains a valuable collection of Roman relics discorered in the neighbourhood. A separate building for anatomical operations is situated in the extensive garden to the south of the unversity; and an acadeny of agriculture, with a natural history museam and botanic garden attached, is established in the palace of Clemensruine at Poppelsdorf, which is reached by a fine avenue about a mile long, bordered on both sides by a double row of chestnut trees. A splendid observatory, long under the charge of Argelander, stauds on the south side of the road. Among the numerons men of learning who bave taught or teach in Ronn are the theologians Bleck and Lange, Hermes and Achterfeldt; the jurists Walter and Böking; Harloss, Mayer, and Rindteiseh in the medieal faculty; and Niebuhr, Weleker, Ritschl, Brandis, Lassen, Simrock, Diez, and Sybel, in various branches of literature and history. Peethoven was born in the town, and a statue was crected to him in the Miinsterplatz in 1845. Niebubr is buried in the cemetery cutside of the Sternthor, where a monument was placed to his memory by Frederick WilliamIV. But for its university Bonn would be a place of comparatively little inportance, its industry and commerce being of moderate dimensions. Its principal manofactures are cotton and silk, earibenware, soap, sitriol, and tobaeco, and its trade, chiefly carried on ly the Rhine, consists largely of corn and wine. Population in 1871, 25,030. Bonn (Bonna or Castra Bonnensia), originally a town of the Ubii, became at an early period the site of a homan military settlement, and as sach is frequently momtioned by Tacitus. It was the seene, in 70 A. D., of a lattic. in whel the Romans were defeated by Claudius Cowlis, the waliant leader of the Batavians. Greatly reduced lyy successuve barbarian imroads it was restored ahout 359 by tho Emperor Julan, but its import ancc only dites from 1268, when it became the residence of the electors of Cologne. During the various wars that devastated Germany in the 16 th, 17 th, and 18 th centuries, the town was frequently besingod and occupied by the several belligerents, but contunuel to belong to the electors (1/l 1794, when the French took possession of it. At the peace of Lanesulle they were formally recognzed in there uccupation, hat thy the Verma Congress of 1814 the tuwn was made over to l'russia. The fortifications had been dismanted in 1817

BONNER, or Boarn. Edmonb, an Eaglish prelate, noterious fur his persections of the Protestants during the reign of Queen Mary, was horn at Hanley in Worcestershire, about the whi of the 1512 century, and generally passed for the natural son of George Savage, a pricst who
was the natural son of Sir John Savage of Clifton in the same county. Strype in his Memorials of Cranmer, how. ever, says he was positively assured that Bonner was the legitimate offspring of a poor man, who lived in a cottage long afterwards known as Boner's place. About 1512 he entered as a student of Broadgate Hall (now Pembroke College), Oxford; and in 1519 he was admitted as bachelor of the canon and of the crril law. Having been admitted into orders, he obtained some preferment in the diocese of Woreester. In 1525 he took his degree as doctor, and attracted the notice and patronage of Wolsey. Bonner was with the eardinal at Cawood when he was arrested on charge of high treason. After the death of Wolsey be adopted Lutheran sentiments, and insinuated hinself into the favour of Heary VIII., who made him one of his chaplains, and employed him in several embassies abroad. In 1532 he was sent to Rome with Sir Edward Carne, to answer for the king, who bad been cited to appear an person or by proxy in regard to the divorce of Queen Catharine. In 1533 , being again despatched to Pope Clenent VII., then at Marseilles, to iatimate Henry's appeal to a future general council from the sentenee pronouncel against his divorce, he threatened the Pope with so mach resolution, that his boliness talked of haring him burned alive or thrown into a cauldron of melted lead. Clement did not feresee that the man whom he had thus menaced with the flames was destined to burn heretics in England in support of the rery faith which, under Heary, he had lent his aid to orerthrow. In 1538, being then ambassador at the eourt of France, he was nominated bishop of Hereford; but before conseeration, be was translated to the see of London, and was enthroned in April 1540 . When Henry Y III. died in 1547, Bonner was ambassador at the court of the Eruperor Charles V. Durni; Henry's reign he was constantly zealous in his opposition to the Pope, and favonred the Reformation in obedienco to the kiag, who exacted rigid compliance with all his caprices. On tho accession of Edward, howerer, Bomer refused to take the oath of supromacy, and was committed to the Flect, where be remaned until he promised oledience to the laws. After his release be assented to the Reformation, but with such mamfest relusance, that he was twieo reprimanded by the Privy Council, and in 1549 was, after a long trial, committed to the Marshalsea, and deprised of his bishopric, to which. however, he was restored on the aceession of Mary; and soon afterwards he was appointed, in place of Cranmer, viccgerent and president of the Conrocation. From this time he became the ehicf instrument of persecution, and is said to have condemned no less than 200 Protestants to the flames in the space of three years. On the aecession of Elizabcth he appeared with the rest of the bishops at Highgate, to congratulate ber; but the queen refused to permit him to kiss her hand. Haxing, in the second year of her reign, refused to take the oath of supremacy, he was agan committed to the Marsbalsca, where he died, September 5, 1569, after a confintinent of ten years. The character of Bonner was remarkable for obstinacy and inflexibility in everything sare principle; yct even in this respeet it cahibits some striking contrasts. In his early earecr he accommodated his principles to his convenience and ambition ; after his return to Catholicism, he remained steadfast to the ehurch, and, when disgraeed, bore his depravation and imprisonncnt with appareat resignation. The charge of atheism brought against one so defled with blood was euperlluons. He was eonstitutionally merciless and anstere, fitted by matare for a persecutor, and equally capable of cmploying the same ardent zeal either against or in farour of any cause that be espoused. Among his worbs are, Responsum et Exhortatio in Laudem Sacerdotii,
a prefaco in Thardener's treatise De Veru Obelientia, and several homilies.

BONNET, Cgarles, an eminent naturalist and philosophical writer, was born at Geneva on the 13 th Míarch 1720. The Bonnets, a French fanily whom the religious persecution in the IGth century had driven into Switzerland, were accustomed to $61 l$ important posts in the Genevese Government ; and young Charles Bonnet was expected to qualify limiself to make use of the family influence by becoming a lawyer. But dry legal technicalities proved to be anything but attractive to bis rich and imaginative mind, all the tuore that he found in the study 'of nature an empluyment which was not also os task. He made law his profession, but ho never scerns to have permitted it to interfere seriously with his favourite pursuits. Tho account of tho ant-lion in Pluche's Spectacle de la Nature, which he cbanced to read in his sixteenth year, turned his attentiun in particular to the wonders of insect life. He proeured Réaumur's work on iuscets, and with the help of live suecimens succecded, after minute and patient investigation, in adding many observations to those of Reannur and Pluche. The result of two years' labour be made known to Rénumur, who was naturally not a little surprised to find su much sagacity and power of rescarel. in a youth of eighteen. In 17 ± 0 Bunnet communicated to the Academy of Scicuces a paper containing a series of experiments establishing what is now termed parthenogenesis in aphides or tree lice, which ultained for bin the bonour of being admitted a corresponding mewber of the academy In 1741 he iostituted a set of experiments respecting the reproduction of worms by fission; and in the followist year he discovered that the respiration of caterpillars and butterflies is performed by pores, to which the name of stiemnata has siwe been given. In 1743 he was admuted a fellow of the Royal Society, and in the same year be became a doctur of laws, - his last act in connectun with a prufession which had ever been distastefn! to him His first published work appearel in 17 ± 5, entitled Traite dinsectologie, io which were collected his various discoveries regarding insects, along with a preface on the development of germs and the scale of organized beings. Botany, particularly the leaves of plants, next attracted the attention of Bonnet, and after several yuars of diligent study, rendered irksome by the ancreasmg weakness of his eyesight, he published, in 175; one of the most onignal and interesting of bis works, T'raité de l'usuge des jeuilles. in which among other things be advances many considerations tending to show that plants are endowed with powers of sensation and discernuent But Bonnet's eyesight, which threatened to fail altogether, now caused hims to turn his thoughts from investigation to epecrlation In 1754 bis Essai de Psychologue was pullished anovywously in London. This was followed in 1760 by the Essai analycinue surles frecultés de l'ame, an whieb he develops tus views regarding the physiological conditions of mental activity. He returned to physical science, but to the speculative side of it, in his Consilérutions sur les corps arganisés, Amsterdam, 176?. The principal objects of this work were to give, in an abridged form, all the most ioteresting and well-uscertained facts respecting the origin, development, and reproduction of organized bodies, to refute the theory of epigenesis, and to explain and defend the doctrine of pre-existent germs. In bis Contemplation de la Nature, which nest appeared (1764-5), one of his most popular and delightiful works, he scts forth, in eluquent language, the theory that all the beings in nature form a gradual seale rising from lowest to highest, without any break in its consinuity. liis last important work is entitled Palungénésie Philosopfurque, (Genera, 1769) ; io it he treats of the past and future of living beiggs, and supports the idea of the survival of all
animals, and the perfecting of their faculties in a future state. Bonnet's life was singularly uneventful. He seems never to have passed beyond the limits of his native country; nor does he appear to have taken any part in public affairs except for the comparatively short period between 1752 to 1768 , during which he was a menber of the councid of the republic. The last twenty-five years of his life be spent in the country, simple and regular in his mode of life, easy in bis circumstances, and happy in a small circle of friends. His wife, whom he married in 1756, was a lady of the family of De la Rire. They had no children, but Madame Bonnet's nephew, the celebrated De Saussure, was brought up as their son. Bonnct died, after a long and painful illness, on the 20th May I793.

The outlines of Bonnet's philosophical system may be set forth in a few sentences. Man, according to him, is a mixed being, composed of two distinct substances, mind and body,-the one immaterial and the other material. In what manner the two are connected we do not know, but of this at least we are certan, that bodily activity is a necessary condition of thought. All knomled ge originates in sensations; bensations themselres follow (but whether as physical effects or merely as sequents Bonnet will not say) vibrations in the various nerses appropriate to tach; and lastly, the nerres are made to vibrate by the action of outward whjects upon them A nerve once set in motion by a particular object contracts a certain tendency to reproduce that motion; so that when it a second time receives an impression from the same object it vibrates with less resistance. It is the sensation accompanging this increased flexibility in the nerve that is, according to Bonnet, the condition of memory When refiection-that is, the active as distinguished from the merely passive element in mind-is applied to the aequisition and combination of sensations, those abstract ideas arc formed which are usually placed in opposition to sensations, but which are thus, no matter how refined they may appear, sensations in combination ouly. That which puts the mind into activity is pleasure or pain ; happiuess is the end of human existence. Bonnet's wetaphysical theors is based on two principles borrowed from Leibuitz, - 6 rst, that there are not successive acts of creation. but that the universe is completed by the urbinal act of the divine will, and thereafter moves on by its own interent force, and, secondly, that there is no gay, in the continuity of existence. The divine Being, according to Bumaet, origi. nally created a multitude of germs in a graduated scale, each with an mberent power of self developruent At every successive step in the progress of the glube, these germs, or what has been developed in ther place, advance nearer to perfection; if some advanced and uthers did not there rould be a gap in the continuity of the eham Thus not man only but all other forms of esistence are immortal Nor is it man'e rond merely, bis body alsu will pass intu the ligher stage, not, med, the budy be nou possesses, bui a finer one of which the germ at preseut exists within bia This is equally true of the utier antuals, nho also prisess a germ that will develop itself in the vest stage, and every individual begios each successive stage with that amount of perfection and of snowledge which be bad when he left the previous stage. It is impossible, bowever, to reach abolute perfection, because the distance is infinite. It is difficult to recoucile this last proposition mith the law of continuity, if that law is to be accepted, as Lonuet seems to accept it. as an absolute principle of the universe, embracing all exist ence divine and created, for surely the iuterval between the divine Being and the bighest created being, constantly lessening though it be, is a break in the continuity of the chain. It is alsu difficult to understand whether the constant adrance to perfection is performed by every individuals on his own account. or only by earh race of hemgs as a
whole. Is a man when be dies at onee translated to the next stage, or must be wait until the time comes when the advancement of the whole human race takes place, before be, at any rate consciously, realizes the new state 1 There seem, in fact, to be two distinet but somewhat analogous doctrines,-that of the constantly increasing advancement of the individual in future stages of existence, and that of the constantly increasing advancement of the race as a whole according to the successive evolutions of the globe.

Bonnet's complete works appeared at Neufchatel in 1779-1785 partly revised by himself An English translation of certan portions of the Palingénésie Philosophique was published in 1787, under the title, Philosophacal and Critical Inquiries concerning Christarity. (See A. Lemoine, Charles Bonnet, Paris, 1850, and the Due de Caraman's Charles Bonnet, philosophe et naturaliste, Par1s, 1859.)
bonneval, Claude Alexandre, Comte de, a celebrated French adventurer, known also as Achmet Pasha, was the descendant of an old family of Limousin He was born on the 14th July 1675 at Coussae, and at the age of thirteen Joined the Royal Marine Corps After three years be entered the Guards, whence he was transferred to the infantry regiment of Latour He served in the Italian campargns under Catınat, Villeror, and Vendome, and in tho Netherlands under Luxembourg, giving proofs of indomitable courage and great military ability His insolent bearing towards Chamillard, minister of war, was made matter for a court-martial He was condemned to death, but having foreseen thes sentence, he saved himself by flight to Germany Through the mfluence of Prince Eugene be obtaned a command in the Anstrian army, and fougbt with great bravery and distinction against France, and afterwards against Turkey IIe was severely wounded at Peterwardenn, and after his recovery paid a visit to Parıs The proceedings against him in France bad been allowed to drop. and ho marned a daughter of Marshal de Eiron, whom, however, he deserted after a wsek or twa. He returned agan to the Austr:an army, and fought with distunction at Belgrade He might now have risen to the highest rank, bad he not made bimself disagrecable to Prince Eugene, who sent him as master of the ordnance to the Low Countres There has ungovermable temper ted bim into a quarrel with the Marquis de Prie, governor of the Netherlands, who answered his challenge by plaeng bum an coufnement a court-martial was agan held upon hom, and be was conderned to deati, but the emperor commuted the sentence to one year's imprisonment and barashment from the mperial domans. Bonneval, soon after his release, offered his services to the Turkish Government, professed the Mahometan faith, and took the nanne of Achmet He was made a pasha of three tails, and apponted to the conmand of the artillery He renderd cahablo seviees to the sultan in his war with Russia, and wath the famous konls kimh As a reward he recenved the governorshap of Chas, hut soon fell under the suspicion of the P'orte, and was banshed for a time to the shores of the Black Sea lle was medtating a return to Burope and Christianty when be died at Constantnople, 20th Mareh 1757 The Memors published under his name are spurious. See Prince du Lignc, Mómore sur la Comte de Bonneval, (817)

BONNIVARD, Francols ne the " prisoner of Chillon," was born at Seyssel an 1496 Elucater at Turn . he sueceeted, in 1510 . An the prory of sit Victor, gust ontside the walls of Geneva has uncle having resigned in his favour Of ardent repultiean proncuptes be capoused the rause of the Geneveso abanst the duke of Savoy, whe was seeking ou assert the scignornal nefhes that had just been coted to bun by the prance bshop In 1519, on the entrance of the duke nito Genera, Bommard was arrested and in-
prisoned for two years at Grolée. On has liberation be returned to his priory. In 1530, when travelling ic the service of the republic, he was unfortunate enough to fall into the hands of robbers, who delivered ham over once more to the duke of Savoy. His imprisonment in the castle of Chillon, which has been celebrated in Byron's poem, lasted till 1536, when he was liberated by the combined force of the Bernese and Genevese. On his return to Geneva, which had now completely emancipated itself. he received the bonours and rewards that were duo to lus patriotism, being made a member of the Council of Two Hundred, and endowed with a pension. He died about 1570 , the preese date being uncertain. Bonnivard was the author of a history of Genera, and left his books and manuseripts to the torn.

BONPLAND, Armé, French traveller and botanist, was born at Rochelle, Autust 22, 1773 After serving as a surgeon in the French navy and studyıng under Corvisart at Paris, be accompanied Humboldt during five years of travel in Mexico, Colombia, and the districts bordering on the Orinoco and Amazon. In these explorations Boapland collected and classified about 6000 plants till then mostly unknown in Europe, which lie afterwards described in Plantes Equinoxiales, \&c. (Parıs, 1808-1816). On returning to Paris be recelved a pension and the superiatendence of the gardens at Malmaison, became acquanted with Gay Lussac, Arago, and other eminent scientists, and yublished Monographie des Mélastomées (1806), and Descruption des plantes rares de Navarre. After vainly endeavouring to persuade Napoleon to retire to America, ho set out, in 1816, with various European plants for Buenos Ayres, where be was elected prafessor of natural history, an uffice which he soon quitted in order to explore Central South America. While journeying to Bolivia he was arrested as a spy, in 1821, by command of Dr Francia, who detaned him a prisoner at Santa Marta until 1831, during which time he acted with great disinterestedness as a physician to the nerghbouring poor. On regaining liberty he resided at San Borje in the province of Corrientes, until his remoral in 1853 to Santa Anna, where he occupied himself in seientific research, and in eultivating the orange trees which he had introduced. He was widely reapected, and was presented with an estate worth 10,000 piastres by the Government of Corrientes. His intention of revisiting Paris was frustrated by his death at Santa Anna in 1858. (Sce II umboldt's Travels.)
bonstetten, Charles Victor de, was born at Bern in 1745 , of a noble and ancient family He recerved the elements of has edueation in his native torn, and at fourteen was sent to Yverdun, and soon after to Geneva. There lie imbibed many revolutionary doctrines both in religion and polities, wich ill fitted bim for a careor as a Bernese senator of the traditional type; and his father, alarmed at the tone of his son's letters, peremp. tarily ordered him to return home-a command which the young man, albeit be would aeknowledge no authority but reasan, was obliged to obey. The change, howover, was worse than useless; for the dulness of Bern so preyel upon fris mind that he made an attempt on his life, which was frustrated by the somewhat curious accident of a ray of the maon attracing bis attention when about to discharge the pustol. Ilis father seeng his condition, sent him to Lesden to finish has studies, hut as the climate of the place disagreed with hom, he was allowed to exchange it for England wheh he reached in 1563 . The facility with which he gathered fricuds around him, whel distingushed han. pechaps, as much as anything use, mado his stay in Enghand not the least dappy priod of his life. Ile went bonc by way of Paris, where be was introduced to much of the lest literary suciety in Franee, but on his return
he fouad that the mournful duty awaited him of nursing his father in his last illoess. Inmediately after his father's death he again left home, and spent a considerable time in Italy, travelling as far south as Naples. Time and experieace had done much to alter the charaeter of Boo stetten sidee the days of his wild theorizipgs at Gencua. No longer a Republican, but still a Liberal, be was daily reeognizing with greater clearness tbat the watebwords of revolution meant anything but law and order On returning to Bero he beeame a member of the avoyer's eouncil, and soon after was appointed magistrate at Gessenay. Theace he was remored in 1787 to Nyou in the Pays de Vaud, a place attractive to him from its proximity to the intellectual life and society of Genera and Lausaone, but in other respeets unsuitahle; for the Pays de Vaud, as well from its nearness to France and to Geneva, as frun the weight of the Beraese yoke, was nearly ripe for revolt, and Bonstetten was, as a magistrate; trusted neither by his revolutionary friends and former allies, nor by his fellow. rulers in the government of Bera He frrmly deelared :bat he should stand by bis order, a declaration that was not without good effeets; but in 1792, when Geneva was threatened by the army of the Convention, he took certain steps to avert tho danger, which, as be had not receised a military training, were nut very judiciuss. This increased the suspieion whieh the Bernese Government felt towards bim; and, in eonsequenee, he was permitted to exchange his offiee for one on the Ticino, where be remained until 1797, when political troubles and the Fruch armies compelled him to leave his native country. At the solicitation of Madame Erün he at first repaired to Copenhagen, but he finally determiued to settle at Geneva, whieh proved to be his bome for the rest of his life There, as of old, he enjoyed the society of many distinguished persons; but if this last half of his life is the most brilliant, it is also the least eventful. He died in February 1832

As a writer Bonstetten cannot be said to oeeupy a very high plaee. His works, ideed, show a great power of observation, and an extensive insight ioto buman charaeter, but as a psyebologist be is defieient in method, exaetuess, and depth ; and his style, like bis thought, wants point and clearoess. In psychology be occupies an ecleetic position, and urges the neeessity of making use of internal observation in the study of mind. It is, however, in bis social character, as a conversationalist, and as the friend, often the iatimate companion, of many of the leaders of thought and action during his long life, that Bonstetten will be best remembered. The following are the titles of his chief works:-Recherches sur la nature et les lois de l'imagination, 1807; Etudes d'homme, ou Recherches sur les fucultés de sentir et de penser, 1821 ; Sur l'́dúlucation nationale, 1802; Pensíes sur divers objets de bien public, 1815, L'Homme du Midi et l'llomme du Nord, 1814
bonvicino, Alessandro Sce Morbtto
BOOK, the common name for any literary production of bulk, now applied partieularly to a printed composition forming a volume. The name is also used for the literary divisions of a work

Waebter, with sorme otber writers, derives the word from the same root as the German biegen, to bend, as the Latin volumen comes from volvere But the more commion ety. mology makes the tree the parent of the book, and refers the origio of the latter (Angl. Sax, boc, Germ., Buch, Dutch, bock) to writing on the bark of the beech tree (Angl. Sax., boe, Germ., Buche: Ieel, beyke; Dutch, beutt), or perhaps en beach boards A nalogy supports this derivation. The byblos of the Grecks - whence their name for a book-refers to the Egypt ian papyrus itself, and the Latin liber to the pellucte which enelused aty stalk. The codex of
the Romans meant at first the truak of a tree; and the leaves of a book indicate a similar origin.
The earliest writings were purely monumental, and aecordingly those materials were cbosen which were sup. posed to last the luggest. The same idea of perpetuity which in arebitecture found its most striking exposition in the pyramids was repeated, in the case of literary reeurds, in the two eolumas mentioned by Josephus, the one of stone and the other of brick, on which the etilderen of Seth wrote their inventions and astronomical discuveries. in the pillars in Crete on whieh, aceording to Porphyry, the eeremunies of the Corybantes were inseribed; in the leaden tablets containing the works of Hesiod, deposited in the tenple of the Muses, in Beootia, in the ten corumandments on stone delivered to Moses, and in the laws of Solon, inseribed ou planks of wood The notion of a literary production surviving the destruetion of the naterialou which it was first written-the "monumentuala are perennius" of Horace's ambition-was unknown before the disevery of substances for systematic transeription

Tablets (tabulde) of ivory or metal were in comeron use Tablee among the Greeks and Romans. When made of woodsometimes of eitron, but usually of beeeh or fir-their inner sides were eoated with wax, un which the letters were traced with a pointed pen or stiletto (stylus), one eud ol which was used for erasure. It was with his stylus that Cessar stabbed Casea in the arm when attaeked by his murderers Two such tablets, joined together, were called diptycha, the carliest specimens of boukbinding. They were fastened together at the back by wires, which acted as hinges; the pages were ealled cerce, from their wazen coating, and a raised margin was left round each to preveut obliteration by frietion. Was tablets of this kind continued in partial use in Europe during the Middle Ages; the oldest extant specimen, now in the museun at Florence, belongs to the year 1301 The leaves of the palm tree were afterwards used in their stead, as also the innter bark of the lime, tho ash, the maple, and the elm. But the earliest, though lung obsolete, flexible miterial of mpurtanco was made from the concentrie coats whiel wrapped the stalk of the Eyyptian papyrus, from which is derived our word paper. The time of its introduction has been mueh disputed, but it was eertainly known long before Herodotus. The length of the Greek papyri is said to vary fron eight to twelve inehes; the Latin often reach sistect. Some rolls, however, bave been found as long as thisty fect. They were written on with reeds dipped in gum-water eoloured with eharcoal or soct of resin, the writing being readily obliterated with a sponge; and it is eonjectured that the surface was sometimes prepared for that purpose with a wash or varnish. Iliny mentions also the ink of the euttle fish as having been used for writing, as well as a decoction of the lees of wine ${ }^{2}$ Red ink consisted of a preparation from einnabar The next material commonly employed after papyrus was parchment, made from the skins of amimals, usually of sheep or lambs Vellum is a finer substance, cossisting of prepared calf-skin Parehment is commonly ascribed to Eumenes, king of Pergamus, in Assa Muor, but he was, in all probability, not the inventor but the mapruer. Writing on skins is mentioued Ly Herodotus as common in bis day, and Diotorus and Ctesias speak of ancient Persian records on leather The word itself (perg"mena) first nccurs, according to Mabillon, in the writings of Tatto. a monk of the 4 th century It appears to have superseded papyrus about the ith century, lint ita quality afternards

[^0]deterierated. At first only one side was written on, the back being frequently staned Parchments written on both sides are called by Pliny opsithographi. The term boc-jell is found. in early English, to desiguate this material. Its dearness to classical times led to the practice of erasing the orignal writing for the purpose of substituting new. Parchments so obliterated are known as palimpsests, from a Greek word signifyng twice rubbed, or prepared for writing; and they are alluded to under that name by Cicero (ad Dvv. vu. 18). Paper made from cotton (charta bombycina) came into use, according to Montfaucon, towards the end of the yth or the beginning of the 10th century, and the invention was opportunc, as it checked the further use of palimpsests, which, from the scarctty of parchment and the demand for books of devation, had imperilled the preservation of muck classical literature. Cicero's De Republica was discovered by Angelo Mai un the Vatican library written under a commentary of St Augustine on the Psalms; and the Institutions of Gaus, in the library of the chapter at Verona, were decuphered in like manaer under the works of St Jerome. But the-inventien of linen paper gave the first real mpulse to book production. The precise date of thas inventiou 19 disputed; Mabillon refers it to the 12th century. Montfancon, however, found no specimens earlier than $1: 70$, and Maffer none before 1300 ; the most numerous of them belong to the 14 th century Scaliger ascribes the invention to the Germans, Meffer to the Italians, and others to certan Greek refugecs at Basel, while Duhalde refers it to the Chincse, and Prideaus to the Saracens in Spain. For further particulars respecting the varions substances of early books, the reader may consult the first volume of the Arouveau traité de diplomatique, by the Benedictınes of St Maur, and the Essal sur l"hustore du Parchemen et du velin, by Peignot, whe has given a list of authoritics on this subject.

The form of ancient books differed with the materials of which they were composed. When flexible matter camc into use, it was found convenient to make beoks in the form of rolls, and tho two names are synonymous in legal phrascology to this day. The papyrus, and afterwards the parchment, was joned together to form one sheet, and then rolled upon a staff into a volume (volumen). When an author divided his work into pertions or "beoks," in the literary sense of the word, each division was usually a zolumen ty itself,-thus Ond speaks of his fifteen books of the Metamorphoses as so many volumina, and the same was done when an cutire work was too bulky to be rolled ou one stick. Tho staff in the Herculancum rells is concealed by the papyrus, but it usually projected, the ends being ornamented with bosses (umbitici) of woed and ivory. The tutle (tutulus index) was either suspended like a ticket to the roll, or pasted on the ontside. These rolls were frequently protected by a parchment cover; they were deposited in a cylindrical box (capsa or scrinium), or were arranged horizontally in cases ronnd the walls of a library, as at Herculaneum. Many wooks conld probably be stowed away in small compass by this means ; and the smallness of the rooms devoted in ancrent times to such collections is readily explained in this manner. The volumen, however, on most cases, was far from containing as much as our ordinary books, cven in an octavo form. The square form, Fomorignally applied to the codices or wax tablets joined ${ }^{\text {now }}$ together in the way described above, was resorted to afterwards for separate leaves, the same namo being retained with altered materials. Martual speaks of thas later kind of codex as a novelty in his day. It was common, however, in Greek MSS., aniong the carliest of which Montfaucon discovered few specmens of rolls. The term liber in the 4th century is found applied to both rolls and squared leares, but the former were discontinued in the

Middle Agss, and covers of boards were gradually introduced, the leaves berng stitched together as well as folded
The, internal arrangement of books has undergone Interaal many modifications, which belong, however, chielly to the arrango subject of early writing. At first the letters were divided ment only into lues, then into separate words, and these by degrees were noted with accents, and distributed by ponis and stops into periods, paragraphs, chapters, and other divisions. In some countries, as among the Orientals, the direction of the characters was frem nght to left, 10 others, as among the Northern and Western nations, from left to right. The early Greeks followed the two directions alter-nately,-a method which was called boustrophedon, from its analogy to the path of oxen when ploughing. In must countrics the lines run from side to side, but in some, particularly among the Chinese, ther direction is vertical

The diffusion of early books concerns especially the literary bisterian. Therr scarcity before printing is illus trated by the conditions attached to purchase or lean, but it must be remembered that a particular book might easily bear a monopoly price, and that this 18 no test of the cost of those which might be multiplied by transcriptien When, howerer, the small number of copyists in the Dark Ages and even later is considered, the bigh prices recorded in many instances do not appear surprising. A curious collection of scattered notices of this knd is given in the first volume of Warton's History of English Poetry. A catalogue of the books in the Sorbonne 1 m 1292, censisting of upwards of 1000 velumes, is mentioned by Chevillicr ${ }^{1}$ as having been valued at 3812 Lures, equivalent, according to an English writer, to as many pounds sterling of the present day In 1425, when the English became masters of Paris, the duke of Bedford, regent of France, sent the whole of the royal library inte England, and the collection, which amounted to only 853 volumes, was ralued at 2223 livres.
The characterstics of early printed books are neticed Pranco under the head of Biblograpiy (q. u.) The folho and books quarto sizes, originally adopted from the largeness of the types in the infaucy of printing, are now generally restricted to works of bulk, as dictionaries and other books of reference. The size of a printed book 18 named from the dimensions of the paper and the number of leaves into which it is folded. The ordinary sizes for a long time were regal, demy, and crewn; and the demy 8vo is now the commonest size in use. Post and foolscap are frequently bnt maccurately described in catalogues as duodecimo. "Paper-moulds," says Mr W. Blades, ${ }^{2}$ a competent authority on this subject," have fised conventional sizes; but since the introduction of machines for making paper, and the consequent disuse of moulds, makers work more by a given number of unches than by names of sizes. Consequently, the correct description of book sizes has become impossible, and the trade describe the new by the names of the old stze they most resemble. To determinc the real size of a bound book," he adds, "find the signature (a letter or figure at the bottom of the page), and count the leaves (not pages) to the next. A further test is the binder's thread in the middle of the sheet; the number of leaves from each thread to the next will give the same result. But thcse rules do not apply to old black-letter books and those of the 15 th and 16 th centuries, in which the most satisfactory test is the water-mark. The rule is:-a folio voluma will have all the water-marks in the middle of the page, a quarte has the water-mark folded in balf in the back of the book, still molway between the top and bottom; in an octaro it is at the back, but at the tep, and often

[^1]-onsiderably cropped by the binder's plongh ; and a 12 mo and 16 mo have the water-mark on the foreedge." For further information regarding MS. books see PaLkogapapy, and for printed books Btblograpay. (E. в. т.)

Bookselling.

ence, " books of great value are sold and carried amay from Oxford, the owners of them are cheated, and the sworn atationers are deprived of their lawful business." It was therefore enacted that no bookseller except two sworn atationers, or their deputies, ahould sell any book being either his own property or that of another, exceeding half a mark in value, under pain of imprisonment, or, if the offence was repeated, of abjuring his trade within the university.
"The trade "in bookselling aeems," says Hallam, "to have been established at Paris and Bologna in the 12 th century; the lawyers and universities called it into life. It is very improbable that it, existed in what we properly call the Dark Ages. Peter of Blois mentions a book which he had bought of a public dealer (a quodetn putlico mangone librorum) ; but we do not find many distinct accounts of them till the nest age. These dealers mere denominated stationarii, perhaps from the open stalls at which they carried on their business, though statio is a general word for a 6 hop in low Latin. They appear, by the old atatutes of the University of Paris, and by those of Bologna, to have sold books upon commission, and are sometimes, though not uniformly, distinguished from the librarii, a word which, haring originally becn confined to the copyists of books, was afterwards applied to those who traded in them. They sold parchment and other materials of writing, which hare retained the name of stationery, and they naturally exercised the kindred occupetions of binding and decorating. They probably employed transcribers; we find at least that there was a profession of copyists in the universities and in large citiea.'

The modern system of booksclling dates from soon after the introduction of printing. The earliest printers mere also cditors and booksellers; but being unable to sell every copy of the works they priuted, they had agents at most of the seats of learning. Antony Koburger, who introduced the art of printiog into Nuremberg in 1470 , although a printer, was more of a bookseller; for, besides his own aixteen shops, we are informed by his biographera that he had agents for the salc of his books in every city of Christendom. Wynkin de Worde, who succecded to Caxton's press in Westminster, had a shop in Fleet Street

Tho religious dissensions of the Continent, and the Reformation in England under Henry Vill. and Edward VI., created a great demand for books; but in England neither Tudor nor Stuart could tolcrate n frec press, and various efforts were made to curb it. The firgt jatent for the office of king'a printer was granted to Thomas Berthelet by Henry VIII. in 1529 , but only auch booke as were firat licénsed were to be printed. At that time even the purchase or possession of au unlicensed book was a punisbable offence. In 1556 (3 and 4 Philip and Mary) the London Company of Stationers was incorporated, and very extensive powers were granted in order that obnoxious books might be repressed. In the following reigns the Star Chamber exercised a pretty effectual censorship; but in spite of all precaution, such was the demand for books of a polemical nature, that many were printed abroad and surreptitiously introduced into Eugland. Queen Elizabeth interfered but little with books except when they emanated from lloman Catholics, or touched upon her royal prerogatives; and towards the end of her reign, and during that of her pedantic successor, James, bookselling flourished. Archbishop Laud, who was no friend to booksellers, introduced many arbitrary restrictions; but they were all, or nearly ab, removed during the time of the Commonwealth. So much had bookselling increased doring the Protectorate that, in 1658, was published A Catalogue of the most lendible Books in England, digested under the heads of Divinity, History, Physic, de., with School Broks, Hebrev, Greck, and Latin. and an Introduction, for the use of

Schools, by W. Londen. A bad time ammediately followed. The Restoration also restered the office of Licenser of the Press, which contmued till 1604.

In the first Copyright Act (8 Anne, c. 19), which specially relates to booksellers, it is enacted that, if any person shall think the published price of a book unreasonably high, he may thereupon make complaint to the archbishop of Canterbury, and to certan other persons named, who shall thereupon examine into bis complant, and if well founded reduce the price; and any bookseller charging more than the price so fixed shall be fined $£ 5$ for every copy sold. Apparently this enactment remaned a dead letter.

The modern bookselling trade divides itself into the several branches of publishing and wholesale bookselling, and the retall, the old or second-hand, and the periodical trades. Publishang is confined to a few of the larger cities, Londen naturally taking tho lead, followed oy Edinbưgh, Glasgow, Oxford, Dlanchester, Liverpool, Cambridge, Doblin, and a ferv other places, while purely wholesale dealers are to be found in the large towns only. In Great Britain, and especially in Scotland, booksellers are located in every small town; but in Iroland there are very ferr, except in the chief cities. Formerly the retail booksellers were expected to demand the full retail price of a book, and make no. greater reduction than discount for ready money; but this restriction has been discontinued as contrary to the spirit of free trade. The trade in old or (they are sometimes called) second-hand books is in a sense a higher class of business, requiring a knowledge of bibliography, while the transactions are with individual books rather than with numbers of cepies. Occasionally dealers in this class of books replenish their stoeks by purchasing remainders of books, which, having ceased from one cause or another to sell with the publisher, they offer to the public as bargains. The periodical trade is entirely the growth of the present century, and was in its iafancy when the Penny Magazine, Chambers's Jounal, and similar publications first appeared. The growth of this impertant part of the business has been greatly promoted by the abolition of the newspaper stamp and of the doty upon paper, the introduction of attractive illustrations, and the facilities offered for purchasing books by instalments.

The history of bookselling in the New World has yet to be written. The Spanish settlements in America drew away from the old eountry much of its enterprise and best talent, and the presses of Mexico and other cities teemed with publications mostly of a religious character, but many others, especially linguistic and historical, were also published. Beokselling in the United States was of a somewhat later growth, although printing was introduced into New York as early as 1673 , Boston in 1674 , and Philadelphia in 1683 . Frankhn had served to make the trade illustrious, yet few persons were engaged in it at the commencement of the present century. Beoks chiefly for scholars and libraries were imported from Europe; but after the second war printing-presses multiplied rapidly, and with the spread of newspapers and education there also arose a demand for books, and poblishers set to work to securo tho advantages offered by the wide field of English literature, the whele of which they had the liberty of reaping freo of all cost beyond that of production. The works of Scott, Byron, Muore, Southey, Wordsworth, and indeed of every author of note, wero reprinted without the smallest payment to author or proprietor. Half the names of the authors in tho so called "American" catalogue of books printed between 1820 and 1852 are British By this means the works of the best authors bave been brought to the duors of all classes in the cheapest variety of forms. In conseguence of the war with the Southern States, the
hugh price of labour, and the restrictive duties land on in order to protect native industry, coupled with the frequent intercourse between the two countries, a great chsige has taken place during the last few years. Buoks printed and bound in Britain are greatly apprectated, and Awerican publishers, in the absence of an international copyright, make Luberal offers for early sheets of new publications. Boston, New York, and Philadelpha still retan thear old supremacy as bookselling centres.

In Australia the sale of books is not large at present, there are, however, indications of a great increase. The booksellers there as in Canada, although supposed to be bound by the copyright law restricting the sale of any but genuine edittons, avall themselves of American aud other reprints, 10 whoh the authors have hittle or no interest

In the course of the 16 th and 17 th centuries the Low Countries for a tine became the chicf centre of the bookselling world, and many of the fiaest folos and quartos in our libraries bear the names of Jansen, Blauw, or Plantin, with the imprint of Amsterdam, Utrecht, Leyden, or Antwerp, while the Elzevirs besides other works produced their charming little pocket classies. The southern towns of Douat and St Omer at the same tume furaished pelemical works in English.

Germany, the birshplace of the art of printing, is still the first bookselling country in the world. There, distributed over 786 towns, are 3473 publishers and booksellers, Leipsic being the centre to which they all look, all of any consequeace having an agency there, where then books are collected, and their own publications dastributed.
In Leipsic there are 105 commission-agents for 4202 booksellers, of whom 1143 carry on business in Austria. France, Russia, Holland, America, and England. The boak exchange bas 115 members who transact business there. The other ceatres of the German book trade are Stuttgart, with 16 agents for 542 booksellers, Vienna, with 31 agents for 475 ; Berlin, with 29 agents for 305 , and Prague, with 18 ageats for 98 . The great buok fair at Leapsic is held every year immediately after Easter, and is attended by buoksellers from every part of the world.

In France the press is still shackled, and every book and pamphlet must be registered before publication, but notwithstanding the booksellers flourish, espectally in all the large towns, and some of the finest illustrated works of the day are 1 ssued from the French press. In Italy booksellers are few, and in Spain they can hardly be sald to have any existence at all

From the English Catalogue of Books for 1874 it appears that there were about 4500 books published in Great Britain and Ireland during that year This number includes new editions of works previonsly assued, as well as the principal books published in the United States

The values of books exported and imported during 1874 are given in the official returus as follows.-

Much interesting information on the hook trade will be found in Charles Knight's Biography of Filliam Cartom.
and in the same author's Shadows of the Old Eooksellers, 1865. See also History of Booksellers, by Heary Curwen, 1873, and Bilder-Hefte zur Gieschichte des Bücherhandels, by Heimich Lempertz, Cologne, 1854.

BOOKBINDING is the art of fastening together the sbeets of paper composing a book, and enclosing them in cases of pasteboard covered with leather, cloth, or other materials,-the object being the presersation of the book, and its protection from injury while in use.
At the time when books were ranties, being either manuseripts produced by patient seeluded labour or the productions of the printing-press during the mfancy of typography, they were naturally very highly prized; and as much dabour and expense were bestowed upon the protection and embellishment of a cherished folio as would suffice at the present day for the building of a house. The wooden cover of a bools, with its ruetal binges, bosses, guards, and clasps, seens, in all but dimensions, Et for a chureh door; but the great 1 mirovement in all the mechanical arts, together with the extension of education to all classes, and the consequent diffusion of knowledge, bas led to the multiplieation of bonks, and the gradual but radical changes witnessed during the present century in the art of boukbinding.

For a period of one thousand years-from the end of the 5th to the 15 th century-boolas were excessively rare and costly, and comparatively few bindings illustrative of the art during the Dark Ages have been prescred to the present day. From being the task of slaves durng the Roman empire, the transcribing of books eame to be the duty of monks, who eopied and bound the works which were among the chicf treasures of religions establishments. Numerous doenments exse indicating the attenton which was given by all grades of the priestly order to the binding and preservation of their literary treasures. The general aspect of monastie bindiogs was thick. heavy, and aolid, and according to modern ideas somewhat clumsy. Books for common use were enclosed in boards of hard wood covered with leather, with the binding protected by metallic bosses, corner plates, and clasps. The hterary treasures, on the other hand, of hings and ecclesiastical dignitaries, and the sacred volumes of churehes and monasteries, were eneased in ivory sides, with approprate subjects artistieally earved on them, in silver and sometimes even gold plaques, or in the enamels of Limoges, de.; and these bindings were frequently enriched beowes with gems and jewels. Often these precious volumes were, in keepung with ancient customs, further preserved in boxes or cases no less rich and costly than the bindings they were meant to preserve. As the period of the Renassance approached, silk and velvet canco into use for ornamental bindinge.

The most ancient binding in the British Museum is the St Cuthbert gospels and nanuscript, written about the beginmng of the Sth century. bound in velvet intermised with silver, with a broad silver border, enriched with inlaid gems One of the most ancient and remarkable of bindings, a Lectioncrium, which was formerly in the collection of M. Libri, that eminent bibliophile thus deseribes in his Moriuments inédus: "Manuscript upon vellum of the 1ith or 12th century in an ornamented cover (forming a dptyeb), both sides being gilt and sidvered metal, with ivory carvings, figures in alto riliens, and enamels en taille d"ipargne. The borders contain thirty-two large ivory medallions (sisteen on each side), representing the old prophets and sants, with their symbols, and having inseriptions in ancieut uncial letters, the whole surrounded with a foliage of ivory work in the Greek style, and with baguettes carved in compartments. The ivory medallions are very early, probably $2 s$ old as the 6th ceutury, whilst the eoanuels and metal orranuentation are specimens of the
bandiwork of a rather later perioa. Inis Lectionar:ums has evidently been inserted in the present cover at a later period, the original one having most probably been damaged or destroyed by use." Referring to this work, M. Libri, in the introduction to the volume abore quoted, says: "Whether the enamels contaned in this buding are Byzantine and contemporary with the ivory sculptures, or were introduced later (as we have shown was frequently the case) into an older covering, the medallions and other workmanship in wory, adormng the sides of this coating, appear, from the character of the heads, from the inscriptions, and from the "orkmauship atself, to date back to the earlest pernod of the Byzantine sehool."

With the invention of printing, and the consequent multaplication of books in a portable shape, came the modern style of bookbinding. The old nassise boards, with thear bosses, corner plates, and heavy clasps disap. peared, and thin sides covered with leather, jarchment. and vellum camo into use. Bindings in whieh cnamels, precious metals, or gems were cmployed almost eatirely disappeared. and were followed by bindings in richlycoloured leather or rellum, wath elaborate designs, blind tooled or worked in gold and colour, and gilt gavilré cdges. By the walthy and powerful faunlies of Italy this style of buding and ornamentation was first encouraged towards tho cud of the 15 th century, and skilful artists were employed to design approprate decorations to be worked out by the bookbinders. Among the most famous early patrons of the bibliopegic art in Italy were Michael and Thomas Maioli, the books of the latter being the models on which were fashioned the hindings of later collectors and of other countries. More rare and artistically valuable still are the works of another Italan collector of the 16 th century, Demetrio Canevari, commonly ealled Mecenate, physician to Pope Urban. They are distinguished by a nicdallion executed in gold, silver, and colour, with the device of a chanotecr driving towards Pegasus on an elevation, and the motto, OPORS. KAI. MII. AOEISS. These elcgantly galt bindings have, an the opmon of N. Libri, never been surpassed.

Artistic bindings of Italy and Italian Linders were brought to France by Charles VIII. and Louis XII.; but it was not thll the time of Francis I -himself a lover of books and bindings-that Grolicr, his military treasurer and the governor of Milan, brought the French school of binding suddenly to the front, and placed it, where it long remaned, at the head of the art in Europe. The bindings executed for Grolier usually contain on their obecrse the inscription, IO. GROLIERII ET AMICORUM, and on the reverse his usual motto was PORTIO MEA DOMINE SIT IN TERRA VIVENTIUM, Of Grolier's bindings the learned De Thou, a later and litile less famous French bibliophile, remarked " that his books jartook of the elcgance and polish of their owner." The Grolier style is yet recugnized as the most chaste, clegant, and appropriate method of book ormamentation, and it immediately attancd an enormous reputation in France. "The very tools used by his binders," remarks M. Libri, "were employed for contemporary collectors, and lis admirable patterns have been imitated and copied by other, French bibliophiles. The gradual change in those patterns is very perceptible. At first they were formed by a simplo and chaste combination of varous links only; but afterwards Grolicr successively mitroduced wito the designs more rich ornaments, such as small Howers, wreaths, sc." Some of his later covers were resplendent wath gold and coloured ornament, most elaborately tooled.

After the period of Grolier the taste for magaificent bindings in France grew into a passion, and the sumptuous tindings in which the famons Diana of Paiters indulged
are almost without parallel. The designs for many of ber bindings are said to have been prepared by order of her royal lover Henry IL, under the superintendence of the celebrated artist Le Petit Bernard. Her books are marked with her favourite symbels, the lusar crescent and the bow, and the menogram D_{G}, semetimes (probably in the case of love-gifts) with the H of Henry interlaced, and surmenated. by the crown. It would be a useless and almost endless task to name the patrons of artistic bindings up to near the period of the revolutionary outbreak, duriag which long time French binders stood at the head of their craft. Such outstanding names among many biblophiles as those of the historian De Thou (Jacobus Augustus Thuanus) and Colbert, the minister of Lours XIV, cannot be passed over. Such was Colbert's care for artistic bookbinding that, in a treaty with Maroceo, he insertad a stipulation for a certain number of shins annally to be used for binding3 in the Bibliotheque Royate. Much less is known concersing the bookbinders themselves than of their patrous and the works they executed; but prominent among the bibliopegic artists of all times stand the chief French relieurs of the 17 th and 18 th centuries-Le Gascon, Abbé Dusseuil, Padelonp, and Derome. Biodings by these artists are among the esteemed prizes of modern collectors.

Althougt during the 16 th and 17 th centuries biodings were produced in England which suffer no disgrace by comparison with contemporary masterpieces of French, Italian, and German bibliopegy, it was not till well into the 18th century that England took the leading plaee in the work. manlike forwarding and artstic finisting of books. Silk and velvet long remained the farourite coserings for the more costly bound books in the royal library, and down to the time of James I. we find very elaberately worked bindings in these substances. But, at the same tume, there are not wanting magnificent examples of work iu calf, morocce, and vellum, with blind and gold toolings, and gilt gauffré edges. The bindings of John Reynes, boekbinder to Herry VIII., had embossed on them the curious boraldic conceit of a shield, supported by a pair of unicorns, charged with the emblems of the passion, and aloag with his monogram the inseription Redemptoris mundi arna. Before James VI. of Scotland came as James I. to the English throne, he was, as became his fiterary character, a collector of books and a lover of bindings. John Gibson of Edinburgh held, under James, the office of royal binder, with an annual salary of $£ 20$ Scots. A detailed list of biadings, with the priees charged by Gibson, is printed by the Bannatyne Club in The Lebrary of Mary Queen of Scots and James VI. Mr J. T. GibsouCraig. of Edinburgh has in his excellent collection an original Scoteh binding from the library of Queen Mary, the Cronifue de Savoye, a small folio in brown calf, riclity tooled in silver, with the Seottish arms, and the initial MI. The same collector also possesses a Scoteh binding in brown calf, with blind and gold panelling, gllt and gauffre edges, with the name and arms of the Earl of Bothwell, the third husband of Queen Mary. De Quincey, in a paper on "Secret Socleties." ranks a Bible bound by Mr Farrer in 1635 above the chefs d'aurre of Britsh and Continental artists.

The acknowledged supremacy attained by English book. binding in the latter half of last century is due in large measure to the work of Roger Payne, a man gifted with extracrdinary skill, dexterity, and taste, but unfortunately also of the most erratic and dissolute habits. Payne's work was, as he humself expressed it, "very carefull \rangle and bonestly done," his tooling especially was very beautiful, and his ornamenta, many of which he fashouned with his own hands, were at once highly appropriate and artistic.

In his bills he was in the habit of taking his patrons inte his confidence in an unusual manner, and one of these may be werth copying.
"Aeschilus Glasguce AIDCCXCV Flaxmar illustravit. Bound in the very best manner, sew'd with strong Silk, every Sheet round every Band, not false bands: the Back lined with Russia Leather, Cut Exceeding large: Finished in the most magnificent manner. Embordered with ERMINE expressive of The Figh Raak of the Noble Patroness of The Desigas, The other Parts Finished in the most Elegant Taste with smali Tool Gold Borders Studded with Goid ; and small Tool Panes of the most exact Work. Measured with the Compasses. It takes a great deal of Time making out the difprent measurements, preparing the Tools, and making out now Patterns. The Back Finished in Compartments with parts of Gold studded work and open Work to relieve the Rich close studded work. All the Tools except studded points are obliged to bo workel off plain first, and afterwards the Gold laid on and Worked off again. And the Gold Work requires double Gold being on Rough Grained Borocco. The impressions of the Tools must be fitted and cover'd at the buttom with Gold to prevent lams and cracks."

Fayne, in poverty and distress, came prematurely to a drunkard's grave in 1797. His style of binding has still many admirers, and the Roger Payne stgle is one of the established methods of finishing in bookbinders' establisk. ments at the present day. After Payne, Charles Lewis was the next famous English binder flourishing in London in the early part of the present century, and his budings come down to and coanect with the work of bibliopegistic artists who still exercise their calling.
The operations of bookbinding are now carried on upnn a scale which could not hare been dreamt of eren at the berinning of the present century, and the millions of volumes which annually issue from the press conld not possibly be put into the hands of the reading public in the form and at the price at which they are sold without the aid of machinery. In Great Britain nearly all books are first issued in cloth cases, and while the greatest variety of gran and colouring has been reached in the preparation of the cloth for such cases, therr gilding, embossing, and lettering, all accomplished by machinery, lease almost no improsement to be desired, and the most handsome and fairly durable bindings can thas be supplied at an 10 eredibly small cost. At the same time, it is practicable to prepare, embess, and gild cheap leather corers by the same processes and machinery adopted for cloth cases, and the bundings of cheap family and pocket Bibles are thus pro. duced. But although the old solid and substantial handiwork of the crait is thus fairly eelipsed, there is still employment-and more employment than ever-for binders in leather, who chietly rely on onanual desterity for the forwarding of ther work, and indiridual taste and skill for its artistic finishing-
Modern bookbinding \$us dirides itself into two prineipal branches-1st, Leather work, and all kinds in which manual latour and shill are chiclly employed; and 2d. Cloth.essing, or sneb mork as is largely executed by the aid of machinery.

It may be couvenient first to nothee the rarious operations tbrough which a book passes in ordinary or leather binding. Thess operations are grouped under two main dirisions- "forwarding" and "finishing." Under the first is comprebended everything necessary to the preservation of a book; the second concerns inerely the embellishment.

Foruarding. - In the first place, the sheets of a book are folded in such a manner that the pages follow each other in eonsecutive order. In this operation the binder is guided by the "sigatures," which indicate the part of a sheet to be superimposed upon another. This labour is performed by women and mirls, who acquire incredible dexterity by conturued practuce. The shects, after being folded, are loose and bulky. The nest operation has for its object the bringing then into a more compact form. which was formerly accomplisbed by besting them with a broad-faced hammer upon a smooth flat stone. The condensing or compacting is now generally aceomplisbed by pasing the sheets between the cylinders of a roll-ing-machine. A quantity of sheets, called a "section," is gathereq and arranged between two meees of tin plate and passed thrount
hetween the poweriul cast-Iron rollers of the machine. After roll iug, the sections composing a volume. supposing it to have been necessary to press it in more than one division, are brought together nd carefully collated. The whole of the sheets to compose the volume heing found in their proper plare and order, they are taken in sections to the standing-presg, in which a number of them are piled up between boards. The form of standing.press generally used is what is termed the Atholl or Igle of Man press, on account of the three arms, or rather legs, by which the courpound screrr of the press is worked.
The volumes are then adjusted and clamped up in the laying or cutting-press for the operation of sawing the back. Two or three grooves are, in this operation, samn straight across the back of the volume, according to the number of bands on which the book is to be sewed. In these grooves the bands are lodged, so that when the sewing of the book is complete, the bands are "flush" with the rest of the back, instead of projecting out as they did in old times. A slight cut is made near cach end for holdiog the "kettle stitch," nr stitch by which the sewer fastens her thread each time she passes up and down. The sewing is done at an apparatus called the sem. lng-press or frame, upon which the number of cords to be employed are fastened at proper distances, in accordance with the saw-marks In the back of the volume. The method of seming raties according as the sewer is working one or tro "sbects on;" and the number of bands employed may be from tro to six, according to the size of shcet, weight of the book, \&c. When taken out of the suming. frame the lly-leaves are pasted 0 , and the volume being neatly squared, the back is covered with a coating of thin glue; it is then laid on a board and sllowed gradually to dry. When the glue is quite dry the back is rounded by beating with a hammer, and sub. sequently the volunuc is placed between two featberediged boards, above which the back slightly projects. "These are then P laced together in a lying press, for the buciing process, that is, the back of the boek is well beaten until it Irojects a little over cach side of the bevelled board, so as to form a groore or place for the millboard covers to lic in. The boek is now ready for the boarding. The boards were formerly, as the name indicates, really of wood, tut now of millbosrd of rarious thicknesses, according to the size of the book. They are cut a lithe larger than the book itself, and are attached by the ends of the bands, left for that purpose, being passed through boles in the sides of the boards. The ends of the sligis or bands are then frayed out, pasted down, and hamanered that and smooth. The volume is next placed between pressing boards, and put with others into the standing.press, where it is submitted to a pownful pressure for several hours. Thereafter it is again fasteneci into i lying-press for cutting or ploughing the edges with a knife.edped instrument called the plough. The object of the binder in this operation is to makcerery page of oniform size, presenting a smonth and equal "head," "tail," and "fore edie." The binder is carcful to leave as broad a margin as practhable ; but the size of the smallest abect is the real gauge of the whole book. The head is first cut, next the tail, and before the face is cut it is necessary to have the back flattened by passing "triudles" through between the cords and the boards. After the face has beed ploughed the back springs back into its reunded form, and thus the face presents the appearance of baving been cut in the round.
The book is now ready to have its edece wither sprinkled, coloured, marbled, or gith. Sprinkling is accomplished by sterely mixing the colour or colours with paste or size, and throwing the mixture from a brush violently on the edges. The ubturm colouring of the edges is done by screwiog the volume ap in the tying-press and arplying the colour with a sponge. Marbiing is usually carried in es a aeparate trade, and requires considerable alroitness. The colours to be used are threwn into a syusre shallow trough containing prepared gum water, and as they float on the top they are dexterously mixed and combed through each other so as to pro. duce the kind of marble pattern desired. In this the edges to he marbled are dipped, and when they are withdrawn it is found that the marbled colours lave adhered to them. In the gilking the foreedge or face is first operated on; and to level it the back must again be flattened, as in ploughing. The look is thed firmly fixed in the lying-press, and the edges are scraped and smoothed wist a steel acraper. The edgeg are next coloured, the gold size, consist. ing of white of egg mixed with water, called glaire, is laid on with a camel'g-hair brush, and immediately covered with gold leaf. When dry, it is burnished by rubbing with an agate burnisher, and the head and tail are put through the same processes. Gilt edges in early boond books were usually gauffr, i.e., had designs impressed on them; but scafecly any such work is now done.

The head-bands, which are next attached to the back head and tail, are ornamental appendages, which partly conceal the folded-in edges of the leather, and give a finished aspect to the book. They tonsist of strips of vellum or parchment worked over with coloured iilk or cotton, and are partly glued to the hacks and partly fastened 39 threads passing through the kettle stitches. The back is then lined with atrong paper glued on it, two or three thicknesses being ased eccording to the weiabt of the look. Nearly all booko nom
now beund with open or elastic backs, that is, rith the -lcether of the cover not attached to the back of the sheets. The elastic back is composed of a strip of thin cardboard as long as the volume end a little broader than the back, oo that it covers the whole hack, and is glued in the jeint at the edge of the millboards. Across this elastic back false bands are glued to imitate the projections produced by the cords of ancient bindings; and when these are dry, the book is ready for covering.
The materials used for coucring are very various; but for the greater part of modern books calf-skin dyed of various colours is employed ; while kid-skin, and its imitation in sheep-skio or roan. and sheep-skin acknowledged as such, in which achool-books and many liw.bouks arc beund, are also used in great quantitics. 'The ficce of luather, cut to a proper size, is moistened with water, weat corered on the inter side with paste or glue, and then arphed evenly to the millboard sides. The superthous edge of the leather, first pased to reduce its tbickness, is turned over on the inside, and concealed from view by the end papers attached to the shects form. ing the book, which are subsequently pasted dowd '-pon the mill. boards. As a last operation in forwardiag, but ode now ficquent'y omitted, the book is "corded," that :o, firmly ticd between two boards until it is dry, so as to insure perfect smeothness in the coser. A book is half.bennd when only the bark and comers are protected with leather, the sest of the loards being covered with prepared paper or cloth.
Finishumg.--Finishing procesges are so varied and numeraus, ac. cording to the material under treatnent and the effect to be produced. that a leogthy treatise would by required to detail the operations. 1t will sutfice here to notice the operations in finishing an ordinary white-calf binding. The whole of the leather is first washed over with a thin pasto of the consistency of cream and allowed to dry. The colourng is then done by brushing over it a solution of "salts of tartar" (tartrate of petash), which produces the brewn tint of ordinary bindings. If the sides are to be further ormanented, as, for example, by forming "tree.calf," they are washed orer with glaire (white uf egg). Each board when dry is separately bant conves, and water is spriokled on till it ruds downwarda from the central ridge in a great number of segarate branching runletg. As the water is so runoing, a aclution of copperas is aprinkled on and carried alogg and out by erery tricklet, and thus the dark-coloured branched raarkiogs are produced. The a ppearance of "French call" is produced by dabbing copperas from a squago on the bromn covers. The back is dext preced for title, by pasting a pieco of coloured morocco into the space between the birst and secont bands. The points at which lines either blind or in gold are to cross the Lsck are then marked, the wholo back is washed with thin paste, and two coatings of gluire are apllied to it. When dry the gold leaf is laid on. the linea and ormaments are toeled, and tho tifle lettered with tools and jetters which hase been heated at a gas store. The superfluous gold is cleased off, and after polisting the whole with a lot iron tool the back is tnished. The sume processes are followed with the sides and the "衩uares" when ony ornamentation is tooled upon them. In the case of finishing of a high clays, in roorocco, \&c., the ornaments are first tooled blind, ghite is pencilled into the lines, and a allowed to dry, and gold leaf is then hail on and tooled io. A book is said to be bound extric when well formarded, lined mith superior parer, and gilt round the sides and inside the squares.

Cusing - I'revious to the gear 1525, new books mere generally issued in boards, that is, in millboards covered with drab paper, upon which the title, printed on a white label, was fusted. Although this was greatly euperior to the Conturental mode of covering new book with thin paper, something more elegant and durable was nceded, and Mr Archibald Leighton of London codea. voured to weet this want by introducing coloured cloth (glazed calico). One of the first books of importance bound in this material was the cdition of Lord Byron's works in seventeen volumes. The eoserigg of bcoks in cloth cases can be done profitably orily in a factery where there is much division of labeur end many labour. saving machines. In cloth binding the preparation and crismentation of the cases are threughout distinct from the preparation of the sheeta, and it is only in the very last stage that the volume and ita case are brought together. The first process in the preparation of the cloth eases is cutting the millboard. This is now effected by a rolary cotting-machine or "ripper," an invention iotroduced fiom America, whence indeed comes most of the machincty used in this species of binding. The machine consists essentially of a pair of atrong spindles placed above each other, on which are mounted circular scissor-edged discs, which cut in pairs like the blades of a pair of scissors. The cutting dises can be arranged on the spiodles to cut any denired size of boald, and the gauge-irame on tho feeding table pushes the pieces of millboatd into tho machine by a motion com. municated by a cam-wheel. Such a machine will cut 50,000 pairs of beards in the working hours of a week. When the boards are to be bevelled this is done in a kind of planing-machine. The cloth for the covers beiog cut to the required size and covered with glue, a pair of boards are laid od with the help of a brass gauge,
which l.eeps them parallel, and regulates the width of the space to be left for the back A stnp of paper is pasted into the back, the edges of the cloth are laid in, and the boards are passed between a pair of ndia-rubber rollers, by the pressure of which any air-spaces hetween the clotb and the millboards are squeezed out. They are then hung up to dry previous to receiving title and ornamentation. The ornamentation on book cases consists of embossigg or blind tonling, black or colour printing, and gilding ; and the machines in which the work is done are the same in principle. They are powerful presses, worked either by long lever handles or by power with heavy ty-wheels. Bhand patterns, or gilded work and tilling, are, done at one operation, the dies containing the pattern being heated etther with steam or gas. In the case of ornaments toobe frinted in ink, the pattern is first blocked in the blind with a heated dic, and subsequently ink-printed in the same press with the die cold

The gathering, collating, and stitching of the sheets differ in no way from the same processes already described for leather work. Machinery has been adapted for lolding, but, for the working of foldang-machines, guide points require to be printed on the sheets, as books must be folded by the type and not by the edge of the shott. - A machine of American origin, besides folding 8vo sheets, wall cut, fold, aod insert the half sheet of a 12 mo . This machine, atteaded by a single girl, is sufficient to fold from 1200 to 1500 sheets in an honr. The foldad aheets are sometimes condensed in another Atnerican machine called "The Smasher," which is similar in its action to the embossing press. After stitching, books which are to be cased up with uncut edges have their face and tail cut square by means of a trimming-machione. The principle of this machine consists in a revolving circular knite driven with a treadle or handle; a table (containing the gauge, press bar, and rest), upon which the books are placed, glides across the axis of the knife, and the parts requiring cutting off, coming in contact with the revolv. ing knife, are cot array. When the edges are to be gilt they are cut in somo of the numerous forms of guillotine cutting-machines. The commonest form of guillotine is a heavy knife fixed in a strong framework, and having a diagonal motion in its descent by which It cuts with a kind of shearing action. In another machine the knfe acts with a punching motion, and cuts the three edges in one descent; and there is in nse a most ingenions Americau machine, with a revolving tatle, in whech each edge of the book is in succes. mon drawn in a slanting lirection up against a fised cutter. The edges are gilt as 1 n ordinary buding, but instead of each volume being operated on siogly, a number are placed evenly in a lying press and gile simultancously.

After trimming or gilding, as the case may be, the backs are glued up, and when dry they are rounded, generally with the hammer Several machines have been devised to perform this operation, and one patented in 1865 by Messrs Cope anm Bradbrook has come idto extensive use. In this machine the book is elamped op between a par of borizontal cheeks on a table which moves back wards and forwards onder a beavy roller adjusted io a frame over the table. The pressute of the roller against the back gives the required "roudd," which can be raried by raising or loweriog the pitch of the roller. From the rounding process the voluone goes to the backing-machone, by which the joint or groove along the back in which the boards lie is formed. The backing machine is worked by the hand, and its action is somewhat similar to that of the roundingmachine. The book is seized between a pair of jaws, which only leave about a quarter of an inch projecting above them The workman tinngs down is roller on this projecting part of the volume, and its pressure furces the free portion of end shects over the sides of the jaws, thus forming the joint to receive the boards. With the backing the part of the work done by machinery ends. The backs are uext coated with glue, pieces of calico for pasting down are laid on, and the entire back is covered with paper. When dry, the volunae is hitted into its cases and " pasted up," and the operatims are finished by piling the cased books in a hydraulic press betwcen boards, yo as to leave only the backs pro. jecting

A kind of binding in which the procesa of seving is dispensed "Hh, wht the bates conted with a rapidly drying solution of indiat Mober. Was patented by Mr Willian llameock in 183t, and is still used to some extent. Thu shacts in this binding must either lice cut into sumple leaves or folded as folhos, as they all require to be agghatinated thy repeated contings of the imbia-rubber solution. The mulia-mbluer harkig iy consenunt for volumes of phates, musid bonk, and any volimes made up of large segneate sheets,
Alhough doth casing is fonms suthenent for the greater proporthon of the literature which now carcalates so extensively, brooks of refirence and works in public libraries wowne the miore secure and workmanlike buhang accomplished by hand. At the sume time, while ornamonts slamped from dies may be vory pretty and t Proctive, they haw no claim to rank as work of att, fund for and colbectuns of bibluphites the hambloohng of hibhopegic artists is in ag great demund and aq hadsomely remumefated as was the ast of the most accomphished vinders of tho lith century. Was the art
(J. J.A.)

BOOK-KEEPING.-The object of book-keeping is to exhibit a distinct and correct state of one's alfairs, and to enable companies, firms, and individuals in trade, or otherwise occupied, to ascertain at any time the nature and extent of their business, the amount of their profits or avalable income, or, as the case may be, the extent of their losses.

To those engaged in trade or commercial pursuits bookkeeping is absolutely necessary, as by it all transactions should be regulated, and their results exbibited. The more simple the system the better; but care must be taken that the plan adopted is sufficiently comprehensive and explanatory, to satisfy not only the person keeping the books, but those who may have occasion to refer to them . for, bowever satisfactory it anay be to a trader to follow a system which is intelligible to himself alone, circumstances might arise to render the inspection of otbers necessary, and from their inability to follow out transactions in the books, suspicions would probably be engeodered for which there was no real foundation. Hence the necessity for the adoption of certain recognized and approved systems, which, being plain and easily understood. must prove satisfactory to all concerned.

Book-keeping, when conducted upon sound principles, is invaluable; it not only sl:ows the general result of a commercial carecr, but admits of analysis, by whicb the success or failure, the value or utter worthlessness of its component parts, or each particular transaction, can be easily ascertaincd. In a word, on the one hand it promotes order, regularity; fair dealing, and honourable enterprise; on the other, it defeats dishonesty, and proscrves the integrity of man when dealing with his fellows

It would be difficult, and perhaps of little importance, to trace the origin of book-keeping. It was certainly known to the ancients (sce Pliny, lib. ii. cap. 7), and Cicero seems to have bad bill transactions betwcen Rome and Athens when he arranged for his son's cducation without the necessity of having to remit money (see E'pes. af Alt. xir. 2i; xv. 25), which infers some kind of book. keeping. Kelly, however, who wrote on the subject in 1805, asserts, and it is not disputed, that a friar, named Lucas di Borgo, whose work on algebra was the first to appear in print, was tho first to write a treatise upon book-keeping, and this was published at Venice in 1495.

This work was followed by many others, possessing considerable merit, but so complex as to make them useless. After a time the mercantile community became alive to the fact that a practical system would be preferable to the theoretical suggestions of writers who were utterly ignorant of commereial matters; and men, more ur less connected with trade, began to write on the subject. The incubus of prolisity, however, still clung to thiem, couciseness of styie seening an impossibility, and the great fundamental principles of the art were so smothered by rules and explanations-the volumes sometimes containing 500 or 600 pares-that the difficulty was how to apply them; hence the need of still greater simplicity and improvement.

In 1796 Mr E . T. Jones of Bristol derised a plan "for kecping books correctly," breaking the ice with a treatise which is still held in very ligh estimation. After that a great improvement is visible in the writings of authors on this important subject, as in those of Benjamm Booth (1789), 1tamilton (18:0), Jones (21 treatise, 1821. 3d treatise, 1831). C. Morrison (1823), W. and R. Cbambers, Edinburgh, - the most of them, thuse of Jones excepted, being dementary works, more particularly adapted to schouls, and illustrating the principles of the science by the example of one set of books adapted to forenga trade. In l'. Il. Carter's I'ra ical Boaktataing, adaptel to Commerat and Judical devountiny (3xl ch. 1855), which give: a great variety of forms and sets of books, the recognirnd
systems of book-keeping are practically applied, so as to euable any one, without difficultv, to acquire a thorough knowledge of the science.

The questions to which a satisfantory system of bookkeeping gives the trader ready and conclusive answers are such as relate-1. To the extent to which bis capital and credit will entitle him to transact business; 2 . To the assurance he has that all his obligations are honestly ful. filled; 3. To the ascertainment of the success or failure of bis commercial dealings, and the position of his affairs from time to time.

There are three recognized systems of book-keeping, uamely, by "singloentry," " double entry." and the " mixed method."
I. Single Entry.-This system is denoted by its name, transactions being posted suggly, or only once, in the ledger. Three books are generally kept-the cash book, day book, and ledger, alihough the first-named is not essential, the cash entries being passed through the day book. Its only use is to check the balance of cash in band. In the day book are entered daily all the purchases and sales, whether for cash or credit; and all the credit
entrics are then transferred to accounts opened in the ledger, that is, all goods sold on credit are charged against the customers, and what are purchased are carried to the credit of.parties supplying them. In the same way, when cash is received from a customer for goods sold on credit, it is posted to bis account, and the reverse entry is mado when a trader pays for the goods he has bought. Thus it will be seen that only personal accounts are entered in the ledger.

To frame a balance sheet, or state of affairs, on this system, the book-keeper brings down the balances die by customers to him, also his stock of goods as valued, and the cash he may have in hand, on the left-hand side of the sheet; whilst on the right-hand side he enters the balances still due by Lim for goods supplied, or moncy lent to him, and the capital, if any, with which he commenced business. The difierence between the amounts of the two columns is either profit or loss; if profit, the merchant's capital is increased to that extent, and ii loss, then be is so much the poorer.

The following skeleton balance sheet will give a better idea of the working and ultimate results of the system :-

Dalance Shect by Single Entry.

It will be observed that as the assets cxceed the liabilities (including caplta!) by $£ 49,165$. T1, that sum, being profit, must be adned to canial; if, w the next or following years, any loss should cmerge, as a matter of course such defieiency must be deducted from the trader's capital The advantages of smyle entry are smplicity and easy arlaptation to small retail trades, as the ledger contains only outstanding debis due to or ly the trader. The disadwantage is in tha dfficulty of aseertaning the profits or losses on various gouds, or on the several departments of a business.
II. Double Extri.- It is now universally admited that this system is the best adapied for lieasy, resumsible, or speculative trades, for foreign irade especially, and for extensive mercantile concerns. As tis name implies, it so far differs from the system already desmibed, that owery transaction must be recorded doubly m the leteer, that is
to say, accomnts must be opened in that book, to which all entries in the subsidiary books, after being journalized, are twice carried, to the delit of one account and the credit of another. Toillustrate this, let us assume that a merchant speculates in cotton, and purchases so many bales from Joln Bevan and Co. upon credit; he debits "Cotton account," and credits "John Bevan and Co." He does not pay for it in cash, but gives his kill at three montha for the amonnt, Iolnn Bevan and Co. are defited with the bill, and "Balls Payable" are credited. He then sells the whole lot of cotion fur cash to Cairns, Brown, and Co., debriting "Cash" and crediting "Cotton account." Lastly, he retirgs or gays the bill granted to John Bevan and Co. debits "Bolls l'ayalie," and credits "Cash." We will now put all these transactions into a "journal," posting therefrom to a "ledger," and so illustrate book kecping by damble entry.

Ledger Accounts.

It may bo alleged that there are many unnecessary entries, involving too much trouble and waste of time, in bringing out the above results; but upon examination of the sercral accounts the great simplicity and utility of double entry is evident. For instance, "Cotton" account shows the actual result of tho speculation per "Mary Jane;" "Johm Devan and Co.'s" account eshibits the whole transaetion with them, and how it was settled; "Dills Payabie" account at once shows that the eotton bill is retired or paid; and "Cash" account declares a balance of $\mathfrak{E 8 5 1}$ in cashier's hands, being the actual profit on the cotton, as further shown in "Profit and Loss" aecount.

An infinity of examples might bo given, but tho abore will be a sufficient illustration. A brief outline, however, of the principal books required in this system may be introduced.

1. The Castr Door.-In this most important hook every cash transnetion mast le cntered of its proper date, and under its distinctive ledger licading, so as to give facility in journalizing: any balance thereos must be cash in Jund, and sheuld agree with the balance on "('ash account" in the ledrem.
2. The Day or Waste book. - This book records the daily trans. netions of wery desctigion in the rough, which, when properly arranged and classifim, are witten into the journal, and posted from thence to the leljers.
3. The Invnsat. - This may be culled the mainspring of the oystem, and is sometimes callod the "posting medium," as in it every transaction of the lonciness is promery recorded before being again distributbe into the lederer. there are suveral forms of journal, but the smment ond lest is that of whim os sperimon has fuen given, with the addation of a column for the inset tion of lelger toldos when posted. It will be chsorved that the debit entries are in one common and the cralit entries in another: if, therefore, the summations of these agice, and the futries therein cmurared ate correctly posted to the deptit and uredit of accomuty in the ledger, the domble entry is consect, and the looks of the concern, no mattur how maltitulinous thin mutries may be, must come to a true buluice.
4. The Lengers - Those are in lertant louks, as they are the
final recipients of every transuetion of the concern, branched ont of distributed into certain luads or accounts which tell their own his. tory; ajd if umbalanced, must exhilit a diference cither in favous of the busiuess as an "Asset," or against it as a "Liability." "Cho usual phan is to have only one ledger, enbracing every account, but in large concerns there are delit and credit ledgers, and gene. rally a livate ledger, which is accessible to partners oniy.

The advantares of double entry are manr-(1.) Unless the debit balances exactly correspond with the ereditz the books are wrong, and the error nust be discovered by eomparison; (2.) The discosery of such errors is more easily accomplished than in any other system; (3.) Accounts can be readily analyzed; and (4.) The profit or loss on distinet transactions can be ascertained without difficulty: The disadvantages are-(1.) More manual lnbour reguired in transcribing the journal and posting therefrom than in other systoms ; and (2.) Thero is not the same privacy, as profits and losses can be seen at a glance by any ono having access to the ledger. Nevertheless, no other sustem as yet devised can at all compare with that by doublo entry.
III. Mixed Metnod.-This system is now extensively adopted by such companics and firms as begrudgo the time expended in juurmalizing, and are of opinion that double entry is too claborate, when the same results ean be arrived at hy a more direct and less laborious plan. There is this identity, however, between the systems, that every transaction must be recorded somewhere, and eventually twice postod, as in donhe entry, but without the medinm of a jourmal; moreover, the entries are fewer, summations and not specific items being posted, and what would be the daily labour unter one system is reserved under this for a monhly or perhaps longer period. There are only three books required for this system to which we need draw attention, and in doing so we will jeint out in what respecs thes differ from those kept in siogte and double entries.

1. Cabr Boos. - Every entry is posted from this book, bot not H to the ledger as in double entry - "Cbarges" being posted to :be day book. It is not jonrmalized, and is in itself a ledger, as it contains the bank account, and reports its own cash balance. On the other hand, it is onlike the "Cash" of single entry, bepoly personal accounts are carried to the ledger.
2. Day Book. -This book also exhibits a marked difference be imeen the journal of donble entry and the day book of single atry. The journal is simply a poating medinm, and when ita use a served is almost ralneless. The single entry day book, on the sther band, is only a posting medium to a certain extent, as it does not embrace all transactions; but in thes system the day book anites the characteristics of joornal and ledger, and also becomes in itself a proft and loss account, as by deducting the amount of charges from the amount of the business fees (say for solicitors' books) the proft on eaid businesa is shown.
3. The Lencers.-These books also lose their completeness under the mixed method. It has already been shown that in double entry every amount must appear in tho ledger, and in single eutry that only personal accounts are posted in it. By this aystem not only arc all personal acconnts incinded, but those applicable to "Capita!," to "Banks," "Bills," \&c.; mhilat, on the other band. such accounts as "Proft and Los日," "Cbarges," and "Cash" are excluded.

It would be out of place hero to dwell on the many intricacies of this subject, or on the difficulties which are constantly.presenting themselves even to the most practical men. With a thorough knowledge of the art. however, and that patience and perseverance so essential to the calling of a book-keeper, the gravest impediments are overcome, and ererything becomes simple and plain. Out sole object haring been to show the utility of book-keeping as a science, and the peculgarfeatures of existing systems with their advantages and disadvantages, it is unnecessary to enter moro minutely into details by describing subsidiary books or forms of accounts, as these ate only so many materials out of which the fabric of book-keepiug 19 erected, and can be scen in any counting-house or mercantile cstablishment where regular systems are adopted. (F. H. C.)

BOOLE, George, one of the most origimal logicians and mathematicians whom England has produced, was born in Lincoln on the 2d of November 1815. Nis father whe a tradesman of limited means, but of studious character and actire mind. Being especially intercsted in mathematical science the father gave his son early instruction in the rudiments of the science ho wiss so ereatly to advance; but it is remarkable that the extraordinary mathematical powers of George Boole did not manifest themselres in carly life. Tho classical languages formed at first the farourite subject of his studies. Not until the age of setenteen years did he attack the higher mathematics, and Lis progress was much retarded by the mant of efficient help.

When about aisteen years of age he became assistantmaster in a private school at Doncaster, and be maintained himself to the end of his life in one grade or other of the scholastic profession. Few distinguished men, indeed, hare had a less erentful life. Almost the only changes which can bo called erents are his successful establishment of a school at Lincoln, its removal to Waddington, bis appointment in 1849 as professor of mathematics in the Queen's College at Cork, and his marriage in 1855 to Miss Mary Everest

To the public Boole was known only as the author of numerous abstruse papers on mathematical topics, and of three or four distinct publications which hare become standard works. His carliest published paper was one upon the "Theory of Analytical Transformations," printed in the Cambridge Mathematical Journal for 1839 , and it led to a friendship between Boole and D. F. Gregory, the editor of the journal, which lasted until the premature death of the latter in 1844. A long list of Boole's memeirs and detacied papers, both on logical and mathematical topics, will bie iound in the Catalogue of Scientific Memoirs published by
the Royal Society, and in the supplementary volume on Differential Equations, edited by Mr Todhunter. To the Cambridge Mathematical Journal and its successor, the Cambridge and Dublin Mathematical Journal, Boole contributed in all twenty-two articles. Ib the third and fourtis series of the Philosophical Magazine will be found sixteen papers. The Royal Society printed six important memors in the Philosophical Transactions, and a few other memoirs are to be found in the Transactions of the Royal Socrety of Edinburgh and of the Royal Irish Academy, in the Bulletin de IAcadémie de St Petersbourg for 1862 (under the Dame G. Boldt, vol iv. pp. 198-215), and in Crelle's Journal To these lists should be added a paper on the mathematical basis of logic, published in the Mfechanic's Magazine for 1848. The works of Boole are thus contained in about fifty scattered articles and a few separate publications.

Only two systematic treatses on mathematical subjects were completed by Boole during his lifetime. The wellknown Treatise on Differential Equations appeared in 1859, and was followed, the next year, by a Treatise on the Calculus of Finite Differences, designed to scrve as a sequel to the former work. These treatises have become the standard text-books on the important branches of mathematics in question, and Boole, in composing them, seems to have combined elementary exposition with the profound investigation of the philosopby of the subject in a manner hardly admitting of improrement. To a certain extent these works embody the more important discoseries of their author. In the l6th and lith chapters of the Differential Equations we find, for instance, a lucid account of the general srmbolic method, the bold and skilful empleyment of which led to Boole's chicf discoveries, and of a general method in analysis, oriminally described in his famous memoir printed in the Philosophical Transactions for 1844. Boole was one of the most eminent of those who perceired that the symbols of operation could be separated from those of quantity and treated as distinct objects of calculation. His principal characteristic was perfect conEdence in any result obtained by the treatment of symbols in accordance with their primary lars and conditions, and an almost unrivalled shill and power in tracing out these results.

During the last few years of his liíe Eoole was constantly engaged in cxtending his researches with the object of producing a second edition of bis Differential Equations much more complete than the first edition; and part of his last vacation was spent in arduous study in the libraries of the Royal Society and the British Museum for the puppose of acquiring a complete knowledge of the less accessible original memoirs on the subject.' It must be always a matter of regret that this dew edition was never completed. Even the manuscripts left at his death were so incomplete that Mr Todhunter, into whose hands they were put, found it impossible to use them in the publication of a second edution of the original treatise, and wisely printed them, in 1865, in a supplementary volume.

Profound and important as were Bocle's diseoveries in pure mathematics, his writings on logic may be considered as still more original. With the exception of De Morgan, he was probably the first English mathematician since the time of Wallis who bad also written upou logic ; and his wholly novel riews of logical method were due to the same profound confidence in symbolic reasuning to which he had successfully trusted in mathematical investigation. From the preface to his Mathematical Analysis of Lagic, printed as a scparate tract in 1847, we learn that speculations concerning a calculus of reasoning had at different times occupied Boole's thoughts, but it was not till the spring of 1847 that a memorable logital controversy led bim to put his ideas into a definite form. Boole afterwards regarded this panpllet as a bassy and imperfect exposition of his
logical system, and be desired that his much larger work, An Investigation of the Laws of Thought, on whech are founded the Muthematucal Theories of Logic amu Probabilties, published in 1854 , should alone be considered as containing a mature statement of his views. Nevertheless, there is a charm of originality about his earlier logical work which no competent reader can fail to appreciate, and the introduction gives striking evidence of his profound views and wide reading.

It is not easy to give in a few words a correct netion of Boole's logical system, and only those who are conversant with the principles of symbolical reasouing can exactly apprehend bis pesition. He did not regard logic as a branch of mathenaties, as the title of his earlier pamphlet aight be taken to imply, but he pointed oot soch a deep unalogy between the symbols of algebra and those which can be made, in his opinion, to represent logical forms and syllogisms, that we can hardly help saying that logic is nathematics restricted to the two quantities, 0 and 1 By unity Boole denoted the universe of thinkable objects; litoral symbola, such as x, y, z, y, u, \&e., were used with the elective meaning attaching to common adjectives and substantives. Thus, if $x=$ borned, and $y=$ sheep, then the successive acts of election represented by x and y, if performed on unity, give the whole of the class horned sheep. Boole showed that elective symbols of this kind ubey the same primary laws of combination as algebrateal symbols, whence it followed that they could bo added, subtracted, multiplied, and even divided, almost exactly in the same manner as numbers. Thus, $1-x$ would represent the operation of selecting all things in the world except horned things, that 1s, all not hornel things, and (1-s) ($1-y$) would give us all things neither horned nor sheep. By the use of such symbols propositions could be reduced to the form of equations, and the syllogistic conclasion from two premses was obtained by eliminating the midde term according to ordinary algebraic rules.

Still more oricinal and remarkable, howerer, was that part of his system, fully stated in his Laws of Thought, which formed a general symbulic method of logical infer. eace. Given ary propositions involving any number of terms, Boole showed how, by the purely symbolic treatment of the preruises, to dras auy conchaston lugieally contained in those premises. 'The becond part of the Laws of Thowht contained a corresponding attempt to discover a gereral method in prubalilities, whieh should enable us from the given prubabilities of any system of events to cletermine the cunserqued probability of auy other event logically connectel with the given events. Soon after its publication this wethem was the subject of a con troversy in the Philosmhical Magasine; but it cannot be said that the exact dalue of this part of his works has ever been elearly ascertamal

It is often supposed that mathematicians are deffient in julgment and knowledge of wher matters In lowle this was not the ease; for thongh he published litthe except the mathernatical and loureal works alrendy mentioned, his aequaintance with gencral liturature was wide and deep. Dante was his favourite puct, and he preferred the Paradero to the Iafern, The metaptusies of Aristotle, the ethies of Spinoza, the phitesuphices works of Cicero, and many less celdhated works of a kindeed character, were also trequent smbjects of stody. Ilis redlections upon scientifie, philesophal, anl relnmas questions are to be mainly gathered from forr addresses unon The Gemins of sir Isame
 anc The Surbal Aspent of Incollectual Couldore, which ho delivered and printed at different thoes.

The puranmal chasacter of Boole inspred all his friends with the decpest estem. Hows unarkul by the :mon :sty
of true gerius, and his life was given to the single-minded pursuit of truth. Though be received a royal medal for his memoir of 1844, and the honorary degree of LL.D. from the University of Dublin, it may be said that he neither sought nor received the ordiaary rewards to which his discoveries would entitle him.

On the 8th of December 1864, in the full vigour of his intellectual powers, Boole died of an attack of fever, ending in suffusion on the lungs. An excellent sketch of his life and works, by the Rev. F. Harley, F.R.S., to which the present writer is indebted for many particula.s, is to be found in the British Quartorly Rcview for Jaly 1866, No. 87.
(w. s. J.)

BOOM, a town of Belgium, in the province of Antwerp, and 12 miles S . of that city, at the junction of the Brussels Canal with the Fiver Rupel. It is an active industrial town, possessing tanueries, salt-works, starch-factories, brewerics, and brick and tile works, and carnes on a considerable trade. Population of the commune, $10,064$.

BOOMERANG, it missile instrument of the Australian aborigines, in the use of whel they are very dexterous. It consists of a plece of hard wood, with the curve of a parahola, and is about 2 feet long, $2 \frac{1}{2}$ inches broad, $\frac{1}{3}$ inch thick, and rombed at the extremitics. One side is flat, the other is rounded, and it is brought to a bluntisb edge. It is discharged with the hand by one end, the convex edge being formard and the flat side upwards. After adrancing some distance, and ascending slowly in the air with a quick rotatory motion, it begins to retrograde, and finally falls to the ground behind the thrower. A weapon of similar form, but wanting the return flight, has been found in use among savage tribes both in Iadia and Africa. A very full comparative account of the boomerang is contained in Culonel A. H. Lane Fox's lectare on "Primitive Warfare" (Jour. of the Royal United Service Institution, vol xii. No. 51).

BOOTII, Banton, an English tragedian, descended from an aneient fanuly in Laneashire, was born in I681. Ile was educated at Westminster sehool ander the celebrated Dr Busby, and his suecess in the Latin flays, eustomarily performed there by the seholars, gave him an inclination for the stage. He was intended for the choreh; but at seventeen years of age he ran away from school, and after some ricissitudes obtained employment in a theatrical company in Dublin. His first appearance was hailed with alylause, and he continued to improve daily. After tro successfol campaigns in Ireland be returncl to his native country, having first reconciled himself to his friends. Betterton, to whum he had an untroduction, reeevel him with great cordiality, and gave lim all the assistance in his power. llis success at london was complete, and he established bis ropatation as only secom to his great instructor. Ne was indebted to a happy coincidence of merit and chance for the celebrity which he at length attained in the character of Cato. The Whigs, in farour of whose principles Ahdison's tragely liad been written, thought it their duty t. support it strongly; while the Torics, at every passage suscoptible of a pophlar turn, were no less rehement in their apprabation, and at the close the aetor was presented by lorl bolinghroke with a purse of fifty guineas, "as a slight acknowfodgment of his honces opmosition to a perpesual dietator, and his dying so bravely in the causo of cluty." Beoth wan twice mariou,--lirst to a danhter of Sir Willian Barklam, Bart, ani aftervards to Miss llester Santlow, an actress of great merit. Doring the twenty years of his management the theatre was in the greatest credit: and his death, which hargened on the 10th of May 1733, contributed nut a litite to its decline. Booth was a man of excellent character, and greatly estemend for his nmialility and goodness of hearn
(See Memonrs of the Life of Earton Booth, 1733, Cibber, Lives and Characters of the most Eminent Actors, \&c., pt. i, 1753.)

BOOTHIA FELIX, a peninsula of British North America, between lat. 69° and $72^{\circ} \mathrm{N}$., and long. 92° and 97° W It was discovered by Captan (afterwards Sir James) Ross, in 1830, and was named after Sir Felix Booth, who had fitted out 'the expedition. It forms the western side of the gulf of the aame name into which Prince Regent's Inlet leads from Baffin's Bay. From the American shore it is almost separated by lakes and melets; and a narrow channel known as Bellot Strait interrenes between it and North Somerset Island, which was discovered by Sir E. Parry in 1819. The peninsula is not only interesting for its connection with the Franklin expedition and the Franklin search, but is of scientific 1 mportance from the north mag. netic pole having, been first distinctly localized there by Ross.
bOPP, Francis, glottologist, was born at Mainz on the Rhine, September 14, 1791. In consequerce of the political troubles of that time, his parents removed to Aschaffenburg, in Bavara, where Francis received a liberal education at the Lyceum. It was here that bis attention was drawn to the languages and literature of the East by the eloquent lectures of Carl J. Windischmann, who, with Creuzer, Görres, and the brothera Schlegel, was full of enthusasm fnr Indian wisdom and philosophy. And further, Fr. Schlegel's book, Ueber die Sprache und. Weisheit der Inder 'Heidelberg, 1808), which was just then excrting a pormerful influence on the minds of German philosophers and historians, could not fail to stimulate also Bopp's m^{r} :est in the aacred language of the Hindus. He was, however, too atrictly tramed in grammatical and philological studies, and too eager for the aciuntific analysis of language, to allow the clearuess of his judgment to be warped by the romantic and speculative predilections of Windischmann sad Fr. Schlegel. Io 1812 he went to Paris at the expense of the Bavarian Government, with a view to devote himself vigorously to the study of Sanskrit. There he enjoyed the society of such eminent men as Chézy. S de Sacy, Langles, and, above all, Al. Hamilton, who had acquired, when in India, a respectable acquaintance with Sanskrit, and bad brought out, conjointly with Langlès, a descriptive cataloguc of the Sanskrit manuscripts of the Imperial library. At that library Bopp bad access not only to the rich collection of Sanskrit manuscrpts, most of which had been brought from India by Father Pons early in the 18th century, but also to the Sanskrit books which had up to that time issued from the Calcutto and Serampore presses.

The first fruit of bis four ycars' study in Paris appearcd at Frankfort-on-the Maın in 1816, under the title Ueber das Conjugationssystem der. Sanskritsprache in Vergleechung mit jenein der Griechascien, Lateinischen, Persischen, und Germanischen Sprache, and it was accompanied with a preface from the pen of Windischmann, bearing datc 16th May of that year In this first book, Bepp entered at once on the path on which the philological researches of his whole subsequent life were concentrated. It was not that he wished to prove the common parentage of Sanskrit xith Persian. Greek. Latin, and German, for that had long been established, but his object was to trace the common origin of their grammatical forms, of their inflexions from composition,-a task which had never been attempted. By a historical analysis of those forms, as applied to the verb, he furnished the first trustworthy materials for a bistory of the languages compared.

After a brief aojourn in Germany, Bopp came to London, where he made the acquaintance of Wilkins and Colebrooke, and became the friend of Wilhelm von Humboldt, thed Prussian ambassador at the court of St James's, to whom be gave inatruction in Sanskrit. He brought out, in the

Annals of Orental Literature (London, 1820, pp. 1-65), as essay entitled "Avalytical Comparison of the Sanskrit, Greek, Latin, and Teutonic Languages," ${ }^{10}$ which he ex tended to all parts of the grammar what te had done in has first book for the verb alene. He had previously pub. lished a critical edition, with a Latin translation and notes, of the story of Nala and Damayanti (London, 1819), the most beautiful episode of the Mahâbhârata, which he had with genal tact cullcd from the tangled labyrinth of that gigantic epic. Other epsedes of the Mahabharata-Indra. lokigamanam, and three others, Berlin. 1824, Dilurum, and three others, Berlin, 1829 , and a new cdition of Nala, Berlin, 1832-followed in due course, all of which, with A. W Schlegel's edition of the Bhagaradgita, 1823, proved excellent aids in initating the early student into the reading of Sanskrit texts. On the publication, in Calcntta, of the whole Mahâbhârata, Bopp discontinued editng Sanskrit texts, and confined himself thenceforth exclusively to grammatical investigations.
After a short residence at Göttingen, Bopp was, on the recommendation of W von Humboldt, appointed to the charr of Sanskrit and comparative grammar at Berlin m1821, and was elected member of the Royal l'russian Academy in the following year, both which posts he held up to his death. Oct. 23, 1867 In his quality as Sanskrit professor be brought out, in 1827, his Ausführliches Lehrgebaude der Sanskrita-Sirache, on which he had been engaged since 1821 A new edition, in Latin, was commenced in the following ycar, and completed in 1832. A shorter grammar (Kititische Grammatik der Sanshrita-Sprache in kiurerer Fassung) las run through three editions (Berlin, 1834, 1845, 1863). At the same time be comriled a Sanskrit and Latin glossary (1830) in which, more espe. cially in the second and third editions (1847 and 1867) account has also been taken of the cognate languages His chief activity, however, centred on the elaboration of his Comparatue Grammar, which appeared in eix parts at con siderable intervals (Berlin, 1833, 1835, 1842, 1847, 1849. 1852: 1511 pages in small 4to), under the title 「erglezchende Grammatik des Sansirit, Zend, Griechischen, Lateinischen, Letthuzuschen, Altslavischen, Gothischen, und Deutschen. How carefully this work was matured may be gathered from the series of monographs printed in the Transactions of the Berlin Academy (1824 to 1831), by which it was preceded. They bear the geueral title, Vergleichende Zergtiederung des Sanshrtes und der mit ihm veruandten Sprachen. Two other essags (on the "Numerals," 1835) followed the publication of the first part of the Comparatze Grammar. The Old-Slavonian began to take its stano among the languages compared from the second part onwards. At the instance of the earl of Ellesmcre (then Lord Francis Egerton) the work was translated into English by Mr E. B. Eastwick (3 vels., 1845 ; second edition, 1854). A second German edition, thoroughly revised (3 vols., 1856-1861), comprised also the Old. Armenian From this edition an excellent Frencb translation was made by Professor Michel Bréal, which came out in 5 vols. in 1866, ff A third German edition has been published since the author's death, in 1871, ff.
The task which Bopp endeavoured to carry out in his Comparative Grammar was threefold,- to give a description of the original grammatical structure of the languages as deduced from their intercomparison, to trace their phonetic laws, and to investigate the origin of their grammatical forms. The first and second points were sabservient to the third: As Bopp's researches were based on the best available sources, and incorporated every new item of infermation that came to light, so they continued to widen and deeper: in their progress. Witness his monographs on the vowe syatem in the Tentonic langtages (1836), on the Celtuc
languages (1839), on the.Old-Prussian (1853) and Albanian languages (1854), on the accent in Sanskrit and Greek (1854), on the relationship of the Malayo-Polynesian with the Indo-Europesn languages (1840), and on the Caucasian ianguages (1846). In the two last-mentioned the impetus of his genius had led him on a wrong track. They show the rocks against which the student of comparative philology has to guard.

As for the charge that has been made against Bopp of neglecting the study of the native Sanskrit grammars, every excuse ought to be mude in his favour. In those early days of Sanskrit studies the requisite materials were not accessible in the great libraries of Europe; and if they had been, they would have absorbed his exclusire attention for years, while the grammars of Forster, Wilkins, and Colebrooke, from which his grammatical knowledge was derived, were all- based on native grammars. The further charge that Bopp, in his Comparative Grammar, gave undue prominence to Sanskrit may be disproved by his own words; for, as early as-the year 1820, he gave it as his opinion that frequently the cognate languages serve to elucidate grammatical forms lost in Saisikrit (Annals of Or. Lit., i. 3),-an opinion which he has further developed in sill his subsequent writings. In his translations from the Sanskrit Bopp was not successful. He seems to have folt the bimself; for, after the publication, in 1838, of his metrical translation of the Story of Nala, he resigned that task to more skilful bands.

The method of tracing the life and growth of language, so successfully applied by Bopp in the case of the IndoEuropean languages, has become the corner stono on which all modern linguistic science rests. His researches, carried with wonderful penetration into tho most minute and almost microscopical details of linguistic phenomena, have led to the opeaing up of a wide and distant view iato the original seats, the closer or more distant affinity, and the tenets, practices, and domestic usages of the ancient Indo-European nations, and form tho only safo basis on which further investigations in each direction are possible. The outlines of his great work bad been distinctly traced by him in bis very first publication, from which the science of comparative grammar may truly be said to date. In grateful recognition of that fact, on tho fiftieth anniversary of the date of Wiodischmano's preface to that work, a fund called Die Bopp-Stifteng, for the promotion of the study of Sanskrit and comparativo grammar, was established at Berlin, to which liberal contributions were made by his numerous pupils and admurers in all parts of the globe.

Bopp was specially favoured by fortune in living to see the results of his labours everywhere acceptcd, and his name justly celebrated. But the sun that gilds the writer's pen did not shine upon him, snd he died a poor man,-by his genume kindmess and unselfishness, his devotion to his fanily and friends, and has rare modesty, eadeared to all who knew hum. (Brenl's Translation of Bopp's Comp. Gr., vol. 1.. introduction, Th. Benfey, Geschiche der Sprachwissenschaft, 1869 , A. Kuln in Unscre Zeit, Nene Folge, 17. 1, 1868.)

BORAX, the biborate of sorlium ($\mathrm{Na}_{2} \mathrm{~B}_{3} \mathrm{O}_{7}$), a substance found in commorce uader the two different forms of ordinary or prismatic borax, which contans teo equivalenta of water of crystallization, and octahedral or jeweller's borax, wheh has only five molecules of water 10 its composition. The former, which is the variety commonly met with, occurs as a natural product in various parts of the world. In former times crude boras was procurod chiefly from Thibet, whence it camo by way of India under the namo of tincal 1 t also 18 found in other parts of Central Asia, at Ilalberstadt in Transylvania, in Canada, aod in Peru, and in recent yesrs ao important source of
the minersl has been discovered near the Clear Lake in California, in a body of water now called the Borax Lake. In very dry seasons the water almost entirely disappears from the basin of the Borax Lake, which is situated in a region containing hot springs and the remains of volcanic action. In 1863, when the lake measured 4000 feet long, 1800 feet across at its widest part, and about 3 feet deep, the water was found to contain 2401.56 grains of solid matter per gallon, of which 535.08 grains represented crystallized borax. The bed of the lake is occupied with a deposit of borax crystals, which are obtained by sinking caissons, pumping out the water, and digging up the deposit. Californian crude borax is fit for use by assayers and others without undergoing any purification; but that obtained from Thibet contains a greenish encrusting matter of a soapy consistence which has to be separated before the material is fit for use under the name of refined borax.
The supply of borax is, however, more largely derived by artificial means from boracic or boric acid, or from salts in which that acid occurs, than from these eatural sonrces. Boracic acid is found among the ejecta arouad the crater3 of some volcanoes, and it is found in jets of rapour which stream forth from fissures in the earth in regions of volcanic disturbance. The chief source of boracic acid at the present day is found in the Maremma of Tuscany, an extensive and desolate track of country embracing sn area of about forty miles, over which jets of vapour and heated gases (sofiom) and springs of boiling water spurt out from numerous chasms and fissures. The Maremma is dis: turbed by frequent volcanic shocks; at some poiots the mouths of the fissures open direct into the air, at others they sre covered by small muddy lakes (lagoni). In addition to a small impregaation of boracic acid the soffioni contain ammoniacal vapour, to fix and obtain which the gases at some works are led through sulphuric scid For obtaining the boracic acid a series of basins or artificial lagoni are formed over the soffioni, so arranged that water to be charged with the acid is conveyed by gravitation from the first to the last of the series. Water is led into the highest and by the sction of the heated gases it is soon in a state of ebullition. After being so left for about a day it is drawn off into the second; where it remains under like circumstances for the same period, and so to the end of the series, when the water should contain nesrly 2 per cent. of boracic acid. The mechanical impurities being allowed to subside, the liquor is then run into evaporsting pans, shallow lead-lined vessels, heated by the gases from the soffions themselves. The evaporating pans are worked on a continuous system, similar to the lagoons; the liquor placed in the upper being concentrated down to half its origiual bulk is run ints the second, and so on till it reaches a degree of concentration fit for crystallizing out the acid. In recent yesrs artificial ooffioni bave been formed by borng. through the rock till some of the numcrous chasms or chambers, with which the interior is honer-combed, sre reached, when immediately all the phenomena of a boracic soffione are established. From some of these artifical ooffioni issues water of sufficient richncss in scid to bo led there direct to the evaporating pans. Similar cmanations of volcanc rapoura and boracic acid have been discovered in Nevada, United States. Boracic acid is slso obtaned from boronatrocalcite (Ulexite or Hayesine), a double salt of sodium and calcium, of which extensive deposits exist in the nelghbourhood of the nitrate of coda beds of Chili and Pers. It is very varable in constitution and condition of purity. Similar deposits are found in Cal. forms, Nevada, and Nova Scotia, and from the West Cosst of Africa is received a borate of lime beanng the name of rhodizite. The boronatrocalcite, or hurate of lime, as it is called in commerce, is applied io its unrefined condition.
to many uses for whici borax is employed. Ia 1855 Dr T. Richardson patented a process for using the picked and pashed boronatrocalcite as a substitnte for borax in the glass manufacture and preparation of pottery glazes. It is, however, chiefly employed as a source of boracic acid, and there are also severai methods of obtaining borax direct from the compound salt.

Commercial boracic acid nsually contains a considerable percentage of sulphates of ammoninm, magnesium, and calcinm besides other impurities. To prepare loras from this acid, from 110 to 120 parts of crystallized sodium carbonate are required for 100 parts of boracic acid. The soda is dissolved in a lead-lined vessel heated with steam, to which the boracic acid is added in repeated charges. The vessel is covered and the carbonate of ammonia given off is led into a solution of solphuric acid and fixed. For the production of ordinary or prismatic borax the solution is brought to a strength of 20° to 22° Baumé ($1 \cdot 161$ to $1 \cdot 180 \mathrm{sp}$. gr.) and allowed to cool down as alowly as possible, su that the crystals may assume the large size demanded in commerce. Octahedral borax is deposited when a solution indicating 30° Baume (sp. gr. 1.264) is slowly cooling down from 79° to $56^{\circ} \mathrm{C}$. Below this point the formation of ordinary borax takes ylace.

Under the blewpipe borax parts with its water, and melts into a clear glass which has the peculiar property of dissolving many metallic oxides, and thereby exhibiting characteristic colours, on which account it is of great value in blcwpipe analysis. The same property also renders it a valuable material for pottery glazcs and enamels, and as it adberes closely to clean surfaces of metal and prevents their uxidation under high beat, it is indispensable for use in hard soldering, and is largely employed in brass manufactures. It is also one of the ingredients employed in glass-making. Borax forms with oily and fats a soap which has been proposed as a detergent; but experiments con. ducted by the late Professor Thomas Anderson of Glasgow show that it has a more corrosive influence on fibres than conmon soap. In Belgium powdered borax is used in domestic washing, with the object of ecunomizing soap. Borax is used in medicine as an externol application iu skin diseases, and the preparation known as mel boracis is a useful gargle in ulceration of the mouth and throat. In Sweden boracic acid is extensively employed for the preservation of meat and milk; and while it forms an efficient antiseptic, food prepared with it is said to bc perfectly fit for use. A very beautiful pigment, now much used ia calico-printiag, under the name of Guignct's green, is a borate of chromium.

BORDA, Jean Charles, mathematician and nautical estronomer, was born at Lax on the 4th May 1733. He studied at La Flèche, and at an early age obtained a commission ia the cavalry. In 1756 he presented a valuable paper to the Acadcıny of Sciences, who elected him a member. He was present at the battle of Hastembeck, and soon nfterwards joined the naval service. He visited the Azorcs and the Canary Islands, of which he constructed an admirable map. In 1782 his frigate was taken by a British squadron; he himself was earried to England, but was almost immediately released on paroie, and returaed to France. He died on the 20th February 1799. Worda was an admirable mathematicinn, and contributed a long scries of valuable memoirs to the Academy of Sciences. His researches in hydrodynamics were highly useful for marine engineering, while the reflecting and repeating circles, as improved by him, were of great service in nautical astronomy. ${ }^{\text {'He }}$ He associated with Delambre and Mechain in the attempt to determiae an arc of the meridian, and the greater number of the instruments emoloyed io
the task were invented by him. (See Biot, "Notice sur Borda" in the Méra. de PAcad. des Scrences, iv.)

BORDEAUX, one of the finest and wealthiest commer. cial cities of France, formerly the capital of Guienne and Bordelais, and now the chief towa of the departmeat of Gironde. It is situated 370 miles S.E. of Paris, in $44^{\circ} 50^{\prime} \mathrm{N}$. lat. and $0^{\circ} 25^{\prime} \mathrm{W}$. loag., on the left bank of the Garonne, about 60 or 70 miles from its mouth, and in the midst of aa extensive plain which comprases the district of Médoe, well-knowa for its red wines. Opposite the town the river makes a semicircular curve, and widens out into in extensive basin, which scrves as a harbour, and is lined with quays on both sides for a distance of three miles. Vessels of 800 tons can come up to the town, and ships of the greatest ordinary tonnage bave depth eaougb as far as Psuillac, about 35 miles from the mouth of the river. The basin is crossed by a magnificent stone bridge of 17 arches, 1534 feet long, which was built in 1821, and remained in the hands of a company till 1861 whea it was declared free. A short distance further up the river is spanned by a railway bridge. Few cities in Europe can show such a striking water-front as Bordeaux ; and though the streets of the older part are narrow and mean, those of tha newer portions are wide and well paved, and contaia handsome bouses and public buildings. The principal square is the Place des Quinconces, which is adorned with statues of Montaigne and Montesquieu. Among the ecclesiastical buildings the most important are the cathedral of Saint Andre, a fine Gothic structure with two spires 160 fect high; the church of Saint Michel, founded in 1160, and formerly rewarkable for a spire 319 feet in Leight, destroyed by a storm in 1768 ; Saint Croix, probably in existence before the 7 th century, restored in 186t-5: Saint Paul, built by the Jesuits in 1676 ; and the church of the College Royal, in which is the tomb of Montaigne. The grant intellectual activity of the city may be seen from the fact that it possesses an academy (with faculties of theology, law, өcience, and literature), a medico-pharmaceutical school, a lyceum, a school for deafmutes, a normal school, and a school of navigation; numbers among its societies an academy of sciences, arts, and belles lettres, a medical socicty (founded in 1798), an agricultural socicty, a philomathic, a Lionæan, a horticultural, ond an archeological society; and maintains nine daily papers, about as many weeklies, and two or three monthly periodicals, besides the official publications of several of the above-mentioned socicties. Its communal library, which dates frow 1566 , contains about 200,000 volumes; and it has also an antiquariau museum, a museum of natural history, and a picture gallery. Among its benevolent institutions are the hospital of Saint André, founded in 1825 te replaco an older building of the same name, which dated from 1390. a ebildren's bospital, originated in 1619, a Lospital for iucurables, a materaity and a military hospital, the lock hospital of 3aint Jean, and a magnificent deaf and dumb asylum. Df theatres there are five, -the Grand Théatre, finished in 1780 and seated for 1300 ; the Théâtre Louit, opened in 1863, for 2500 ; the Thestre Francais, datiag from 1857, for 1300 ; the Théatre National, opened in 1866. for 1000 ; and the Théâtre des Folies Bordelaiscs built in 1872. A few buildiags are of merely antiquarian interest, the most important being the Palais Gallien, which is really an old Roman amphitlicatre of the 3d century, and the tower of Pey Berlind. Bordeaux is the seat of an archbishop, and has a court of appeal. a court of assize, and tribunals of primary instance and commerce. It has also a mint, the coinage of which is marked by the letter K . Its commercial institutions are necessarily numerous and varied; comprisiag an exchange, banks iasurance-offices, custom-
houses, public warehouses, and consulships of some forty different countries. The trade is very extensive, particularly in wines, and bas undergone a semarkable development since the mtroduction of railways and steamships. For a long time Bordeaus was greatly indebted to the Languedoc canal, but this means of commumeation is now
of minor importance. The total value of the uxport and import trade is annually about $£ 16,500,000$, about a therd belonging to Britain. In 1872 the value of Bordeaux wines exported from France mas upwards of $£ 5,600,000$, and the brandy and liqueurs from Bordeaux itself annually produce about $£ 1,000.000$. The other articles exported

Ground-Plan of Bordeaux.

1 fospleal for Old sen

- Churet bl St Mechel.
- Fiace du Marche Neur
- Orand Semtnare.
- Petie Sómiactre

0 Asjlum for the luasde
9 Place des Capmelas

- Placa Bourgogno
- Custom House

10 Exchange
11 Place de la gourse.
12 Place d'Aquitatne
3 Millary Hoaplial
14. Charch of St Nintroles 15. Et Johs's Hoaptral. 16. Mospital Jor lncarables. 17. Synagomue 18 St Jumes's Chapel 19 Harracka
0 Old I'ala.s de Justict and St Paul's Chupch.
21 Lycée Imperitu
22 Old Chapelle des Itlagdals
23 St Andrew's (Cathedral) 24. Mundeapal Earracta
25. Doter de Vize.
26. Prison Départemedtal 127. Palals de Justice.
28. Place diArmes.
:9 St Aodrew's Mospltal. 30. St Raphacl's Barracks 34. Church of St Eulalle. 22 Tobacco Manufactory 33. Place Rodersa.

34 Chureh of St Brano.
85. Church of St Semrio.
26. Deat and Dumb lostitu.
tion.
37. Mnt.

19. Hotel de la Marine 30. Church of the Carnelltes 51. Baths
62. English Protestant Charch
33. Protestant Church
54. Entrepót Ted
65. Cliarch of it Lomis and Archurca du Depara ment
66 Collage de Tiroll
37 Church of St EDo
68. Flace Fégere.
comprise corn. fruits, sugar, wood, resin. rags, madder, tartar, gums, indigo, and native manufactures. Shipbulding is a leading industry, the number of firms in that department being about twenty in 1875 . In the same year 220 vessels belonged to the port, whth a total tonnage of upwards of 92,000 English tons.

Bordeaux. or Burdigulu, was orignally the ebief town of the Bituriges Vivisel. Uncer the lioman empre it be came a flournshing eommercial enty, and in the 34 century It was made the oapital of Aquitana Serunda. Ausomus. a writer of the 4 th century, who was a native of the place, deseribes it as four-square and surrounded with walls and lofty towers, and celebrates its importance as one of the greatest educational contres of Gaul. In the evila that resulted frum the dismeterration of the ampare burdeaux had tus full share, and dad not recover tos paspernty till the begmong of the loth century. Along wath Guenne it belouged to the English kugs for nearly three hundred years (1154-1452), and was for a time the seat of the brilhant court of the Black I'noce, whose son Richard wos
born in the city An extensive connmere was gradually developed hetween the Bordeaux merchants and their fellow. subjects in England.-London. Hull, Exeter, Dartmouth, Bristol, and Chester being the principal ports with which they traded. For full detalls regarding the character of the traffic and its mfluence on the destraces of the elty tho reader may consult Franeisque Michel's Distorre du Commerree et de la Navgation de Bordeaux, 1867 lo 1548 the mbabitants resisted the unposition of the calt-tax by force of arms, a pardonable rebellion for whieh they were punshed by Montmorency with merciless severity. At a later period they held out for the Frondeurs agaust the royal army under Lous XN. and lishelieu, with an obstunacy that brought the monarch and his minister to a hmabler mood Durng the Relgn of Terror the city suffered almost as severely as Lyons and Marseilles, and its commerce was greatly reduced under Napoleon 1. In 1814 it declared for the House of Bourbon; and Louis XVIII. afterwards gave the title of duke of Bordeaux to his grandnephew, better kuown as the Count de

Cuambord. fo 1870 the French Goverament was transferred to Bordeaux from Tours on the approach of the Geruuns to the latter city. Population in 1872, 190,682.
Dupre đe Saint Maur, Hist. Curieuse de Bordcoux, 1760; Devienne, Hist. de la ville de Bordeaux, 1771 and 1862 ; Bernadan, Hist. de Bordeauc, 1838-40; O'Reilly, Hist. complete de Bordeaux, 1853-60.

BOREAS, in Greek Mythology, was a personufication of the north wind, and to be like it he was represented as rough, powerful, and accustomed to gan his ends by irresistibie force. A favourite instance of this was the story of his carrying off the beautiful Oreithya, a daughter of Erechtheus, king of Athens, when he found ber gathering flowers by the baoks of tha Ilissus, or at the sources of the Cephisus,-others said the Areopagus, and others, agam, the Citadel. He had sought before to weo her in vain, and now carried her to Mount Hæmus in Thrace, where they lived as king and quecn of the wiods, and had twô sons, Cetes and Calass, and two daughters, Cleopatra end Chione. For the loss of Oreithyia the Athenasos in after times counted on Boreas's friendliness, and wers assured of it when he sent storms which wrecked the Persian fleet at Athos and at Sepias. For this they erected to him a sanctuary, or, as others said, an altar near the Ilissus, aud held a festival in his honour. Thurin also, which was a colony of athens, offered a aacrifice to him every year, because he had destroyed the hostile Heet of Dionysius the elder Boreas was described as a son of Astreus and Aurora. In works of art he was represcnted as bearded, puwerful, draped agaiost cold, and wiaged. On the Tower of the Winds at Athens he is figured Lolding a shell, such as is blown by Tritons. Boreas carryiog off Oreithyna is the subject of a beautiful bronze relief in the British Museum, found in the island of Calynua The same subject occurs frequently on the painted Greek vases.

BORELLI, Giovanni Alfonso, the head of what has been called the ratro-mathematical sect, or that which, misled by the great progrcss which the application of mathematics bad produced in the physical sciences, attempted to secure the same advantage for medicine, by subjecting to calculation the phenomena of the living economy. He was born at Naples, January 28, 1608 , taught mathematics for some time at Pisa, and seems afterwards to have held the professorship of medicine at Florence. He was greatly favoured by the prinees of the house of Medici, but having been engaged is the revolt of Messina, be was obliged to retire to Rome, whero he apent the remainder of bis life uoder the protection of Clisistina, queen of Sweden, who honoured him with Ler frieadship, and by her liberality softened the rigour of his fortune. He died of pleurisy on the 31 st December 1679 . Boralli, more judicious than Bellini, restracted the application of his ayatem chiefly to muscular motions, or to those phenomena of the anmal economy which are in certan ponats subject to the laws of mechanics, and was led to the discovery of some principles new in themselres, and directly opposed to the received beliefs of has time. His followers, less cautious, wishiug to generalize the application be had made. by hypotheses, to which the return to a sound medical philosophy has done justice, greatly retarded the restoration of the secence.
The works of Burell ste,-1. Della Causa delle Febra maligni, P1sa, 1658, 4to; 2. De Renum usu Judicıum, Strasburg. 1664, Svo; 3. Euclides Restitutus, 1628; 4to, 4. Apollonii Pergai Ccaicoruni liorn v n. et vii., Florence, 1661 ; 5. Theoria Mediceorum Planct. arum ex Causis Physicis deducta, Florence, 1666, 4to; 6. Tractatus de Vi Percussionis, Bologna, 1667, 4to; 7. Historna et Mcteorologia incendii EEthnei, Reggio, 1669, 410; 8. De Motionibus naturalibus e gravitale pendentibus, Bologna, 1670, 4to, and 9. De Motu Anz кraitwm, opus posthumum, Rome, 1080, 1681, 4to

BORGA, or Borgo, a seaport town of the Russian Grand Duchp of Finland, aituated io the propince of Nyland, at
the entrance of the River Borga toto the Gulf of Finland, about 25 miles N.W. of Helsingtiors, $1060^{\circ} 22^{\circ}$ N. lat. and $25^{\circ} 45^{\prime}$ E. long. It was at one tuma a wealthy añd handsome city, but has greatly decayed. It is still the seat of a Lutheran bishopric which extends over a large part of Finland, and it possesses a beautiful cathedral, a gymnasium (where the well-known Swedish poet Runeberg lectured for many years), and a theatre. The weaving of sall-cloth and the manufacture of tobaceo are the principal industries, and the chief articles of trade are wood, butter and meal. Io 1873 the value of the amports, manly from Gerinany, England, and Russia, was upwards of $£ 141,000$, while that of the exports was rather under $£ 50,000$ Borga was the seat of the Finoush diet in 1809 Population, which is mostly Swedish, in 1867, 3420.

BORGERHOUT, a flourıshang township of Belgrum, in the arrondissement of Antwerp, and on the ruad from that city to Turnhout. It has bleachfields, dyg-works, woulien factornes, and cora-mills. Population, 10,787

BORGHESE, a noble Sienese family, one of whom, on beng elected pope in 1605, assumed the name of Paul V., after which the family became among the most powerful of the Roman nobility by ther union with the Aldobrandan. Camillo Filippo Ludovico, I'rince Borghese (boro 1775), married in 1503 Pauline, sister of the Emperor Napoleon, and widow of General Leclerc. Io 1806 he was made duke of Guastalla, and for some years acted as governor of the Predmontese and Genoese promnces. dfter the fall of Napoleon he fised his residence at Floreace, where bo died in 1832 The Borghess palace at Rome is one of the most magnifcent buildings in the city, and contains a splendad gallery of pictures

BORGIA, Cesar and Lecretia. The history of Cæsar and Lucretia Borgia up to the death of their father bas been related under Alexander VI. (vol. 2. p. 487). Alexander's sudden decease at an unfavourable conjuncture proved the run of Cæsar, who, as be subsequently told Machuavelli, had provided for every contingency exccpt that of his father and bumself being disabled at the aame tume. Theugh sufiering from a dangcrous illoess, !opularly believed to ba the effect of porsou, be possessed bimself of his fither's trcasures, and exerted auffictent anfluence in the conclave to procure the election of a friendly pope. The ponificate of Pius IIl., however, only endured for a few wecks, and his successor, Julius II., the hereditary enewy of the Borgias, threw Ceaar mito tho prison of St Angelo, where he was detaned until he bad consented to deliver up all his fortresses. He was then sent to Naples, where the Spanish neceroy, Gonsalvo de Cordova, io ciolation of hia pledge, caused hun to be arrcsted and sent to Spand After two years' confinement in the castle of Medina del Campo, he escaped and took reluge with his brother-an-law. the king of Navarre, in whose service he was slain before Vana, March 12, 1507 Cxsar possessed considerable alilities, but these are 10 general much operrated by bistorians, especially by Lord Macaulay in his essay on Machavell His cxtraordinary success was not so puch owing to the supenonty of his grabities as to his utter emancipation from every restraint of conscience and honour. As a ruler he was intelligent and aagacious, bis subjects regretted him, and his mercenaries served him with remarkable fidelity Lucretia Borgia's life, after her marriage to the duke of Ferrara's son, was prosperous and uneventful, or at most only troubled by the not very well. attested homage of Cardinal Bembo She obtaued unsrersal respect by her piety and prudence, and her patron. age of men of letters, and died io 1520 In fact, although intelligent and highly educated abe was essantially a common-place woman, incapable from every point of view of the atrocities imputed to her by libellers in jer own
day, and by poets and rumancers ewr smec. She bas suffered vicartuusly for her father and brother. Sec espe. cally iner latest historian, Gregorovius (Lucrezie Boryia, 18i4), whose volumes contan a mass of most meteres. ing information, espectally relatho to Lucreta's early years, but whose vindication of Jns herome night have been much moro dended The Eughsh loography by Gilluert is well antended, but devaid of herary or historical value

BORGO SAN DONNINO, a walled town of Italy, in the province of Parma, aud capmal of a carcundario, is situated on tho Sturone, a sub-tributary of the Po, about 15 miles W of Parma on the rallway to Malan. Desides its cathedra, a bullung of the 13th century, in the Lombard style, adorned with rude sculptures, it possesses a castle and furt, a theological seromary, a college, a music school, aud a remarkable iustitution for mendicants. The spinning of bemp aud silk and the manufacture of glass are its priucipal industries. Borgo is identified with Fidentia, nemorable 10 ancient history for the siege sustaned by N1. Lucullus, one of Sulla's gederals, against tho forces of Carbo. It is mentioned as a mumapium hy Pliny, but seems afterwards to have sunk to a mere village. In 304 it was the scene of the martyrdora of Saint Domninus, from whom it bas derived the distinctivo part of its mudern name. During the Hohenstaufen dynasty it was an imperial possession, and in 1501 it becarme the seat of a bishop. Population, 10,855

borgoginone, Ambrogio. See Fosgano.

BORGU, or Barba, a large district in the interior of Africa, bounded on tho E by the Niger, on the S . by Ioruba, on the W. by Dahomey, and on the N. by Curam. It is about thirty days journey in leugth and eleren in breadth. It hasgencrilly a level surface, though crossed by a considerablo range of mountains. The soil is mostly fertile, and tolorably cultivated, Iroducing in abundance corn, yams, plantains, and limes. The cattlo are numerous and of excellent breed, and there is a copious supply of all the spectes of gano that prevail in Aírica is considerable iuland trade between Haussa and the coast passes through this territory. When Clapperton entered it from Eyeo, he was warued to bo on his guard, as the people were the greatest robbers and pluaderers in all Africa, but he found this bad report altogether unjust. The people wero houest, cheerful, obliging, good-bumoured, and communicative. The district of Borgu $1 s$ divided ioto a number of states, of which the smaller, such as Boussa, Wawa, Kiama,-end Lugu, are dependent on the Fellatah kingdom of Gondu, while Kiti is ruled by a powerful and indepeadent chief, who is freguently spraken of as sultan of Borgu. Wawa and Kiama are important commercial cithes. Boussa was the scenc of the- dis. vatrous fato of Muggo J'ark in 1805 .

BORING The methodsand apparatus of voring will be found noticed under the diferent industres in which it 18 employed. See Arteslan Welly, Blastlig, Coal, Guns, \&c

BORISSOGLIEPSK, a town of Russia, in the government of Tambotf, $11 \frac{1}{2}$ miles S.E. of that city, in $51^{\circ} 22^{\prime}$ N lat. and $41^{\circ} 4^{\prime}$ E. long., ou the left tank of the River Vorona It was founded in Ififis to defend the southern frontiers from the incursions of the Crim Tatars, and in 1696 was surrounded by woolen fortifications by commad Mi J'eter I Tha public louildings include four churches, a houputal, and two schouls, the princifal industries are the preparation of wool, the manufacture of cast-iron, soapbilang, tallow-melting, aud hrick-making; and the trade, whach is docidedly important, consista an graiu, wool, cattle, r.nd leather. There aretwonmual fairs, and uarketstwice 4 wepk. Population in 1867, 12,254.

BORKU, or Rorgu, a country in the miterior of Africa, situated between the 17 th aud 20 th parallels of N. lat., and between 18° and $21^{\circ} \mathrm{E}$. long., and forming part of the great Suudan region. It is bounded northwards by the J'ibesti Mountains, and is in great measure occupied by lesser elecations belonging to the same system; to the south or rather south-west lies the Bodelo basin, from which it is separated by a narrow atretch of higher ground. The elimate is much better than that of the neighbournir countries to the south and east ; but the eastern trade-winds blow persistently with great violence, being strongest from early mornmg till about threa P.M. The light sand that covers a large part of the country is drifted by it into countless heans, that change their shape and position from day to day. It is plain, from the fish-skeletons sulis strewing the ground, that a considerable portion of the south of Borbu bas at no very distant day been like Boulle and uther districts under mater. At-preseat the irrigated aud fertule purtions consist mainly of a number of valleys scparated from each other by lorr and irregular limestoue rocks. Of these the most important are Jin, Nguro, Ellebuë, and Kirdi in the sonth, and Bodo, Tiggi, and Jarda in the borth. They furnish excellent dates, of about twelre diferent sorts. The northern valleys and Jin are inhabited by a settled populatiou of about 5000 people, known as the Donose or Dasa; the others are mainly visited by nomadic tribes. The Uclad Sliman, a powerful Arab tribe, claim the lordship of the land, but bave to share their authority with another tribe known as Mgharba which immigrated from Barca sbout 1860 . Thes do not inhabit the country of Borku, but give proof of their claim to possession by plondariag the valleys every three or four years. In the ead of 1851 Dr Barth and Dr Oberwes joined an army despatched by the sultan of Bornu for the conquest of the region east of Lake Chad; tut the army was defeated and put to Bight, and the travellers were disappointed in their expectation of reaching Borku. Dr Nachtigal spent somo tima in the country in the year 1871, and gives an aceount of his sojuurn in the Zeitschrift der Gesfllschajt fur Erdkunde au Lierlin, 1873.

BORLASE, Whlliam, a learned antiquary aud naturalist, was burn at Pendeen in Cornwall, of an ancient family, February 2, 1696 . He was educated at Exeter College, Oxford, where be took his degree as master of arts. In 1720 be was ordained as priest; he was instituted in 1722 to tha rectory of Ludgran, and in 1732 was preseated to the vicarage of St Just, his native parish. In the parish of Ludgvau are rich copper works, abounding with mineral and metallic fossils, of which be made a collection, and thus was led to study sumenbat minutely the antural history of the county In 1750 he who admitted a fellow of the Royal Society, and io 1753 he published, in folio, at Oxford, bis Antiquaties of Comarall, a second edition of which was publisbed at London, 1769, with the title of Antrquties, Mistorial and Monumental, of the County of Cornuall: consisting of several Essays on the Ancient Inkabitants, Druzd Superstition, Customs, and Remans of the mosi remots Antiquity in Britain and the Britich Isles. exemplified and proved by Monuments now extant in Cornwall and the Scilly Islands; with a locabulary of the Cornu-British Language. Mis next publication was Obsemations on the Anciont and Present State of the Islands of Scilly, and their importance to the trade of Great brutar, Oxford, 1756,410 , which had previously been printed in the Phil. Trans. In 1758 appeared his Natural Minory of Cornuall, Oxford, felio. He presented to the Ashmolean Museum a variety of fossils and antiquities, whach be bad described in his works, and for his benefactions receired the thanks of the university, aud the degree of LL.D. He died August 31, 17:2 Borlase was well acquainted witb
most of the leading literary men of the time, more particularly with Pope, with whom be kept up a long correspondence, and for whose grotto at Twickenbam be furnished the greater proportion of the fossils and minerals.
His letters to Pope, St Aubyn, and others, with answers, Gill several volumes of MS. There are also MS. notes on Cornwall, and a complete unpublished treatise Concerning the Creation and Deluge. Some account of these MSS., with estracts from them, will be found in the Querterly Review, October, 1S75. Borlase's memoirs of his own life were published in Nichol's Literary Anecilutes, vol. v.
BORN, Igsatiug, Baroy von, an eminent mmeralogist and metallurgist, was born of a nobla famly, at Karlsburg in Transylvania, in 1742 He was educated in a Jesuit college at Vienna, and entered that order, which, however, after sisteen months, he quitted. After atudying law at Prague be travelled intu Getmany, Holland, and France. On bis return to Prague he engaged in the study of mineralogy. Austria produces various metals in considerable abundance, aod tho administration of the revenue arising to Government from this gource is condueted by local boards, under the eontrol of the chamber of mines at Vienna. This admuistration offers a ficld of some preferment; and Von Born was recerved into the department of the mines aod mint at Praguo in 1770. About this time bo met with an accident which nearly proved fatal, in the course of a journcy through Transyivania Having entered a mine at Felso-Banya, whilst the our was charged with arsenical vapour, ho was stuphed for filteen hours, and long afterwards suffered from a congh and general pain. Some time after this accident be was atected with riolent colics, and in the later part of his life was deprived of tho use of both legs. These calamaties, bowever, did not repress the setivity of his mind. He had to give up his assessorship of the mining conncil, but continued to produce works on mineralogy which won him a Earopean reputation. Ife met with rauch opposition in attempting to introduce an algamation in Husgary, in place of amelting and cupellation, for extracting silver from the orea. His opponents endeavoured to prove his process inferior to that already in uso; and, after it bad been tried euccessfully, pronounced it to be merely the old Spanash process of amalgamation. The emperor, however, ordered that bis method abould be employed in mines belonging to Government, and that be shuuld receivo a thrd part of the aavings arising from tho improvement dunng the first ten years, and 4 per cent. of this thrd part for tie next twenty years. In 1766 he was appointed by Maria Theresa to arrange the imperial museum at Vienna, where he was made councillor of state, and continued to reside untul has death. Von Born attempted salire with no grat suceess. The Stacts Perucke, a tale published without his knowledge in 1772, and an attack on Father Heil, tho Jesuut, and king'a astronomer at Vienna, are two of his satirica! works. Part of a satire, entitled Monachologia, in which the monks are deseribed in the techuical langnage of natural hastory, is also aseribed to him.' Von Born was well acquainted with Latin and the principal modern languages of Eurupe, and with many brancbes of acience wot imme diately connected with metallurgy and mineralogy. He took an active part in the political changes in Hungary. After the death of Joseph, the diet of the states of llungary rescinded many innovations of that scheming roler, and ennferred the rights of denizen on several persons who had been favourable to the cause of the Hungarians, ard, amongst others, on Von Born At the time of his death in 1791, he was employed in writing a work entitled Fasti Leopoldini, probably relating to the prudent conduct of Leopold II., the auccessor of Joseph, towards the Hun. gorians.

BÖRNE, LuL 210 , German political writer and satirist, of Jewist family, was born 181 P May 17S6, at Frankfurt. on-the-Mann, where his father, Jakob Baruch, carried on the business of a banker. He studied first at Berlin, where he became acquainted with Scbleiermacher and the famous Henrietta Herz, and afterwards at Halle, intending to enter the medical profession. His inclinations for pure literatura proved too powerfal to allow hum to carry uut this design, and in 1800 be removed to Heidelberg in order to stuiy financiaf and political economy. Twa years later he touls Lis degree at Gicssen, and in 1811 be recerved an appontment in the bureau of police in has native town. The reconstitution of Frankfurt as a free eity after the fall of Napolem's porer in Germany soon deprived bim of a situation which was junt hitle sunted to his tastes or abilities. 110 then devoted himseff to hiterature, and for a time edited a newspaper entitled Staats-Ristretto, which was quickly suppressed by the Government on account of its liberai toite and the boldness of its criticisms. The same fate atteoded his next venture, Die Zitschwingen, which appeared for only four months. In 1817 he renounced bis Jowish faith and took the name of Burne, by which he is always known. From 1818 to 1821 he edited Die Wage, a paper particularly distinguished by its lively political artieles, and by its powerful but sarcastıc theatrical criticisns. For some years after the suppression of his paper, Bürue resided prineipally 10 Paris, Hamburg, and Frank: fort. Alter the July revolution (1830) he hurried to Pans, expecting to find the newly constituted state of socicty somewhat in accurdance with his own phalusophic views; but in this hope he was completely disappointed, and the bitterness of has anger lent additional forco to tho satirical letters he began to publish in his last literary renture, La Balance. While advocating his favourite scheme of a eloser union between France and Germany, he assailed with unspaxing sarcasu and polished wit tho German dynasties, whou he looked upon as the great opponents of literalism. He deed at Paris in 1837. Bürne's works are remarkable for brillancy of style and for a thoroughly French rein of satire. His most elevated pisce of criticism is tho Denkrede auf Jean Faul, in which he shows him. self fully able to appreciate the great German humourist. The denzel der Franzosenfresser may bo taken as a speci men of his unrivalled poriers of earcasm. There bave been several complete editions of his wrtings, the latest beng that of 1862,12 vols., Lelpsse, his life bas bet:2 wruten by Gutzkow, 1840 .

EORNEU, one of the largest islands of the woild, is situated about the middle of the East ludian Archipelago, and lies inmediately under the equatur, betw-an $i^{\circ} N^{\prime}$ and $4^{\circ} 20^{\prime} \mathrm{S}$. lat., and between 109° and $118^{\circ} \mathrm{E}$. jorg. It farme a Kind of irregular hexagon, and its alea is estinuated by ErgelLardt at 289,000 Eag. square miles (more than double the area of the United Kinguom). Its coasthne is much less broken than that of most of the neighbouting islands; and though there are some estensive lays, such as Maludu in the norta and Sarawak in the west, none of them are so deep as greatly to interfere with the regularity of its contaur. A large fropoition of the seaboard is of allorial formation; and in varions districts the deposition of new land is very pe-ceptibly going on. The whole of the ground, for example, to tho west of the Kandang Mountains in the Lingdom of Landak has been ganed from the seis during tho last four centurics, and it is evident that many smaller islands which fringed the coast in former tinies bave been incorporated with the mainland. This process of eatension gous on afl the more rapidly, because the neighbourine sea is very shallow, except on the eastern side.
Of the interior of the island a considerable part nas been only partially explored. so that the physicaif features can
hardly be given with sufficient precision and detail. 'The
8. general cbaracter of the country is mountainous, thongh none of the ranges and fer of the individual peaks attain to any great elevation The centre of the island seems to be occupied by a kind of tableland, with which the principal chains connect themselves more or less directly. Of these the most extensive may be traced from Cape Datb, on the west coast, in $2^{\circ} 5^{\prime} 24^{\prime \prime} \mathrm{N}$. lat., northwards through the length of the island, which it divides as water-

shed into two portions, a north-western of comparatively narrow dinensions, end a soutl-castern comprising the rest of the island. The diferent parts of the chain are known hy various local names, as the Krimbang or Bayang-Miut, the Matang-Lupar, the Madi, and the Anga-Anga Mountains. fn the north-west corner of the island it attains its highest slevation in Kini-balu, or St Pietersberg, which is generally supposed to be the higbest peak in the whole island. According to the trigonometrical measurement of Capt. Belcher the summit is 13,698 feet ahove the level of the sea, but this was in 1851 reduced to 9500 by Messrs Low and St John, who were the first to ascend the mountain. A second great chain, khor:n as the Kaminting Mountains, siretches south-west from the Anga-Anga, and fills the south-west corner of the island with numerous offshoots and underfalls; and a third starting from the same quarter strikes first south-east and then south along the southern part of the eastern coast, and is known ns the Meratu Mountains. A fourth chain, of which the most important $p_{\text {nit }}$ licars the name of Sakuru, runs almost due east to Cape Knminagun:

Unlike the most of the larger islands of the archipelago, nod in remarkable contrast with Java, Borneo aeems to masess no active volcanoes. Many of the paks, howover, hear distinct evidence of iormer activity in regular craters, now in some cascs forming lakes of salt water. The Hecailing rocks are limestone, slate, sandstones, conshmeratcs, and on the mountain tops syenitic gramite. The limestone hills are remarkable for the number of their caves, many of which, such as those of Rumbary, are a snurce of wcalth to the natives, as they afford shelter to swallows that build edible nests.

The island, wheh is abundantly supphed with rivers and strcams, may be hydrographically divided into five principal veranna. Of these the shortest lies aleng the oorth-
western slope of the Krimbang and Kini-balu range, and discharges its waters into the Chinese Sea. The most im. portant of its rivers are the Saramak, the Batang-Lupar, the Seribas, the Rejang (which is navigable for I40 miles), the Baram (about half a mile wide at its mouth), the Limbang or Bruṇi River, the Teraran, the Bintulu, and the Tampasuk, the last two having their sources in Mount Kini-balu itself. In the south-western versant the largest river is the Kapuas, which, rising towards the centre of the island, in about 114° E. long., falls, after a long and winding course, into the sea between Mempara and Sukkadana. It has eight navigable mouths, and at Sintang, where it receives the Melawi, its principal tributary, it has a breadth of 1072 feet and a varying depth of 6 to 11 fsthoms. The Banjeralassin or Barito, which is the master stream of the southera versant, rises in the Kuti-Lama Lake, and reaches the Sea of Java in $114^{\circ} 30^{\circ}$ E. long. Its upper channel is greatly interrupted by rocks and waterfalls, but the lower part of its course is wide and navigable, and traverses a rich alluvial district. Cross branches unite it with two rivera of considerable size towards the west, the Little Dayak or Murung and the Great Dayak or Kahayan, and etill further west are the independent rivers Meadawi, Sampit, Pembuang or Surian, and Kota-Waringin. Passing over the south-east corner of the island, which is watered by a large number of short mountain streams, we reach the one great river of the eastern versant, the Kuti (Coti) or Mababkan, which, rising in Mount Lassan-Tula, flows east, with \& rapid and sinuous course, and falls by numerous mouths into the Strait of Macassar. Most of the rivers of the northern versant arg comparatively emsill, as the islsnd narrows into a kind of promontory. Besides the Sebuku, which rises in Mount Pentyiesngan and falls into the sea at Temelingan, the Berou, the Gunong-Tebur, and the Bulungsn are all worthy of meation.

Among the lakes of Borneo that of Kini-balu, near the Lakes mountain of the same name, is regarded as the largest, but many others are of considerable size. The Danau Sriang, for exsmple, on the Kapuas River, is, according to Dr E. van Martens, larger than the Lake of Constance. In the valley of the Banjerrassin are the Babi and the Pamingir (or Telaga) lakes, the latter of which supplies nearly sll the inhabitants of the kingdom with fish; and in the district of Sintang there is an exteasive sheet of water, on the Kapuas-Tawang, which was discovered in 1825, and is known by the various names of the Luar, Sumbsb, Malayu, or van Capelláa Lake.
In spite of the equatorial position of the island its Climate climate is nowbere oppreasive, and in many places might slmost be called temperate. At Pontianak, for example, which is almost under the equator, the mean reading of the thermometer is 82°, while it varies from 76° to 79° at sancise, and hardly ever, even st noon, exceeds 92°. The difference between the rainy scasoa and the dry is not rigidly marked; the atmosphere is meist all the year round, and while, on the one band, there is hardly a day of continuous dompour, there is hardly, on the other hand, a day without a ebower. During the rainy season, which extends from November to May inclusive, the torrcats, while they last, are tremendous, and the wind is frequently violeut. Over such an extenaive area there is, of course, great variety in the climatic character of different districts, especially when viewed in relation to health. Some places, as Bidi, Heath. for example, are notoriously unhealthy; but from the statistics of the Dutch Government it appears that the European has in general no more to fear in Borneo than ia the island of Java. Among the native races the prevailing diseases are principally those that arise from bad food or want of cleanlinese. Scrofula is common tliroughout the
country and elephantiasis is frequently met with on the coast. Small-pox, dysentery, and fevers are the usual epidemics; and ophthalmia sometimes attacks whole tribes. About a sixth of the native population in some quarters suffer from a kind of ringworm, called kiurab, which is identified with herpes farinosus. Consumption is not uncodimon.

The miaeral wealth of Borneo is great and varied, including diamonds, gold, platina, quicksilver, cinnabar, copper, iron, tin, antimony, petroleum, sulphar, rock-salt, marble, and coal. Landak and Pontianak are the best diamond districts, and Sambas, Landak, Montrado, and Borneo Proper furnish the greatest quantity of gold. The annual amount of gold collected in the island cannot be ascertained; but the amount exported from Bruni in 1870 was 5789 dollars. Coal of excellent quality is found in the valleys of the Baajermassia, the Kuti, the Gunong-Tebur, and the Melawi, as well as in Sarawak, and in the island of Labuan. The Kuti deposit was discovered in 1845 or 1846 above Samarinda, and has since been struck in a number of places along the main river and several of the tributaries. A mine was opened at Pelarang, but does not seem to be at present worked. Another, however, at Pengaroa, on the Riam Kiva, gields annually about 9000 or 10,00 (t toas. The coalfields in Borneo Proper were conceded to Eir James Brooke in 1846, and since 1868 have been in the haads of the Oriental Coal Company, which has as get taken no advantage of its rights. Antimony was discovered to be a Bornean product by Mr J. Craufurd, the well-known geographer, who, in 1825 , learnedr that a quantity had been brought to Singapore by a native trader as ballast. The supply is practically unlimited, and the chief mine is at Lidi in Sarawak

The fauna of Borneo comprises a large variety of species, many of which are numerically of great importance. Among the Quadrumana, which are very well represented, the most remarkable is the orang-outan (or mias, as it is called by the natives), an asimal only to be found elsewhere in the Island of Sumatra. It frequents the low-lying districts, especially in the neighbourhood of the Dyak plantations. The wawah, a kind of gibbon, several Semnopritheci (as the longaosed ape and the goldon-bleck or chrysomelas), and the large-eyed Stenops tardigradus are also worthy of mention. The larger beasts of prey seem to be altogether wanting, so that little cbeck is put on the natural fecundity of the graminivorous species. A small panther and the Felis macrocelis are the largest animals of the cat-kind linown; for though the tiger has sometimea been reported to occur in the mountains, its presence has never been verified. The Malay or honey bear is very common. The rhinoceros is founc on the north-west coast, and the elephant, introduced by the Chinese or Portuguese, in the neighbourhood of Cape Unsang. Wild oxen of the Sunda race are not uncommon; and the wholo island swarms with droves of wild pigs, which are distinguished by a curious protubersnce of hair on each, side of the head. Theso furnish food not only to the Dyaks, who are very fond of the flesh, but also to the crocodiles that abound in tho principal rivers. Three or four species of deer are enumerated, one of which, the pelandok of the Malays, is remarkable for its smallness and beauty. Squirrels, porcupines, civet-cats, rats, bats,. and lizards are well represented, and snakes of various kinds, from the boa conatrictor downwards, are abundant, while the marshy districts ewarm with frogs and leeches. The latter attach themselves in a most troublesome manner to the passing trayeller. A remarkable blying-frog was discovered by Mr Wallace. Birds are comparatively rare in many quarters; the most important being eagles, vultures, falcons, owls.
hcrn-bills, cranea, pheasants,-notably the Argua-pheasant, -partridges, ravens, crows, parrote, woodpeckers, doves, anó swallows. The Cypselus esculentus, or edible-Dest swallow, is very common. Mosquitoes and sandllies are the chief insect pests, and in scme districts are very tronblesome. There is also a kind of ant called the sumpit-api or fire-ant, the sting of which is very painful. The lepidopterous insects are remarkable for their number, variety; beauty, and size. In one favourable situation Mr Wallàe caught 120 different species of moths in one night. The Coleoptera are oo less aumerously represented, as, indeed, might be expe ted. in so ichly-wooded a region. The lakes and riters, os well as the surrounding sea, abound with ©̂sh. Dr Bleeker in his" Bijdragen tot de Kenais der Ichthyologische Fauna van Borneo," in the Natuurkundig Tijdschrift van Nederl. Ind., describes 176 species which he obtaincd during his residence in the islaad.

The domestic animals of Boraco are few both in number of species and for the most part in number of individuals. The charaster of the country has prevented the development of pastoral modes of life. In some districts, as in the neighbourhood of Ambong, there are bullocks of the Brabmin breed, about thirtcen hands high; the buffalo is sometimes employed in agrienlture; and eheep and goats occur. The cat and dog are both domesticated. A few horses, introduced by Europeans; and only possessed by the wealthier classes, are found in Banjermassin and Sarawak.

The flora of Borneo is very rich, the whole surface of Plsata the island being clothed ia luxuriant regetation. The king of the forest is the tappan, which, rising to a great height with a single branchless stem, is crowned with a splendid dome of foliage. From the wood of this tree the chiefs construct their official aeats. The iron-wood, so remarkable for ve durability of its timber, is abundant; it is used by the natives for the pillars of their houses, and forms an article of export to Chine It is almost rivalled by the kayu temesu in hardness, In all about sixty kinds of timber are furnished in more or less profusion. Palm-trees are abundaat in great variety, including the ripa, cabbage, fan, cocoa-nut, and sago palms; the two last afford large supplies of food to the natives. Gutta-percha, eamphor, cinnamon, cloves, nutnegs, gambir, and betel-nut: are all produced in the island; most of the tropical fruits flourish, such as the mangosteen, the lansat, rambutan, jack, jambon, and blimbang; nor must the wonderful durian be forgotten, of which Mr Waliace enthutastically declares that it is worth a voyage from Europe to taste it. It is a large fruit with an exceedingly strong spiked outer covaring, and not unfrequently. inflicts severe wounds by falling on the passers by. Yams, potatoes (an indigenous sort), melons, pumplins, cucumbers, pine- pples, and bananas, sugar, pepper, cotton, and tobacco are cultivated, though not as yet on a very extensive scale In the south-eastera division of the Dutch territory the export of coiton was in 1854 1795 picols. The product of the wild plant is very good, and is exported from Borneo Proper. Among the more beautiful of the fowering pints are rhododendrons, orehids, and pitcher plants,- the laot reaching a most extraordinary development, especially in the northern districts about Kinibalu. Epiphytous plants are very common, many that are usually independent assuming here the parasitic character. The Vanda Lown, for example, "grows on the lower branches of trees, and its strange pendent flower-stalks often hang down su as almost to reach the ground." Ferns are abundant, but are not so varied as in Java; Mr Wallace collected fifty species.

The population of Borneo consists of a considerabis variety of races, of very different-origin, and of different degrees of civilization. The most important numericaliy are the Dyaks, the Malays, the rhinese, and the Buginese
and, from their political intluence, the Arabs and the Dutch.

The Dyaks, Dayaks, of Dayakkers are generally regarded as the most aboriginal. For themselves they bave no general designation, but, broken as they are into numerous tribes, they are distinguished by separate tribal names, many of which seem to be merely the names of the rivers on which their settlemente are situated. Though regarded by the Malays as aliens, and looked down upon as almost beneath humanity, they belong to the same race. Separation, however, inust have taken place at a very early date. Kessel, who has attempted to form a classification of the Dyaks according to therr ethnographical affinity, divides them into five principal branches. The first of these, which be calls the north-western, includes the natives of Sadong, Sarawak, Sambas, Landak, Tayan, Melionow, and Sangow. They all speak the same language, and are remarkable for their dependence on the Malay prinees. The second branch, which is called emphatically the Malayan from its greater retention of Malay characteristics, occupies the north coast in Banting, Batang-Lupar, Rejang, and part of the valley of the Kapuas. To the third or Parian branch belong the Dyaks of the rivers Kuti and Passir, who are said to speak a language like that of Macassar. The fourth consists of the Beyadjoes, who are settled in the valley of the Banjermassin ; and the fifth and lowest comprises the Manketans and Punans, who are still nomadic and ignorant of agriculture. In stature the Dyak is rather above the Malay, while still considerably shorter than the average European. He is rather slightly built, but is active and capable of enduring great fatigue. His features are distinctly marked and often well-formed, though the cheekbones are higher and the nose more retroussé than agrees with the European standard. The forehead is generally high, and the eyes are dark; the hair is black, and the colour of the skin a pure reddish brown, that frequently, in the female, approaches to a Chinese complexion. In gersral neither beard nor whiskers are present, but this does not hold of all the tribes. In dress there is considerable variety, great alterations baving resulted from foreign influence. The original and still prevaling style is very simple, consisting of a mere chawat or waistcloth, generally of blue cotton, for the men, and a tight-fitting petticoat for the women, who acquire a peculiar mincing gait from its interference with their walking. The favourite ornaments of both sexes are brass rings for the legs and arms, hoops of rattan decorated in various ways, necklaces of white and black beads, and crescent-shaped ear-rings of a large size. 'Tattooing is commonly practised by most of the tribes. Tho men usually go bare-headed, or wear a bright-coloured kerchief. The custom of betel-chewing being almost umversal, the betel-pouch worn at the side is a necessary part of the equipment. The weapons in use are a klewary or curved sword and a long spear. The bow is unknown, but its place among some tribes is partly supplied by the sumpitan, or blowpree, in the boring of which they show great skill. When going to war the Dyak 10 vesta himself with a strong padded jacket, which proves no bad defence. Not only is it a custom with many tribes to preserve the skulls of ther slaughtered enemies as rrophies of their success in war; but, as the possession of a certain number of human heads is necessary before a man c.4 be admitted to some of the most important of bis social prisileres, it is usual for the young wen to go out on provate head-hunting excursions. The custom, however, is dying out before the influcnce of civilization.

The Dyak is decudedly intelligent; Lis memory is tena. cious, and his powers of observation good. Unacquainted in his natural state with both reading and writing, his oputude for acyumng these arts is gratly prased by
missionaries. In moral character he is far superior to the civilized Malay, being unsuspicious and hospitable, and honest and truthful in a striking degree. The various tribes differ greatly in religious ceremonies and behefs, and it is bard to give a satisfactory idea of them. They have no temples, priests, or regular recurrence of worship; but the father of each family performs such rites as the exigencies of each day demand. A supreme god seems generally acknowledged, but subordinate deities are supposed to watch over special departments of the world and human affairs. Sacrifices both of animals and fruitg-and in some casea even of human beings-are offered to appease or invoke the gods; divination of various kinds is resorted to for the purpose of deciding the course to be pursued in any emergency; and criminals are subjected to the ordeal by poison or otherwise. There is a very strong belief in the existence of evil spirits, and all kinds of calamities and diseases are ascribed to their malignity. Thus almost the whole medical system of the Dyaks consists in the application of appropriate charms or the offering of conciliatory sacrifices. Many of those natives who have had much intercourse with the Malays have adopted a kind of mongrel Mahometanism, with a mixture of Hindu elements. The transmigration of oouls seems to be believed in by some tribes; and some bave a system of successive heavens rising one above the other very much in the style of the Hindu cosmogony. In the treatment of their dead the same variety prevails as in other thiugs-they are sometimes buried, sometimes burned, aud sometimes elevated ou lofty framework. The Dyaks have no exact calculation of the year, and simply name the months first month, second month, and so on. They calculate the time of day by the beight of the sun, and if asked how far distant a place is can only reply by showing how high the sun would be when you reached it if you set out in the morning. In agriculture, navigation, and manufactures they have made some progress. In a few districts a slight sort of plough is used, but the usual instrument of tillage is a kind of cleaver. Two crops, one of rice aud the other of maize or vegetables, are taken, and then the ground is allowed to fallow for eight or ten years. They spin and weave their own cotton, and dye the cloth with indigo of their own growng. Their iron and steel instruments are excellent, the latter far surpassing European wares in strength and Eneness of edge. Their houses are neatly built of bamboos, and raised on piles a considerable height from the ground; but perhaps their most remarkable constructive effort is the erection of suspension bridges and paths orer rivers and aloug the front of precipices, in which they display a boldness and ingenuity that surprise the European trareller.

The Dyaks speak a variety of dialects, most of which are still very slightly known. The tribes on the coast have adopted a great number of pure Malay words into common use, and it is often hard to ascertain their own proper synonyms. The American missionaries have investigated the dialects of the west coast (Landak, \&c.), and their Rhenish brethren.have devoted their attention to those of the south, into one of which (that of Pulu Petak) a complete translation of the Bible has been made. Mr Hardeland, the translator, has also published a Dyak-German dictionary. (See Vocabularies in St John's Life in the Forests.) On the authority of the sultan of Bruni, who in 1824 visited Singayore, Crawfurd asserts that of the arty wild tribes that inhabit Bruni, eight had completely, and tive partially, adopted the Malay spreech. The dialect of the Kayans seems to be one of the purest, - nine-tenths of its words having no cognates in the other languages of the archipelago.

For an account of the Malays the reader must be Cbin wor referred to a sepamte article, but the Chinese require thas more particular nutice. They seem to hare been the tan:a

Girst civilized people who had dealings with Borneo: their own annals speak of tribute paid to the empire by $\mathrm{Pha}_{2}-\mathrm{l}_{3}$ on the northeast coast of the island as earily as the 7tb century, and later documents mention a Chinese colonization, in the 15th. The traditions of the Malays and Dyake support these statements,-the people of Bruni regarding theaselves as partly of Cbinese descent, and the annals of Sulu recording an extensive Chinese immigration about 1575. Be this as it may, the flourishing condition of Borneo in the 16 th and 17 th centuries was largely due to trade with China. The Chinese founded in the 1 Sth century an important colony in Brusi; but their numbera were lessened by the bad treatment of the princés. The Malay chiefs of other distriets invited them to come and develop the mireral wealth of the country, and before long they were to be found in considerable numbers in Saubas, Montrado, Pontianak, and elsewhere. Thes were at first forbidden to engage in commerce or agriculture, and prevented from wearing fire-arms or possessing gunpowder. About 1779 the Dutch acquired immediate authority over all strangers, and thus lad the means of controlling the new colonists, who soon proved themselves rather troublesome. Their numbers continually inereased, and they pushed inland to new mineral districts, forming friendbhips and contracting marriages with the Dyabs. For the letter management of their affairs they entered into exteasive associations, which gradually assumed more and unore of a political character until they were almost regular confederacies. This rendered them at once more disposed and more able to assert their claims to independence ; and it cost both the Dutch Governnent and the Majab of Sarawab several severe contests to bring them to terans. They form at the eame time one of the most valuable olements in Bornean civilization, and are an industrious, intelligent; and well-educated race. It would be hard to find a man among them who cannot read and write; and their frrst care in a new settlement is to found a school. The greater part of those on the west coast are enigrants, originally from the northern boundaries of Quang-tung and Quangsi. They are rough, stern, and quarrelsome. Λ more polished class come from the coast district of Anoy, and look down on their ruder fellow-countrymen, from whom they keep themselver markedly distiact. The former class are called Kels by the Eorneans, and the latter Ollohs.

In regard to the number of the popuation of Borneo it is difficult to arrive at anything like a satisfactory estimate. The inland districts seem to be rery thinly inhabited; and the Dyaks increase in numbers at a very slow rate, in spite of their being both a healthy and moral people. This is attributed by Mr Wallace mainly to infecundity on the part of the women brought on by the excessive labour to which they are subjected from early girllood. The popmlation of the Dutch territory vas stated in 1871 at 335,674 natives and 131 Europears in the mestem dirision, and at 847,846 natives and 300 Europeans in the south-eastern, making a total of 700,386 ; but the statements rest on little hetter than conjocture. If they approximate to the truth, the population of the whole island may be set down at between $1,000,000$ and $2,000,000$. Earlier estimates carried the total as high as $3,000,000$.
Borneo is politically divided into Eorneo Proper or Bruni (inclusive of Saramak), the territory of the sultan of Sulu, and the Dutch possessions and protectorate. Bruni is an independent country, governed by a sultan, who is nominally absolute; but the real power is distributed among the subordinate r iefs, who act each as much as possible as his own master. The inhabitants are all gerfs of the sultan or the chiefs, who may dispnse of their property, their wives, or their cbildren in the mort
arbitrary manner. Mahometanism is the state redgion. The capital, also called Bruni, is a large and flourishing city. The estimates of its population have all along greatly varied. Among the most recent is one which makes it 30,000 or 40,000 , while the population of the mhole king. dom is given at 225,000 . A considerable traffic is carried on with Malacca, Singapore, China, Rio, Sambas, Pontianak, and other places in the Dutch possessions. There is au extensive fishing in the river, the produce of which furnishes the people with a large proportion of their food. The fishermen form a distinct easte, and the same is the case with the workers in brass, the blacksmiths, the goldsmiths, the matmakers, \&c. The manufacture of golulace and silk embroidery is carried to great perfection. For accounts of Saramak and the Sulu territory the reader is referred to separate articles.

The Dutch territory forms two great divisions, the Dutcli western and the south-eastern. The western, governed terniters by a resident, is subdivided into two parts, Pontianak and Sambas, the former administered by the resident hmself and the latter by an assistant-resident and the sultan of Sambas. Puntianak ineludes Landak, Tajan, Mampawa, Sintang, Selimbou, Upper-Kapuas, and Montrado, while to Sambas belong the districts or Pananghut and Seminis. The south-eastern division is subdivided into an eastern and a soutbern part. Under the southern are liota.Waringin, Pembuang, Sampitite, Great and Little Dyak, Bekompai, Duson, Lanjermassin, and Tanab-Laut; and under the eastern are Tanah-Bumbu, Kusan, Passir, Kuti, Sambiliung, Gunang 'Tebur, Bulungan (the three last being also known as Berou), and the Tidung lands. The east coast, from Sebawban in Tanal Bumbu to Kauiungan in $1^{\circ} 3^{\prime} \mathrm{N}$. Lat., belongs momediately to the Dutch Government. In tho western dicision several important military roads have been constructed, and the resourees of the country are being opened up.

Borneo has never, as far as we have information, formed a Histors. political unity; and cven its physical unity as an jeland is so little known or considered by its native inhalitants that it possesses in their langrages no general designation. As a natural consequence Porneo bas no proper fristory. The island was frist diseovered by European navigators in the lieginning of the 1 Gth century, according to oue account by Lorenzo de Gomez, a Portuguese, in 1518, and according to another by Don Jorge de Nenezes in 1526. Before long commereial relations were formed with the natives by the Portuguese traders, at frst in the city of Bruni itself, and therl in various other maritime states. In 1573 their Spanish rivals tried to opreu a connection with Bruni, hut their attempts were without suecess tal the sultan being dethroued appealed to them for assistance, and was restored in 1580. From that time they kept up intereourse with the country, but it was not unfrequently interrupted by war. In 1645 an expedition was sent to punish the inhabitants of tho capital for their piratical excursions. The real influence exerted by the Portuguese and Spaniards on the condition of the country was very slight; and the only effort at proselytizing of which we have record came to an untimely end in the death of the Theatine monk, Antonio Ventimiglia, who had been its originator. Meanwhile the Duteh and English had been gaining a footing in the island. In 1604 Waerwijek began to trade on the west coast, and in 1608 Samuel Blommaert was appointed Dutch resident in Landak and Sukkedana. The English appeared for the first time about 1609, and by 1698 had an important settlement at Banjerniassin, from which, however, they were expelled by the influence of the Duteh, who about 1733 obtained from the sultan a monopoly of the trade. The Dutch, in fact, became paramount all round the west and south coasta, and the king of Eantam ceded his righte
of suteranty to the company. The attention of the English was meantime turued to the north of the island, which was subject to the sultan of Sulu, from whom, in 1756, Alesander Dalrymple ontamed pessession of the island of Balambangan, and all the north-castern promontory. A mulutary pest was established, but in 1775 it mas surprised and destroyed by the natives under the dutus or suberdinate chiefs, who were dissatisfied with the cession of their territory. This disaster rendered a treaty, which had just been coneluded (in 1754) with the sultan of Brunn, in great measure a dead letier, and before the end of the century English maluence in Berneo was practically at an end. The Dutch, too, were overtaken, in spite of apparent success, with a succession of mosfortunes, through therr own mananagement, and in 1809 their settlements were all abandoned by order of Marshal Daendels. The natives along the coast, assisted and stmmulated by immi. grants froat the neighbourng islands to the north, gave themselves more and more to piracy, and rendered the trade of civilized aations almost an impessibility.

In 1811, however, an embassy was sent to the Eritish Government in Java by the sultan of Banjermassin to crave their assistance, and in reply Alexander Hare was despatched as commissioner and resident. He not only formed an advantagebus treaty with the sulian. but get for bimself a grant of a district of country which he proceceled to colonize and cultivate. An expedition was also sent against Sambas, and a post established at Pontianak. On the restoration of the Dutch possessions in 1818 all these arrangements were cancelled, and a free field was left to the enterprise of the Dutch Government. A succession of active commissioners-Boekholtz, Tobias, Halewijn, de.soon laid the foundations of an extensive supremacy. About half of the kingdom of Eanjermassin was surrendered by the sultan in 1823, and further concessions were granted by his son in 1825. Meamwhile, George Muller was exploring the cast coast, and obtained from the sultan of Kuti an acknowledgment of the Dotch authority-a concession which seems to have been mmediately regretted, as the enterprising traveller was shortly afterwards killed. The outbreak of a war in Jara turned the attention of the Dutch in some measure from Borneo, and nothing was done by them to cluck the pracy which was growing more and more unendurable On the rise of Singapore direct trade had been opened with Sarawak and Eruni, and it was a matter of moment to the English merchants that their traffic shonld be safe. In 1838 Sir James Brooke, an Englishman, whose attention had been turned to the state of affirs in the Eastern Archipelago. set out for Borneo, determined, if possible, to remedy the evil. By 1841 he had obtained from the sultan of Bronj the bighest authority in Sarawak. and before many gears were over be succeeded in restoring order and peace to the district, and, with the assistance of the Englisl, Government, in repressing piracy. (See lirooke and Sarawak.) In 1847 the sultan of Brom agreed to make no cession of territory to any nation or mdividual withent the consent of Her British Majesty. The Dutch hopos of gradually incorporating the whole island were thus frustrated. lont tbis served only to mereaso theiractivity in other diree. thons. In 1844 the sultan of Kuti harl acknowledged their protectorate. and about the same time a treaty of emmar character was fomed with lassir. Since 183q, when Gunong Tebur. Tanjong, and Bulungan are said to bave made a nominal subussion, the boundaries of their anthority bave nudergone ne ebange to the north : and in general their political power has bean melner rising in level, so to speak, over the southern part of the island than sceking to spread over a rider area.

Of the werks on Borneo, which are very namerous, the following
may be named :- Blommaert's Discours ende ghelegeneneyt van het eylandt Borneo int Jear 1609; Hachelyke reystugt van Jaceob Jansz. de Roy nu Borneo en Atchin in het joar 1691; Beeckman, ${ }^{5}$ Lisit to Borneo, 1718 ; Valentijn's description in his great work, 1i26. Berigt vian een reiziger over Borneo Propre in P. P. Roorda van Eysinga's Verschill. rezen en lotgevallen, vol. iv.; G. W. Eard, Eustern Seas, 1837; W. L Ritter, Indische Herinneringen, \&c., 1843; S Mnler, Rcizen in den Ind. Archip.; Keppel, Expedition of the Dido, 1846; Mundy, Narrative of events in Borneo and Celebes 1848 ; Beleher, Voy. of the Samarang, 1840 ; H. Low, Sarauak, 1843 ; F. S. Dlarryat, Barneo; \&c., 1848; Keppel, Visig to Ind. Archipel. by the Macander, 1853; J. C. Temple, Prevale Letters of Sir J. Brooke, 1853; H. St John, The Indian Archup, 1853 : C. A. L. M. Schwaner, Eorneo, Beschr. zan he: stromgebicd ran den Barito, ctc., in den jaarsn 1843-47, 1853-4; P. J. Veth, Borneo's Westerafoceling, 1854, 1856 (a work whirh hais been largely used in the preparation of the present article) ; E. Francis. Herinncringen ut het leven viun een Indisch. anitrenaar. 1s56, J. J. Rochussen, Toelechting, etc. ran eenve duden van moyn bestruar, 1853. W. A. van Pees, Montrado, \&c., 1858 ; C. J. Temminck, Coup tial sur les poss. Néerland. dans l'Irde Archipel., 1846-E0; Ida J'feiller. Zwezte Weltress, 1856; MacDougall, Lellers from Sarauah; ad, aresscd to a Child, 1854; Crawfurd, Descriptree Dictionary, art. Borneo; W E. Kinesen and F. H. van Vlissingen, Cultuur. en Industree-ondernemsngci van Borneo, 1s59; J. Hasselman and F . H. ran Vlissingen, Beschouwingen orer de exploatatie van Berner, 1859; Tracs, History of the Anerican Boerd of Commessioncrs for Foreign Missivis, 1842 : Spenser St John, Life an the Forests of the Far East, 1862 ; F. Boyle, Advcutures among the Dyaks of Borneo. 1865 ; A. R. Wa山ace, The Malay Aschepel., 1869 ; P. J. Veth. Woordenbock van N'ederl. Indic, 1869 : (in this work the reader will find a long list of aricles on Borneo that have appeared in Dutch and other periodicals); "Contrihuzion geografiche italiane a Borneo " in the Cosmos of Guido C'ona, 1574
(H. A. W.)

BOKNHOLM, an island in the Baltic, belonging to Denmark, in the "Stift" of Seeland, between $54^{\circ} 59^{\circ}$ and $55^{\circ} 18^{\prime} \mathrm{N}$. lat., and between $14^{\circ} 42^{\prime}$ and $15^{\circ} 8^{\prime} \mathrm{E}$. long. It is about 20 miles in length ly 14 in breadth, witb a generally mountainous surface and steep and rocky shores. Besides a good freestone, which is largely experted for building, it furnishes limestone, blue marble, ceal, and clay. Oats, fax, and hemp are cultivated. The nupulation amonnts to about 33,000 , and is chiefly empleyed in agriculture, fishing, brewing, distillation, and the mana--facture of earthenware. Wearing and clock-masing are also carried on to some estent. The capital is lonne, and there are six other small towns on the island,-Svanike, Nexöe, Hasle. Allinge, and Sandrig,-the total town pepulation amounting to 11,100 . On the north-west coast are the roins of the castle of Hammershuus, which was built in 1158, and long served as a state-prison: While another old rastle, erected by Christion V. in 1684°, and important as commanding the entrance to the Baltic, is situated en Coristiansoe, one of a small group of islands about 11 miles to the north-east. The island of Bernholm has bad a very erentful history. For a short time, in the 9th century, it formed a separate principality or bingdom, which was afterwards united to Denmark. In 1510 it was captured by the Hanseatic League, and in 1522 it became directly suljeet to the city of Lubeck. In 1645 the Swedes tonk it by storm, and their possession of $1 t$ was confirmed by the peace of Foeskild in 1658; but the sympatbies of the people were with Denmark, and a popuhar nsurreetion succeeded in expelling the Swedish forces.

BoliNu, or Borvou, a bingdom of Central Africa, situated to the soutb-west of lake Chad, and separated from the Niger by the kingdom of H1ussa. Its ares is estmated at 51,250 square miles, asd its population at $5,000,000$. The country is for the mose part a flat alluriad plans, subject in its norti-eastern jerti as to inundation from the lake and ita trilutary rivers- the Shari and the Ho. The form?r of these, which is by far the larger, serves as a boundary towards laghermi on the east; the latter, rising in Ilaussa, flows nortb-east thaongh the whole country The zoil is in general fertile sad well watered, yielding large rrops even under very imp iffeet cultivation.

One of the finest drstricts in the country is that of U_{J}, which is inhabited by the Ghamergu tribe. The labour is chiefly performed by female slaves, who, besides their other labours are obliged te perform the perilous task of guarding the growing crops against animal depredators. The rice and wheat are excellent, but sre grewn in small quantity. The grain which forms the staple food of the people; is a epecies of millet called gussub, which they form, ,ot into bread (an article here entirely unknown), but into a species of paste, whieb, by the addition of butter and honey, forms the highest beast of Bornu cookery. Cotton and jodigo grow wild, and afford the materials for the cloths finely dyed with blue stripes, which form the staple fabric of the country. Onions and water-melons are almost the only vegetables, and besides tomatoes the only fruits are a few limes and figs. The prevailing bush is the Asclepias gigantea, and the woode consist largely of acacias and tamarinds. The caoutchouc tree is very common, but its juice has not as yet been utilized by the inhabitants. All the domestic animals are reared, and there are very numerous herds of oxen, pessessed chiefly by the Shuwa tribe. Animal food is thus very cheap, and forms a large propertion of the ordinary diet.

Wild animals, in great numbere, find both food and cover in the extensive districts of weod and marsh. Liens, giraffee, elephants, hyenaa, crecodiles, and hippepotami"are common ; and antelopes, gazelles, ostriches, and various other animals are pursued as game. Thic country abeunds with bees; and the honey, though only partially collected, forms one of the chief Bormuese delicaeies. The elimate, especially from March to the end of June is oppressively hot, rising sometimes to 105° and 107°, and even during mest of the night not falling much below 100°. In May the wet seasen commences, with violent storms of thunder and lightning. In the end of June the rivers and lakes begin to overfow, and for several mouths the rains, ac companied with sultry weather, are almost ineessant. The inhabitants at this seasen are severely afflicted with fever and ague, which carry off great numbers. In Oetober the rains abate ; cool, fresh witids blow from the west and north. west ; and for everal months the climate is both healthful and agreeable.

The leading people of the country, called Bornuese or Kanuri, present a perfect specimen of the negro form and features, baving large mouths, thiek, lips, and broad noses, but good teeth and high forebeads. The females add to their want of beauty by extensive tattoong; they also stain their faces with indigo, and dye their front tecth black and their canine teeth red. The law allows polygamy, but even the richest have seldom more than two or three wives. The marriage ceremonies last for a whole weech, the first three days being spent in feasting on the favourite national dishes, and the others appropriated to certain symbolical'rites. The favourite amusement is to wateh the wrestling of slaves taken in war from the neighbouring nations. . Another amusement is a rude game bearing some resembleice to chess, played with beans and boles in the send. The Mabometan religion is universally professed In Bornu, and with bigotry and violence. The prevailing language of the people is known as the Kanuri. It bas no affinity, accordiog to Dr Barth, with the great Berber family. A grammar was published in 1854 by S . W. Koelle, as well as a volume of tales and fables, with a translation and vocabulary.

The pastoral districts of the conntry are occupied by the Shuwas, who are undoubtedly of Arabian race, and speak a well-preserved dialect of that language. Of the date of their immigration from the East we have no knowledge; but they were in the country as early as the middle of the 17 th century. Their total number is from

200,000 to 250,000 , and they are divided into numerons distinct clans. Their villages in general consist of rudelyconstructed huts, of an exaggerated conieal form. Another tribe, called the La Salas, inhabit'a nuruber of low fertile islands in Lake Chad, separated from the continent by ebannels which those who know the tracts can ford on horseback.

The military force of Bornu censists almost entirely in cavalry, ameunting to about 30,000 , who are mounted on heary steeds, which, as well as their riders, are frequently cased in light iron mail. The Shuwas, however, are elad only in a light shirt, and mounted on swall unseemly nags, and the Kanembu spearmen are almost naked, and fight with shicld and spear. Camels and oxen are used for conveying the baggage. The sheikh of Bornu is surrounded by a mounted body-guard, whe likewise compose bis principal nobles and chiefs. It is indispensable to the chief of rank that be should possess a huge belly, and when high feeding caunot produce this, padding gives the appearance of it . Notwithstanding the beat of the climate, the body is enveloped in successive robee, the number indicating the rank of the wearer. The head likewise is enclosed in numerous turbans.
The towns are of considerable size. They are surrounded with walls 35 or 40 feet in height, and 20 feet in thickness, having at each of the four corners a triple gate, cemposed of strong planks of wood, with bars of iron. The abodes of the principal inhahitants form an enclosed square, in which are separate beuses for each of the wives; the ehief's palaee consists of turrets connected together by terraces. These are well built of a reddish elay, highly polished, so as to rescmble stuceo; the interior roof, though composed only of branches, is tastefully constracted. Kuka (or Kukara, as it is called from its consisting of two distinet parts) is situated near the western shore of the lake, and bas a pepulation of 60,000 . Still more populoue is Ngornu, Angornon, or Gernu (the town of the "Blessing"), which lies about 18 miles to the south-east. It carries on a large trade, and contains about 50,000 inhabitants. On the Waube or Yo are still to le seen extensive remains of Old Bornu or Birni and Gambarou or Ghambaru, which were destroyed by the Fulbe about 1809. Among the other towns of more or less inportance are Alaw, where Edris Alawoma, the famous king of Bornu, is buried, Alamay, Allauna, or Kabshiari, Berzeni, Lamiso, Mashcña, Uje Maidugari, Uje Maibani, Wushek, and Yo.
The bistory of Bernu goes Lack only to the 9th century of our era, and its early portions are very fragmeutary and dubieus. The first dynasty known is that of thie Sefuwa or descendants of Sef, which cane to the throne in the person of Dugu or Duku, and has its capital at Njimiye in Kanem. Mahometanism was adopted about 1086 by the ruling menarch, Dunama Ben Humé, and has since continued the religion of the country. From 1194-1220 reigned Selma or Abd-el Jelil, under whom the power of the kingdom was greatly extended; and Dúnama, his suceessor, was also a powerful and warlike prince. In the following reigns the prosperity of the country began to diminish, and in 1386 the djanasty was expelled from Njimiye, and forced to seek refuge in the western part of its territory by the invasion of the Bulala. Mai Ali Ghajideni, who founded the city of Birai or Ghasrggomo, on the Kiver Wau, rendered his country onee more redoubtable and strong. His successor, Edris, completely vanquished the Bulala and subjugated Kanem; and under Mahomet, the nest monarch, Eornu reached its bighest. pitch of greatness. A eeries of for the most part peacefol reigns succeeded till about. the middle of the 18th century, when Ali Omarmi entered upon a violent struggle with the Tuaricks or Imoshagh. Under his son Ahmed (aboùt !808) the kingdom began to be harassed by the

Fulbe or FeilataL, who had already cunquard the Haussa country. Expelled from his capital by the invaders, Ahmed was only restored by the assistance of the fakir Mahomet el-Amin el-Kanemi, a mere private individual, who, preteuding to a celestial mission, hoisted the green flag of the prophet, and undertook the deliverance of his country. The Fellatahs appear to bave been taken by aurprise, and were in ten months driven completcly out of Bornu. The conqueror, having the army wholly devoted to him, might probsbly have, with little difficulty, assumed the sovereiga power. More moderate, and perhspa more prudent, he invested the nearest heir of the ancient kiagg with all the appearance and pomp of sovereigaty,-only reserviog for himself, under the title of sheikh, all its reality. The court of the king or sultan was established ${ }^{2 t}$ New Bornu, or Birni, which was made the capital, the old city baving been entirely destroyed during the Fellatah invasion; while the sheikh, in military state, took up his residence at the Dew city of Kuka. Fairly established he ruled the country with a rod of iron, and at the same time inspired his subjects with a superstitious notion of his sanctity His zeal was peculiarly directed against moral or religions offences. The most frivolous faults of females, as talking too loud, and walking in the street unveiled, rendered the offender liable to public indictment, while graver errors were visited with the most ignominious punishments, and often with death itself. Kaucmi died in 1835, and was succeeded by his spn, Sheikh Omar, who altogether abolished the noninal kingship of the Sefuwa. The intercourse of Europeans with Bornu has, during his reign, been for the most part satisfactory as well as frequent. The expectations entertained at various times of opening up a valuable commerce with the people have not been as yet realized, and it seems likely, from the latest reports, that before long the traveller in Central Africa will have little to hope or fear from the sheikh of Bornu. Dr Barth, who was at Kuka in 1851, foreboded this decay; and Dr Nachtigal, who in 1870 . conveyed the friendly presents sent by King William of Prussia, in acknowledgment of the sheikh's kindness to so many German explorers, writes thus in December 1872 :-
"The rapid declension of Bornu is an undeniable and lamentable fact. It is taking place with increasing rapidity, and the boundless weakness of Sheikh Umar-otherrise so worthy and brave a manmust bear almost all the hlame. His sons and ministers plunder the provinces in an almost unheard of manner; trade and intercourse are almost at a standstill ; good faith and confidence exist no more. The indolence of the court avoids military expeditions, and anarchy and a lack of security on the rontes are the cousequences. As two years ago the prince of Zinder could kill the Munioma or prince of Munio, a fuithful vassal of the sheikh, and escape unpunished, the prople of khudadza hare now slain the prince of Gummel. The shacikh will probably take their presents aq indemniücation, as he pardoned the sulvan of Zinder for the murder of the faithful Mumona for the sake of a few camel-loads. Most of the small princes of the western provinces of Bormu now pay an indoterminate tribute to the prince of Zinder, who on his part has no less ambition than to become master of Borbu. Thus the sheikh and the land grow poorer and poorer, and public morality einks lower and lower."

See Denham and Clapperton s Tracels, 1528 ; Barth's Travels in Central Africa, vol. ii., 1557 ; Rohlfs's Sand hend Volk in Afria, 18.3: P'etermano's Mittheil., 1871, pp 67 and 327.

BOROUGH. Although the idea of self-government by a town is exemplified in the colonice and mancicipio of Rone, and in their duumviri, decuriones, and lesser senate, composed of the curial orders, which along with the defensor civitatis appear to have existed in vigour until the reign of lee the l'hilosopher (Const., 46, 47), yet as the local power was gradually subordinated to the imperial, and as both in France and litaly it reems nlmost universally to hare disappeared when the territorial jurisdictions, as well as the ieudal fiofs, became hereditary, it is impossible to traco an bistorical connection between there institutions and the
modern borough. In Spain and Languedoc, perhaps, the forms of ancient independence may have been continuonsly preserved, bat the system of government by comes and scabini (or assessors), which was pursued in both France snd Italy by the successors of Charlemagne, was obviously opposed to the freedom of towns. It is during the 11th and 12th centuries that we begin to read in charters of the citizens of Narbonne, the burgesses of Carcassonne, the consuls of Beziers, the magistrates of Rouergues, the capitols of Toulouse. It is during the reigns of Louis the Fat, Louis the Lion, and Philip Angustus that charters of commune become frequent. These charters, which sometimes bear to be granted on account of the poverty of the towns folk, the enormities of the clergy, or the sttacks of the locs. Seigneurs, were probably dictated by the pecuniary needof the Crown; but they attest the growing power-the de facto rights of the industrial population. They distinguish between Bourgeoisies and Communes proper: the formel obtained a confirmation of ancient customs, of exemption from feudal jurisdiction, of personal-liberty, but they did not obtain an elective municipal government. In ltaly the rerival of civic antonemy was much more rapid. Althougb Frederic Barbarossa reserved to himself in the peace of Constance the right of nominating consuls in the Italian towns, Bishop Otho of Frisingen tells us that the imperial influence did not count for much ; snd in 1288, at least, we have in the Potestas (Podesta), the Concilium Generale, and Concilium Novem Domino um of Siena, a type of the indopendent republican city.
The Saxon byrig or burh is properly the fortified house of the powerful msn. Related forms are burgus (Latin of 4th century); burg (High German) ; baurgs (Gothic); borg (Gaelic) ; mipyos (Greek); bor, borc, and bourg (French); and broch, a pledge. The burgensis, or iahabitant of a walled town, was opposed to villanus, or inhabitant of the villa, or open town. The Gemot, or assembly of the original township, had the power of making by-laws (the Danish prefix means "town"), and of electing the Gerefa (Reere), the Dydel, and the Tithiug-man or constable, the first of whom represented the assembly. in the courts of the hundred and the shire. The Gemot also saw to the collection of taxes imposed by the bigher courts, the pursuit of criminals, and the search for stolen goods In mercantile places, such ns London and Bath, the chief officer was called Port-Gerefa from the gates in which the market was held.

The frecholder of this period had undoubtedly political as well as personsl liberty. Gencrally speakiag, however, although common property may have been held by a guild or corporation, and special privileges of trade or inheritance may have been cujoycd, there is before the Conquest little trace of municipal organization: Tho Lagemanni of Lincolo and the Justices of Chester were apparently among the mest ancient resident magistrates, but the manner of their election is unknown. The Conquest divided the boroughs into those which formed part of the royal demesne and those which held of the barons and dignified churchmen,- - the interest of tho Crown and its grantees in the property and in the profits of fairs and markets, de., being, at first absolute, but latterly oon verted into a firma burgi or perpetual rent from the whole borough in lieu of tribute from individual burgesses. The non-clective bailiff succeeded to the recve, and proved a useful agent in carrying ont the oppressive and arbitrary tallagia, which were often the price of ncw or confrmed privileges. The bailiwicke wero sometimes farmed ont, and this led to etill more severe csaction. To the bsilif succeeded the mayor (major), who accounted to Exchequer for the annual rents of the borough. Grants of jurisdio tion, of socan and sacan, of outfangenthef and infangenthi?.
and grants of the right of appointing praposili (provosts), bullivi (from Greek β ád $\lambda \epsilon \frac{\text { or Latin bajulus), and justiciarii }}{}$ jacrease in number towards the reign of John, and are probably included along with the varions exemptions from tolls, \&c., granted by Henry IL. in the "liberties and free customs" guaranteed by the Great Charter. The terms alderman, capital citizen, capital burgess, and jurat were of fluctuating signification; but the last three were finally applied to members of the Common Council which gradually took the place of the assembly of incorporated burgesses. The rights of a free burgess might be aequired by birth, apprenticeship, marriage, or purchase; and as prior to Edward IIL.'s Laws of the Staple these rights included exclusive privileges of trade, they were properly connected with the payment of local taxation and the performance of local duties, from which non-freemen (strangers and temporary residents) were exempt. In many eases it is probable that the "civitas," or commonity of freemen, was identical with the convivium conjuratum, or Secular Frith Gaild of traders and craftemen, possessing portions of town land. Such voluntary associations for protection of trade, the administration of common property, or for religious and charitable purposes, were more highly developed in England than in any other part of Europe. The members of the leading industry naturally assumed the direction of municipal affairs, and when thei: guild was recognized by the Crown their bye-laws acquired a binding force. Fur instance, in deeds of the 12 th century relating to the magistrates of Paris the terms burgenses and mercatores per aquam are used as synonymons. (Brentano on Gilds.) Such guilds gave compensation to bretbren who had incurred losses by shipwreck or undeserved misfortune, and made gratuitous loans to poorer brethreu for carrying on their trade. It was their special endeavour to obtain staple right, the right of coinage, immunity from tolls, \&c. Gradually, bowever, the distinction arose between the merchants proper who formed the gildo mercatorict, and the craftsmen, who had at first traded in the raw materials they worked with, but who were now oppressed and deprived of civic rights by their wealthier brethren. The man "with dirty bands" or "blue nails," the man "without hearth or honour, who lires by his labour," or "harkiks his wares in the streets," was threatened with a serfdom like that which the barons and bishops had imposed. But at this juucture tho grest craft guilds arose to assert the rights of manufacture. In the time of Henry VI. their victory in England was complete, and the Crown, which had previously recognized the constitution and liberties of a town by confirming the guild, now used in its chartera the words of express incorporation (communitas perpetua el corporata). A glance at the names and forms of the most modern municipality mill show how closely trade organization and burghal government have been intert wined.'

In Ireland the earliest traces of burghal life are connected with the maritime settlements on the southern and eastern coast. The invasion of IIenry II. colonized these Ostman ports with Anglo-Norman communities, who brought with them, or afterwards obtained, municipal charters of a favourablo kind. The English settlement obvinasly depended on the edvantages which the burgesses pessessed over the native population outside. Quite different from these were the new close boroughs which during the plantation of Ulster Jarnes I introduced fron England. The conquest was by thia time completed, and by a rigorous enforcement of the Supremacy and Uniformity Acts the existing liberties of the older boroughs were alnost entirely withdrawn. By the new rules published (in terms of the Acts of Settlement and Explanation) in 1872 resident traders were permitted to become freemen, but neither this regulation nor the ordi-
nary admissions through birth, marriage, and apprenticeship succeeded in giving to Ireland free and vigorous municipalities. The corrupt admission of nou-resident freemen, in order to outvote the ancient freeholders in parliamentary elections, and the systematic exclusion of Romen Catholics, soon divorced the "commonalty" from true local interests, and made the corporations, which elected themselves or selected the constituency, dangerously unpopular.

In Seotland burghs or burrows are divided into Royal Burghs, Burghs of Regality, and Burghs of Barony. The first were erected by Roysl Charter, and every burgess held direct of the Crown. It was, therefore, impossible to subfeu the burgh lands,-a distinction still traceable in modern conveyancing. Whero perhaps no charter ever existed, the law on proof of immemorial possession of the privileges of a Royal Burgh has presumed that a charter of erection once existed. The charter gave power to elect provost, bailies (French terms which superseded the ancient mayor and aldermen), and conncil, a power long exercised under the Act 1469 , which directs the new council to be chosen annually by the retiring council, and the magistrates by both councils. The jurisdiction of these magistrates, which was specially reserved in the Act of 1747 abolishing heritable jurisdictions, was originally cumulative with, and as large es, that of the sheyiff. It is now confined to police offences, summary ejections, orders for interim aliment (for prisoners), payment of bargh dues, and delivery of titlo deeds. Three bead courts were held in the year, at which all burgesses were obliged to attend, and at which public business was done and private transactions were ratified. There wero three classes of burgesses-burgesses in sux arte, members of one or otber of the corporations; burgesses who are guild brothers; and simple burgesses. The Leges Burgorum apparently contemplate that all respectable inhabitants should have the franchise, but a ceremony of admission was required, at which the applicant swore fealty and promised to wateh and ward for tho community, and to pay his "msill" to the king. These borough maills, or rents, and the great and small customs of burghs, formed a large part of the royal revenue, and, although frequently leased or feued out for a fixed duty, were on the accession of James I. annexed to the Crown as an alimentary fund. Burgh customs still stand in the peculiar position of being neither adjudgeable nor arrestable; they are therefore bad security. The early charters contain the usual privileges of holding a market, of exemption from toll or tribute, and that distraint will be allowed only for the burgess's own debts. There was also the usual strife between the guildry and the craftsmen, who were generally probibited from tradins, and of whom dyers, feshers, and shoemakers were forbidden to enter the gnildry. Deacons, wardens, and visitors were appointed by the crafts, and the rate of wages was fixed by the magistrates. The erafts in Scotland were frequently incorporated, not by Royal Charter, but, as in the case of the cordiners of Edinburgh, by seals of cause from the corporation. The trade history of the free burghs is very important. Thus in 1466 the privilege of importing and exporting merchandize was coufned to freemen, burgesses, and their factors. Ships are directed to trade to the king's free burgbs, there to pay the customs, and to receive their cocquets or custom-house seals; and in 1503 persons dwelling outside burghs are ferbidden to "use any merchandize," or to selt wine or staple goods. An Act of 1633, erroneously called a Ratification of the Privileges of Burghs, extended these privileges of buying and selling to retail as well as wholesale trade, but restricted their enjoyment to Royal Burghs. Accordingly, in 1672 , a general deelaratory Act was passed confirming to the freemen in Royal Burghs the whelesale trado in wine, wax, silk, dyeing materisis, \&\&., wermittung
generally to all persons the export of native raw material, spectally permitting the burgesses of Barony and Regality to export their own manufactures, and such goods as they may buy in " markets," and to import against these consignments certain materials for tillage, building, or for use in their own manufactures, with a general permission to retail all commodities. This extraordinary system was agan changed in 1690 by an Act which declared that freemen of Royal Burghs should have the sole right of importing everything by sea or land except bestial, and also of cxporting by sea everything which was not native raw material, which might be freely exported by land. The gentry were aluays allowed to import for their personal consumption and to export an equal quantify of commodities. The Act mentions that the Royal Burghs as an estate of the kingdom contributed one-sixth part of all public impositions, and were obliged to build and maintain prison-houses. Some of these trade privileges were not abolished till the Act 9 and 10 Vict. c. 17.

In the north of Scotland there was an association of Free Burghs called the Hanse or Ansus, and the Lord Chamberlain, by his Iter, or circuit of visitation, maintained a common standard of right and duties in all burghs, and examined the state of the "common good," the aecounts of which in 1535 were appointed to be laid before the auditors in Exchequer. The Chamberlain latterly presided in the Curia Quatuor Burgorum (Edinburgh, Berwick, Stisling, Rosburgh), which not only made regulations in trade, but decided questions of private right (e.g., succession), according to the varying customs of burghs. This court irequently met at Haddington; in 1454 it was fixed at Edinburgh. The more modern Convention of Royal Burghs (which appenred as a judicial persona in the Court of Session so late as 1839) probably dates from the Act of James III. (1487. c 111), which appointed the Commissioners of Burghs, both north and south, to meet yearly at Inverkeithing " to treat of the welfare of merchandize, the good rule and statutes for the common profit of burghs, and to provide for remeid upon the skaith and injuries sustained within the burghs." Among the more important functions of this body (on whose decrees at one time summary diligence procceded) were the probibition of undue cxactions within burghs, the revisal of the "set" or mode of municipal election, and the pro rata division among the burghs of the parliamentary subsidy required from the Third Estate The Convention still meets, but the reform of the municipalities, and the complete representation of the mercantile interests in the United Parliament, bave deprived it of importance. In its great days it negotiated a treaty with Campvere, and one of its judgments was given effect to by Edward I. in the Parliament of Newcastle, 1292.

Burghs of Regality and of Barony held in vassalage of sonie great lordship, lay or ecclesiastical, but were always in theory or in practice created by Crown grant. They received jurisdiction in civil and eciminal matters, generally cumulative with that of the Baron or the Lord of Regality, who in aome cases obtained the right of nominating magistrates. Powers to hold markets and to levy customs were likewise given to these Burghs.

The Scotch burghs emerged slowly into political importance. In 1295 tho procurators of six burghs ratified the agreement lor the marriage of Elward Balliol; and in 1326 they were recognized as a Third Estate, granting a tenth penny on all rents for the king's life, if he should apply it for the public good. The Commissioners of Burgas received from the Exchequer their costages or expenses of attending larlament. The burghs were represented in the Judicial Committec, and in the Committec on Articles appointed during the reign of James V. After the Reformation, in spite of the annexation of hirk lands to
the Crown, and the increased burdens laid on temporal lands, the proportion of general taxation borne by the burghs (viz., ls. 6d.) was expressly preserved by Act 1587, a 112. The number of commissioners, of course, fluctuated from time to time. Cromwell assigned ten members to the Scotch burghs in the second Parliament of Three Nations (1654). Tha general practice until 1619 had been, apparently, that each burgh should send two members. In that year (by an arrangement with the Convention of Burghs) certain groups of burghs returned one member, Edinburgh returning two. Under Art. 22 of the Treaty of Union the number of members for Royal Burghs nas fixed at fifteen, who were elected in Edinburgh by the Magistrates and Town Council, and in the groups of burghs by delegates chosen ad hoc. See Parliament. (See Comuel, History of the Constitution of Towns; Stubbs, Constitutional History of England, vol. i.)
(w. c. s.)

BOROUGH-ENGLISH, a custom prevailing in certain ancient boroughs, and in districts attached to them (where the lands are held in socage), and also in certain copyhold manors (chiefly in Surrey and Middlesex), by which in general lands descend to the youngest son, to the exclusion of all the other children, of the person dying aeized and intestate. Descent to the youngest brother to the exclusion of all other collaterals, where there is no issue, is sometimes included in the general definition, but this is really a special custom to be proved from the Court-Rolls of the manor and from local reputation,-a custom which is sometimes extended to the youngest sister, uncle, aunt. Generally, however, Borough-English, apart from apecialties, may be said to differ from gavel-kind in not including collaterals. It is often found in connection with the distinct custom that the widow shall take as dower the whole and not merely one-third of her husband'a lands. (See Third Report of Real Property Commission, and case of Muggleton v. Barnett, 2 Hurls. and Nor. Rep.)

BOROVICHI, a town of Russia, in the government of Novgorod, aituated in $58^{\circ} 23^{\prime} \mathrm{N}$. lat. and $23^{\circ} 54^{\prime}$ E. long., on both banks of the River Msta. On the site of the present town there existed, from an early date, a settlement famous for the skill of its pilots; and for their encouragement in that occupation the inhabitants were freed from taxation by Peter I. In 1770 the village was raised to the rank of a town, and in 1776 was made the head of a department in the Novgorod government. It contains seven or eight churches and a monastery, an almshouse, and a hospital. Flour, malt, beer, tallow, earthenware, and bricts are all manufactured, but none of them to any great extent. The principal articles of trade are linen, leather, and wood. There are two annual fairs, and a weekly market. Population in 1867, 9108.

BOROVSK, a town of Russia, in the government of Kaluga, 54 miles from that city on tho old post road te Moscore, is situated on both banks of the Protva at the confluence of the Tikizh, in $55^{\circ} 13^{\prime} \mathrm{N}$. lat. and $36^{\circ} 9^{\prime}$ E. long The town was in existence in the 13th century, and derived its name from the Borh, or pine forest, which still lies to the N.W. Its principal industries are tanning, soapboiling, and the manufacture of wax, linseed-oil, and pottery and it has a trade of considerable importance in grain. homp, and cloth. There are four annual fairs, two of which aro held in the town and two about two miles off, at the monastory of Paphnutius, which was founded in 1444 . The population, mainly belonging to the Greek Church, was in 1860, 8150.

BORRONEAN ISLANDS, a group of four small islands on the western side of Lago Maggiorc, in Northern Italy, beautifully surrounded by lake and mountain. Naturally mere barren rocks, they were in 1671 converted by. Vitaliuvo Borromeo into aleasure gardens of great

Geauty, the soil being transported from the neighbouring shores of the lake. The two most celebrated are the Isola Bella and the Isola Madre. The former rises 130 feet above the level of the water, in ten successive terraces, the highest of which is paved and surrounded by a balustrade, while all are environed by gigantic marble statues of various figures, and the walls are clothed with the finest fruit-trees and evergreens. There is, besides, towards the western end of the island, and close to the lake, a magnificent palace, built on arches, which are formed into grottos, with floors of mosaic and decorations of shell-work and marble. Isola Madre, which is the largest of the group, lies between one and two miles from Isola Bella, and consists of a superstructure of seven terraces, not less beautiful than the other. Here also there is a palace, now dilapidated, with similar decorations. A richly-coloured description of the place is given in his "Titan," by Jean Paul Richter.
borromeo, Carlo, azint and cardinal of the Roman Cathulic Church, was the son of Ghiberto Borromeo, count of Arona, and of Mary of Medici, and was born at the Castle of Arona, upon the Lago Maggiore, in the Milanese, October 2, 1538. When he sas about twelve years old, Julius Cæsar Borromeo resigned to him an abbacy, the revenue of which he applied wholly in charity to the poor. He studied the civil and canon law at Pavis under the learned Francis Alciat. In 1554 his father died; and, although he had an elder brother, Count Frederick, he was requested by the family to take the management of their domestic affairs. After a tume, however, he resumed his studies, and in 1559 he took his doctor's degree. In the following year his uncle Cardinal de' Medici was raised to the pontificate, by the aame of Pius IV.; and Borromeo was made prothonotary, entrusted with both the public and privy seal of the ecclesiastical state, created cardinal deacon, and soon after raised to the archbishopric of Milan. In compliance with the pope's desire, he lived in great splendour; yet his own temperance and humility were never brought into question. Ho established an academy of learned persons, and publishod their memoirs as the Noctes Vaticance. About the same time he also founded and endowed a college at Pavia, which he dedicated to Justina, virgin and martyr. Upon the death of his elder brother Frederick, his friends advised bun to quit the church and marry, that his family m!ght' not become extinct. Contrary to cxpectation, bowever, he declined the proposal; and from that time became more fervent than ever in exercises of piety, and more zealous for the welfare of the church.

On the death of Pius IV., January 7, 1566, the skill and diligence of Borromeo matcrially contributed to stifle the cabale of the conclave. As soon as tranquillity had beca ce-established be devoted bimself wholly to the reformation of bis large and important diocese, where the most flagitious irregularities were openly practiscd. He began by making pastoral visits in bis metropolis; and by a variety of wise and necessary regulations, be soon restored proper decency and dignity to divine service. In conformity to the decrees of the Council of Trent, he cleared the cathedral of its gorgeous tombs, rich ornaments, banners, arms, not even sparing the monuments of his own relations. He also divided the nave of the church into two compartments for the separation of the sexes. He proceeded nest to the collegiate churches, and even to the fraternities of pepitents, particularly that of St John the Baptist. The reformation of the monasteries followed that of the churches; and the vigilance of the archbishop soon extended itself from the city to the country round it. The great abuses which had overrun the church at this time arose principally from the ignorance of the clergy. In order, therefore, to
attack the evil at its root, Borromeo established seminaries, colleges, and communities, for the education of young persons intended for holy orders. He met with much opposition in his endeavours to briag about his reforms, but succeeded, nevertheless, in rendering the most important services to the cause of morals as well as religion. The governor of the province, and many of the senators, apprehensive that the cardinal's ordinances and proceedings would encroach upon the civil jurisdiction, addressed many remonstrances and complaints to the courts of Rome and Madrid: But Borromeo had more formidable difficulties to struggle with, in the inveterate opposition of several religious orders, particularly that of the Brothers of Humi. lity. Some members of that society formed a couspiracy against his life, and a shot was one evening fired at him in the archiepiscopal chapel under circumstances which led to the belief that his escape was miraculous.
In the year 1576 the city and diocese of Milan were visited by the plague, which swept away great numbers. On this occasion he went about giving directions for accommodating the eick and burying the dead, avoiding no danger, and sjaring no expense. He also visited all the neighbouring parishes where the contagion raged, distributing money, providing accommodation for the sick, and punishing those, especially the clergy, who were remiss in discharging the duties of their calling.
But continual labours and austerities appear to have shortened bis life. He was seized with an intermittent fever, and died at Milan, November 4, 1584. He was immediately edrolled among the saints, but was not canonized till 1610. Besides the Noctes Vaticana, to which he appears to have contributed, the only literary relics of this intrepid and zealous reformer are some homilies, discourses, and sermons, with a collection of letters. Several lives of him have bcen published,-by Godeau; by Touron, a Domunican, by Ribadenerra, a Spanish Jesuit; by Bimeus, and by others.
BORROMINI, Francesco, an Italian architect,' born at Bissone in 1599. He was much employed in the middle of the 17th century at Rome. In his style be affected origiaality and richness, which corrupted the noble eimplicity of the older schools, though his compositions are occasionally imposing. His principal works are the church of St Agnese in Piazza Navona, the church of La Sapienza in Rome, the church of San Carlino alle Fontane, the church of the Collegio di Propaganda, and the restoration of San Giovanai in Laterano. He died by his own hand at Romo in 1667. Engravings of his chief compositions are to be found in the posthumous work Francisci Borrominz opus Architectonicum, 1727.

BORROWSTOUNNESS (usually abbrevisted to Bo'Ness), one of the oldest seaports of Scotland, is situated on the Firth of Forth, in Linlithgowshire, about four miles from the county town, in $56^{\circ} 2^{\prime} \mathrm{N}$. lat. and $3^{\circ} 35^{\prime} \mathrm{W}$. long. The town is very irregularly built, contrasting unfavourably with the beauty of its situation. It was formerly a place of considerable traffic, ravkıng in the 18th century immediately after Leith; but it bas been for a lòng time left far behind by the nelglibouring seaport of Grangemouth Its barbour, with an ares of $2 \frac{1}{2}$ acres, being too emall for the trade of the port, a bill has been passed in Parliament for a large estension. The commerce is now for the most part confined to the Baltic, and the principal import consists of wooden props for use in mines. The value of the total imports in 1873 was $£ 150,059$, and of the total exports in the same year $£ 223,539$. There are extensive manufactories of salt, distilleries, a pottery, ropeworks, and vitrol and soap-works; but the collieries and iron-stone pits in the immediate neighbourbood are much more important. Some of the former bave been worked fol
centuries, and extend under the firth to the distance of a mile. The smelting of the iron-ore ie carried on in two or three blast-furnaces in the neighbourhood of Kinniel House, which was for many years the residence of Dugald Stewart. A part of Graham's Dyke, the Roman wall of Antoninus, runs through the parish. Population in 1871, 4256.

BORY DE SAINT-VINCENT, Jean Baptiste Georoe-Marie, a learned and mdustrious French naturalist, was born at Agen in 1780 . While a mere boy he displayed the scientific bent of his gemus and attracted attention by two memoirs sddressed to the Soclety of Natural History at Bordeaux. Having been sent as naturalist of Baudin's expedition to Australia in 1798, he left the vessel at the Mauritias, and spent t wo years an exploring Bourbon and the other islands of East Africa. Joining the army on his return, be was present at the battles of Ulm and Austerlitz, and in 1808 went to Spain with Marshal Soult. His attachment to the Napoleonic dynasty and dislike to the Bourbons were shown in various ways during 1815 , and his name was consequently placed on the list of the proscribed; but after wandering in disguise from one city to another be was allowed quetly to return to Pars in 1820. In 1829 he was placed at the head of a scientric expedition to the Morea, and in 1839 he hed charge of the exploration of Algeria. Through all the vicissitudes of his life his literary activity was great, and he did a great deal for the popularization of his favourite science. He was editor of the Dictionnaire classique d'hastorre naturelle, and one of the principal authors of the Annales des sciences physiques; the official work on the Morea was produced under his care, and be contributed frequently to periodical publications The most important of his separate produc. tions are-Essais sur les Eles Fortunées, 1803, Voyage dans les îles d'Afrique, 1804; Justzfication de la condutte et des opinions politiques de J. B. Bory de Saint-Vincent, 1816 ; Voyage Souterrain, being an acconnt of the quarries in the neighbourhood of Maestricht, 1823; L'Homme, essai zoologique sur le genre humain, 1827; Rèsumé de la geographie de la Péninsule, 1838.

BOSA, a city on the western coast of the island of Sardinia, in the province of Cagliari and diatrict of Oristano, in a fine valley on the northern bank of the Terno, in $40^{\circ} 16^{\prime} 40^{\prime \prime} \mathrm{N}$. lat. and $8^{\circ} 25^{\prime} .31^{\prime \prime}$ E. long. It is the see of a bishop, and bes s cathedral and a diocesan seminary. The harbour is safe, being sheltered by an islet. Coral fishery is carried on, and there is trade in cheese, grain, and wine. Population, 6706.
bOSC, Louls Auguatine Guillaume, French naturabist, was born at Paris on the 29th January 1759. He was educated at the college of Dijon, and attended the lectures of Durando on Lotany, which inspired him with a passion for natural history. He followed up his studies at Paris, and was, a constant auditor at the Jardin des Plantes. Even when closely occupied in official work, he managed to find time for his favoarite researches and contributed many valuable papers to various scientific transactions and reviews. At the age of eighteen he had obtained an appointment unier Government, and he rose to be one of the chaf othicials in the postal department. Under the ministry of looland he also beld the post of superintendent of prisuns, but the violcut outbreaks of 1793 drove him frum office, and compelled bin to take refuge in flght. For some montlas he lay concealed in the forest of Montmoroncy, barcly solsisting on roots and vegetables. He was enabled to return to liatis on the fall of Robespierre, and foon after bet out for Anerica, resulving to explore the natural ricles of that country. The immense materials he gathered were nower publishod in a complete form, lut much went to enrich tho works of Lacepede, Latreille, and ethers. After his return, on the establishment of the

Directory, he was reinstated in his old office. Of this he was again deprived by the coup d'élat of 1799, and for a time be was in great destitution. He set resolutels to work, however, and by bis copious contributions to scientific literature, contrived to support himself and to lay the foundations of a solnd reputation. He was engaged on the Supplement to Rozier's Dictionary, on the new Dictionnaire d'historre naturelle, and on the Encyclopédre Méthodique. He edited the Dictionnarre ravsonnè et universal d'agncul. ture, and was one of the editors of the Annales de l'agraculture Francazse. His increasing fame brought bim manifold employments. He was made inspector of the gardens at Versailles, and of the public nurseries belonging to minastry of the lnterior. The last years of bis life were devoted to an elaborate work on the vine, for which he bad amassed an immense quantity of materials. His death, on the 10th July 1828, prevented the prosecation of this work; and has notes which still exist are said to be so unsystematic as to be unfit for publication.

BOSCAN, JUAN, a Spanish poet, celebrated as the introducer of Italian measares into Spanish literature, was born about the close of the 15 th century. The exact date 18 unknown, but it was probably a few years before 1500. He was of patrician birth and appears to heve passed some years in military service. He died in 1540 at Perpignen, where be was residing with the duke of Alra. His poems were published in 1543 at Barcelona by his widow. They are divided into four booke which mark out distinetly the atages of Boacan's poetical history. The first book contains light pooms in the Old Castilian metres, resembling the Canconeros. These were written in his youth, before 1526, in which year he became acquainted with Andrea Navagiero, ambassador from Venice. Navagiero urged bim to adopt some of the Italian measures, and bis advice gave a new turn to Boscan's activity. The second and third books contain a number of pieces in Italian metres, sonnets, canzones, and poems in blsnk verse, terza rima, and octaves. The longest of these poeme is the Hero and Leander, in blank verse. The fourth book contains his best effort, the Allegory, written in the maturity of his powers, and exhibiting grest delicacy of imsgination and skilful verse composition. He also published, in 1534, a translation of Bolthasar Castighone's Italian poem The Courtier. Boscan's greatest follower in the endeavour to mould Spanish poetry after Italian models was Garcilassa de la Vega, who is more celebrated than bis master.
See Bouterwek, Spanish Lutcrature, vol. i.; Ticknor, Alstory of Spanish Liccrature, vol. i.

BOSCAWEN, EDWARD, British admiral, was bore August 19, 1711. He was the third son of Hugh, Lord Viscount Falmouth. He early entered the navy, ard in 1740 distinguisbed bimself at the taking of Porto Bello. At the siego of Carthagens, in March 1741, at the head of a party of seamen, he took a battery of fifteen 24 -pounders, while exposed to the fire of another fort. On his return to England iu the following year be married, and entered parliament as member for Truro. In 1744 he captured the " Medea," a French man-of-war, commanded by N. de Hocquart, tho first ship taken in the war. In May 1747 he signalized himself in the engagement off Cale Finisterre, and was wounded in the shoulder with a nusket ball. Locquart again became his prisouer and the French ships, ton in number, were taken. On the 15 th July, he was made rear-admiral and commander-in-chief of the expedition to the East Indies. On the 29 th Jaly 1748 he arrived off Fort St David's, and soon after laid siege to Pondicherry; bat the sickness of his men and tho approach of the munsoons led to the raising of the siege. Soon afterwards he received news of the neace, and Madras was delivered up to him by the French. In April 1750
he arrived in England, avd was the next year male une of the lords of the Admuralty, and chosen an elder brother of the Trinity House. In February 1755 be was appointed vice-admiral, and in April he intercepted the French squadron bound to North America, and took the "Alcrde" and "Lys" of sixty-four guns each. Hocquart became bis prisoner for the third time, and Boscawen returned to Spithead with his prizes and 1500 prisoners. For this exploit be received the thanks of Parliament. In 1758 be was appointed admiral of the blue and commander-in chef of the expedition to Cape Breton, when, in conjunction with General Amberst, he took the fortress of Louisbourg, and the island of Cape Breton,-services for which be agrain received the thanks of the House of Commons. In 1759, being appointed to command in the Mediterranean, he pursued the French fieet, and after a sharp engagement in Lagos Bay, took three large ships and burnt two, returning to Spithead with his prizes and 2000 prisoners. In December 1760 he was appointed general of the marines, with a salary of $£ 3000$ per annum, and was also sworn a member of the privy council. He died at his seat near Guildford, January 10, 1761, in the 50th year of his age.
loSCOVICH, Roger Joseph, a distinguished Italian mathematician and natural philusopher, and ono of the earlieat of forergn savants to adopt the thenry of Newton, was born at Ragusa in Dalmatia, May 18, 1711, accurdeng to the usual account, but ten years earlier according to Lalande (Éloge, 1792). In his fifteenth year, after passing through the usual elementary stodies, he entered the rociety of Jesus. On completing has novicate, whath was apent at Rome, he studipd mathematics and physics at the Collegium Romanum; and so brilliant was his progress in these aciencea that in 1740 be obtamed the appointment of professor of mathematics in the college. For tha poat he was especially fitted by his large acquaintance with nodern advances in science and by his skill in a classical severity of demonstration, acquired by a thorough study of the works of the Greek geometricians. Scveral ycars before this appoiatment he had made bimself a nane by an elegant aolution of the problem to find the sun's equator and determine the period of his rotation by observation of the spots on his surface. Notrithstanding the arduous dutica of his professorsbip be found time for investigation in all the fields of physical science; and he publiahed a very large number of dissertations, sowe of them of considerable length, on a wide variety of subjects. Among these aubjects were the transit of Mercury, the Aurora Borealis, the figure of the earth, the observation of the fixed atars, the inequalities in terrestrial gravitation, the application of mathematica to the theory of the telescope, the limits of certainty in astronomical observations, the solid of greatest' attraction, the cycloid, the logstic curve lines, the theory of comets, the tides, the law of continuity, the double refraction micrometer, various problems of spherical trigonometry, \&c. In 1742 he was consulted, with other men of science, by the pope, Benedict XIV., as to the best means of securing the stability of the dome of St Peter's, in which a crack bad been discovered. His suggestion was adopted. Shortly after he engaged to take part in the Portuguese expedition for the survey of Brazil and the measurement of a degres of the meridian; but he yielded to the urgent request of the pope that he would reman in Italy and undertake a similar task there. Accordingly, in conjunction with Christopher Maire, an Englisb Jesuit, he measured an arc of tro degrees between Rome and Rimini. The operations were begun towards the close of 1750 , and were completed in about two years. An aecount of them was published in 1755, entitled De Luterarza ixpeditione per pontificam ditionem ad dime-
tendos duos meridianz gradus a P. P Marre et Boscovulh. The value of this work was increased by a carefully prepared map of the States of the Cburch. A French tranalation appeared in 1770. A dispute baving arisen between the Grand Duke of Tuscany and the republic of Lucca with respect to the drainage of a lake, Boscovich was gent, in 1757, as agent of Lucca to Vienna, and succeeded in bringing about a satisfactory arrangement of the matter. In the following year he published at Vienna his fanous work on the molecular theory of matter, entitled Theora philosophies naturals redacta ad unicam legem virum on ratura exustentium. Another occasion for the exercise of his diplomatic ability aȯon after presented itself. A suspicron having arisen on the part of the British Government that ships of war bad been fitted out in the port of Ragusa tor the service of France, and that the neutrality of Ragusa bad thus been violated, Boscovich was elected to undertake an embassy to London (1760), to vindicate the character of his rative place and satisly the Government. This mission he discharged successfully, with credit to himself and sansfaction to his countrymen. During his stay in England be was elected a fellow of the Royal Society, which received Lum with marks of the highest respect. He soon after paid this society the compliment of dedicating to it his Latin poem, entitled, De Solks et Lunce Dejectibus. This prolix composition, one of a class which at that time vas much in vogue-metrical epitomes of the facts of science-contans in about five thousand lines, illustrated by volumicous notes, a compendium of astronomy. It was for the most part written on horseback, during the author's rides in the country while engaged in his meridian measurements. The book is characterized by Delambre as "uninstructive to an astronomer and unintelligible to any one else."

On leaving England Boscovich travelled in Turkey, but ill health compelled him soon to return to Italy. In 1764 he was called to the chair of mathematica at the University.of Paria, and this post he held, together witb the directorship of the observatory of Brera, for six years. He was invited by the Royal Society of London to undertake an expedition to Califoruia to observe the transit of Yenus in 1769; but this was prevented by the recent decree of the Spanish Government for the expulsion of the Jeguits from its dominions. The vanity, egotism, and petulance of Boscovich provoled his rivals and made him many enemies, so that in bope of peace be was driven to frequent change of residence. About 1770 be removed to Milan, where he continued to teach and to bold the directorship ol the observatory of Brera; but being deprived of his post by the intrigues of his associates be was about to retire to his native place, when the news reached him (1773) of the suppression of his order in Italy. Uncertainty as to his future lot led him to accept an invitation from the king of France to Paris, where he was naturalized and was appointed director of optics for the marine, an office instituted for bim, with a pension of 8000 livrea, He remained there ten years. but his position became irksome, and at length iotolerable. He continued however to devote himself diligently to the pursuits of science, and published many remarkable memoirs. ${ }^{\text {© }}$ Among them were an elegant solution of the problem to determane the orbit of a comet from three observations, and memors on the micrometer and achromatic telescopes. In 1783 he returned to Italy, and spent two years at Bassano, where be occupied himself with the publication of his Opera pertinentia ad optcam et astronomzam, de., which appeared in 1785 in five velumes quarto. After a visit of some months to the convent of Vallombrosa, he went to Milan aud resumed his literary labours. Eut his health was failing, his reputation was on the wane, his works did not sell, aud he gradually sank a prey to illness and disappointment. He fell into
melancholy, imbecility, and at last madness, with lacid intervals, and died at Milan on the 13th of February 1787. In addition to the works already mentioned Boscovich published Elementa universie matheseos (1754), the substance of the course of study prepared for his papils; and a narrative of his travels, eatitled Giornale di un viaggio da Constantinopoli in Polonia, of which several editions and a French translation appeared. His latest labour was the editiag of the Latia poems of his friend Benedict Stay on the philosophy of Descartes, with scientific annotations and supplements.
(w. L. R. C.)

BOSNA SERAI, Seraievo, or in Italian Seraglio, a city of European Turkey, aud capital of the province of Bosmia, is situated on the Migliazza near its junction with the Bosca, 246 miles south of Buda in $43^{\circ} 54^{\prime} \mathrm{N}$. lat. and $18^{\circ} 24^{\prime}$ E. long. It occupies the declivities of several small hills, and its numerous tirrets give it a rather imposing aspect. It is defended by a strong citadel, and retans portions of its ancieat walls. The houses are in general rather meagre, but of late there has been an improvement in the style of architecture, owing to the employment of Austraa and Italiaa workmen. The old Government buildıags have been replaced by a bandsome and spacions structure. There are upwards of 100 mosques, several Geek churches, and a few Roman Catholic conveats. Educational establishmeats owe any merit they possess to foreign influence, and notably to the stimulus given by Miss Irby and Miss Mackeazie (afterwards Lady Sebright). Bosna Serai ts one of the chief industrial and commercial cities in European Turkey. It manufactures tin, iron, and copper wares, fire-arms, cotton and woollen cloths, and leather, and is the centre of the Bosntan trade. In the neighbourhood are iroa mines, and works of censiderable extent. The city is the centre of a telegraphic system of somo importance, and is well situated for railway communication with both north and south. Bosaa Serai, originally called Bosnavar, was founded ia 1263 by the Hangariaa general Cotroman, and derives its present name from the Serai or palace built by Mahomet II. The population is very varionsly stated; the Prnssian consul gives it as about 50,000 in 1865, and in 1867 as not more than 35,000, while Salaheddio Bey, un La Turquee à l'exposition universale de 1867, states it as high as 70,000.

BOSNIA, the most north-westerly province of Tarkey in Europe, comprisiog Bosnia Proper, a part of Torkish. Craatia, or Craina, the district of Herzegovina, and the ancieat Rascia. It extends from $42^{\circ} 3 y^{\prime}$ to $45^{\circ} 15^{\prime} \mathrm{N}$. lat, and from $15^{\circ} 40^{\prime}$ to $21^{\circ} 2^{\prime} \mathrm{E}$ long; is bonnded on the N and W. by the Austrian dommions, S. by Montenegro and Albania, and E by Serva; and has an area of about 94,024 square miles. The whole province, with the excep. tion of the valley of the Save, is more or less mountainons, many of the summits reachiog the beight of 6000 feet. A large proportion of the surface is valuable forest-land, which furaishes almost inexhaustible stores of timber and fuel. Plums are largely grown in the northern portion and ex ported as prunes, - Deska on tho Save being one of the chief centres of the trale. In Herzegovina the vine, ohve, fig, and pomegranate flourish. Maize and wheat are the principal grains in cultivation, but barley, oats, hemp, and even rice are also grown. Abuncance of pasture land accurs throughout the proviace, and cattle, sheep, and goats are reared; the number of the cattle was, however, greatly diminished by the plague in the decale ending with 1870. Large droves of swine aro fed in the oak-forests. In mineral deposuts the country is especially rich. The whole valley of the Bosma is said to be one enormoss coal-bed; copper is worked in several places, and at lnatch is a very - valuable cinnabar mine. There are also sone quarries of food narble, and at Tusla is a copions spring of salt water,
from which culinary salt is manofactured, though the demand for this article has still to be met by a foresgn sapply. The manofactures of the province are on a small scale they inclade leather, cloth, and iron wares. The principal exports are fruit, timber, cattle, wool, raw lamb-skins, furs of wild animals, wax, and honey. The foreign trade is almost solely confined to the Austrian dominions,-the lack of a port on the Adriatic greatly impeding the intercourse by sea. Within the last ten years there bave been constructed several carriage roads, the most important of which aro from the capital to Brood, Gradishka, Mostar, and Yenibazar respectively. A ralway has been constructed from Rasnice in Austria to Banyaluka, forming part of a great condecting luse between Constantiuople and Western Europe. The provinco is divided into the seven sandjaks of Banyaluka, Bhac, Herzegovina, Yenibazar, Seralevo, Travnik, and Zvornik. Ethnologically it is Servian, not even the aristocracy being Tarks, though they are principally Mabo metans. A small part of the south bas an Albanian population. Mahonetanism is not only predomiaant, but is sometimes enforced by persecation. Education is said to be greatly neglected, though from the native statisticy a different judgmeat might be formed, no fewer tbat 1079 schools being registered; bit of these a large proportion are attached to the mosques, and have a merely nommal existeace. The total reveane of the province was, in $1871,50,589,970$ piastres ($\{456,715$), and the expenditure, $19,724,745$ (£178,070). The population increases very slowly, chiefly owing to mortality among the clildrea occasioned by improper treatment. The climate is by no ineans unhealthy. The number of the inhabitants has remained almost stationary, being estimated at $1,100,000$ ia 1844, and at $1,279,296$ in 1873 . The largest cities after Bosaa Seria, the capital, are Banyaluka (15,000), Fotcha, Mostar, Zvornik, and Travaik (about 12,000 each), and Yenibazar (from 9000 to 15,000). Bosnia was at first depen. dent onthe Servian and Croatiaa kings, but was raised for a tıme to a separate procipality, which reverted about 1339 to the Servian king Stephen. After his death it was again independent, and continued to have its own rulers till the latter balf of the 15 th century, in spite of the eacroachments of the Turks, who at last succeeded in incorporat ing it in !503. The Hungarians loug disputed this appropriation, but the country was defiately ceded to Turkey at the peace of Carlovitz in 1699, which was confirmed by the treaty of Sistovar in 1791. It is at preseat (1875) the scene of a formidable insurrection.

See Chaumette Desfosse's Toy. en Bosnie, 1822; Pertusier, Low Bosnie. 1822; Hilferding, Bosnia, Hercegovina, i staraya Serbia (in Russian) 1859: Sax, Skizeen über die Bezohner Bosniens, 186t; Roskievicz, Bosnaa thul Hersegonna, 1867; Blau in Zeischrift jü̈ Erdk., Berlin, 1868; Rousseau in Bulletin de la Soc. de Gtog., 1868 : Maurer, Rese d. Bosnien, 1870; Geiger and Lebret, Studien über Bocrien, etc., 1873; and a very full report by the English coasul Holmes for 1872.

BOSPHORUS (or, more correctly, Rosporus, from the Greek Bóctopos, Ox ford), originally used for a strait, was especially applied to the Bosporus C'immerius, or Strait of Yenikale, and the Bosporus Thracius, or Strait of Cor stantinople. In modern times it has almost become the exclasive desigaation of the latter strait, which unites the Elack Sea with the Sea of Marmora and forms the boundary between Europe and Asia. The channel is about 16 English miles in length, and has a maximum breadth of nearly 2 mules, a minimum breadth of 550 yards, aad along the middle a varying depth of 148 to 388 fect. [n the centre there is a rapid current froan the Black Sea to the Sea of Marmora, and a counter-current sets in along cach shore. At the narrows the three currents produce a most violent commotion. The average temperature of the water hardly daffers from that of the air, but it almost reves
reaches the atmospberic maxima and minima. The surface is very rarely frozen over, not more than five or aix instances being recorded since the 8th century a.d. The Golden Horn was partially frozen over, in 1849 and 1862. The shores of the Bosphorus are composed in the northern pnrtion of different volcanic rocks, such as dolerite, granite, and trachyte; but along the remaining course of the chanmel the prevailing formations are Devonian, consisting of sandstones, marls, quartzose conglomerates, and calcareous deposits of various kinds. The seenery on both sides is of the most varied and beautiful description.

Sketct-Map of the Bosphorus.
See Miss Pardoc's The Bosphorus and the Danube, 1539; Ham. mer, Constantinopolis und der Bosporos, 1822 ; Reisuswitz, Bosporos and Altiia, 1861: Tchihatchef, La Basphere et Consiantinople, 1864, and Asic Mineure (Gëographio physique comparée), 1852°. Dethier, Der Bosphor und Consuntinopol, 1873.

BOSSI, Gittsepre, an Italian painter and writer on art, was born at the village of Busto Arslzio in the Milanese. in 1776. or 1777. He was educated at the college of Monza; and his early fondness for drawing was fostered by the director of tho college, who supphed him with prints ffter the works of Agostino Carracci for eopies. Passing next to the academy of Brera at Mikn, he thero pursucd his special artistie studies, and about 1795 went to Rome. Gere he studied for five or six years, associating with many cstists of the Italian school, and especially forming an intimate friendship with Canora. On his return to Milan te was named assistant secretary of the Aeaderoy of Fine Arts, and on the death of Blanconi succeeded him in the office of seeretary. - He rendered important service in the organization of this new institution. In 180.1, in conjunction with Oriani, he drew up the rules of the three academies of art of Bologna, Venice, and Milan, and soon after was rewarded with the decoration of the Iron Crown. On the oecasion of the visit of Napoleon I. to Milian in 1805, Bossi exbibited a drawing of the Last Judgment of Mtechacl Angelo, and pictures representing Aurora and

Night, ©edipus and Creon, and the Italian Parnassus. By command of Prince Eugene, vieeroy of Italy, Bossi undertook to make a copy of the Last Supper of Leonardo, then alinost obliterated, for the purpose of getting it rendered in mosaic. The drawing was made from the remans of the original with the aid of eoptes and the best prints. The mosaic was executed by Raffaelli, and was placed in the Imperial Gallery of Vienna. Bossi made another copy in oil, which was placed in the museum of Brera This nuseum owed to him a fine collection of casts of great works of sculpture acquired at Parns, Rome, and Florence. Bossi devoted a large part of his hife to the study of tue works of Leonardo; and his last work was a series of drawings in monochrnrae representing incidents in the hife of that great master. He left unimisbed a large cartoon in black chalk of the Dead Cbrist in the bosonn of Mary, with John and the Magdalene. In 1810 he published a spectal work 20 large quarto, entitled Del Cenacolo di Leonardo du Vinci, which had the mertt of greatly interesting Goethe. His other works are Delle Opinioni di Leonardo intorno alla simmetria di' corpi umani 181 I), and Del Typo dell arte della pittura (1816). Bossi died at Milan, December 15, IS16. A monument by Canova was erected to his memory in the Ambrosian library, and a bust was placed in the Brera.
BOSSI, Giuseppe Carlo Aurelio, Bafon iee, an Italian poet and diplomatist, was born at Turin, November 15 , 1758. He made his first appearance as poet at the age of eightcen by the publication of two tragedics, Rea Silena and I Circassi; and four sears later he sook the degree of doctor of laws. In 1781, in consequence of his ode in praise of the edict of toleration promulgated by the Emperor Joseph II., be was banished the kingdom, but having rendered during his exile an important service to his countrymen he was recalled and appointed undersecretary of state for foreign affairs. In 1792, on oceasion of the French invasion, he was sent to the court of Prussia to negotiate an alliance, and thence went as ambassador tio St Petersburg. Dismissed by the emperor in consequence of the treaty of alliance between Sardina and France (1797), be was named ambassador to Venice, which he reached only in tume to witness the fall of the republic.
He was next appointed envoy He was next appointed envoy to General Bonaparte in Italy. After the conquest of Sarctinia Bossi was a menber of the Frovisional Government, and one of the three deputies sent to Paris to petition for annexation to France. The Russian invaston of 1790 drove hum to take refuge 11 . the Vaudois valleys. He was afterwards a member of the Prorisional Government, lut retired in 1802. Three years later he was made prefect of the Ain, he was created baron by Napoleon I. in 1810, and was afterwards transferred to the prefecture of La Manche. Deprived on the second return of the Bourbons. he came to England, but returned to Franco the following year. He spent his remaining years in retirement. Besides the works above mentioned Bossi was anthor of a long poem entitled Oromasia, on the events nf the French revolution; Monaca, a prem on the secularization of convents (1787); and varous lyrieal pieces, among which are Independenza Americana (1785). Olandu Pacificata (1788), Vision (1799), de. He died at Paris, January 20, 1823.
BoSsu, Rene le, an eminent French crilic, born at Paris, Mareh 16, 1631. He studied at Nanterre, and in 1649 entcred among the regular canons of Sainte-Genevieve. After having acted as professor in different religious houses for twelve years, he withdrew into retirement. His first publication was Parallele des Principes de la Physique d'Aristen at de celle de René Descartes, whieb appeared in 1674, but met with little succesa. His next work, entitled Trrity du Poème Epigue, was published io

1675 and often reprinted afterwards. Its leading doctrine is that the subject should be ehosen before the characters, and that the action should be arranged withont reference to the personages who are to figure in the seene. Boilean, in his Third Reflexion on Longinus, prononnced this work "l'nn des menllears livres de poétique qui, du consentement de tous les habiles gens, aient été faits en nôtre langue." It may be mentioned, howerer, that Bossu is said to have defended Boilean against Saint-Sorlin, and to have received bis thanks for that service; and a sense of obligation may perhaps have dictated the commendation which Boilean bestowed on the work. Bossu died Mareh I4, I680.

BOSSUET, JaceUes Benigne, the celebrated orator and prelate, was born at Dijon, within a short distance of the cathedral, on the 97 th September 1627 . He was the fifth son of Béngne Bossuet and Madeleine Mochette. The family of wlich lee came, though of bourgeos rank, bad long takes an honourable part in the public and offeiel life of Burgundy. He was destincd from infaney for the church, and grew op amid influences emmently favourable to the unfolding of his powers, for, although at six years of age, on his father's appointment to be president in the parliament of Metz, he was left at Dijon, yet his edncation Gad been wisely confided to an uncle, Claude Bossuet, a targe-hearted man, ardently devoted to literature, whose delight it was to foster his nephew's intellectual gifts. These soon gare token of exceptional brilliancs, and in the Jesuits' College, where he went to school, he distanced all competitors in the facility with which he mastered the Greek and Latin classics, Virgil and Homer being his especial favonrites, for whose writings he contracted an unalterable attachment, just as Horace became the life-long companion of his rival Fénélon. It was from a bigher souree, however, that Bossuet's genins, which was essentially of the Hebrew type, caught its finest inspiration; and one day reading a Bible left open by accident at the prophecies of Isaiah, he was so thrilled by their poetry that thenceforth he became virtually "a man of one book," and in Holy Scripture, read and re-read until learned nltimately almost by heart, he found the field in which his mind conld best expatiate and gather light and power. In Bossuet, says Lamartine, the Bible was trausfused into a man. With that keen-sighted appreciation of talent whach they uniformly display, the Jesuits sought to cnlist him in their order, but family influence being against the proposal, in 1/it2 he was sent to Paris; nor could the circumstances of bus arrival there fail profoundly to mpress the fervid amagination of the boy, for it chanced to be on the very day on which Richelien, then near his end, was borne into the eity in a splendid morable chamber, ot the close of the vengeanee-taking eampaign, which termmated in the execution of De Thou. Bossuet entered the college of Nasarre, the oldest in the University, where, under Nicholas Cornet, the presiding genius of the place, and in midst of the intellectual quickening imparted to it in commern with the whole of learned Eurepe by the new philosophy of Descartes, he achieved distinction in cvery department eacelt mathematics, for which he seems to have possessed weither the taste nor the faculty. At sixteen bis attamments were the talk of the town. He became the pet of the lettered arstocracy of Paris, and it argues his strength of character that be was unspoiled by their caresses. The applause which greeted the delivery of his thesis for the lachelor's degree enconraged him to perfeet his superb eratorical gifts, nor did he count it unlawfol then to le a frequent spectator when the chefs:d'auves of Corneille were played, although, later, he was not sparing in his criticism of the stage. At twenty-four he was appointed archteacon of Metz. In Lent 1652 , after a season of retreat at St Lazare, be receired priest's orders, and immediately quitted the gay
capital, and the career already opening to bim there, to fulfil the duties awaiting hinn in the comparative obscurty of the provinces. Six years were spent in unweamed pastoral activity, as well as in exhaustive private study of Scripture and of the Fathers, notably St Augustine, although even in the less read Patrisue writings he was at home, and queckly put his knowledge to use in a work of controversy entitled Refutation du Catechisme de Paul Ferry, a Protestant minister of Mctz. It is of interest principally because it outlincs even at that early date the doctrine aftermards vigoronsly defended by Bossuet of the limited authority of the popes in matters of faith. The echo of his pulpit eloquence had already begun to reach beyond Lorraine; during a short residence at Metz it fascinated Anne of Austria, the Queen Mother, and for the next ton years (1659-69) be was in perpetual request un the metropolis. Wherever be appeared court and city flucked to listen; the queens pent from the palace and the nuns of Port Royal from their seelusion; Condé, Turenne, Madame de Sevigné, and otber famons contemporaries mugled with the crowd; while, in 1662, the preacher's trimph reached a elimax, when after hearing him for the first time at the Lourre, Louns XIV., in a moment of rasely arakened enthusiasm, despatched a royal message it Bossuet's father-"' pour le felieiter d'avoir un tel fils."

According to Lachet, these matchless discourses maj be classified as belonging to three periods:-that of Metz. chowing a considerable measure of crudeness both of thought and expression ; that of Paris, distinguished by strengit and splendonr (for, as Sainte-Benve observes, every trace of immaturity or questionable taste disappears from the moment when Bossuet enters the cirele of the king's influence); and that of Meaus, in which faultless grace of composition is purehased at the expense of vigour. On ordinary occasions, and for an audience that lored the practical truths of religion marshalled with logical force and distinctness, Bourdaloue was, perbaps, equally attractive as a preacher-there is even more contemporary talk about him; but in the Oraisons Fundibres Bossuet is unapproach. able. In this species of oratory Mascaron and Flechier had preceded him, but he is the veritable creator of it, and nowhere does his genins take such wing as at the gravis mouth, when, recounting the virtnes of the illustrions dead, be pictures, with wonderful sweop of imagination and mastery of detail, the historical events and personages of the epoch in which they lived, the more impressively to demonstrate that all carthly pomp and renown "are shadows, not substantial things." Not that ie altogether escapes the vice of the French pulpit of that age, for occasionally be does elevate into types of excellence those who fell far short of it; but, as compared with otber offenders, the adulation which he offers is, even in the bearing of royalty, measurcd and temperate. His funeral orations at the death of Henriefta of England, of her daughter, the duchess of Orlcans, and of the great Conde, are commonly deemed his finest efforts of the kind.

In 1669 lossuet was appointed to the diocese of Condom, and in the year following he became preceptor: the Danphin; but bcing unable, in conscience, to retal: both offices he resigned the former, and, in consideranas of the pecmiary sacrifice inrolved, obtained the revenue: of the Abhey of St Lucien at Bcanvais. Convinced that on the culture of the Daphin might depend the future weifare of the French people, he threw himself with incredible cnergy into the novel daties of the preceptorship, and resumed his own education the better to educate his august but indolent pupil. He lacked that sweetnes: of nature, however, which afterwards gave to Finelon auch sway over the Dauphin's son. For the edification of his royal charge Bossuct wrote several able works, such as

L'Historre abregée de la France; La Politique sacree; I'raité de la connaissance de Dieu et de soiméme; and most celebrated of aL , Le Discours sur l'Ristoire unvverselle. This work, origioally meant to be a mere abridgment for use in the royal schoolroom, grew as be wrote into a magnificent bistorical narrative. It consusts of inree parts:(I), a sketch of history from Genesis to the birth of the modern world under Charlemagne; (2), an account of the Mosaic and Christian economies, (3), a series of reflections od the vicissitudes of buman gevernment,-the whole being characterized by splendour of colouring and vast range of plan, although this latter feature is less striking in late editions than in the earliest, which was not broken up ato chapters. In the composition of it Leibnitz greatly belped bim, by forwarding from Germany every book bearing on the subject on which he could lay bands. Its central thought is that of all changes in history being overruled with sole reference to the progress aod umversality of true religion; but Bossuet's treatment of this theme, votwith. standing a host of striking and uncballengeable observations, is vitiated by his identification of the Christan fathexclusively with the Papal form of it, and by the way in robch be ignores the place and value of pagan antiquity in the world's development, so as to lovite, if not to justify, the oneer of Voltaire: "Il parait avoir écrit unıquement pour insinuer que tout a été fait dans le monde pour la nation "are."

It was not until the close of 1679 that Bossuet's official dutiea as preceptor came to an eud, but in the interval bis industry otherwise did not slacken. He was elected a member of the Academy of France in 1671. About this tune, too, be gave to the world the most freguently revised, nost buterly attacked, and most wadely trabslated of all bis hooks, L'Exposition de la doctrine catholique. Composed in 1669 , and originally circulated in manuscript, it had been credited with effecting in thas shape not a few conversons, among others that of Turcume But Jean Dalle and other Refomers having charged it with toming down the harsbness of Roman dogma with the purpose of eosnaring their Aocks, Bossuct resolved to fublish it. The book created a wide-spread fluter of excitement, as may bo inferred from the terms employed in speaking of it by Jurneu, perbaps the ablest of Bossuet's opmonents, - "Everybody is gone mad over the Erposition, everywhere one bears of the most disgraceful perversions " It twice recerved the ampramatur of the Pope in despte of the author's undisguised opmions wath respect to mfallibility. Curionsly enougb, it was this treatise that brought about in 1678 the conference between Bossuet and Claude, the learned pastor of Charenton. Floquet mforms us that wherever he could obtain a face to face encounter, Bossuet preferred it to controversial writing. On the present occasion the discussion lasted five hours, turning on the authority of the church, with what result is, perhaps, not unfarly described by Bayle in the pithy remarb-" That as at the battle of Seneff, both sides clamed the victory."

During the latter sears of the preceptorship Bossuct, anth a few genial assaciates, basied himself with Notes and Annotations of the Books of Srripture. Many picasant hours were spent in these round-table studies, and it is proof of bis mexhaustible energy that he did not hesstate, even so late in life, to acquire a knowledge of Hebrew, though there may be a touch of exaggeration in what was eald of him by an admirer, - "that be was not less fapiliar with the language of Moses than with that of Homer." His life at court was not whthout its shadows. His very position avolved bim unwillingly in the maserable transactinns apringing out of the unhallowed relation in which the king stood to bis successive farourites. But Bossuet Inever forgot the bishop in the courtier. He remonstrated
often and geriousiy witd tae profligate Lours. as spritual adviser of the beautiful but unbappy La Vallerc, hus Cbristian geotleness and wisdom shme out conspicuously in the interviews and correspondence which issued in hir retirement to the convent of the Carmelites If, in the case of Madame de Montespan, his actions are bore open to misconstruction, yet further menvestigation tends towards his acquittal of the charges advauced by varmus bis:ounas

Appointed in 1681 to the bishopric of Meaux, Bossuet had scarcely been mstalled when he was summoed to take part in the memorable assembly of the French clergy win which bis name will always be associated. This council was convoled by royal edict, at the mstance of the ricig. themselves, for the purpose of finding a way out if thi: cooflict, yearly growing fiercer, between Loms and Romer The strife arose about the regalza, or clam of the Crumi to administer the affars of a vacant see until such time as its new occupant should take the oath of fidelty. Rut in the course of its discussions the coubell was agitated by questions far wider than that in which it took 1is Hise; and embracing eventually the whole subject of the extent and linuts of Papal authority. Bossuet preached the opening sermon. He gave fearless utterance io his cherished opinons. Referning to the aggressive disposition of the Papacy he declared-"Ocean itself, mmense though it is, has its limits, and to break through at its own caprice would be to lay desolate the world." At the same tume, seemg the heated state of the pulic onind, he counselled moderation, occupying a middle place betwcen Ultramontanists and ultra-Gallicans, and was even opposed to any formal declaration of the Gallican position. Being overruled in thas chrefly through the influence of Harlay, archbishop of Paris, he nest directed his efforts towards issuing the assembly's decision in the most temperate and conciliatory form. He was hmself appointed to draw it up, and there resulted the famous four articles which were in substance these:-I. The rivil authority is not subject to the ecclesiastical in temporal things; II. As decreed by the Conncil of Constance, n general connell is supenor to the Pope; III. The excrens of the apostulic power onght to be tempered by the usage of particular churches, IV Except with the consent of the church the judgment of the Pope is not ualterable in matters of fath. Being varulently attacked, these proposilions were defended by Bossuet in his great Defense tie la doctrine du clerge de France, which, bowever, was dos printed until 173.5

Bossuet applanded the shameful revocation of the E.dict of Nantes (1685), but his Euglish bingrapher reminds us that, stern as was his character, he did his utmosi 10 secure to Protestants as much lilerty as was possible under the earsting law, and, further, that no malitary execution took place during his eplscopate at Meaux.

In I688 there appeared L'Historre des l'arzations des Eghses Protestantes, a review and analysis, in fifteen books. of the confessions of fath emitted by Protestant churches during the epoch of the Reformation, in which Bossupt aims at demonstratug their meoherency and self-contra. diction, eved on cardinal points, as coutrasted with the doctrmal stability of Rome. Forcible and learned as it undoubtedly is, this work is grevously lacking in candour and in the paramount love of truth, the treatment of I uther and bis writings being especially unscrupulous and vindictive. Indeed, from first to last, it is executed in the spirit less of an upright jodge than of an unprincipled partisan. These less attractuve features of Bossuet's character, over which one would gladly throw the veil, became still more promment when in 1689 there broke out the bitter quarsel on the subject of "Quietism," the melancholy and fluctuating bistory of which may he hest emhraced
under that of Fenelon. Bossuet, by his attitude, alike unjust and ungenerous, has left an indelible stain upon his otherwise brilliant reputation, while the man for whose condemnation he resorted to violence and intrigue conducted himself with the meekness and charity of a saint. Attacked by a painful disorder, of which the premonitory symptoms appeared in 1696, the venerable prelate lingered on until the 12th of April 1704, when he died at Paris in bis 77th year, amid the tokens of universal regret.

Of unrivalled eloquence and consummate learning, an intrepid controversialist and defender of the faith, as well as the most conscientious and diligent of bishops, he will probably be remembered longest as the champion of the aucient rights and liberties of the Gallican Church, and the representative of a phase of catholicism which the Vatiean council has for ever banished from within the Ronazn pale.

The best edition of Bossuct's works is that of Lachat in thirty. sne vols., Paris (Vives). See also Life of Bossuet, by Cardinal de Bossuct; Sludies of his Life, by Floquet; and the Bfemorrs of the Abbe le Dieu. There is a full and admirable English Life of Bossuet, by the author of the Life of SL Francis de Sales, 1874. For Brougham's estimate of Bossuet as an orator, which is very depre. sistory, see his Works, iii. 262-269. For a critivism of Li Histotre Universclle see Flint's Philosophy of History.
(A. B. C.)

BOSTON, a parliamentary and municipal borough and seaport town of England, in the county of Lincoln and wapentake of Skirbeck. It is situated in a rich agricultural district on the Witham, six miles from the sea, and thirty miles S.E. of Lincoln on the Great Northern Railway, in $52^{\circ} 59^{\prime} \mathrm{N}$. lat. and $0^{\circ} 2^{\prime}$ E. long.
Boston is by some supposed to have been a Roman station in the province of Flavia Cesariensis, but of this sufficient evidence doos not seem toexist. According to the Saxon Chronicle, St Botolph, the patron of sailors, founded a monastery at Icauboe in 654 , which was destroyed by the Danes in 870 . From this Bosron is said to have taken its name (Botalph's town). It became a place of considerablo sommercial importance after the Norman Conquest, and, in 1204, when the quinzieme:

Lax was imposed on the ports of England, that of Boston amounted to $\mathbf{5 7 8 0}$, and was excecded only by that of London, which was $£ 836$. A great annual fair was tacld in the town at this period. By 27 th Edward IIL. it was made a staple for wool, woolfells, leathor, and lead. Its nrosperity about this timo induced merchants from the Fanseatic and other Continental commercial cities to settle here ; a century later, however, these foreigners were obliged tn leave, in consequeace of a quarrel with the townsmen. From this time it rapidly declined. The dissolution of tho monasteries by IIenry VIII. injured the town, though compensation was in some degree made by granting it a charter of incorporation ; and Philip and Mary endowed it vith upwards of 500 acres of land. It afterwards suffered from the plagne and from inundations, to which its low situation rendered it particularly liable. It was for some time the headquarters of Cromwell's arny.
Boston is we! ! built, paved, and lighted. It is divided into two nearly equal parts by the Witham, here crussed hy an elegant iron bridge of one arch, 86 feet in span. At one time the supply of water was very deficieat ; but in virtue of an Act passed in 1817, there is now a plentiful supply corveyed by pipes from a distance of twelve miles. The principal building is the parish church of St Botolph, fouraed in 1309, and partly restored in 1857 at the
expense of the inhabitants of Boston in Anuerica, in memury of their connection with the English city. It is one of the largest churches without aisles in the kingdom, being 290 feet by 98 within the walls. The tower, 290 feet in height, resembles that of Antwerp cathedral, and is crowned by a beautiful oetagonal lantern, forming a landmark seen forty roiles off. A chapel of ease was erected in 1822. There is a free grammar school, founded in 1554 , a charits school for the sons of poor freemen, a blue-coat, national, and other schools. There is also a dispensary, a torn-hall, a market-house, a custom-house, assembly rooms, a theatre, a borough gaol, a bouse of correction, a union poor-house, Vaushall gardens, a mechanics' institution, publie baths, subscription libraries, an athenrum, and a freemason's hall, built in initation of Egyptian architecture. The manufaetures consist chiefly of sail-cloth, canvas, sacking, ropes, beer, leather, bats, and bricks. There are also iron and brass foundries, and ship-yards, with patent slips, where vessels of 200 tons are built.

From neglect to clear the river, it became so obstructed that in 1750 a sloop of 40 or 50 tons could with difficulty come up to the town at spring tides. Since that period great improvements have been made, and vessels of 300 tons are edabled to unload in the town. The imports are; chiefly timber, pitch, tar, and hemp from the Baltic, and coal and manufactures coastrise ; the exports, wool, woot, corn, and other agricultural produce. The total value of the former was in $1873, £ 200,8: 5$, and of the latter E 86,571 . By means of the river and tho canals connected therewith, Boston has navigable communication with Lincoln, Gainsborough, Nottingham, and Derby. The East Lineolnshire Rallway conncets it with Louth, Grimsby, and other towns in the north, and the Great Northern with Peterborough and the south; another line extends in Lincoln. It has returned two menibers to parliament since tho reign of Edward IV. The title of Baron of Boston is borne by the lrby family. In $18 i 1$ the popu lation within the parliamentary boundaries was 18,279 ; within the municipality, 14,526 .
ROSTON, the capital of the State of Massacbusetts, in Suffolk County, and the second city in commerce, wealth, banking capital, and valuation m the United States of North America. It lies at the bottom of Massachusptts Bay, and is one of many pear-shaped peninsulas formerly attached to the maivland only by narrow marshy necks, which fringed the shores of the bay. The Charles River, once more than double its present width, divides it from the similar promontory of Charlestown (the site of the battle of Bunker IIiil), on the otner side of which the Mystic River, uniting with the Caarles, flows into the harbour. The latest tetermination gives the latitude of Boston $42^{\circ} 21^{\prime} 27.6^{\prime \prime}$ N., and the longitude $5^{\circ} 59^{\prime} 18^{\prime \prime}$ E. from Washington and $71^{\circ} 3^{\prime} 30^{\prime \prime} \mathrm{W}$. from Greenwich. When it is noon in Boston it is 4 o'clock 44 minutes and 14 seconds at Greenwich, and 36 minutes past 11 at ${ }^{\circ}$ Washington, which is distant by railroad 450 miles.
The Indian name of the peuinsula was "Sbarmut," meaning "living fountains." When Governor John Winthrop, with his company, came over from England witl. the king's charter, to establish a government under it in the bay, they reached Clarlestown, as a temporary settlement, on June 17, 1630. Looking across the Charles, the Indian Shawmut prescnted to the eye an elevation nearly in its centre, with threc distinct summit peaks, the remnants of the ouly one of which now remaining constitute the present. Feacon lill, so called from uss ancient use as a signal warniug station. These triple summits led to the substitution of the name "Trimountaine," or "Tremont," as the English designation of the whole peninsula-c favourte title perpetuated in the name of a central strect.
hotel, a theatre, a bank, a lecture-hall, \&c. A single tonely white man, the Rev. William Blaxton, a clergyman of the English Cburch, was then living, with bouse, orchard, and garden on the slope of the central hill, supposed to have come over in 1623, one of several isolated bettlers on the promontories and islands of the bay, called "the old planters." He iavited Wiathrop's company to sross the river and build their cabins on his side, because of the purer and mure abuudant water-springs. On the records of the company we read, that at a court held in Charlestown, Septembor 17 (s.s.), 1630, "It is ordered that Trimountaine shall be called Boston." This bas con. sequently been the date assumed for the foundation of what is now the present city, and the second centennial of which
was commemorated by public civic services, an oration by Josiah Quincy, a former mayor, then president of Harvard University, and a pocm by the banker-puet, Charles Sprague. It is not probable that the peninsula was occupied till a month later. Elaxton, not finding the new-comers congenial associates, sold out his rights to them in 1634, and moved elsewhere. It has often been said, and has been widely accepted, that Poston received its name in compliment to the second minister of its first church, the Rev. John Cottoc, formerly vicar of St Rotolph's, borough of Boston, Lincolnshirc, England. This was not the case. The Rev. John Wilson, of King's College, Cambridge, and of Sudbury, in Suffolk, England, canc in Winthrop's company, and was first pastor of the

Grouras. Plan of tbe City of Boston.

 line.
church. Cotton did not arrive till September 4, 1633, three years after the name Boston had been adopted. Undoubtedly the nave was chosen in compliment to the much honoured Mr Isaac Johnson, one of the foremost in She enterprise, who with bis wifc, the Lady Arbella, laughter of the Earl of Lincoln, came with Winthrop ju - vessel bcaring her name. Johason was irom the Engish Boston, as were also his associates, Athertou Hough, who bad been mayor of the borough, and Thomas. Leverett, "ruling elder" of the church, who bad been an alderman.

Some graceful courtesics have been cxchanged in recent years between the two cities. The English Boston sent over a copy of her charter, framed in wood from St Botolph's church, and this now bargs in the city ball of the Massachusetts capital ; and some descendants of John Cotton, with members of his American Church, through one of their number, Edward Everett, then American nuinister at the Court of St James's, united in a generous subscription to restore a chapel in St Botolph's, and to erect a monumental tablet in it to the revered teacher.

The sea-girt peninsula seems to bave attracted the choice of the coloniste as a place of settlement, because of its facilities for commerce and for defence. Its aboriginal occupants had previously been derasted by a plague, lcaving it vacant. Some fifty years afterwards the settlers satisfied tho claims of an Indian sachem, representing that his grandfather bad been its proprietor. Had these settlers contemplated the enormous outlay of labour, skill, and money, which their posterity would bave to expend upon the original site to make it habitable and commodicus, they might have planted themselves elsewhere. There was neither wood nor meadow on the peninsula; but it might be defended from the Indians and wolves, and as one early visitor vainly. imagined, from "moskitoes." The surface was very abrupt, irregular, hilly, and undulating, deeply indented by coves, and surrounded by salt-marshes left oozy by the cbbing tides, and separating the shores from the river channcls. The peninsula contained less than 1000 acres, and the narrow neck, which joined it to the =ain, was often swept by spray and water. Tha
widening of Charles River near its mouth gored deeply into the northeru side of the peninsula, almost dividing it, and the waters were soon turned to account for a mill-pond. This was filled up by earth from tho hills in 1807, adding more than 50 acres to the territory. Another broad core on the southorn side was filled in 1837, adding 77 acres more. The Back Bay, so called, and all the flats on both sides of the original neck, have since been reclaimed for tho various uses of a public garden, and squares, streets, dwellings, churches, schools, hotels, manufactories, \&c., coustituting, in fact, a new city with many costly and elegant structures, on what was originally the narrowest and most disagreeable, but is now the fairest and widest, portion of the primitive site. But whole forests from the State of Maine, and vast quarries of granite, and hills of country gravel, have been put to service in fringing water marging, constructing the wharves, piers, and causeways, redeeming the flats, and furnishing piling and solid foundations for the stately edifices, private houses, halls, churches, and railroad stations, principally between Charles River and the old Dorchester flats. From the first settlement, however, the ownership and occupancy of land by the citizens were not confined to the soil of the peninsula. The land needed for grazing, farming, and wood, on reighbouring promentories and islands was soon placed under the jurisdiction of Boston, for 1ts "inlargement." Portions of territory, thus added, were from time to time severed, and have since been re-annexed. Noddle's Island, now East Boston, was "layd to Boston" in 1637 It then contained 660 acres, with several hundreds more of flats and marsh, since reclamed. It bas a wharf, 1000 feet in length, for the English and Canadian steamers. Dorchester Neck and Point, contaming 560 acres, ferere annexed as South Boston in 1801, and the neighbouring Washington Village in 1855. The city of Rexbury was annexed in 1868; the town of Dorcheste: in 1870; the city of Charlestown, and the towns of Brighton and West Roxbury, in 1874. The 900 aeres of the origimal peninsula have been doubled on its own area, while tho present area of the city's jurisdiction covers 22,472 acres The whole length of the origiual peninsula, from Roxbury line to Winnisiumiet Ferry, was two miles and a little more than three quarters; its greatest breadit was 1 mile and 139 yards. The reclaimed territory is raised to a uniform level, sufficiently high to secure it against freshets, and is well drained. While the original ste still preserves to a large extent its irregularity of surfice, and its undulations, some of its former steep eminences have been reduced or wholly remeved. The highest emmence in the old territory is about 110 feet above the sea-level. This work of leveling, grading, and reclaiming has been done at rast expense. But greater has been the expense of widenng and straightening the narrow and crooked highways, streets, thoroughfares, and lanes of the frst settlers, which are traditionally sail to have been made by the cattle on their way to and from their pastures. This, next to the water-works, has been the oceasion of the most considerable increase of the debt incurred by the city, somewhat relieved by assessments for bettermont on abutting proprictors. It is believed that there has been a larger outlay of labour, material, and money, in reducing, levelling, and reclaiming territory, and in straightening and widening thoroughfares in Ioston, than has been expended for the same purposes in all the other chief eities of the United States tagether. The broad watercourses around Boston are now spaned ly canseways and bridges,-Last Boston only, that the harbeur may be opened to the naryyard, being reached by a ferry: The first bridge over Charles Fiver, that to Charlestown, was opened in 1786 ; the Wes. Buston brdge, to Cambridge, in 1793, the Western Arenue, a solid causeway to Brookline, 7000 feet
long, in 1821. Boston has now to maintain sisteed bridges. Most of the railroads also have their bridges. Six of the islands in Bosten harbour are the property of the city, and three more of them have been ceded to the United States for fortifications. The harbour islands, including rocks and shoals, are very numerous, rendering the narigation through the two channels very difficult and , easily guarded. But the harbour, when reached, is very secure. It is nearly 14 miles long, and 8 miles wide, giving nearly 60 square miles of anchorage. These islands were for the most part heavily wooded when frst occupied, and some of them were profitably used for grazing and pasturage. Since they have been stripped of their primitive growth fer fuel and building material, it has been found impracticable to reclothe them with trees, on account of the roughness of the sea-air. The washing of the soil from the bluffs of many of them, to the great injury of the harbour, has involved large expense in the erection of seawalls. The first settlers constructed rude defences, frequently repaired and extended, on Castle Island, 22 miles from Boston. More formidable works were raised here by an Englisk engineer in 1701-3. The United States Government has constructed elaborate fortifications on this site, now called Fort Independence, which, with Forts Winthrop and Warren, on neighbouring islands, offer formidable harbour defences. The first lighthouse was erected in the barbour, on Beacon Island, $8 \frac{1}{1}$ miles from the town, near the Great Brewster, in 1716. This was destrosed during the Kevolutionary War, re-erected in 1783, ceded to the United States in 1790, refitted in 1856 and 1860 , with a tower 98 feet high, fog-horn, bell, dec., and is now called the Outer Light. An inner lighthouse was established on Long Island Head in 1819, refitted in 1855. On the long spit, at the western extremity of the Little Brewster, stands the Bug or Spit Light, erected in 1856.

It is remarkable, considering the leading and conspicuons character which has always attached to Boston from the first English settlement of the country, that it should have remained for nearly two centurips under the simple forn and admiaistration of a town government, the same as that of the smallest interior hamlets. Such a government, by all tho citizens assembled in "town=meeting" to dispose all their affairs, was, however, found favourable to the development and prosperity of the community Here was trained a homogencous population under peculiar institutions. Wealth slowly but steadily increased, through the whale and cod fisheries, the fur-trade, the sale of lumber and pitch, and a commerce largely with the West Indies and elsewhere,-though much impeded by the restrictions of the Eaglish navigation laws." Heavy exactions and drawbacks were found in the Indian aud in the French culonial wars. _ Here begau opposition to the measures of the British ministry, for oppressing and taxing the colonies. The Stamp Act, passed in 1765, was repealed in 1766. The Tea Act, passed in 1773, was defied by the emptying of three cargoes of tea into thr harbour, December 16 of the same year, by a party in the gaise of "Mobawk Indians." The port was closed by a British fleet, June l, 1774. The British army evacuated Bostom March 17, 17:6, after having been beleaguered in it nearly a year. The constitution of the State was adopted here in 1750 , midway in the war.

Boston received a city charter in 1829. Its Government is composed of a mayor, twelve aldermen, and a common council of serenty-two meubers, threc from each of its twenty-four wards, annually elected by the citizens There are commisswners for fire, water, health, and various other departments. There is a board of twelve overseers of the poor, with a commodious central building, connected
with twelve chantable orgamzations, with which the board acts in concert. The board bolds charity trust funds amounting to $\$ 312,183$, it expended is $1874 \$ 101,591$, and relievod 304 beneficiaries on its trust fuods, and 9762 other persons.

Population, Valuation, dc.-The population of Boston, in 1708, was about 12,000 ; in 1719 , about 18,000 ; in I780, about 23,000 ; in $1800,25,000$; in $1850,139,000$; and, with Roxbury and Dorchester, 101873 , was 308,875. Charlestown brought with it 32,040 , West Rosbury, 10,361; and Brighton, 5978. The total, in 1875, must be nearly 360,000 . The valuation of the city in May 1875 was $\$ 554,200,150$ of real estate, and $8244,554,900$ of personal property,-total, $8798,755,050$. The value of the corporate public property is $\$ 30,787,292$. The met city debt is $\$ 27,294,208$. The number of public paupers, including insane, is 689; of criminals, 1495. There are Gfty-eight banks of deposit and discount is the eity, the capital of which is $\$ 52,900,000$, and the eirculation $\$ 27,074.396$. The aumber of savings-banks is twenty-one, with deposits of $\$ 73,322,368 \cdot 56$. Of fire and marine insurance companies, stoek and mutual, there are thirty, with four new ones in formation, besides lifo insurance companies and those against accidents and for specific forms of property. The annual sale of merchandise in the city is estimated at $\$ 1,000,000,000$.

Commerce. - Boston has commercial relations with every part of the globe. In 1874 the gald value of its foreign imports was $849,522,547$; of its exports of foreign mer. chandise, $\$ 5,084,257$; and of its domestic merchandisc, in currency, $£ 27,035,169$. There arrived 167 Anerican vessels from foreign parts, with a tomnge of 234,587 and 6324 men; of foreign vessels from foreign ports 1849, with a tonnage 484,448 and 18,486 men. There cleared for foreign purts, 598 American vessels, with 254,317 tons and 6606 men; and 1882 fureign vessele, with 472,941 tons and 17,995 mea. The tutal tonage of Boston, registered and enrolled, on December 31, 187t, was 331,266. Its commerce is slowly recoverng from the effects of the war of secession.

Great Fires.-Tho buildings of Boston having from the first been largely of wood, - the use of which material for that purpose is now under severe restrictions, -and closely compacted, the old town suffered from frequent and disastrous conflagrations, goveral of which were successively described as "The Great Fire." There had been ten of these disasters, severo under the then existing circumstaoces, before the year 1698. In 1711, the town-house and a meeting.house, both of brick, and a huoulrel dwellings were destroyed. In 1760 a conflagration consumed 349 dwellings, stores, and shops, and rendered more than 1000 people homeless. But these and all subsequent ones reere celipsed in their devastation by the disaster of November $9-10$, I872, in which hundreda of costly warchouses filled with goods, with banks, offices, churches, dc., were destroyed. though all of brick or granite, involving a loss of over $\$ 80,000,000$. It is an evidence of the energy and resources of the eitizens, that in a little mare than two years after the eatastrophe, the whole "burnt district," with wideued and improved thoroughfares, was covered with solid, subatantial, and palatial edifices combinitg all the safeguards, improvements, and conveniences of modern skill At least as large an amount has been expended on this restoration as was lost in the ruin. The fire department las been made more efficient under the control of threo commissioners. Tbere are now in the city twenty-mine steam fire-egides and a fire-boat in the harbour, eleven hook and ladder companies, sixteeo horse hose companies, a protective department, an insumance brigade, with waggooz, \&c., an alarm telegraph, and a system of signal boxes.

Water Supply.-Though the first white settlers were dravn to Boston by its pure and abuudant springs, the want of water resources was long felt till efficient measures were taken for a supply. The southern portion of the town was supplied at the beginaing of this ecntury by an aqueduct from Jamaica Pund in Roxbury. The works already constructed and still in progress fully meet the present and frospective demands. The waters from Coch. tuate Lake and its tributaries, from twenty to thirty ailes from the city, Howed into it by gravitation, Octuber 25. 1843. The storage reservoirs and the works have cost up to May 1875, $810,786,739$. The length of the condut of brick is $14 \frac{1}{8}$ miles, and of supply pipes of iron $262 \frac{1}{3}$ miles. The annexation of Charlestown brought with it the waters of Mystic Lake, the norks for which had cost S1, 147,902 , with $1 \frac{1}{2}$ mules of brick condurt, and 127 miles of pipe, pumping engines, and reservoir.

The preblec schools of the rity are organized and supervised under the statutes of the State which make provision for free education by some compulsory enactmeats, subject to such special regulations as may be enjoined by the Legislature. The Legislature of 1875 , by an Act (chapter 241), introduced a change in the composition and functions of the school committee. Heneeforward this board is to consist of twenty-four members, chosen by the citizens on general ticket, to be disposed iu three sections of eight members taclı. After the close of the first year from the first election, eight members are to retire, and eight new members are to be elected, to serve for threo yeara, all without compensation. The board is to elect and fix the compensation of a secretary, an auditing clerk, and other necessary subordinate officers, and also of a superintendent of schocls, and a board of not more than six supervisors. The mayor is to be, ex officio, chairman of the general hoard, to which no uther member of the city government can belong, and which shall have the whole maoagement of the schools, choosing and fixnst the compensation of all teachers, jamiors, \&c., but needng the authonty of the city council before incurring an expense excceding E 1000 for the purchase of land, or the erection ur alteration of a buildug. Doston las now 9 bigh schools, 49 grammarschools 416 primary schools, 25 evening schools and industrial, licensed minors', deaf-mute, and lindergarten schools,-total, 4:19. The number of teachers employed is 1289 ; of schalars, 53,391 . Cost of maintenance for the year endiog May $1,1875,31,724,37361$. In the old city there is a Latin, English bigh, firls' bigh, and normal school; and in each of the municipalities that have been annexed there is a bigh schuol, where classical education is furnished.

The pallic buildings of Boston are very numerous, embracing those of the United States Government, the State, the county, and the city. Most of them have lieen buile within a few years, and are substantial and commodious, but, owing to the constant expansion and growth of the city, each of thera in turn becomes eontracted, and needs enlargement or a substitute. The buildings connected with each of the railroad stations have been reconstructed for extension three or four times. The largest group of edifices and works is that of the United States navy-yard, with docks, manufactories, foundijes, machine shops, ordnance stores, rope-walks, furnaces, casting jits, timber sheds, ordnance parks, ship-houses, de. The half of a very elaborate and costly edifice, the enrner stone of which was laid by President Grant, is now (1875) conpleted and as use for the United States post-oflice and sub-treasury. The other half, now in progress, will accommodate the United States courts. There is also a custom-house, with bouded warehouses, and the United States courtholise.

The State House, for the business of the Legislature of the commonwealth, was built in 1798 , and bas been recently greatly extended. It stands on the highest land an the city,-what remains of the old Trimountaine sum. mite, -and has a gilded dome, fountains, and statucs on its lawn, with statues, busts, paintings, and trophies within. The edifice looks nobly down upon the "Common," so dear to the citizens of Boston. This park came with the original , purchase from Mr Blaxton, and encloses 48 acres, with 'malis all round it, a pond, a fountain, a soldiers' monument, a deer park, and about 1300 trees. An Act of the Legislature of 1875 protects it from being encroached upon in any way by the monicipal authorities without a vote of the majority of the citizens. To the State also belong a court house and some of the newly reclaimed territory on the Sonth Bay. To the county of Suffolk belong a jail, and court-houses, municipal and probate. Tho State prison is in Cbarlestown district

To the city, besides the school-houses. - which bear the names of honoured citizens for many generations, and of ex-mayors,-belong a large number of structurcs and applances:- - the Old State House, so called, built for the British authoritics in 1712,-the oldest public luilding now standing in the eity, Christ Chureb, dedicated in 1723, coming next to it; Faneuil Hall, famous for its patriotic oratory, originally the gift of Poter Faucuil in 1743, used for "town meetings," and cnlarged in 1806 ; extensive market-houses; the City Hall; the Public Library; bathhouses ; engine-houses and armorics; the Public Garden on the new territory, highly ornamented, euclusing more than 24 acres, with a ponl; city stables, de.

Statues in public places:-in bronze, a fine equestrian statuc of Washington, and those of Dr Franklin,-born in Boston, January 17, 1706,-of Daniel Webster, Horace Mann, and Edward Everett; of marble or granite, Washington, Alexander Hamiltun, Governor Andrew, Colnmbus: Aristides, soldiers in the war of seccssion, and the monuaent commemorating the introduction of the use of ether as an anesthetic, first applied in the Massachusetts General liospital, Boston.

Boston is innged with substantial wharves on all its water margms, for the most part covered with massive warehouses. Horso railroads, or tramways, make easy connections within its own limits, and with the suburbs. Steam roads opea communication with the whole continent, in every landward direction. Successive experiments have been tried with the varions materials and methods for paving the streets, and constructing side-walks. The strects of the town wero first named in 3708 . The first map of the town, that of Bonner, was mado in 1722. Overseces of the poor were first chosen in 1691 . The superintendent of implis has charge of 7664 gas , and 976 fluid, burners. The cost of gas to the eity, for 1871 , was $\$ 275,06435$. There are seventeen police-station louses and lock-ups; the expense of that department was 8683,89278 ; of the health department, 8446,87708 ; of the firo department, S671.511133. of the City llospital, S111,19831; of penal and pauper mstitutions, $\$ 405,90340$. The cost of strect widenings and extensions from 1822 to 1874 was $\$ 21,739,983 \cdot 13$; and in $1873-74, \$ 6,403,41376$, reduced by "bettemments," 8283,69750 ; tax assessed in 187.1, 59,022,187.17 1'ho revonue of the city was $8: 3,633.87106$ 'lhere had been in the town and original rity deven burnalpaces. Mount Auburn Cometery in Cambridge, five miles distant, cnclusing 125 acres, was put to use in 1831. There have becu more than 19,000 interments in it. Five other suburban cemeteries are now provided, and interments in the eity are prohibited.
Tho Public Library, as an institution of the city, was fostered by an entermise initiated by M. Vattemare, in
securing a gift ni bmoks from the city of Paris, in 1843 Acts of the Legislature, renewed and extended from 184s to 1857, aided by the cforts of individual citizens and meet ings of committees, with free and conditional gifts of moncy and of books, kept the object steadily in riew. In 1852 Mr Joshua Bates, bom $11 \mathrm{Massach} u s e t t s$, then of the firm of the Messrs Baring, of London, made a gift to the city for the purpose of a library, of $\$ 50,000$, subsequently adding various donations of books. The main hall of the library building bears his name, in commemoration of his monificence. The present spacions and solid structore, which, boweve:, already needs a second enlargement, was inaugurated for its uses, on January 1, 1858, whith an address by Edward Everett. It cost, with the land, S365,000. Large donations of money and of private librarics have since accrued from living benefactors, and hy bequests. The names of Ex-Mayor Bigelow, of Abbot Lawrence, and Jonathan Phillips deservo mention for their pecuniary gifts; while the librarics of Theorlore Parker, Edward Everett, and George Ticknor have iurnished most valuable acqusitions. Here is deposited the Prince Library, belongmg to the Old Sonth Religious Society. The unique and rich coilection, known as the Barton Library, of 12,000 , volumes, including the magnificent Shakspearian treasures, was obtained in 1873. The cdifice has been once eularged, with efforts to render it fireproof, and additional ground bas been purchased at a cost of 870,000 . The expense of its maintemance and care, in 1874, was $\$ 135,000$. There are employed in it 103 persous. The number of volumes is abut 950,000 , besides pamphlets, MSS., and valuablo collections of engravings, inclu lag the Tusti, so called. Branch librarics are established for the convenience of the citizens, in South and East hoston, Dorchester, Roxbury, Brighton, and Charlestown; and a system of other local deliveries has been initiated.

Of churches and places of worship in Boston, there are 163 for Protestants, 26 for Roman Catholics, and 3 Jervish synagognes. The lioman Catholies have a cathedral which will seat more than 4000. The Unitarians have the largest number of Protestant churches. There are 112 prublic halls, which serve very miscellaneous uses of worship, debate, lecturing, seciety meetings, and amusement.

Literary, learned, scientific, benevolent, and secret societies, represented by their own cdifices, halls, libraries, and collections, are rery nomerous, and well sustained. Among these may bo mentioned the American Academy of Arts and Sciences; the Massachusetts Historical Society: the Boston Ahenreum, with a very extensive library. paintings, and statuary; the New England Historic Gencalogical Society; the Masonic Temple; the Odd Fellows' llall ; the Mechanics' Association ; the Mercantile Library Association; the Massachusetts Institute of Teehnology; the Boston College (Roman Catholie) ; the Buston University (Methodist) ; Young Men's Christian Union ; Young Meu's Cbristian Association, with a sectarian condition; Young Women's Claristian Association; the Natural Hisfory Society; the Horticultural Society; the Marime Society; the Boston Library Society; the Muste Hall, with its great organ; the llarvard Medical Scbool, and Warren Shuscum; the State Libray; the Law Library; the General Theological Libary; the Art Muscum, de. There are four theatres in the city,-the Boston, the Ghome, the Howare, and tho Muscum.
llospitals, asylums, anl refuges, chichy founded and sustained by private benevolence, and generously administered, provide, for the most part gratuitously, for the various ills and maladics of humanity: Of these, besides the City Mospital, may be mentioned the Massachusetts Gcneral lluspital, with its brancia for the insane, the

MLLean Asylura, in a suburb; the Orphan Asylum; the Perkms Institution for the Blind; the Eye and Ear Infirmary; the Cousumptives" Home; the Carney llos. pital ; the Homoupathic Hospital ; the School for Idiotic and Feeble-minded; the Lying-in Hospital; the Tcm. porary, Washingtonian, and Appletor Homes; Hospitals for Women, Children, and Lnfants; Homes for Aged Men, for Aged Women and for Coloured Women, Cor Little Wanderers; a Children's Mission; House of the Augel Guardian; Commissioners of Foreign Missions, de. The city institutions for paupers, the insane, and criminals, are in South Boston and on Deer Island.

Ninety years after the setlement of the town of Boston, Damel Neal, of London, wrote a description of it, returning from has visit. In this he says: "The conversation in this town is as polite as in most of the cities and towns in Eugland, many of their merchants having travelled into Europe, and those that stay at bome having the adran. tage of a free conversation with travellers; so that a gentleman from London would almost think himself at home at Boston, when he observes the numbers of people, their houses, their furniture, their tables, their dress, ant conversation, which perhaps is as splendid and showy as that, of the most cunsiderable tradesmen in Londun." Though in the succession of visitors from abroad, partieularly from England, who have followed Mr Neal, there lave been a few who have found matter for satire and depreciatory criticism in their accounts of Buston, of its citizcus, their habits, se., the great majonty of its forcigu guesta, especialty if their orm manners and crrands have lecommended them, have written in a similar strain. They have found there much to learn and enjoy, and to remember with pleasure. Cultivated Englishmen, particularly those who have visited Boston in recent years to ohtain or to impart information, lave found themselves at Jome there. The supposed conceit of itscitizens aver their uwn distinctive qualitics or advantages bas led to some pleasant banter from at bome and abroal in elaracterizing the city as the "Athens of America" or "The llub of the Universe."

The development, growth, and incrased pepmlation of the city, onder the liberal social influences, and the changes of opinion and habit, which in no part of the world are more marked and active than lere, have, of course, wholly displaced the original homogeneoushess of its people, and the peculiarly Puritan character of the twne and enstoms of life. Its large foreign population make, in traditions, habits, social relations, aud religion, a nation within a nation. The unfamiliar names which appear on the signs of shops and dwellings, the relaxed usages as regards the observance of Sunday, and the indulgence in amusements, large personal fredom, de, have mado Buston, substantially, a cosmopolitan city. Those now living remember when a person who wentured to smoke a cigar or a pire in the strett mould have fallen into the hands of a constable. When the traffic in the atrects is annually obstructed by an elaborate procession, mounted and on foot, on "St l'atrick's Day," and when a cardinal, with other officials from the court of home, sontes hither to consecrate an arebbishop in n eathedral, it is difficult to recall the virgin promontory and the English axiles with which this notice began.
(G. E. E.)

BOSTON, Thomas, a popular and learned Scottish divine, born at Dunse, May 17, 1676. Ile was edueated it Edinburgh, and in 1699 became minister of the parish of Simprin, from which he was translated in 1707 to Ettrick. It was by his recommendation that Hog of Carnock reprinted in 1718 the famous Marrow of Modern Divinity, which excited such a ficrece controversy in the Scottish chucch. He ale distinguished himself by being
the only member of Assembly who eniered a protest against the sentence passed on Professor Simson as being too slight a censure. He died May 20, 1732. His writings wero numerous; but he is best known by his Fourjold State, the Crook is the Lat, and bis Boly of Divinity, works much esteemed by Presbytenans, and which long exercised a powerful influence over the minds of the Scottish peasantry. He left Memors of his our Life and Times, published in 1776 . An edithon of ho works in 12 volumes appeared in 1849, if.

BOSWELLL, James, the biographer of Johman, was born at Edinburgh on the 29th October 1740. Ihs father was one of the lords of Session, or juiges of the? silpeurcourt in Scotland, aud took his tithe, Lord Anchinlect from the name of his property in Ayrshice. The family was of old and honourable descent, a fact of whel beth. father and son were not on!y proud but vain. James, the eldest son, was educated at Edinkurgh and Glasgow Universities, and during his student days contractel a close and life-long friendship with William Jobnson Temple, aftermards vicar of St Gluvias and rector of Mamhead. His unrestrained correspondence with Temple, extending with occasional breaks from 1758 to the last year of his life, affords us the best materials for a knowledge of his career and an estimate of his character. At the age of eighteen he was busily engaged in the study of the law at Edinburgh, net entircly in accordance aith his own incliuation, but in odedicnce to the desire of his father. Already, bowever, he had hogun to take a pride in being associated with men of distinction, and tells his friend, with some exultation, that if had accompanied Sir Daril Dalrymple (afterward loord 11 ailes) on the Northern Circuit, and bsd kept a jourmal of what was said by the great man on tho way. Sune other pecularities of his character also became manifest even at this carly feriod of his life. He was evidently unsettled and unstable, "constitutionally unfit," as be afterwamis said, "for any employment ;" he disliked the Senttisli style of life, and longed for the elegance, refiuement, and hberality of London society. In 1760 this wish was so far gratified; be tasteca some of the delighte of the capital, and indulged in magnificent dreams of entering the Guards and spending lis time about the court. Such a fancy, lowever, cance to nothing; [or as he has narrated with some pride, tho duke of Argyll told his father that "this hoy must not be shot at for three and sispence a day." A military life, indeed, would hardly have suited him, for, as be frantly confesses, his persomal courage was but small.

Boswell's tastes were always literary; he had contributod some slight things to the current magazines; and in 1762 he published a rather humorous litile poom, The Cub at Neumarket. In the following year appeared a collection of Lotters bitween the Ifon. Andrew Erskine and Jaines Boswell, Esf., which the vanity of the youthful authors induced then to think wonld be received with pleasure and profit by tho world. The only prominent characteristic of these cpistlos is an overstrained attempt at liveliness and wit.

On Monday, 16th Hay 1763, Boswell, then on a sccond risit to London, had the suprene bappiness to make the acquaintance of the object of his almost idolatrous admiration, - Dr Johnson. Their first interview in the back parluur of Mr Davics's shop in Russell Strect was characteristic of both; the calm strength and ponderous wit of the one, the fluttering folly and childish servility of the other, are portrayed to the life in Boswell's own narrative. Few things are more singular than the intimacy which sprang up between two men so differently constituted. Boswell might indeed congratulate himself that be had something about him that interested most people at first sight in his farour He was then about to proceed to Utrecht in order
to prosecute his studies; and the great Dr Johnson actually laccompanied him to Harwich and saw him off, with many protestations of affection.

At Utrecht Boswell was as unsettled and dissipated as before. He had a fair allowance from his father- $£ 240$ a year, but ho was determined " not to be straitened nor to encourage the least narrowness of disposition as to saving mosey" To what extent this virtuous resolution was carried out is uaknown, but after laving the university, be determined, sorely aganst his father's inclination, to prolong his residence abroad. He travelled through varioua parts of the Centinent, visited Voltare and Cousseau, and was finally attracted to Corsica, where be speedily attached himself to and became the intimate friend of the patriot Paohi. He did not return to England till 1766, but be had not neglected his note-book, and in 1768 published his Account of Corsica, Journal of a Tour to that Island, and Memoirs of Pascal Paoli. The book lad a very conoiderable success, not on account of the merits of its listorical or descriptive passages, but from the liveliness and truth of the journal, and from the numerous aneedotes and sayings, which brought the Corsican patriot vividly before the English imagination. Johnson's estimate of the work was discriminating and just; and other good judges, though they could not avoid noticing and ridiculng Boswell's extravagances and follies, appreciated at its true value his unrivalled power of biographical narration. The book did much for Paoli, and secured for him sympathy and assistance in England when he was compelled to fly from his native island. The author, was for a time intoxicated with his suecess; he pestered every ono with Cersica, introduced hinself to Pitt in Corsican dress, and not only appeared at the Shakespeare Jubilee arrayed in the costume of an armed Corsican chief, with "Viva la Liberta" inscribed on his lat, but wrote a full description of his appearance to the London Magazzne. He certaisly ganed notoricty, if not fame.

His restless spirit next found occupation in the great Douglas peerage ease. He took an intense interest in this affair, acted as an unattached counsel, and pmblished on st a novel and a pampblet. The often repeated story, that he resented the judgment given by his father in the case to such an estent that be beaded the rioters who bruke the old judge's windors, is not inconsstent with his character, but as the father's judgnent virtually coincided with the son's opinion, it really has no foundation in fact.

In 1769, after nomerous love affars, which are told to his friend Temple with more freedom than decency, he married Miss Montgomerie. Not much is known of this lady, except that she was a relation of the earl of Eglinton, as Boswell took care to inform the people of Scotland in his Letter to them in 1785. Johason's opinion of her qualities was very low; but she probably concurred with old Lord Auchinleck in thinking the great lexico. grapher "a brute." She seems alse to have had rather a contempt for some aspects of Mr Boswell's character, whatever that might " comprehend in his own imagination, and in that of a wonderful number of mankind."

In 1773, though against his father's will, Doswell came to London. He was admitted a member of the Literary Club, and soon after set out with his great friend on the immortal tour to the Ilebrides. It was not till many years afterwards that the fanuus Journal was given to the world, -nut till after the death of Johnsou. Sone years after the death of his father in 1782 he had joined the English bar, but he never succeeded in gaining any practice. In 1785 the Journal of a Tour to the Mebrides was published, and preparations set on foot fer an extended Life of Johnson. The collection of materials and careful revision occupicd several years, and though Boswell sometimes was de-
spondent, yet on the whole he looked with well-grounded confidence for success. He was absolutely certain that his "mode of biography, which gives not only a history ${ }^{4}$ Jobnson's visible progress through the forld, and of bi publications, but a view of his mind in his letters and conversations, is the most perfect that can be conceived, and will be more of a life than any work that bas ever get appeared." His expectations were not deceived. The book, which appeared in 1791, was received with the greatest eagerness and delight; and in 1793 a second edition was published. The author's triumph and selfsatisfaction were completc ; but meantime the evil habits he had contracted during a dissipated life were ruiuing his health, both of mind and body. He was in his later years an habitual drunkard, and the bypochondria, from which he luad always suffered at intervals, terribly increased He died after a sbort illness on the 19 Lh May I795, at the age of 55 .

Boswell's cbaracter is curious and somewhat contradictory. He was vain of his birth, and of his own talents, sensual and self-indulgent, inquisitive and undignified; and all these faults he parades with a per. fectly childish naveté;-not certainly without consciusness that they were faults, for be is constantly repenting of his sins and framing the best of resolutions, swesring "lake an ancient Pythagorean to observe silence, to be grave and reserved though cheerful and communicat re." "One great fault of mine," he says, " is talking at ranciom. I will guard against it." But he was, as he bas himself admitted, "utterly wanting in solidity and force of miad." His egotism and vanity were excessive, and he exposes these qualities with the greatest frankness to his friend Temple. "I, Janies Beswell, Esq.," he writes on one ocession,-" you know what vanity that name iucludes." And again wit 1 reference to one of bis rivals in Johosonian literature, be writes; "Hawkins is, no doubt, very malevolent ; obscrve how he talks of me as quite unknown." The pecoliar weakness of his intellect and exuberance of his spirits hurried him into absurdities and follies, and made him the butt of the society in which he moved Yet he was far from haviog no redeeming qualities. He was genial and frendly, of cultured literary taste, and of no mean powers of mind. It was not a mere frivelous, foolish, prating sot who could appreciste the great qualities of Johnson, and devote himscif to a friendship from which be derived no profit and little praise. And assuredly it was not hy his unrivalled powers as a fool that Boswell has produced the best biography the world has yet seen. He was not only, as Macaulay admits, a man of quick ohservstion and retentive memery, hut he had also grasped with complete consciousness the true idea of tiography, which he had learned from his great teacher. Johnsou valued brography, because it gives us what comes home to ourselves; he thought that no one could write a real life unless be had lived in social intercourse with the man of whom be wrote, and laid it down as the duty of a biograpber to give a full account of the person whose life he is mriting, and to discriminate him from all other persons, by any peculiarities of character or sentiment be msy bappen to have. All these bints were taken hold of aud assimilated by Boswell, and the reeult was a biography whieh bas no equal in our own of in any other literature, which, so far from losing its popularity, is as much estecmed now as when first given to the world, and on which it seems auperfluons even to bestow laudation. Johnson was undoubtedly a great man, but he would never have been to us more than a mere name had it not been for Boswell's life. Through that life he is known to us as no other English writer is ; his faults and weaknesses, his grand powers of mind and rugged moral strength, - his whole personality is revived fer
us. We know bim as be actually lived and moved among his fellow-men. The very lights and shades thrown on bis character by the narrative give it additional force, for they convince us of its intense truth and reality. Nor is it only as a life of Johason that Boswell's book has value for us; it is the most important contribution yet made to a knowledge of actual living and thinking in the 18th century. "It is not apeaking with exaggeration," says Carlyle, "but with strict measured sobriety, to say that this book of Doswel's will give us more real insight into the bistory of England, during those daya, than twenty other books, falsely entitled 'Histories,' which take to themselves that special aim."
A ahort memoir of Boswell was written by Jialone and
will be found in Nickol's Literary Anectotes. It is alsc reprinted, with some extracts from Boswell's letters to Malone, in the edition of the Life pubhshed by Bohn, 1859. The Leiters to W. J. Temple and Andréw Erskine were printed in 1857; in the introduction will be found a pretty complete notice of Boswell's minor writings. Bas. zeelliana have been published in the second volume of thg Philobiblon Society Miscellanies, 1855-6, aud by Dz Charles Rogers, 1874. Editions of Boswell's great-work are very numerous; perbaps the amended form of Croker'a first edition, by Wright (Bohn, 10 vols., 1859), is the most helpful. The famous essays on Boswell by Macaulay and Carlyle may be taken as mutually corrective and aupplementary.

B 0 TANY

ΓHE science of Botany includes everything relating to the Vegetable Kingdom, whether in a living or in a fossil state. Its object is not, as aome haye aupposed, merely to name and arrange the vegetable productions of the globe. It embraces a consideration of the external forms of plants - of their anatomical atructure, bowever minute-of the functions which they perform-of their arrangement and elassification-of their distribution over the globe at the present and at former epochs-and of the uses to which they are aubservient. It examines the plant in its earliest atate of development, when it appears as a simple cell, and follows it through all its atages of progress until it atta:ns maturity. It takes a comprehensive view of all the plants which cover the earth, from the minutest lichen or moss, only visible by the aid of the mieroscope, to the most gigantic productions of the tropics.' It marks the relations which subsist between all members of the vegetable world, and traces the mode in which the most despised weeds contribute to the growth of the mighty denizens of the forest.

The plants which adorn the globe moro or less in all countries must necessarily havo attracted the attention of mankind from the earliest times. The science that treats of them dates back to the daya of Solomon, for that wise monareh "apake of trees," from the cedar of Lebanon to the hyssop on the wall. The Chaldeans, Egyptians, and Greeka were - the early cultivators of acience, and Botany was not neglected, although the study of it was mixed up with crude speculations as to vegetable life, and as to the change of plants into animals. Esculapius and his prieste, the Asclepiades, who studied the art of medicine, had their attention directed to plants in a pharmaceutical point of vier. About 300 years before Christ Theophrastus wrote a History of Plants, and described about 500 species used for the treatment of diseases. Dioscorides, a Greek miter, who appears to have flourished about the time of Nero, issued a work on Materia Medica. The elder Pliny described about a thousand plants, many of them famous for their medicinal virtuea. Asiatic and Arabian writers also took up this subject. Little, however, was done in the science of botany, properly so called, until the l6th century of the Cbristian era, when the revival of learning dispelled the darkness which had long hung over Europe. Brunfels, a physician of Bern, has been looked upon as the restorer of the science in Europe. He published a History of Plants, illustrated by figures, about the beginning of the 16 th century.

One of the earliest attempts at a methodical arrangement of plants was made in Florence by Andreas Cæsalpinus, a native of Arezzn, some time professor of botany at Padua, and afterwards phyaician to Pope Clenent Vill.

He is called by Linnæua primus nerus systematious.- In his work De Plantis, published at Florence in 1583, he ais. tributed the 1520 plants then known into fifteen classesthe distinguishing characters beiug taken from the fruit.
John Ray, a native of Essex, did much to adrance the science of botany. He was born in 1628, and died in 1705. He promulgated a aystem which may be considered as the dawn of the "natural system" of the present day (Ray, Methodus Plantarum, 1682). He separated flowering from flowerless plants, and divided the former into Dicotyledons and Monocotyleduns. His orders were founded on a correct idea of the affinities of plants, and be far outstripped his contemporaries in his enlightened views of arrangement.
About the year 1670 Dr Robert Morison' of Aberdeeu pubbished a systematic arrangement of plants. He divided them into eighteen classes, distinguishing plants according as they were woody or herbaceous, and taking into aecount the nature of the flowers and fruit. In 1690 Rivinus ${ }^{2}$ promulgated a classification founded chielly on the forms of the flowers. Tournefort ${ }^{9}$ about the same time tonk up the subject of regetable taxonomy. He was a contemporary of Ray, and was professor of botany at Paris in 1683. He was long at the head of tha French school of botany, and published a aystematic arrangement in 1694-1700. He described about 8000 epecies of plants, and distributed them into twenty-two classes, chiefly according to the form of the corolla, distinguishing herbs and under-shrubs on the one hand from trees and shrubs on the other. The system of Tournefort was for a long time adopted on the Continent, but was ultimately displaced by that of Liunæua.
Carl von Linné, or, as he is commonly called, Linazus, ${ }^{4}$ was born on the 23d of May 1707, at the village of Rooshoolt (Rashult), in Smaland, a province of Sweden, where his father, Nicholas Linnæus, was clergyman. He entered as a pupil at the University of Lund, and about the years 1727-28 was received into the house of Stobæus, a physician in that city, where he hal abundant opportunitiea of prosecuting natural history. He afterwards proceeded to Upsal, and had to struggle with great diffeulties during his studies there. He aided Celsiusin his IVierobotanicon, or account of the plants of Scripture, and be became assistant to Rudbeck, professor of botany. He afterwards travelled in Lapland, took his degree in Holland, visited

[^2]England, and commenced practíce in Stockholm, where he lectured on botany aud mineralogy. He finally became professor of botany at Upsal, and was one of the most popular lecturers of the day. He died on the 8 th of January 1778 , in the 71 st year of his age. His herbarium is now in the possession of the Linnean Society.

One of his biographers, in summing up his merits, says, —" Educated in the severe school of adversity, accustomed from his earliest youth to put a high value on verbal accuracy and logical precision, endowed with a powerful understanding, and capable of undergoing immense fatigue, both of body and mind, Linnæus produced a most important revolution in botanical science, IIe improved the distinctions of genera and species, introduced a better nomenclsture on the binomial method, and iuvented a new and comprebensive system founded on the stameus and pistils. His verbal accuracy and the remarkable terseness of his tcehnical language reduced the crude matter that was stored up in the folios of his predecessors into a form which was accessible to all men. He separated with singular skill the importaut from the uuimportant in their descriptions. He arranged their endless synonyms with a patience aud a lucid order that were quite inimitable. By requiring all species to be capable of a rigorous defiuition, not exceeding twelve words, he purified botany from the endless varieties of the gardeners and herbalists; and by applying the same strict principles to genera, and reducing every character to its differential terms, he got rid of the cumbrous descriptions of the old writers. It is said of Linnæus, that, although no man of science ever excreised a greater sway, or had more enthusiastic admirers, yet his merit was not so much that of a discoverer as of a judicious and strenuous reformer. The knowledge which he displayed, and the value and simplicity of the improvements which he proposed, sceured the universal adoption of his suggestions, and crowned him with a success altogether unparalleled in the annals of science."

The system of Linnæus is founded on the sexes of plants, and henco it is often denominated the sexual system. It is called an artificial method, becanse it takes into account only a few marked characters in plants, and does not propose to unite them by natural affinities. It is an index to a departuent of the book of nature, and as such is useful to tho student. It does not aspire to any higher character, and although it cannot be looked upon as a scientific and natural arrangement, still it has a certain facility of applieation which commends it to the tyro. In using it, however, let iterer be remembered, that it will not of itself give the student any view of the true relations of plants as regards structuro and properties, and that by leading to the discovery of tho namo of a plant, it is only a steppingstone to the natural system. Linnæus himsclf claimed wothing higher for it. He says-" Methodi Naturalis fragmenta studiose inguirenda suat. Primum et ultimum hoe in botauicis desideratum ost. Natura non facit saltus. l'ante omnes utrinque affinitatem monstrant, uti territorium in mapha geugraphica." Accordingly, besides lis artificial index, he also promulgated fragments of at natural method of arrangement.

The limnean systent was strongly supported by Sir James Edward Smith, who adonted it in his English Flora, and who also beeame possessor of the Limean collection. The system was fur a long time the only one taught in the schools of Britan, even after it had been disearded by those in France and in other Couthental comatries.

The foundation of Butanic Gardens during the 16 th and 17 th centuries did miuch in the way of advancing botang. They were at first andropriated chedy to the cultivation of medicinal phats. This was especially tho case at universitics, where medical schouls existed. The
first Botanic Garden was established at Padua in 1545 , and was followed by that of Pisa. The garden at Leyden dates from 1577, that at Leipsic from 1579. Gardens also early existed at Florence and Bologna. The Montpellier Garden was founded in 1592, that of Giessen in 1605 , of Strasburg in 1620, of Altorf in 1625 , and of Jena in 1629. The Jardin des Plantes at Paris was established in 1626, and the Upsal Garden in 1627 . The Botanic Garden at Oxford was founded in 1632. The garden at Edinburgh was founded by Sir Andrew Baliour and Sir Robert Sibbald in 1670 , snd, under the naine of the Physic Garden, was placed under the superintendence of James Sutherland, afterwards professor of butany in the university. The park and garden st Kew date from about 1730. The garden of the Roysl Dublin Society at Glesnevin was opened about 1796 ; that of Trinity College, Dublin, in 1807 ; and that of Glasgow in 1818. The Madril Garden dates from 1763, and that of Coimbra from 1773. Gesner states that at the end of the 18 th century there were 1600 Botanic Gardens in Europe.
A new era dawned on botanical classification when Antoine Lanrent de Jussieu appeared. He was born at Lyons in 1748, and was educated at Paris under the care of his uncle, Bernard de Jussieu. At an early age he became botanical demonstrator in the Jardin des F'lantes, and was thus led to devoto his time to the science of botany. Being called upon to arrange the plants in the garden, he necessarily had to consider the best method of doing so, and adopted a system founded in a certain degree on that of Ray, in which he embraced all the discoveries in organography, adopted the simplicity of the Linnean definitions, and displayed the natural afinities of plants. His Genera Plantarum, begun in 1778, and finally published in 1789 , indicated an important adrance in the principle of classification. Jussieu subsequently became professor of rural botany; he died in 1836 at the age of 88 .

The system of Jussicu made its way slowly in Great Britain, and it was not until Robert Brown brought it under notice that it was sdopted. ${ }^{1}$ It is now the basis of all natural classifications. One of the early supporters of this natural method was Augustin Pyramo De Candolle, who was born in 1778 , and who, after attending the lectures of Vaucher at Geneva, deroted himself to botanical pursuits. He subsequently prosecuted his studies at Paris, and lectured on botany at the College of France. He commenced his publications in 1802, and in 1804 he promulgated his Elementary Principles of Botany. In 1807 he became professor of botany at Montpellier, and in $1 \$ 16$ he was appointed to the chair of natural history at Genera, with the charge of the Botanic Garden. In that city he carried on his fnturo botanical labours, and began his Prodromus Systomatis Naturalis Regni Vegetabilis, which was intended to embrace an arrangement and description of all known plants. He was enabled to complete eight volumes of tho work beforo his death, and it has since been carried on by his son Mphonse De Cundolle, with the aid of other emiuent botanists. It now embraces descriptions of the genera and specios of Dicotyledonous plants. The systen followed by Do Candollo is a modification of that of Jussien, and it is adopted more or less at tho present day. De Candolle's own herbarium was exiremely rich. He had visited and carefully examined maty of the most extensivo collections, especially thoso of laris; aud many cutiro collections, as well as separate families, on which he was specially engaged, were from time in time submitund to his examanation by their possessors. He had thus

[^3]opportunities of comparison greatly beyond riat in ordinary cireumstanees fall to the lot of an individual. His library, too, was stored with almost every important publication that could be required for his undertaking. With sueh ample materials, aided by bis untiring zeal and the persevering energy of his charaeter, he steadily pursued bis allotted task, and only ceased to labour at it when he ceased to live. For some years his bealth declined, and it is to be feared that the severe and iucessant attention which be paid to the claboration of the great family of Compositz had made a deep inroad upon it. As a relaxation from his labours he undertook in the last years of his life a long journey, and attended the scientifie meeting held at Turin; but he did not derise from this the autieipated improvement in his health, which gradually failed until his death on the 9 th September 1841. Since De Candolle's time various modifications of his system have been introduced by Endlicher, Lindley, Hooker, aud Bentham.

In arranging plants according to a natural method, we require to have a thorough knowledge of structural and morphological botany, and hence we find that the adranees made in these departments bave materially aided the efforts of systematie botanists.

Robert Brown, a Scottish botanist, was the first in this country to support. and adrocate the natural system of classification. The publication of his Prodromus Flore Novee Hollandic, aeeording to the natural method, led the way to the adoption of that method in the universities and sehools of Britain. Sir William (then Dr) Hooker, in his prelections in the University of Glasgow, and in his numerous writings, ably supported Bromn. John Lindley also came into the field, and in 1830 published the first edition of his. Introduction to the Natural System. Dr Robert Kaye Greville and Dr Walker Arnott were able coadjutors, more especially in the department of Cryptogamic Botany. From the year 1832 up to 1859 great advances were made in systematic botany, both in Britain and on the continent of Europe. Endlicher's Enchiridion and Genera Plantarum, De Candolle's Prolromus, and Lindley's Vegetable Kinglom became the guides in systematic botany, aceording to the natural system.

The following remarks embraes the views of Mr Bentham on the change from the Linnean to the natural system of classification:-" The change from the technical to the scientific study of plants was now complete. The Linnean platform, established on the relation of genera and species, had now been so long and so universally adopted as the basis or starting point, that the credit due to its founder was almost forgutten, and it was superseded by the Jussiean method, although it was chielly by the consistent following out the prineiples laid down by Linnæus himself that the change had been effected. Plants were now grouped upon a philosophical study of their affinities, whether morphological, structural, or physiological."

In all classification it is necessary to define what is meant by species. The usual definition of the term has been that a species (as regards the present epoch of the earth's history) is an assemblage of individuals having characters in common, and coming from an original stock or protoplast, and their seeds producing similar individuals. It was also supposed that variation in species was restrained within certain limits, and that varieties had a tendency to revert to the parent form. The view, however, adopted by many now-a-days is, that the tendency to variation is continuous, and that, after a lapse of long periods of time, and under the influence of sarying external conditions, the deseendauts from a common stock may exhibit the differences which characterize distinet
spemes. These are the views which are advanced by Darmin, and which imply a complete revolution in our idea of speejes. This theory is thus stated by Bentham:-

1. That although the whole of the numerous offsping of an individual plaat resemble their parent in all main points, there are slight individual differences.
2. That among the fer who survive for further propagation, the great majority, under ordinary circumstances, are tiose which most resemble their parent, and thus the Species is continued with. out material variation.
3. That there are, however, occasions mhen certain individuals, with slightly diverging characters, may survive and reproduce races, in which these dirergencies are coutinued even with increased intensity, thus producing Varieties.
4. That in the course of au indetinite number of generations carcumstances may induce such an inctease in this divergency, that some of these new races will no longer readily propagate with cach other, and the varieties become New Species, moreand more marked as the unaltered or less altered races, descendants of the commors pareat, bare become extinct.
5. That these species hare in their turn become the parents of groups of species, that is Gencra, Orders, sc., of a higher and higher grade, according to the remoteness of the common pareut, and more or less marked, according to the catinction or preservation of unaltered primary, or less altered intermediate, forms.

As there is thus no difference but in degree between a variety and a species, between a species and a genus, between a genus and order, all disputes as to the precise grade to which a group really belongs are vain. It is left in a great measure to the judgment of the systematist, with reference as much to the use to be made of hismethod as to the actual state of things, how far he should go in dividing and subdiriding, and to which of the grades of division and subdivision he shall gire the names of Orders, Sub-orders, Tribes, Genera, Subgenera, Sections, Species, Sub-species, Varieties, de., with the consequent nomenclature.

Such a systematic arrangement is founded on a hypothesis which, so far as the present flora of the globe is eoncerned, eannot be demonstrated. Conjecture is hazarded as to the present epoch of the earth's history, by extending back to unlimited ages. If the theory is consistent with what we see around us, and is founded on plausible grounds, then we must think that we have ascertaned the plan followed by the great Creator, Designer, and Cybolder of all things, that we have been able to ascertain and follow Ifis work. ings, and the mode in which He has created the diverse plants which hare corered our globe in tune and space. This new phase of systematic botauy, however, requres more definite data to lead to its adoption as an explanation of the plan of creation.

The Physiology of plants did not keep pace with the adrance in Classification. Grew and Malpigh were the earliest discoverers in this department of butany. Ifales also contributed to it by his observations on the motion of fluids in plants. The subject of fertilization was one which early exeited attention

The idea of the existence of separate seres in pants was entertained in carly times, !ong before separate male and female organs had heen demoustrated the production of Dates in Egypt, by brinemg two linds of Howers into contact, proves that in very renote periods some notions were entertaned on the subjeet. Female Date Falms only were cultivated, and wild ones were brought from the desert in order to fertilize them. Herodotus informs us that the Babylonions knew of old that there were male and female Date-trees, and that the femalo required the concurrence of the male to become fertile. This fact was also known to the Egyptians, the Pbonicians, and other nations of Asia and Africa. The Babylonians suspended male clusters from wild Dates over the females, but they seem to have supposed that the fertulity thas produced depended on the presence of small flies among
the wild flowers, which, by entering the female fowers, caused them to set and ripen. The process was called palmification. Theophrastus, who succeeded Aristotle in his school in the 114th Olympiad, frequently mentions the sexes of plauts, but be does not appear to have determined the organs of reproduction. Pliny, who fourished under Vespasian, speaks particularly of a male and female Palm, but his statements were not founded on any real knowledye of the orguns. From Theophrastus down to Cxsalpinus, who died at Rone in 1603, there does not appear to have been any attention paid to the reproductive organs of plants. Ciesalpinus had his attention directed to the Bubject, and he speaks of a halitus or emanation from the arale plants causing fertility iu the female.

Grew seems to have been the first to describe, in a friper on the Anatomy of Plunts, read before the Royal Suctety in No: mber l676, the functions of the stamens and pistils. Up to this period all was rague conjecture. Grew speatis of the attere, or the stamens, as being the male parts, and refers to conversations with Sir Thomas Millington, Savilian professor at Oxford, to whom the credit of the sexual thecry seems really to belong. Grew says that, "when the attire or apices break or open, the globules or dust falls down on the seedcase or uterus, and touches it with a prolific virtue." Ray adopted Grew's viems, and states various arguments to prove their correctness in the preface to his work on European plants, published in 1694. In 1691 Camerarius, professor of butany and medicine at Tübingen, published a letter on the sexes of plants, in which be refers to the stamens and pistils as the organs of reproduction, and states the difficulties he had encountered in determining the organs of Cryptogamic plants. In 1703 Samuel Morland, m a paper read before tho Royal Society, atated that the farima (polleu) is a congeries of semmal plants, one of which must be conveyed inta every ovam or seed before it can become prolific. In this remarkable statement be scems to auticipate in part the discoveries aftervards made as to pollen tubes, aud more particularly the peculiar riews promulgated by Schleiden. In 1711 Geoffros, in a memoir presented to the Royal Academy at Paris, supported the viows of Grew and others as to the sexes of plants. He states that the germ is never to be seen in the ased till the apices (anthers) shed their dust; and that if the stamina be cut out before the apices open, the seed will either not ripen, or be barren if it ripens. Ile mentions two experiments made by him to prove this-one by eutcurg off the staminal flowers in Maize, and the other by rearing the female plant of Mercurialis apart from the male. In these instances most of the flowers were ahortive, but a few wero fertile, which he attributes to tho dust of the apices having been wafted by the wind from other plants.

Limmens was the next botanical author who took up the aubject, and by his scsual system be may be said to have opened a new era in the history of botany. He first published his views in 1736, and be thus whtes-"Autheras et stigmata constituere sexum plantarum, a palmicolis, Millingtono, Grewio. Rayo, Camerario, Godofredo, Morlando, Vaillantio, Blairio, Jussievio. Bradleyo, Roycuo, Logano, $\& c$. detectum, descriptun, et pro infallibnli assumptum; nee ulluus, apertis oculis considerantem cujuscunque plante flores, latere potest." IIe divided phants into sexual and asexual, the former being I hanerogimous or flowering, and the latter Cryptogamons or dowerless., In the latter division of plants he could not detect stamens and pistuls, and ho did not investigato the mode in which their germs were produced. ITe was no physiologist, and did not promulgate any views as to the embryogenic process. His followers were chiefly eugaged in the arrangement and classification of plants, and while deseriptive botany made great adrances
the physiclogical department of the science was neglected. His views were not, however, adopted at once by all, for we find Alston stating arguments against them in his Dissertation on the Sexes of Plants. Alston's obserrations were founded on what occurred in certain unisexual plants, such as Nercurialis, Spinach, Hemp, Hop, and Bryony. The conclusions at shich be arrives are those of Pontedera, that the pollen is not in all flowering plants necessary for impregnation, for that fertile seeds can be produced with--out its influence. He supports parthenogenesis in some plants. Soon after the promulgation of Linnæus's method of elassification, the attention of botanists was darected to the study of Cryptogamic plants, and the valuable work of Hedwig on the reproductive organs of Mosses made its appearance in 1782. IIe was one of the first to point out the existence of ecrtain cellular bodies in these plants which appeared to perform the functions of reproductive organs, and to them the rame of antheridia and pistillidia were given. This opened up a now field of research, and led the way in the study of Cryptogamic reproduction, which has since been much advanced by the labours of numerous botanical inquirers. The interesting observations of Morland, already quoted, seem to bave been neglected, and no one attempted to follow in the path which he had pointed ont. Botanists were for a long time content to know that the scattering of the pollen from the anther, and its application to the stigma, were necessary for the production of perfect secd, but the stages of the process of fertilization remained unexplored. The matter secmed involved in inystery, and no one attempted to raise the veil which bung over the subject of embryogeng. The general view was, that the embryo originated in the ovale, which was in some obscure manner fertilized by the pollen.

In 1815 Treviranus roused the attention of botanists to the development of the embryo, but although be made caluable researches, he did not add muchlin the way of new information. In 1823 Amici discovered the existence of pollen tubes, and he was followed by Brongnart and Brown. The latter traced the tubes as far as the nucleus of the ovule. Sbese important discoveries mark a new epoch in embryology, and may be said to be the foundation of the verss now entertained by physiologists, which have been materially aided by the subsequent elucidation of the process of cytogenesis, or cell-development, Ly Schleiden, Schwann, Mobl, and others. The whole subject has been investigated recently with great assiduity and zeal by plysiologisis, as regards both Cryptogamous and Pbanerogamous plants. The formation of germinal yesicles in the ovule, and the development of the embryo in flowering plants, have been fully considered by Grifith, Schleiden, Mirbel, Spach, Meyen, Schacht, Mohl, Unger, Naudin, Radlkofer, and others; the embryogenic process in Coniferous plants and in the higher Cryptogams by Hofmeister, Henfrey, Suminski, Mettenius, Strasburger, Eichler, Baillon, Cohn, Priugsheim, Millardet ; and that of the lower Cryptogams by Thuret, Boruet, Decaisne, and Tulasne. The olservations of Darwin as to the fertilization of Orchids, Primula, Linum, and Lytbrum, and the part which insects take in this function, have opened up a new era ir Plyysiological Botany. He has been followed by Hermann Muller, Darwin's experiments in reference to the uovements of climbing and twining plants, and of leares in insectivorous plants, bave opened up a wide field of inquiry which be bas cultivated with emment success and with most important results. Among other authors who hare contributed to the adrance of Vegetable Physiology may be named Hofinann, Sachs, Van Tieghem, Prillieux, Deherain, and Famintzen. We have thus been enabled to come to certain general conclusions on this obscure subject, and,

Buture observers have been directed in the proper path of investigation.

In the Physiological department of botany the most impartant researches have been made by French and German botanists. The laboratories in connection with schools in Germany offer facilities for study which do not exist to the same extent in Britain. Pbysiological researcbes demand not only a Botanic Garden with jts appendages, but apparstus of various kinds, means of prosecuting histological and chemical investigations, pnysical experiments, and observations by the spectroscope. Our schools require then not only lecture-rooms, but laboratories well fitted up with all needful appliances, and salaried assistants to aid the teachers in their demonstrations and the pupils in their practical work.

The department of Geographical Botany has made rapid advance by means of the various scientific expeditions Which have been sent to all quarters of the globe; and the question of the mode in which the floras of islands and of continents have been formed has given risc to important speculations by such eminent botanical travellers as Darwin and Hooker. The latter has published a valuable paper on insuiar floras. Under this department the connection between climate and regetation has been carefully studied both by botanists and by meteorologists. Among the contributors to this department of botany the following authors may be noticed-Humboldt, Schouw, Meyen, Berghaus, Martins, Harrey, Hooker.

The subject of Palæontological Botany has been much advanced of late by the researches of botanists and geologists. The use of the macroscope in the examination of tissues has aided much in the determination of fossil plants. The more accurate study of Organography has also been the means of correcting errors in diagnosis. The nature of the climate at different epochs of the earth's history has also been deternrined from the character of the flora. The works of Brongniart, Goeppert, and Schimper have advanced this department of science. Among others who bave contributed valuable papers on the subject may be noticed Heer, who has made observations on the Miocene flora, especially in Aretic regions; Saporta, who has examined the Tertiary flors; Dawson and Lescruercux, who lave reported on the Canadian and American fossil plants; and lilliamson, who has made a carcful cxamioation of many of the coal fossils, snd whose excellent drawings of structure bave opened a new light on the character of many of the gencra. Delincations of fossils by Witham, Lindley and Hutton, and Carruthers, have tended much to advance our knowledge of the fossil finsa of Britain.

Botany may be divided into the following dopartments :1. Structural Botany, hasing reference to the anatomical structure of the various parts of plants, including Vegetable Histology, or the microscopic esamination of tissues; 2. Morphological Botauy, the study of the form of plants and their organs-(these two departments are often included under the general term of Organography); 3. Physiological Botsny, by some termed Organology, the study of the life of the entire plant and its organs, or the consideration of the functions of the living plant; 4. Systematic Botany, the arrangement and classification of plants; 5. Geographical Botany, the consideration of the mode in which plants are distributed over the different regions of the globe, 6. Palcontiological Botany, the study of the forms and structures of the plants found in a fossil state in the various strata of which the earth is composed.

In the present article we shall confine our attention to the Structure and Morphology of Plants. The limits snd classification of the Vegetable Kingdom have been partly con-
sidered under Biology (vol iii. pp. 690-696). The Classification of Plants will be taken up in extenso under the heading Vegetable Kingdom, and the Distribution of Planta in space and time will be treated of in separate articles.

- structural elements of plants.

The elementary structure which is the foundsion of all vegetable tissue is the cell In the young su:cilent bud oi a groming stern each cell consists of an oute: firm, elastic membrane of ceilulose constituting a cell-vall; within this, a gelatinous soft mass of protoztasin, of which there maj be a portion distinctly marked off as a nucleus; and, enclosed by the protoplasm, a cell-cavity contaning à more or.less watery fluid, the cell-sap (fig. 1). Such may be taken as the structure of a typical vegetable cell, which is thus a closed resicle or sac with fluid or semi-Huid contents. Of these elements of the cell the protoplasm is that which is essential for its growth and development. In it are contained all the substances requisite for the formation of the cell-wall and the cell-sap; and the nucleus is werely a differentiated portion of it. From it then all the other parts of the cell are formed, and it is cssential to the growth of the cell. Hence it has received the appellation of

Fig. 1.
Foung cells from root of Prt. fillaria tmperiais. h. cellwall ; protoplasm ; k, oid cleus; kF, nucleolus. (Sachs.) primordial cell; and, indeed, amongst many Algæ it exists for some time as a separate cell without any cellwall or other part. This must be borne in mind when defining the cell as a sac or vesicle. The growth of the cell is usually, at first, uniform throughout, and it has therefore a more or less rounded form ; but, according to the function which it is destined eventually to perform, one or other, or it may be all; of the parts of the ccll becono moditied or specially dereloped. The cell-wall may bo greatly thickened; or it may grow more in one direction than another, so as to be elongated and form protuberances; or perforations may occer ; or sevcral similar cells arrsnged in a longitudinal series may, by obliteration of the interposed septa, unite to form a long tube which is then called a $v e s s e l$. The protoplasm in the process of growth may be completely absorbed; and when this occurs growth ceases ard the cell-walls form merely a framework. It may, howevcr, remain a long time, assuming varions shapes and often uniting with colouring matters. The cell-sap also may disappear or may remain, containing in solution, or as definite forms in its mass, rarious assimilative sobstances, as fat granulas, oil globules, starch, minersl crystals, \&c.

In some plants, as amongst Alga (Protococcus), one cell alone performs all the functions necessary for the existence of the plant. We bave thus in this cell an epitome of vegetable life, and this is the most perfect form of cell. As we pass to the higher forms of plants, where many cellis are united, we find a physiological specialization taking place, by which certain cells are set apart for assimilation, some being embryonal, some supporting, and others protective, dec. Amongst such plants as Ferns and ordinary Flowering Plants a further differentiation takes place, and some of these cells unite to form true vessels. We thus have a means of arranging sll plants in two groups, viz., those whose tissues consist entirely of cells, cellular plants (including Fungi, Algx, Mosses, dic.); and those in which ressels are present, vascular plants (including Ferns, Lycopods, and ordinary Flowering Planta).

1. Cells and Vessels-Cellular and Fascular Tissues.
 Cells united together constitnte cellular tissue (Gg. 2

C.ens ads ressels.

1t exists in all plants and abounds in teshy roots, stems, leaves, and iu succulent fruts. It coustitutes the pith and outer bark of trecs, and is very abundont in the centre of the stem of the Araha (Fatsa) papyrifera, whence Chinese rice-paper is derived by cutting it moto than sheets. By culturation the Turnp, Carrot, Cabbage, and other esculent vegetables acquire much cellular tissue, aud become tender aud succulent. The cells of the thasue rary much in size. In a cubie anch of a leaf of the Carnation there are said to be upwards of three millions of cells, They are frequentlyseen $\frac{1}{1.000}$ th, $\frac{1}{800}$ th,

Fig. 2.
Hexagonal completecel. lular tissue from the jitb of the Eider. and $\frac{1}{3}$ th of an inch madauleter. In some of the Cucumber tribe, and in the pith of aquatic plants, cells $\frac{1}{50}$ th and $\frac{1}{30}$ th of an meh in diameter occur.

In young cells the cell-wall is a thin membrane consisting of cellulose, with some water and a certain amount of incombustible material. It is permeable by water, is ${ }^{1}$ slightly estenstble and elastic, and is colourless. It dissolves in_sulphurce acid, and upon addition of iodine and sulphuric ach assumes a deep blue colour. By intussusception of mutrient material, i.e., the interposition of new molecules between these pre-existing, the cell-wall increases both in surface-estent and in thickness. The resulting cel!wall is not, however, umform in its structure, but is composed of lanecllx of different refractive power, in which the ceilulose is combined alternately with much and with Little water. These alternating dense and watery layers,-of which one set is concentric with the cell-wall, whilst two other series are vertical or oblique to the surface of the cellwall, and cut the concentric ones throughoit the whole thickness of the wall,-under a high power of the meroscope present a sernes of mutually intersecting lines, and. constitute respectively what are termed the stratification and striation of the cell-wall.

Independently of these changes in the structure of the cell-wall, consequent on its merease in surface-estent and thickness, which will be presently noticed, there are other changes of a chemical nature which take place furng the growth of the cell, and which so affect its wall as to break it into distinct "shells," which differ beth chemically and physically from the orgioal cell-wall. Thus, in the epiderms or outer cellular covering of plants, the outermast portion of the outer wall of the cells becomes converted into an elastic substance, quite impervious to water, which acts as a protective covering. This substance 13 known as cork or cuticular matter. Auther alteration is the conversion of the layers of the cell-wall mono woody matter, by a process of ligutication, or formation of wood. Or, again, layers of the cell-wall may be converted into muciliginous substance, i.e., alsorthing water, and becoming gelatinous, as m the cells of pith of Astragalus Tra-gacantha,-which furnishes gum tragacanth,-and the outer cells of the seed of the Common Flax. Lastly, mineral matters may be deposited in the cell-wall, such as lime, silica, dec., so abundantly in some instances as to constitute, after burning, a perfect skeleton of the cellwall. In all these cases, however, of alteration of layers of the coll-wall, an innermost layer, giving all the reactions of pure cellulese, may he observel. If srowth in surfaceextent procceded unformly over the whate of a cell-wall the resultiug structure would be a more or less rounded vesicle; but at different points portions grew more rapidly than at others, and thus cells, origimally oval or sphereal, may become cyluilrical, conical, \&c. The changes conseguent on unequal growth in thickness are, however, much more important, giving rise to altered appearmes both on the ousidide ared inside of the cell-wall. The esternal thick.
enngs are most usually projections in the form of spines, knobs, \&c., as in some pollen-granss, and in cilla connected with the reproductive cells of many Algae (6g. 3), or clutshaped bygrometric filaments as in Equisetum (figs. 4, 5), whilst the internal ones are more usually ridges-annular, spiral, or reticulate (figs. 11 and 12)-which may proceed so far as almost to obliterate the cavity of the cell-wall.

Fig. 3.

Fig. 5.

Fig. 4.

Fig. 6.

Fios. 3 and 4 - Spose or reproductre mell in Equisetum. Hotsethal, with tro clavate hygometric flameuts In fig 3 the flaments are expanded inadry stace: in 4 they are curicif lound the spole on the spplicztion of moisture.
Fio b-Callv, with vabiatle filamenty or cila c. tiom Chwtephora.
Fio tionder celly than thess lepmesented in fig l. h. cell- wall: p, protopiasm with nuclens and oucleolus ; s. Facuoles to the protoplasm filled witb Euid cellsap. (Suchs)

The protoplasm, which lines the interior of the cell-wall, The pro: and which is the essential living portion of the cell, consists toplasm. of albuminous substance mixed with water and some incombustible materials, and it also contains some orgame compounds. It is a homogencous, soft, gelatinous substance. As we usually fiud it in cells it has a granular and turbid appearance. This arises from an adanizture of formative matters, to which the name meraplasm has been applied. It is congulated by heat, and is soluble in a dilute solution of caustic potash; iodine solution colours it yellow or brown, whilst strong sulphure acid at first colvurs it rose-red, subsequentiy disso'ving it. Usually, at points in the interior, drops of fluid becoue differentated as racuoli (fig. 6), which may subsequentiy coalesce, and thus the protoplasm may become a sae containing cell-sap; and if growth of the cell-wall continues the protoplasm eventually forms a mere lining of the cell. wall constituting the primorlial utracle of Von Mohl. The protoplasm in some cells exhibits phenomena of movement within the collwall of a definite claracter. Thus in. the internodal cells of Characes (fig. 7) a movement of protoplasus round the longes' diameter of the cell is seen, and in the hairs of Trades. cantia (Virginian Spiderwort) a crrculation of protoplasm occurs. These constitute the phenomena oi rotation and circulation.

The nucleus (6g. 1, \boldsymbol{k}) is present in the cells of all the higher phants. It is a small rounded difforentiated portion of the protoplasm, and frequently contains vacuoles, which are termed nucleoli (fig. 1, , i). It may be in the ceutre of the cell or close to the sides, but it may change its positiou.

A amall portion of a chara magnitied to show the corra maprined toshow the that collular sirculation.
ancums mark the direction of the comee of the proto plasmla the cells The cleat pracce are parts a hera chera spaccs are partsan
Portions of the protoplasm are also differentiated as graing or granules, to which colouring matters are, attached ; but

The nr-
cleus.
leus.
these will be noticed hereafter. The protoplasm in old cells may disappear, and then all growth ceases, aud the cells consist of a mere framework; or it may remain, and then grewth of the cell continues. And it is by a re-arrangement of the molecules of this protoplasm that the formation of new cells begins, -the nucleus entering also into the process.

By the term cell-sap is meant the flud contained in the vacuoli. It consists in great part of water, in which are dissalved various salts, derived from without, and compounds formed by assimilation in the plant itself. Amongst the latter we may mention inulin, a substance closely allied to starch and sugar, found in Composite plants.

The term parenchyma (areolar, utricular, or vesicular tissae) is a general name for any form of cellular tissue, in which thin-walled cells of a diameter nearly equal in every direction are united to ene another by broad surfaces (fir. 2): If the cells are pointed at bath ends and have a length greatly exceeding their breadth, there is formod prosen chyma (fig. 8). Both tissues may be complete (figs. 2 and 8) or incomplete (figs 9 and. 10), ie., the component cells may touch each other on every side and leave no intercellular spaces, or intercellular spaces may esist between the cells. According' to the amount of surface growth and thickening of the cell-wall various forms of parenchymatous and prosenchymatous tissue resalt. Thus, in the Rúsh and Bean we have a stellate parenchyma, with large intercellular epaces (fig. 10), in the Flder pith a complete angular parenchyma (fig 2), and in the succulent stem of the Cactus a spherical incomplete pareachyma (fig. 9). Those forms of tissue in which the individual cells hare bean altered by thickening of the cell-wall are the most

Fig. 9.

Fig. 10.

Fig 8
F7a. 8.-Prosenchymatous cella.
 or leemna.
important; and the alterations in the cell-wall consequent on growih in thickness may be such as to produce obliteration of the septum between superpesed cells, and their ca ities, freely communicating, then give rise to a tube or vessel, a combination of which constitutes the vascular tissue of authors. Whilst this is the nature of a true vessel, considerable con usion has ariser from the term being applied to any ce-like structure in which the longitudinal diameter exceeds' the transverse; and thus the difference between a cell and a vessel became one of length only. The term vessel ought to be restricted to such as are formed by coalescence of cells.

Under the term plewrenchyma (fig. S) is included tissue Pleuren. composed of such elongated prosenchymateus, flexible, chyma. thickened cells, as are found in the bast or phloëm lajers of ordinary trees. They also occur in the wood portion. Their walls are thickened regularly, and they constitute when united what is commonly known as the woody or bast fibre. The diameter of the woody fibres varies from $\frac{1}{2000}$ th to $\frac{1}{230}$ th of an inch. The materials used for ropes and cordage, linen, certain Indian muslins, mumny-cloths, and mats consist of the woody fibre of plants from which the more delicate tissues have been remored by maceration in water. Flax or lint is thus procured from the bark of Linum usitatissimum, hemp from Cannabis sativa, New Zealand flax from Phormium terax, Pita flax from Agave americana, Sun-hemp from Hibiscus cannabinus, and bass or bast from the common Lime or Linden-tree. Fibres are also procured: for manufacture from the Pine-apple plant (Ananassa sativa), from Yucca gloriosa, from Böhmeria nivea, which yields the Indian Rheea fbre, from mest of the plants belonging to the Mallow and Nettlo tribes, and from some Leguminous plants, such as Crotalaria juncea, which supplies a kind of Bengal hemp. If the maceration of the fibre is carried to a great extent, a pulp is formed from which paper is manufactured. Pleurenchyma does not occur in cellular plants, such as Lichens, Sea-weeds, and Mushrooms. The tissues of these plants speedily disappear under the action of water, and hence, perhaps, the reason of their rarity in a fossil state. In the very young state woody cells are delicate, and it is only in proportion as they attain maturity that their walls acquire a thick consistence. In the sap-wood of ordinary trees the woody cells are thickened in their walls, but are perrious; while in the heart-weed they are rendered solid by the thickening matter, which is often rariously coloured.

If the thickening of the cell-wall takes place so that a Spiral network, ring, or spiral of thickening matter is formed, then tissue. the cells are reticulated, annular (fig. 11), or spiral (fig. 12), as in the leaves of Sphagnum, hairs of Cactacer, and seed-ceat of Casuarina. In these cells the spiral thickening frequently becemes loosened from the cell-wall as a spiral fibre, and can be uncelled. Such forms occur in the outer covering of the sced of Collomia linearis and of the fruit of Salvia Verbenaca. In these, when placed in water, the siscteto Aaoclar cell from the spirals rupture the softened mem- Fin. 12.-Spiral cell from an brane of the cells, and spread out-
wards. The spongy elastic character of the outer cellular covering of the roots of tropical Orchids and Araceæ, of Plate Xn the scpals of llecebrum verticillatum, of the pericarp of Gg .2 . Cachrys Merisoni and C. odontalgica, and of the ribs of the fruit of 不thusa Cynapium, is due to the presence of spiral cells. In the reproductive cells of Hepaticæ spiral fibres called elaters are found in connection with the speres. Reticulated or netted cells, produced by fbres forming a sort of mesh or network, occur in the wing of the seed of Swietenia, in the pericarp of Picridium tingitanum and P. vulgare, in the seed-ceat of Cucurbita Рерo, in the parenchyma of the leaf of Sanseviera guineensis, and in isolated cells of the pith of Rubps odoratus and of Erythriaa Cerallodendron.

If spiral, annular, or reticulated colls are arranged in a longitudinal series, and the septum between adjoining cells gives way, then we bave a spiral, annular, or reticulated vessel (figs. 13, 15, 16) formed, and to this tissue authors have given the name trachenchyma, on account of its resemblance to the trachex or air-tubes of animals. These vessels vary from $\frac{1}{3000}$ th to $\frac{1}{300}$ th of an inch in
diameter. The spiral thickened portion of the wall of the vessel may become loosened from the membrane of the wall and form a spiral fibre in the interior. These fibres are elastic, usually rounded and simple; but sometimes two or more are combined so as to form a flat band. These flat ribands, consisting of fibres which vary in number from two to twenty.five, or more, are met with abundantly in tho stems of Bananas and Plantains, and in the shoots of Asparagus. The spiral in such cases is called compound, and the ressels p leiotrachece. The spiral fibres have such tenacity that when the vessels are ruptured they can be pulled out. This capability of being unrolled characterizes true spiral vessels (fig. 13). When the spiral is not loosencd from the cell-wall and cannot therefore be unrolled, it is said to be closed. On breaking the young shoots or leaf-stalks of the Geranium, Strawberry, and Rose, or the leaves of the Hyacinth, Amaryllis, and Banaza, and puling the parts gently asunder, the fibres can be easily seen in the form of a fine cobweb. When the aerial stems of the Banana and Plantain are cut actoss, the spiral fibres may be pulled out in large quantity so as to be used for tinder. Generally, the coils or volutions of the fibre are said to be left-handed, that is, turning to the left of a person supposed to be in the axis. In the

Fig. 14.

Fig 15.

Fig. 16.

Fig. 13.
Fio. 13.-Spiral restels of the Melnn, showing the clastic flbes ancoited, sod the vessels ovellapping at thelr poltoted extremities a
Fio. 14.-Branching fibic, from bphal veqsels of Gourd (Cucurbria Pepo),
Fig. 16.-An adoular vessel takea from the Slelon plant
Fic. 16.-Boticulated ressel taken from tho Meloo plant
garden Lettuce vessels are met with, some having the fibre turning to the left, others to the raght. In the Scarlet Bean the coils of the fibres are left-handed, wlile the plant itself turns to the right in twming. Spiral vessels are abundant in young plants and sheots, while in the hard stems of trees and shrubs they chielly surround the pith. Spiral vessels occassonally exhibit a branched appearance. This may arise from the umen of separate vessels, or it may depend on a regular division of the fibres, as is seen in the Mistleto, llonse-leck, and Gourd (6g. 14). Annular vessels are those in which the thickening (or, if it be loosened from the wall of the vcssel, the fibre) is in the form of rings (fig. 15). These rings in Mamnillaria quadrispina, and in sone other plants of the Cactus tribe, are very thick, and leave only a small canal in the centre of the vessel. Annular vessels are from $\frac{1}{600}$ th to $\frac{1}{50}$ th of an meh in diametcr In reticulated vessels (fig. 16) the thickenings take the form of a network. All vesscls of this type lose very carly their protoplasmic contents, and serve to convey nir.

In the process of thickening of the cell-wall, if large spaces of the cell-wall reman than, and the thickenng mass growing in a circular manner projects into the interior of the cell and gradually arches over the thir.
portion of cell-wall, a dome-shaped carity is enclosed betwixt the thin cell-wall and the thickening mass. The growing thickening mass gradually contracts the opening into this cavity, but never completely closes it. - On front view this presents the appearance of two concentric circles, an outer marking the edge of the original thin portion of the cell-wall, and an inner indicating the under edge of the gradually contracting ring of thickening matter (fig. 17). When this process takes place on opposite sides of the parti. tion wall between two cells, there are then two similar cavities separated by the thin partition wall of the cells, each communicating freely by a small circular aperture with the cell in whici it las been formed (figs. 17 apd 18). In process

Fic. 17.-Radial loogitodinal section of wood of Pinus syloestris a, camblum. $b_{1} c_{i} d_{i}, f$, wood cells; t, bordered pits 10 an early stace of fo natlon, before tho thickenjog ring has arehed orer the thio portion of cell-sall: \mathbf{t} : bordered plt after the thlekenlng mass has arched over the thlo ced-woll; it, rery large pits where in contact wht medullary rays.
Frg. 18.-Dhagram to show thickeniog dome oo both sides of the partilion wath. Fio. 19 - Paitition wall has given way bid a aingla cavity is formed, com-
municiting on both sides with adjacent cells. (These figures afier Sachs.) municating on both sides with adjacent cells. (Thesefigures after Sachs.)
of grow th the partition wall is absorbed, and then a lenticular cavity is formed, connected by a circular aperture on each side with adjacent cells (fig. 19). When viewed by transmitted light these present the appearance seen in fig. $17 t^{\prime}$; such structures are termed bordered pits, and a colleotion of such cells constitutes the dish-bearing or punctated tissue of authors. It is well seen in Firs and other conebearing plants. It tas been called glandular tissue. In the case of some fossil woods, pieces of silica, like double convex lenses, have been found in the cavities. When a vertical radial section is made of the stem of Fir, bordered pits, arranged in two rows, with individual pits on the same level, are seen. In Araucaria double and triple alternating rews are seen; whilst in the Yew a promment striation line winding spirally amongst the pits is noticeable. When the thickenug begins by the formation of transverse ridges extending right across the wall of the coll, and the inwardly projected ridges gradually arch over the thin membranous portion of the wall, a narrow fissure only is left leading into the cavity enclosed by the thickening masses and the thin portion of the partition wall, on the opposite side of which a similar process has proceeded. By the absorption of the partition wall a single cavity bet meen two cells is thus produced, communicating with both, just as in the last case. Viewed by transmitted ligat these present an appearance like rungs of a ladder, and bence the name scalariform applied to the cells in which they occur (fig. 20). They are specially secn in Forns, where they give rise to long prismatic ressels.

Fig. 20.

When the thickening takes place orer Sestaritomo or 1sader. Filtom nearly the whole of the cell-wall, thin hine promatit vessois usuec portions may be left bere and there, which appear as pits when viewed by transmitted hght.
or as small eanals when the cell-wall is rery thick. Such cells are termed porous or pitted or dolted cells (fig. 21). In old cells, after the protoplasm has disappeared, the portion of the cell-wall which remained thin is often absorbed, and thus there is a true perforation of the cell-wall. These perforations often occur in groups both upon the cell-wall and upon the septum between superposed cells, and give rise to a remarkable sicve-like structure, in which case they are termed sieve-cells. The latticed cells of some authors are of a similar nature. 'When superposed porous Jr sieve-cells coalesce by complete obliteration of the septum, then a pilted vessel, sievo tube, or duct is formed (fig. 22). These ducts are usually of a larger size than other ves-

Fig. 21.

Fig. 23.

Fig. 22.
Fio. 21.- Parctus or pitted cell from the Mistleto.
Fio. 22- Moniliforn dotsed or pitted vessel from the Melon.
Fio. 23-Sectloo of a Bamboa, showlog on angular actwork of cells, and the rouod opertures of pitted vessels.
sels; they are well scen in the inncr phloèm layers and in the wood of trecs, and they constitute the large rounded openings which are seen in the transverse section of the stems of the Oak, Poplar, Willow, \&c. They also abound in the Bamboo (fig. 23), and in other plants of rapid growth. The names of bothrenchyma and taphrenchyma bave been given to a tissue composed of such cells. Not unfrequently contractions are visible on the outside of the vessel (fig. 22), indicating its formation by coalescence of superposed cells. To vessels exhibiting contractions of this kind, whether spiral or pitted, the terms moniliform and vermiform have been applied ; and the tissue composed of these momhform vessels has been denominated phlcboidal. In the ducts of many plants a remarkable appearance is produced by the protrusion, through the perforations into the cavity of the vessel, of portions of the adjoining cells, or, before its absorption, of the pertion of partition wall closing the pit. These portions appear as ce!ls filling the interior of the vessel, and are described under the name of tylosis (fig. 24). It is well seen in the Walnut, Chestnut, Oak, de.

Bg. 24.

Fig. 25.
Fia. 24-Longilutinnt section of the atem of a spectes of Walnut (Juglans cinerea). ahowlog tyloxis in pitted vesselsa.
Fio. 25 -Branching and onastomoslog laticiterous yessels The oriows make the alrection af the current.
tubes or passages, heving a diameter of about $\frac{s^{2}}{1 \sigma_{0}}$ th of an inch, forming, by their union, an anastomosis or network, like the veins of animals. They are the milk vessels and the proper vessels of old authors. They receive their name from containing an emulsion called latex, of a granular nature, often milky or coloured. They are seen in the Indiarubber and Gutta-percha plants, the Mudar plant, the Corr-tree, Spurges, Dandelion, Lettuce, Chicory, and Celandine, frequently containing a large quantity of eaoutchone Usually these vessels are thin-walled, but sometimes slightly thickened. They are found most abundantly in the phloëm layers-rarely in the xylem or wood layers (Papayacex). They are the result of the coalescence of anastomosing or rectilinear rows of cells, and sometimes they scem to have resulted from the conversion of other vesscls. In some Araccee they seem to represent spiral vessels. In Asclepiadaceæ they are evidently bast-fibres. Some consider them as merely intercellular canals. The milky sap of Euphorbia phosphorea is said to be Juminous. The latex cxhibits movenents which bave given origin to the name cinen. chyma applied to laticifcrous tissue by some authors. Those movements, classed under the name cyclosis, must not be confounded with the motion of protoplasm in cells which is designated rotation.

We bave aeen that the cellular tissue is sometimes incomplete, that is, the cells du not touch on every side (fig. 9). The intervening spaces are called intercellular spaces, and intercelo theso may be either circumscribed cavities called lacunce, lar spaces or they may cxtend for some length through the tissue as intercellular canals; but these two structures pass into one another. In the earliest stage of development the tissue is always complete, and these spaces are formed subsequcntly by a splitting of the partition or common wall of the cells, and they may subsequently be increased in size by an absorption of the investing cells. These lacune and canals may contain air, espccially in aquatic plants, to give theas buogancy, as in Potamogeton (fig. 26), or they may be recep.

Fig. 26.
Verfical acctlon of the leaf of Potamogeton or Poodrreed, showlag att cavfltes of liscuax $t_{\text {, and }}$ parenchymatous cells F_{1} with granule θ_{0}
tacles for various secretions, and when they exist as canals they usually aid in conducting sap. The intercellular canals are exceedingly well seen in coniferous plants, where they constitute resin passages, forming a continuous system througloot the plant, and arranged at intcrvals in concentric cireles in the sylem or wood portion of the stem.

Chlorophyll is the green colouring-matter of plants. It Substanew occurs in the cells of the superficial parts of plants united found io with small portions of the protoplasm (chlorophyll bodies), cells which are combined into grains of various forms. Starehgrains are usually abundant in the chlorophyll bodies. Chlorophyll is soluble in alcohol and ether. It consists of four substances, two yellow and two green, which possess distinct optical properties. It gives a black band in the red of the spectrum. Physiologically it is very important, It is developed under the action of light, and undergoes changes according to its state of oxygenation. Hence the raried tints of leaves in autumn. Numerous colouring matters occur in plants, especially in flowers, and all such when not green are included under the general term chromule. Stareby and oily matters and albuminoids occur very abundantly in the cells of plants, where they are stored
for the purposes of vutrition. Starch, composed chemically -of carbon and the elements of water (hydrogeu and oxygen), its formula being $\mathrm{C}_{6} \mathrm{H}_{30} \mathrm{O}_{5}$, occurs in the form of fime grains, more or less oval or rounded, which rary in diancter from the $\frac{1}{\text { OOD }}$ th to the $\frac{1}{6} \bar{o}^{\text {th }}$ of an inch. Each grain coutains starch in two forms,--onc, receising the bame granulose, is easily soluble, and gives a deep blue colour on the addition of iodine; the other form, sturch cilluluse, is less soluble, and gives a yellow or brown colour with jodine; but the former is zoust ahumdut in the grain. The individual grains eitber lie distinct from each other in the cells, as in the Potato, Wheat, and Pea, or they are aggregated so as to form compound grainz, as in West Indian Arrowroot, obtained from Maranta arundinacea, aud Portland Sago, procured from Arom unaculatum. Graims of starch prosent a very characteristic concentrically striated appearance (fig. 27). This is the result of their mode of formation. The point round which the strise are arranged is called the hilum. Starch is accumulated in the internal, and ofien in the subterranean parts of plants. It eccurs abuadantly in fleshy roots, and in sterus, as well as in sceds and fruits, and is casily separated by washing. The ordinary cultivated grains yield starch in considerable quantity; so also do the Putato, Arrowroot, and Cossava plants, the Sago-palms, and Banama frilt. That procured from the Arrowroot plant consists of dull white grains; while that frow the Potato, and

Fig. 27.
a_{1} Starch cells of tho Pea. showing grains of stanch in the intelor. b. Separate starch
crains, with strie aud Erains,
bilum. from various species of Canna supply ing tous-les-mois, is in the form of large shining particles. Sago and Tapioca are grannlated forms of starch, the formor being procured from the cells of various species of Sagus and Metroxylon, the latter from the Cassava plant. The existance of starch in the bark and young wood of trees, buch as the Pirch and Pine, renders them useful as articles of food in cold countries. Lichenin is a form of starch existing in the cells of Iceland moss and other lichens; while inulin, which occurs dissolved in the cell-sap, is the starchy matter supplied by the roots of the Dahla, Dandelion, and Elecampanc. By the action of prolouged heat, as well as by the addition of dilote sulphuric acid, or of malt, starch is converted into a soluble gummy substance called dextrin. The same change occurs during sermination or the sprouting of the seed. Oily matters vecur as drops in the interior of cells, usually assocjated with starchy substances or with albominoids. These latter exist as small granules or large ronnded masses with definite chemical and optical propertics, and are termed aloume greins. They are froquently associated with a erystalline arrangement of portions of the protoplasm of the cell known as crizstalloids. Sugar occurs abondantly in the sap of plants. When pure and in a solid state this substance is crystalline and soluble in water ; but it also occurs in an merystallized form. There are two marked varncties of it. Cancesugar, $\mathrm{C}_{12} I I_{1} \mathrm{O}_{19}$, procured from the Sugar cane, Sugar-maple, Iect, Garrot, doc: and srapesugar, occurvinf in mumerous fruits, as Grapes, Cooseberrics, Curmints, Pealines, and Λ_{p} ricota Thac formula for grapebugar is $\left({ }^{\circ} 11_{0} \mathrm{O}_{6}\right.$. During the sprouthy of the seed, starch is converted into grape-sugar, and a similar change is induced by the action of malt, or of any ferment. A swect substance (not a true sugar), calleil Mamite, is procured from the Mamasaly (Omms curopaca) as well as from various sea-weds, from species of Encalypths, and

Oum

 from the Dandum. (imo or mucilageds ancther substance found in vegetable tissues. When pure it is char, soluhle in water and also in dilute acids, but not solable in alenlolor ether. It is one of the forms throngh which vegetable matter passes in being applied to the purposes of plant life. It exists largely in the regetable juices. From the bark of many trees it is procured in the form of an exudation. Two well-marked kinds of gum are met with,-arabin, soluble in cold water, constituting tiee chief ingredient of gum-arabic, procured from varous species of Acacia; and cerasin, insoluble in cold water, but readily soluble in boiling water, constituting the gummy sccretion obtained from the Cherry and Plum. A substance called bassorin, or vegctable jelly, is found in Tragacanth, the roots of some Orchids, as well as iu Carraceen (Chondrus crispus), and other sca-weeds. It is allicd to gron, but differs in swelling up and becoming gelatinous when mixed with water. Another gum-like substance called pectin exists in the juice of the Apple, Pear, and other pulfy fruits. It is changed by the action of alkalies into pectic acid, which is found in many fruits and such succulent roots as Carrot, Turnip, Beet, de. Oils, Fats, and Resins occur in Oils and colls of plants, or in special canals or glands as products resus of assimilation. The oils are either fixed or volatile, - the former being divided into drying, fatt y, and solid, while the latter are distinguisced according as they consist of carbon and hydrogen alone, or of these elements combined with oxygen or with sulphur. Resinous matter occurs in the form cither of Guid balsams, or of the various hinds of solid resin and pitch. In the rind of the Orange and Lemon glands of oil occur (fig. 28). Turpentine canals aro met with in the wood of Pincs; and Vitte, or oil-canals, in the fruit of Umbelliferous plants, such as the Coriander. In the fleshy covering of the fruit of the Olive there are numerous oil-cells. The fruit of the Guinea-palm yields a solid oil, called palm-oil. The dotted appearance of the leaves of the Orange, Myrtle, Eucalyptus, and St Johu's Wort, depends on the presence of numerous cells or cavities containing essential oil.

Fig. 28.- Vertical section of part of the rind of the O_{1} singe, show ide glads containing vohutile ohl, R, R, R, sumounded by cells,
Fig. 29.- Cells of Iimmex C, contatuing ranhudes r
Fig. 23.-Cells of Immex c_{1} contahing rafhudes r. The cells are called Raphe Fian. The rajhides ate acicular or rwedle-lde crystals forming bundles. Fig 30 - Cells of beet-loot, coulaining conglomethe crystals

As allied to these secretions, we may notice caoutchouc, Which is found in the milky juice of plants, especially those belonging to the Fig, Spurge, and Dogbane orders The treus most prolific iu this substance are Siphonia elastica, Ureeola clastica, and Urostigna clasticum. Guttapercha is the concrete millsy juice of the Taban plant (Isonandra Gutta). Wax is also foud in the tissues of plants, and it frequently occurs as a secretion on the stems, as in the Wax Palm, aud on the surface of fruits, as in the bloom or glaucous secretion of the Plum and the Candleberry Myrtle. Cystals of lime salts occur in the interior of cells, and also in the cell-walls of plants. They,
consist of lime in combination with earbonic or oxalic acids, and are in many plants very abundant. In Monocotyledons they usually assume the form of needle-like crystals, and are termed raphides; they consist of oxalate of lime (fig. 29). They are remarkably well seen in the Banana. The Squill bulb and the bulb of the Onion exhibit raphidian cells, which are easily separated during the decay of the plants. The crystals are also arranged in a conglomerate form (fig. 30), as may be seen in the root of Turkey Rhubaro, to which they impart grittiness; and in Old-Man-Cactus they constitute 60 to 80 per cent. of the dried tissue. In a single cell of the Poke (Phytolacca decandra) twenty to thirty crystals may be seen. In the epidermal cells of species of Fieus, and other allied plants, prolongations inward of the cell-wall oceur, at the extremity of which small erystals of carbonate of lime are deposited (fig. 31); to these the name cystoliths has been applied. Siliceous matter oceurs in the walls of cells, as in Grasses and Horsetails, and especially in Diatomacer.

2. Integumentary System.

A more or less marked division of the tissues into an onter layer bounding an inner mass is visible in all plants. Anongst the lower ecllular plants this dirision is not very distinct; the circumferential cells are perhaps only a little smaller and more compacted than these near the centre. The higher cellular plants, however, exlinbit great diversity.
Epidernw. In them the cells of the circumference may be arranged in layers so as to constitute a true epidermis, the component cetls having a definite relation to one another and to the exterior in the respective familics. Iu all vascular phants an epidermis is found. In many cases, however, it is difficult to recognize it, as in the stems of submerged plants and in most roets. It usually consists of a single thin layer of cells closely compacted, and leaving no interspaces cacept at definite points (stomata), where openiugs lead into intercellular cavitics. The cells composing this layer have their outer wall much thichened, the inner wall remaining thin, and they contain no stareh or granular matter, and usually are colourless. In many aquatic plants, however, and in Ferns, chlorophyll is present. The apparent colour of the epidermis depends on that of the parenchymatous cells below, from which it can be separated as a colourless layer. Sometimes the cell-sap of the epidermal cells has a red tinge. The onter lamella of the outermost cell-wall of the epidermal cells usually becomes euticular or corky, and thus is formed an external separable layer or cuticle upon the surface of the epidermis proper. This layer has different chemical propertics from the epidermis, being insoluble in oulphuric acid. Upen this cuticle wax is frequently deposited in various forms, serving as a protective from moisture ; of this uature is the bloom of the Plum. The cuticle in aquatic plants is very thin ; in aerial plants it is much thicker. The single layer of cells forming tho epidermis is not unfrequently strengt hened by the addition to the inside of other layers of cells. In the leaves of Begomia, Fions, and the outer covering (velamen) of the acrial roots of Orchids, this constitutes the hypoderma, the cells bcing of various forms. It is well seen also in vascular Cryptogams, many Bromeliacer, Ilex, \&c. On those parts of the plant which live long and have vigorous growth in thickness the effecacy of tie epidermis as a protective covering is increased by a large formation of cork. Each epidermal cell divides into an outer and an inner cell. The former at once becomes a cork cell, losing all its suceulent matter; the latter remains capable of division. When a layer of these merismatic cells occurs we have a cork cambium or phellogen. If several lajers of cork cells be formed a cork tissue or periderm is the result, which supersedes the epidermis, aud which from variations in the several layers may
be stratified. Not unfrequently the phellogen cells, in addition to giving off cork cells outwardly, give rise on the inner face to cells containing chlorophyll; and if a layer of such is formed it is termed a phelloderm. In such cases the phellogen lies between the phelloderm and the periderm. If phellogen lamellw are formed deeper in the tissues of the plant, the internal layers of tissue become dry and constitute the bark. Periderm is thus replaced by bark. One stomata important eharacter of the epidermis is the presence of stomata or breathing-pores. These exist abundantly upon the stems and leaves of plants; they also occur on the parts of the flowers ; but they are absent from all root structures, though present on underground axial structures. Each consists of a central pore bounded by two or more cells (guard-cells), which contain chlorophyll, stareb, and matters distinct from the surrounding epidermal cells. The pore bas various forms, and opens into an intercellular cavity (5ig. 32). It may be round (Primrose), oral (Liliacex), quadrangular (lizeea). The arrangement of the stomata on the plant raries much. They may be in lines as in Equisetum, or they may be scattered irregularly as in Ealsam(ig. 33), orin definite clusters as in Crassula and Saxifraga (fig. 34). In

Fig. 32.
Vertical section of epidermls, from Tho lower surface of the lcaf of Madder, showing tho intimate union of the epl. dermal cells $e_{1} e_{\text {a }}$ the looke subjacent para enchyma p, wis $h_{\text {int }}$ intercaluar canals m_{0} and lacura $t ;$ stoma,

Equisetum the stomata, which are about $\frac{1}{230}$ th of an inch in their greatest diameter, consist of four guard-cells; two

Fig. 33.

Fig. 34.

Ero. 33.-Epldermis of the garden Baisam (Baisamma hortersis), showing stomats Eio of an clliptical forn.
Elo. af.-Epidemis of lcaf of Sarifraga ammentesa, shouing ciustere of stomata s, s, surrounded by large epidermal cells c a The cells armong which tho - tomata occiar are very senall.
of which are arched and thick at their outer conves margin,

Fig. 35.

- Fig. 36.

Fro. 35-Formatton of otomata from leaf of Hyactnth. seen from the aurface e efidermis cells: s^{t}, mother-ecil of stumatis guard-cells: , bipartition of mother-cell into two guard-cells. (Sachs.) (Sachs.)
becoming thin at their inner concave edge, where tro other
smaller cells overlie thero, with their upper walls raised as ridges running at right angles to the stoma. This gives the stoma a fringed appearance, hence called pectinate. The mode of formation of a stoma is an interesting process, resulting from the division of a single epidermal cell. Preparatory to the complete formation of the mother cell of the stomatic guard-cells, divisions may take place in the epidermal cells by which numerous or few cells are formed surrounding this mother-cell. In the mother-cell a partition wall is developed (fig. 35, s). A thickening of the partition wall occurs. and eventually in the central portion a tissure makes its appearance, which gradually increases in size (fig. 36). It does not, however, pass throughout the whole extent of the partition wall, An opening or stuma is thus formed, bounded on each side by a single guard-cell, leading into an intercellular space in the parenchyma bencath. If we suppose the mother-cell to be divided by numerous vertical septa we should have a stoma surrounded by many guardceils, as occurs in some Hepaticæ; and in this family, after the formation of the fissure a series of horizontal septa appear in the guard cell, and thus the stomatic opening becomes a canal. In Ceratopteris thalictroides the stoma is bounded by three cells,-two of which, in their open condition, are erescentie and concave in wardly, while the third surrounds them, except for a small space at the end of the long axis of the stoma, and has on this aecount been called peristomatic. In Urostigma elasticum four cells form the stoma. Subsequent changes in the surrounding epider. mal cells may cause alterations in their relations to the stomata. Thus, in the Oleander (fig. 37) the epidermis

Fig. 37.

Fig. 38.

Fio. 37 - Vertical aection of lower epidemis of the leas of Nerium oleander. e,
epidermis composed of several layers of cells. p. pareochyma of the leaf: s, cavity filled with hairs, at the bottom of which is a stoma.
Flo. 38 .-Ubicellular hair of the Common Cabbage.
develops so as to sink the stoma within a eiliated cavity; in other cases the stomata are raised on piliars. The guardcells have a power of opening or elosing the orifiee of the stoma; when moistened they swell and curse outward, and leave a free openirg ; when dry they collapse and their edges are straightened, and they closo the orifice. Stomata are most abundant on the under surface of leares. . Their number varies irom 200 to 160,000 or more in a square inch of surface. In the leaves of the White Lily there are 60,000 in a square inch on the under surface, and about 3000 on the upper; on the leaves of the Cherry-Laurel there are 90,000 on the lower surfacc, and none on the upper.
rnchomes. Upon the epidermis and as outgrowths from it are found certaiu appendages. These are hairs, scales, prickles, \&c., and all have been embraced under the general Dame trichome. Hairs (pili or villi) are productions eaeh of an epidermal cell, having typically an clongated or conical form, aod coverel by the cuticle. They are erect or oblique, or they lie parallel to the surface, and are appressed. Sometimes they are formed of a single cell, which is simple ani undivjded (fig. 38), or forked (fig. 39), or branched; at wher times they are cemposed of many cells, cither piaced end to end, as in meniliform or necklace-like lairs (fig. 40), or united together laterally, and gradually formjng a cone, as in compound or brancled hairs. When thebranches of a bair proced from a common centre, it is stellate or radiated (fig. 41, a, l), as in hairs of the Mallow tribe, in those of Deutzia scalira, and those on the stem of
the Rice-paper plant (Eatsıa papyrifera). When stellate bairs are flattened out, so as to form a sort of membranous expansion (fig. 44), a scale or scurf is produced. In Bromeliacex the seurfiness of the leaves is a marked character. To such expansions of the epidermis the name lepis is applied, and the surface is said to be lepitote. These scales have sometimes a beautiful silvery appearanee, as in Elæagnus and Sea-buckthora (fig. 44). Surrounding the base of the leaves of Ferns a brown chaty substance occurs, consisting of elongated cells, to which the name of ramentaceous havrs, or ramenta, bas heen given. In Palmealso a similar substance but of a fibrous texture oceurs, called reticulum or mattulla. Setze are bristles or stiff hairs, and the suriaces on which they occur are said to be setose or selaceous. Some hairs, as those of Drosera

Fig. 42. Fig. 43. Fio 39 - Forked of bifurcated unlcellolar holr of Draba of Whillon-gress. Fig 40 - Sloniliform or necklace-like hait of Virgidian Spiderwort (TYadescantia wirginica).
Fis 41 - U'nicellular hair of of Alyssom, dividing frito rays at the apex. The
stellate or star-like artangement is represented in the loner figeco stellate or star-like artangement is represented in the lofer figure ϕ
Fig 42 -Glandular, multicellular or many-celled halr of Frogsmouth (Antiathinum majus) It is a jartisioned capitate halt.
Fig 43.-Sting (stimntus) of Netlle (Urtica dioica); Ite base ls formed by numerous cells contaning lifitating fluld; from thcso ariges a simple unicellular
conical halr, which serves as a ducf for conveging the fuis conical halr, which serves as a duce for conveging the fluid.
(Sundew), have one or more spiral fibres in their interior. When the cells of hairs are hardened by thiekening of the eell-wall, as in the Rose and Bramble, they are called Prickles (aculei). By some these are not considered as bairs, but are termed cmergencies, inasmueh as they arise from a collection of cells, not from one epidermal cell. . Various names have been given to the different forms of hairs. They are clavate, or club-shaped, gradually expanding from the base to their apex ; capitate (fig. 42), having a distinct rounded head; rough or scabrous, with slight projections on their surfaee ; hooked or uncinate, with a hook at their. apex pointing dowawards and to one side; barbed or, glochidiale, with two or more hooks around the apex; shield-like or peltate, when attached by their middle, and projecting horizontally on eitber side, as in Malpighia urens (fig. 45), and in many. Cruciferous plants'; cilia, when surrounding the margin of leaves. On the pod of the Cowitch (Mucuna pruriens) hairs are produced with projections on their suriace, which cause irritation of the skin. In Venus's Fly-trap (Dionxes muscipula) stiff hairs exist on the blades of the leaf (fig. 46), which, when touched; induce their closure.

Hairs occur on various parts of plarits, -on the stem, leaves, flowers, seed-vessels, and seeds, and even in the interior of vessels. In the interior of the spathe of some Palms numerous ovate cells, analogous with hairs, oceur in clusters, and can, when the spathe is dried, be shaken out in the ferm of powder. Cotton consists of the hairs surrounding the seeds of Gossypium herbacnum and other speeies of the genus. These when fresh are elongated tubular eclls; when dricd their walls collapse and they appear twisted. Hairs are occasionally developed tu a great extent on plants exposed to elevated temperatures, ats well as on those growing at high altitudes. When they occur on the organs of reproduction they are connected with fertilization, as the hairs on the style of Goldfussia, and the retractile hairs on the style of Campanula

Different organs of plantw are transformed into hairs,-as may be seen in the flowering stalks of the Wig-tree (Rhus Cotinns), and in the calyx of Composite.
Napmes are given to the surfaces of plants according to the presence or absence of hairs, as well as the nature of the hairs which cover them. The following are the more inıportant terms;-Glabrous, smooth, having no hairs; hairy or pilose, furnished with hairs.; pubescent, covered with soft, short, downy bairs; millous, having long, weak, often obliquo hairs ; sericeous, covered with long, closely appressed bairs, having a silky lustre ; hispid, covered mith long harsh or stiff hairs not appressed, hersute, having long tolerably distiact hairs, not harsh nor appressed; velvety or velutinous, with a dense covering of short down, like velvet ; tomentose, covered with crisp,rather rigid, entangled hairs like cotton, which form a sort of felt (tomentum); revolly, with long curled and matted hairs like wool; bearded or stupose, when hairs occur in'small tufts. The hairs which nre most frequently met with in plants are callcd cymphatic, from their not being connected with any peculiar secretion. Those, on the other hand, which have sccreting cells at their base (fig. 43) or apes, are denominated glanel:ilar, and are not to be distinguished from glands. On young roots cellular projections occur, which may be called rudical hairs. 'Young leares and buds are frequently covered with protecting hairs. On the parts of the Hower, as in the Iris, coloured hairs occur which have been called eorolline.

In. counection with the epidermal appendages we may notice glands, although they may occur. in any tissue. A glaod consists of a singlo cell or a collection of cells secreting substances different from those contaned in the surrounding cells. In the former case the gland is simple, in the latter it is compound. In compound glands it frequently bappens that the walis of the inuer cells are absorbed, and thus the gland has only a single cavity, as in the glands of the Orange rind (fig. 28); these are termed vesicular. The secretion of the glands nay be stored in their interior, as in Orango rind, and in the leaves of Laurns Camphora, or it may be exuded as in Lychnss viscaria, and in the wectares of Frotillaria imperialis (tig. 50). Hairs serve as ducts through which the secretion of glands is discharged. Such hairs are seen in the Nettlo (fig. 43), in Loasa or Chili Nettle, and in Malpighia (fig. 45), and are

Fig. 45.
Fig. 44

Fia. 44 - Rndiafing hatr or scate froria Eleagnus (Girnsier).
Fio. 45. - Peltatc hair pp of Afa/pighrabuens iling frome, epldermis, $9 . g$ laod
Fic. 46.-Irrlisble teares of Venusis Fly tiap (thomace)
commonly called stings (stimuli). In the Nettle they are formed of a suglo conical cell, dilated at its base, and closed at first at the apex by a smell gloioular disk placed
obliquely. This disk breaks off on the slightest tauch, when the sharp extremity of the harr enters the skin, and pours into the wound the irritating floid which has been pressed oat from the elastic epidermal cells at the base. When a nettle is grasped with violence, the sting is crushed, and hence no injury is done to the skin. The glandular enlarged apex of hairs sometimes exudes a viscid secretion, as in the Chinese Primrose and in theSundew. The hairs of the latter plant, by this secretion, detain insects which happen to alight on them. The hairs gradually close on the insects, electrical phenomena taking place during the movement, and then the secretion from the glands becoming acid, an action takes place upon the organic matter analogons to that of the pepsin of the gastric juice, by which it is rendered soluble, and is eventually absorbed by the plant. A similar property is possessed by the secretion from the glands upon the surface of the leaf of Venus's Flytrap (Dionxa muscipula, fig. 46). The acid in both instances belongs to the formic acid serics. Glands may be either internal or external, and they may be situated at the extremity of a bair (when they are stalked), or they may be 1 mmersed in the substance of tho plant (sessile). In the Dittany (Dictaunnus albus, fig. 47) a form of gland is seen intermediate between the sessile and stalked form. The glands in this plant secrete a green oily matter, su also do the stalked glands in the Rose. In the Ice-plant the glands appear

Fig. 47. Gland of Dittany
cut verticully. cut vertically. as clevations of the cpiderms, containing a transparent flud like cce, which is said to bave an alkaline reaction; in the Ohick-pea similar superticial cells contain an acid floid. Clear glands are also secn on the under surface of the leaf of Iassitlora lunata. Resinous glands are seen in the Hop (fig. 48) and Hemp plants. At tho basc of the petals of the Crown-imperial (fig. 50), cavities occur containing a honeylike Buid, secreted by what are called nectarijerous glands.

Fig. 48 - Supcificial glands 0 : The Ifop, containing a icsinous acciction calle Lupulin
Fig. $43-$ Cluater of arate-nbiong glands from the base of the stipule of the Jpecaruan plant (Cephaeiss /pecai wanha)
Fig 20 -One if the pelsts of finillaria mperialis, Crown Imperial, showing a pit ur depucsaiong at the base cuolaming a lioney-like accretloo. Tlila gland by sometinies calicd a olctaly.
Cavitics containing saccharine matter, surrounded by small thin walled cells, are met with in the leaves of Acacia tongifolia, also in Viburnum Tinus, and Clerodendron fragrans. The cavities communicate with the surface of the leaves by means of canals. Peculiar sessile glands secreting a gummy substance are found at the inner side of the base of the petioles of Cinchona and Ipecacuan plants (fig. 49). On the buds of various trees peculiar glandular bairs termed colleters exist, sccreting a gummy mucilaginous matter, the blastocolla, which covers the bud. Thesc, however, disappear on the bursting of the bud. They
seem to have a protective function. The secretions of glands are very various, oily, waxy, resinons, gumus, saccharine, acid, de.

ORGANS OF PLANTS.

Having now considered the elementary structures and tissucs found in the Vegetable Kingdom, we proceed to viow them in combination to form the plant. The simplest plant is found amongst Algæ, where, as in the Red-snow plant (Protococcus nivalis, fig. 5I) the whele organism consists of a single isolated cell. Other Alge and all Fungi and Musci are composed of a number of cells united in various wajs; whilst in Ferns and their allies and all flowering plants vessels are formed in addition to tho cells. The plants in which the tissues are entirely cellu. lar are termed cellular plants; those in which vessels are also found are vascruer plants.

That the portions of a plant may be properly maintained two functions have to be performed, namely, nutrition, on the proper performance of which the life of the individual plant depends, and reproduction, by which the perpetuation of the type is provided for. In such a sirople form as the Red-snow plant (fig. 51) those functions are performed by the single cell. In the plants composed of numerous cells a differentiation takes place by which special cells are set apart for particular functions, and thus eertain organs are formed in the plant. In the higher plants those organs become more complicated from the introduction of the vascular element.

The nutritive organs of plants are generally known as the root, the stem, and the leaves. In all viscular plants null the higher cellular plants an axis or stem having roots and bearing leaves is distinguishable, and such plants have been designated Cormophytes or Phyllophytes. In the lower class of cellular plants, as Fungi and Algæ, no such distinction is possible, and there is merely a flattened leafy expansion with dejendent filiform processes; this structure has been termed a thallus, and such plants are Thallogens or Thallophytes.

Armongst the higher plants the reproductive organs are,

Fio $3 t$ - llailent or Fiench Benn, a Dicotyleimous piant, germinating. ritho poots commen off from the radiculare end of the asia; t, the bypocotytedonaiy potion of the nvis hearing the cotyledong c, c; the young stem and leaves, g, g. livots conme of fiom lower end of t, the axls; c, the smgle cotyledon; g, the yennar malk and leaver.
in ordinary language, comprehended under the termiflower; nom, as they are conspicuous, such plants have been. denominated Fhocring, Phanerogamous, or Planogamous. Amongst all cellular jlants and in some vascular plants, as

Ferns and Equisetum, there are no fluwers, and the reproductive organs are inconspicuous, heuce they have been termed Flowerless or Cryptogamous. In all cases the young plant, or embryo, is completely cellular. But as growth procceds, that differentiation takes place which distinguishes the several classes of plants one from the other. In Phanerogams the first leaves produced upon the embryo plant are termed primary, seed-lobes, or cotyledons. In some cases these are two in number, and are opposite one another. Plants in which this occurs are Dicotyledonous (fig. 52), as our ordinary forest trees. In other plants the lobes alternate and only oue cotyledon is formed; such are Monocotyledonous (fig. 53), as Grasses, Lilies. In Cryptogams, on the other hand, no such secd-lobes or cotyledons are produced, and they are Acotylcdor. ous (fig. 54).

In all plants the original cell tissue which gives origin to its parts is of a uniform nature, and is termed the primary tissue. When all the cells of this tissue are capable of maltipli. cation and division the tissue is a moristen or generating tissue. If the eells are not so capable, then it is a permanent tissue. The primary tissue at the growing point of any shoot or root is essentially a meristern, and it has been designated the primary meristem to distinguish it from the secondary meristem, which is applied to a tissue in the older parts of a stem or root which remains or be-

Fig. 54.
Germinating spoica of a cel lular piant (Prohyera risularki. a, spore glving out a conical soot-like process r. What the other cxclemity, containing a nucleus and Efanules, forms seme sporc, with the icotJike pioress r_{1} disiding. No cotyledoos are produced. comes eapable of division. The growing point of the apex has been termed the punctum vegetationis, and it not unfrequently forms a conical projection, and is then the vegetative conc. By growth at this punctum vegetationis the shoot or root increases in length, and the mode of addition is in many cases of a definite character. Two chief types of growth are recognized. In one of these a single large cell is always present at the apex, termed the apical cell, which may be regarded as tho mother-eell, whenee by bipartition in a defnite manner the whole meristem below it has arisen, as is well seen in vascular Cryptogams and cellular plants. The other type is seen in Phanerogams, and here no such apical cell is visible, but a number of cells are found at the apex by whose multiplica. tion the subsequent tissues are formed. But in whatever way formed, a primary meristem is the result of all the processes of gtowth, and by differentiation of its cells the various parts of the shoot or root are formed. The outer layer of the primary meristem, which extends completaly over the punctum vegetationis, is termed the dermatogen; it is the primordial epidermis, being continuous with the epidermis of the shoot and afterwards becoming epidermis, Underneath the dermatogen several layers of cells are distinguished, continuous with the cortical portion of the shoot or root; this is the primordial cortex, and constitutes the periblem. Euclosed by this is a central cellular mass out of which the fibro-vascular bundles and the structures of the central part of the shoot or root are furmed; this has been temed the plerome. If the growing axis be a young root there is in addition developed, usually from the dermatogen, a mass of cells at the extremity, constituting a root-cap, or protective covering, to the delicate merismatic cells beneath; no such structure is formed in a stem. Thus a stem is structurally distinct from a root in having no root-cap.

In the plerome the fibrovascular bundles are formed. Fidos. Certain cells become elongated and prosenchymatous rascular and united in bundles leaving no intercellulas spaces; bundlea
this mass is termed the procambium of the fibro-vas. cular bundle. As growt 1 proceeds changes take place in the cells by thickening, and, their contents disappearing, various kinds of cells and vessels are fermed. In this way the whole mass of the procambinm may be converted inte permanent tissue, and then growth ceases; or an inner partion of the bundle remains merismatic, which is called the cambium, and then growth praceeds, the shoat or root increasing in thickness by the cambium forming new cells on bath sides In the former case the bundle is closed, as in Cryptogams and Monocotyledens and some Dicotyledons; in the latter it is open, as in most Dicotyledons and Conifers. In cevery fibro-vascular bundle a separation into two groups of structures may be distin-guished-the wood or sylem layers, and the bast or phloëm layers. As long as the bundle is open and cambium present, these layers are separated by the cambium (fig. 55). Their

Fig. 55.
Sroneverse ecetion of an open foro-vancular bundle. ε, camblum; co, continua tlon of cambinm between the fbro-vasenlar bundics; z larzo plitted vessels; t athaller pitted resels and apiral ressels fatemmed with wood-cella; ; is iner phlocm layers: b, bast flures; si is the rarenchyms of the pith; ific the the of celle flled with atareh. (Sachs.)
relative position as regards the asis of the stem or root

Fig. 56.
Longlludinal seetice of so open Abro-vascular bundle. c, cambium; s, s', spiral
 $h_{1} h^{\prime}, h^{\prime \prime}, h^{\prime \prime \prime}$. wood-cetls; t^{\prime} berdered pitted vessel : h^{\prime}, young pitted ressel; $p_{\text {, }}$ locer phoèm layer; b, bats layer; g g, bundle-sheath; r, corical parenchyma;

zaries. In some cases the phloëm is nearer the circum.
ference, in other instances the sylem is peripheral, and in rare cases amongst Dicotyledons there are phloëm layers both on the outer and inner sides of the fibro-vaseular bundles. In vascular Gryptogams the phloën layers always surround the xylem portion of the bundle.

In the xylem or weod portion of a fibro-vascular bundle the cells all tend to thicken their walls, and, consequently, numerous kinds of cells and vessels are found, which are usually arranged in a definite manner. On the side furthest removed from the phloën we find spiral vessels interspersed with wood-cells (figs. 55 and 56), outside are reticulated and scalariform vessels, and then interspersed with wood cells are large pitted ressels. In the phloem or bast layers the cells have not such a tendency to thicken, but usually remain thin-walled, forming ordinary parenchymatous cells, ar becoming pertorated and forming sieve cells. In certain layers, how: ever, the cell-walls are thickened so as to become flexible, constituting the bast fibres. Around every fibro-vascular bundle a single layer of cells of the fundamental cellular tissue of the stem is marked off from its surroundings, the cells get filled with starch. grains, and this constitutes what has been termed the bundle sheath or starch-bearing layer (fig. 57). In fig. 57 is seen a transverse sec. tion of the closed fibre-rascular bundle from the Maize, and it will be observed that it is essentially the same as that of the open bundle (fig. 55), only that all the cambiu:ir cells have passed into per manent tissue.

In all plunts a provision is made for branching of the varieus organs, and two priucipal forms of it may be recognized. In one of these the generating axis elongates at the apex, producing in succession lateral structures. To: this form the term monopodium has been applied. In

Fig. 67.
Transperye seetion of a closed fibro-vas. cular bundle. ro annular reesel: spiral sessel; I, Inter-cellular eadal; 0. Fitted vessel, r, r, cambliferm tissue orhicb bas become permanent Between pand sare reticulated verecls. p, surrounding pazencbyms, Outer celis a of the bundieste parenchymatous, masks the lonoer side of the tundle. (Sacis) the second form there is a cessation of growth at the apex in the direction of previous elongation of the asis, and a con tinuance in tro diverging directions. This is dichotomous branching. In their rudimentary state all branchings may be casily referred to one or other of those types; but in the mature system it is frequently difficult to recognize the type, oning to irregular development of the successive branching. Thus in a dichotomous branching only one of the secendary axes may develop strongly, the weaker branch appearing as a small lateral shoot frem its base; and an apparent primary shoot is thus produced which in reality censists of the bases of single branches of consecutive forkings. Such an axis is termed a pseudaxis or sympodiun: And, again, in monepodial branchings the primary axis may centinue to develop more strongly than its lateral a.xes, which in their turn develep similarly, and a raccmose form arises; or the primary axis nay be arrested in growth, and the secondary axes develop mare strongly and overlap it, when a cymose branching results. Mare will be said on this subject when considering the inflorescence of Phaneregams, in which the various forms of branching are well seen.

We now proceed to consider the form and internal structure of the various organs of plants.

I. ORGANS OF NUTRITION.

1. Root or Descending Axrs.

Speaking generally, the root is that portion of the plant Which deseends into the soil. In all plants the root is at first entirely cellular. It may remain jemanently so, or vessels may ho formed in it. The Radicle, or young root (fig. 58, r), is the first portion of the embryo protruded from the seed or spore (fig. 51) when germination commences, and resembles very much in structure the young stem. Doth are entirely cellular, consisting of a central nucleus of cellular tissue covered by tro ormore layers of cells. But at the apex of the root a mass of cell's is developed, which constitutes what is known as the rootcap or pileorhiza. These cells extend for some distance along the sides of the root, forming a sheath, and in some cases, as Lemna, the

Fig. 58.
The dicolyledonous embryo of tine Pea laid open. c, c, the two fleshy cotyledons, or seed-lobes, which reman under gronind when the plant sprouts; $;$ the radicular extremity of the axis whence the root alsocs; t the axis bearing the young; stalk and leaves g_{1} whleh lie iu a depuession of the coty. tedonsf. cap becomes loosened from the root, remaining attachee' by a few cells at the apex only, and then it is known as the ampulla. This root-cap distinguishes structurally the root from the stem, and it serves as a protection to the apical growing-point of the root. The roots of Thallophytes, consisting entirely of cells, do not develop a root-cap.

The root is merely a prolongation downwards of the stem, and the part where they unite is the collum or neck. Afterwards the root is distinguished from the stem by the alusence of a provision for tho development of Jeaf.buds. It is not always easy to distinguish between a stem and a root. Many so-ealled roots bear at their upper part a portion called their crown, whenee leaf-buds arise. Underground stems and roots are often confounded. Some plants, as the Moutan Prony, the Plun-tree, Pyrns japonica, and espocially Anemone japonica, have a power of forming buds on what are commonly called their roots. The lastmentioned plant develops these buds on every part of its extensively ramifying root-like prolongations, which may be chopped into numerous pieces, cach capable of giving rise to a new plant. Sucli is also the easo with the annulated root of Ipecacman. Roots are usually subterranean and colourless. Externally, they have a cellular epidermal covering of a delicate texture, sometimes called epitlema, in which no stomata exist. In woody plants fibro-vascular bundles are found in the roots, and there is an internal arrangement of tissues similar to that seen in the stem itself, but spiral vessels are rare in tho root. The axis of the root gives off oranches which divide into radieles or fibrils, the extremities of which, eomposed of alicate ecllular tissue constituting the menctum vegetation is, have been crroneonsly called spongioles or spongelets; they are not distinet organs. Hairs are often seen on roots, but no true leaves. These hairs consist of simple elongated cells, which oceur singly, and appear to serve the purpose of absorption. Roots increase principally by additions to their extremities, which are constantly renewed, so that the minute fibrils serve only a temporary purpose, and renresent deciduous leaves; but in large trecs which form thick roots an increase in dameter occurs in the root similar to what is seen in the stem itself. In some plants no roots are formed at all, thus in the Orchidaceons dants

Epipoginm Givelini and Corallorluza innata, and also in Lemna arrhiza, no roots oecur. Tioots may be given of from any portion of a stem, originating as cellular prolongations from the inner portion of the stem, and conning of at any point of the stem, or at small lenticular points to which the name of lentucels has been given by sonie. When the stem-is more or less horizontal the roots given off from it pass directly juto the soil; bot if the stem be erect they pass for a certain distance downwards through the air, and are called aerial. The latter are well seen in the Serew. piae (Pandanus), the Banyan (Ficus indiea, fig. 59), and

Fig. 59.
Ficus indica, tho Eanyan thee, sending out numerous actial ioots, wish reach che sosid and pop the brancres.
many other species of Ficus, where they assist in suppurt. ing the stem and branches. In the Mangrove they often form the entire support of the stem, which has decayed at its lower part. In Treeferns they forma dense coating around, and eompletely concealing, the stem; such is also the case in some Dracemas and Palms. In Epipheytes, or plants growing in the air, attached to the trunks of trees, such as Orchids of warm climates, the aerial roots produced do not reach the soil; they continue always acrial and greenish, and they possess stomata. Delicate hairs are often seen on these epiphytal roots, as well as a peculiar investment formed by the eells of the cpidermis which have lost their suceulent contents and are now filled with air. This layer is called aclamen radicum, or covering of the roots. The aerial roots of the Ivy are not the nutritive roots of the plant, but are only intended for mechanical supiort.

Parasitic plants, as the Mistleto (Viscum), Broom-rapo (Orobanclic), and Raffesia, send root-like processes into the substance of the plants whence they derive nourishment. In the Dodder (Cuscuta), the tissue around the roots swells Plate xy into a kind of sucker (haustorium), which is applied flat upon the other plant, and ultimately becomes concave, so as to attach the plant by a vacumn. From the bottom of the sucker the root protrudes, which penctrates the supporting body. In the case of parasitic Fungi, such as Mould, there are cellular flaments which spread among the tissues of plants, and which may be looked upon as equivalent to routs and stems united. They form the spaun or mycelium of these plants, and in some cases cause rapid destruction of the tissues of plants, as in the disease called Dry-rot.

The forms of roots depend upon the mode in which the axis descends and branches. The mode of branehing of roots is almost universally monopodial, only in Lycopodiacea is it dichotomous. When tho central axis goes deep into tho ground in a tapering manner, without dividing, a taproot is prodnced. This kind of root is sometimes shortened, and becomes sueculent, forming the conical root of Carrot, or the fusiform or spindle-shaped root of Radish, or the napeform root of 'lurnip. In ordinary forest trees the first ruct protruded continues to elongate and forms a long
primary root-axis, whence secondary axes come off. In other phents, especially Monocotyledons, the primary axis soon dies and the secondary axes take its place. When the descending axis is very short, and at once divides into thin, nearly equal, fibrils, the root is called fibrous, as in many Grasses (fig. 60); when the fibrils are thick and succulent the root is fasciculated, as in Ranunculus Ficaria,

shaw vil. Asphodelus luteus, and Enanthe crocata; when some

 of the fibrils are developed in the form of tubercules,

Fio. 60 - Fibrous root of a Grass. Numerous fbrlls coming oil from one point. Fio. 61 - Orchls, ghowing tubercules or tuberous roots, whicl contain a guminy metter called bassorin
Fio 62 -An epiphytle Orchid with pseudo bulbs
the rout is tabercular, as in Orebis (fig. 61); when the fibrils enlarge in certain parts only, the root is nodulose, as in Spirma Filipendula, or monilijorm, as in Pelargonium triste, or anuulated, as in Ipecacuan. Some of these so ealled roots are formed of a sten and roet combined, and when cut in pieces they give rise to buds and new phants. In some cultivated plants, as Turnip, the central root is sometimes injured, so as to end abruptly, and it then divades into numerous branehes, resembling a fasciculated root. This gives rise to the disease called Fingers and Tocs, which is very injurious to the crop. Anbury is a disease where a dubbing of the root takes place. The mode in which the fibres of roots are produced and descloped gives origin to different forms of rhizutasis, or root-arrangement.

Roots either fix the plant in the soil or attach it to other bodies. They absorb nourishment by a process of imbibition or endosmose through their cellolar estremities. The elongation of the roots by their extremities enables them to accommedate themselves to the soil, and alluws the oxtremities of the rootlets to extend deeply without being injured. Roots, in their lateral extension, bear usually a relation to the borizontal spreading of the branches, so as to $6 x$ the plant firmly, and to allow fluid nutritive substances to reach the absorbing extremities. As has been already stated, the structure of perennial roots is identical with that of the stern. Thus in Dicotyledons we find a pith, medullary rays, zones of wood, cambium layers, and bark, although no medullary sheath is present. In Monocotyledons we have fibru-vasenlar bundles distributed in a matrix of cellular tissue. The young primary root in Monocotyledone differs from that in Dicotyledons in that it rises decply within the embryonal tissue, and on germination this tissue is ruptured and furms a sheath, around the base of the roots, called coleorhiza. Amongst Monocotyledens the primary roots usually soon die, and secondary roots are formed in abundance. In vascular Dicotyled onous plants the structure of the root is similar to that of the stem. In Thallogens the routs consist merely of simple or branching filamentous hair-like structures. In seme large tropical Seaweeds the root-like bodies develop to a large estent, but
serve only as fixing organs, add take no share in mourishing the plant.

2. Stem or A scendiug Axis.

A stem may be defined as an axis bearing leaves. Stem. Structurally it differs from a reot in baving no development of cells forming a cap over the growing point. Under the term caulome (stem structure) are included all those parts of a plant merpbologically equvalent in bearing leares. The stem generally asceuds, sceking aur and light, and has therefure been termed the ascending aris. Stems bave usually considerable firmeness and solidity, but sumietumes they are weak, and either lie prostrate on the ground, thus becoming procumbent, or climb on plants and rocke by means of routlets, like the Ivy, being then callod scoundeni, or twist round other plants in a spral mauner like Wiodtine, when they are colubile. Twining plants turn cuther froni right to left, as the French Bean, Convolvulus, Passionfiomer, Dodder, Periploca, and Gourd ; or from left tw aght as Honeysuckle, Twining Polygonum, Hop, and Tamas Bryony tendrus twine from raght to left, and left to right, alternatels. In warm clmates twining plants (launas) often form thick woody stems; while in tenperate regons they are generally herbaceous. Exceptions, however, occur in the ease of the Clematis, Honeysuckle, and Vine; the twining stem of the vine bas been called sarmentum. Some stens are developed more in diameter than in beight, and present a peculiar shortened and thickened aspect, as Tcstudinaria or Tortoise-plant, Cyclamen, Melocactus, Echinocactus, and other Cactacex; while in many Orchids (fig. 62) the stem assumes an oval or rovnded form, and is called a pseudo-bull.
Names are given to plants, according to the nature and duration of their stems. Merbs, or heriactous plants, have steme which die down aunually. In some of them the whole plaut perishes after tlowering; in others, the lower part of the stem forming the crown of the rool remains, bearing buds from which the stcu arises next season. In what are called bernial herbs, the whole plant perishes after two ycars, while in peremial herbs the crown is eapable of producing, stems for many years, or new aniual products are repeatedly added miany times, if not indefnitely, to the old stems. The short permanent stern of herbaceous plants is covered partially or completely by the soil, su as to protect the buds. Plants producing permanent woody stems are called trees and shrubs. The latter are less than five times the beight of a man, and produce brauches from or near the ground; while tho former have conspicuous trunks, which attain at least five times the height of a man. Shrubby plants of small stature are called uider-shrubs or bushes. The limits between these different kinds of stem are not always well defined; and there are some plants occupying an intermediate position between slirubs and trees, to which the name of arborescent slurubs is oceasionally given. The stem reccives the name of caulis in ordinary berbaccuns Inanty which do not form a woody stern, culm in grasses, truncus in trees, caudex or stock in Palms and in some Cacti, and stipe in Ferns. The term haulm 18 probably a corruption of culu, it is used by farmers to designate the stom of grasses and the berbaceous stems of plants. The stem is nut always conspicuous. Plants with a distinct stom are callcd coulescent; those in which it is inconspicuous are acaulescent, as the Primrose, Cowslip, Gentian, and Dandelion. A similar term is given in ordinary language to plants whose stems are buried in the soil, such as Cyclamen or Sowbread. Some plants are truly stemless, and consist only of expansions of cellular tissue representing stem and-leaf, called a thallus, and benee are denominated Thallogens, or Thallophytes.

Stems have a provision for a symmetrical arrangement Joed bu
of leaves and branches,-nodes, or points whence leaf-buds are produced, being placed at regular intervals. No such provision occurs in roots. The intervals between nodes are called internodes. The stem, although it has a tendency to risc upwards when first developed, in many instances becomes prostrate, and either lies along the ground partially covered by the soil, or runs completely underneath ita surface, giving off roots from one side and buds from the other. Some stems are therefore subterranean, and are distiuguished from roots by the provision made for regular leaf-buls. The first rudiment of the young stem in the embryo appears outside the seed or spore after the radicle has be:n protruded. It is terned the plumule (fig. 58), and difers from the radicle in the absence of a root-cap and in its tendency to ascend. The apieal growing portion of the young stem constitutes the terminal bud of the plant, and by its development the stem increases in height; but in addition there is a provision for the production of lateral buds, which develop into lateral shoots more or less resembling the parent stem, and by these the branching of the plaat is determined. These buds are found in the axil of previously-formed leaves; or, in other words, in the angle formed between the stem and leaf. They are hence called axillary. They are produced always from the outer portion of the stem except in the case of Equisetacea (Horsetails), where they have a deep-seated origin. At first they consist entirely of cellular tissue, but in the progress of growth vascular bundles are formed in them continuous with those of the stem, and ultimately brancbes are produced, which in every respect resemble the axis whence the buds first sprang. As the axis of the bud increases in length, cellular projections appear at regular intervals upon the primary meristem, which are the rudimentary leaves.

Buds, as has been stated, are either terminal or lateral. By the production of the former, stems increase in length, while the latter give rise to branches (rami), from which others, called lranchlets or twigs (ramuli), arise, and add to the diameter of the stem. The terminal Lud, after producing leaves, sometimes dies at the end of one season, and the whole plapt, as in annuals, perishes; or part of the axis is persistent, and remains for tao or more years, each of the leaves before its decay producing a bud in its sxil. This bud continues the growth in spring. In ordinary trees, in which there is provision made for the formation of numerous lateral buds, any injury done to a few branches is easily repaired ; but in Palms, which only form terminal buds, and have no provision for a lateral fermation of them, an injury inflicted on the terminal bud is more likely to have a prejudicial effect on the future life of the plant. In the trees of tenperate and cold climates the buds which are developed during one season lie dormant during the winter, ready to burst out under the genial warmith of spring. They are generally protected by external modified leaves in the form of seales (tegmenta or perale), which frequently exhibit a firmer and coarser texture than the leaves thenselves. They serve a temporary purpese, and usually fall of sooner or later, after the leaves are expanded. The bud is often protected by a conting of resinous matter, as in the Horsechestnut and Balsam Poplar, or ly a thick downy eovering, as in the Willow. Linneus called leaf-buds hibernaculd, or the winter quarters of the young brancli. In somo plants, as in Platanus, the buds destined to live through the winter are so completely surrounded by the base of the pretiole as not to be visible until the leaf has fallen off. Theso are said to be intraptiolar.

In the bud of a common tree, as the Sycamore (fig. 63), there is seen tho cicatrix left by the leaf of the previous year c, with the pulvinus or swelliag p, then the scales a_{5} e, arranged alternately in a spiral, and overlying each
other in what is called an imbricated manner. On making a transverse section of the bud (fig. 64), the

Fig. 63.
Fig. 64.
Fio. 63.-Leai-bud of Sycamore (Acer Pseudo-platanus) covered yth sealee Fic. 64.-Transverse sectlon of the same leaf-bud.
overlying scales e, e, e, e, are distinctly seen surrounding the leaves f, which are plaited or folded round the axis or growing-point. In plants of warm climates the buds are often formed by the ordinary leaves without any protecting appendages; such buds are called naked. A bud may be removed in a young state from one plant and grafted upon another by the process of budding, so as to continue to form its difficrent parts; and it may even be made to grow in the soil, in some instances, immediately after removal. In some trees of warm elimates, as Cyeas, Pate, XV Papaw-tree, Palns, and Tree-ferns, growth by terminal and : buds is well seen. In these plants the elongation of the stem is geterally regular and uniform, so that the age of the plant may be estimated by its height; owing to this mode of growth they do not attain a great diameter. Although provision is made for the regular formation of buds, there are often great irregularitics in consequence of many being abortive, or remaining in a dormant state. Such buds are called latent, and are capable of being developed in cases where the terminal bud, or any of the branches, have been injured or destroyed. In some instances, as in Firs, the latent buds follow a regular system of alternation; and in plants with opposite leaves, it frequently happens that the bud in the axil of one of the leaves only is developed, aad the different buds so produced are situated alternately on opposite sides of the stem. Uccasionally, after a partial development as braaches, buds are arrested and form knots or nodules. The embryo-buds or nodules of the Beech, Cedar, and Olive are apparently of this nature.

When the terminal bud is injured or arrested in its growth the elongation of the main axis stops, and tho lateral braaches often acquiro increased activity: By contieually cutting off the terninal buds, a woody plant is made to assume a bushy appearance, and thus pollard trees are produced. Pruning las the effect of checking the growth of terminal buds, and of causing lateral ones to push forth. Tho peciliar bird-nest appearance, often presented by the branches of the common Birch, depends on an arrestment in the terminal huds, a shortening of the internodes, and a consequent clustering or fasciculation of tho twigs. In some plants there is a natural arrestment of the main axis after a certain time, giving rise to peculiar shortened stems. Thus the crown of the root is a stem of this nature, forming buds and roots. Such is also the case in the stem of Cyclamen, Testudinaria Elephantipes, and in the tuber of the Potato. The production of lateral in place of terminal buds sometimes gives the stem a remarkablo zigzag aspect. Branches are sometimes arrested in their progress at an early stage of their development, and do not appear beyond the surface of the stem; at other tiraes after having grown to a considerable size, they undergo decay. In both instances the lower part of the
vod. IV

Faparex Rhoas
(Comunon Red Poppy)

\%

BOTANY.

plate IV

Fig. 3.

Fig. 2.

W

Fig. 1 .

Fig. 4
mig. 5.

Fig. G.

Fig. 7.

Fig .s.

Fig. 2.

Anacardium occidentale. (Cashew Nut Trace.)

1

Ag. 3.

Fic. 1.

Fig.IL

enciclophda bpitanhica, ninth editins.

brarch becomes embedded and hardened among the woody layers of the atem.

The mode in which branches come off from the stems gives rise to various forms of trees, as pyramidal, spreading, or weeping,-the angles being more or less acute or obtuse. In the Italian Poplar and Cypress the branches are erect, forming acute angles with the upper part of the stem; in the Oak and Cedar they are spreading or patent, forming nearly a right angle; in the Weeping Ash and Elm they come off at an obtuse angle; while in the Weeping Wiillow and Birch they are pendulous from their flexibility. The comparative length of the upper and under branches also gives rise to differences in the contour of trees, as seen in the conical form of Spruce, and the umbrella-like form of the Italian Pine (Pinus Pinea). The branching of some trees is peculiar. In the Amazon district many Myristicaceæ and Monimiacea have verticillate branches coming off in fives. This is also seen in the Chili Pine. Some Amazon trees taper downwards, so as to have a form like an inverted cone or pyramid, as in the Mulatto tree (Euky. lista Spruceana), one of the Cinchonacea.

Branches are sometimes long and slender, and run along the ground, producing buds with roots and leaves at their extremity or apex. This is seen in the runner (flagellum) of the Strawberry. In the Houseleek (Scmpervivum) there is a similar prostrate branch of a sherter and thicker nature, producing a bud at its ex remity capable of independent existence. It receives the name of offset (propagulum). In many instances the branch decars, and the young plant assumes a separate existence. Gardeners propagate plants by the process of layering, which consists in bending a trig, fixing.the central part of $i=$ into the ground, and, after the production of roots, sutting off its connection with the parent. A stolon differs from these in being a branch which curves towards the ground, and, on reaching a moist spot, takes root and forms an upright atem, and ultimately a separate plant. This is a sort of natural laycring, and the plant producing woch branches is called stoloniferous. In the Rose and Mint a subterranean branch arises from the stem, which runs horizontally'to a certain estent, and ultimately sends up an aerial stem, which becomes an independent plant. Such branches are denominated suckers, and the plants are surculose. The gardener divides the connection between the sucker and the parent stem, in order to propagate these plants. In the case of Asparagus and other plants which have a permnial stem belor ground, subterraneau buds are annually produced, which appear above ground as shoots on 'ranches covered with scales at first, and ultimately with true leaves. The young shoot is called is turio. These branches are herbaceous and perish annually, while the true stem remains below ground ready to send up fresh shoots next season. In Bananas and Plantains the apparent aerial stem is a shoot or leaf-bud sent up by an underground stem, and perishes after ripening fruit. Branches are sometimes arrested in their development, and, in place of formang leaves, become transformed into spines or thorns, as in the Hawthorn. Plants which hare spines in e wild state, as the Apple and Pear, often lose them when cultivated, in consequence of their being changed into branches; in some cases, as in the Sloe (Prunus spinosa), (fg. 65), a branch bears leares at its lower portion, and terminates in a spinc. Plants bearing thorns (modifications of branches or leares) are denominated spiny, spinose, or spincscent. A bud is sometimes developed as a slender epiral or twisted Eranch, called a tendril or cirrus. In the Passion-fiower the lateral buds are thus altered, with the view of enabling the plant to climb. In the Vine the tendrils are looked upon as the terminations of separata exes, or as transformed terminal buds, and are aometimes
called sarmenta. In the Vine there are 'o young buds seen in the angle between the stem and leaves, nor between the stem and tendrils; and the latter are not axillary.

Fig. 65.
Fig. 66.
Fio. 65.-Branch of the Sloe (Bunus spinoya) prodicing sploes or thorns whicd are abortive branches, as shown by their bearing leaves.
Fig. 66.- Portion of a branch of the víine (Fitus minifra), oa whlch the termiast buds are coaverted into tendrils.
Fig. 66 represents the branch of a Vine, in which a^{\prime} is the primary or first formed axis, ending in v^{\prime}, a tendril or altered terminal bud, and baring a leaf $f^{\prime \prime}$ on one side. Between this leaf and the tendril, which represents the axis, a leaf-bud was formed at an carly date, producing the secondary asis, or branch $a^{\prime \prime}$, ending in a tendril $v^{\prime \prime}$, with a lateral leaf $f^{\prime \prime}$, from which a tertiary axis or branch $a^{\prime \prime \prime}$ v.as developed, enrling in a tendril $v^{\prime \prime \prime}$, and so on. The tendrils of Ampelopsis Veitchii are terminated by disks which sccrete a sticky matter, by means of which they adhere to walls, \&c. The tendrils, like those of the Vine, are modifications of the axis. Tendrils twist in a spiral manner, and enable the plants to rise into the air by twining round other plants. The direction of the spiral frequently differs from that of the climbing stem which produces the tendril. In the Vine the lower part of the stem is atrong, and reeds no additional support; the tendrils therefore occur only in the upper part, where the branches are soft, and require aid to enable them to support the clusters of fruit. In the Bryeny the tendril in the first part of its course twines from right to left, and in the last from left to right.

In some instances lateral buds are found without being in the axil of leaves. In this case they are extra-axillary. Such buds are produced after the stem and leaves have been formed, and in certain circumstances they are developed liko normal buds. What have been called embryo-buds are woody nodules scen in the bark of the Beech, Elm, and other trees. They are partially developed adventitious or abnormal buds, in which the woody matter is pressed upon by the surrounding tissuc, and thus acquires a very bard and firm texture When a section is made, they present woody circles arranged around a central pith, and traversed by medullary rays. The nodules sometimes form knots on the surface ef the stem, at other times they appear as large excrescences, and in some cases twigs and leaves are produced by them.

Buds sometimes become extra axillary in consecueace of the non-appearance or abortion of one or more leaves, or on account of the adhesion of the young branch to the parent stem. In place of one bud there are occasionally sereral accessory ones produced in the axil, giving origin to numerous branches. Such an occurrence is traced to the presence of latent or adventitious buds. By the union of severat auch buds, brapehes are produced, haring
a thickened is flattened appoarance, as 13 seen in the Fir, Ash, and other trees. These fusciated branches, in some cases, however, are owing to the aknormal development of a single bud. Occasionally arlventitious buds are produced on the edges of leaves, as in Bryophyllum calycinum (fig. 67), Malazis paludesa, and various species of Asplenium, and on the surface of leaves, as in Ornithoralum thyrcoideum. These aro capable of forming independentplitits. Simi. lar buds are also made to appen on the leaves of Ges.
 néra, Gloxinia, and Achimenes; by Leat of Bryophyitum calycinum, prodacing bads along wounding various parts of them, and placing them in moist soil; this is the method often pursucd by gardeners in their propagation. The Ipecacuan plant has been propagated by means of leaves inserted in the soil. In this case the lower end of the leaf becomes thickened like a corm, and from it roots are produced, and ultimately a bud and young plant. Leaves bearing buds on their margin are called proliferous.

The typical form of stems is rounded. They are sometimes compressed or flattened laterally, while at other times they are angular: being triangular, with three angles and three flat sides; trigonous, with three convex faces; triquetrous, with three concaro sides; quadrangular or square; quincruangular or five-angled; octangular or eight-angled, \&c. Various terms are applied to the forms of stems, as cylindrical or terete, jointed or articulated, \&c. The follorring are some of the more important modifications of stems :-The crown of the root is a shortened stem, often

Modifica-
tion of stem. partially under ground, which remains in some plants after the leaves, branches, and flower-stalks have withered. In this case the internodes are very short, and the nodes are crowded together, so that the plant appears to be stemicss. It is seen in perennial plants, the leaves of which die down to the ground annually. A rhizome or root-stock (fig. 68) is a stem which runs along the surface of the ground, bcing partially covered by the soil, sendimg out. roots from its luwer cide and leaf-buds from its upper. It oceurs in Ferns, Tris, Hedycuinm, Acorus

Fig. 68. or Sweet Flag, (iin- Ithizome of Po'yganatum muthforum (Solomon's ger, Water-Lily, many Scol, forming mide and adreatitions routs. a, gpecies of Carex, chatrices ursems of old branches.
Rusbes. Anemone, Lathriea, de. By many tho term rhazome is applied to stoms creoping hormontally, whether they are altugether or only purtially subterrancan. In shizomes called dedmite, the terminal hud gives off flowers, and the lateral buds form the stem : while in indefenite rhizomes the terminal leaf-ud is formed anmally. A rbizome fuch as ocenrs in Solomon's Seal (fig. C8) is not a single stem e.e., the prohnct of a single bud, hat is composed of portions of successiviaxes, the heites of which base dicd off and remana as sears (fig. $6 \&, c, c$) it is thas an indefnite rhizome. Lihzomes are well seen in British Verns. A rhizome anmefimes assumes an crect form as in Scabiosa succisa, in which the socalled pramorse ront is ureality a rhizome, with tide lower oul decaymg. The erect rhizume of Cicuta amsa shows hellew int rnodes. selparated by partitions.

A pseudo-bulb (fig. 62) 25 an enlarged bulbous-like aerial stem, common in Orchidaceous plants. It is succulent, often contans numerous spiral cells and vessels, and is covered with a thick epidermis. A soboles is a creeping underground stem, sending roots from one part and leaf buds from another, as in Couch-grass, Cares arenaria, anc Scirpus lacustris. It is often called a creeping root, but, is really a rbizome with narrow elongated internodes. A tuber is a thichened stem or branch produced by the approximation of the nodes and the swelling of the inter: nodes, as in the Potato. The eges of the Potato are leaf. buds. Tubers are sometimes acrial, occupying the place of branches. The ordinary herbacenus stern of the Potato, when cut into slips and planted, sends off branches from ite base, which assume the form of tubers. Tubers frequently sture up a quantity of starch as in Maranta arundinacea, whence arrowroot is derived. Another form of thickered underground stem is the corm, as seen in the Autumn Crocus (Culchicum, fig. 69), Gladiolus, \&e. Structurally it is composed of a solid more or less rounded axis covered by a layer of thin membranous seales (ing. $70 . k, k$). E.

Fig. 69.

Fig. 0.0
1

Fyo 69.-Corm of Mendow Sation (Colchicumautumate). co cid coms sbarg liop: b. young cosm produced laterally from the old one
Fion: b, young cosmproduced laturnis frowithe when the piont is in fozet.

 wothle colth produce towers. (Sublas)
corm is only of onc year's duration, giving off buds annually in the form of young corms. In autumn the young corm gives origin to leaves, the lower of which $\left(s, s^{\prime}, s^{\prime \prime}\right)$ form sheaths round the corm and fower-stalk, the upper ($l^{\prime}, l^{\prime \prime}$) reruaining rery sarall; and in the axil of the uppernost leaves the Howering-stem develops and bears the flewers ($b, l ;$ Meanshite in the asil of the middle leaves on the corm, a bud-tide rudiment of a new corm-appears (k "). The flowering afem dies down, and the corm from which it arose eularges greatly during the winter at the expense of ita parent corm (k), which thus becomes shrivelled. In spring the leaves $1^{\text {reduced on }}$ it $\left\langle l^{\prime}, l^{l}\right\rangle$, which were merely rudincuts in antumn, apmear atove gromd as conspicuous
jarge leares. At the end of apring these leaves aie down, the bases of the lower ones alone remaining, and constituting thin brown scales around the corm (as at h). Meanwhile, the young bud corm ($k k^{\prime \prime}$) in the axil of the middle leaves grows rapidly at the expeuse of its parent corm (k^{\prime}), but it does not attain a great size. In autumn it produces new leaves, which remain small, but from the axil of the two upper the flowering stem rises up and bears flowers; whilst in the axil of its middle leaves a new bud-corm appears, which will the following autumn produce young leares, fowering stenn, and a new bud-corm, and thus tie cycle gees out. The buds or new corms formed from the old corms may be produced either lateraily, as in Colchicum autumnale, or terminally, as in Crocus add Gladiolus. The bulb is another form of underground stem or bud. The axis in this case is mucb shortened, and the internodes are bardly developed. The bases of the leaves rising from the stem. are quite close together, and become succulent and eaclose the axis. In the Lily the thick and narrow scales ere arrange i separately in rows, and the bulb is called scaly; while in the Leek, Onion, Squill, and Tulip the scales are broad, and encluse each other in a concentric manner, the outer ones being thin and membranous, and the bulb is tunicated. In the axils of these feshy scales new lateral aloots arise, forming new bulbs. The lateral buds or cloves sometimes remain attached to the axis, aud produce'flowering stems, so that apparently the same bulb continues to Hower for many yerrs, as in the Hyacinth and Tulip; at other times the young bulbs aro detached, and form separate plants. In the axil of the leaves of Lilium bulliferum, Dentaria bulbifera, and some other plants, small conical or rounded bodies are produced, called bultils or bultets (fig. 71, b). They resemble bulbs in their aspect, and consist of a small number of thickened bcales enelosing a growing.point. These scales are frequently united closely together, so as to form a solid mass. Bulbila are therefore transformed leafhuds, which are easily detached, and re capable of produciug young plants when placed in favourable circuur. stances. Tho scales in bulis vary in number. In Gagea there is only one scale; in the Tulip and Fritillaria in. perialis they vary from two to five; while in Lilies and II yacint ths there are a great number of scales. In the Tulip

Fig. 11.
Stem of aubleroun Lity (Ltisum bub/ormi, bbnwing bubils or
bulblets
b bulblets or produced leares. oxus ol too a bud is formed in the axil of an outer scale, and this gives rise to a new lowering axis, and a new bulb, at the side of which the former bulb is attached in a withered state.
The forms of the sterā having been considered, we now groceed to examine its anatomical structure. This structure consists of the elementary tissues combined and arranged in various ways. The arrangement of the fibrovascular tundles in the mature stem or root is not the same in all plants. But we find that in most plants which have two seed-lobes in the embryo, i.e., Dicotyledons, a characteristic structure is apparent, quite distinet from what is found in the majority of plants in which only ono sced-lobe is present in the embryo, i.e., in Monocotyledons; and these, again, have a different structure from that found in Acotyledons, or plants with no seed-lobe in their embryo. The three forms of stem bere referred to have been usually distinguished as follows:-(1.) Exogenous stem, in which the fbro-vaseular bundles are produced indefinitely in an outward direction, and the stem increases in diameter by the annual formation of a new layer of woody matter on the outside of the preceding layers. This is the form found in most Dicotyledons, and they have hence been called

Exogens, or Outward-growers. Ordinary trees, such as the Oak and Ash, furvish instances. (2.) Endogenous stem, iu Which the fibro-vascular bundles are definite, and are formed towards the centre, which becomes filled up with them in the progress of growth, so that the diameter of the stem increases in a great measure by the new matter pushing out that previously formed. This stem characterizes many Monocotyledons, which have thus been called Endogens, or Inward-growers. Palns supply examples. (3.) Acrogenous stem, in which the bundles of vessels are simultaneously developed, and the additions to the stem take place at the summit by the union of the bases of the leaves. Plants -baving this kind of stem are called Acrogens, or Sumuit. growers, and are Acotyledons. Tree-ferus furnish an esample. Recent research, however, has shown that these terms cannot always be used as synonymous with Dicotyledon, Mouocotyledon, and Acotyledon, as we find amongst Dicotyledons sterns where the formation of new fibro-vascular bundles is distinctly endogenous, and again amongst Monocotyledons stems with a provision for exogenous growth, and also amongst Acotyledons examples are not wanting in which a continuous increase in diameter is provided for.

We shall consider the structure of the stem in Dicotyle. dons, Monocotyledons, and Acotyledons successively.

In the young stem of a Dicotyledon the fibro-vascular Stem in bundles first appear as a circle of wedge-shaped masses, Dicotyloby which the stem is divided into a central cellular dons.
portion, the pith, and a peripheral cortex,-the space, between the bundles being occupied by cellular tissue constituting the medullary rays, and uniting the pith and cortex. Each fibro-vascular bundle increases by division of its own cambium cells. If eventually all the cambium cells become permanent tissue then the bundle becomes closed, and all further growth ceases. This is the complete structure of an annual berbaccous dicotyledonous stent, which thus consists of a central cellular pith, a circlo of fibrovascular bundles, a cetlular cortes united with the pith by medullary rays, andoutside all an epidermis (fig. 72). In trees and shrubs with permanent woody stems, the young shoots givea out annually lave a structure sinilar to that of annual berbaceous stems ; but as the shoot grows, further changes occur by which the diameter is increased, and the stera becomes more dense. After the first ycar's growth, the cells of the medullary rays, stretching between the fibrovascular bundes and continuous with their cambium ceils, become converted intosecondarymeristem, and then an interfascicular cam. bium is formed, which" eventually coalesces with the cambium cells of the fibro-vascular bundles, and thus a complete cam-

Fig. 73.
Young Dlcot yledonots stem: mplth: fo. Abravas cular bundies: ch. coooccting baod of menatem. is whicb e cambium nog is formed r. cortex. (Sochs) oum ring is formed (fig. 73). From this cambium ring new
xylem or wood is formed on the inside, whilst new cortex
is formed on the outside; and in this way the stem increases in thickness. This growth in thickness, however, ceases periodically, and is renewed with each new period of vegetation, and thus the wood is formed in concentric layers, sharply marked off from succeeding layers, each being an annual ring of wood, and the same is seen in the cortex (fig. 74). The rings of wood are thus formed successively outside those pee-cxisting, while in the cortex the new. layers are produced inside those already formed.

The inner vessels of the primary fibro-vascular bundles immediately surround the pith and often project into it , and form what is termed the medullery sheath, which consists of spiral vessels, and through this sheath the primary medullary rays pass. These medullary rays eatend from the pith to the corter, but as new zones of rood and corter are produced, new rays are formed in them, which increase by additions from the cambium layer. The secondary cortex, formed from the cambium ring, constitutes what is commonly known as the inner bark or endophloum; the primary cortex, which forms the outer bark, consists of two layers of cells, which have been respectively termed the mesophloum and the epiphlocum. Outside all is the epidermis. This, bowever, does not remain as thin-walled cells, but is usually conserted into periderm, and this may in turn be completely supplanted by the bark. Thus, if a transverse and a longitudimal section of a Dicotyledonous stem be made, the following structures will be seen as represented in fig. 74. In the contre is the cellular pith a, a,

Fis. 74.
Diagram of the atrycture of an Exogenosis ot Dicot hedonous stem of Hirec yearg ETowth, A Being a transverace siccion, anti is a vertical sechor. The Ggures 1, 2, 3, mark the ycalo of growth. and ibe lettere jefer to the sume parta

 depiral reasels of the tnefullary whenth. e, iavet of cambium cella between
 envelope, forming midite lay er of Lark (Musophalauts), h, outei corky laver of bark (Eplptidoum: i, wedulary fay which, lis the trazsverse section, is scen runalag contauously fura the puth to the baik. (Aftes Carpenser.)
tmmediately surrounding it comes the medullary sheath d, then the secondary layers of wood b, c, of successive years' growth, outside this the cambium ring e, separating the woodlayers from the cortical layers. Of these last, the inner, f, is the bast layer or endophloum, g is the middle cellular layer or mesophloum, and d is the outer epiphloum. The latter two constitute the outer lark. Connecting the mesophloum with the 1 ith is seen a medullary ray i. Outside all are the epidermal tissues.

Let us now examine the different parts of an Exogenous stem proceeding from the centre to the cireumfererce :-
rie plit. The Pith, or the central part of a Dicotyledonous stem, is composed of cellular tissue. In the young stem it is surculcnt, the cells being full of thail and frequenty of a greeuish lue, lut an frucess of time it becomes male-
coloured, dry, and futl of air. These changes take pace first in the central cells. Sometimes the pith is broken up into cavities, which bave a regular arrangement, as in the Walnut, Jessamine, and Cecropia peltata; it is then called discoid or disciform. At other times, by the rapid growth of the outer part of the stem, the pith is ruptured irregularly, and forms large cavities, as in the fistular stem of Umbelliferous plants. In some cases fibro-vascular bundles are found in the pith, as in Elder, Pitcber-plant, and Ferula, and oceasionally its cells are marked by pores indicating a thickening of the cell-wall. The extent of pith raries in different plants and in different parts of tho same plant. In Ebony it is small, while in the Elder it is large. In Æschyomene aspera (Shela plant, the Ricepaper plant of Iudia), the interior of the stom is almost entirely composed of cellular tissue or pith; from this a kind of paper is made, and light lats. The same kind of tissue occurs in the Papyrus of the Nile. Large pith is also scen in Fatsia (Aralia) papyrifera (Tung-tsaou or Chinese rice-paper plant), and in Scexvola Taceada of the Malay archipelago. When the woody circle of the first year is completed, the pith usually remains stationary as regards its size, retaining more or less its dimensions, even in old trunks, and never becoming obliterated.

The Medullary Sheath is the fibro-vascular layer Medullary immediately surrounding the pith. It is the inner layer shealh. of the filro-vascular bundle of the first year (fig. $74, d$), and consists chiefly of true spiral vessels, with aunular and reticulated vessels, intermixed with long woody fbres, which continue to exercise their fuactions during the life of the plant, and which extend into the leaves. Betreen the ves. sels of the sheath the medullary rays from the pith pass.

The Hood. -The layers of rood (fig. 74, b, c) are formed The wons. outside the medullary sheath in coneentric rings iu thomanner already deseribed. On account of this mode of formation of wood-layers successively outside pre-existing layers the stem inereases indefinitely. There are oo annular or epiral vessels present; these hare been replaced by pitted and punctated ressels along with wood-cells. The stems bave been culled exogerous and also indefinite, and Dicotyledonous plants have somctirnes received the namo of Cyclagens, in consequence of exhibiting concentric cireles in their stems. On a transverse section each zone or circle is usually seen to be separated from that next to it by a well-marked line of demarcation. This line, as in the Oak and in the Ash, is indicated by holes which are tha openings of large pitted ressels,- the remainder of the tissue in the circle being formod by pleurenchymatous tubes with thekeved walls and of smaller calibre. In some trees, as the Lime, Hormbean, and Maple, the line is by no means so well marked, as the openings are smaller and mure generally diffused; but there is usually a defieiency of pitted ressels towards the onter part of the circle. In cone-bearing plants, as the Fir, in which the woody layers coosist entircly of punctated tissue, without any large pitted vessels, the line of separation is marked by the tissue becoming dense and often coloured. In some kinds of sood, as Sumach, the zones are separated by a marked development of cellular tissuc. The scparation between the zones is owing to tac inierruption in the growly of the tree during autumn and winter, and hence it is well detined in trees of temperate and cold climates. But even in tropical trees, the lines, atthough often inconspicuous, are still visible, the dry season, during which many of them lose their leaves. being their season of reposc.

The woolly layers vary in their texture at different periods. At first all the tissues are pervious and full of fluid; but by degrees they become thickened, and the chamels of the vessels get filled up and obliterargha The first-formed layers are those which somest become thes
altered In old trees there is a marked divoion between the central heart-wood er duramen, and the external sapsood or alburnum.-the former being bard and dense, and often celoured, with its tubes dry and thickened, while the latter is less dense, is of a pale coleur, and has its tubes permeable by tuids. The difference of celeur between these two kinds of woeds is often very marked. In the Ebony tree the duramen or perfect-wood is black, and is the part used for furniture, while the alburnum is pale, in the Beech, the heart-wood is light-brown; in the Oak, deep-brown; in Judas tree, yellow, in Guaacum, greearsh. The atteration in colour is frequent in tropical trees. In trees of temperate climates. called white-wood, as the Willow and Peplar, no change in colour takes place; this is also the case in the Chestnut and Bombax. The relative preportion of alburnum and duramen varies in different irees. The heart-wood is more useful than the sap-weed, and is less liable to decay.
From the mode in which the woody laycrs are fermed, it is obvious that each vaseular zone is moulded upon that which precedes it, and as, in ordinary cases, each woody carcle ts completed in the course of one year, it follows that, by counting the concentric circles, the age of a tree may be ascertaned. Thus fig. 75 represents an oak elght years old, haviug eight weody layers b, 'this cemputation can only be pade in trees having marked separations between the cireles. There are, however, many seurces of mistake. In acme instances, by interruption to growth, several circles may be formed in one year, and thus lead to an erreneous estimate. Care must be taken to have a complete section from the bark to the pith, for the circles sometimes vary in diameter at different parts of their ceurse, and a great error might occur frem taking only a faw rings, or cireles, and then estimating for the whole diameter of the tree. When by the action of severe frost, or other

Fig. 75.
Morizontal section of the ptem or an oak elgbt years old. o, wood, bhow. log concentric clrcles of zonea, neparated by points which conempond to tho opeang of the large pitted vesteds: c. bark, showing also eight coscentric circlea, thithter and lems diatiact The wood and burk are sraversed by thedullary rayk sotne of which are tho pritnary rays extending from the bark to the pith, while othere the secondary rayb) resch only a certain way lowards.
enes. Thare are certain periods of a prant's life when it seems to grow most rigoreusly, and to ferm the largest 2ones. This is said to occur in the Oak between twenty and thirty years of age.

Cambium.-External to the layers of wood, and between Camblum them and the bark, there is a layer of thin-walled cells to which the proteplasm and cell-sap remain, and censequently they are capable of division and grewth To this layer the name of cambrum has been given. This cambium layer marks the separation between the weod and the bark, and may be regarded as coostituting the active fermative tissue of Dicotyledeneus stems. It constitutes the thicken ting zone, by means of which the stem is enlarged,-the cambium cells situated most internally being subservient to the purposes of the wood formation, whle the external enes give origin to the new bark. When these cells are carrying on the process of growth with activity, during the flow of the sap in spring, the bark cau be easily separated frem the wood.

The Bark or Cortical System lies external to the weod, The wrk and, like it, censists of several layers In the early state it is entirely cellular, and is in every respect sumalar to the pth; but as the fibro-rascular bundles are developed, the bark and pith are separated, and the former gradually becomes altered by the fermation of secondary deposits. We find in the cortex, as in the wood portion of tha stem, fibro-vascular along with cellular tissue But the pesition and relative proportion of these two systems is reversed. In the bark the eellular system is external, and is much developed, while the fibro-vascular is mternal, and occupies cemparatively a small space. The cellular portion of the bark consists of an esternal layer, or epiphlowium, and the cellalar cavelope, or mesophlucum, while the vaseular system ferms the internal portion called liber, or endophlaum.
The endophlowm, liber, or inner bark, is formed from the secondary cortex of the young stem. It consists mainly of thek or thin walled weedy fibres, commonly known as bast-fibres, mixed with elengated cellular tissine aod frequeatly with laticiferens vessels. It is separated from the weod by the cambinm layer The plenrenebymatous tubes are thickened se as to be flexible, but are not ligurfied, and are thus very tenacious. The endophloum of the Lime-tree and of Anciaris saccadora (the Sack tree of Ceorg) is used to form mats, cordage, and bags; and the teughness of the fibres of the maer bark of flax, hemp, and of many of the Nettle and Mallow tribes, reader them fit for various manufacturing purposes. The endophloum 18 sometimes, from its uses, called the bast-layer Oecasionally it is continueus and unnterrupted, as in the Vine and Horse-chestuut; at other times, as in the Oak, Ash, and Lime, the fibres are separated during the pregress of grewth, and form a sert of network, in the interstices of which the medullary rays are seen. The fibres of the Lace-bark tree (Lagetta lintcaria) are similar. In fig. 7618 represented the bark of Daphne Laureola, $-f$ indieating the weody fibres of liber, and r the medullary rays. The endophleum uncreases by layers on its inside, which are thin, and may be separated. like the leaves of a book. The outer layer of bast fibres betwistthe endephloum and the outer bark has been termed the corticai sheath, correapending to the medullary sheath on the inside of the stem.

The outer bark is fermed from the primary cortex; it is always cellular, and is divided into two layers, the epi-
phlœum with the mesophlœum underneath The cellular envelepe, or mesophoum, lies immediately on the outside of the liber. It consists of polyhedral, often prismatical cells, elengated vertically to the surface, usualiy having chlorophyll, or green coleuriag matter, in their interior, but sometimes heing coleurless, and containing raphides. They are dislisguishod frem these of the epiphloum by their ferm and direction, by their thicker walls, their green coleur, and the intercellular spaces which occur among them. This covering is usually less develeped than the outer suberous layer, but sometimes, as in the Larch and common Fir, it becemea very thick, and separates like the epiphlœum. In the cellular envelope laticiferous vessels occur. The epi phloum is the outer cevering of the barik, censisting of celle which usually assume a cubical or flattened tabular form. The cells have ne chlorephyll in their interier, are placed close together, and are elongated in a horizontel direction; and thus they are distinguished from the cells of mesophlœum. In the progress of growth they become often of a brewn coleur. This cevering may be composed of a single layer of tabular cells; but in seme trees it censiste of aumerous layers, ferming the substance called cork, which is well seen in Quercus Suber, the Corkoak; hence the name suberous, or corky layer, which is given to it. The form of its cells varies in oume instances, being cubical at ene part, and mere compressed or tabular at another, thus giving rise to the appearance of separate layers. On the exterior of the epiphlœum is situated the epidermis, which has already been described. It is fermed of a layer of cells, which is woody atems serve only a temperary purpese, becoming ultimately transfermed in various ways.

The bark, in its increase, follows an order exactly the reveree of that which occurs in the weody layers The layers of liber owe their increase to the cambinm cells, which, by their constant reproduction, mark the separation between the xylem and phleëm portions of the stem These layers are often eo cempressed and united together as to be counted with difficulty, while of other times they are separated by rings of cellular tissue, and thas remein con${ }^{4}$ picueus. As the additions are made to the woody layers on the outside, and to the bark on the inside, there is a constant distension going on, by which the bark becomes compressed, its layers of liber are cendensed, the fibres are often separated (6 g .76) so as to form meshes, its epidermis is threwn off, and the epiphloum is cither detached along with it, or, when thick, is ruptured in various ways, se as te give rise te the mgged appearance presented by ouch trees as Elm and Cork-eak. In seme instances the bark is very distensible, and its outer cellular covering is not much developed, se that the surface remains smooth, as in the Beech. The outer suberous layer sometimes separates with the epidermis, in thin plates or scales; in the Birch these have a white and silvery aspect. There is thus a continual destruction and separation of different pertioas of the bark. The cellular envelope and liber anay remain while the epiphloum separates, or they also nalay be gradually pushed off-the parts which were at first internal beceming external. In the case of seme Australian trees beth the ccllular and fibrous pertions are detached in the form of thio flakes, and occasionally each annual layer 0^{6} liber pushes off that which preceded it. .The epidermis separates early, and no renewal of it takes place. It is, bowever, replaced by the cork layer, which then covers the outer part of the stem. To this covering the name periderm is given.

From the moie in which the enicr layers of bark separate, it follews that inscriptiens made on them, sod net extending to the wood, gradually fall off and disappear. A nail driven inte these lagers ultimately falls out In conseauence
ot the continued distension of an exogenous stem, it is found that woody twining plants cause injury, by interrupt ing the passage of the fluids. Thus a spiral groove may be fermed on the surface of the stem by the compression exercised by a twiniag plant, such as Bush-rope (Baubinia, fig. 77) or Honeysuckle. From what has been atated relative to the changes which take place in the bark, it will be understeed that it is eften difficult to count its anoual layers, so as to estimate the age of the tree by means of them. This may, however, be done in some cases, as shown at fig. 75 , where there are eigh: layere of bark e, and eight woody layers b.

Medullary Rays or Plates - While the bark and pith become gradually separated by the intervention of rascular bundles, the connection between them is kept up by means of processes called medullary rays (fige. 78 and 79). These form the silver grain in weod, θ o censpicueus in the maple; they communicate with the pith and the cellular envelope of the bark, and they consist of cellular tissue, which becomes compressed and flattened so as to assume a muriferm appearance. At first they occupy a large space (fig. 72, st); bat as the vascular bundles iocrease they become mors and noore narrow, ferming thin

Fig 77.
Stet of ao Eso genous irea eurtounded by ourody cllm rope. lamina or plates, which separate the woedy buadles. On making a transverse or herizontal section of a woody stem, the medullary rays present the aspect ef narrew lines running from the centre to the circumference (6g. 74); and on making a vertical section of a similar stem through one of the raye, the appearance represented in fg. 78 will be observed, where a medullary ray $m r$, composed of flattened muriform cells, passes from the pith p to the cellular

Fig. 78.
Fio. 78 - Vertical sectloo of a young Dicotgledonons atem, parallel to the meduh lary rays.
Fio. 73.-Vertical pectan of the ame taogcatial to the medolary ragh.
envelope ce, crossing the trachex of the modullary sheath t, the ligoeous tissue l, the pitted ressels of the wood b, and the fibres of the liber of. The lamine do net by any means preserve an uninterrupted course from the apex to the base of the trea. They are broken up by the interventien of woody fibres, as seco in a vertical section of a woody stem (fig. 79), tangentially to the medullary rays $m r, m r$. $m r$, which are separated by interlacing fibres $l l$. The primary medullary rays eatend completely from the pitb to the bark; butio the secendary wood and secendary cortex new rays are formed which, therefore, extend only through a pertion of the stem. These are secendary medutlary rays. All may increase by division of the merismatic cells of the cambium. Medullary rays are conspicueus in the Cork-Oak, Hazel, Beech, Ivy, Clematis, Vinc. They are ant eo well marked in the Lime, Chestnut. Birch. Yew.

The medullary rays are in some casea, at in Clematis and Aristolochia, large and broad, while the woody wedges are comparatively small.

The atems of Dicotyledonous plants occasionally present anomalous appearances in the structure and arrangement of tbeir wood, bark, and medullary rays. In place of concentric circles there are sometimes only a few rows of pedge-staped vascular bundles produced during the life of the pla't, additions being made by the annual interposition of bundles of a similar kind, resembling in this respect the formation of woody bundles in the early growth of berbaceous plants. In Piperacee, Anstolochiaceæ, and Memspermaceæ, these anomalous stems occor. In Gnetum ((eg. 8U), the vascular bundles, b, b, b, b, b, form zones, which

Fig. 80.

Fio. 80.- Eortuontal section of shem of Gnctom. In pith: em, medaliary sheall ; b, b, b, i, b woody bundion formiog acten concentrlc rodec, each of wbich Io the produce of sererat years; $1,1,4,1, L, L$ noren of libir; forasiog interposed circies equal in a amber to the woody zoves.
Fio 81-Peculin stem of Malpaghisceons plant of Sooth America. The pisut is Dicotyledonout.
'are sach the produce of eeveral ycars' growth, and are separated by layers, l, l, l, l, l, l, which may be considered is represesting different bast-layers. In somo of the Menispermacee the separating layers are of a cellular and not of a fibrous nature. Many of the Malpighiacca, Sapindaceso, and Bignoniaces of Brazil exbibit steras in winich the woody layers are arranged in a very irregular manner. Insome of them (6g. 81) there is a central woody mass with from three to ten small secondsry ones round it. Each of the masses contains true pith, derived either frow the cortical cellular tissue, or from the orignal medullary contro. Aronnd these separate collcctions of pith there is a $^{\text {it }}$ medullary sheath and spiral vessely No annual ringe have been aetected in the sccondary masses, but modulliry rays exist asually in their outer portion. In somo enomalous Sapindacese, the central and lateral woody masses are enclosed in a common bark, with a continuous layer of liber. Some have supposed that the lateral mases are andeveloped bancbes united together under the bark.
In some Bignoniacea (6g. 82) tho layers of wood are divided

Tha os,-Horteontal cartion of the stem of Bignonio capicolato. bsoming the craclal division of the woody layers.
Th. B3.-Fragmert of a stem of o climblag apecles of Banisteria (B. secarders). thowlug the effects of compresslon
in a crucial manner into four wedge-shaped portions by the intervention of plates difforing in texture from the ordinary
wood of the plant, and probably formed by the introversiun, or growing invards, of the liber. In Aspidu;perma excelsum (Paddle-wood) of "Guiana, and in Heteropterys anomala, the stem assumes a pecaliar lobed and sinuous aspect ; and in some woody elimbing plants pressare causes the stems to become fattened on the side next the tree on which they are supported, while from being twisted altemately in different directions, they present a remarkable zigzag form, biving the woody layers developed only on one side (tig. 83). Io Firs the wood is occasionally produced in an ablique in place of a perpendicular manner, thus injuring the timber and causing it to split in an unusual way. The young plants produced from the seed of such twisted-wouded birs are said to inherit the peculiarity of their parents. Occasionally the Dicotyledonous stem becomes swollen at certain places, especially near the root, and thus exhibits a tuberous appearance. This peculanty is sadd to ba hable to occur in Conifcrous plants grown from cuttugs. In some of the lower class of plants a cellular stalls is produced, which on a transverse section presents an appearauce like that of a Dicutgledonous stem. Thus Lessunis fuscescens, a species of sea-weed, has stems which aro often 5 to 10 feet long, and as thick as the haman thigh, aud which show concentric elliptic cellular rings. Such is slso the case with Usnea melaxantba, a treelike lichen. In these plants, bowever, the structure is entirely cellular, and quite distinct from that of Dicotyledonous plants.

In the young stem of a Monocotyledonous plant the fibrorascular bundles appear acatterod in an itregular manner through the fundamental parenchyma, becorning more eumerous towards the periphery. There is thus no jrimary eeparation in the stem into pith, cortex, and medullary rays, although the central cellular mass may be considered as representing the pith. Thos, if a section be made across a young Monucutyledonous stem, an appearance is observed such as is represented in fig. 84, where the vesols are seen

Stem 10 Monocoty

Fio. 81 - -ianswerse aection of tho stem of a Palm, which is Monocotyledonous m, the central loese celludar portioniff the outer flibroun fertinn, ahowing numerous rascuier bundles. The whule theing covered by efalso batk or rind. Fio. 86 -Tragaverse actho of tho stem of a I'alm, more advanced.
as points scattered through a cellular matrix, tho circumference not having any marked cortex, and the whole covered by an epidermis. A similar section of a furthes advanced stem, as of a Palm (fig. 85), shows numerous bundles of vessels dispersed irregularly in cellular tissue, those near the centre, m, being scattered at a distance from each other, while those towards the outside are densely aggregated, forming a darkish zone b, and are succeeded at the circumference by a paler circle of less compact resscls l, with some compressed cells, covered by an epidermis e. The central cellular mass has no medullary sheath. In some cases its cells are ruptured, and disappear during the progress of growth, lesving a hollow cavity; but in general it remains permanent, and is gradually encroached upon by the development of the vascular system. The periphoral portion differs from true bark in not being separable from the rest of the tissue. It has received the name of false bark, and consists of the epidermal cells e. and what has been called the cortical integument, l. This.
portion of the stem is often viry inconspictious, but sometimes it is moch developed, as in Testodinaria Elephantipes, in which it is rugged, and is formed of a substance resembling eork in many respects. The fibro-vascular bundles of the stem rery soon become closed, and thes all growth in them ceases, the carmbium cells being converted completely into permanent tissue. Fig. 57 represents a transverse section of a closed fibro-vascnlar bundle from the stem of the maize (Zea Jays). In it the several elements seen in the section of the fibro-vaseular bundle from a Dicotyledonous stem may be recognized, but there is no cambium, the cells marked v, v representing those cambiform ceils which have last become permanent tissue. This absence of cambinm necessarily curtails the growth of the bundle, and bence the limited diameter characteristic of the stems of Monocotyledons. In fig. 86 a diagram

Diagram of a Monocotyledonons stem. A, iransecrse section: B. longitudanal section: a, a. celluar tissue (I'arenchyma) ; b, b, dotted vessels (Bothrenchyma): (.vicr Corpenter.)
represents a transverse and longitudinal section of a Monocotyledonous atem.

All the fibro-vascular bundles of the stem are common bundles, that is, they pass out into the leaf, and in these steins each bundle has a defnite arrangement. At the point where the bundle curves out into the leaf it bas its greatest thickness, gradually becoming attcnuated a3 it passes upwards into the leaf and downwards inte the stem. In some instances, however, the buudles as they descend increase at different parts of their course, probably by interstitial growth, and give rise to uregnlar swellings of the stem, as in Ceroxylon Andicola. The distension takes place occasionally at the base of the stem, as in Enterpe montana This downward prolonged portion does not. lowever, run a straght course, but first passing inwards towards the centre of the stem, it then gradually arehes outwards towards the peripbery. Thes passing inwards at first of the fibro-vaseular bumdle gave origin to the dea that the first formed fibres were gradually pushed towards the crenmference ly those which succeeded them, and that the wooll [oution of these stems was mereased by alditions to the centre; henco the term embogenous applied to then, meaning intermal growth. But, as has been sliown, the fibrovascular bundles really hecome cxternal at the base, although internal above. On making a vertical section of the cmlogenous stem, as of a Palin (fig $8 \bar{i}$), there is ubserved fon uterlacing of firres, the fibre-vascular bundles are first directed towarils tho centre, and then curve outwards towards the circumference, so that those last formed ultimately lecomo cxternal. The term endownous will, therctore, only anly strietly to the dibres at the early part
of their course. The rue distinction be:woen exogenous and endogenous stems is, that in the former the fibrovascilar bundles remain open, a cambium ring being eventually formed from which the stem ancreases indefintely in diameter. In the latter the fibro-rascular bundles soon become closcd, and being scattered irregularly through the cellular tissue, and not in a crele, no cambium riog can be formed, and thus growth in a transverse direction is soon arrested, and the stem is of a comparatively uniform diameter throughout. The investing bark of the former permits an unlimited extension of woody growth beneath it; the fibrous cortical layer of the latter, by maintaining an intimate union with the subjacent tissu: prevents unlimited increase in diameter. Hence we find that the stem does not attain the enormous diameter exhitoited by some Dicotyledonous trees, such as Sequusa (Wellngtonia) gigantea and the Baobab, -the former of nhich has been measured 116 feet in circumference. In consequence of this mode of formation, the outer part of a Palm-stem is the hardest and densest, and after acquiring a certain degree of firmness it resists all further distension, and frequently becomes so hard as to withstand the blow of a batchet, and therefore a woody twining plant does less injury to it than to trees of exogenous growth (fig. 88). The growth

Fra. 87. - Vertical section of a Palm-stem, showing the tascular bundles, N. cusving downwards and interlacmar.
Fia. 88--Monocotyledonous stem. surrounded by a twion hat orody plant, and
remaining uninjured.
of endogenous stens may be said to resemble an upward growth of an exogen by the terminal bud only, for there is no eambium layer, and no peripherical increase. The terminal central bud is called a phyllophor or phylloger. As growth only proceeds in this manner, no annmal rings of wood are formed. From the absence of cuncentric circles the age of a Pahn cannot be estimated in the same way as that of an exogenous tree. The elongation, however, of each species of Palm is pretty regular, and by this some idea may be formed of its age. There are many herbaceous plants in Britain, as Lilies, Grasses, de., baving Monocotyledonous stems, but there are no Britisb Monocotyledonous plants with permanent aerial woody stems. All the British trees are Dieotyledonous. Illustrations of Monocotyledunous stems must be taken from trees of other countries, and of these Palms furnish the best examples.

Although this limited growth in a transverse direo tion is characteristic of most Monocotyleduns, we find instances where a thie thickening riug is formed and an indefinite increase in diameter takes place, as in Dracena, Yucea, de. This thickening ring, however, originates in a manner difforent from that in Dicotyledonous plants. A layer of the fundemental cellular tissue parallel to the surface of the stem hecomes merismatic, and produces new closed fibrovascular bundles and new cellular tissue
between them. The new woody tissue so formed thus corresponds to the secondary wood in Dicotyledonous stems, and the new fibro-vascular bundles are all cauline, that is, do not pass out into the leaves. By this means an enormous increase in diameter of the stem may take place. And not unfrequently the primary central portion of the stem gives way, and thus a bollow cylinder formed by this secondary wood remains. This was well seen in the famous Dracæna Draco, or Dragon tree of Orotava, in the Canary Islaods, which had a hollow stem capable of holding several men.

The composition of the rascular bundles in different parts of their coarse varies. Thus, at the upper part, tracing them from the leaves towards the centre, they sontain spiral vessels, pitted vessels with some cellular tissue, a few laticiferous vessels, and woody fibres resembling those of liber. As we descend to the older portions of the bundle, where the tissues have become permanent throughout, the spiral vessels disappear, then the pitted vessels, and at the periphery nothing but pleurenchymatous tissue remains, forming a complicated anastomosis or network. Not unfrequently at the nodes of the stem a networh of horizontal vessels occurs. They are well seen in many Grasses, where the central portion of the stem has given way, and there they serve to strengthen the stem. The braaching of Monocotyledonous stems is originally the same as in Dicotyledons, namely, a monopodial form; frequently bowever, the axillary buds do not unfold, and the form becomes much varied. In Palms this is well seen, and usually no lateral shoots are formed. In some Palms, however, as the Doum Palm of Egypt (IHyphene thebaica), the lateral shoots are developed fo such a way that the stem appears to fork. Other examples of the development of branches are scen in the case of the Screw-pine (Pandanus), in Grasses, as tha Bamboo, in Asparagus, Cordyline, Dracæua, \&c. In some instauces the axillary shoots detach themselves from the parent stem and form an undependent plant, as in Lilium bulbiferum (fig. 71). The bases of the leaves produced from the stem remain attached to the stem in many Palme, being surrounded by a fibrous substance, the mattulla or reticulum.

When the interoodes of the caudex of a Palm are not much elongated, the scars of the leaves are seen furming epirals on the stem. as in the Cuco-nut and Date. In Xanthorrhœa Hastile the same arraggement is observed. In this plant also a curious internal structure of the stem occurs. On making a vertical section the structure appears to be that of a Dicotyledon. The woody part is furmed of Yurtical loose fibres as in Palms, and there are other fibres, radiating from the ceatre; and cutting the preceding at right angles. These horizontal fibres resemble the medullary rays, but differ in their structure. They probably serve for the origin of leaves, which are numerous, and are dis. posed throughout the whole length of the stem. In Palms, such as species of Chamædorea, the internodes are much lengthened, and rings are seen on the stem at distant intervals, showing thickened node-like joints. Some Palm stems, as those of Calamus Rudentum, the common Cane, are very thin and slender. In many Monocotyledonous plants the stem remaus beiow ground, developing shoots which are simple, as in Banana and Plantain, or branched, as in Asparagus. In the former the stem above ground is an herbaceous shoot, composed of the sheaths of the leaves. It dies after fruiting, and $1 s$ succeeded by other shoots from the subterraneen stem. The shoots or buds from such atems occasionally remain in part below ground in the form of bulbs, as in Lilies, Tulips, and Hyacinths; or as
or balbs, as in Lila, or as corms, as in Colchicum, Crocus, Gladiolus, and Arum. In some instances the aerial stem has the usual Monocotyledonous structure, while in the underground stem the fibrovascular bundles are arranged in a circle, enclosing a
central cellular mass c. ρ ith, and thus resembling in structure a Dicotyledonous stem. This structure has been remarked in the Smilax or Sarsaparilla family. Lindley calls these plants Dictyogens, from their netted leaves, by which they differ from most Monocotyledons.

Amongst Acotyledonous plants there are some which Sten in possess stems consisting eatirely of cellular tissue, whilst Acotyle. in others the stems have a well-developed vascular system. Of the former we have examples in Mosses, Hepaticæ, and Characeæ; the latter we find represented in Feras, Equisetaceæ, and Lyccpodiaceæ. The term Acrogenous has been used as descriptive of the stems of Acotyledonous plants, as they were supposed to be formed by additions to the summit, and by the elongation of vessels already tormed. They are also sometimes called Acrobrya. But as in the case of the terms exogenous and eadugeoous applied to the stems of Dicotyledons and Monocotyledons respectively, recent research has shown that the term acrogenous cannot have the significance formerly attached to it; for in some Acotyledonous plants a true cambium ring is formed by which layers of tissue are successively added, and the stem increases in diameter, and also in many instances the fibro-vascular bundles develep from above downwards. The characters of the stem, bewever, enable us easily to distinguish it from that in Dicotyledons or Monocotyledons. With merely a slight exception there is no provision for laterai growth of the stem, and all increase in size takes place by an elongation of the terminal growing-point. No cambium riog is as a rule formed; where it cloes exist, it is not produced in the same way as in Dicotyledons, but rather resembles the formation of the cambium ring in Dracæua amongst Monocotyledons. When a permanent woody stem occurs amongst Acotyledonous plants it resembles in general aspect the stem of a Monocotylcdonuus plaut, having nearly a uniform beight, and being usually unbranched and producung a tuft of leaves (froods) at the summit. Tree-ferus furnish the best example of this kind of stem. In them it is denominated a stipe, and it often attains the height of 120 feet. The stem in Acotyledouous plants is distinguisined from that in Dicotyledous by the abseace of annual rings of wood, of (with only slight exception) a cambiun ring, of a separable bark, and by the fact that the fibro-vascular bundles are all closed; in this latter character they agree with Monocotyledons, but are distinguished from them by the arrangernent of the vascular bundles.

In Acotyledonous stems growth takes place by division of a single apucal cell, situated at the extreme end of the punctum vegetationis. By divisions of this cell two pertions of tissue are marked out in the stem, -an inner pertion, from which arise the fibro-vascular tissues when they exist, and an outer or cortical portion. The primary fibro-vascular bundles originate from the cellular tissue oi the stem in a manaer analogous to what occurs in Dicotyledons and Monocotyledons,-a procambial bundle being first formed, which differentiates subsequently into xylem and phloem layers, but the bundles always become closed. The character of the stem varies very much in the several families of Acotyledonous plants.

In Characeæ the stem consists of a series of juinta (internodes), each composed of a single much elongated cell. Interposed between successive internodes are the nodes, each composed of a whorl of small cells, from which the leaves are developed, one leaf from every cell of the node. In the genus Chara a curtex is found completely investing the internodal cell. It is formed by the development, from every cell, of the nodes of an ascending and descending lobe. The ascending lobes of one node and the descending lobes of the next higher node meet in the middle of the intervening interaode, and there interlock in
s proseachymatous manner. - Subsequently by cell-division a complicated structure is developed in this investing mass. No fibro-vazcular bundles are found in Characeæ.

Io Mosses and many Hepatico we find no fibro-vascular system, but a sleoder lcafy cellular stem. In it there is sometimes a diferentiation iato an ioner and a peripheral mass of tissue. In the former the cells bavo usually thin walls, and are not coloured, though in some cascs a thickening of the walls of the central cells is observed, and a sort of rudimentary buadle is formed. The circumferential cells have usually thickened walls, and are not unfrequently coloured.

Io Ferns we Lave a familiar example of an Acotyledonous stem. Ordianry ferns of Britain scldom attaio any beight, but usually creep along the ground, forming rhizomes. But io the Tree-ferns of warm chmates the caudex frequently attaius a great beight. A transverse scction of the stem of a fern (fig. 83) cxhibits an irregular circle of E bro-vascular bundles, composed of masses f, v, of various forms and sizes, situated near the circumference,the centre m being formed of cellular tissue, frequently with solitary Gbro-rascular bundles scattered through it, and often becoming hollow. On the outside of the vascular circlo colls exist, p, covered by an epidermal layer or cellalar integuruent e, often of hard and dense consistence, and marked with the sears of the froods.

The vascular system is of greater density than the rest of tho tissue, and is distinguished by the dark colour of the outer portion (fig. 89, f), which surrounds the paler

 of dark-colmurad woody fires f. and phler vesatls. chatly scalariform and donted, v: tho othir cortiral porthin formed by the baspa of the leaves."
vessels in the centre. In a very young stem only a single Gbrovascular bunde is found in the asis of the stem. surronaded by a mass of rellular tissue; but as groweh proccoda a network of anatomosing bundles is formed in place of the central lundle, constituting a wide neesbed hollow cylinder (fig. 90), and scparating the fondamental collular tiqsue of the stem into an onter cortical and an inner medullary portion. In addition, howerer, scattered througb the pith, other bandles occur, as in Pteris aquilina, where two large caulino bundles are found ; and in Tree. ferns numerous small bundles are found which pass out through the meshes of the cylinder into the leaves. The primary bondes are ribibon-shaped and broad, and curve outwards at their margins, from which tho bonilles for the leaves pass off-a leaf arising always from an opening of the network. The xytem portion of the filmovascular bundlea is characterizal by the great abondance of scalariform vessels, spiral vessels also being present, and intermixed with them thin-walled prosenchymatous cells, cortaining in winter a large amount of starch. This
constitutes the inder, lighter-coloured portion of the bundles. The phloem portion, which completely surrounds the buadle, bas also starch-cells, and, in addition, sievetubes and elongated bast-like thick-ralled fibres are found at the periphery of the bundle. The whole bundle is usually enclosed by a distioct sheath of elongated cells, these cells are frequeatly much thickened and of a dark brown colour, bence the appearance presented on transverse section of a dark layer eaclosing a lighter-coloured part. The central cellular portion of the stem írquently becomes roptured and absorbed in old stems, which are thus hollow The bases of the leaves remaio long attached, but ultumatel fall off, leavigg marked scars (6g. 91, c), which are at firo

Fig. 92.

Fic 91.-Phizome of Male Fern, Lastrea (Aspiditm) Ftix.mas, sbowtog the sears (cicatrices) of the leares (fionds). aith the markings of the rascular bondles, 4. Fio. 92-Longitulinat scetion of rhizome of Equisetum, showiog septum, k, between ravities h, $\%$; $9, g$, foro-vascular bundes; l, valiccular canal; s. leafebeath. (Sacha)
close together, but often separate aftermards by interstitial growth. On these scars or cicatrices the markings of the vessels are easily seen, arranged in the same manner as those of the stem. From all points of the moody cylinder stem-roots may be given off, and frequently they are formicd so abuadantly as completcly to invest the stem and conceal it.

In Equisetacee or Horsetails me bave another example In Eqalse of an Acotyledonons stem. The true stem in those plants tacezis a rbizome underground, from which aerial shoots are sent up annually. Every acrial stem consist's of a series of joints (internodes), which are usually hollow and closed at their baso by a thin septum (fig. 92). Each internode passes up into a leaf-sheath embracing thenext internode, and this sheath is usually split into terth at its upper margin. In transverse section a circle of fibro-vascular bundles is seen (fig. 93) marking off an inver medullary from an oute: cortical portion, and separated one from the other by a mass of parenchyma. Thesc bundles are all common bundles. From each tooth of the leaf-sheath the bundle may be traced, passing rertically down into the interuodes

Fia 93.-Traneverce section of a thizome of Enalsetuing. g. Chro-riseolar homdie. t. Fallicutar canal; h. ceneral carisy. \{quchy)
Fig 2t.- To show union ni the foro-vascutar buidic of ad upper with towe Interbode, i, i, internode: i, bode. Sacha)
as far as the node bencath, and at the lower end dividiog into two, uniting by cach branch with a bundle of the next lewest internode (lig. 94). In transverse section the bund!e-
resembles much that of a Monocotyleuon. Une peculiarity, however, must be noticed. The spiral, annular, and reticulated vessels at the inaer side of the bundle soon disappear, and an air-canal is formed in the bundle. This canal must be distinguished from the vallecular canals found in the cortex, with which they alternate. Round the bundles a single layer of usually thickened and coloured cells forms a sheath, and this may either run continuously round the stem, and thus shut off completely the medullary from the cortical portion of the stem, or may invest separately each bundle, in which case the medullary and cortical portions of the stem are continuous. In some cases a layer of thickened cells is found within the vascular bundles. The cortical portion is divisible anto two layers, an inner layer of parenchymatous cells with air canals, the vallecular canals, and an outer layer of thickened cells immediately underlying the epidermis. The structure of the rhizome resembles that of the aerial stem, differing only in the fact that the thickened cells of the outer cortical layer are dark coloured, and that the central canal of the internodes is often absent. In Calamites, a fossil plant which fleurished abundantly during the Carboniferous Period, we have a plant which in all particulars is closely allied to. Equisetum of the present day. But whilst the young stern of Calamites presented a zone of vascular bundles separating it into a medullary and cortical portion (just as in an Equisctum), new vessels were added to the exterior of the pre-cxisting bundles as the plant grew, ao that a series of woody wedges were formed, increasing in growth to an enermous extent.

In Lycopodiacex, or Club Mosses, the stem presents differences from that in Ferns and "Equisctaceer. In most members of the family there is an axial cylinder formed of either one or more fibro-vascular bundles. In some cases (Selaginella) the fibro-vascular bundies remain separate and do not form a cylinder. They are surrounded by a mass of prosenchymatous cellular tissue, the cells of which may be thin-walled, leaving no intgreellular spaccs, or the cellwalls may be much thickencd. Immediately surrounding the central axial bundl: in Selaginella are large air lacuna, which are wanting in Lycopedium. The fibro-vascular bundles conaist of tissucs very similar to what occurs in Ferns, and the bundles are all cauline. In the leaves, bundles arise which pass into the stem and coalesee with the cauline buadics. In Isoetes we find a most anomelous structure. Here there are no internodes in the stem; onsequently, it is much shortened. The central exial ibro-vascular bundle is very poerly developed, and round 1. a meristem is formed, whieb, by adding new parenchyma sutside, increases the diameter of the stem. Thus we have bere a thickening ring, but it differs from that structure in Dicotyledons, inasmuch as it is not formed by a union of cambiun cells of the fibro-vascular bundles. It resembles more the thickening ring formed in Dracæas, lucca, and other Monocotyledons.

In Rhizocarper the structure of the stem is very simple, consisting of an axial fibro-vascular bundle surrounded by parenehyma full of air-cavities.

In plants with Aeotyledoneus atems the mode of branching is various. In Lycopodiaceæ we bave an exauple of a dichotomous branching, and the same is also seen in Ferns. In the Equisetacex a mode of branching occurs seen nowhere else in the Vegetable Kingdom. The branches arise from de-ply-seated lateral buds, which, upon developing, break through the superincumbent tissue; these have been termed endogenous buds. In Characeæ the branching is of the normal monopodial type.
Amongst Thallogens, as a rule, there is no evident distinction between stem and leaf. The vegetative organs nonsist of a number of cells separate or combined into a
more or less flattened expansion termed the thallus. In this group are included all the Algm, Fungi, and Lichens, and many Hepatice. The vegetative structures vary mucb in eaeh of these groups. In nany Hepaticæ, as Marchantia, the vegetative structure is of a thalloid nature, and appears as a flattened, bread, dichotomously-branched plate, composed of several layers of cells. The upper and lower layers consist of colourless cells, and form a sort of epidermis. . The upper epidermal layer has stomata, while the lower gives off root-like flaments, which attach it to the stratum on which it grows. The atomata, are, by repeated division of the guard-cells, converted into canala. The central layer of cells contains green matter, and betweev the cellules there are large intercellular spaces, which com municate with the stomata on the upper surface. In what are usually termed the foliose Hepaticæ, such as Jungermannix, a distinct stem is visible beanng leaves. All are cellular, no differentiation occurring beyond a compacting of the peripheral layers of cells. The mode of branching is usually dichotor:ous.

In Fungi the vegetatire orgars consist of a mass of Fuget. cellular filaments, anastomosing and branching in various wayd, constituting the mycelium or spaun (fig. 95, m), from which diversely-shaped portions of cellular tissue are developed, forming receptacles for the azpport of the reproductive organs. The mycelium creeps along in or upen the stratum whence it is nourished, sending up here and there a receptacle. The structural elements which form these are colourless cellular filaments, or hyphoe, divided usually by many transverse septa. These sometimes combine to form a dense mass of narenchyma.. In some cases the byphre of. the mycelium are densely interwoven, and form masses of definite shape, the outer layer of which (pseudo-parenchymatous) forms a hard shell or akin; such a mass is termed a sclerotium. The reproductive receptacle formed from the myce- a roneded apore c
lium is also composed of hyphæ. When there is only a

Fig. 95.
A speciea of Mouldfungus (Botrviss). consistink of a myceliuin m, hear. log e seprote celular biak at which bratcheast
the apez, each diviston beach division benilin single hypla the reproductive bodies are borne on the ends of its branches; but more usually the branches of the byphæ bearing the reproductive bodies unite to form a flattened expansion, the hymentum. As they contain no chlorophyll, Fungi take up assimilated matter from other organisms, and therefore are frequently parasites.
In Algæ the simplest forms present nothing but a cell- Algr wall, containing a coloured protoplasmic substance, as in some Nostecaceæ. In some cases firmness is attanned by deposition of silica as in Diatoms, or by lime carbonate as in Acetabularia. Lignification mever occurs. More usually, however, the cells are combined into a tissuc, but the forms which this may assume and the modes of combination are mere various than in anyother class of plants,- linear masses, strings, globes, laminx, \&e., being formed. There may be in some cases a slight differentiation inte distiact organs. Thus, in some of the higher forms, as Fucacer, a distinct stem is formed, from which flattened thalli resembling leaf structures arise, and at the base root. Wike stractures (rhizoids) are formed. These parts, however, have none of the internal structures which characterize higher plants, but consist entirely of cellular tissue. At most there is a condensation of cellular tissue at the periphery, forming an epidermio, and a similar condensation in the axis. The mode of branching amongst Algæ is either monopodial or dichotomous.

In Lichens the thallus (fig. 96) consists of 3 hyphal Lickeria element of anastornosing and interlacing filaments, amongst which are distributed roonded unicellular colóured bodies, the aonidia (fig. 97, g). These gonidia are either arranger
in one layer in the thalfus, which is then said to be heteromerous (the hypha layer being divided into a cortical and deeper part), or they are scattered equally throughout its

Fig. 97

Fig. 96.
Fia. 96.-A Lichen (Parmelia), prith ito cellulsr expansion (thallus), and its rounded apothecia, or spots of fructification.
Fig. 97.- Vertleal section of an apothecium and thallus of a Lichen. Ronaded free cells g, of a green colour, end called gonidio, arb seen in the centre of the thallis. The apotheclum a consists of theces and paraphyses. Its upper surface is often coloured and covered by a perithecium.
substance and are hommeomerous. The gonidia are separable, and may form independent plants. When they are being detached, the separation begins at the centre of the thallus, so that the middle of the Lichen becemes pulverulent, while its circumference mayremain foliaceous or crustaceous. By the continuation of this process it sometimes happens that the whole Lichen becomes a mass of greenish or yellowish powder. The thallus may be crustacesus, in the form of an incrustation upon rocks, trees, \&c., with which it becomea closely connected, as in Grapbis; or it may be foliaceous, forming a flattened expansion easily dotachable from the aubstratum to which it is counected by small rootlike bodies or rhizines, as in Peltigera; or the lichen may be what is termed fraticose, i.e., composed of a muchbranched thallus rising from a single point of attachment, as in Uaiea. Recent observations upon Lichens tend to show that they are in reality composed of two distinct organisms, -one, a Fungus, being the hypbal part, and the other, an Alga, the gonidial portion, and that the Fungus is parasitic upon the gonidia.

3. Leaves and therr Modifications.

In popular language all the green expanded organs borne upon an axis are designated leaves. Investigation, however, has shown that many other parts of a plant which externally appear very different from ordinary leaves ere, in their essential particalars, very similar to them, and are in fact their morphological equivalonts. Thus the scales on the bulb of the Onion, the various parts of the flower, \&c., are all leaves. Assuming, then, that the structure ordinarily termed a leaf is the typical form, these latter are designated changed or metamorphosed leaves; and all structures morphologically equivalent with the leaf are incladed under the general term phyllome (leaf-structure). Leaves are produced as lateral outgrowths of the stem. This character, common to all leaves, distinguishes them from other organa. In the higher plants we can easily recognize the distinction between stem and leaf. Amongst tho lower plants, however, it is found that a demarcation into aten and leaf is impossible, bat that there is a atructure which partakes of the characters of both, such is a thallome. The loaves always arise from the outer portion of the primary meristem of the plant, and the tissues of the leaf are continuous with those of the stem. Evc. y leaf originates as a simple cellular papilla, which consiats of a development from the cortical layers covered by epidermis; and as growth proceeds, the fibrovascular bundles of the stem are continued outwards, and finally uxpand and terminate in the leaf. The increase in length
of the leaf by growth av rne apes is usually of a limited nature. In some Ferns, however, there seems to be a provision for indefinite terminal growth, while in others this growth is periodically interrupted. It not unfrequently happens, especially mongst Monocotyledons, that after growth at the apex has ceased, it is continued at the base of the leaf, and in this way the length may be much increased. Amongst Dicotyledons this is very rare. In all cases the dimensions of the leaf are enlarged by interstitial growth of its parts.

The simplest leaf is found in some Mosses, where it consists of a single layer of cells. Usually it consists of -several layera, and amongst vascular plants is diștinguishable into an epidermis and a certral parenchyma with fibro-vascular bundles distributed through it.

The epidermis (fig. 98, es, ei), composed of cells more or less compressed, has usually a different structure and

Fig. 98.
Section of a Melon-leaf, perpendicular to the surface es, upper epldermifs; e. tower epidermis; ρ_{1} hairs;.sh, stomata; ps, upper layers of parenchymatana cells; pi tower layers of parenchymatous cells; m, meatus, or canals connected with stomats; they are sometimes called bypostomatic spaces; lacunge or cavities between tho loose cells in the caremons lower parenchyms ; fo, handies of fibro-vascular tlogne, consisting of woody, dotted, spirah, and other reasela
aspect on the two surfaces of the leaf. It is chiefly on the epidermis of the lower eurface. (fig. 98, ei) that stomata, st, are produced, occupying spaces between the reins, and it is there also that hairs, p, usually occur. The lower epidermis is often of a dull or pale-green colour, soft, and easily detached. The upper epidermisis frequently amooth and shining, and sometimes becomea very hard and dense. Many tropical plants present on the upper surface of their leaves several lajers of compressed epidermal cells. These appear to be essential for the preservation of moisture in the leaf. In leaves which float upon the surface of water, as those of the Water-lily, the upper epidermis alona possesses stomata.

The parenchyma of the leaf is the cellular tissue surrounding the vessels, and cnclosed within the epidermis (fig. $98, p s, p i$). It has sometimes received the namea of diachyma, mesophyllum, and diploë. It ia formed of two distinct series of cells, each containing chlorophyll or green-coloured granules, but differing in form and arrangement. Below the epidermis of the upper side of the leaf there are one or two layers of oblong blunt cells, placed perpendicnlarly to the aurface (fig. 98, ps), and applied 80 closely to each other as to lcave only small intercellular spaces (fig. $98, m$), except where stomata happen to be present. On the under side of the leaf the cella are irregular, often brauched, and are arranged moro or less horizontally (fig. $98, p i$), leaving cavities between them, l, which often communicate with atomata On this account the tissue has received the name of cavernous. In leaves having a very firm testure, as these of Coniferio and Sycadacee, the cells of the purenchyma immediatels beneath the epidermis are very much thickened and
elongated in a direction parallel to the surface of the leaf, 80 as to be fibre-like. These constitute a hypodermal layer, beneath which the chlorophyll cells of the parenchyma are densely packed together, and are elongated in a direction vertical to the surface of the leaf; this has been termed palisate tissue. The form and arrangement of the cells, bowever, depend much on the nature of the plant, and its exposure to light and air. . Sometimes the arrangement of the cells on both sides of the leaf is similar, as occurs in leaves which have their edges presented to the sky. In very gucculent plants the cells form a compact mass, and those in the centre are often colourless. In some cases the cellular tissue is deficient at certain points, giving rise to distinct holes in the leaf, as in Monstera Adansonii ; such a leaf has been called pertuse. In Victoria regia perforations in the leaf seem to be subservient to the purposes of nutrition, by permitting the gases collected beneath the large expanded leaf to escape, and thus allowing its under surface to be brought into immediate contact with the water. The fibro-vascular aystem in the leaf constitutes the venation. The fibro-vascular bundles from the stem berd out into the leaf, nod are there arranged in a definite manner. They usually form tro layers, which masy be separated by maceration. In skeletor leaves, or lesves in which the parenchyms is removed, these layers are well seen. In some leaves, as in the Barberry, the vessels fortoing the veins are hardencd, producing spines without any parenchyma. The hardening of the extremities of the vascular tissue is the cause of the spiay margin- of many leaves, such as the Holly, of the sharppointed leaves of Madder, and of mucronate leaves, or those heving a blunt end with a hard projection in the centre.

Submerged leaves, or leaves which are developed under water, differ in atructure from acrial leaves. They have nsually no fibro-vascular system, but consist of a congeries of cells, which sometimes become elongated and compressed so as to resemble veins. They bave a layer of compact cells on their surface, but no true epidermis, and wo stomata. Their internal structure consists of cells, disposed irregularly, and sometimes leaving spaces which are filled with air for the purpose of floating the leaf. When exposed to the air these lesves easily part with their moisture, and become shrivelled and dry. In some instances there is only a network of filamentous-like cells formed, the spaces between which are not filled with parencbyma, giving a peculiar skeletcn appesrsuce to the leaf, as in Ouvirandra fenestralis (Lattice plant). Such a leaf has been called fenastrate. A leaf, whether aerial or submerged, gencrally consists of a flat expanded portion (fig. 99, l), called the blade, limb, or lamina, of a narrower portion called the petiole or stalk (6g. 99, p), snd sometimes of a portion at the base of the petiole, which forms a sheath or vagina (fig. 99. g), or is developed in the form of leaflets, called stipules (fig. 123, s). The sheathing portion is sometimes incorporated with the stem, and is then cslled tigellary. These portions are not always present. The sheathing or stipulary portion is frequently wsating. and occasionally only one of the other two is developed. When a leaf has a distinct stalk it is called petio'ate;

Fig. 99. when it has none, it is Leaf of Polygooum, with part of stem. sessile, and if in this case it embraces the stem it is said to be amplexucaul. The part of the leaf next the petiole or the axis is the base, while the opposite extremity is the aper. The surfaces of the leaf arc called the pagina,
and its edges or margins form the ctrcumscription of the leaf. The leaf is usually flattened and expanded horizontally, i.e., at right angles to the longitudinal axis of the shoot, so that the upper pagina is directed towsrds the heavens, and the lower pagins towards the earth. In some cases leaves, as in Iris, or leaf-like petioles, as in Australian Acacias and Eucalypti, have their plane of expansion parsllea to the axis of the shoot; or the leaf may bave a cylindrical or polyhedral form, as in Mesembryanthemum. In other instances, as in Alströmeria, the leaf becomes twisted in its course, so. that what is superior at one part becomes inferior at ancther. The upper angle formed between the leaf and the stem is called its axil, and everything arising at that point is called axillary. It is there that leaf-buds are usually developed. The leaf is sometimes articulated with the stem, and, when it falls off, a scar or cucatricula remains; at other times it is continuous with it, and then decays, while still attached to the axis. In their early state all leaves are contiouous with the stem, and it is only in their after growth that articulations are formed. When leaves fall off annually they are called dectduous; when they remain for two or more years they are persustent, and the plant is called evergreen. The laminar portion of a leaf is occasionslly articulated with the petiole, as in the Orange, and a joint at times exists between the veginal or atipulary portion and the petiole.

The arrangement of the fibro-vascular system in the veactos lamina constitutes the venation or nervation. In an ordinary lesf, as that of the Elm, there is observed a large central vein running from the base to the apex of the leaf, this is the midrib (fig. 100); it gives off veins laterally (pri-

Fig. 100

Fig. 101.
1)o. 100 - Leal of [7mus effusa. Reticolated venation; primary veins going ee the margin, which is serrated. Leaf unequal at the base.
Fio 101 - Multicostate divergent leaf of Castor-oll plant (Rtcinus communis). 11 is palmately-cleft. and exhiblta eeven lobes at the margin. The petiole to loserted a litile above the base, and hence the leaf lo called peltate or shield-jike.
mary veins., which either end in a curvature within the margio (curve-veined), as in Lilac and Belladonna, or go directly to the edge of the leaf (feather-veined), as in Elm (fig. 100) snd Chestnut. If they are curved, then external veins and marginal veinlets are interspersed through the parenchyms external to the curvsture. There are also other veins of less extent (costal veins) given off by the midrib, and these give origin to small veinlets. A leaf with only a single midrib is said to be unicostate (fig. l00). In some cases, as Sycamore and Cinnamon, in place of there being only a single midrib there are several large veins (ribs) of nearly equal size, which diverge from the point where the blade joins the petiole or stem, giving off lateral veins. The leaf in this case is multzostate (fig. 101). When there are three prominent ribs, as in Cinnamon and Cassia, the leaf is tricostate; when five, quinquecostate. When the midrib gives off two ribs a little above the base, the leaf. becomes triplicostate; when it gives off five, quintuplicostate.

In a leaf having many ribs they may converge towards the apex, as in Cinnamon, or they may diverge, as in Sycamore and the Castor-oil plant (fig. 101). Thus the primary veins give of secondary veins, and these in their turn give off tertiary veins, and so on until a complete network of vessels is produced, and those veins usually project on the under surface of the leaf. To a distribution of veins such as this the name of reliculated or netled venation has been applied. In the leaves of some plants there exists a midrib with large reins running nearly parallel to it from the base to the apex of the lamina, as in Grasses (fig. 102); or with veins diverging from the base of the lamina in more or less

Fig. 103.

Fig. 102.

Fio. 102 -Stern of a Grabs (Poa) wilh leaf. The sheathing petiolego ending in a process $g l$, calted a ligule: the blate of the leaf, f.
Eia 103. - Leat of Fan Palm (Chamer ops), Ehowing the rcins running from the tase to the margin, and not forming an angular net-woik.
parallel lines, as in Fan Palms (fig. 103), or with veins coming off from it throughout its whole course, and running parallel to each other in a straight or curved direction towards the margin of the leaf, as in Plantain and Banana. In these cases the veins are often united by cross veinlets, which do not, howger, form an angular network. Sueh leaves are said to be parallel-neined. The leaves of Monocotyledons have generally this kind of venation, while reticulated venation most usually occurs amongst Dicotyledons. Some plants, which in most points of their structure are Monocotyledonous, yet have retieulated venation. Such have been ealled Dictyogens. In vascular Acotyledonous plants there is frequently a tendency to fork exhibited by the fibro-vascular bundles in the leaf: and when this is the case we have fork-veined leaves. 'lhus is well seen int many Ferns. The distribution of the system of ressels in the leaf is usually easily traced, but in the case of succulent plants, as Ifoya, Agave, Stonecrop, and Mesembryanthemum, the veins are obscure, and the leaves are said to be hidden-veined. In the cellular leaves of Mosses a median vein of several layers of cells is often visible, but as there are no fibro-vascular bundles present this is considered a false venation, and they are styled veinless (Avenia).

Tabular Arrangement of Venation.
A.-Teticulated Venation.

1. Unicnstup. A single rib or costa in the middle (midrib).
l. Primary veins coming off at different points of the midrib.
a. Veins ending in curvatures within the margin, and forming what have been called true netted leaves (Lilac).
2. Veins going directly to the margin and forming feather-veined leaves (Oak and Chestnut).
3. Primary veins coming off along with the midrib from the base of the leaf.
4. Hitllicostate. Mere than one rib. Authors usually give to there leaves the general name of coctale or ribled. As
5. Convergent. Ribs converging, running from base to apex in a curved manner, as in Cinnamon and Melastoma. There is occasionally an ohscure rib running close to the edge of the lcaf, and called intra-marginal, as in the Myrtle.
[2. Divergent. Ribs diverging or proceeding in a radiating manner, as in Sycamore, Vine, Geranium, Castor-oil plant.
B.-Parallel Venation.-The term parallel is not strictly applicable, for the veins often proceed in a radiating manner, but it is difficult to find a comprehensive term. This venation may be characterised as not reticulated.
6. Veina proceeding iranseersely from midrib to margin, usually with convexity towards the midrib, as in Musa and Canna.
7. Veins proceeding longitudinally from hase to apex.
8. Veins more or less conrergent, as in Iris, Lilies, Grasses:
9. Veins more or less divergent, as in Fan Palms.
C.-Furcate Venation. Veins dividing in a forked manner, as in the case of many Ferns.
In all plants, except Thallophytes, leaves are present Forms of at some period of their existence. In Cuscuta (Dodatr), 'eaves. however, we have an exception. The forms assumed piate X . by leaves vary much, not only in different plants but. in the same plant. It is only amongst the lower classes of plants,-Mosses, Characer, \&c.,-that all the leaves on a plant are similar. As we pass up the scale of vegetable life we find them becoming more and more variable. The atructures in ordinary language designated as leaves are considered so par excellence, and they are irequently spoken of as foliage leaves. In relation to their production on the stem we may observe that when they are small they are always produced in great number, and as they increase in size their number and rapidity of growth diminish correspondingly. The cellular process from the axis whieb develops into a leaf is simplo and undivided; it rarely remains ac, but in progress of growth becomes segmented in various ways, either longitudinally or laterally, or in both ways. By longitudinal segmentation we have a leaf formed consisting of vagina, petiole, and lamina; or one or other of these may be absent, and thus stalked, sessile, sheathing, \&c., leaves are produced. Lateral scgmentation affeets the lamina, producing indentations, lobings, or fissuring of its margins. In this way tro marked forms of leaf are produced-(1.) Simple form, in which the segmentation, however deeply it extends into the lamina, does not separate portions of the lamina which become articulated with the midrib or petiole; and (2.) Conmound form, where portions of the lamina are separated as detached fraffet(foliola), which become articulated with the midrib or petiole. In simple leaves, then, there is never more than one articulation, which is at the point of their insertion on the stem. In compound leaves there are one or more articu. lations beyond the point of insertion on the stem. In both simple and compound leaves, according to the amount of aegmentation and the mode of derelopment of the parenchyma and direction of the fibro-vascular bundles, many forms are produccd.

Siaple Leaves. -When the parenchyma is developed shopld symmetrically on each side of the midrib or stalk, the leaf leaveal is cqual; if otherwise, the leaf is unequal or oblique (hig. 100). If the margins are even and present no divisions, the leaf is entire (fig. 104) ; if there are slight projections of cellular or rascular tissue beyond the margin the leaf is wot entire; when the projections are irregular and more or less pointed, tho leaf is dentate or tonthed; when they lie regularly over each other, like the teeth of a sam, the leaf is servate (fig. 100); when they are rounded the leaf is crenate. If the divisions extend zuore deeply into the lamina than the margin, the lcaf receives different names according to the nature of the segments; thus, when the divisions extend about half-way down (fig. 105), it is clejt (fissus), and its lines of sceparation are called fissures; .. whem
the divisions extend neaily to the base or to the midrib the leaf is partite, and its lines of separation are called parititions.

Fig. 104.

Fig. 103.

Fig. 105.
Fio. 104.-Ovate scute leof of Coriara myrifolia, ene of the sdulteretlons of eenna. Bestdes the mldrib there are two intra-marginal ribs which couverge to the apex. The leaf ls therefore tricestate.
Fia. 105.-liuncinate leaí ef Dandellou (Leontodon Taraxacum). It is a planelled lcal, with the divislens pelnting towards the petlole
Fio. I06.-PLoatid leaf of Faleriana dioica.
Fig. 106.-Ploaatind leaf of Faleriana dioica.
If these divisions take place in a simple feather-veined leaf it becomes either pinnatifid (fig. 106), when the segments extend to about the middle and aro broad; or

Plates I. and VIII. pectinate, when they are narrow ; or pinnatipartite, when the divisions extend nearly to the midrib. These primary divisions may be again aubdivided in a similar manner, and thus a feather-veined leaf will become bipinnatind or bivinnatipartite; and still further subdivisions give origin to tripinnatifid and laciniated leaves. If the divisions of a pinnatifid leaf are more or less triangular, and point downwards towards the base, the extremity of the leaf being undivided and triangular, the leaf is runcinate (fig. 105), as in the Dandelion. When the apex consists of a large rounded lobe, and the divisions, which are also more or less rounded, become gradually smaller towards the base, as in Barbarea, the leai is cailed lyrate, from its resemblance to an ancient lyre. When there is a concavity on each side of a leaf, 60 as to make it resemble a violin, as in Rumex pulcher, it is called panduriform. The same kinds of divisions taking place in a simple leai with radiating venation, give oricin to lobed, cleft, and partite forms. When the divisions extend about half-way through the leaves, they may be three-lobed, five-lobed, seven-lobed, many-lobed, or trifid, quinquefid, septemfid, mullifid, according to the number of the divisions. The name palmate, or palmatifid (fig. 101), is the general term applied to leaves with radiating venation, in which there are several lobes united by a broad expansion of parenchyma, like the Platn Y1. palm of the hand, as in the Castor oil plant, Rheum palmafig. 1. tum, and Papaw. The divisions of leares with radiating ven- ation may extend to near the oase of the leaf, and the names bipartite, tripartite, quinquepartite (fig. 107), septempartite, digitipartite (Plate II. fig. 1), are given according as the partitions are two, three, isve, seven, or more. In Drosera dichotoma bipartite and tripartite leaves are seen. The term dissected is applied to leares with radiating venation, baving pumerous narrow divisions, is in Gerauiun dissectum

When in a radiating leaf there are three primary partitions, and the two lateral lobes are again cleft, as in Helleborus

Fig. 107.

Fig. 108.

Fia. 107.-Five-partite leaf of Aconite. Such a leaf is sometimes called polinipartita, palmately-partite, or dissected. The venatien is radiating, add tha aegments of the leaf aro cuncate, bud each of them le cleft end toethed et tho aper
Fig. 108.-Pedato leaf of Stinking Fiellebere (Felleborws feifdus). The vanation is radiating. It is a palmately-partite leaf, In which the lateral lohes are deeply divided. When the leal hangs doma it resembles the feet of a bird, and hence
(fig. 108), the leaf is called pedate or pcdatifd, from a fancied resemblance to the claw of a bird. In all the instances already alluded to the leaves have been considered as flat expansions, in which the ribs or veins spread out on the same plane with the stalk. In θ ome cases, however, the veins spread at right angles to the stalk. If they do so eqnally on all sides, and are united by parenchyma, so that the stalk occupies the centre, the leaf becomes orbicular, as in Hydrocotyle; if unequally, so that the stalk is not in the contre, the leaf is peltate, as in Indian Cress (fig. 109). The edges or margins of orbicular and peltate leaves are often varionsly divided.

Fig. 109.

Fig. 110.

Fio. 1n9.- Feltate leaves of Indian Cress ($\boldsymbol{\pi}$ nparolum maus). Fia. 110.-Lanceofate icaf of a epectes of Seana.
Withont attempting to notice all the forms of leaves; the following are enumerated as the most important. When the veins do not spread out, but run from the base to the apex with a narrow strip of parenchyma, the leaf ia linear or acicular, as in Pines and lirs. These trees are hence called in Germany Narlel-häleer, or needle trees. When the veins diverge, those in the middle being longest, and the leaf tapering at each end (fig. 110), it becomes lanceolate. If the middle veins exceed the others slightly, and the ends are convex, the leaf is either rounded, clliptical, oval, or oblong (fig. 111). If the vcins at the base are longest, and the leaf narrows to the top, it is ovate or egg-shaped (ig. 104), as in Chickweed ; if the apex is broadest, the leaf is obovate, or inversely egg-shaped (fig. 112). Leaves are cuneate or wedge-shsped, in Saxifraga; spathuiate, or spatula-like, baving a broad rounded apes, and tapering
down to the stalk, as in the Daisy; subulate, narrow and tapering like an awl; acuminate, or drawn out into a long point, as in Ficuas religiosa; mucronate, with a hard stiff point or muero at the apex. When the parenchyma is deficient at the apex so as to form two rounded lobes, the leaf is ubcordate or inversely heart-shaped; when the deficiency is
Plate IV. very slight the leaf is called emarginate (fig. l12), as having a portion taken out of the margin; when the apex is merely flattened or slightly depressed the leaf is retuse; and when the apex ends abruptly in a straight margin, as in the Tulip-tree, thes leaf is truncate. When the veins at the base of the lamina are prolonged downwards at an obtuse angle with the midrib, and rounded lobes are formed, as in

Fio. 111 - Ohlong leaf of e specles of Senna.
Fio. 112.-Emarginate leaf of a specles of Senna. The leaf la its contour is someWhat obovate. or inversely ege-shaped, and lta bess is obligne.

Dog-violet, the leaf is cordate or heart-shaped; it is kidnershaped or reniform (fig. 113), when the apex is rounded as in Asarum. When the lobes are prolonged downwards and are acute, tho leaf is sagitiate (fig. 114); when they proceed at right angles, as in Rumex Acetosella, the leaf is hastate or halbert-shaped. When a simple leaf is divided at the base into tivo leaflike appendages, it is called auriculate. When the veins spread out in various planes, and there is a large development of cellular tissue, so as to proluce a succulent leaf, such forms oceur as conical, prismatical, ensiform or sword-like, acinaciform or scimitar-shapod, and dolabriform or axeshaped. When the development of parencbyma is such that it more than fills up the spaces between the veins, the margins become wavy, crisp, or undulated, as in Rumex crispus and Rheum undulatum. $\quad \mathbf{B}$ veultivation the $c^{11_{5}} \mathrm{I}_{\mathrm{ar}}$
tissue is often much increased, giving rise to the curled leaves of Greens, Savoys, Cresses, Lettuce, \&e. In Rushes the shoots which act as leaves are often terete. They are either barren or bear flowers. Their cellular tisaue is often stellate, and the shoots sometimes exhibit a peculiar spiral twisting. Amongst parallel veincd leaves the -margina are usually entire, espocially when the veins converge.
Compound Compound leaves are
leaves.

those in which the divisions extend to the mid- fus firppocaftanum). Such leavee, espee rib or peticle and the cially whod therg are fivo leabet, are callied separated portions become each articulated with it, and
receive the name of foliola or leaflets. The midrib, or petiole, has thus the appearance of a branch with separate leaves attached to it, but it is considered properly as one leaf, because in its earliest state it arises from the axis as a single piece, and its subsequent divisions in the form of leaflets are all in one plane. The leafiets are either sessile (fig. 115), or have stalks called petiolules (fig. 116), according as the vascular bundles of the veins spread out or divaricate at once, or remain united for a certainlength. Compound leaves have been classificd according to the nature of the venation and the development of parenchyma. If we auppose that in a simple featherveined unicostate leaf the divisions extend to the midrib, and cach of the primary veins spreads out or branches, and becomes surrounded with parenchyma, and the leaflets thus formed become articulated to the pe-

Imparl-plnate (unequally plnnate) leat of Roblals There are alne pairs of shortly-atalked lesfets (follolan pinam), and an odd one st the extremity. At the base of the leaf stipules sere seen.
tiole or midrib (fig. 116), the leaf becomes compound and pinnate. If the midrib and primary vein are not covered Plato with parenchyma, while the secandary (or those coming eff ${ }^{\text {' }}$ in a feather-liko manner from the primary veins) are, and separate leaflets are thus formed which are articulated with the veins, the leaf is bipinate. In this case the secondary veins form as it were partial petioles. A farther subdivision, in which the tertiary veins only are covered with parenebyma and have separate leaflets, gives tripinnate or decomvound forms, in which case the tertiary veins form the partial petioles. A leaf divided still nore is called supradecompound. When a pinnate, leaf has one pair of leaflets it is unijugate; with two pairs, it is bijugate; mith many pairs, multijugate (fig. 116). When a pinnate leaf ends in a pair of pinnæ it is equally or abruptly pinnate (parilinnate) ; when there is a single terminal leaflet (Gg. 116), the leaf is unequally pimate (impari-pinnate); when the leatlets or pinnee are placed alternately on either side of the midrib, and not directly opposito to each othe:, the leaf is allernately pimate; and when the pinne are of differeut sizes, the leaf is intcruptedly pinnate. In the case of a simple multicostate leaf with radiating renation, if we suppose the ribs to be covered with parenchyma, so as to form separate leaflets, each of which is articulated to the petiole, the digitate form of compound leaf is produced; if there are three leaflets the form is ternate er trigoliate; flate V if four, quatemate; if five, quinate; if seven, septenate: and so on. If the three ribs of a ternate leaf subdivide cach into three primary veins, which become corered with parenchyma so as to be separato articulated leallets, the leaf is biternate; and if another threvfuld division takes place, it is triternate.

The petiole or leaf-stalk is the part which unites the limb or blade of the leaf to the stem (fig. 99, p). It is abaent in sessile leaves, and this is also frequently the case when the vagina is present, as in Grasses. It consists of a mass of fibro-vascular bundles with a varriner amount of celluler
tissue. The vessels are enctosed in an epidernal cover1 ng , with few stomata, and are more or less compressed. When the vascular bundles reach the base of the lamina they separate and spread out in rarious ways, as already described under renation. At the place where the petiole joins the stem there is frequently an articulation, or a constriction with a tendency to disusion, and at the same time there exists a swelling (fig. 117,p), called pulvinus, formed of cellular tissue, the cells of which exhitit the phenomenon

Fig. 117.

FIg 118

Fio. 117.-Bracti and leaves of the Senslttre phant (Mimosa putica), showlog the petiols in tis erect state, a, and in lts depressed state, b; also the leagets closed, c, snd the leaflets espaded. d.. Irriteblity resides io the pulviaus p, a ad la the ctruma
Fio. 118.-A pdrtion of the brench and leaf of the Morlng pleot of India (Hediysarum or Desmodium gyrans). The leal is Impari-pimnate, and often plnatelytrlfollate. The large leafet or pinna, a; the smaller leaflets, δ, of which there ore either one or two paira. The leatets aio ia constad motlon.
of irritability (figs. 117, 118). At the point where the petiole passes into the lamina, or where the midrib joins the leaflets of a compound leaf, there is oceasionally a cellular dilatation called struma, and an articulation. In Mimosa pudica a sensitiveness is located in the pulvinus (fig. 117, p), which upon irritation induces a depression of the whole bipinnate leal, a similar property exists in the struma at the base of the leaflets which fold uprards. In Desmodium gyrans (fig. 118) the pulvinus and struma have a similar power of causing movernents of the large terminal leaflet and the two smaller lateral ones. In other eases" the petiole is not articulated, bet is continuous rither with the stem, or with the sheath (vagina). The articulation or joint is by many considered as indicating a compound leaf, aud hence the leaf of the Orange is considered as such, although it has an undivided lamina (fig. 119, l). In articulated leaves, the pulvinus may be attached either to the petiole or to the axis, and may fall with the leaf, or remain attached to the stem. When articulated leaves drop, their place is marked by a cicatrix or scar, seen below the bud in fig. 63. In this sear the remains of the vascular bundles c are seen; and its form furnishes charaeters by which particular kinds of trees may be known when not in leaf. In the caso of many Paims and Tree-ferns the sears or cicatrices of the leaves are very conspicuous. In fossil plants inportant characters are founded on them.

When there is no articulation betwect the pctiole and the stem, as is the case with many Monocotyledons, the leaf is continuous with the axis. and is not deciduous, but withers on the stalk. In many Liliaceous plants the leaves during their decay continue attached to the plauts. The petiole raries in length, being usually shorter than the lamina, but sometines much longer. In some Palms it is 15 or 20 fect long, and is so firm as to be used for poles or waiking.sticks. In general, the petiole is more or less rounded in its form, the upper surface being flattened o: grooved. Sometimes it is compressed laterally, as in the Aspen, and to this peculiarity the trembling of the leaves of this tree is attributed. In aquatic plants the leaf-stalk is sometimes distended with air, as in Pontederia and

Trapa, so as to float the leaf At other tumes it is woinged, and is either leafy, as in the Orange (fig. 119, p), Lemon, aud Dionæa (fig. 46, p), or pitcher-like, as in the Pitcher-plant

Fig. 119.

Fug. 120.

Fig. 121

Fio. 119.-Leaf of Oronge (Cifrus Aurantium), showlog a wioged leafy fetlele.p which is artleulated to the lamins l. It Is consldercd a compound leaf, bispinf ouly ooe lesflet.
Fig. 120 - Pitcher of a species of Pibeher-plaot (Nepenthes distillatoria). It is sopposed to be formed by a folded petiole p, the edges of which are unlted The lid las the iop is sugyosed to represeat the la inina, uoited by articulation to the pitcher.
Fta. 121. - Fitcher (ascidium) of a specles of Side-saddle plant (sayracenia purpu; ea). The pitcher ts ouppoced to be formed by the folded periole, whicb ie prolonged.
(fig. 120, p) and Sarraccuia (fig. 121). Leafy petioles are oceasionally united to the axis for some estent, and thus become decurrent. In some Australian Acacias, and in some species of Oxalis and Bupleurum, the petiole is Hattened in a vertical direction, the vascular bundles separating immediately after quitting the stem, and running nearly parallel from base to apes. This kind of petiule (6g. 122, p) has been called phyllodium. In these plants the lamine or blades of the learcs are pinnate, bipionate, or ternate, and are produced at the estremities of the phyllodia in a horizontal direction; but in many instances they are not developed, and the phyllodium serves the purpose of a leaf. Ilence some Acacias are called leafess. These phyllodia, by their sertical position and ther peeuliar

Fig. 122.
Fio 12\%.-Leal of an Acacla (Acacta hetcrophylla), shnwing a fastened leaf-1lioo fetimie p, called a plyllodian, with btTalghi velutivo, ald a biphimio lamina t.
Fio. 123 -Leal of Pansy, I, eeperated from the stem; the lyrate-pinoalifid stipules s are distiactly visible, adod their lateral poaticu is seca.
form, give a remarkable aspect to vegetation. On the same Acacia there occur leaves with the petiole and lanima
perfect; others naving the petiole slifhtly expanded or winged, and the lamina imperfectly developed; and others in which there is no lanina, and the petiole becomes large and broad. Some petioles, in place of ending in a lamina become changed into a delicate filiform body, a tendril or cirres, so as to enable the plant to climb. In many leaves interposed betwixt the petiole and the stem, or, in sessile leaves, betwixt the lamina and the stem, an expansion of the foliar tissue takes place, so that a sheath (vagina) is formed, which embraces the whole or part of the circumference of the stem (6g. 102, gv). This sheath is comparatively rare in Dicutyledons, but is seen in Umbelliferous plants, where it constitutes the pericladium, and in the Rhubarb order, whero it is large and membranous, and has received the name of ochrea or boot. It is much more conimon amongst Monocotyledons. Iu Palms it forms a kind of network, to which the name of reticulum has been given. In Sedges tho sheath forms a complete investment of the stem, whilst in Grasses (fig. 102) it is split on one side. In the latter plants there is also a membrauous Jutgrowth at right angles to the median plane of the leaf from the point where the sheath passes into the lamina (there being no petiole). To this structure the name of ligule (fig. 102, gl) has been given. It is of various dimensions, and thus gives a character to the plants.

In leaves in which no sheath is produced we not unfrequently find small foliar organs at the base of the petiole. These bave been denominated stipules (ig. 123, s). The stipules are often two in number, and they are important as supplying characters in certain natural orders. Thus they occur in the Pea and Bean family, in Rosaceous plants, and the Cinchona bark family. They are not common in Dicotyledons with opposite leaves. Plants having stipules are called stipulate; those having none are exstipulate. Stipules are formed by some of the vascular bundles diverging as they leave the stem, and becoming covered with parenchyma, so as to resemble true leaves. Like leaves they are large or small, entire or divided, deciduous or persistent, articulated or non-articulated. They are not usually of the same form as the ordinary follage leaves of the plant, from which they are distinguished by their lateral position at the base of the petiolo. In the Pansy (fig. 123) the true leaves l are stalked and crenate, while the stipules s are large, sessile, and pinnatifid. In Lathyrus Aphaca, aud some other plants, the true pinnate leaves are abortive, the petiole forms a tendril, and the stipules alono aro developed, performing the office of leaves. When stipules are attached separately to the stemi at the base of the leaf, they are called caulinary, as in Salis aurita. When stipulate leaves are opposite to cach other, at the same height on the stem, it occasionally happens that the stipules on the two sides unite wholly or partially, so as to form an interpetiolary or interfoliar stipule, as in Cinchona and in Ipecacuan. In the case of alternate leaves, the stipules at the base of each leaf are sometimes united to the petiole and to each other, so as to form an adnate, adherent, or petiolary stipule, as in the Rose, or an axillory stipule, as in Houttuynia cordata. In other instances the stipules unite together on the side of the stom opposite the leaf, and become synochreate, as in Astragalus. This so called union or adhesion of stipules is not an accidental adbesion taking place after they have been developed. In these cases the parts never were separate; from the first they aro devcloped as nue portion. In the develomment of the leaf the stipules frequeutly Ilay a most important part. They begin to be formed after the origin of the leaves, but grow much more rapidly than the leaves, and in this way they arch over the young leaves and form protective chambers wherein tho parts of the lcaf may develop. In Ficus, Magnolia, and

Potamogeton they are very large and completely envelup the young leaf-bud. The stipules are sumetimes so monute as to be scarcely distinguishable without the aid of a lens, and so fugacious as to be visible only in the very young state of the leaf. They may assume a lard and spiny character, as in Robinia Pseudacacia, or may be cirrose, as in Smilax, where each stipule is represented by a tendril; while in Cucurbitaceæ there is only one cirrose stipule. At the base of the leaflets or foliola of a compound leaf, small stipules are occasionally produced, to which som. have given the name of stipels.

Variations in the structure and forms of leaves and leaf abnor. stalks are produced by the increased develoument of cellular malities tissue, by the abortion or degeneration of parts, by tbe multiplication or repetition of parts, and by adhesion. When cellular tissue is developed to a great extent, leaves become succulent and occasionally assume a crisp or curled appearance.* Such changes take place naturally, but they are often increased by the art of the gardener, and the object of many horticultural operations is to increase the bulk and succulence of leaves. . It is in this way that Cabbages and Savoys are rendered more delicate and nutritious. By a deficiency in development of parenchyma and an increase in the fikro-vascular tissue, leaves are liable to become hardened and spinescent. The leaves of Barberry and of some species of Astragalus, and the stipules of the False Acacia (Robinia) are spiny. To the same cause is attributed the spiny margin of the Holly-leaf. In the Gooseberry, the swelling (pulvinus) at the base of the petiole, and below the leaf, assumes a spinose character. Changes in the appearances of leaves are produced by adbesions and foldings of various kinds. When two labes at the base of a leaf are prolonged beyond the stem and unite (fig. 124), the leaf is perioliate, the stem appearing to pass through it, as in Bupleurum perfoliatuin and Chlora perfoliata; when two leaves unite by their bases they beçome comnate (fig. 125), as in Lonicera Caprifolium;

 The wo lobes at the base of the leaf are unded, so that the alalk affears to come through the beas
Fio. $126-$ Conate learcs of a species of IToncysuckie (Leniceta Capryoinm). Two leaves ate ucoted by their bases.
and when leares adbere to the stem, forming a sort of winged or leafy appendage, they are decurvent, as ia Thisties. The formation of peltate and orbicular leaves has been traced to the union oi the lobes of a cleft leaf. In the leaf of the Victoria regia the transformaticn may be traced during germination. The first leaves produced l.y the young phant are linear, the second are sagitate and hastate, the third are rounded-cordate, and the next are orbicular. The cleft indicating the union of the lobes remains in the large leaves. The parts of the leat are ire- Tendrits quently transformed into tendrils (cirri), with the view of enabling the plants to twine round otbers for support. In Leguminous plants (the Pea tribe) the pinna are frequently circose. When tendrils occuny the pare of leaves, and
appear as a continuation of the leaf-stalk, they are called petiolury, as in Lathyrus Aphaca, in which the stipules perform the function of true leaves. In Flagellaria Indica; Gloriosa superba, Anthericum cirrhatum, and Albuca cirrbata, the midrib of the leaf ends in a tendril. In Smilas there are two stipulary tendrils, while in the Cucumber tribe there is a single one at the base of each leaf. In the Passion-flower the lateral leaf-buds, and in the Vine the terminal ones, become tendrils. In the Vanille plant (Vanilla aromatica) the tendrils are produced opposite the leaves, uatil the plant gains the top of the trees by which it is supported, -the upper tendrils being then developed as leaves. The midrib is sometimes prolonged in a cup-like or funnel-shaped form ; this is occasionally seen in the common Cabbage, and seems to depend on the vascular bundles of the midrib spruading out at their extremity in a radiating manner, and becoming covered with parenchyna in such a way as to furm a hollow cavity in the centre.

The rascular bundles and cellular tissae are sometimes developed in such a way as to form a circle, with a hollow in the centre, and thus give rise to what are called fistular or hollow leaves, as in the Onion, and to ascidia or pitchers. Pitchers are formed either lyy petioles or by lamine, and they are composed of one or mare leaves. In Sarracenia (lig. 1?1) and Heliamphora, the piteher is composed apparenily ${ }^{\text {a }}$ the petiole of the leaf. In Nepenthes (fig. 120) and perhaps in Cophalotus, while the folding of a winged petiole p forms the piteher, the lid l, which is united by an articulation, corresponds to the lamina. This bind of ascidium is called calyptrimorphous, and may be considered as formed by a leaf, such as that of the Orange (fg. 119); the lamina' l being articulated to the petiole p, which, when folded, forms the pitcher. In Dischidia Raftesiana, a clinbing plant of India, the pitchers are formed by the lamina of the leaf, and have an open orifice into which the rootlets at the upper part of the plant enter. These pitchers would seem, therefore, to contain a supply of fluid for the nourishment of the upper branches of the plant. In Uitricularia the leaves form sacs called ampuller. Some suppose that pitchers are not due to folding and adhesion, but that they are produced by a bollowing out of the extremity of the stalk. In some cases the leaves are reduced to mere scales; they are then frequently called catapiyllary leaves. They are produced abundantly upon underground shoots. In parasites (Lathraea, Orobanche), and in plants growing on decaying vegetable matter (Suprofhytes), in which no chlorophyll is formed, these scales are the only leaves produced. In Pinus the only leaves produced on the main stem and the lateral shoots are scales, the acicular leaves of the trec growing fromi axillary shoots. In Cycas whorls of scales aliernate with lirge pinnate leaves. In many plants, as already noticed, phyllodia or stipules perform the function of leaves. The production of leaf buds from leaves has already been noticed. Such leaves are termed prolijerous. In Bryophyllum (fig. 67) this is a common occurrence, and it is met with iu many plants of the order Gesueracie. The leaf of Venus's Fly-trap (Dionea muscipula, fig. 46), wher cut off and placed in damp moss, with a pan of water underneath and a beltglass for a cover, has produced buis from which young plants were obtained. Some species of Saxifrage and of Ferns also produce buds on their leaves and fronds. In Nymphea micrantua buds alpear at the upper part of the petiole.

Amongst Dicotyledons we lave leares which present the greatest amount of variation in structure and form. The venation is reticulated. They are frequently artieulated, exhibit divisious at their marem, and becume iruly compound. There are, no doubt, instances in winch the reins proceed in a paralld mauver, blit this will be found to
occur chiefly in cases where the petiole way be considered as occupying the place of the leaf. Examples of this kind are seen in Acacias (fig. 122). Dicotyledons rarely have a sheath developed, but stipules are very cominonly present.

In Monocotyledous the leaves do not present an angular Leares in network of vessels, nor do they, as a ruie, exbibit divisions on Monocoty their margin. Exceptions to this oceur in some plants, ledons. as Tamus and Dioscurea, which bave been called Dictyogeus by Lindley, on account of thear somewhat netted venation; and in Palms, in which, although the leares are entire at first, they afterwards becume split intu rarious lobes. They are rarely stipulate, and very frequently bave a sheath at their base. The petiule is often absent, and a sheathing lyoule takes its place. The leaves are often continuous with the stem. In some aquatic Munocolyledons the submerged and Hoating leaves are narrow, like petioles, while those growing erect above the water expand. This is seen in Sagittaria sagittifulia, in which the erect leaves assume an arrom-like shape.

In Acotyledons the leaves vary much, being entire or Leares ir divided, stalked or sessile, often feather-veincd, occasionally Acotyle with radiating venation, the estremities of the veins being dons. forked. In Ferns the leaf (frond) is usually stalked, with frequently a much dwided lamina, remarkable for the prolonged growth at the apes, and in the young state usually covered with emrious dattened hairs (palece). In Equisetacce the leaves are sheathing cylinders embracing successive internodes of the stem, and subsequently splittiog at the tup into few or many teeth. In Lycopodiacee the leaves vary from more rudimentary scales, as in I'silutum, to the thattened acuminate leaf of Selaginella, with only a sungle fibrovascular bundle, and then to the more complicated furm in Jsoetes, in which the longest leaves in the order occur, and these bave a sheatbing basal fart and an upper lamina. On the face of the sheathag part is a depresion or forea, in which rests the sporangium, the margin of it rising as a thin membranous outgruwth, the veluin. Above the fovea, and separated from it by a saddlelike ridge, lics a smaller depression the foveola, the luwer margin of which forms a lip, the lubium, and from its bottom is prolonged beyond the foveola an apiculate membranous structure, which is termed the lyule. In Mosses we lave the simplest form of leaf, compesed of ono or more layers of cells, sometimes the central unes being more or less compacted and forming a median vein.

- Leares occupy various positions on the stem and branches, and have received different names aecording to ticir situation. Thus leaves arising from the crown of the root, as in the Primrose, are called radical; those on the stem are cauline; on the branches, ramal; on tlower-stalks, foral leaves. The first leaves developed are denominated scminel luaves or cotyledons, and those which succeed are primorkal. The arrangement of the leaves on the axis and its appendages is called phyllotaxis. In therrarrangement leaves follow a defnite order. It bas been stated already that there are regular nodes or points on the stem at which leaves appear, and that the pat of the stem between the nodus is the atemode. Each nude is apable of giving ongen to a leaf. Occasionally scueral nudes are approximated so as to form as it were one, and then severa' leaves may be produced at the same height on the stem When two leaves are thus produced, one on cach side ol the stem or axis, ind at the same level, they are ealled opposite (fig. 126); when more than two are prodnced (Eg. 127), they are vericillate, and the cirelo of leaves is then called a verticil or whorl. When the zone of the axis which produces the circle of leaves is transvarse from its origin, the whorl is a true one; but when the zone is the result of unequal development or of displacement the whorl is opurions. Again, in each whorl the leaves may be all
formed tegether, and a simultaneons wherl resuits; or they may be formed one after the other, as in Characeæ, when a successive wharl is formed. When leaves are oppasite, each successive pair may bo placed at right angles to the pair immediately preceding. They are then said to decus. sate, following thus a law of alternation. The same cecurs

Fig. 126.

Fio 128-A atem wit h opposite leaves Tha palro are placed at hight anglea alternately. or lo what la called a decussate manner. In the lowest palr one leaf is lofront and the otber at the back; in the aecood pair the leaves are placed laterally, and so oo.
Fio 127.-Vertsillate or whorled lesves of a specles of Maduer There are ave lanves Itr the vorticil or wholl.
Fio. 128.-A stem with alternate leaves, arranged lo a pentastlchous or quincun clal manaer. The slatif leaf is difectly above the frat. and commences the second cycie. The fractlon of the circumiereace of the stem expressing the divorgence of the leaves is two-fifth.
in the verticillate arrangement, the leaves of each whorl rarely being superposed on these of the whorl next it, as on the branches of Chara, but usually alternating so that each leaf in a whorl occupies the space between two leaves of the wherl next to it. There are considerable irregularities, however, in this respect, and the number of leaves in different whorls is not always uniform, as may be seen in Lysimachia vulgaris. When a single leaf is produced at a node, and the nedes are separated sa that each leaf is placed at a different height on the stem, the leaves are alternate (fig 128). A plane passing through the point of insertion of the leaf in the nade, dividing the leaf into twe similar halves, is the median plane of the leaf; and when the leaves are arranged alternately on an axis so that their median planes coincide they form a straight row or orthostichy On every axis there are usually two or more orthastichies. The leaves in such a case are said to be rectiserial. In $\mathfrak{f g}$ - 29 , leaf 1 arises from a node π; leaf 2 is separated by

Fig. 129.
fombon of a branch of a Limo tree, whth lour eares arranged In a distichou: mancer, or la 2 wo roms a, tho brach with the leaves numbered in thei'? ofder n betug tho node, and m the intermode of mevthal; δ is a mafuified reproswrimtan of the brancb, sbowlag the cicatrlces of tho leaves and thelr
 opirad lor two hateriotes
on internode n, and is placed to the right or left ; while leaf 3 is situated directly ature leaf 1 . In twis case, then.
there aro two orthastichies, and the arrangement is said to be distichous. When the fourth leaf is directly above the first, the arrangement is tristichous. The same arrangement centimues throughout the branch, se that in the latter case the 7 th leof is above the 4th, the l0th
 5 th above the $2 d$, the 6th alove the 3 d , and sa on. The size of the angle between the median planes of two consecutive leaves in an alternate arrange ment is their divergence, and it is expressed in fractions of the circumference of the axis which is sup posed to be a circle. In a regularly-formed straight branch covered with leaves, if a thread is passed from one to the other, turning always in the same direction, a spiral is described, and a certain number of leaves and of complete turns oecur before reach.

Fig 130
Part of n bitanch of a Cheiry whth bla haves. the bisth belng flaced veliseally over the firse. ofter thotusns of the splat Thisle expressed hy rwo-fifths, of the quincunx. a. the branch, wh the lesict numbered In order b, a magnitied legresentation of the branch, shuming the clentiaces of tha leares of their points of losertion, a od thelr 6jusal arrangerneat ing the leaf directly above that from which the enumeration commenced. If this arrangement is expreseed by a fraction, the numerator of which indicates the number of turne, and the denominator the number of internodes in the spiral eyelc, the fraction will be found to represent the angle of divergence of the consecntive leaves on the axis. Thus, in fyg. $130, a, b$, the cycle consists of five leaves, the 6th leaf being placed vertically over the 1 st, the 7 th over the 2 d , and so on ; while the number of turns between the 1 st and $6 t h$ leaf is two; hence this arrangement is indicated by tho fraction $\frac{2}{6}$. In other words, the distance or divergence between the first and second leaf, expressed in parts of a circle, is $\frac{2}{5}$ of a circle, or $360^{\circ} \div \frac{2}{8}=144^{\circ}$. In fig. $129, a, b$, the spiral is $\frac{1}{2}$, i.e., one turn and two leaves, the third leal being placed vertically avel the first, and the divergence between the first and second leaf being one-half the circumference of a circle, $360^{\circ} \div \frac{1}{2}=180^{\circ}$. Again, in a tristichous arrangement the number is $\frac{1}{3}$, or one turn and threc leaves, the angular dwergence being 120°.

By this means we have a cenvenient made of expressing on paper the exact positian al the leaves upan an axis. And in many cases such a made of expression is of excellent service in enalling us readrly tounderstand the relations of the leaves The div. gevees may also lo topresented diagrammatically on a horizontal projection

Fig 131. of the vertical axis, Daglarm of afyllotaziofepresentes by the flactles as in fig. 131. Here 2.8:bs (Sach) the outermost circle represents a section of that portion of the axis bearing the lowest leaf, the innernost represents the highest. The broad dark lims represent the leaves, and they are numbered atcording to their age and position. It wil'
be seen at once that the leaves are arranged in orthostichies marked I.-V., and that these divide the circumference into fire equal portions. But the divergence between leaf 1 and leaf 2 is equal to $\frac{2}{6}$ ths of the circumference, and, the same is the case between 2 and 3,3 and 4 , \&c. The divergence, thea, is $\frac{2}{6}$, and from this we learn that, starting.from any leaf on the axis, we must pass twice round the stem in a spiral through five leaves before reaching one directly orer that with which we started. When the leaves or scales are alternate, and run in a single series, they are unijugate; when the leaves are opposite, and there are twoseries, the arrangement is bijugate; while in the ase of whorled leaves the arrangement may be trijugate or quadrijugate. The line which, winding round an axis either to the right or to the left, passes through the points of insertion of all the leaves on the axis is termed the genetic or generating spiral; and that margin of each leaf which is towards the direction from which the spiral proceeds is the hathodic side, the other margin facing the point whither the spiral passes being the anodic side.

In casea where the internodes are very short, and the leaves are closely applied to each other, as in the House-leek, it is difficult to trace the generating spiral. Thus, in fig. 132 there are thirteen leaves which are numbered in their order, and five turns of the spiral marked by circles in the centre

Fig. 132.

Fig. 133.

Fio. 132.-Cycle of thirteen leaves placed elosely together 40 as to formarosette. as in Semperviram. A ls the tery ohort axis to which the leares are attached, The leaves ere numbered la their order, from below up ards. The circles ia the eentro lodicate the five torns of the sflral, and ahow the insertion of esch Ef the leaves. The diveracoee ls expressed by the fraction 5 -13ths.
Fio. 133.- Cone of Abier alba with the scales or modifed leaves nurubered ta the order of their arranpemeat on the sxis of the cone. The lines iadicate a recIllinear series of scales sod two lateral uscondsty apiruls, one turniog from
left to right, the other from right to lefh
(${ }^{5} 5$ indicating the arrangement); but this could not be detected at once. So also in Fir cones (fig. 133), which are composed of scales or modified leaves, the generating spiral cannot be determined easily. But in such eases a series of secondary spirals or parastichies are seen running parallel with each other both rigk and left, which to a certain extent conceal the genetic spira!. Thus, in fig. 133, it will be found that there are five secondary spirals running towards the right and parallel to each other, the first passing throngh the scales $1,6,11,16, \& \mathrm{c}$.; the second through $9,14,19,24$, dc.; the third through $17,22,27$, 32,37 . \&c.; the fourth through $30,35,40,45$, \&c.; the fifth through 43, 48, 53, \&c. The number of these secondary spirals indicates the number of scales intervening between every two scales in each of these spirals, the common diference being five. Agaia, it will be found on examination that there are secondary spirals runaing to the left, in which the commen difference between every two scales ia eight, and that this corresponds to the number of secondary spirals, the first of which fasses ibrough the
scales $1,9,17$, \&c.; the second through 6, i4, 22, 30, \&c.; the third through $3,11,19,27,35 ; 43$, and so on. Thus it is that, by counting the secondary spirals, all the scales may be numbered, and by this means the generating spiral may be discovered. From the number of secondary spirals the angle of divergence may be easily calculated, the sum of those which wind in both directions giving the denominator of the fraction, while the smaller. of the two numbers representing those rinding in each direction is the numerator. Thus in the 10 stance last mentioned the angular divergence is $\frac{5}{13}$. In the cone of the American larch (fig. 134) there is a quincuncial arrangement of scales marked by the fraction $\frac{2}{6}$. There are five vertical ranks, as marked in the tabular numerical view at the side of the cone, which represents the unwound surface of the cone, viz., $2,7,12 ; 4,9,14$; Cone of a specics of Larch $1,6,11 ; 3,8,13 ; 5,10,15$,-the (Lavix mictocarpa). The sur common difference in each row be- tobe unwound and the scales ing 5. On looking at the cone we The artangemeat is 2 -sthe, find also parallel oblique ranks, two
 of which, ascending to the left, are marked by the numbers $1,3,5$, which, if the diagram is coiled round a cylinder, continue in the numbers $7,9,11,13,15 ;$ and $2,4,6,8$, 10, continued into 12, 14. There are thus two left. banded spirals, with 2 as the common difference in the numbering of the scalea. Again, three oblique parallel spirals ascend to the right, marked by the numbers 1, 4, 7, running into 10,$13 ; 3,6,9,12$, going on to 15 ; and $5,8,11,14$; here the common difference in the number, ing of the scales is 3 , corresponding with the oblique right handed spirals.

All the constant divergences found in phyllotaxis may be represented as successive convergents of the continued fraction

$$
\frac{1}{a+1}+1+1+1, d c
$$

where a may have the values $1,2,3,4$, de.
The actual fractions thus resulting are-

$$
\text { when } \begin{aligned}
a & =1, \ldots \frac{1}{29}, \frac{2}{3}, \frac{3}{6}, \frac{5}{8}, \frac{8}{13}, \text { dc. } \\
a & =2, \ldots \frac{1}{2}, \frac{1}{3}, \frac{2}{6}, \frac{3}{4}, \frac{6}{13}, d c . \\
a & =3, \ldots \frac{1}{3}, \frac{1}{4}, \frac{2}{5}, \frac{3}{11}, \frac{6}{13}, d c . \\
a & =4, \ldots \frac{1}{4}, \frac{1}{5}, \frac{2}{4}, \frac{3}{14}, \frac{5}{23}, \text { dic. }
\end{aligned}
$$

The spiral is not always constant throughout the whole length of an axis. The angle of divergence may alter either abruptly or gradually, and the phyllotaxis thus beeomes very complicated. This change may be brought about by arrest of development; by increased development of parts, or by a torsion of the axis. The former are exeraplified in many Crassulaceæ and Aloes. The latter is seen well in the Serew pine (Pandanus). In the bud of the screw pine the leaves are arranged in three orthostichies with the phyllotaxis $\frac{3}{3}$, but by torsion the developed leaves become arranged in three strong spiral rows running round the stem. These causes of change in phyllotaxis are also - well exemplified in the piteration of an opposite or verticillate arrangement to an alternate, and erice versa; thus the effect of interruption of growth, in causing alternate leaves to become opposite and verticillate, can be distinctly shown in Rhododendron ponticum. Again, parts which are usually opposite or verticillate become alternate by the vigorous deveiopment of the axis, as in Hippuris, and also in Lysimachia vulgaris, where on different parts of the same stem there may be aeen alternate, opposite, and
verticillate leaves. When the interruption to development takes place at the end of a branch, the leaves become fascieulate or clustered, as in the Larch. The primitive or generating spiral may pass either from right to left or from left to right. It sometimes follows a different direction in the branches from that pursued in the stem. When it follows the aame course in the stem and branches, they are homodromous; when the direction differs, they are heterodromous. Io diferent species of the same geous the fibyllotaxis frequently varies.
All muldications of leaves follow the saine la ws of arrangement as true leaves-a fact which is of importance in a morpholugical point of riew. In Dicotyledonous plants the first leaves produced (the cotyledous) are oppesite, in some cases verticullate. This arrangement often continues during the Ife of the plant, but at other times it ebanges, passing into distichuss and spiral forms. Some tribes of plants are distunguisbed by their opposite or verticillate, others by their alternate, leaves. La biate planta bave decussate leares, while Boragnaceæ bave alternate leaves, and Tiliacex usually tave distichous leares; Cinchonacer bave opposite leares; Galiacex, verticillate. Such arrangemeuts as $\frac{2}{5}, \frac{3}{8}, \frac{6}{5}$, and \#\# are common in Dicetyledons. The first of these, called a quincunx, is met with in the Apple, Pear, and Cherry (fig. 130y, the second, in the Bay, Holly, Plantago media; the third, in the cones of Pinus (Abiea) alba (fig. 133); and the fourth in those of the Pinus (Abiss) Picea In Monocot fledonous plants there 18 only one seed-leaf or cotyledon produced, and hence the arrangement is at first alternate; and it generally continues so more or less, rarely being verticillate Such arraogements as $\frac{1}{2}, \frac{1}{3}$, and $\frac{2}{8}$ are eommon in Monocotyledons, as in Crasses, Sedges, and Lilies. In Acotyledons the leaves assume all kinds of arrangement, being opposite, alternate, and verticillate. It has been found in general that, whide the number 5 occurs in the phyllotaxis of Dicotyledons, 3 is common in that of Monocotyledons.

Io the axil of previously formed leaves leaf-buds arise. Theso leaf-buda contain the rudiments of a shoot, and consist of leaves covering a growing-point. The buds of trees of temperate climates, which lie dormant during the winter, are protected by cataphyllary leaves constituting the tegnenta or perulce. These acales or protective appendages of the bud coasist either of the altered laminx, or of the enlarged petiolary sheath, or of stipules, as in the Fig and Magnolia, or of one or two of these parts combined. These are often of a coarse nature, serving a temporary purpose, and then fallung of when the leaf is expanded. They are frequently covered with a resions matter, as in Balsampoplar and Horse-chestnut, or by a thick downy covering as in the Wullow. In plants of warmelimates the buds have often no protective appendages, and are then said to be naked.
The arrangement of the leares in the bud has been denominated vernation, prefoliation, and gemmation. In considering vernation we must take into account botb the manner io which each individual leaf 18 folded and also the arrangement of the leaves in relation to each other. These vary in different plants, but in each species they follow a regular law. The leaves ia the bud are either placed simply in apposition, as in the Mistleto, or they are folded or rolled up longitudinally or laterally, giviog rise to different kinds of vernation, as delineated in figs 135 to 144, where the folded or curved lines represent the leaves, the thickeoed part being the midrib. The leaf taken individually is cither folded longitudinally from apex to base, as in the Tuliptree, and called rechnate or replicate, or rolled up in a citcular manner from apex to base, as in Ferns (fig. 135), and ealled circinate, or folded laterally, condupheate (fig. 136), as in Oak; or it has sereral folds like a fan, plicate or pluted (fg. 137), as in Vine and Sycamore, and in leaves with radiating vernation whero the ribs mark the
foldings ; or it is rolled upon itaelf, convolute (fig. 138), as in Banana and Apricot; or its edges are rolled inwerds; involute (ig. 139), as in Violet; or outwards, revolute (fig140), as in Rosemary. The different dirisions of a cut

Fif 138 -Circinate vernation
Fio 136.-Traceverse section of a condopllate leaf
Fia. 187 - Transverse aection of a plicate or platied leais.
Fid 138 - Transferse sectloo of a convolote leal
Fio 139 - Thanaserse section of an Involute leaf
Fio :40 - Transverse sectloo of a revolute leaf.
leaf may be folded or rolled up separately, as in Ferns, white the entire leaf may bare either the same or a different kind of vernation. The leares have a definite relation to each other in the bud being either opposite, alteratate, or verticillate; and thos different kinds of vernation are produced. Sometimes they are nearly in a circle at the same level, remaining flat, or only sligbtly codres externally, and placed so as to touch each other by their edges, thus giving rise to valvate rernation. At other times they are at different levels, and are applied over each other, so as to be imbricated, as in Lilac, and in the outer scales of Sycamore (fig. 63); and occasionally the margin of one leaf overlaps that of another, while it in its tura is overlapped by a third, so as to be twisted, spiral, or contortive. Whea leares are applied to each other face to face, withont being folded or rolled together, they are appressed. When the leaves are more completely folded they sither touch at their estremities and are accumbent or opposite (fg. 141), or ere folded inwards by their margin, and become induplicate; or a conduplicate leaf covers another similarly folded, which in turo covers a third, and thus the vernation is equitant (Gg. 142), as in Privet; or conduplicate leares are placed oo that the balf of the one corers the hulf

Fio 141 - Thnosverse section of a bud to whib the teares are ansoged to an accambeut madnet.
Fio 142 - Thadsverse section of a bod to whict the leareo are artanged to as equitant manocr.
Fig 143-Transrerse sectlon of a bud eboxing two leares folded to an cbvolote wanner Fach ty condaptrate, and nne embraces the edge of the ot bor
Fio 144 -Traosterse section of a bod, ibowiog two leaves artanged 10 a super. rolote manper.
of aoother, and thus they become halfequitant or obva lute (fig. 143), as in Sage. Whea ia the case of convolute leaves one leaf is rolled up within the other, it is saperiolute (ig. 144). The scales of a bud sometimes exbibit one kind of verastion, and the leaves another. The same modes of arraugement occur in the dower-buds, as will be afterwards shown.

Leaves exoose the fluids of plants to the influence of ar
and light. The fluids so exposed are elaborated. and thus fitted for the formation of the various vegetable tissues and secretions. For the proper performance of this function the structura of the leaves, and their arrangenent on the stem and branches, render them well adapted. The cells in the lower side of a leaf where stomata exist are chiefly concerned in the aeration of the sap, whilst other assimilative processes go on in the upper cells. The elaboration of fluids in the leaves necessarily implies interchange of their constituents with those of the surrounding atmosphere ; hence two processes arc inevitable-a passing inwards into the leaf of the atmospheric elemeuts by a process of alsorption, and an outward current of the components of the plant-juices by a process of exhalation. The absorption of carbonic acid, water, and other fluids is carried on by the leaves, chiefly through their stomata, and most rapidly by the under surface of orditary leares in which the cuticle is thinnest, the cellular tissue least condensed, and stomata most abuadant ; the upper surface of the lenf, which usually prescuts a polished and dense epidermis with few stomata, taking little part in such a process. An exbalation of both liquids and gases also takes place from the leares, regulated by the number and the size of stomata as well as by the nature of the epidermis. The process of transpiration of fluids imparts moisture to the atmosphere, and hence the difference between the air of a rooded country and that of a country deprived of forests. Thus leaves have an important influence upon the climate of a country. In darkness little or no transpiration takes place, and in diffuse daylight it is less than in the sun's rays. The exhalation of gases conatitutes the process of respiration. The nature and amount of the gases respired depends bath on the circumstances in which the leaves are placed and on the coudition of the plant. But normally at all times there scems to be a respiration of carbonic acid, which, under the influance of light, is at once decomposed by the green parts of the plant, the carbon being fixed and the oxjgen set free; consequently, in darkness no oxygen is climinated. Leaves, after ferforming their functions for a certain time, wither and dic. In doing so they frequently chango colour, and heace arise the beautiful and varied tints of the autumnal foliage. This change of colour is chiefly occasioned by the diminished circulation in the leaves, and tho higher degree of oxidation to which their chlorophyll has been submitted.

Leaves which are articulated with the stem, as in the Walnut and Horse-chestnut, fall and lcave a scar, while those which are continuous with it remain attached for some time after they have lost their vitality, as in the Beech. Most of the trees of Great Britain have deciduous leaves, their duration not extending over more than a few months, while in trees of warm climates the leaves often remain for two or more years. In tropical countries, however, many trees lose their leaves in the dry season. The period of defoliation varies in different countries according to the nature of their climate. Trecs which are called evergreen, as Pines and Evergreen-oak, are always deprived of a certain number of leaves at intervals, sullicient being left, however, to preserve their green appearance. The cause of the fall of the leaf in cold climates seems to be deficiency of light and heat in winter, which causes a cessation in the functions of the cells of the leaf; its fluids disappear by evaporation; its cells and vessela beceme contracted and diminished in their calibre; various inorganic matters accumulate in the textures; the whole leaf becomes dry; its parts lose their adherence; a process of disjunction takes place by a folding inwards of the tissue at ous point where the loaf joins the stem or branch which gradually extends vutil complete separation takes place. and the leaf cither falls b:゙ its ciwn weight or is
detached by the wind. In xam chimates the dry season gives rise to sinilar phenomens.

II. ORGANS OF REPRODUCTION.

We now proceed to pass in review the reproductive organs of plants. In Phanerogamous plants, as already mentioned, these organs are conspicuous, and constitute what is kuqwa as the flower; in Cryptogamous plants they are inconspicuous. All Dicotyledonous and Alonnotyledonous plants are included in the former; Acotyledonons and Thallogenous flants compose the latter. Tie structures which go to form these organs are not, however, formations of a new type, but are merely modifications of those stauctures which we have already considered under the nutrithe orgas. For example, the varions parts of the dower in Phanerogams are really jhyllomes, the supporting stituciuacs of the flower are canlumes, the spore-bearing sae of many Cryptogarns is a trichome; and in this way a morphologicia\} equivalency may be traced betwixt the two series of orgazis. Further, the difference betwist the reproductive organs of Phancrogams aud those of Cryptogams is one more of degree of diferentiation than of actual morphological difterence. In Phanerogams the fowers or floral axcs are produced from llower-buds, just as leaf-shoots arise from leaf-buds. These two kinds of buds have a resemblance to each other as regards the arrangement and the development of their parts; and it sometimes happens, from injury and other causcs, that the part of the axis which, in ordinary cases, rould produce a leaf-hud, givea origin to a flowerbud. A llower-bud has not in ordinary curcumstances any power of extension by the development of its central cel. lular portion. In this respect it differs from a leaf-bud. In some cases, however, of monstrosity, cojecially scen in the Rose (1.g. 145) and Gewn, the central part is prolonged, aud beers leaves or fluwers. In such cases the flowers, so far as their functional capabilities are concerned, are usually abortive.

Flower-buds, like leafbuds, are produced in the axil of leaves, which are called fioral leaves, bracts, or hypsophyilary leaves.

The term bract is properly applied to the leaf from which the primary floral axis, whether simple or branched, arises, while the leaves which arise on the axis between the bract and the outer envelope of the flower are bracteoles or bractlets. Bracts sometimes do not differ from the ordinary leaves, and are then called leafy, as in Verouica hederifolia, Vinca, Anagallis, and Ajuga. Like leaves they are entire or divided. In general as regards their form and appearance, they differ from ordinary leaves, the difference being greater in the upper than in the lower branches of an inflouscence. They are distinguished by their position at the base of the ficwer or flower-stalk. Their phyllotaxia is similar to that of the leaf. When the flower is sessile the bracts are often
appted closely to the calyx, and may thus be coniounded with it, as in Malvacea and species of Dianthus and Eranthis, where ihey have received the name of epicalyx or calyculus. In some losaceors plants an epicalyx is present, due to the fermation of stipulary structures by the sepals. In many cases bracts seem to perform the function of protective argans, within or beneath which the young flowers are concealed in their earliest stage of growth.
When bracts become coloured, as in Anherstia nobilis, Euphorisia splendens, Eriea elegans, and Salvia splendens, they nay be mistaken for parts of the corolla. They are sometimes mere seales or threads, and at other times they are abortive, and remain undeveloped, giving rise to the ebracteated infloreseence of Crueifere and some Boraginacex. Sometimes no flower-buds are produced in their axil, and then they are empty. A series of empty coloured braets terminates the infloresecace of Salvia Horminum. The smalicr bracts or bracteoles, which ocear among the subdivisions of a branching inflorescence, often produce no Power-buds, and thus anomalies occur in the floral arrangements. Bracts are oceasionally persistent, remaining long attached to the base of the peduncles, but more usually they are decidoous, falling off early by an articulation. In some instances they form part of the fruit, becoming incorporated with otber organs. Thus, the cones of Firs and the strobili of the Hop are composed of a series of bracts arranged in a spiral manner, and covering fertile qowers; and the scales on the fruit of the Pine-apple are of the same nature In amenta or eatkins the bracts are called squame or seales. At the base of the general umbel in Umbelliferous plants, a whorl of bracts often exists,
Pista cill. called a general involucre, and at the base of the smaller umbels or umbellules there is a similar leafy whorl called involucel or partial involucre. In some instances, as in Fool's-parsley, there is no gencral involucre, but simply an involucel; while in other cases, as in Fennel, neither involucre nor involucel is developed. In Composita the name involucre is applicd to the leaves, scales, or phyllaries, surrounding the bead of flowers (fig. 146, i), as in Dantelion. Daisy, Artichoke This invelucre is frequently composed of several rows of leaflets, which are either of the some or of different forms and lengths, and often lie over

Fig. 146
Fo. 146. - Fiend (capitulum) of Marignld (Calemfuda), shoting a congepies of flowera enclosed by rowg of hracts or flylumies, i, at the base, which sre collectively cailed an involucre
Fia 147,-Fralt of tho Oak (Quet cus pefonculata). hbowlae a collection of bracts, a, fosming tho cap (cupuis) of the acosu b
oach other in an imbricated manner When the braets are arranged in two rows, and the outer row is perceptibly amaller than tho inner, the involucere is sometimes said to be caliculate, as in Sebecio. The leaves of the involucre are spiny in Thistles and in Dipsacus, and hooked in Burdock Such whorled or verticilide bracts may either
remain separate (polyphyllous), or may be united by cohesion (gamophyillous), as in many species of Bupleurum, and in Lavatera. In Composite besides the general envelope called the involucre, there are frequently chafy and setose bracts at the base of each flower, and in Dipsacaceex a membranous tube surrounds each flower. These structures are of the nature of an epicalys. In the acorn the cupula or cue (fig. 147, a) is formed by a growing upwards of the flows r . stalk immediately beneath the flower, upon which sealy ur spiny protuberances appear. It is of the nature of bracts. Bracts also compose the husky covering of the Hazel-nut. In the Yew the suceulent eevering of the seed is by some considered to be formed by the bracts.
When bracts become unitcd together, and overlie each other in several rows, it often happens that the outer ones do not produce flowers, that is, are empty or sterile. In the Artichoke the onter imbricated seales or bracts are in this condition, and it is from the membranous white scales or bracts (palea) forming the choke attached to the edible receptacle that the flowers are produced. The sterile bracts of the Daisy occasionally produce capitula, and give rise to the Hen-and-Chickens Daisy. In place of developing flowerbuds, bracts may, in certain circumstances, as in pruliferous or viviparous plants, produce leal-buds, and the Hlower-buds, like the leaf-buds, may be terminal or they may be lateral.
A sheathing bract enclosing one or several flowers is called a spatha or spathe. It is common ampng Monocotyledons, as Narcissus (figure 148), Snow flake, Arum, and Palms. In some Palms it is 20 feet long, and cncloses 200,000 flowers. It is often associated with that form of inflorescence termed the spadix, and may be coloured, as in Richardia æthiopica, sometimes called the Æthiopian or Trumpet Lily. When the spadix is compound or branching, as in Palms, there are smaller spatbes,

Fig. 143. surrounding scparate farts nowers of Polyanthus Sarclesu (Nardsuen of the inflorescence, to Tisetia) busting trom a sbeatiog bract which the name, spathellue bas sometimes bcen given. The spathe protects the flowers in their young state, and often falls off after they are developed, or hangs down in a withered form, as in some Palms, Typha, and Pothos. In Grasses the onter scales of the spikelets have been considered as sterile bracts, ond have received the name of glumes (fig. 149, gl), and in Cyperaces bracts encloso the organs of reproduction. Eracts are frequently changed into complete leares. This rtange is called phyllody of bracts. It is seen in species of Plantago, especially in the variety of Plantago mfdia, cailce the Rose-plantain in gardens. In this plant the bracts become !eafy, and form a rosette round the flewering axis. Similar clanges oceur in Plantago major, P lanceulata, Ajuga reptans, the Dandelion, the Daisy, the Dalalia, and in Umbelliferous plants. The ennversion of bracts intc stamens las been observed in the case of Abies excelsa. This las been called staminody of bracts. A lengthening of the axis of the female strobilns of Conifere is not of infrequeat ocenrrence in Cryptomeria japonica, Laris curopaa, de., and this is usually associsted with a leaf like condition of the bracts, and sometimes even with the development of leaf-beariug shoots in place of the scales

The arrangemont of the flowers on the axıs, or the ramification of the floral axis, is called inflorescence or 'anthotaxis. The primary axis of inflorescence is semetimes called rachis; its branches, whether terminal or lateral, which form the stalks supporting flowers or clusters of flowers, are peduncles, and if small branches are given off by it, they are called pedicels. A flower haring a stalk is called pedunculate or pedicellate; one having no stalk is sessile. - In describing a branching inflorescence, it is common to speak of the rachis as the primary floral axis, its branches as the secondary fioral axes, their divisions as the tertiary fioral axes, and so on ; thus avoiding any confusion that might arise from the use of the terms rachis, peduncle, and pedicel.

Fig. 149.
Fia. 149.- Splkelet of Oat (dvena salira) lajd open, sowink tho bracts g', g', which ara deamiaated empty glumes; pe, the outer pale or ghamelinto (Horal glume), with e dorsal avo $a ; p$, the incer pale: f, an eborlive tower. Fio. 1s0.-Pcduncle, a, of Flg (Fiems Carica), ending la a bollow recertaclo b,
enclosing numerous male and funalo teneia.
Pedus
The peduncle may be cylinurical, ecu pressed, or grooved; simple, bearing a single flower, as in I'rimrose ; or branched, as in London-pride. It is somotimes succulant, as in the
Plato . F. Cashew, in whica it forms the large coloured expansion oupporting tho nut; spiral, as in Cyclamen and Vallisneria; or spiny, as in Alyssum spinosum. In some Rusbes there is a green terete, and sometimes spiral, floral axis. Sometimes the peduncle procecds from radical leaves, that is, from an axis which is so shortened as to bring the keayes close together in the form of a cluster, as in the Primose, Auricula, Hyacinth, de. In such eases it is termed a scape. The floral axis may be shortened, assuming a flattened, convex, or concave form, and bearing numerous flowers, as in the Artichoke, Daisy, and l ig (fig. 150). In these cases it is called a receptacle or phoranthium or clinanthium. The floral axis sometimes assumes a leaf-like or $p_{\text {myll }}$ oid appearance, bearing numerjus flowers at its margin, as in Xylophylla longifolia ard in Ruscus; or it appears as if formed by several pedmeles united together. constituting a fasciated axis, as in the Coekscunb, in which the flowers form a peculiar crest at the aper of the flatemed peluncles. Adhesions occasionally take phace between the peduncle and the bracts or leaves of tie plant, as in the Lime-tree (fig. 151), Helwingia, Chailletia, several species of IIibiseus, and Zostera. The adhesion of the peduncles to the stem accounts for the extra-axillary position of flowers, as in many Solanacere. When this union estends for a considerable lengtu along the stem, several leaves may be interposed between the part where the peduncle beeomes free and the leaf whence it originated, and it may be difficult to trace the eonnection.' \{ The peduncle occasionally becomes ebortive, and in place of bearing a flower, is transformed inten a tendril ; at other times it is hollowed at the apex, so
as apparently to form the lower part of the outer waorl of floral leaves as in Eschscholtzia. The termination of the Plate Ifl

Fig. 152.

Fig. 151.
Fra. 161.-Leaf and fowertng branch of the Lime-tree (Tilia). The braci b is adtereat to the peduacle or flowcr-etalk. The tlowers are amanged in a corym-
bose cyme. Fio. 158. - Th
Fio.102. - The cnlrxand beak-lire process of Geranlum, with the rarts of the plstit rostram er beak, whence the name cranc's bill is derlsed: b, the carpecia corled up by means of the st yles which are attacbed to the bcak; c, the calyx
pedutcle, or the part on which the whorls of the flower aro arranged, is called the thalamus or torus. The terat
receptacle is also sometimes ap. plied to this, whether expanded and bearing several flowers, or narrowed so as to bear one. It may be considered as the growing point of the axis, winich usually is arrested by the production of the flowers, but which sometime's becomes enlarged and expanded. Tbus, in the Geranium (fig. 152) it is prolonged beyond the flower in the form of a heak (rostrate); in the Arum (fig. 153) it is a club slaped fleshy colunn; in the Strawberry (fig. 154) it becones a conical succulent mass, on which the seed-vessels are phaced; whilo in Nelumbium it forms a truneated tabular top-like expansion (turlinate). cnveloping the seedvessels. The margins of the receptacle may grow up whilst the centre remains depressed, and thus a concave torus is formed, as in the Ruse (fig. 155). In some monstrous fluwers of the Rose and Geum it is prolonged as a branch bearing leaves. l'eluneles and pedicels sometimes hecome remarkably elongated, and this elongation of the flower-stallis sometincs alters the general charatter of the inflorescence. We occasionally observe the heads of flowers of the common White Cluver beconing raeemose by the lengthening of the flower-stalks.
Before proceeding to an cxamination of the parts of the

Fis. 154.

Fig. 155.

$$
50
$$

Fig. 153.
is of Cuckow-phint (A) of wati atum). convisting of numerom male fluwera b. female a. arb ubotive hower and encloned in a spatice, whith Intro Hanc has bectl Jenoved. The rachas 6nds in a atuculent clab-shuged masy of clilumy fis swe, d.
ig. List-linte of the st mabbery (Filagaria iesiad), consibllig of
 tion of the iccuptacle; hoalimg which in oftern etroncously callend secils. The calyx is secth at ple lower prat. IE 155.-The fluit of the None cut venth ally, The receptaclet re dines the inferfor of the calys cit. and the carpels with there owares op nind stytes sty uro attached to fi. The stamens und jetalsaresem at the anper putt, fuflore,
attached fo the culje.别 arious modes of arrange flower-bud, we will eonsider the vairious modes onforrecence
nent of the fluwers upon the axis, or the infloren

We may recognize two distinct types of inflorescence-one in which the flowers always arise as lateral shoots from a primary axis, which goes on clongating, and the lateral shoots never cxeeed in their development the length of the primary axis beyond their point of origin. The flowers aro thus always axillary. Exceptions, such as in Crveiferons plants, are dus to the non-appearance of the bracts. In the other type the primary axis terminates in a single flower, but lateral axes are given off from tha gxil of braets, which again repcat the primary axis, and the development of each lateral axis is stronger than tho primary axis beyond its point of origin. The fowers produced in this inforescence are thus terminal. The frat kind of inflorescenco is indeterminate, indefinite, or caillary. Here the axis is either elongated, producing fowerluds as it grows, the lower expanding first; or it is shortenrd and depressed, and the outer flowers expand first. The expansion of the flowers is thus centripetal, that is, from base to apex, or from circumference to centre. This kind of intorescence is shown in fig. 156, where the leaf from which the eluster of fowers is produced, f, represents the bract or flomal leaf. The rachis, or priwary axis of the fower is a^{\prime}; this produces small leaflets b, which bear smaller Hower-leaves or bractlets, from which meduncles or eceondary axcs spring, each bearing single lowers. In fig. 157 the same kind of inforescence is shown on a shortend axis, the outcr flowers expanding first. and those in fac eontre last.

Fig. 157.

「ig. 156.
 b.a.t f, which: hus heen transformed isto a epinc, with two stipules s at ita

 fluw res habu paserd into the state of frult, the muldion are fully expauded, and

Tho second lind of inforessence is determinatc, defiate, or terminal. In this the axis is citlier tlongated and ends in a solitary fower, which thas terminates the axis, and if other flowers are producet, they belong to secondary axes farther from the centre; or the axis is shortened and flattened, procincing a mumber of separate floralaves, the central one esumding frat while the othe:s are developed in succession fa:ther from the centre. The expmanion of the flowers is in this case centritiogh, that is, from arase to base, or from centre to circumference. It is illustrated in fig. 158, where a rejresentation is given of a plant of Ramonculus bulbosus; a^{\prime} is the primary axis swollen at the base in a bulb-like manuer b, and with roots proceding from it. From ithe leaves which are radical proeeds tho axis ending in a solitary terminal flower f^{\prime}. About the middle of this axis thare is a leaf or lract, from which a secondary floral axis a $a^{\prime \prime}$ is produced, endinis in a single fluerer $f^{\prime \prime}$, less advanced than the flower $f^{\prime \prime}$. This Gecundary axis bears a leaf also, from which a tertary Romal axis $u^{\prime \prime \prime}$ is produced, bearing an unexpanted colitary
flower $f^{\prime \prime \prime}$. From this tertiary axis a fourth is in progress of formation. . Here f^{\prime} is the termination of the primary axis, and this flower expands frst, whle the other flowere are developed seatrifugally on separate axes.

A thicl series of inflorescences, femed mixca, may we recognized. In thera the prinary axis has an arkangement belenging to the opposite type from that on the branebes, or vice versa. According to the modo and degree of derelopment of the lateral shoots and also of the bracts, farious forms of both inflorescences result."

Amongst indefinite forms the simplest occurs when a lateral shoot produced in the axil of a large single foliage leaf of the plant ends in a single flower, the axis of the plast elongating beyond, as in Veronica hederifolia, Vinca minor, and Lysimachia nemorum. The flower in this

Fig. 123. ease is solitory, and the In- Plant of namuneries beytrosus, shoning forescenco has been desigdetermithate inforescenco. nated soitary acillary. The ordinary leaves in this case become foral leares or bracis, by producing flower-bads in place of leuf-buds. The flowers, being all offshoots of the same axis, are said to be of the same generation or degree, and their number, like that of the leares of this main axis, is indefinite, varying with the rigour of the plant. Usually. bowever, the floral axis, arising fruma more or less alterco leaf or braci, instead of ending in a solitary Hower, is prolonged, and bears aumerous leaflets, called brateoles or bracticts, from which smaller peduncles are produced, and those again in their tum may be brenched in a simitar way. Thens the howers are arranged in greuta, and frequently very complicated forms of infloreseenee resuit. When the prinary peduncle or Bural axis, as in fig. 156 , e^{\prime}, is elongated, and gives of pedicels a^{*}, of neariy equal lergta cnüng in single flowers, a cureme or clester is pro. duced, as in Current, Ityacinth, and Barverry. If tho scenchary floral axes give zise to tertialy ones, the raceme is branciling, and forms what is ly somic callen a panicle, as in Yueca gluriosa; but it is better to restrict this term to the lax intiorescence of sume Grasscs and Rushes. If in a raceme the lower flower-stalks are developed more strongly than the upper, and thus oll the flowers are nearly on a lexel, a corymb is fomed, which may be simple, as in fig. 159 , whero the primaty axis a^{\prime} divides into seendiary aves $a^{\prime \prime}$, $a^{\prime \prime}$, which end in single flowers; or Lenaching, whare the secondary axes again subdivide, If the poluncles or eccondary axes are very short or avanting, ${ }^{\text {so }}$ that the howers are sessile, a spike is produeed, as in Plantago and Verbens officimalis (fig. 160). The spike sometimes bears miscxual nloters, usually staminiferous, the whole falling off ly an articulation, as in Willow or llazel (ig. 161), and then it is called an amostiam or cathin, hence such trees are called ainentiferous; at other times it becomes succulent, I earing numerous tlowers, surrounded by a sheathing lract or spathe, and then it constitutes a spadim, whieh may be simple, as in Arum maculatum (fig. 153), or branching, as in Palms. Plate XVL, A spike bearing fomale dowers only, and corered with scales, is eitbur a strobilus, as in the Mop; or a cone, ns in the Fir (fig. 333). It may lee mentioned here that many ${ }^{1}$ ount consider the cone of Firs an axis of inforescence,
but regard it as a single flower with the floral leaves placed at different heights. In Grasses there are usually numerous sessile flowers arranged in small apizes, called locustoc or

Fig. 159.

Fig. 160.

Fig. 161.

Pio. 159.-Corymb of Cerasus Mahapeb, produced in tha exil of a leaf which has fallea, and terminting an abortjve branch, at the hase of which ore modiffed reaves in the form of acales, e
Fio. 1G0.-Spike of Ferbena offinalis, ohowing acssile flowers on a common rachis. The flomera at the lower part of the apike have passed inte frust. these towards the toiddie aro la tull hloom, and those at the top are only in bud.
Fto 161 .-Ameatmon or catkle of Hazel (Cosy'uis Avellana), consibitug of wn axts or rachis covered with bracts in the form of sialey (squamat, cach of which i covers amale fower, the atamens of which are seen projucting beyond the scale The catkin talls off in a coass, separatling from the biabch by an articulation
spikelets, which are either set closely along a central axis, or produced on secondary axes formed by the branching of the central one; to the latter form the term pancle is applied.

If the primary axis, in place of being elongated, is contracted, it gives rise to other forms of indefinite inflorescence. When the axis is so shortencd that the aecondary axes arise from a common point, and spread out as radii of nearly equal length, each ending in a single lower, or dividing again in a similar radiating manner, an ambel is produced, as in fig. 162. From the promary floral

Fig. 162.
Compond ambel of Common Dill (Anethum graveolens), having a primsigumbel a, and secondary umbels b, whoal elther lovolucte or involucel. Trie petiolo p of tha leaf is sheathlog, apd has been deaomfated pericladium.
axis a the secondary axes come ofF in a radiating or umbrella-like manner, and end an small umbels b, which are called parteal umbels or umbellules, to distinguish them from the general umbel formed by the branching of the primary axis. This inflorescence is aeen in Hemlock, and other allied plants, which are hence called Umbelliferous. If there are numerous flowers on a flattened, convex, or slightly concave receptacle, haviog either very short pedicels or none, a capitulum (head), anthodium, or calathium, is formed, as in Dandelion, Daisy, and other Composite plants (fig. 146), also in Scabiosa (fig. J57) and Dipsacus. In the American Button-bush the heads are glohular, in some species of Teazel, elliptical, while in Scabious, and in Com-
posite plants, as Sunflower, Dandelion, Thistle, Centaury, and Marigold, they are somewhat hemisyherical, with a flattened, slightly hollowed, or convex disk. If the margins of. such a receptacle be developed upwards, the centre not developing, a concave receptecle is formed, which may partually or completely enclose a number of flowers that are generally unisexual. This gives rise to the peculiar inflorescence of Dorstenia (fig. 163), or to that of the Fig (fig. 150), where the flowers are placed on the inner surface of the hollow receptacle, and are provided with bracteoles. This inflorescence bas been called hypanthodium.

Lastly, we have what are called compound indefinite inflorescences. In these forms the lateral shoots, developed centripetally upon the primary axis, bear numeruus bracteoles, from which floral shoots, arise which may have a centripetal arraagement simular to that on the mother shoot, or it may be different. Thus we may have a group of racerucs, arranged in a

Peduncle a of Dorstenta, with concaio? receptacle 0. racemose manner on a common axis, forming a raceme of raccues or courpound raceme, as in Astille. In the same way we may have compound umbels, as in Hemlock and most Umbelliferæ (fig. 162), a compound spike, as in Ryc-grass, a compound spadix, as in some Paloms, and a corpound capitulum, as in the Hen-and-Chekens Daisy. Again, there may be a raceme of cajitula, that is, a grcup of capitula disposed in a racemose manner, as in l'etasites, a raceme cf umbels, ns $14 \mathrm{I} y$, and so on, all the forms of inflorescence being indefinite ur disposition.

The elongation of secondary flower-stalks sometimes alters the general character of the inflorescence, changing a spike into a raceme, a raceme mo a corymb, a capitulum into an umbel, and so forth. The capitulum of flowers in some Composita, such as llypocheris radicata arm Senccio vulgaris, by a sumular clange in the pedicels nasumes the form of an umbel. Among Umbcllifcra the umbels are sometimes supported on very long atalks, while the pedicels of the individual flowers are not lengthened. In Eryngium the shortoming of the pedicels changes an umbel into a capitulum. The umbeliate inforescence di i'elargonium has bcen scen ehanged into a raceme.

The simplest form of the definte type of inflorescence is Nefinte in seen in Anemone nemorosa and in Gentranella (Gentiana foresertica, acaulis, fig. 164), where the axis ternmates ma single flower, no other llowers being produced upon the plant. This is solitary terminal inflorescence. If other flowers were produced, they would anse as lateral shoots from the bracts below the frst-formed flower. The general paroc of cyme is applied to the arrangement of a group of How ers in a definite inflorescence. A cymose inflorescence is an. inflorescence where the primary floral axis before terminating in a flower gives off one or more lateral unifloral axes which repeat the process, - the development being only limited by the vigour of the plant. The floral axes are thus centrifugally developed. The cyme, according to its development, has been characterized as biparous or uniparous. In fig. 165 the bifarous cyme is represented in the flowering branch of Erythraa Ccotaurium. Here the prithary axis a ends in a tower f ', which has passed
into the state of fruit. At its base two learesnre produced, each of which is capable of developing buds. These are lower-buds, and constitute secondary ares $a^{\prime \prime} a^{\prime \prime}$, ending in single flowers $\dot{f}^{\prime \prime} f^{\prime \prime}$, which are thus terminal and sulitary; and at the base of these axes a pair of opposite leaves is

Fig. 164.
Oentiadelia (Ge tiana acaulis) a. axls; o. tower; c, bract.

Fig. 165. produced, giving rise to tertiary axes $a^{\prime \prime \prime} a^{\prime \prime \prime} a^{\prime \prime \prime}$, ?nding in single flowers $f^{\prime \prime \prime} f^{\prime \prime \prime} f^{\prime \prime \prime}$, and so on. The term dechotomous Las also been applied to this form of cyme. But these terms are not strictly correct, for here there is no dichbtomous branching, although, when the terminal flower f of the generating axis has withered, an apparent dichotomy occurs; but the lateral axes on the several shoots are produced monopudially, and therefor: the term is apt to lead to confusion regarding the development of the shoots. The name dichasium has, therefore, been substituted for the old term. In the natural order Caryophyllaceæ (Pink family) the dichasial cymose form of intorescence is very general. In some members of the tribe, as Dianthus barbatus, D. Carthusianorum, \&e., in which the peduncles are short, and the flowers closely approximated, with a centrifugal expansion, the inflorescence has the form of a contracted dichasium, and receives the name of fascicle (fig. 166). A

Fig 166.
Fascicle of Mullow : Matra sylesefis)
simular infloreseence is seen in Xylophylla tongifolia. When the axes become very much shortenerd, the arrangement is more complicated in appearance, and the nature of the inflorescence can ouly be recognized by the order of opening of theflowers. In Lalint phapts, as the Dead-nettle (Laminm). the tlowers are produced in the axil of each of the foliage leaves of the phant, and they appear as if arranged in a simple whorl of Howers.' But on examination it is found that there is a central llower expanding first, and from its
axis two secondary axes spring bearing solitary lowers, the expansion is thus centrifugal. The inflorescence is therefore a contracted dichasium, the flowers beinj sessile, on nearly so, and the clusters are called verticillasters (6 g. 167)

Fig. 10!.
Flowerlog stalk of the White Dead-oettle (Lamitum aibum). The bracts $b_{i} b$ are lite the ordioary leavee of the plant, and produce clusters of flowers in thetr axil. The clabters are called verticillasters, and consist of tiowers obich are produced lu a centrlfugal manner.
Sometimes, especially towards the summit of a dichasium, owing to the exhaustion of the growing power of the plant, only one of the bracts gives origin to a new axis, the other remaining empty; thus the inf orescence becomes unilateral, and further development is arrested. In addition to the dichasiad form there are othriss where more than tro lateral axes are produced from the piniary floral axis, each of which in turn produces numerou ases. To this form the terms trichotnmous and polytomous cyme have been applied; but these are now usually designated cymose umbels. They are well seen in soma species of Euphorbia Another term, anthela, has been vised to distinguish such forms as occur in several species of Luzula and Juncus, where numerous lateral ases arising from the primary axis grow rery strongly, and develop in an irregular manner.

In the uniparous cyme a ntmber of floral ases ara successively developed cae from the other, but the axis of each successive generation, instead of producing a pair of bracts, produces only a single one. The basal portion of the consecntive axes may become much thickened and arranged more or less in a straight line, and thus collectively form an apparent or false axis er sympodium, ratd the inflorescence thus simulates a racene. In the trute raoome, however, we find only a single asis, produe ng in succession a series of braets, from whieh the tloral pe luncles arise as lateral shoots, and thus each flower is on the same side of the tloral axis as the bract in the esil of which it is developed; but in the uniparons cyme the lower of each of these axes, tho basal portions of which unite to form the false axis, is situated on the opposite side of the axis to the bract from which it apparently arises (fig. 168). This bract is not, however, the one from which the axis termin. ating in the flower arises, but is a bract produced upon it, and gives origin in its axil to a new axis, the basal portion of whith, constituting the next part of the falsa axis, occupies the angle between this bract and its parent axis, - the bract from which the axis really does arise bsing situated lower down upon the same side of the axis with itself. The uniparous cyme presents two forms, the scorpioil or cicinal and the helicoid or lostrychoid.

In the seorpioid cyme the flowers are arranged alternately in a double row along one side of the false axis (6g. 169) the brasts when developed forming a second double
row on the opposite stde, as seen in the Henbane; the whole intlorescence usually curves on itself like a scorpion's tall, hence its name. In fig. 170 is shown a diagrammatic sketch of thil arrangement. The false axis, $a b c d$, is formed by

Fig. 168

Fig. 169.

Fig. 170.

Fig. 131.
10. 164 - Fulse raceme or helleola . Jne of a spectes of Alströmeria $a^{\prime} u^{\prime \prime} a^{\prime \prime \prime} a^{\prime \prime \prime}$ wre sepanate ax es successively developed, which ajpear to fom a simptecootinuiofiorescence, however, with centrifugal cvolulion Each of ihe ases in produced to the axil of a leaf, and Is terminated by a dower f of the ases is proto that leaf, aud the axes have a splial artancement ${ }^{\prime} f^{\prime \prime} f^{\text {men }} f^{\prime \prime \prime}$, orposito
Fio. 169 -Scopluldal or cicinul aphal arrangemen:.
Fio. 170.-Scorplolval or cictinal cyroc of Forget-me-Lot (N_{y} osotur paluatris).
Fio. 170.-Diagrary of definite Joral axea $a, b, c d e$
 centripetal manoer. The licads of formersimence inwads in an Indefimit
 termalnates a scparate axis. They fortol otie a firs:. Each heal of flumera

euccessive generations of unifloml axes, the flowers being arranged along one side alternately and in a doubie row; had the bracts been developed they would have formed a similar double row on the opposite side of the false axis; the whole inflorescence is represented as curved on itself. In fig. 169 the same scorpioid form of uniparous cyme is seen in the Forget-me-not, with the double row of flowers on one side of the false axis, but in this case the bracts, which should appear on the opposite side, are not developed, and bence the cyme is not complete. The inflorescences in the family Boraginaceæ are usually regarded as true scorpioid cymes. But it has been rccently shown that in Myosotis (Forget-me-not) the axis is not a sympodiun, but the branching takes place nodopodially, therefore it should more correctly be regarded as a raceme with tlowers only on one side and curving on itself. In Hyoscyamus (Henbanc) and other Atropacee the branching is dichotomous, so that the inflorescence in this case also ought not to be regarded as a scorpivid cyme.
In the belicoid cyme there is also a false axis formed by the basal pertion of the separate axes, but the flowers are not placed in a double row, but in a single row, and form a spiral or helix round the false axis. In Alstromeria, as represented in fig. 168 the axis a^{\prime} ends in a fower (cut
off in the figure) ard buars a leaf. From the axil of this leaf, that is, between it and the primary axts a^{\prime} anses a secondary axis $a^{\prime \prime}$, endıng in a flower $f^{\prime \prime}$, and producing a leaf about the midd!e. From the axil of this leaf a tertiary floral axis $a^{\prime \prime \prime}$, ending in a flower $f^{\prime \prime \prime}$, takes origin. In this case the axes are not arranged in two rows along one side of the faise axis, but are placed at regutar interrals, so as to form an elongated spiral round it.

Compound definite inflorescences are by no meaos common, but in Streptocarpus polyanthus, and in several Calceolarias, we probably have examples. Here there are scorpioid cymes of pairs of flowers, each pair consisting of an older and a younger flower.

Forms of inflorescence oczur, in which both the definite and indefinite types are represented, these, then, are mixed inflorescences. Thus in Composite plants, such as Hawk. weeds (Hieracia) and Ragwurts (Senecio, fig. 171), the heads of flowers, taken as a whole, are developed centrifugally, the terminal head first, while the florets, or small lowers on the rcceptanle, open centripetally, those at the circumference first. So also in Labiate, such as Deadnettle (Lamium), the different whorls of inflorescence are developed centripetally, while the florets of the verticillaster are centrifugal. This mixed character presents difficulties in such cases as Labiate, where the leaves, in place of retaining their ordinary form, become bracts, and thus might lead to the supposition of the whole series of flowers being one inflorescence. In such cases the cymes are described as spiked, racemose, or panicled, according tu circumstances. In Saxifraga umbrosa (London-pride) and in the Horse-chestnut we meet with a raccme of scorpioid cymes; in Sea-pink, a capitulum of contracted scorpioid cymes (often calfed a glomerulus); in Laurustinus, a compound umbel of dichasial cymes; a scorpioid cyne of capitula in Vernonia centriflora. In the catkins of the Birch we have, in reality, spikes of contracted dichasial cynnes. In the Bell-flower (Campanula), there is a racemose uniparous cyme. In the Privet (Ligustrum vulgar:) there are numerous racemes of dichasia arranged in a razenose manner along an axis; the whole inforescence thus has an appearance not unlike a bunch of grapes, and bas been called a thyrsus.

Tabllar Yiew of Inflorescence.

A Ind finite Centripet:al Inforescence.

1. Flowers solitary, axillary linca, Feronica hederifoha.
if Flowers in groupg, feliccllate.
it Flowers in groups, pedicellate.
2. Flongsted forin (Racemc), Fyazinth, Laturnum, Currant. (Corymb;, Ornithogalum.
3. Contracted orshortened formu(Univel), Couslip, Astranius
4. Flowers in groups, sessile.
5. Elongated form (Spike), Plantazo.
(Spivkeles), Grasses.
(Amentum, Cathin), Hillow, Dazel.
(Spadix) Arum, some Palms.'
(Cone), Fir, Spruce.
(Strobilus), Hop.
6. Contracted or shor
lion, Scalious.
IV. Compound Indefnite Inflorescence.
a. Compound Spike, Ryegrass.
b. Compound Spadix, Salms.
c. Compound Raceme, Astilic.
d. Compound Umbel, Hemlock and most Uimblliferr
c. Raceme of Capitula, Petasiccs.
f. Raceme of Unliels, I'y.
B. Definite Centrifugal Intlorescerice.
I. Flowers solitary, terminal. Genitienclla, Paony.
7. Flowers in Cymes.
8. Uniparous Cyme.
a. Helicoid Cyme (axes Iorming a spiral),

- Elongated furm, Alstromeria.
- Contracted form, Witsenia corymbs.

8. Scorpioid Cyme faxes unilateral, two tows).

- Eloggated form, Forget-mic-not, Symphylum, Henbane.
- Contracted form, Erodium, Alchcmilla armasis.

2. Byarous Cyme (Dichotomous), inchuding 3-5-chotomous Cymes (Dichasium, Cymose Umbel, Anthela).
a. Elongated form, Cerastitu, Stellaria.
3. Conthacted form (Verticillaster). Dead-nellle. Pelargoијит.
4. Compound Definite Inforescence. Strcptocarpus polyanthus, many Calceolarias.

C. Dized Inflorescence

1. Raceme of Scorpioid Cymes, Horse chestrut.
2. Scorpioid Cyme of Capitula, Vernona centrifora.
3. Compound Umbel of Dichotomous Cymes, Laurustinus.
4. Capitulum of contracted Scorpioid Cymes (Glomerulus), Sea-pink.
The flower is the tout ensemble of those organs which are concerned in reproluction. It is constituted by a purtion of the floral axis bearing the sexual organs, usually with certain protective envelopes. The parts borne on the floral axis and composing the flower are all metanorphosed leaves, and, though usually very different in appearance from foliage leaves, there morphological resemblance is frequently shown by their developing as foliage leaves. The axis bearing the parts of the Hower is usually very much contracted, no internodes being developed, and it frequently expands into a flattened or hollowed expansion termed the thalamus or torus; at other times, though rarely, the internodes are developed and it is elongated. Upon this torus the parts of the flower are arranged in a crowded manner, usually forming a series of vertucils, the parts of which altemate; but they are sometimes arranged in a spiral manner, espectally if the floral axts be elongated. In a typucal flower, as in fig. 172, we recognize four distinct whorls of leaves:-an outer whorl of five parts, the culyr ; within it, another whorl of five parts alternating with those of the outer whorl, the corolla; next comes a whorl of parts alternating with the parts of the corolla, the andrcecium; and in the centre is the gynocium. Fig 173 is a diagrammatic representation of the arrangement of the parts of such a flower. The flower is supposed to be cut transversely, and the parts of each whorl are distinguslied by a different symbol. Of these whorls the two internal, forming the male and female sexual organs, constitute the essential organs of reproduction; the tro uuter whorls are the protective coverings or floral envelopes. The calyx or outer covering (fig. 172, c) is formed of leaves, called sepals, which are generally of a greenish colour. The corolla p, the next covering, is composed of leaves, called petals, which are often showy, and normally alternate with the sepals. Sometines, as in many Monocotyledons, the calyx and eorolla both display rich colourng, and are apt to be confounded. In such cases the term perianth, or perigone, has been applied to avoid ambiguity. Thus, in the Tiulıp, Crocus, Lily, Hyacinth, authors spoak of the parts of the perianth, in place of ralyx and corolla, althongh in these plants an outer whon (calys) may he detected, of three parts, and an inner (corollia), of a similar number, alternating with them. When the garts of the calyx are in appearance like petals they are sail to le petaloid, as in Liliacere. In some cases the fertals have the appearance of sepals, then they are sypulotel, as in Juncacea. The term perianth is usually confined to the flowers of Monocotyledous, whatever colour they present, whether green, as 1 n Aspararus, or coloured, as in Thlip. Some use the term perianth as a general one, and restrict the use of perigone to cases whore a pistil unly is present. In plants, as Nymphera abla, where a spral arrangement of the doral leaves occur, it is not easy to say where the calyx ends and the corulla begins, as these two whorls pass iusensibly into eachother. When both calyx and corolha are present, the plants are dirhlamydeous; occasionally one becomes abortive, and then the flower is monechlamydeous (ig. 174). having a calyx only; or apetalous, laving no petals. At
times both are abortive, and then the flower is achla. mydeous, or naked. It is important to remember that if only one perianth-whorl is present it is the calys. The outermost whorl of the essential organs, collectively termed the androcium, is composed of a series of leaves

Fio. 172-Flower of Cvassula rubens c, c. sepals; p. p. petals: e. e, stameas: o. o, carpels each of them having a small scale-bke eppeadage a the base
Fig. 173 - Diagtra of a completely symmetrical fower, conslseing of four whorls each consistitic of frepprts The outer row the the calyx formed of fise sepals. the second is the curolls of thee petals, elteroating with the sepals; the third the androctum, censisting of flve stameas slternating with the petais cential whorl is the gyocclum, consisting of five carpels, alterostiog fith the 8tamens
Fic. 174 - Mooochlamy deous (spetalous) fower of Goosefoot (Chenopodium), consisting of a siogle ferianth (calym) of tive yarts, enclosmin five stameos, which are opposfle the divisions of the perbanth. owing to the absence of the petals. Fig. 1is-Stamen, conssianc of a Thament (siath)/ aod an anther a. contalaing the 1 mo lnthes of the unthet.
Fio 176.-The plst1] of Tobacco (Vicofana Tabatum), consisting of the ovary of containing ovules, the siyle s. and the capitate sticras g. The platils ulsced oo the receptacle r, ot the extrematy of the jeduncle.
distinguished as the stanumal leaves or stamens. These aro the male sexual organs. In their most differentiated form each consists of a stalk, either flifiorn or follaccous, the filament (fig. 175, f) suppurung at its summitt a lobed saccate mass, the anther (fig. 175, a), which contains a powdery matter, the $p^{\text {oll }}$ len. (fig. $175, p$), which 19 discharged therefrom. in many, cases, bowever, the stammal leaf resembles more nearly a cataphylllary leaf, bearing the pollensaes scattered over its surface, as in Cycedaceex. The Pinte Xv gimmeciun or p sstil is the central portion of the Elower, and is the fenale sesual organ. It consists of one or more folded leaves, called carpels, cither separate (fig. 172, c) or combined (fig. 174.) The parta distinguisled in the pistil are the parary (fig. 176 , o), which is the lower portion enclosing the ovulcs destined to become seeds, and the stigma (fig. 176,9) , portion of loose cellular tissue uncovered by epidernis, which 1s either sessile on the apex of the ovary. as in the Poppy, or is separated from it by a prolonged flato '. portion called the style (firy. 176, 5). The andrecium and gyncecium are not present in all llowers. When both are preseatt the flover is hermaphrodte; and in descriptire botany sucb a fower is indicated by the symbol γ When
only one or those ergans is present the flewer is unisexual or diclinous, and is either male (staminate), δ, or female (pistillate), $\%$. A flower then normatly consists of the four whorls of leaves,-calyx, corolla, andrœcium, and gynœcium, -and when these are all present the flower is complete. These several wherls of the flower are usually densely crowded upon the thalamus, but in some instances, after apical growth has ceased in the axis, an elongation of portions of the receptacle by intercalary growth occurs, by which changes in the position of the parts may be brought about. Thus in Eyehnis an elongation of the axis betwixt the calyx and the corolla takes place, and in this way they are separated by an interval. Again, in I'assiflora the stamens are separated from the cerolla by an elongated pertion of the axis, which has consequently been termed the androphore; and in Passifora, Fraxinella (fig. 177), Capparidacem, and some other plants, the ovary is raised upon a distinet stalk termed the gynophore; it is thus separated from the stamens, and is said to be stipitate. The apical growth of the floral axis in the flower soon ceases, and therefore the parts are arranged in whorls; but at times, as in the Ranunculaceæ, Magnoliacer, \&c., the growth is of sufficient duration to permit a spiral arrangement of parts. Usually the successive whorls of the flower dispesed from below upwards or from without inwards upon the feral axis

Fig. 177.
Calyx and pistil of FrexInella (Dictamnus Frarinefla). The plathl cosotyis of oeveral carpela, which are eleveted ons atalk prolonsed from atalk prolonged from the receptares. Tho phore or taecephore.
the cone in Coniferæ and Cycadaceæ as a single fower, and in that case the whorls are much separated and arranged spirally along the floral axis. Nermally, the parts of suecessive whorls alternate; but in some cases we find the parts of one whorl opposite or superposed to those of the next whorl. In some cases, as in the Ampelidere, this seems to be the ordinary mode of development, but in Caryophyliacez the superposition of the stamens on the sepals in many plants seems to be due to the suppression or abortion of the wherl of petals, and this idea is borne out by the development, in some plants of the order, of the suppressed whorl. In Primulaceæ, again, where there is a superposition of stamens and petals the abnormality is due apparently to another cause. The petals are developed after the stamens, and are to be regarded as appendages from them, of the same nature as the appendages to the stamens in Asclepiadacea, so that morphologically in Primulaceæ, according to this view, there are no petals. As a rule, whenerer we find the parts of one whorl superposed to these of another we may suspect some abnermality. Frequently, when parts are superposed they beceme adherent to one another; thus the stamens become adherent to the petals or are epipetalous, or to the sopals and are episepalous.

A flower is said to be summetrical when each of its whorls consists of an equal number of parts, or when the parts of any one whorl are multiples of that preceding it. Thus, a symmetrical flower may have five sepals, five petals, five stamens, and five carjels, or the nūmber of any of these parts may be ten, trenty, or some multiple of fire. Fig. 173 is a diagram of a symmetrical flower, with five parts in each whorl, alternating with each other. In fig. 180 there is a section of a symmetrical flower of Stone-crop, with five sepals, five alternating petals, ten stamens, and five carpels. Here the number of parts in the staminal whorl is double that in the others, and in such a case the additional fire parts form a sceond rew alternating with the others. In tho staminal whorl especially it is common to find additional rows. In fig. 181 therc is a

Fig. 180.

FIg. 181.

Fio, 180.-Disgrammatic section of a symmetrical pentamerons Bower of Stone-
 crop (Sedum), consisting of five acpale externally, five petals niternating with
the sepads, sen atamens in two rows, and five cerpels containg secds. The

fio $181 .-1$ liagtam of the gower of Flex linumb, conalating of Ace mepais. five petals, fire stamens, and five corpels, each of which is paisially dimued tato ivo. It is pcotamerous, complet; symanerncal sod regular.
symmetrical flower, with five parts in the three outer rows, and ten divisions in the inner. In this case it is the gynecium which has an additioual number of parts. Fig. 182 shews a flower of Heath, with four divisiuns of the calyx and corolla, eight stamens in twe rews, and four divisions of the pistil. In fig. 183 there are three farts in each whorl; and in figs. 184 there are three divisions of the calyx, corolla, and pistil, and six stamens in two rews. In all these cases the flower is symmetrical. Where, as in the Stone-crop, an extra row of parts is dereloped in any whorl they nay be either formed in regular succession within the first rew, or they may be interposed to them, i.e., fermed between them, er even external to and heneath then. We have examples of the fermer in many Caryephyllaccous plants, the latter being well seen in Crassulacex, Geraniacex, dc. In Menocotyledons it is
usual for the staminal whorl to be double, it rarely having more than two rows, whilst'amongst Dicotyledous there are often very numerous rows of stamens. The floral envelopes are rarely multiplied Flowers in which the aumber of parts

Fig. 182.

Fig. 184.

Fig. 183.

Fle. 185.

Fio. 182-Dlagram of the fower of Fieath (Erica), having four sepsis, fonr divisions of the corolla, elght stamens ic two rows and four divisions of the pistil The fower is tetramerous complete, symmerrical, sod regnlar. Fio 183.-Diepram of the trimerous symmetrical fower of lrts. There are thre Elterneting divisions of each whorl. Below is a single bract.
Fia. 184.-Diagram of the symmetrical trimerous flower of Fritillary. having three divisiops of the two outer whoris, and of the pistil in the centre, and aix stsmens in two rows.
Fro. 185.-Dlagram of the flower of Saxifrage (Sarifraga tridartylites). The calyx and corolls conslat of five parts, the stamens are ten in two tows. while the pistil has only two parts developed. The flower is, nevertbeless, called symmetrical, albhongh the outer whorls aro pentamerous, and the ceotral one dmerous.
in each whorl is the same, are isomerous (of equal number); when the number in some of the wherls is diferent, the fower is anisomerous (of unequal dumber). The pistilline whorl is very liable to changes. It frequently happens that when it is fully formed, the number of its parts is not in couformity with that of the other whorls. In sueb circumstances, however, a flower has been called symmetrical, provided the parts of the other whorls are normal, -the permanent state of the pistil not being taken into account in determining symmetry. Thus, fig. 185 shows a pentamerous symmetrical flower, with dimerous pistils. Synmetry, then, in botanical language, has reference to a certain definite numerical relation of parts. A flower in whieh the parts are arranged in twos, is called dimerous, the symmetry being binary and the arrangement marked thus $\sqrt[2]{ }$. This may be considered either as analogous to opposite decussating leaves, or as composed of distichous alternate leaves belonging to the one-half series. Whea the parts of the floral whorls are three, the flower is trimerous, and the symmetry being ternary or trigonal is marked $\sqrt[3]{ }$. This nay be looked upon as composed of verticillate leaves, or of tristichous alternate leaves with the angular divergence $\frac{1}{3}$. Wheo floral whorls have parts in a series of four, the flower is tetramerous, its symmetry being quaternary, and marked $\sqrt[1]{ }$. A pentamerous flower, marked $\sqrt[8]{ }$, has quinary or pentagonal symmetry. The symmetry which is most commonly met with in the vegetable kingdom is trimerous and pentamerous-the former occurring generally among Monocotyledons, tho latter among Dicotyledons. Dimerous or tetramerous syminetry occurs also among Dicotyledonous plants, and the numbers 2 and 4 prevail in the reproductive organs of Acotyledons, The sarious parts of the flower have a certain definite relation to the axis. Thus, in axillary tctramerous flowers(fig. 182), one
sepal is next the axis, and is called superior or posterior: another is next the bract, and is injerior or anterior, and the other two are lateral; and certain terms are used to indicate that position. A plane passing through the anterior and posterior sepal and through the toral axis is termed the median plane of the flower; a plane cutting it at right angles, and passing through the lateral sepals, is the lateral plane; .whilst the planes which bisect the angles formed by the lateral and median planes are the diagonal planes, and in these flowers the petals which alternate with the sepals are cut by the diagonal planes.

In a pentamerous flower one sepal may be superior, as in the calys of Rosacez and Labiatie ; or it may be inferior, as in the calyx of Legumnose (fig. 186), 一the reverse, by the law of alternation, beng the case wnth the petals. Thus, in the blossors of the Pea (fg. 187), the odd petal (vexil-

Fig. 186.

Fig. 187.

Fio 180 -Diagram of flower of Sweet-pea (Lathyrus), showing fise parts of tha calgi. of which cwo are superior. one laferlor, end two lateral tire parts of the corolla, of which one is superior, two inferior, and two lateral: ted stameas in two rows; ooe carpel, lo consequeoce of four being nodeveloped
 one patal superior, st. called the standard (verillum), two inferior, car, called the keel (carina), and two lateral, a, called wings (edx). The calyx is marised e
lum) $s t$ is superior, while the odd sepal is inferior. In the Figwort order one of the two carpels is posterior and the other aaterior, whilst in Convolvulacex the carpels are arranged laterally. Sometimes the twisting of a part makes a change in the position of other parts, as in Orchids, where the twisting of the ovary changes the position of the labellum. When the differeat members of each whorl are like in size and shape, the flower is said to be regular; while differences in the size and shape of the parts of a whorl make the fower irregular,' as in the Papilionaceous flower, represented in fig. 187. Whet a flower can be divided by a single median plane into tro exactly similar parts, then it is said to be eygomorphic. Sueh flowers as Papilionacee, Labiatæ, are examples. In coutrast with this are polysymmetrical flowers, which can be divided by several planes into seyeral exactly similar portions ; stec are all regular, symmetrical flowers. When the parts of any whorl are not equal to or some multiple of the others, thea the flower is unsymmetrical. This want of symmetry may be brought about in various ways. A consideration of the various unsymmetrical, irregular, and incompleto forms of the flower, and the processes by which they have been brought about, constitutes Teratology. Alteration in the symmetrical arrangement as well as in the completeness and regularity of towers bas been traced to suppression or the non-developmont of parts, degeneration or imperfect formation, cohesion or union of parts of the same whorl, adhesion or union of the parts of different whorls, multipli cation of parts, and deduplication (sometimes called chorisis) or splitting of parts.

By suppression or non-appearance of a part at the place Whero it ouglt to appear if the structure was normal, the symmetry or completeness of the flower is disturbed. This suppression when confined to the parts of certain vertacils makes the flower unsymmetrical. Thus, in the flowers of Staphylea there are five parts of the calys, five petals, five stamens, and only two carpels; in many Caryophyllaces, as Polycarpon and Holosteum, while the caly x and evolla are pentamerol's, there are only three or four stamens and three carpels; in Impatiens noli-me-tangere the calys is

Frg. 3

Eupborbia hypericifo...

compusd of three parts, while the other verticils have five; in Eabiate flowers there are five parts of the calyx aod corolla, and only four stamens; and in Tropæolum pentaphyllum there are five sepals, two petals, eight stamens, and three carpels. In ali these cases the want of symmetry is traced to the suppression of certan parts. In the last-mentioned plant the normal number is five, hence it is said that there are three petals suppressed, as shown by the position of the two remainıg ones; there are two rows of stamens, in each of which one is wanting, and there are two carpels suppressed. In many instances the parts which are afterwards suppressed can be seen in the early stages of growth, and occasionally some vestiges of them remain in the fully developed fower. By the suppression of the verticil of the stamens, or of the carpels, flowers become unisexual, or diclinous, and by the suppression of one or both of the floral envelopes, monochlamydeous and achlamydeous flowers are produced. The suppression of parta of the flower may be carried so far that at last a flawer consists of only one part of one whorl. In the Euphorbiaceæ we have an excellent example of the gradual suppression of parts, where from an apetalous trimerous staminal fower we pass to one wherc one of the stamens is suppressed, and then to forms where two of them are wanting. We next have Howers in which the calyx is suppressed, and its place occupied by one, two, or three bracts (so that the flower is, properly speaking, achlamydeous), and only one or two stamens are produced. And finally, we find sterile flowers consisting of a sungle stamen with a bract, and fertile flowers consisting of a single carpel with a bract. There is thus traced a degradation, as it is called, from a flower with three stamens aud three divisions of the calyx, to one with a single bract and a single stamen or carpel.

Degeneration, or the transformation of parts, often gives rise either to an apparent want of symmetry or to irregularity in form. In unisexual flowers it is not uncommon to find vestiges of the undeveloped stamens in the form of filiform bodies or scales. To many of these staminal degenerations Linnxus gave the name of nectartes. In double flowers transformations of the stamens and pistils take place, "so that they appear as petals. In Canna, what are called petals are in reality metamorphased stamens. In the capitula of Composita we sometunes find the florets converted into green leaves. The limb of the calyx may appear as a rim, as in aome Umbellifere ; or as pappus, in Composits and Valeriana. In Scrophularia the .fifth stamen appesrs as a scale-like body, called staminodium; in other Scrophulariaces, as in Pentstemen, it assumes the form of a filament, with hars at its apex in place of an anther.

Coheszan, or the union of parts of the same whorl, and adhesion, or the growing together of parts of different whorls, are very common causes of change both as regards form and symmetry. Thus in Cucurbita the stamens are originally 6 ve in number, but subsequently some cohere, so that three stamens only are seen in the mature flower. Again, amongst Malvaceæ the stamens cobere by their margins. Cases of what are called gamopetalous corollas, gamosepalous calyces, \&c., unst be distıngurshed carefully from such a process as this; for in these cases the parts were never free from une another, but developed from the very first as one mass, and the same caution is necessary in many instances of so-called union of stamens, which are really cases of branching. Adhesion is well seed in the gynostemium of Orchids, where the stamens and ovary adhere; and in flowers where the staniens are pergynous, i.e., are adherent to the calyx. In Capparidacex the calyx and petals occupy their usual position, but the axis is prolonged in the form of a gyoophore, to which the stamens are united. Cohesion and adhesion are rare amongst Monocotyledons.

Multiplication, or an increase of the aumber of parts.
gives rise to changes in plants. We have afready alluded to the interposition of new members in a whorl. This takes place chiefly in the staminal whorl, but usually the additional parts produced form a symmetral whorl with the others. In some instances, bowever, this is not the case. Thus in the Horse-chestnut there is an interposition of two stamens betwist the other whorl, and thus seven stamens are formed in the Hower, which is unsymmetrical.

Parts of the flower are oiten increased by a process of deduplacation, unlimng, dilammation, or chortzation, t.e., ${ }^{7}$ the splitting of a part so that tro or more parts are formed out of what was origıally one. This is beheved by some to take place in a remarkable degree in the case of append. ages to petals. Thus, in Ranunculus, the petal has a scale at its base, which is looked upon as a mere fold of it. This fold may in some cases be more bighly developed. as in Caryophyllacez, and in Crassula rubens (fig. 172, a). Others refer such cases to the formation, of outgrowils similar in nature to the ligule in Grasses. In Crucaferoas plants a case of chorisis is said to occur. There the stammal whorl consists of four long stamens and two short ones (tetradynamous). The symuletry in the flower is evidently dimerous, and the abrimality in the androcium, where the four long stamens are opposite the postertor sepals, is said to tabe place by a splitting of the flaments of two stamens into four, and thus the two long stamens on each side are, by geminution, normally one. This view is supported hy cases in which the flaments of the long stamens are more or less united; alsa by cases in which the shorter filaments exhibit toath-like processes on both sides, while the longer ones bave them only on the outer side. In such eases the two long filaments, if united, would present the same appearance as the shorter ones, and occupy ther usual position of alteroation with the petals. In some instances, by pelorisation, it is found that tetradymamous plants become tetrandrous, with stamens of equal length alternating with the petals. Many cases of what was considered chorisis are in reality due to the development of stupules from the staminal leaf. Thus in Dicentra and Corydalis there are 815 stameos in two bundles; the central one of each bundle alone is perfect, the lateral ones have each only half an anther, and they are really stipules formed from the stammal leaf. Branching of stamens also produces apparent want of symmetry; thus, in the sacalled poly. adelphous stamens of Hypericacex there are really only five stamens which give off numerous branches, but the basal portion reuaining short, the branches bave the appearance of separate stamens, and the flower thus seems unsymmetrical.

Cultivation has a great effect in causing changes in the various parts of plants. Many alterations in form. size, number, and adhesion of parts are due to the art of the borticulturist. The changes in the colour and forms of flowers thus produced are endless. In the Dahlia the florets are rendered quilled, aod are made to assume many glowing colours. In Pelargomum the flowers have been rendered larger and more showy; and such is also the case with the Ranunculus, the Auricula, and the Carnation. Some fowers, whth spurred petals in their usual state, as Columbine, are changed su that the spurs disappear; and others, as Linaria, in which one petal only is usually spurreci, are altered so as to have all the petals spurred, and to present what are called pelorian varieties.

As a convenient method of expressing the arrangement Finm of the parts of the flower, floral formulæ bave been devised. formu.in Sereral modes of expression are empluyed. The following is a very simple mode which has been proposed :-The several whorls are represented by the letters S sepala, P petals, St stamens, C carpels, and a figure marked after each iodicates the number of parts in that whorl. Thua the formula $S_{3} P_{8} \mathrm{St}_{3} \mathrm{C}_{3}$ means that the flower is perfect, and has
pentamerous symmetry, the whorls being isumeruus. Such a flower as that. of Sedum (fig. 180) would be represented sy the formula $\mathrm{S}_{5} \mathrm{P}_{5} \mathrm{St}_{5+5} \mathrm{C}_{5}$, where St_{s+5} indicates that the staminal whorl consists of two rows of give parts each. A flower such as the male flower of the Nettle (fig. 188) would be expressed $\mathrm{S}_{4} \mathrm{P}_{0} \mathrm{St}_{4} \mathrm{C}_{0}$. It is aiso possible to indicate, in cases where members of a whonl are absent, which of them aro wanting; thus, in the flower of an Orchis we bave $\mathrm{S}_{3} \mathrm{P}_{3} \mathrm{St}_{1+0} \mathrm{C}_{3}$. Here $\mathrm{St}_{\mathrm{i}+0}$ indicates that the anteriur stamen of the outer row is present, the other two stamens of the row, marked as dots, are wanting, as also all the stamens of the inner row. In Cypripedium, on the other hand, the formula is $\mathrm{S}_{3} \mathrm{P}_{3} \mathrm{St}_{0+2} \mathrm{C}_{3}$, for here all the stamens of the outer row and the anterior one of the inner row are absent. When no other mark is appended the whorls are supposed to be alternate; but if it is desired to mark the position of the whorls special symbols are employed. Thus, to express the superposition of one whorl upon another, a line is drawn between them, e.g., the symbol $\mathrm{S}_{5} \mathrm{P}_{5} \mid \mathrm{St}_{3} \mathrm{C}_{5}$ is the formula of the flower of Primulacea. To indicate the interpnsition of a row of parts in a whorl a dot is placed between the coefficients, thus $\mathrm{S}_{3} \mathrm{P}_{3} \mathrm{St}_{53} \mathrm{C}_{5}$ indicates that an extra row of five stamens has been interposed between those already in existenee. 'l'o represent adhesions and cohesions leads to complicated formulæ, but in many cases cobesion can be easily indicated. Thus in the formula $\hat{S}_{4} \hat{P}_{4} \mathrm{St}_{2} \hat{\mathrm{C}}_{2}$, we tave the arrangement of the parts of the flower in Veronica indicated, the sepals and the petals beiug united and the two carpels also being united into one pistil. .The papilionaceous flower, of which fig. 186 is a diagram, may be formulated $\left.\hat{S} P_{3} S_{t} \overparen{8+14+1}\right)_{1} C_{1}$ We thus learn that there are five scpals united, five free petals, ten stamens in two rows, of which mine are united and one is free, and there is one carpel. When the parts of the fower are arranged spirslly on the foral axis, as in Magnoliaceæ and other flowers, the formula is prefix ${ }^{\wedge}$ by a curved line thus c, and then the angle of divergence of the members may be marked in addition to their number. Many other points in the arrangement of the fower may be attached to the formula by different symbols, according to the object which one has in view

No. 188.-Tetramerons male (unisexual) flower of the Nettle (Vrtica), It is Ir. complete, as it watets petala and pastil; and it is asid to be monochismydebua One bepal is next the axis. and ts called fosterior or superion, another is nest the bract, called antentor or inferior, and two are lateral, that 1s. to the right nmal leff of the axis
1": 18 - Diagram to llustrate valyular or valvate astlation. In which the parts are placed in a circle, withont overlappung or folding
Fu: 190 - Diandums 10 ilnstrate induplicative or indupliente xativation, 10 which the darts of the veithil are sliohtly twned Inwards at the edgrs

To the nower-lind the name alabastrus is sometmes given, and its period of opening bas been called anthesis, whilst the manuer in which the parts are arranged with reapect to each other before opening is the astivation or protlontion. The latter terms are applied to the flowerhud in the same way as vernation is to the leaf-bud, and distinctive names have been given to the different arrangements exlubited, both by the leaves individually and in their relatous to each other. As regards cach leaf of the flower, it is either spread out, as the sepals in the bud of the Lime-tren or folded upon itself (conduplicate), as in the protals of some species of lysimadit, or slightiy foblof rimerion on ontwards at tha edires. as in the calis
of sume species of Clematis, and ot some herhaceous plants, or rolled up at the edges (involute or revolute), or folded transversely, becoming crumpled or corrugated, as in the Poppy. When the parts of a whorl are piaced in an exact circle, and are applied to each other by their edges only, without overlapping or being folded, thus resembling the valves of a seed-vessel, the æstivation is valvate, as in the calyx of Guazuma ulmifolia (fig. 189). The edges of each of the parts may be turned either inwards or outwards; in the former case, the æstivation is induplicate, as in the corolla of Guazuma ulmifolia (fig. 190), in the latter case, reduplicate, as in the calyx of Althæa rosea (fig: 191). When the parts of a single whorl are placed in a circle, each of them exbibiting a torsion of its axis, so that by one of its sides it overlaps its neighbour, whilst its side is overlapped in like manner by that standing next to it, the restivation is tucisted of contortive, as in the corolla of Althea rosea (fig. 192). This arrangement is characteristic of the flower-buds of.

Fig. 191.

Fig. 192.

Fig. 193.

Fig. 191. - Diagram io illustrate redupliratise or reduplicare sastivation. in wheb the parts of the wiorl are slighty turned outwarda at the edreas
Fig. 9.2 -Diagiam to llustrate contnoture or tuased astivation, in whicb the parts of the whorl are overlapped by each other in tunn, and ale wisted on their axis.
Fig. 193.- Dlagram to illustrate the quincuncial xstivallon, in whith the part of the flower are arranged in a spiral cycle. so that 1 and 2 are wholly ex. terial 4 aod 8 aro internal. and 3 is partly external and partiy overiapped by 1.
Malvacere and Apocynacere, and it is also scen in Con. volvulaceæ and Caryophyllaceæ. When the flower expands, the traces of twisting often disappear, but sometimes, as in Apocynaceæ, they remain. Those forms of æstivation are such as occur in cyclic flowers, and they are included under circular æstivation. But in spiral flowers we have a different arrangement, the leaves of the calyx of Camellia japonica cover each other partially like tiles on a house. This astivation is imbricate. At other times, as in the petals of Camellia, the prarts envelope each other completely, so as to become convolute. This is also seen in a trausverse section of the calyx of Magnolia grandiflora, where each of the three leaves cmbraces that within it. When the parts of a whorl are fire, as occurs in manv Dicotyledons, and

F゙ig 194.

Fig 195.

Fic 194- Niagtam to Illustrate imbileative or Imbrteated astluation. In whirb the paits arearranged in a opinal cycte folioning the orter indicated by the figutes 1, 2, 3, 4, 5 .
Fig. 195 - Diacram of a fnpllonaccous flower, showlag reximary mativation 1 and 2, the ale or wiags: 3, a part of the cas ina or kecl; 4, the veximinm or aten-
 cated by the famures.
the imbrication is such that there are two pharis external, two internal, and a fifth which partialy covers one of the internal parts by its margin, and is in its turn partially covered by one of the external parts, the estivation is guinguncial (fig. 193). This quincunx is commen in the corblla of Posicep In fir. 194 a section is given of the
bud of Anmisurtimu umjus, showing the unbricate sparal arrangement. In this cuse it will be seen that the part marked 5 has, by a slight change in position, become overiapped by 1 . This variety of mbricate zstivation has bein termed cochlear. In Howers, such as those of the $P_{i: a}$ (fig. 187), one of the parts, the vexillum, is oiten large and folded over the others, giving rise to vexallary arstiva. tron (fig. 195), or the carina may perform a sunilar ollice, and then the restivation is carimal, as in the Judistrce 'Cercos Silupuastrum). The parts of the several verticils aften differ in thear mode of extmation. Tbus, 11 Malvacer the corolla is conturtive and the calyx valvate, or reduplicate; in St John's-wort the calyx 19 imbricate, and the corolla contortive. In Convolvalaceæ, whle the corolla is twisted, and has its parts arranged in a circle, the calyx is imbricate, and exhibits a spral arrangement. In Guazuma the calyx is valvate, and the corolla induphcate. The careular estivation is generally associated with a regular calyx and coroll:t, while the sural æstivations are connected with irregular as well as with regular forms.

I. Protective Orgfins.

f. Culyx.

The catyx is the external envelope of the fower, and consists of verticillate leaves, called sepale, foliohe, ur fhylla. These calyme leaves are sometmes separate from cach suler, at other times they are united to a greater or less sxtent; in the former case, the calyx is diulysepalous or deatherosepalous, polysepalous or polyphyllous, or aposepulous, in the latter, gemosepalous or gremophyllonts, mono. upalous or monophyllous, or synsepatous. The divisions of the calyx present nstally all the characters of leaves, and in some cases of monstrosity they are converted into the ordinary leaves of the plant. Their structure consists of cellular tissue or parenchyma, traversed by vascular bundles, in the form of ribs and veins, contanting sparal vessels, which can be unrolled, delicate woody fibres, and other vessels, the whole being enclosed in an epudermal covering, having stomata and often hars on its outer surface, wheh eorresponds to the under sido of the leaf In the great divisions of the vegetable kingdum the venation of the calyx is similar to that of the leaves,--parallel in Monocotyledinis, reticulated in Dicotyleduns. The leaves of the calyx are usually entire, but vecasionally they are cut in various ways, as in the Rose, and they are sometumes booked at the margin, as in Rumex uncatus. It is rare to find the leaves of the calyx stalked. They are usually sessile leaves, in wheh the vagmad portion is only slightly dereloped, and frequently the laminar part is alone present. Sepals are generally of a more or less oval, elliptical, or ollong form, with then ajnces either blunt or acute. In ther dircetion they are erect or reflexed (with their apices downwards), sureading outwards (iluergentror putulius), ur arched inwards (connevent). They are usually of a greemsti culour, and are called foliaceous or hertaceous; but sometmes they are coloured, as in the Fuchsia, Tropieolum, Globe-Hower, and Pomegranate, and are then called petuloul. Whatever be lts colour, the external envelope of the flower must be constumed as the cally. The uature of the hairs on the calyx gives rise to terms similar to those already mentioned as applied to the surfaces of other parts of plants. The vascular bundles sumetmes sorm a promment rib, which indicates the muddle of the sepal; at other times they form several ribs. The venation is useful as yoiuting out the number of leaves which conBtitute a gamosepalous calyx. It a polysepalous calyx the number of the pirts is marked by Greeb uuaterais prefixed. Thus, a calyx which has three sepals is crisepulurs; one with Gre semals is ventuseidalone or pomtanheilmo Tha senals
uctasionally are of different forms and sizes. In Aconte one of them is shaped like a helmet, and has been called galecute. In a gamosepalous calyx the sepals are united in various ways, sometimes very slightly, and their number $:$ marked by the divisions at the apex. These divisions eithet are sumple projections. 11 the form of acute or obtuse teeth; or they cxtend down the calyx as fissures about halfway, the calyx beng trigil (threa-cleft), quanquefid (fivecleft), (fig. 196), \&e., according to their number; or they reach to near the base in the form of partitions, the calyr bemg triputite, quaripartite, Iuinquepartite, \&c. Tho umin of the parts may be complete, and the caljx may be quite entre or truncate, as in some Correas, the vemation being the chef indication of the different parts. 'Che cohesion is sometmues urregular, some parts uniting to a greater extent than others; thus a two-hpped or lubuste calyx is formed, which, when the u!per or posterior lip ta arched, becomes ringent. The upper lip is often compased if three parts, which are thus posterior or next the axis, while the lower bas two, whelh are anterior. The part formed by the umon of the sepals is called the tule of tho calyx; the portion where the sepaly are free is the lamb

Occastonally, certan parts of the sepals undergotarked enlargement. In tho Violet the calyane segnomis (larmue) are prolonyed duwnwards beyud therr insertions and in the Indian Cress (Trepreolum) this prolongation is in the furm of a spur (rather). formied by three sepals, in Delphanumit is formed by one When one or more sepals are thus enlarged, the calyx is calcarute or sparred. In Pelargumom the sjur from une of the sepals 13 adherent tu the Nlwser-statk. When an epicalys is present, as in the Mallow urder, the tluwer appears in be piovided with a dubble calyx, and ha, been denommated calaculate. Defencrations take place in the calys, so that it becomes dry. saly, and glanaceous (like the glumes of grasses), as on the Jush trive, hary, as in Compositie; or a mere rua, as in, sume L"mbellifere and Acanthace:e, and in Madder (Rubas theturan, fig. 198), when it it called ubsolete or marginate. In Unplutiena it is reduront tu fire scales. In Composita,

FIg. 196. Fig. 199.

Fig. 197

Fig. 19§

Fig. $20 n$
 (Lyrhnis)
Fig. 197. - Fathey finpes athened to the inut of Salsaty itrayoponen borm. folias) 1 hit cult mitheres th the liuls, and its limb is paypuse
 the furin if s zim. The culve is caled obsolete.
Fig. Isy-Carlucous calys of Poppy "Pupavel
whict fall off betote the petals expand
 to show the niode in athoh it virounds the fruit without adherine to it. Ilie
 is called necrescent.
Dipsacacex, and Valenanacere, the calyx is attacbed to the pistil, and its limb is developed in the form of hars called papous (fig.197). This pappus is either smple (mhars) or

F'ate vill featucry (plumnse). In Valeriana the superior calyx is at first an obsolete rira, but as the fruit ripens it is shown to consist of hairs rolled inwards, which expand so as to waft the frut. The calyx sometumes falls off before the flower expande, is in Poppres, and is radurous (fig. 199); or along with the corolla, as in Ranunculus, and is deciduous; or it remainsafter fluwering, as in Labutie, Scrophulariacex, and

Boraginacere; or its base only is persistent, as in Datura Stramonium. In Eselischoltzia and Eucalyptus the sepals reman umted at the upper part, and become disarticulated at the lase or middle, so as to come off in the form of a lid or fumel Such a calyx is operculate or calyptrate. The existence or mon-existence of an articulation determine. the dermbous or persistent nature of the calyx. In the case of Eschscholtzia the axis secms to be prolonged so as to furro a sort of tube, from which the calyx separates. In Euralytus the calyx consists of leaves, the lamina or petioles of which are articulated like those of the Orange, and the separation between the parts occurs at this artico lation. The receptacle bearing the calyx is sometimes united to the pistil, and enlarges so as to form a part of the fruit, as in the Apple, Pear, Fomegranate, Gooseberry, \&e In thesc fruits the withered calys is seen at the apex. Sometimes a persistent calyx increases much after flowering, and encloses the fruit without being incorporated with it, becoming accrescent, as in various species of Plysalis 'fig. 200); at ether times it remains in a witbered or onarcescent form, as in Erica; sometimes it becomes inflated or vesicular. as in Sea Campion (Silene maritima).

2. Comolla.

The corolla is the more or lass coloured inner finral envclope, formmg the whorl of leaves between the calyx and the stamens. It is generally the most conspicuous whorl. The gay colours and fragrant odours of howers are resedent in it It is present in the greater namber of Dicotyledons. Petals differ more from leaves than sepals do. and are nuch more nearly allied to the staminal whorl. In some cases, bowever, they are transformed into leaves, hike the calyx, and occasionally leaf buts are developed in their axil. They are seldom green, although oceasionally that colour is met with, as in some Cobras, Hoya viridiflora, Cenolobus viridnforus, and Pentatropis spiralis. As a rule they are haghly coloured, the colouring matter being contaioed in cellis, and differing in its nature from the chlorophyll of the leaves. As regards their structure petals consist of cellular tissuc, traversed liy true spiral ressels and thin-walled tubes. In delicate flowers, as Convolvulus and Anagallis, these vessels are easily seen under the microscope. Petals do not usually present riumerous lajers of cells like the leaves, neither is the epidermis alwaya destinct, although in some instances it may be detached, especially from the surface next the calyx. The cuticle of the petal of a Pelargonium, when viewed with a $\frac{f}{2}$ or $\frac{f}{f}$-inch object glass, shows beautiful hexagons, the boundaries of which are ornamented with several inflected loops in the sides of the cells

On the outer surface of petals, enrrespnading to the lower side of leaves, stomata are sometimes found. Petals are generally ghabrous or smooth; but, in some instances, bairs are produces on their surface. Petaline hairs, though sparse and scattered, preseat occasionally the same arrangement as those which occur on the leaves; thus, in Bombacere they are stellate. Coloured hairs are seen on the petals of Menyanthes, and on the segments of the periantlo of the lras Alhough petals are asmally very thin and delicate in there texture, they oecasionally becone thick and fleshy, ga in Stapcia and Ratlesia; or dry, as in Heaths ; or bard and stiff. as in Xylnpia. A petal often consists of two primone- the wer narrow, resemblam the petiole of a leaf.
and calred the unyuis or claw; the upper broader, like the blade of a leaf, and called the lamina or limb. These paris are seen in the petals of the Valldower (fg. 201), where c is the claw and lthe limb. The clav is often wanting, as in the Crowfoct (fig. 202) and the Poppy, and the petals are Plate 1 then sessile. Petals having a claw are unguiculate. Accord. ing to the development of veins and the growth of cellular tissue, petals present varieties similar to those already noticed in the case of leaves. Thus the margin is cither cntire or divided into lobes or teeth. These teeth sometimes form a regular fringe round the margin, and the petal becomes fimbriated, as in the Pink; or lacaniuted, as 11 Lychnis Flos-cuculi ; or crested, as in Polygala. Sometimes the petal becomes pinoatifid, as in Schizopetalum. The median vein is occasionally prolonged beyond the summir

Fis 201 - l'ncticulate or stalked petal of Walloower (Cheiranthus Cheirn) c.the claw of ungins: the finde on lamma.
Fig 202 - l'etal of Crowfoot (Ranuncufts), without 6 clam, and thus resembliag a esesaile lear. At the base of the petwl a nectariferous seale is seen.
Fig. 203 - Tubular petal of Hellebore (Helleborms), formed by folding and stiesion. In the same manner as pitchers
Fig 204-nom-lke hullow peta' of Columblae (Aquilegia eulgaric), formed by foldags and adhesion of the edges
Fig 205 - fart of the flower of Aconlte (Acontom Nafellus), showing two Ite gular horn-jike petais 8 . supported or grooved stalks o. These used to be called nectaries , the whorl of stamens inserted on the thasmus, and surrounding the plistil.
of the petals in the form of a long process, as in Strophanthus hispidus, where it extends for 7 inches : and at other times it ents in a free point or cuspis, and the petal becomes cuspidate : or the prolonged extromity is foldod downards or inflexed, as in Umbelliferx, so that the apex approaches the base. The limb of the petal may be fit or concave, or hollowed like a boat. In Hellebore the petala becone folded in a tubular form, resembling a horn (fig. 203) ; in Aconite (fig. 205) some of the petals resenible a hollow-curved horn, supported on a grooved stalk ; whle in Columbine (fig. 204), Violet, Snapdragon, and Centrantbus, one or all of them are proloaged in the form of a spur, and are ralcarnte. In Valeriana, Antirrhinum, and Corydalis, Plate iti the spur is very short, and the corolla or petal is said to be gibbous, or saccate, at the lose.

A corolla rarely ronsists of one petal, and when this nccurs, as in Amorylia, it depends on the abertion or nondevelopment of others. Such a corolla is unipetalous, a term quite distinct from memopetalons. A corolla is diptetolous, tripetalous, tetrinvetalous, or pentapetalous, according as it has two, tirec, four, or fire separate petals. The general name of poiypetalous, dalypetalous, eleutheropetalous, or apopetalous, is given to corollas baving separate petals, while monopetalous, gammprtaloss, or sympetalous is applied to those in which the petals are united. This union gencrally takes place at the base, and extends more or less towards the apex; in Phyteuma the petals are anited at their apices also In sume prolypetalous corollas, as that of the Vine, the petals are separate at lie bose, and
adthere by the apices. When the petals are equal as regards their development and size, the corolla is regular; when onequal, it is irregular. Whea a corolla is gamopetalous, it usually happens that the claws are united into a tube, while the upper parts are either free or partially united, so as to form a common limb, the point of union of the two portions being the faux or throat, which often exlibits a distinct constriction or dilatation. The number of parts forming such a corolla can he determined by the divisions, whicther existing as te eth, crenations, fissures, or partitions, or if, as rarely happens, the corolla is entire, by the venaiion. The union may be equal among tho barts, or some may unite more than thers.

Amongst regular polypetalous corollas may be noticed the rosaceous corolla (fig. 206), in which there are five spreading petals, baving no claws, and arranged as in the single Iose and Potentilla; the caryophyllaceous corolla, in which there are five petals with long narrow tapering claws, as in many of the Pink tribe; the alsiraceous, where the claw is less narrow, and there are distinct spaces between the petals, as in some species of Chick weed; the cricffurm, having four petals, often unguiculate, placed opposite in the form of a cross, as seen in Wallforer; and in other plauts called crucifernus. Of irregular polypetalons corollas the most marked is the papilionaceous (fig. 187), in which there are tive petals:-one superior (posterior), st, placed next to the axis, usually larger than the rest, called the vexillum or standard; two lateral, a, the alde or wings; two inferior (anterior), partially or completely covered by the alix, and often united slightly by their lower margins, so as to form a single keel-like piece, car, called cariza or keel, which embraces the essential organs. This form of corolla is characteristic of British Leguminous plants. A mong the irregular polypetalous corollas might be included the orchideons (6g. 207), although it is really the perianth of a Monocotyledon. This perianth consists of three outer portions equivalent to the calyx, and three inner parts alternating with them, constituting the petals. The latter are often very irregular, some being spurred, others hooded, de.; and there is always one, called the labellum or lip l, which presents a remarkable development, and gives rise to uany of the anomalous forms exhbited by these flowers.

F1: 200°

Fis. 208

Fig 20%.

Po 21.6 - Ronaccous corollo of the Strowberry (Fagarin resta), conipored of Bre petals without cluws
Fio 207 - Hower of Twaybiade fintera ovath:, seen in frnit, showing a large bitd labellum . whilut is different fiom the other fise dirisions of the perameth The divistons of the pelanth are in two rows of three eacb. The esstritisi orgens uf ieprobaction are placed on a column opposite the labellura. The peranth is brequar polsphyllous, and dinominated orchideous
 (Campanula rofundifola). It in compused of tive petals uniled The ovary is fiferlor, and is urated to the calfac.
Regular gamopetalous coroilas are sometimes campanulare or bell-shaped, as in Campanula rotundifoli: (fy. .2ns). infundibulifory or funnelsh.iped, when "" tuhe is likn wh
inrerted cone, and the limb becomes more expauded at the apex, as in Tobacco; hypocrateriform or saluer-shaped, when there is a straight tube surmounted by a flat spreading limb, as in Primula (fig. 209); tubular, having a long cylindrical tuke, appearing continuous with the limb, as in Spiselia and Comfrey; rotate or wheel-shapel, when the tube is very short, and the limb flat and spreading, as in Myosotis (when the divisions of the rotate corclla arc very acute, as in Galium, it is sometimes called strllatc or starlike); urceolate or ura-shaped, when there is seavety anylimb, and the tube is narrow at both ends, and expmded in the middle, as in Bell-heath (Erica cinerea). Sume of these forms may becone irregular in cunsequence of certan parts being more develuped than others. Thns, in Y'pronica, the rotate corolla bes one division much smaller than the rest, and in Digitalis there is a slighlily inregular campanulate coroliz which some bave called digitulfiurm P:aze st Of irregular gamopetalous corollas there may be mentinneal the labiate or lipped (fig. 210), baving two dwisons of the limb in the form of what are called labua or hys (the upper one, u, composed usually of two united petals, and the lower, l, of three), separated by a heatus or gap. In such cases the tube varies in length, and the parts in ther unon fullow the reverse order of what occurs in the cilys. whele two sepals are mited in: the lower hp, and three in tha upper. When he upyer lip of a latate corolla is much arched, and the ips scparatel by a distinct gap, it is called ringent (fig. 210). The labiate corolla cbaracterizes the

Fin 209 - Recular gamopetalous oympetalnus liypocraterionma corolla of nallp
 Fig. 210.-Irregalar grmopetalous lathate corolte of the Dead neite (Lammum disiom). The upper lip is is composed of two perals united, the lonet lip 1. if three Briwied the iwollps (abis) there is agap (hiatus) The imort in the part where the tube and the lablute imb join From tlit arcluing of the uppet lip this corolla is ealled rlagens.
 rutular tloret, split down on one ade, with the unitid petuls forming a sirup like projectiont. The lioes on the fias poitios indicuse the dumans of the Que petals From the tubalar portion belon. the buth at, le propects slinhils The telete (ruit iachanimm) a is surmountelt by julose 1 lappus. which is the metamorphosed calyclne limb The tower is temale, liaving no stameno
natural order Labiate. When the lower lip is piessed against the upper, so as to leave only a chink or rictus between them, the corolla is said to be personate or mask. like, as io Frogsmontb, Snapdragon, and some other Scrophulariacee, and the projecting portion of the lower lip is called the polate. In some corullas the two lips become bollowed out in a remarkable maıner. as in Calceolai ia, assuming a slipper-Like appearance, sinular to what occurs in the labellum of some Urchids, as Cypm. pedium. The calceolate corolla of Calceolaria may the con sudered as conssating of two slipper-like hps When : tubular corolla is split in such a way as to form a strap like process on one side with several touth-like prifolluns at Its apex. it becomes lupulate. or aropshapell liiw 2112
"This corolla vecurs $" 1$ many' 1 omposite filants, as in the Plat L.Z. florets of Dandelion, Dusy, and Chicery. The number of -livisions at the apexindicates the number of uonted petals, ome of which, however, may be abortive. Oecas!onally seme of the puals become more unted than others, and then the corolla assumes a bilabate, or two-hpped form, as seen n the division of Composite ealled Labiatiflores.

In Grasses and Sedges, in place of verthillate leaves formug the flower, there are ilternate scales or glomes The tluwers of Grasses usually ocenr 10 spikelets (fig. 212), "hich consist of one or two glumes a, covering several A-wers b. The spukelets are associated in spilies or manicles. In Wheat these spikelets are arranged alternately along a coromon raclus. Eaeh spikelet consists of two tinpty glumes u, a_{1} having the form represented in fig. 212, and enclosma flowers compused of scales palece

 casential ofrenns of reproduction the semmens a hand out by long. glender thread the filuments. The mdividund gluncs and paluar are placed alternately oo the thotal axis.
Fia 213 -thowr of Oat (Arena satra). with the two glames. and the outer glumella os paira removed. The inner glamella. Howering glame. or paleaps.
 glamella there are secn tuo genles (lodicula, squames) sq, with the thiee anmens and wo feathery alyles
 or wale 1 The thitil ts covered tiy min urceolate glumaceous baz u. called perigynuin. There is oute atyle sf. ivith three stigimas at ins oumbath
or glumellor), which are placed at different heythts in an allerate manner. In the flower of the Oat (6;. 213), after temoving the outer pale or glumelle, the inner one $p \mathrm{is}$ seen with two scales (lodiculce or squam(e) sq, at the base, enclosing the essential organs of repruduction. The palex of grasses are called by some tiowering glumes, while hypagynous seales (lodieulte) within them are con. sidered as the rudimentary perianth. In Wheat (Trucum) there are two enipty glunies and two flowering glumes, or, as some say, one flowernug glume and ona pale In the Oat (Avena) there are twe empty glumes, usually three fowerng glumes with awns, and two lodicules representug the perianth. In Sedges (Carices) the male flowers are besne on seales, and so are the ferale, as shown in fig. 214, in whieh the senle $s 13$ placed on ene sude. Withm the rcale the female flewer is situated, baving apeeular bag. Whe covering u, termed perigynium.
The parts of the corolh frequenty adberc to thase of the calys, and any change in the latter canses also an theration in the fornuer. Petals are sonetimes sulpressed, and sometines the whele coroll: is absent. In Amorpha a:al Afzelia the corolla 18 reduced to a single jetal, and in surne other Leguminous plants it is entitiely wanting. In the natural order Ranuneulace:e, some genera, suell as Rannmanus, Globeflower, arde Pienny, Lave both calyx and surulla, while others, such as Clematis, Anemome, and Calthan, bave only a coloured calyx lilowers beeone double by the multiplication of the parts of the corolline uborl. This arises in general from n metanorubusts of the
stamens. Union uf serfarate thourrs (- gntuthos) occasion ally oceurs, and the adhesion whech that takes place causes various changes in the whols. Fiowers may be unted by their peduncles, as seen in some anomaluas speeimens of Dandelion, Hyacinth, and Centanry ; or by their outer parts, such as the calys. At other tumes there is a complete fusion, as at were, of all the parts of the flowers, some contonuing normal. others being suppessed or aburtive.

Certan abnormal appearances oceur in the petals of sume Nectune日lowers, whieh recenved in former days the nanie of nectarics. The term dectary was very saguely ajplied ty Limnens to any part of the thower whel presented an unusual aspect, as the crown (corora) of Narcissus, the fringes of the Passion-flewer, \&c. If the name is retained it ought jroperly to include only those parts wheh secrete a boney-like matter, as the glandular depression at the base of tire permanth of the Fritillary, or on the petal of Ranunculus, or on the stamens of Rutacer. The boney secreted by flowers attracts insects, wheh, by conveying the pollen ic the stigma, etfect fertilization. What have usually, however, been called nectarics, are mere modifications of some part of the flower, especially of the corolla and stamens. produced either by degeneration or outgrewth, or by dilu. mination, chorisis, or deduplicution. Of this nature are the seales on the-petals in Lyehnis, Silenc, Cynoglessum, and Ranuaculus (fig. 202). Others consuder these outgrowths of the petal to be formed to the same way as the ligules of Grasses. Corollas havug these sealy appendages are some-j times denominated apperrhenlate. In Cuseuta and Samolus Flatol the scales are alternate with the petals, and may represeut altered stamens. The parts formerly called weetaries are mere modifications of the curolla or stamens. Thus the socalled horn-like nectaries under the galeate sepal of Acomse (fig 205) are modified petals, so also are the tubular vecturn, of Hellebore (fig. 203). The aectanes of Menyanthes aird of Iris consist of hars developed on the petals. Thase ul Parnassia and the Passion-flower, Stapeha, Asclepias, and Canna, are fringes, rays, and proeesses, wheb are probably modifieations of stamens; and some consider the crown of Nareissus as consistung of a membrane similar to that whech unites the stamens in Pancratiom. It is sometrmes diffieult to say whetber these nectiries are to be referred to the cerolline or to the staminal iow. The paraphyses of the Passion-flower, the crown of Naressus, and the coronet of Stapelia are referred sometunes to the one and sometimes to the other. In general, they may be said to belong to that series with which they are imnuediately connected. Some have given oames indicatiog the parts of which they are modifications, by prefixing the term para, using .such terms as paracorolla and parastemones.

Petals are attached to the asis usually by a narrew base, but occasionally the base is larger than the limb, as in the Orange flower When this attachment takes place by an artucalation, the putz!s iall off enther immediately after expansuon (caducous), or after fertilazation (deciduous). A corolla which is continuous with the axis and not articuIated to it, as in Caupant la and Heaths, may be persistent, and remain in a whthered or marcescent state while the finut is ripentag. A gamepetalous corolla falls off in one prece; but sometimes the base of tho corolla remains per. :istent, as in Rliuanthus and Orobanche.

II. Essenthal Organs.

These organs ure the stamens and the pistil, the latter Esscotiad cootaning the seeds or germs of young plants, and corre- organs ol sponding to the female, while the former produces a porder the form necessary for fecundatuon, and is looked uron as performing be mer uf the male. The presence of both is required in
order that perfect seed may be produced. A fower may have a calys and corolla, but it will be inperfect if the essen. tial organs are not present. The name of he maphrodite or bisexual is given to flowers in which both these organs are found; that of unisexual or diclinous to those in which only one of these organs appears, -those bearing stamens only, being staminiferous or male; those haring the pistil only, pistilliferous or female. But even in plants rith hermaphrodite flowers it is rare that self-fertilization takes place, and this is provided against by the structure of the parts or by the period of ripening of the organs. For instance, in Primala and Linum some flowers have long stamens and a pistil with a short style, the others having short stamens and a pistil with a long style. The former vecur in what are called throm-eyed Prinroses, the latter in those called pin-eyed. Such plants are called dimorphic. Other plants are trimorphic, as species of Lythrum, and proper fertilization is only effected by combination of parts of equal length. In some plants the staneus are perfected before the pistil; they are called proterandrous, as in Ranunculus repens, Silene maritima, Zea Mays. In other plants the pistil is perfected before the stamens, as in Potentilla argentea, Plantago ma, or, Coix Lechryma, and they are proterogynous plants. Plants in which proterandry or proterogyny oceurs are called dichogamous. When in the same plant there are unisexual fluwers, both male and female, the piant is said to be monocious or monoicous, as in the Hazel and Castor-nil plant. This is indicated by the symbol $8-8$. When the male and fenale flowers of a species are foind on separate plants, the term diocious or dioicous is applied, as in . Mercurialis and Hemp, and the symbol $t: \rho$ is used; and when a species bas male, female, and hermaphrodite flowers on the same or different plants, as in Parietaria, it is polygamous, for which $\delta 8 \%$ is the 8 rmbol.

1. Male Omans in Phanerogans.́.

The stamens (stamina) arise from the thalamus or torus witpin the petals, with which they alternate, forming one or more verticils or mborls, which collectively constitute the andrecium, or the male organs of the plant. Their normal position is belon the inner whorl or the pistil, and when they are so placed (ig. 215, e) upon the thalamus they are hypogynous. Sometimes they become adherent to the petals, or are epipetalous, and the insertion of both is looked upou as similar, so that they are still hypogynous provided they are independent of the calyx and the pistil. Frequently the margins of the thalamus bearing the floral envelopes and stamens elongates, nad the gynocium remains in the ceatre of the cuncare receptacle; thus the stamens as it were rise from the calyx, and they surround the ovary, and are perigynous; but when the ovary becomes enmpletely inferior by the growing upwards and inwards of the receptacle, the parts of the flower rising from its sumait, the etarmens are epigynous (fig. 216). Numerous intermediate forms occur, especially amongst Saxifragaceex, where the parts are half superior or half inferior. In the Orebis. tribe, where the stamens become adherent to the pistil so as to form a column, the flowers are said to be gymandrous. The same is the case in Aristolockia (fig. 217). These armangements of parts are of geeat importance in classification. The stamens vary in number, from one to many hundreds. Like the other parts of the flower they are modified leaves, resembling leaves in their structure, derelopment, and arrangement. They consist of cellular and rascular tissues. They appear at first in the form of cellular projections, and are arranged in a more or less spiral form. In their general aspect they have a greater resenblance to petals than to the leaves, and there is often seen a gradual transition from petals to stamens, especially in spiral flowers, bs

Nynphea alba. When flowers beerme double by cuitivation, the stamens are converted into petals, as in the Pæony. Camelia, kuse, de. When there is ouly one whorl the

F: 215.
Fig. 217.
Fio 21s.-Scction of a fower ol Geranium Rosertianum. c, e, calyx: p, retale; e. stamens. The pistil is composed of orary o, and style and stigmata s. fit the torus or thalamus. The petals and stamens are hypogynous, and the latter aro monadelphous.
Fig. 216-Section of the flower of Aratia spinosa. Letters an In last figure. The petale and stamens are epigynous, attached to the torns d, which covers the kummit of the orary. The orary is acherent in the torus, a td has been lald open to show its loculaments and penduious orules.
TuG 217.-Essentind organs of Burthwort (Arisfotochia). ADove the orary b, are the siamens unted in a column with the alyle at $a, 20$ as tu be gynandrous of the summut is the grigma abote the atsmens.
stamens are usually equal in number to the sepals or petals, aud are arranged opposit o to the former, and alternate with the latter. The fower is then isostemonous. When the stamens are not equal in number to the sepals or petals, the flower is anisostemonous. When thcre is more than one whorl of atamens, then the parts of ench successive wherl alternate with those of the whorl precedius it. The staminal row is more liable to multiplication of parts than the outer whorls. A flower with a single row of stamens is aplosternonous. If the stamens are double the sepals or petals as regards number, the flower is diplostemonous; if more than donble, polystemonous. The additional rows of stamens may be developed in the usual eentripetal (acrepetal) order, as in Rhamnacex; or they may be interposed between the pre-existing ones or be placed ontside them, i.e., derelop centrifugally (basipetally), as in Geranium and Oxalis. Wheo the stamens are neither equal to, nor a multiple of, the floral envelopes, but are less numerous, the flomer is miostemonous. When the stamens are fewer than trenty trey are said to be definite, and the flower is oligandrous; when above twenty they are indcfinite or polyandrous, and are represented by the symbol ∞. The number of stamens is indieated by the Greek numerals prefixed to the term androus; thus a flower with

$$
1 \text { stamen is Monandrous (Hippuris, Centranthus) ; }
$$

2 stamens is Diandrous (Vcronica, Calceolaria, Circaa) ;
3 stamens is Triandrous (Gresses, Iris, Valeriana);
4 stamens is Tetrandrous (Alehemilla, Galium, l'lantago);
6 stamens is Pentandrous (Primula, Umbeliifere, Campanula) ;
6 stamens is Hexandrous (Tulip, Jilium, Juncus) ;
7 stamens is Heptandrous (Trientalis, Horse-chestnut) ,
8 stamens is Octandrous (Heath, Fuchsia, Fpilobium);
9 stamens is Enneandrous (Butomus, some Jauracee);
10 stamens is Decandrous (Saxifraga, Dianthus, Oxalis) ; 12 stamens is Dodecandrous (Asarum, Agrimonia, Reseda) ; 80 stamens is Jcosandrous (Strarberty, Potentilla, Cratagus) : Numerous and indefinite stamens is Folyandrous oo (Poppy).
The simplest form of stamens is seen in Cycadaceous plants, where cataphyllary leaves (the scales of the cone) Plate x, are the staminal leares, bearing the pollen-sacs acattered over their under surface. The stamen usually consists of two parts, a contracted portion, often thread-like, termed the
filament (fig. 175, f), and a hroader portion, usually of two lubes, termed the anther (6g. 175, a), centaining a powdery matter, ealled pollen (p), aud supported upen the end of the filament. That pertion of the filament in centact with the anther lobes is termed the connective. The exact morphological relations of these parts is not definitely setted. Some consider the filament as representing the petiole, and the anther as being the folded lamina; others again regard the connective as representing the lamiaa, the text of the filament being the petiole, and the anther lobes as inere appendages of the lamina. The filament is no more essential to the stamen than the petiole is to the leaf, or the claw to the petal. If the anther is absent the stamen is abortive, and cannet perform its functions. The anther is developed before the filament, and when the latter is not produced, the anther is sessile, or has no stalk, as in the Mistleto.

The filament, when structurally considered, is found to consist of a thin epidernis, on which oecasioually stomata and hairs occur, and a layer of cellular tissue enelosing a bundle of spiral vessels, which traverses its whole length, and terminates at the junction between the flament and the anther. The flaments of Callitriche verna are said to have no vessels. The filament is usually, as its name imports, filiform or thread-like, cylindrical, or slightly tapering towards its summit. It is uften, however, thickened, compressed, and flattened in various ways, becoming petaloid in Canna, Maranta, Nymphæa alba (fig. 179); subulate or slightly broadened at the base, and drawn out into a point like an awl, as in Butomus unibellatus; clavate, that is, narrow below and broad above, as in Thalictrum. In some instances, as in Tamaris gallica, Peganum Harmala, and Canpanula, the base of the filament is much dilated, and ends suddenly in a narrow thread-like portion. In these cases the base may represent the sheath or vagina of the leaf, and may give off stipulary processes in a lateral direction, as in Allium and Alyssum calyeinum. The filament varies much in length and in firmness. The length sometimes bears a relation to that of the pistil, and to the position of the flower, whether erect or drooping. The filament is usually of sufficient sulidity to support the anther in au erect position; but sumetimes, as in Grasses, it is very delicate and capillary, or hair like, so that the anther is pendulens (fig. 212, s). The filament is generally continuous from one end to the other, but in some cases it is bent or jointed, becoming gcriculate; at other tinies, as in the Pellitory, it is spiral. It is frequently colourless; bat, io many instances, it exhibits different colours. In Fuchsia and Poinciana, it is red; in Adania and Tradescantia sirginica, blue; iu Enothera and Ranunculus acris, ycliow.
Hairs, seales, teeth, or processes of different kinds are semetimes developed on the filament. In Tradescantia virginica, or Spiderwort, the hairs are beantifully coloured, moniliform or neeklace-like, and rotation is seen io them (p. 84). Such a filament is bearded or stupose. At the base of the filament glandular or scaly appendages are occasionally produced, either on its internal or its external surface. These may be cither piarts of a whorl, to be afterwards anticed under the name of the disk, or separate prolengations frem the filanent itself, which is hence called appendiculate, or sometimes strumose. Filaments are usually articulated to the thalamus or torus, and the stamens fall off after fertilization; but in Campanula and some other phants they are centinuous with the torus, and the stamens remain persistent, although in a withered state. Changes are produced in the whorl of stamens by colesion of the filaments te a greatcr or less extent, while the anthers remainfree ; thus, all the filaments of the androcinm may unite, forming a tube round the pistil, or a central bundle
when the pistil is abortive, the stamens becoming mon. adelphous, as oecurs in plants of the Mallow tribe; ur Clate ItI. they may be arranged in two bundles, the stamens being diadelphous, as in Polygala, Fumaria, and Pea; in this ease the bundles may be equal or unequal. It frequently happens, especially in Papilionaceous flowers, that ont of ten stamens nine are united by their filaments, while one (the posterior one) is free (fig. 218). Whea there are three or more bnadles the stamens are triadelphous, as in Hypericum ægyptiaenm, or polyadelphous, as in Luhea paniculata and Ricinus communis. In some cases, especially in the Mallow tribe, the stamens cobere, having theen originally separate, but in most other cases each bundle is produced by the branching of a single stamen. When there are three stamens in a bundle we may cenceive the lateral ones as of a stipulary nature. In Laumeex there are perfect stamens, each having at the base of the filiment two abortive stamens or staminodes, which may be analoyous to stipules. Filaments sometimes are adherent to the pistil, forming a columna or column, as in Stylidium, Asclepiadace:e, Raflesia, (Orehidaceæ, and Aristolochiaceæ (fig. 217). The column is called gynostemium, and the flowers are deaominated gynandrous.
The anther censists of lobes containing minute powdery The es'ber matter, called pollen, which, when mature, is discharged by a fissure or opening of some sort. The anther-lobes are considered by some as formed by the two balves of the lamina, their back corresponding to the under surface, and their face to the upper surface, united by the midrib, the pollen being the cellular tissue, and the fissure of the anther taking place at the margin, which, however, is ofteo turned towards the face. In this view, the two cavities which ara found to exist in each lobe may correspond with the upper and under layer of cells, separated by a septum equivalent to the fibro-vascular layer of the leaf. Others view the anther as formed by each half of the lamina being folded upen itself, so that the outer surface of both face and back corresponds to the lower side of the leaf, and the septum dividing each cavity into two is formed by the unted upper surfaces of tiec folded half. Again, others hold that the connective represents the lamina of the leaf to which the anther lobes are mere appendages. There is a double covering of the anther-the outer, or exothecium, resembles the epidermis, and often presents stomata and projections of different kinds (fig. 219); the inner, or endothecium, is

Fig. 218.

Fig. 219.

Fig. 220.
Fio. 215 -Stamens nul pistl of Swect Fer (Laihyrts). The stanens are dia delghous. nine of them belng united by their Hlameats f. Whilo one of them, e, Is free; the unper pate of the ghatit is cishoed af, the cayx. c.
Fig. 219. - Brontin-down ibrous celle of of the endotheclum of the anther of the Mclon. The watis of the cells are absorbed, and the fbace are set Ireo. The enothecture or outer epidernis is marked ee
Fig. 280-Quadrllocular or tetrotbecal adther of the ficmering Rush (Butomey umbelialis). The anther eotire, a, with the flamed; secton of notber, 8 . siowidg the four locuth.
Formed by a layer or layers of cellular tissue (fig. 219, ff), the cells of which have a spiral, anzular, or reticulated fibre in their interier. This interial lining varies in thickaess,
senerally becoming umuner towards the part where the anther opens, and there disappears entirely. The walls of the cells are frequently absorbed, so that when the anther attains maturity the fibres are alone left, and these by their edasticity assist ia discharging the pollen. The anther is tereloped before the filament, and is always sessile in the irst instance, and sometimes continues so. It appears at first as a simple cellular papilla of meristem, upon which an indication of two lobes soon appears. Upon these projections The rudiments of the pollen-sacs are then seen, usually four in number, two on each lobe. In each a differentiation takes place in the layers beneath the epidermis, by which to outer layes of small-celled tissue surrounds an inner portion of large ceils. Those central celly are the mothercells of the pollen, whilst the srall-celled layer of tissue external to them becomes the endothecium, the exothecium being formed from the epidermal layer.

In the young state there are ustally four polled-sacs or carities produced, two for each anther-lobe, and when these remain permanently complete, it is a quadriloculer or etrathecal anther (fig. 220). The four cavities are sometimes placed in apposition, as in Poranthera, and Tetratheca juncea, and at obter times tro are placed above and two below, as in Persea gratissima. Sometimes, however, only two cavities remain in the anther, by union of the sacs in euch lobe, in which case the anther is said to be bilocular or dithecal. Sometimes the auther has a single cavity, and becomes unilocular, or monothecal, or dimidiate, cither by the disappearance of the partition between the two lobes, or by the abortion of one of its lehes, as in Styphelia læts and Althea officinalis. Occasionally there are numerous cavities in the anther, as in Viscum and Raffesia. The form of the anther-lobes varies. They are generally of a nore or less oval or elliptical form, or they may be slobular, as in Mercurnalis annua; at other times linear or clavate, curved, flexuose, or sinuose or anjractuose, as in Bryony and Gourd. According to the amount of union of the lobes and the unequal development of different parts of their surface an infinite variety of forms are produced. That part of the anther to which the filament is attached, and which is generally towards the petals, is the back, the opposite being the face. The division between the lobes is marked on the face of the anther by a groove or furrow, and there is usually on the face a suture, indicating the line where the membranous coverings open to discharge the pollen. The suturo is often tomards one aide in consequence of the ralves beiry unequal. The stamens may cohere by therr anthers, and become syngenesious or synantherous. as in Composite flowers, and in Lobelia, Jasione, Viola, \&e.

Tbe anther-lobes are united to the connective, which may be either continuous with the filament or articulated with it. It consists of parenchyma, in which the spiral vessels of the filament terminate. From the connective a partition or septum extends across each antherine loculus, dividiag it either partially or completely. The septum sometimes reaches the s ture When the filament is continuous with the concective, and is prolonged so that the anther-lobes appear to be united to it throughout their whole length, and lie in apposition to it and on both sides of it , the anther is said to be adnate or adherent; when the flament ends at the base of the anther, then the iatter is innate or erect. In these cases the anther is to a geeater or less degree fixed. When, however, the attachment is very narrow, and an articulation exists, the anthers are movable, and are easily turned by the wind. This is well seen in what are called versatile anthers, as in Tritonia, Grasses, \&c. (fig. 212), where the filament is attached only to the middle of the connective; and it may occur also in cases where it is attached to the apex, as in pendulous
anthers. The connective may unite the anther-lobes completely, or only partially. It is sometimes very short, and is reduced to a mere point, so that the lobes are separate or free. At other times it is prolonged upwards beyond the lubes, assuming various forms, as in Acalypha, and Nerium Oleander; or it is extended backwards and dorsnwards, as in Violet (fig. 221), and Ticorea febrifuga. In Salvia officinalis the connective is attached to the flament in a horizontal manner, so as to separate the two anther-lobes, and then it is called distractile (fig. 222); one of the lobes only being perfect or fertile, containing pollen, the other imperfectly developed and sterile. In Stachss the connective is expanded laterally, so as to unite the bases of the antherine lobes, and bring them into a horizontal line.

The opening of the anthers to discharge their contents antherfag is denominated dehiscence. This takes place either by debisceneclefts, by hinges, or by pores. When the anther-lobes are erect, the cleft takes place leagthrise along the line of the euture, constituting longitudinal dehiscence (fig. 175). At other times the slit takes place in a horizontal manner, from the connective to the side, as in Alchemilla arvensis (ig. 223) and in Lemna; the dehiscence is then transverse. When the antber-lobes are rendered horizontal by the enlargenent of the connective, then what is really longs. tudinal ciahiscence may appear to be transverse. In other eases, when tie lobes are united at the base, the fissure ir each of them may be continuous, and the two lobes may appear as one. The eleft does not always procecd the whole length of the anther-lobe at once, but often for a tiune it extends only partially. In other instances the opening is confined to the basc or apex, each loculament opening by a single pore, as in Pyrola, Tetratheca juncea, Rhodedendron, Vaccinium, and Solanum (fig. 224), where there are

Fig. 221.

Fig. 223.

Fig. 22.

Fig. 224.

Fig. 225.

Fin. 221. - Two stamens of Pansy (Fio'a tricolor). with their two anther lobes anit
the process pextending beyond them. One of the stamens has been depiwed the process p extending beyond them. One of the stamens has been depilved
of its spur, the other ohows its spur, c. of its spur, the other ohows its spur, c.
Fio. 222.-Anther of Salvia offinalu. If, fectile lobe full of pollen: ds, butted
lobe without pollen: c, distractile connective: Alament. Fic. 223.-Stamed of is. distractile connective: f, Alament.
Fig. 223.-Stamed of lady's Bande (Alchemilla), with the anther opening
transversely. Fransversely.
Fro. 224 - -Stamen of a species of Nlatshade (Solanum), shotwing the firesgonee
of the anther-lobes at the base, and the dehicence by Fio. 225 -The Etamen of the barberry (Behicence by poren nt the apex a Fig. $225-$ The stamed of the barberry (Berbers vulgaris). showing unc of the
valvee nf the anther v, curved upwards, bearing tbe poiter on lis inger an Falves if the anther v, curved upwards, bearing tbe pollen on its inner antitace. two, and Poranthera, where there are four ; whilst in the Mistleto the anther has numerous pores for the discbarge of the pollen. Another mode of dehiscence is called
hinged. In the Barberry (fig. 225) each lobe opens by a valve on the outer side of the suture, separately rolling up from base to apex; in some of. the Laurel tribe there are two such ralves for each lobe, or four in all. This may be called a combination of transverse and hinged dehiscence. In some Guttifere, as Hebradendron cambogioides (the Ceylon Gamboge plant), the anther opens by a lid separatfing from the apex; this is called circumscissile dehiscence.

The anthers delisee at different periods during the process of flowering; sometimes in the bud, but more commonly when the pistil is fully developed, and the flower is expanded. They either dehisce simaltancously or in enecession. In the latter case individual stamens may more in succession towards the pistil and discharre their contents, as in Parnassia palustris, or the outer or the inner stamens may first dehisce, following thus a centripetal or centrifugal order. The anthers are called introrse or antico, when they dehisee by the surface next to the centre of the flower; they are extrorse, or postica, when they dehisce by the outer surface; when they dehisce by the sides, as in Iris and some grasses, they are laterally dehiscent. Sometimes, from their versatile nature, anthers originally introrse become extrorse, as in the Passionflower and Oxalis.

The usual colour of anthers is yellow, but they present a great variefy in this respeet. They are red in the Peach, dark purple in the Poppy and Tulip, orange in Eschscholtzia, dc. The colour and appearance of the anthers often change after they have discharged their functions.
Stamens occasionally become sterile by the degeneration or non-development of the anthers. Such stamens receive the name of staminodia, or rudimentary stamens. In Scrophularia the fifth stamen appears in the form of a scale; and in many Pentstemons it is reduced to a filament with hairs or a shrivelled membrane at the apex. In other eases, as in donble flowers, the stamens are converted into petals; this is also probably the case with such plants as Mesembryanthemum, where there is a multiplication of petals in several rows. Sometimes, as in Canna, one of tho auther-lobes becomes abortive, and a petaloid appendage is produced. Stamens vary in length as regards the corolla, Some aro enclosed within the tube of the flower, as in Cinchona, and are called included; others are exserted, or extend beyond the fower, as in Littorella, Plantago, and Exostemma. Sometimes the stamens in the early state of the flower project beyond the petals, and in the progress of growth become included, as in Geraninm striatum. Stamens also vary in their relative lengths as respects each other. When there is more than one row or whorl in a flower, those on the outside are sometimes longest, as in many Rosacea; at other times those in the interior aro longest, as in Lubea. When the stamens are in two rows, those opposite the petals are usually shorter than those which alternate with the petals. It sometimes happens that a single stamen is longer than all the rest. A definite relation, as regards number, sometimes exists between the long and the short stamens. Thus, in some flowers the stamens are didynamous, having only four ont of five stamens developed, and the two corresponding to the apper part of the flower longer than the two lateral
Plate XI (fig. 226). Again, in other cases, there are sis stamens, whereof four long ones are arranged in pairs opyosite to each other, and alternate with two isolated short ones (fig. 227), giving rise to tetratynamous flowers, as in Crucifere. Stamens, as regards their dircction, may lo crect, turned inwards, outwards, or to one side. In the Iust-mentioned case they are called declinate, as in Amaryllis, Horse-chestnnt, and Fraxinella.

The pollen or powdery matter contained in the anther
consists of small cells developed in the interior of otber cells. These are produced in the large thick-walled mother.

Fig. 226.

Fig. 227

Fin. 226.-Corolla of Digitalis purpures. cut in order to ahow the didrramons stamens (two long and trio shor) wich are attached to it. ℓ, eube: f, Glaments whlch are unted to the corolla at and rua aloog lts inner suriace, baving formed a marked adtbssion; $a g$, arthers of the bog stameas: ag. anthers of the short stamens.
Fio. 227 -Tetradyanuous etameas (four long and two bhort) al Cheiranthus Cheri. p.top of the peduacle: c, cleatrices left by the sepals of calys which have been removed: eg. iwo pairs of lotg stamens: ep the short ctameas: 1 . torus or thalerous to which the stameas are atuched
cells or pollen utricles, formed in the interior of the pollensacs of the young antber. These nother-cells are either separated from one another and float in the granular fluid which fills up the cavity of the pollen-sac, or are not so isolated. A division takes place, by which four cells are formed in eaed, the exact mode of division differing in Dicotyledons and Monocotyledons. These cells are the pollen-cells or grains. They increase in size and aequire a cell-wall, which becomes differentiated into an outer enticular layer, or extine, and an inner layer, or intine. Then the walls of the mother-eells are absorbed, and the pollen grains float freely in the fluid of the pollensaes, which gradually disappears, and the mature grains form a powdery mass within the anther. They then either remain united in fours, or multiples of four, as in some Acacias, Periploca greca, and Inga anotnala, or separate into individual grains, whieh by degrees become mature pollen. Oceasionally the membrane of the pollen-cell is not completely absorbed, and traces of it are detected in a viscous matter surrounding the pollen-graids, as in Onagracea. In Orchidaceus plants the pollen-grains are united into masses, or pollinia (fig. 298), by means of viscid matter.

Fio. 22s.-Follinia, or pollen-minsea, surnated frem the polnt above the stlama whth their retinaculs or viacid matter atiachiop then at the base. The pollen masses pare supported on stalles or cauliciesc. These masses are castity detacbed Uy the agency of inaccts.
 b, pollen-masses, retoored from the st'kma, united by a gelupd-llke body.
 r.

In Orchids each of the pollen-masses has a prolongatiun or stalk, called a caudicle, which adheres to a prolongation at the base of the anther, called rostellum, br means of a viscons gland, called retinaculum. The gland is either naked or covered. The term clinandrium is sometimes applied to the part of the column in Orchids where the
stamens are situated.: In some Orchids, as Cyprpedium, the pollen has its orduary character of separate grams. The number of pollinia vartes, thos, 10 Orebis there are usualiy two, in Cattleya four, and in Lielia elght. The two pollina in Orchis Morio contan eaeh about 200 secondary sualler masses. These small masses, when brused, divide into grains which are united in fours. In Asclepiadacea the pollina are usually united in pairs (fig. 229), belonging to two contiguous antherme cavities,each pollen-mass having a caudicular appendage, ending in a common glaud, by means of which they are attached to a process of the stigma. The pollina are also provided with ne appendicular staminal coverng (fig. 230).

When matnre, the pollen-gram is a cellular body having an external covering extene, and an internal, intene. Fritzsche states that be has detected, in some cases, other two coverings, which be calls intextine and cxmene. They occur between the extine and intiue, and are probably formed by foldings of these membraves. In some aquatics, as Zostera marina, Zanuichellia pedunculata, Naias muor, de., only one covering exista, and that is said to be the intine. The extine is a firm membrane, which detines the figure of the pollen-grain, and gives colour to it. It is eltber smooth, or covered with numerous prajections (fig. 231), granules, ponts, minute hars, or crested reticulations. The colour is generally yellow, and the ${ }^{\circ}$ surface is often covered with a mseid or only matter. The intine is uniform in different kinds of pollen, thin ind transparent, and possesses great power of estension.

Pollen-grains vary from $\frac{1}{300}$ to $\frac{1}{00}$ of an moch or less in diameter. Their forms are various. The most common form of grain is ellipsoidal, more or less narrew at the extremities, which are called its poles, in contradistunction to a line equidistant from the extremities, and which is its equator. Pollen-grains are also spherical, cylindmeal and curved, as in Tradescantia virginica; polyhedral in Dipsacacerand Composite: nearly trangular in I'rotence: and Onagracere (fig. 232). The surface of the pollen-gram 18 either uniform and homogeneous, or it is maked by

Fig. 232

Fig. 234

Fio. 231.- Ripe round palien of Hollyhock (Althata), with lte extine covered with Frominent joints
Fir. o32. -Trlangislar pellen of Evening Primrase (C nothera). with one pollen nilie, f, protruted. This tube la lomaed by the intine, whieh is ylso seen prnjecting ot the other ungles
Fig. 233.-kipe rounded pollen of Cherry (Cerasus). discharging lts fovilia throngh otubitar opening formed ty tho Intine. There ore ather two points at which the insine se acen proturinge
Fic. 234 - Male fow(rr of Pellitory (Pariftarta oftcinalfs), having four etamens with incurved clastie filuments, And an ahortire pisth in the centre. When the peranth expands, the filameri* are thrown out with force, so ss to ocutter the polten on the fernale flowers in :ho cinley
folds dipping in tormards the centre, and formed by thinbangs of the membrane. In Monocotyledonous plants there
is usually a single fold; th Dicetyleduns, oten three. Two, four, six, and even twelpe folds are also miet with. There are also rounded portions of the membrane or points of perforation or pores visible in the pollen-grain. These vary in number from one to fifty. In Monocotyledons, as in Crasses, there is often only one, while in Dicotyledons they nuraber from three upwards. When numerous, these points are either scattered irregularly, or in a regular order, frequently forming a circle round the equatorial surface. Sometimes at the place where they exist, the outer membrane, in place of lemg than and transparent, is separated m the fom of a hid, thus becoming operculate, as in the Passion-flower and Gourd. Grains of pullen have sometimes both folds and pores. Within the prillengran a granular semfluid matter called forlla is contamed, along with some only partides, and occasionally starch. The fovilla contains small sperical grannles, sumetmes the $\overline{00000}$ of an meh in diameter, nad large ellipsodal or elongated corpnocles, which exhbut molecular movements under the microscope. The :pplication of monsture affects very markedly the pollen-grain, catusing it to swell up by endosmose. If the n-onsture be long alplied the distension becomes so great as to rupture the extme irregularly if it is humogencons, or to cause projections and final rupture at the folds ur pures when they exist. The mene, from its disteasibility, is not so liable to rupture, it is often forced through the ruptured extine, or through the pores, in the form of suall sac-like projections. The aternal mendrane ultamately gives way, and allows the gramular fowlla to escape (fige 233). If the flund is aplicd only to one side of the fullen-gram, as when the prollen is appled to the pistu, the distension goes on more slowly, and the intane as prolonged votwards like a herma, and forms an clongated tabe called a pollen-tube (Eg. 232). This tube, at its Lase, is often covered by the ruptured extine, and it contanis in its interior fovilla-granales. The mumber of pollen-tubes which may be produced depends on the number of pores. In some pulmia the nomber of tubes which are formed 15 enormons. Thus, it has been calculated that two pullenmasses of Orchis Morio may give out 120,000 tubes.

When the pollengrains are ripe, the anther dehisces Pollmatuon (figs. 175,223), and the pollenis shed. In order that fertiliza. tion may be effected the pullen must be conveyed to the femate organ of reproduction. This process, termed pollua. tion, is prometed in varous ways,-the whole furm and structure of the flower laving relation to the process. In some plants, as Kalma and lellitury (fis. 234), the mere elasticity of the filaments is sufficient to clfect this; in other plants pollination is effected by the wand is in Comitere. and in such cases cnormous quantit's of pollen are produced. These plants are anemozhious But the common agents for pollimation are usects To allure and attract then to visit the flower the odonferons secretions and gay colunrs are developed, and the prostion and complicated strocture of the parts of the flower are adapited to the perfect performance of the process. It is rare in hermaphrodite flowers for self-ferthazation to occur, and the various forms of dichogamy, duorfhsm, and trmorphem are fitted to prevent this.

Uader the term disk is included every structure inter- Diak vening between the stamens and the fistil It was to sucb structures that the name of motury was applied by old authors It presents great vanetics of form, such as a ring, seales, glands, hairs, petaloid appendages, \&c., and in the progress of growth it often coutaims saccharine matter, thus becoming truly nectariftrons The dish is frequently formed by degeneration or transformation of the staminal row. It may consist of processes rising from the torus, alternating with the stamens, and thus representing an abertive whorl or its parts may be oppu-
site to the stamens, as in Crassula rubens (fig. 178). In some flowers, as Jatropha Curcas, in which the stamens are not developed, their place is occupied by glaudular bodies forming the disk. In Gesneraceæ and Crucifere the disk consists of tooth like scales at the base of the stamens (6g. 227). The. parts composing the disk sometimes unite and form a glandular ring, as in the Orange; or they form a dark-red lamina covering the pistil, as in Pæonia Moutan (fig. 235) ; or a waxy lining of the calys tube or hollow receptacle, as in the llose; or a swelling at the top of the Plase Vil. ovary, as in Umbellifere, in which the disk is said to be epigynous. The enlarged torus

Fig. 235.
Flower of Tree Pxony (Promia Sfoutan), deprived of its corolla, and showing tho diek In the form of a fleshy expansion coveriag the ovary. covering the ovary in Nymplea and Nelumbium may be regarded as a form of disk.

2. Male Organs in Cryptogams.

Yale organs. Cryptogaras.

Sexual organs have not as yet been demonstrated in all Cryptoganic plants; but in most of them certain structures representing the male organs have been found. These are termed Autheridia or Pollinodia (figs. 236, 250). They are closed sacs of various forms,-rounded, ovate, oblong, clavate, flask-like, sec.,-developed from various parts of the plants, and composed either of one or of many cells enclosing a single central cell. In the interior of this organ small cells (fig. 236, c) are formed of varying shape, containing in their interior peculiar bodies, termed antherozoids, spermatozoids, or phytozoa (fig. 237). These are in most rases filamentous spirally coiled cells, frequently with cilia

1F10. 236.-Antheridium a of the Hair-moen (Potulrichum), conaisting of cellulea 6. contaning pbytozo colled up in their interior. The phytozos bave a thickencd extremity, whence procceds a thpering tall-like procens Along with the antherldium are two sepalate filuments ol paraphyses p, which arc probably sbortive antheridia
E10. 237.-A spermatozold with cilta dincharged from a cellule In the aotherldlum of tho Fonked Spicenwort (Asp/amum septentmonale)
Fio. 238. - Antheridium a, or zootheca, of a Sea-wced (Furus seratus), containing phytozos. With tho untherdium there are paraphyses united in tho satac paytozos.
Fto. 239.-Aatherldum of a Sea-weed (furus serratus), atil consaining two phytozen in the sac. To tho broad part of the phytozoa two vibrable cilia aro nttuched.
Fto. 240 . - Axis of Chara, with braches from the axil of which arbses the nucule n : below them is the glotule g.
Fio 241,-Globule of Chara, being a rounded body with elight tadiating valrow extornally, ad tlaments containing phytozoary ceils laternally.
attached, by means of which they move rapidly through the water. In so:nc cases there are no cilia, as in the Algal group of Floridex: and the antherozoids of all Alge differ
from those of other Cryptogams in never being filamentous, but short and more or less rounded. The amount of tristing of the antherozoid varies; in some Rhizocarps there are as many as a dozen coils. Antheridia of this kind have been demonstrated in all vascular Cryptogams, but only in some Thallogens have such structures been seen.

In Characex, bowever, the antheridium, which is here termed globule (fig. 240), has a peculiar structure, differing from all other Cryptogams. It is a globular case, formed by eight flat cells, of which four are quadrangular and four are triangular; and these are folded at the margins so that the edges of contiguous plates dovetail (fig. 241). These are termed shields. Into the cavity of the globule the terminal cell of the stalk supporting it projects. From the centre of each shield projects on the inner surface a large oblong cell or manubrium, which in turn bears at its apex a round. ish cell termed the head. From each head-cell six secondary head-cells project, from each of which pass off fourslender separate flaments (fig. 242) containing antherozoids.

Fig. 242
Partitioned filament of Chara, consisting ol a gerices of cellules coataining phytozos one of which is seed escaping in the for of a apiral turead. When mature the autheridium is ruptured, and the mother-cells of the antherozoid escape and discharge the antherozoids into the surrounding medium which is always water-fertilization only beng effected in water, by which the antherozoids are carried to the female orgao In some cases, however, among Thallogens the antheridium actually penetrates into the female organ

Autheridia are produced on various parts of plants. Where they have been found amongst Thallogens, they arise from definite portions. of the cellular thallus. In thalloid Hepaticæ they may be sunk in the substance of the thallus, or they may be imbedded in the upper surface of a peltate stalked disk rising from the thallus, as in Marchantia (fgs. 243, 244). In Mosses they may be seated within the same whorl of leaves or perichetiom as the female organs, or they may bo separate and surrounded by a perigone; but they are always formed upon the leaf-bearmg asis, either terminal or lateral. In Ferns and Equisetom they are produced on the surface-usually the lower surface-of a cellular flaticned expansion, terned a prothallus (figs. 245, 250), in close prosimity to the female organs. In Charace: they always arise from the termination of one of the whorled leaftets.

In some Lycopodiacce no antheridia have as yet been found; but in Selaginella, Isoctes, and in the Rbizocarpex, hollow sacs, termed microsporangia (fige 246. 248), are produced in the axil of certain leaves of the
plant, in which small cells, microspores (ig. 249), are found, each consisting of an outer covering or exospore, and an inner or endospore. Within those microsperes (the manner varying in different gevera) smaller cells are formed, which are the mother-cells of the antherozoids. In this

Fig. 244.
Verical ecettion of the disk-luko receptacle of Lilverwort (ifa, chantia), bhowlag antherldia o, a in its subatence. These antheridin aro fisk-shaped eacs contalntog phrtozoary cellis. They commanieste with the upper uurface, and aneir coatente are diacharged through it. Between the antberidia there ore atr cavilices f, c, connected with etomats f, a.
development of Lycopodiacea we have parts which are analogous to thoss of the stamens in Phanerogams. The microsporangium evidently corresponds to the poilea-ssc, and the microspores are the equivalents of the pollesgrains, -the forms seen in such Gymnosperms as Cycadaceæ being the link connecting then with the highest forms.

FIg. 245.

Fig. 246.

Fig. 248.

Fig. 249.

Fig. 250.

Fig. 247.

Fig. 245.-Spores, of a Forn (Pteria longifolia) aprouting, gluing of a root-1ike process, r, and a flat celluler expanston. f, calied the prothallus or prothallum.
On thie expension antherlds and plotudala aro asid to oceur
Fig. 246.-Fructification of Club-hiose (Lycogodium), sttuated in the exil of e seaf, ? It consists of a case contalaing minote cellular bodics, which ere discharged in the form of powder.
Fig. 247. - Fructillestlon of a Ciub-3 ass (Lycepodium claratum). The branch is eavered with minute pointed leaves, f; from th pruceeda a otulk learlag et fts extrcmity two apikes. f. consisting of molifed learcu, Fith fractification.
10. 24 S .- Ono of the ceses scparated from the sxill of the Clab-3 oss leaf, opealag by two ralves, and discharging the minute Lycopod porder (microsporea).
 cogtalating spermetozolds Some of the spermatozolds are eeparate, and aro eeen colled np in aplral form.
Fin. 250.-Antherldic from the prothallus of the Commoo Brake (Ptors oquilina) a. an mopened anthertdare; b, antheridiam barsting as the eper, ad dis chargiar free cellules, eech containing e epermatozold; c, sntheridium afte. the dlacharge of the celluies.

3. Female Organs in Phanerogains.

The pistil or gyncecium occupies the ceatre or axis of the
flower, and is surrounded by the stamens and floral envelopes when these are present. It constitutes the innermost whorl, and is the female organ of the plant, which after the pistil flowering is changed into the fruit, and contains the seeds. It consists essentially of two parts, a bassl portion forming a chamber, the ovary or germen, containing orules or yount seeds attached to a part called the placenta, and an upper portion, the stigma, a cellular secreiting body, which is either seated on the ovary, and is then called sessile, as in the Tuiip and Poppy, or is elevated on a stalk called the Flate I, style, interposed between the ovary and stigma. The style

Fig. 251.

Fig. 252.

Fig. 253.

F10. 251.-Folded carpellary lest of the double-flowering cherry. In piace of frut the plent produces lesvea
 is apsempous, conslatigg of everal distinct carpels c, each with ovary, atyle. Fio 253 gma. We grameno aro brachmite, and eroluscrted into the caly工 Fia. 253-Plstid of Droom, comststing of ovary 0 . style t and bligrate It is
 is aot necessary for the perfection of tan pistil. Like the tren V. other organs, the pistil consists of one or more modified leaves, which in this instance are called carpe's. When a pistil consists of a single carpel it is simple or mizocarpellary (fig. 253), a state usually delending on the t.ondevelopment of other carpels. When it is compersed of several carpels, more or less united, it is compound or polycarpellary: In the first-mentioned case the terms carpel and pistil are synonymous. Each carpel haz its own ovary, style (when present), and etigma, and is formed by a foldcll leaf, the upper surface of which is turned inwards towards the exis, and the lower outwards, while from its margins are developed one or more Luds called overles. That this is the true nature of the pistil may be seen by camining the flower of the donbleflowering Cherry. In it no fruit is produced, and the pistil consists of sessile leaves (fig. 251), the limi of each beiag green and folded, with a nartow prolongation upwards, as if from the midrib, and endiag in a thicknaed portion. The ovary then representa the limb or leniza of the leaf, and is composed of cellular tissue with firovascular bundes, and an epidermal covering. The cellular tissuo, or parenchyma, often becomes much developed, is will be seen particularly when fleshy fruits are conside:cd. The cuter epidermis corresponds to the lower side of the leaf, exhibiting stomata, and sometimes hairs; the inner surface represents the upper side of tho leaf, being usuaily very delicate and pale, and forming a layer called sometimes epithelium, which docs not exhibit stomata. The vascular bundles correspond with the veins of the leaf, and consist of spiral, aasular;, and other vesscls. In Cycas the carpels Ple:exv. are ordinary leaves, with ovules upon their margin.

A fistil is ususlly formed by more than one carpel. The carpels may be arranged like leavcs, eithcr at the same or nearly the same height in a verticil, or at different heights in a spiral cycle. When they remain separate and distinct, thus showing at once the composition of the pistil, as in Caltha, Ranunculus, Hellebore, and Spiraa (fig. 252), the term apocarpous is applied. Thus, in Crassula rubens (fig. 172) the pistil cousists of five verticillate carpels o, alternating with the stamens e. In th Tulip-tree and Ranuaculus (fig. 254) the separate carpels are numerous and are arranged in a spiral cycle upon an elongated axis or receptacle. Ia the Respberry the carpels are on a conical
receptacle; in the Stramberry, on a smollen succulent one (fig. 154); and in the Rose (fig. 155), on a hollow one. When the fruit consists of several row's of carpels, the innermost have their margins directed to the centre, while the margins of the outer rows are arranged on the back of the inuer ones. When the carpels are unted, as in the Pear, Arbutus, and Chickweed, the [mstul becomes syncar. pous. The number of carpels in an apmearpous pistil, or the number of separate styles in a syncarpous one, is indicated in the following way:-
A flower with a simple pistil or 1 styla
is Monogynous.
2 separate carpels or a separate styles
3 carpels or 3 separate styles 4 carpels or 4 geparate styles 5 carpels or 5 separate styles 6 carpels or 6 separate styles 7 carpels or 7 separate styles 8 carpels or 8 separate styles 9 carpels or 9 separate styles 10 carpels or 10 separate styles 12 carpels or 12 separate styles is Dodecagynous a greater number of carpeld or styles is l'olygynous.
The unoo in a syncarpous pistil is nat alrays complete; it may take place by the ovaries alone, while the styland stigmata remain free, the pastil being then gamegastrons (6ig. 255), and in this case, when the ovaries form apparently a single body, the organ recenves the name of compound ovary; or the union may take place by the ovaries and styles, while the stigmata are disunited, or by the stigmata and the summit of the style only. Varmons intermedrate states exist, such as partial uaion of the ovaries, as in the Rue, where they coalesce at their hase : and partual union of the styles, as in Malvacer. The union is usually most complete at the base; but io Labatae the styles are uoited throughout thear length, and in Apocynacere and Asclepiadacere the stagmata only. When the union is incomplete, the number of the parts of a compound pistil may be determined by the number of styles and stigmata; when complete, the external venation, the grooves on the surface, and the internal divisions of the ovary, modicate the number. The changes which take place in the pustil by adhesion, degeneration, and abortion, are frequently so great as to obscure ita composition, and to lead to atumatios

 (hypurfienin)

 Fis pentagynoly

The pistil is more liable to changes of this kind than any other part of the flower. The carpels are usually
sessile leares, but sometimes they are petiolate, and thes are elevated above the external whorls Tha slevater of the pistil may in general, however, be traced to an elongation of the axis itself, in such a way that the carpels, in place of being dispersed over it, arise only from its summit, and the pistul becomes stipitaie, or supported ob a stalk called a gynophore or thecuphore, as in the Passion-flower and Dietamnus (fig. 177). Sometrmes the axis is produced beyond the ovaries, and the styles become unted to it, as in Geraniacex (fig. 152) and Umbelliferx. In this case the prolongation is called a carpophore. A rase VIL monstrosity often necurs in the Rose (fig. 115) by which the axis is prolonged, and bears the carpels f in the form of alternate leaves.

The ovary contains the orules. These are attached to the the placenta. This, sometimes called the trophosperm, placents consists of a mass of cellular tissue, through which the vessels pass to the ovule. The placenta is usually formed on the edges of the carpellary leaf (fig. 256), and is then said to be of the marginal type. In many cases, however, the placentas are formations from the axis, and are not con nected with the carpellary leaves, they are then said to be axile. Some restrict the term placenta to the point of attachment of a siogle ovule, and call the union of placentas, bearing several ovules, plucentaries or pistillury cords. In marginal placentation the part of the carpel bearnig the placenta is the vener or ventral suture, corresponding to the margin of the folded carpellary leaf, while the outer or dorsal suture corresponds to the midnb of the carpellary leaf. As the placenta is formed on each margin of the carpel it is essentially double. This is seen in cases where the margins of the carpel do oot unite, but remain separate, and consequently tro placentas are formed in place of one. When the phstil is formed by one carpel the inmer margins unite in the axis, and form usually a common margmal placenta. This placenta may extend along the whole margin of the ovary as far as the base of the style (fig 256), or it may be confined to the base or apex only. When the pistil is composed of several separate carpels, or, in other words, is apocarpous, there are generally separate placentas at each of their margins. In a syncarpous pistil, on the other hand, the carpels are so united that the edgea of each of the contiguous ones, by their union, form a sptum, or dissepment, and the number of these septa consequently indicates the number of carpels in the compoind | pistul (fis: 257). It is obvious then that each dissepiment

 ovinty is sum to de lrilocular. The diemsonsin the asary, called septa or disempimenis afc fumed by the sides of the carpulary lenves. Each suptum ts double and the number of enpla corresponds with tha nutuber of the carpels. Tho
 to a centril placentr. forment by the union of the three wontral satures
 josed of fise cargets. the edpes of which are folded inwards, and mect in tha

 flarentux ble patcha, and the ovales ajpear sessule on the walls of the ovary The comparame sital! fs untocular, and the edeses of its carpels are apolied to cach other in a valeiblar masoer.
is formed ly a double wall or tro lamine ; that the presence of a septum implice the presence of more than one carpel, and that, wher cirpels are placed side by side, trme dissepimenta menst be vertical, and not horizontal. When the dissepiments extond to the ceutre or axis, the ovary is
divided intu cavities, cells, or loculaments, and it may be bilocular, trilocular (fig. 257), quadrilocular, quinqueiocular, or m:altilocular, according as it is formed by two, three, four, ftee, or many carpela, each carpel corresponding to a aingle cell or loculament. In these cases the marginal placentas meet in the axis, and unite so as to form a single central one (figg. 257, 258); and the ovules appear in the central angle of the loculi, as in Canna, Lily (fig. 257). The number of loculaments is equal to that of the dissepiments. When the carpels in a syacarpous pistil do not fold inwards completely so as to meet in the centre, but only partially, so that the dissepiments appear as projections on the walls of the ovary, then the or ary is unilocular (fig. 260), and the placentas are parietal, as is I Viola (fig. 26i). In

Fig. 260.

Fig. 261.

Fio. 260 - Dlagrommatle sectlod of a quingoelocuiar ovary, in which the septa a proceed fowind for a certsia leagth, bessing the placentas sind ovales 0 . Io this case the ovary is unilocular, and il e placentas are parietal. Golsum, l.
ion. 261 - Pistil of Hiola intcolor, or Pans!. 1. Veizleal sectibn to show the ovules o, atesched to the parletos. Two rows of orules are seen, one fo front, and the other th profle; p_{i} othickened line on the walls Iomming the placents; r, calyx; d_{1} ovary; s. booded stigma tert Inatiag the sbortstyle. 2. Honzontal ection o tae ssido; p, placanta; 0 , ovales; s, auture.
these instances the placentas n ay be fermed at the margin of the united contiguous leaves, so as to appear single, or the márgins may not be united, eacà c'evelopung a placenta. Frequently the margins of the carpels, which fold in to the centre, split there into two lamellx, each of which is curved outwards and projects into the leculament, dilating at the end into a placenta. This is well seen in Cucurbitacee (fig. 262), 1 yrola, \&e. From this it will be scen that dissepiments ar opposite to placentas fermed by the union of the marg ns of two codtiguous carpels, but alternato with these formed by the margins of the same carpel. The carpel ary leaves may feld inwards very alightly, or they may be applied in a valvate manner, merely touching at tleir margins, the placentas then being parietal (fig. 259), and appearing as liues or thickenings

Fig. 263.

Fig. 262.
Ti. 262 - Transperso sectlod of the falt of the Melon (Cureumb Helo), showing the placeotas pl, with the aceds attacbed to them. 77 e three carpels forming Bee pepo are separated of parelelons at. From the contre, processes 4 , go to dircurofereace f, ending in curved placertaries hearing the orvese
Fio. 263.-Diagtammatic section of a cowpond unflocular orary, In whlch there
ara no lodications of partitions. The oviles o sre $2 t h a c h e d ~ t r e s ~$ ars no ladications of partitions. The ovulee oo are ithached to a Iree ceotral placenta, which bas do condection with tho walls of the orary.
airng the walls. Cases occur, howerer, in which the placer:-s are nit connected with the palls of the ovary, and form what is called a free contral placenta (fig. 263).

This is seen in many of the Caryophyllaceæ and Primulaces. (figs. 264, 265). In Caryophyllaceæ, however, while the placenta is free in the centre, there are often traces found at the base of the ovary of the remaios of aepta, as if rupture had taken place, and, in rare instances, ovules are found on the margins of the carpels. But in Primulacex, Mýrsinacex, and Santalacex, no vestiges of scpta or marginal ovules can be perceived at any period of growth; the placeata is always free, and rises in the centre of the ovary, and the part uncovered by orules gradually exteads into the style. Free centril placentation, therefore, has been accounted for in two ways; either by supposing that the placentas in the early state were formed on the imargins of carpellary leaves, and that in the progress of development these leaves separated from them, leaving the placentas and ovules free in the centre; or by suppesing that the

Fig. 264.

Fig. 265.

Fio. 264.- Pistid of Cerostium hirsufum cut vertically. D andocular or monotiocal orary; p, liee central placenta; \quad, orulea; , styles.
Fia. 2is. - The sarue cut borlzontally, and the balres separated so as 10 storr the laterior of the cavity of the ovary 0 , with the fros coneral placuota p, covered with onules p. placeatas are not marginal but oxile formations, produced by an elongation of the axis, the ovules being lateral buds, and the carpels verticillate leaves, united together arouad tho axis. The first of these riews would apply well to Caryephyllacex, the second to l'rimulacee. The latter case has also been explained, on the marginal hypothesis, by considering the placentas as formed from the carpels by a process of chorisis, and united tagether io the centre.
Some consider the arile view of placentation as applicable to all cases, the axis in seme instanees remaining free and independent, at other times sending prelengations along the margins of the carpellary leaves, and thus forming the marginal placentas. Occasionaily, divisions take place in ovarics which are not formed by the edjes of contiguous carpels. These are called spurious dissepiments. They aro often herizental, and are then called phragmata, as in Cathartoearpus Fistula, where they censist of transverse cellular prelongations from the walls of the ovary, only developed after fertilization, and therefore more properiy noticed under fruit. At, other times they are vertical, as in Datura, where the ovaty, in place of being two-celled, bz comes four-celled ; in Crueiferx, where the prolongation of the placentas formsa replum or partition; in Astragalus and Thespesia, where the dorsal suture is folded inwards; in Oxytropis, where the veritral suture is felded inwards; and in Dipluphractum, where the inner margin of the earpels is inflexed. In Cucurbitacea divisions are formed in the evary arpareritly by peeuliar projections inwards from curved parietal placentas. In some cajes berizontal dissepinents are supposed to be formed by the union of earpels situated at difierent heights, so that the base of one becomes united to the apex of another. In such cases the divisiens are true dissepiments formed by carpellary leaves. The anomalous divisions in the ovary of the Pomegranate have beea thus esplained.
The ovary is usually of a more or less spherical or curved form, sometimes smooth and uaiform on its surface, at other times hairy and grooved. The groores usually indicate tha divisions between the carpels, and cerrespond to the dissepiments. The dorsal suture may be marked by a slight projection, or bya superficial groove. When the ovary is situated on the centre of the receptacle, free from the other whorls, so that its base is above the insertion of the strmanas it is
termed superior, as in Lychnis, Prinula, and Geranium (fig. 21i). When the margin of the receptacle is ejrolonged upwards, carrying with it the Roral envelopes and staminal leaves, the basal portion of the ovary being formed by the receptacle, and the carpellary leaves alone closing in the apex, the ovary is inferior, as in Pomegranate, Apple, Pear, Gooseberry, and Fucasia. In some plants, as many Saxifragacere, there are intermediate forms, in which the term half:inferior is applied to the ovary, whilst the floral whorls are halj-superior.

The style proceeds from the summit of the carpel, and may be looked upon as a prolongation of it in an npward direction (fig. 267). It is hence called apicilar. It consists not merely of the midrib but of the vascular and cellular tissne of the earpel, and when carefully examined is found to be traversed by a narrow canal, in which there are some loose projecting cells, a continnation of the placenta, constituting what is called conducting tissue, which ends in the stigma. This is partieularly abondant when the pistil is ready for fertilization. In some eases, awing to more rapid growth of the dorsal side of the ovary, the style ;becomes lateral (fig. 266); this may so increase that the style appears to arise from near the base, as in the Strawberry, or from the base, as in Chrysobalaans Icaco, when it is called basilar. In all these cases the style still indicates the organic apes of the ovary, although it may not be the apparent apes. When in a compound pistil the style 'of each carpel is thus displaced, it appears as if the ovary were depressed in the centre, and the style rising from the depression in the midst of the carpels seems to come from the toras. Such a style is gynobasic, and is well seen in Boraginacer and Ocbuacea. The form of the style is usually cylindrical, nore or less filiform and simpIg; sometimes it is grooved on one side, at other times it is flat, thiek, angular, compressed, and even petaloid, as in Iris aed Canaa. Ia Goodeniaceee it ends in a caplike expan. sion, enclosing the stigra. It may be smooth and covered with glands and hairs. These hairs oceasioualy aid in the application of the pollen to the stigma ; and are called collecting hairs, as in Coldfussia, in Campanula, where they appear double and retractile, and slso in Aster and other Composite. These hairs, during the upward development of the style, come into contact with the already

Fig. 266 Fig. 267.

Fig. 269.

In Vicia and Lobelia the hairs freatently form a quft below the stigma. The styles of a syncarpons pistil may be either separate or united; when separate, they alternate with the septa. When united completely, it is usual to call the style simple (fig. 267); when the union is partia!, then the style is said to be bifid, trifid, multifid, according as it is twocleft, three-deft, many-cleft; or, to speak more correctly, according to the mode and extent of the union of two, three, or many styles. The style is said to be bupartite, tripartite, or multipartite, when the union of two, tbree, or many styles only estends a sbort way abore the ajex of the ovary. The style of a single carpel, or of each caruel of a compound pistil, may also be divided. Each division of the tricarpellary ovary of Jatropha Curcas has a bifurcate or forked style, and the ovary of Emblica officinalis has three styles, each of which is divided twice in a bifurcate manner, exhibiting thus a dichotomous division. The length of the style is determined by the relation which ought to subsist betreen the position of the stigma and that of the anthers, so as to allow the proper application of the pollen. In sume cases the orary passes insensibly into the style, as in Digitalis, in other instances there is a Plai< 8 I marked transition from one to the other. The style may remain persistent, or it may fall off after fertilization is aecomplished, and thus be deciduous.

The etigina is the termination of the conducting tissue The atereu of the style, and is nsually in direct communication with the placenta. It may, therefore, in most instauecs, be considered as the placental portion of the carpel, prolonged upivardš́. In Armeria, and some other plants, this connec tion with the placenta cannot be traccd. The stigma consists of loose cellular tissuc, and seeretes a riscid matter rhick detains the pollen and causes it to protrude tutes. This secreting portion is, strictly speaking, the true stigma, buit the name is generally applied to all the divisions of thi style on which the stigmatic apparatus is situated. The stigma alternates with the dissepiments of a byncarpous pistil, or, in other words, corresponds nith the bscir of the loculaments; but in some cases it would appear that half the stigma of one carpel unites with half that of the con tiguons carpel, and thus the stigma is opposite the dissepiments, that is, alternates with the loculaments, as in the Poppy. If the stigma is viewed as essentially a prolongation of the placenta, then there is no necessary alternation betweel it and the placenta, both being formed by the margins of earpelary leaves, which in tho one case are oruliferous, in the other stigmatiferous. There is often a netch on one side of a stigma (as in some Rosecer), indicating appsrently that it is a double organ like the placenta. To the division of a compound stigma the terms tiful, as in Labiate, Composita, trifid, as in Polemonium, \&c, are applied, according to the number of the divisions. When the divisions are large, they are called lobes, and wheu flattened like bands, lameller; so that stigmas may be bilobate, trilobate, bilamellar, trilamellar, \&c.

It bas already been stated that the divisions of the stigma mark the number of carpels which are united togethor. A quinquefid or five-clcft stigma iodicates five carpels, as in Campanula, although the other ports are united. In Bignoniacce, as well as in Scrophulariacete and Acanthacere, the two-lobed or bilamellar stigona indicates a bilocular ovary. Sometimes, however, as in the case of the styles, the stigma of a single carpel may divide. It is probable that in many instances what is called bifurcation of the style is only the division of the stigma. In Graminex and Compesite there is a bifid stigma, and only one cavity in the orary. This, however, may be probably traced to subsequent abortion in the ovary of one of the caruels. Its position mas bs torminal or lateral : either on one side of the style, uni
!ateral, as in Asimina, or on both siiies, bilateral, as in Plantago. Oceasionally, as in Tasmannia, it is prolonged llong the inner surface of the style.. In Iris it is situated on a cleft on the back of the petaluid divisions of the style (6ig. 268). Some stigmata, as hose of the Mimulus, present sensitive flattened laminæ, which close when touched. The stigma presents various forms. It may be globular, as in Mirabilis Jalapa; orbicular, as in Arbutus Andrachue; umbrella-like, as in Sarracenia, where, bowever, the proper stigmatic surface is benenth the angles of the large expansion of the apex of the style; ovoid, as in Fuchsia; hemispherical ; polyhedral; rodiating, as in the Poppy (fig. 269), where the true stigmatic rays are attached to a sort of peltate or shield-like body, which may represent depressed or flattened styles; cucullate, i.e., covered bys a hood, in Calabar Bean, where it is situated on the apez of a declinate style, bearded (hairy) on its concave surface The lobes of a stigma may be llat and pointed, as in Mimulus and Bignonia, fleshy and blunt, smooth or granular, or they may be feathery, as in many Grasses (fig. 213). In Orchidacea the stigma is situated on the anterior surface of the column formed by the union of the styles and filaments, - the point where it occurs being called gynizus. In Asciapiadacere the stigmas are united to the face of the authers, and along with them form a solid mass (fig. 229).

Transformations of the pistil are of frequent occurrence, and depead generally on abortion of a certain number of carpels, and on adhesions of various kinds. In the apocarpous pistils of Aconite, Nigella, Larkpur, and Prony, we find on the same plant pistils composed of two, three, four, five, and six carpels. In some of the Brambles, all the carpels except one have been observed to disappear, thus making the fruit resemble that of the Plum. In the case of Leguminous plants there is usually only a single carpel, although the Hower is pentamercus; this state has been traced to abortion of carpels, and the view is confirmed by finding plants in the same natural order with more than onc carpel. Pistils of a succulent nature, such as those of the Sloe and Bird-cherry, somotimes assume the form of a pod, like that of the l'ea Oceasionally stameas are changed into carpels, and at other times the earpels are transformed into stamens, and bear pollen.

The ovale is the body attached to the placenta, and destined to become the seed. Ovules are most usually produced on the margins of the carpellary leaves, but are also formed over the whole surface of the leaf, as in Cupressus. In other instances they rise from the floral axis itself, either as terminal buds, as in Polygonacere and Piperacex, or as lateral buds, as in Primulacee and Composita. The ovule is usually contained in an ovary, and all plants in which the ovule is so enclosed are termed angiospermous; but in Conifere and Cycadacea it is generally considered as having no proper ovarian covering, and is called naked, these orders being denominated gymnospermous The gymnospermal view is not adopted by all botanists. some maintaining that there is a true ovarian tst $X V$, covering In Cycas the altered leaf, upon the margin of which the ovule is produced, and the peltate seales, from which they are pendulous in Zamia, are regarded by all botanists as carpellary leaves But in the Coniferio great discussion has arisen regarding the morphology of parts in many genera; seme considering the scales at the base of the scaly bracts of the cone as a placental process growing from the bract, whieh is thus a carpellary leaf opened out and bearing a sessile ovule, the whole cone representing a single flower; while others, again, regard the scale as an ovular integument, and the orule as being destitute of orary, the outer scales being bracts, and the cone therefore bieing an inflorescence. The carpellary leaves are sometimes
united in such a way as to leave an opening at the apex of the pistil, so that the ovules are exposed or seminude, as in Mignovette. In Leontice thalictroides (Blue Cohosh), species of Ophiopogon, Peliosanthes, and Stateria, the ovary ruptures immediately after flowering, and the ovules are exposed; aod in species of Cuphea the .placenta ultimately bursts through the ovary and corolla, and becomes erect, bearing the exposed ovules. The orule is attached to the placenta either directly, when it is called sessile, or by mesns of a prolongation called a funiculus, umbilical cord, or podosperm (fig. $270 a, f$). This cord sometimes beeomes much elongated after fertilization. The part by which the ovule is attached to the placenta or cord is its base or hilum, the opposite extremity being its apex. The latter is frequently turned round in such a way as to approach the base. . The ovule is sometimes embedded in the placenta, as in Hydnora.

Fic. 2\%0.-Toung oralo of Celandine (Cheiadontum majus) tefore its covering are derelcpod. It conslsts of the nucleuen, which at thas stake of growth is Thas polat is called tbe chalaza. Fig. ofva.-Thr orule of Polye.
cont s or the eecundire, and the outer cont p or the $\boldsymbol{n}_{\text {, coverat by the inner }}$ the secundine, end, is called tho endor cont $p_{\text {, or }}$ or the phimine. The openirg in otome. The polat of the nucleus is seea projocting at profno, ex, is the croby which the orvale is attached to the placenta is maghed tho foramea. The eod Fio 271.- Orthotronous or orthotropal placenta is marked $/$.
sac s, in the nucleus n, the different ovalar coverngen, the binge of the embryochalaza ch, and the upez of the ovale with its foramen matac of the nucletis on Fig. 272.-Vertical secton of the ovule of the Austrisn
showlan the nucleus a, coaslatiog of delicnte cellulur tisene (Pinur austriaca), In its substance an embryo-sac b formed hefole cellulut tisnue contalaing deep cence of serical amries of a few ccils. The minprepuation by the corles. through it the pollon-kratns come into coneact with the cele is very wide, and into tbe substance of which they sead thefret tubce. the suatwit of the oucleas.
 from the phacenta. The cells roultiply until they assume a more or less enlarged ovate form, constituting what has been called the nucleus (fig. $270, n$), or central cellular mass of the ovule. The nucleus may remaia nakcd, and alone form the oxule, as in Balanophoraceex, Santalacex, \&e.; but in most plants it becomes surrounded by certain coverings or integuments during its development. Theso appear first in the form of cellular rings at the base of the nucleus, which gradually spread orer its surface. In somo cases only one covering is formed, especially amongst gamopetalous Dicotyledons, as in Composite, Campanulacere, also in Walnut, \&e. But usually besides the single covering (fig. 270a, s) another is developed subsequently (fig. 270a, p), whieh gradually estends over that fir:s formed, and ultimately covers it completely, except at tho apex. There are thus twe integuments to the nucleus, an outer and an inn=r, ealled respeetively primine, p, and secundine, s,-the te:ms having refrence to their posilion as regards the nueleus and not indieating the order of development. The name tercine has been given to the outer layer of cells of the nuclecis. The integuments de net completely invest the apex of the nucleus, but an opening termed the foramen or micropyle is left. This foramen in most ovoles extends through both coats, the opening in the primine (fig. 270a, ex) being the exostome; that in the sccundine (fig. 270a, end) being the endostome. But in many Monocotyledons the exostome has no share in the formation of the micropyle. The microgyle indicates the organic apez of the ovule. The term micropyle is sometimes restricted to the foramen in the perfect seed. The size
of the micropyle depends on the development of the nucleus, as well as on the thickaess of tha integumenta Where the integument is very thick and the nucleus small, the micropyle is a long canal, as in Hippuris, but more usually the pucleus is large, and the integuments reduced to a few layers of cells, and in this case the micropyle is correspondiagly reduced. The nucleus alters in the progress of growth 80 as to ba prepared for the develnpment of the embrgo in its intertor A siagle cell of the nucleus near its centre edlarges greatly until it forms a holluw cavity surrounded by the smaller cells of the nucleus This cavity is the embryo sar (fig 2i4, s), and the protoplasmic contente have been termed the amnus This embryosac increases in size, gradually supplanting the aurroundiag cellular tissue of the nucleus unthl it remains aurrounded only by a thin layer of it, or it may actually extend at the apes beyond it, us in Phaseolus and Alsioe media; or it may pass into the micropyle, as in Santalum In Gymnosperms it usually remains deep io the nucleus and surrounded by a thick mass of cellular tissue (fig 272) In Veronica, Euphrasia, and many Labiatæ, the neck of the embryo-sac becomes elongated and swollen, and from it are developed certain vermiform or filamentous appendages, which ara probably connected with the nutrition of the embryo. In some cases more than one embryo-sac is formed. This occurs in gome gymnospr-mous plants, as the Yew, and it is also seen in Crucifere In the Mistleto several sacs are formed, but it $1 s$ doubtful whinther in this case geveral ovules have not coalesced Us- . nly one becomes fully developed. When the embryo sac bas reached a certain stage of growth, a development of cellular tissue takes place withio it by free cell formno:- This occurs en all gymnosperroous plants, and constitutes wat is 'anown as the endosperm (fig 280, b). In angiosnermous plants the sudosperm is not formed until after fertilization, and it is rare to find any epecial devclopment of cellular tissue within the embryo-sac before fertilization. But in some cases at the hase of the embryo-sac a few cells are formed, which have been termed antipodul cells, and are frequently afterwards absorbed, or may be incorporated in the true endosperm when it is formed. The further processes ol growth in gymoospermous ovules on the one hand, and angiospermous ovules on the other, differ so much that they must be noted separately.

At the apes of the embryo-sac io gymonosperms, two or more cells of the endosperm enlarge so as to form what have been termed corpuscles (fig. 273). Each of these divides so as to form a large lower termiaal or central cell, and an

Fig 273

Fig 274

Fig. 275

Fio 273 - Vertical section of the embryo-sac 0 . and of part of the nuelcas a, of the orale of thic weymouth F'me (Pinus Strobes) at the micropylar end of the embryo-sse two cells, called compuacles. d, bave made thelr sppearance Each of these is at first acparated from the inner surface of tho micropylar end of the are by a sloglecell, whels afterwards divides thte four, leasing a pas Gage trom the burface of the anc down to the corpuscle. The pollen-gratina on the gumimit of the nucleus, then mends down a tube wbich perferstes the edhbryo-sac, and reactics the colpascle through the intercellular canal
Fro 274-Dhagram of ovile of Polyghum, showing the nucleas n, nod the embryosac s, containfig a vastele or germanal cell c, formed before impreg. nation Tha cell, after fertlization, develope the thrst cell e of the embryo. The dort shading at the base marky the chalazin and the outer llaps ore tbe Dategument, the mincronylo being oproatte the chalazh
Fin 275 -Campylotropouy or cumpylotropal orulc of Wallfower (Cheronshus). showlag the funtculus f. which stanches the orute to the placents: p. the primine, s, the secundine, on the nuclean, eh, the chalaza The erule is curred opon itesif. so that tbe toramen is near the funleules
apper neck of smaller cells (stigmatic cells), appearing as four when viewed from above, enclosing a canal. From
the upper part of the ceotral cell at the bottom of the neck, a small portion is separated-the canal cell it is from a purtion of the central cell that, after fertilization, the embryo is formed. Those pasts all have great physiological amportance in connection with fertilization In angiosperms from the protoplasmic mass at the apex of the embryo sac by free cell formation two (rarely one) elongated ovoid cells are produced These are the germinal visacles (fig 274). In some angosperms as Crucus, Maize, \&c, the vestcles placed side by side are both equally elongated, to a considerable extent their lower ends are rounded, and there it is that the aucleus is fuund The upper end projects ioto the micropyle, and is marked by distiact strix longi tudinally This portion has been distinguished as the filiform apparatus. From the germinal vestcles after impregoation the embryo is furmed, only one vesicle developing. Thas bhform apparatus is cunsidered as correspondag to the canal cell formed from the corpuscula in gymnosperms, and it seems to serve for conducting the impregnating influence to the lower part of the central cell, In most angiosperms the germinal vestcles are flaced obliquely over each other-one attached to the aper of the sac, the ather lower down, and there is iu fifform apparatus Of these two vesicles the lower one alone forms an enabryo, the upper one perForming the same function as the filform apparatus of uther anginsperms, and the canal cell of gymnosperms. The point where the miteguments are united to the base of the nucleus is called the chaluza (fig 278 , ch) This is often coloured, is of a denser texture than the surrounding tissue, and is traversed by fibrovascular bundles, which pass from the placenta to nourish the arule.

When the ovule $1 s$ so developed that the point of union between tha integuments and nucleus (the chalaza) is at the hilum (next the placenta), and the micropyle is at the opposite extremity, there being a short funiculus, the ovule is orthotropal, orthotropous, or atropous. This form is well seen in Polygonaceæ (fig. 271), Cistaceæ, and most gymnosperms. Jo such an ovule a straight line drawn from the bulum to the micropyle passes along the asis of the srule. Where, by more rapud growth on one gide than on the other, the aucleus, together with the integuments, is curved upon taelf, so that the micropyle approaches the bilum, and ultumately is placed close to 11 , while the chalaza is at the hilum, the ovule is campylotropal or campylolropous (fig. 275) when the portions on the two sides of the line bisecting the angle of curvature are unequal, or camptotropal wheu they are equal. Curved ovules are found in Leguminosa, Cruciferæ, and Caryophyllaceæ. Usually the opposite faces of the concavity of curvature of such ovules coalesce, and outwardly no iodication of curvature is visible; but in soma cases there is no coalition, and the ovule is lecotropal, or

F108. 276, 277 -Orale of Cheftofontum matu (cot longitodinaly in ig 277 to show the relation of its different parts) n, hillucs or umbllicus, chajeat. f. funiculos or umblical cold; r, rapbe, n, cuclens. fi, mecundine. u, primice: ed, endostome; ex, exestome.
F10 278 - Anatropous or enatropal ovale of Dandelton (Lecviodon Tararecum), thowing the coats of the orule wrrounding the oucleas m, which is inrerted, 60 that its base ch where the chalaza ex!sts, in remored from the base or buns of the ofule h. whlle the forsmen fis ocar the base The coanection betwaen the usse of the enule and the base of che cucleocat sinkept up Dy means of the rapher
borse-shoe slaped
The inverted, anatropal, or anatropous ovule (figs 276, 275, 278) is the commodest form amougst
angiosperms. In this orule the apex with the micropyle is turned towards the point of attachmert of the funiculus to the placenta, the chaiaza being situated at the opposite extremity; and the funiculus, which runs along the side usually next the placenta, coalesces with the ovale and coristitutes the raphe (r), which often forms a ridge. The anatropal ovule arises from the placenta as a straight or only slightly curved cellular process, and as it grows, gradually becomes inverted, curving from the point of origin of the integuments. As the first integument (secundine) grows round it, the amount of inversion increases, and the funiculus becomes adherent to the side of the nueleus. Then if a primine be formed it covers all the free part of the ovule, but does not form on the side to which the raphe is adierent. Some anatropal ovules, however, seem to be formed in a different manner, the nucleus arising as a lateral bud from the apex of the funiculus, as in some Composite. These may be taken as the three types of orule in the vegetable kingdom; but there are various intermediate forms, such as semi-anatropal, amphitropal, and heterotropal (transverse) ovules, where the funiculus is only, as it were, partially attacked along one side, becoming free in the middle.
The position of the orule relative to the ovary varies. When there is a single ovule, with its axis vertieal, it may be attached to the placenta at the base of the ovary (basal placenta), and it is then erect, as in Polygonaceze and Composite ; or it may be inserted a little above the base, on a parietal placenta, with its apex upwards, and then is ascending, $x s$ in Parietaria. It may hang from an apicilar placenta at the summit of the ovary, its apex being directed downwards, and is inverted or pendulous, as in Hippuris vulgaris; or from a parietal placenta near the summit, and then is suspended, as in Daphne Mezereum,
xint. Polygalacee, and Euphorbiacee. Sometimes a long funiculus arises from a basal placenta, reaches the summit of the ovary, and there bending over suspends the ovale, as in Armeria (Sea-pink); at other times tine hilum appears to be in the middle, and the ovale becomes horizontal, peltate, or peritropous. When there are two ovales in the same cell, they may be cither collateral, that is, placed side by side (fig. 257), or the one may be erect and the other inverted, as in some species of Spirxa and Esculus; or they may be placed one above another, each directed similarly, as is the case in ovaries containing a moderate or definite number of ovules. Thus, in the ovary of Leguminous plants (fg. 256), the orules o, are attached to the extended margioal placenta, one above the other, forming usually two parallel rows corresponding to each margin of the carpel. When the ovules are definite (i.e., are uniform, and can be counted), it is nsual to find their altachment so constant as to afford good eharacters for elassification. When the ovules are very numerous (indefinite), while at the same time the placeuta is not much developed, their position exhibits great variation, some being directed upwards, others downwards, others transversely; and their form is altered by pressure into various polyhedral shapes. In such cases it frequently bappens that some of the ovules are arrested in their development and beeome abortive.
The homology of the ornle is by no means the same in all plants. In sucb eases as Polygonum and Piperacee, it represents the termination of the floral axis, and therefore is of the nature of a caulome. Again, in such plants as Primulaece and Composite, it is produced laterally upor the asis, and therefore represents 3 leaf, the integuments represerting the lamina, and the funiculus the petiole,-the nucleus being an outgrowth from them. In some instances of malformation a transformation into these parts actually takes place. In cases where they are produced on the margin of the carpellary leaves (the usual mode), the urules cepresent lobes of a leaf, and in some cases of monstrosity,
as in Lelphinium elatum, they appear as lobes of the carpeliary leaf, whilst in Cupressus they are evidonsly outgrowths of the leaf. Further, the orules in Orehidacese must be considered as mere trichomes, as they have no fibro-vascular bundles, and are deteloped from superficial cells of the placenta.

When the pistil has reached a certain stage in growth it Perilime becomes ready for fertilization. Pollination having been tion effected, and the pollen-grain having reached the stigme in angiosperms, the summit of the nucleus in gymuosperms, it is detained there, and the riscid seeretion from the glands of the stigma in the former case, and the moisture arom the orule in the latter, induce the protrusion of the intine as a polien-tube through the pores or points of perforation of the grain, many or few tubes being formed according to the number of pores. The pollen-tube or tubes pass down the canal (fig. 279), through the conducting tissue of the style when present, and reach the interior of the ovary in angiosperms, and then pass to the micropyle of thy orule, one pollen-tube going to earh ovule. Sometimes the micropyle lies close to the base of the style, and then the prollen-tube enters it at once, but frequently it has to pass

Fig. 279.
Fic. 279.-Pletil and pollen of Polygonum J St gma, stig, with pollen-gralns po adherent to it , sending tubes tp down the conductiog tishe of the style site: the ovary o coulaining the orule with fts cosering and central cellafar mase or nocleus n, cootaining a rudimentary embryo-asc te, lo which ultmately tha embryo is developed. The hase of the orule attacbed to the placenta ls taz flat by the chalazs ch. 2 . Pollen-grain p, seperated, with polleo tuhe $t p$.
Fic. 240. - Vertical section of the orvle of the Scotch FIr (P inus syitedetrit) Io May of the second rear, showlog the cnlarged embryo-sac b, full of eodospermal cella, and pollen-tubese, peotrating the summit of the pucleus after tho polleo has entcicd the largo micropyle of the orule.
some distance iuto the ovary, being guided in its direction by various contrivances, as hairs, grooves, \&r. In gymnosperas the pollen-grain resting on the apex of the nucleus sends out its pollen-tubes, which at onee penetrate the nucleus of the orule (fig. 280). In angiospermen when the pollentube reaches the micropgle it passes down into the canal, and this rortion of it increases considerably io size. Where, as in Santalum album, Crociss, de., there is a filiform apparatus, the pollen-tube comes in contact mith it. In most cases, however, it reaches the apes of the embryo-sac, sometimes slightly indenting it, as in Narcissus poeticus and Digitalis puipurea, or even perforating it, as in Canna. The granular protoplasmic matter in the pollen (fovilla) is then transmitted to the embryonal vesicle and fertilization is effected. Consequent upon this, after a longer or shorter period, those changes commence in the embryonal vesicle mbich result in the forration of the embryo plant, the orule also undergoing changes which convert it into the seed, and fit it for a protective corcring, and a store of nutriment for the embryo. Nor are the effects of fertilization coifined to the ovule; they extend to other parts of the plant. The orary enlarges, and, with the set ds enclosed, constitutes
the fruit, frequently ancorporated with which are other parts of the flower, as receptacle, calyx, sc. In gywnosperms the pollen-tubes, baving penetrated a certain distance doma the tissue of the nucleus, are usually arrested in growth for a longer or shorter period, sometimes nearly a year. Subsequently growth recommences; the tube advances to the apex of the embryo-sac, which it pierces, and reaches the mouth of tho canal of the corpuscle. It either descends the canal or remains attached at the mouth. The fovilla is transmitted to the central cell, and fertilization is complete, the central cell giving rise to the embryo. In angiosperms usually only one embryonal vesicle is fertilized, and one embryo is produced-monoembryony; but in some plants where many embryonal vesicles are formed, as in Citrus and Scabiosa, several of them may be fertilized, and thus many embryos produced-polyembryony. Usually, however, only one develops, so as to be capable of germination or growth. In gymnosperms it is very common to have pelyumbryony, although produced in a diferent way, for each central cell of a corpuscle may produce four embryos, and as the central cell of more than one corpusele.may be fertilized a great many enbryos may be formed. They do not, however, all come to maturity.

4. Female Organs of Phanerogams after Fertilization. a.-The Fruit.

Fralt
After fertilization various changes take place in the parts of the flower. Those more immediately concerned in the process, the anther and stigma, rapidly wither and decay, while the filaments and style often remain for some time; the floral envelopes become dry, the petals fall, and the sepals are either deciduons, or remain persistent in an altered form; the ovary becomes enlarged, forming the pericarp; and the orules are developed as the seeds, containing the embryo-plant. The term fruat is strictly applied to the mature pistil or ovary, with the seeds in its interior. But it often includes other barts of the flower, such as the bracts and floral envelopes. Thus the fruit of the Hazel and Oak consists of the ovary and bracts and calyx combined; that of the Apple, Pear, and Gooseberry, of the ovary and calyx ; and that of the Pine-apple, of the ovaries and floral envelopes of several flowers combined. Such fruits are by some distinguished as pseudocarps. In popular language, the fruit includes all those parts which exhibit a striking change as the result of fertilization. In general, the frnit is not ripened unless fertilization has been effected; but cases occur in which the fruit swells, and becomes to all appearance perfect, while no seeds are produced. Thus, there are secdless Oranges, Grapes, and Pine-Apples. When the ovnles are unfertilized, it is common to find thet the orary withers and does not come to maturity ; but in the case of Bananas, Plantains, and Breadfruit, the non-development of seeds seems to lead to a larger growth, and a greater succulence of fruit.

The fruit, like the ovary, may be formed of a single earpel, or of several. It may have one cell or cavity, being uniloculur; or many, multilocalar, de. The number and nature of the divisions depend on the number of carpels, and the extent to which their edges are folded inwards. The appearances preseuted by the ovary do not always remain permanent in the fruit. Great changes are observed to take place, nut merely as regards the increased size of the ovary, its softening and hardening, but also in its intenal structure, owing to the suppression, additional formation, or enlargement of parts. Thus, in the Ash (fig. 281) an ovary with two cells, each containing an ovule attached to a central placenta, is changed into a unilocular froit with one seed; one ovule, l, becoming abertive, while the other, g, gradually eularging uatil the septum is pushod to one side. uniter
with the walls of the cell, and the placenta appears to be parietal. In the Oak and Hazel, an owary with three cells, and two ovules in each, changes into a one-celled fruit with one seed. In the Coco-nut, a trilocular and triovular ovary is changed into a one-celled, one-seeded fruit. This abortion may depend on the pressure caused by the development of certain ovules, or it may proceed from nonfertilization of all the ovules and consequent non-enlargement of the carpels. Again, by the growth of the placenta, or the folding inwards of parts of the carpels, divisions occur in the fruit which did not exist in the ovary. In Pretrea zanzibarica, a one-celled ovary is changed into a four-celled fruit by the exfension of the placenta. In Cathartoearpus Fistula a one celled orary is changed into a fruit, having cach of its seeds in a separate cell, in consequence of spurious dissepiments (phragmata) being produced in a borizontal manner, from the inner wall of the ovary. In Linum, by the folding inwards of the

Fig. 282.

Fig. 281.
Fig. 281-Samara or Samarold fruit of Frorinus oryphylla. I Entre, with ite wing a. 2. Lower portion cut iratnsversely, to show that it consists of tho loculaments: one of which, h, is abortive, and is reduced to a very staali cavity, whale the other is much enlarged, and filled with a seed g.
Fig. 252.-Drupe of the Cherry (Coasw), cut reatically, showing the skin, or eplcarp ep, the fesh or megocarp me, and the stone, yutamen, of eodecarp on. enclosing the seed g, with the eribryo.
back of the carpels a fivercelled ovary becomes a tencelled fruit. In Astragalus, the folding inwards of the dorsal suture converts a one-celled ovary into a twocelled fruit; and in Oxytropis the folding of the vemtral suture gives dise to a similar change in the fruit. The development of cellular or pulpy matter, and the enlargement of parts not forming whorls of the flower, fregnently alter the appearance of the fruit, and render it difficult to discover its formation. In the Gooseberry, Grape, Guara, Tomato, and Pomegramate, the seeds nestle in pulp, formed apparently by the placentas. In the Orange, the pulpy matter surrounding the seeds is formed by suceulent cells, which are produced from the inner partitioned lining of the pericarp. In the Strawberry the receptacle becomes succulent, and bears the carpels on its convex surface (fig. 151); in the Rose there is a fleshy hollow torus or disk, which bears the carpels on its concave surface (fig. 155). In the Jumiper the scaly bracts grow up round the seeds and become suceulent, and in the Fig (fig. 150) the receptacle becomes succulent and encloses an inflorescence.

The pistil, in its simplest state. consists of a carpel or folded leaf, with ovules at its margin ; and the same structure will be found in the fruit, where the pericarp represents the carpellary leaf, and the seeds correspond to the orules. The lericarp censists usually of three layers, the external, or epicarp (fig. $\Omega 82,(p$), corresponding to the lower epidernis of the leaf ; the middle, or mesocary, me, representing the parenchyma of the leaf; and the internal, or endocarp, en, equivalent to the upper epidermis of the leaf, or the enitheliaru of the ovary. These layers are well seen in surb
a fruit as the Peach or Plum, where they are separable one from the other; in them the epicarp forms what is commonly called the skin; the mesocarp, much developed, forms the flesh or pulp, and hence has sometines been called sarcocarp; while the endocarp, hardened by the production of woedy colls, forms the stone or putamen, immediately covering the kernel of the seed. The pulpy matter found in the interior of fruits, such as the Gooseberry, Grape, and Cathartocarpus Fistula, is formed from the placentas, and must not be confounded with the sarcoearp. In some fruits, as in the Nut, the three layers become blended tegether, and are indistinguishable. In Bladder Senna (Colutea arbereseens) the periearp retains its leaf-like appearance, but in most cases it becomes altered both in censistence and in colour. Thus in the Date the epicarp is the outer brownish skin, the pulpy matter is the mesocarp or sarcocarp, and the thin papery-like lining is the endocarp covering the hard seed. In the Dedlar the endocarp becomes of a stony hardness. In the Melon the epicarp and endocarp are very thin, while the mesocarp furms the bulk of the fruit, differing in texture and taste in its external and internal parts. The rind of the Orange consists of epiearp and mesocarp, while the endocarp forms partitions in the interior, filled with pulpy :ells. The part of the pericarp attached to the peduncle is called its base, and the point where the style or stigma existed is the apex. This latter is not always the apparent apex, as in the case of the ovary; it may be lateral or even basilar. The style sometimes remains in a hardened form, rendering the fruit apiculate; at other times it falls off, leaving ouly traces of its existence. The presence of the style or stigma serves to distinguish eertain singleseeded pericarps from seeds.
Uebisceace When the frait is mature and the contained seeds ripe, of fruts. the carpels usually give way either at the ventral or dorsal suture or at both, and socallow the seeds to escape. The fruit in this case is dehiscent. But some fruits.are indehiscent, falling to the ground entire, and the seeds èventually reaching the soil by their decay. By dehiscence the pericarp becomes divided into different pieces, or ralves, the fruit being univalvular, livalvular, or multivalvular, \&e., aecording as there are one, two or many valres. The splitting may extend the whole length of the fruit, or it may be only partial, the ralves forming teeth at the aper of the fruit, and the dehiseence being apicilar, as in Caryophyllaceex (fig. 283). Sometimes the valves are detached only at certain points, and thus dehiscence takes
Plate 1. 2. place by pores at the apez, as in Poppy (fig. 269), or at the base, as in Canpanula, Indehiscent fritits are either dry, as the Nut, or fleshy, as the Cherry and Apple. They may be formed of one or several carpels. In the former case they usually contain only a single seed, which may become so incorporated with the pericarp as to appear to be naked. Sueh fruits are called η seudospermous or falseseeded, and are exemplified in the grain of Wheat. In such cases the presence of the style or stigma determines their true nature.

Dehiscent fruits, when composed of single carpels, may open by the ventral suture only, as in the Paony, Hellebore, Aquilegia (fig. 300), and Caltha; by the dorsal suture only, as in Magnolias and some Proteacex, or by both together, as in the Pea (fig. 256) and Bean; in these cases the debiseence is called sutural. When composed of several united carpels, two types of dehiscence may be recognized -a longitudinal type and a transverse type. In the longitudinal type the separation may take place by the dissepiments throughout their length, so that the fruit is resolved into its orignal carpels, and each valve will be a carpel, as in Rhododendron, Colehicum, \&c. This dehiscence, in consequence of taking place through the hamellix of the septum, is called septicidal (figs. 284, 2S5).

The valves may separate from their commissure, or central line of union, carrying the placentas with them, or they may leave the later in the centre, so as to form with the

Fig. 283.-Seed-zessel or capsule of Camploo (Lychnis), opening by ten teeth ot the oper. The placedea is free central. The calyx is acen surrouding the the opex. The place ota is fre
Fig. 284.-Frait or capsule of Meddow Safiron (Cothicum autumnale), dehlselop by three valves in a eepticldal manner. The fruit is thua resolved inte ite tiree compenent carpels, with thelr styles and aticmas.
Fic. 285 -Diagram to limutrato the septicidal deiliscence to a pentalocular cspsule. The loculaments I correspord to the number of the earpels, whleh separate by spliting through the septag.
 locuicidal menner. The three valvea bear the septa in the centre, add the opening takes place through the back of the locularments. Each valve ls formed by the halres of centigueus carpels.
Fig. 287.-Diagram to llustrate loculleldal dehlaeence. The loculaments 1 , aplit Fit the beck, and the valves sepatate, bearing the septa on thelr ceutres.
Fic. 288.-Dlagtam te illustrate septifragal dechisecnee, in which the dehiscence takes place througt the vack of the localaraents 1 , and the valves seperate frotn the epptas. which ure left attacliud to the placentas to the eentre.
axis a celumn of a cylindrical, conical, or prismatic shape, which is termed the columclla. The union between the edges of the carpels may be persistent, and they may dehisee by the dorsal suture, or through the back of the loculaments, as in the Lily and Iris (figs. 286, 287). In these cases each ralve cunsists of a half of each of two contiguous carpels. The placentas either re.nain united to the axis, or they separate from it, being attached to the septa on the valves. This dehiscence is loculicidal. When the outer walls of the carpels break off from the septa, leaving them attached to the celumella, the dehiscence is said to be septifragal (fig. 288), and where, as in Linum catharticuun and Calluna, the splitting takes place first of all in a septicidal manner, the fruit is described as septicidally septijragal ; while in other cases, as in Thern Apple (Datura Stramonium), where the splitting is at nirst leculicidal, the dehiscence is loculicidally septifragal. In all those forms the separation of the valves takes place either from above downwards or from below upwards. But when the splitting only extends for a shert distance, then debiscence takes place by pores, which are situated either at the apex, base, or side, depending on the position of the valves. In the Poppy (fg. 269) the opening takes place by numerous peres under the peltate processes bearing the stigmas.
Campanula there are irregular openings towards the middle or base of the pericarp. In Fregsmeuth or Snapdragon the pericarp gives way at certain fixed peints, forming two or three orifices, one of which corresponds to the upper carpel, and the other to the lower. These orifices have a ragged appearance at the margins, which bas given rise to the term rupturing, sometiunes applied to this mode of
dehiecenee. In Saxifraga a splitting for a short distance of the ventral sutures of the carpels takes place, so that a siogle large sipical pore is formed. In Caryophyllaceæ (fig. 283) numerous small valvular splittings occur, forming teeth at the apex, and a single apical orifice is formed. In the fruit of Cruciferæ, as Wallfower, there is a form of loggitudinal defiscence (fig. 289) in which the valves oeparate from the base of the fruit, leaving a central replum, or frame, which is a phragma formed by a prolongation from the parietal placentas on opposite sides of the fruit, extending between the ventral sutures of the carpels. In Orchidacea (fig. 290) the pericarp, when ripe, separates ioto three valves, in a loculicidal manner, but the midribs of the carpels, to which the placeotas are attached, remain adherent to the axis both at the apex and base, and form three arches, bearing the seeds, after the valves have fallen. In fruits with a free central placenta it is sometimes difficult to tell whether the dehiscence is septicidal or loculicidel, inasmuch as there are no dissepiments, and the placentas and seeds form a column in the axis. Their number, as reil as alternation or opposition, as compared with the sepals, will aid in determining whether the valves are the entire carpellary leaves, as in septicidal dehiscence, or only half esrpels united, as in loculicidsl dehiscence. The other type of dehiscence is transverse, the dehiscence in this case being called arcumscissile. In this dehissence the upper part of the united carpels falls off in the form of a lid or operculum, as in Anagallis and in Hembane (Eyoscyamus) (fig. 291), and hence the fruit is often deamoinated operculate. In such instances we may either suppose that the fruit or seed-ressel is formed by a number of articulated leaves like those of the Orange, the division taking place where the lamine join the petioles, or that the receptacle is prolonged in the form of a hollow cup, and the lid represents leaves united to it by articulation.

Fig. 289.

Fig. 290.

Fig. 291.

Fig. 292.

Fio. 289.-Siliqua or seed- resed of Waltoower (Cheiranchw (hetri), opening by
two ralves, which separate finm the bane apuards. learing the seeds atcoched to the placeatas in the middle, with a replum betreen.
Yo. 290 . - Seed-tesset of an Orchld (O'chrt), opening by three valves ov which bear the placentas and seeds in thelr mildde. The midribs of the carpela remala lapited at the base and apen, and the withered Boral eavelopes e are beea etlached at the bpes.
Fio. 291-Sed-vessel of Menbane (Fivascyamus niger), opeaing of circumsclasile dehiscence. The upper part of the seed-vessel comes off in the ferno of a lld, and the capsule has been on thls account catled pyxis or ysildium.
 separatcr into two cocci or acianhla. each of whleb la maiked with obruse promluent ridges on the surface, and is suppended from the summit of e poces, of the axis (culymells), cutled a calpophore.
IG. 293. - Lomentum or lomentaceous leame of eppecies of Sainfoin (Hedyaraxm). Each ared is contained in a separate carity by ithe folding Inwards of the walta of the legurve at equal intervals; and the legume, abed ripe. separates trangverely into aibghe-sceded portions or mericarpe.
Sometimes the axis is prolonged beyond the base of the

Plate 111.
fis. 6
prolongation of it, called a carpophore or podocarp, which splits into two (fig. 292) and suspends them; hence the name cremocarp is applied to this fruit, which divides into two suspended mericarps. The general term schizocarp is applied to all dry fruits, which break up into two or more one-seeded indehiscent mericarps, as in Hedysarum (fig. 293). In Geraniaceæ the axis is prolonged beyond the carpels, forming a carpophore, to which the sicles are attached, and the pericarps separate from below upwards, before dehiscing by their rentral suture (fig. 152). Carpels which separate one from another in this monner ara called cocci. They are well seen in Euphorbiaceæ, where there are Piate XIII usually three such carpels, and the fruit is designated 0 . 7
tricoccous. In many of them, as Inura crepitans, the cocci separate with great force and elasticity, the cells being called dissidient. In many Leguminous plants, such as Oraithopus, Hedysarum (fig. 293), Entada, Coronilla, snd the Gum-arabic plant (Acacia arabica), the fruit becomes a schizocarp by the formation of traneverse partitions from the folding in of the sides of the pericarp, and distinct separations taking place at these partitions by what has been terosed solubility, In Cathartocarpus Fistuls the schizocarp exhibits no erident depressions externally. Some look upon these pods as formed by pimate leaves folded, and the divisions as indicating the points where the different pairs of pinnæ are united.

Fruits may be formed by one flower, or they may be the product of several flowers combined. In the former case they are either apocarpows, of one mature carpel or of several separate free carpels; or syncurpous, of several carpels, more or less completely united. These different kinds of fruits may be indehiscent or dehuscent. When the fruit is composed of the ovaries of several flowers united, it is usual to find the bracts and floral envelopes also joined with them, so as to form one mass; hence such fruits are called multiple, confluent, or anthacarpous. The term simple is perhaps properly applied to fruts which are formed by the ovary of a single flower, whether they are composed of one or sereral carpels, and whether these carpels are separate or

Fig 395.

Fig. 896.
Fig. 291.-Fruit of a species of Dock (Numes), cot verticalis. It ls a move spermous indehacent dry frult, cailed an achebe, or achirglum. The outch part. on. Is the pericant or deed-rensel cootalning the seed, white cuverimgs The bued contants aovfiahing mater, called albutmen or perlsperm a\%, oud the embiyo plant pl. aith ite cotyledons pointing downouids, and its redicle opatals. The seedis orthotropat, and the embryo is loverted. At the upper Fint of the jericarp two of the btyles and \$thmas sro cecacarviag downwaids At the base part of the perianth is iepremented.
Fig. 295 -Achunlum of Cronfoot (Ranuncuiws). A Nnglaseeded seed-scosel. with the perlcarp applicd elosely to the seed such frults tescmble secd io appearnoce; the stytu and stumes ald in disilngulshlog them.
Fic. 296 -Seed-resacl of Ace'trewdoplosure s Sycamore, called Ifare in Scos land), composed of two ssonaras or winced monorpermous carpels unoted; a upper part forming e dorsal wing; t lower portion corresponding to it e loculauedta
combined. Simplé fruits are lrenec sounctimes denominsted monogenccial, as being formed by one gyncecium; while multiple fruits are called poiggynacial, ss being formed by many gyucecia

Simple Yruits are either $d r y$ or succulent,-the pericarp, in the former instance, remaining more or less folisceous in its atructure, and sometimes being incorporated with the seed, while it is in the latter thick and fleshy or pulpy.
Forms of rrut. biscent fruit, the pericarp of which is closely applied to the seed, but separable from it. It may be solitary, forming a single fruit, as in the Dock (fig. 294), and in the
Plate IV. Cashew, where it is supported on a fleshy peduncle; or aggregaie, ε in Ranunculits (figs. 254, 295), where several achenia are placed on a common elevated receptacle. In 'he Strawberry the schænia (fig. 154) are aggregated on a convex sueculent receptacle. In the Rose they are supported on a concave receptacle (fig. 155), and in the Fig the succulent receptacle completely encluses the achenes (fig. 150). In Dorstenia (fig. 163) the achenea are situated on a flat or slightly concave receptacle. In the Rose the aggregate achæenia with their covering sre sometimes collectively called cynarrhodum. It will thos be remarked that what in common language are called the seeds of the Strawberry, Rose, and Fig, are in reality carpels, which are diatinguished from eeeds by the presefice of styles and stigmas. The atyles occasionally remain attached to the achænia, in the form of feathery appendages, as in Clematis, and they are called caudate. In Composita, the fruit,
Plate IX. which is sometimes called cypsela, is an achænium (fig. 197), to which the pappose or obsolete calyx remains adherent. Such is also the nature of the fruit in Dipsacacea. When the pericarp is thin, and appears like a bladder surrounding- the seed, the achænium is termed a utricle, as in Amerantaces. When the pericarp is extended in the form of a winged appendage, a samara or samaroid achaenium is produced, as in the Ash (fig. 281), Common Sycamore (fig. 296), and Hiræa. In these cases there are usually two achrenia united, one of which, however, as in Fraxinhs oxyphylla (fig. 281), may be abortive. The wing is either dorsal, that is, it is a prolongation from the median vein (fig. $296, a$) or it is marginal, that is, formed by the lateral veins. It surrounds the fruit longitudinally in the Elm. When the pericarp becomes oo incurporated with the seed a to be inseparable from it, as in grains of Wheat, Maize, Oats (fig. 297), and other Grasses, then the name

Fig. 297.
Fic. 297.-Caryopsle Fig. $298 . \quad$ Fig. 299 are incorporated. The pericarp o bears the stylen and stigmea, and and sced the sced i , with itg albumen, or pertsperm, a, and lis embiyo, conasting of tho cotyledon $c ;$ the gemmule g, and the root r,
Fio. 298.-Calyx end frult of Comirey (Symphytum), cut vertically. The frait is divided by the folding of the ovary into four single geedes portions or arhens two of which areseen in the figure, end the style appesars to arlise from the baso of the carpels.
Fig. 299.-Flowar of Fennel (Faniculum exfoare), one of the Limbelliferm, cut vertically, showing the frult f composed of two single-seeded earpels, or echenes united, so as to form acremocarp. The pendulous sceds are scen in the enrpels or merlearps. The two stylcs are seen at the apex of the fiult with thelr dilated bases formed by en epleynous disk. The polnts (epleula) of the petals p are tumed Inwards. The ealy I tube is adhercit to the frult, ond the limb of the calyz is often obsolete.
caryopsis is given. There are some fruits which cunsist of two or more schenia, although originally the carpels were united into a syncarpous pistil, as in Labiato and Doragineceæ (fig. 298). To this form of schizocarpic fruit, as well as to that of Tropxolum and Mallon, the name
carcerulus is given. The cremocarp, or the fruit of Umbelliferæ (figa. 292 and 299), is composed ol two achænia Plate VII! united by a commissure to a carpophore, from which they are suspended at maturity. It is sometimes denominated diachonium, from the union of two achrenia, which in this instance receive the name of mericarps or hemicarps.

The nut or glans is a dry one-celled indehiscent froit with a hardened pericarp, surrounded by bracts at the base, and, when mature, containing only one seed. In the young state the ovary contains two or more ovules, but only one comes to maturity. It is illastrated by the fruita of the Hazel and Chestnut, which are corered by leafy bracts, in the form of a husk, and by the Acorn, in which the bracta and receptacle form a cupula or cup (fig. 147). The parts of the pericarp of the nut are united so as to appear one. In common language the term nut is very vaguely applied both to fruit and seeds.

The drupe is a succulent usually monospermal and unilocular indehiscent fruit, with a pericarp easily distinguishable into epicarp, mesocarp, and endocarp. This term is applied to suci fruits as the Cherry (fig. 282), Peach, Plate XII. Plum, Apricot, Mange, Walnut, Nutmeg, and Date. The endocarp is usually hard, forming the stone (putamen) of the fruit, which encloses the kernel or seed. The mesocarp is generally pulpy and succulent, so as to be truly a sarca carp, as in the Peach, but it is sometimes of a tough texture, as in the Almond, and at other times is more or less fibrous, ss in the Coco-nut. In the Almond there are often two orules formed, only one of which comes to perfection. In the Walnut, prolongations from the endocarp, which is of two layers, extend into the substance of the seed, and give rise to its characteristic convoluted lobate appearance. This fruit has been sometimea called tryma. In the Raspberry and Bramble several drupes or drupels are aggregated so as to constitute an etcrio.

The follicle is a dry monocarpellary unilocular polyspermal (many-seeded) fruit, dehiscing by the ventral suture. It ia rare to meet with a solitary folliele forming the fruit. There are usually several aggregated together, either in a circular manner on a shortencd receptacle, as in Hellebore, Aconite, Delphinium, Aquilegia (figs. 300, 301) Crassulacee (fig. I72), Butomus, and Asclepiadacere; or in a spiral manner on an elongated receptacle, as in Magnolia, Banksia, and Liriodendron. Occasionally, follicles dehisce by the dorsal suture, as in Magnolia grandiflora and Banksia.

The legume or pod is a dry monocarpellary unilocular polyspermal fruit, dehiscing both by the ventral and the dorsal Plate V suture. It characterises Leguminous plants, as the Bean Ig. 7. and Pea (fig. 256). In the Pladder-senns it retains its leaf-like appearance, and forms an inflated legume. In some Leguminose, as Arachis, Cathartocarpus listula, and the Tamarind, the fruit must be conaidered a legune, although it does not dehisce. The frat of these plants produces its fruit underground, and is called earth-nut; the second has a partitioned legume and is schizocarpic; and both the aecond and third have pulpy matter aurrounding the sceds. Some legumes are achizocarpic by the formation of constrictions externally, Such a form is the lomentum or lomentaceous legume of Hedysarum coronarium (fig. 293), Coronilla, Ornithopus, Entada, and of some Acacias. In Medicago the legume is twisted like a snail, and in Cesalpinia coriaria, or Divi-divi, it is verniform or curved like a worm; in Carmichaelia the valves give way close to the suture, and separate from it, learing a division. Sometimes the number of seeds is reduced, as in Erythrina monosperma and Geoffroya superba, which are one-seeded, and in Pterocarpus and Dalbergia, which are two-seeded.

The berry (bacca) is a succulent ayncarpous polyapermal unilocular indehiscent fruit, with seeds immorsed in a pulpy
mass; formed by the placentas. The name is usually given to such fruits as the Gooseberry (fig. 302) and Curract, in which the ovary is inferior, and the placentas are parjetal, the seeds being ultimately detached from the placeata, and

Fig 300.

Fig. 303.
ho. 300.-Folltcle of Columbisc (Aguifega rulgaris), congisting of a polyspermal corpel. opentna by the ventral suture.
Fio. 301.-Apocarpous fruit of Columbine (Aquilegia rulgaris). consistlog of fire separate mature calpels, with atyles and stigmes.
Fio. 302 . Fruit of the Gooscberry (Kibes Grosularia), cot vertically, showing the seeds attached to parictal placentas, and immersed in puipy maiter, which is formed partly from the eodocarp and partly from tho testa of the seed. The fruit is called a bacca.
Flo. 303-Section of the fruit of the Apple (Pyrus Sfaius), consisting of a fleshy covering partly fomed by the calyx and dik, and five canties in the ceatre -alth seeds. The fruit is called a yome.
lying loose in the pulp. Others have applied it also to those in which the ovary is superior, as in the Grape, Potato, and Ardisia, and the placentas are central or free ceatral. The latter are frequently separated under the name uva (grape). In general, the name of baccate or berried is applied to ali pulpy fruits. In the Pomegranate there is a peculiar baccate many-celled inferior fruit, having a tough rind, enclosing two rows of carpels placed one abore the otber. The seeds are immersed in pulp, and are attached irregularly to the parictes, base, and centre of the loculi. The fruit has been called balausta, and the tough rind is called malicorium. In the Baobab there is a multilocular syacarpous fruit, ia which the seeds are immersed in pulp, to which the name amphisarca is given.

The pepo or peponda, another indehisceat syncarpous fruit, $1 s$ illustrated by the fruit of the Gourd, Melon (fig. 262), and other Cucurbitaceæ. 'It is formed of three carpels, to which the calys is superior the riad is thick and fleshy, partly formed by the calyz; and there are three
Piah vi. or more seca-bearing parietal pacentas, either sarrouding a cential cavity, or prolonged inwards into it. The fruit of the Papaw resembles the pepo, but the calyx is not 'eupariol.

The hesperidium is the name given to such iadebiscent syycarpous fruits as the Orange, Lemon, and Shaddosk, in which the epicarp and incsocarp form a separable rind, and the endocarp sends prolongations inwards, forming triangular divisions, to the inner angle of which the seeds are attached, pulpy cells being developed around them. Both pepo and hesperidiun may be considered as modifications of the berry.

The pome, sees in the Apple, Pear, Quince. Medlar, and Hawthorn, is a fleshy indehiscent syncarpous fruit with the calyx attached, and bas an outer skin or epicarp, a fleshy mesocarp, and a scaly or horny endocarp (the core) enclosiag the seeds (fig. 303). Some look upon the so-called epicarp and mesocarp as formed by the prolonged recentacle on the inger surface of which a tleshy lining is developed, while the endecarp represents the true carpels. In this ricw the endecarp might be regarded as consisting of a number of indehiscent follicles (usually five) surrounded by a surculent receptacle In the Medlar the endocarp (or what may be
called the true pericarp) is of a stony hardness, while the outer succulent covering is open at the summit. The stones of the Nedlar are called pyrence; some apply the term nuculanium to the Medlar. Taking this riew of the pome it may be said to resemble in a manner the froit of the Rose, the cyarrhodum producing acheaes, and the pome closed follicles.

The name capsule is applicd generally to a!] dry syn. Prate \mathbf{X}." carpous fruits, which dehisce by valves of whaterer kiad. fis It may thus be voilocular or multilocular, monospermous or polyspermous. The true ralrular sapsule is observed in Colchicum (fig. 284), Lily, and Iris (fig. 286) The porose capsule is seen in the Poppy (fig. 269), Antirrhinum majus, Plate !. and Campanula persicifolia. It Campanula the pores occur at the base of the capsule, and it has been desigeated a diplotegia. Whea the capsule opens by a lid, or by circumscissile dehiscence, it is called a pyxidium, as in Anagallis arveasis, Henbane (fig. 291), and Monkey pot (Lecythis). The capsule assumes a screw-like form in Helicteres, and a star-like or stellate form in Illicium anisatum. In ccrtain instances the cells of the capsule separate from each other, and open with elasticity to scatter the seeds. This kind of capsule is met with in the Sandbox tree (Hura crepitans), anc other Euphorbiaceæ, Plate Xll! where the cocci, containing each a single seed, burst asunder fig. ${ }^{\prime}$. ${ }^{\prime}$.e in with force; and in Geraniaceæ, where the cocci, each containiag, when mature, usually one seed, separate from the carpophore, become curved upwards by their adberent styles, and open by the ventral suture (fig. 152). In the former case the fruit collectively has been called regma.

Fig. 304.

Fig. 305

Fig. 306.

Fig 30\%.

Fio. 304-- ©ompoand ovary (shligua) of Wallic er (cheiramthis), consisting of at lesst two carpeis onlted one ralve has been remosed to show the partitod or replum Cl , formed of a double layer from the placenta ch on either aide, to Which the onules or are att the orary weans of furicin. Fia. So5. - Sillcala of Whitlow-arams (Draba). apen! in the centre, united by a below upwards, learing the parictas placentas ped-sessel is broad, and beoco metmbrane or replas
the name lastacpte.
Fio. Site. - Sllicuid or poucb of Shepberd's rone (Carseliah opening by two folded valres, whlch separatc from below upwards. The pbragma is oarrow, and bence valres, which separatc fr.
Fig. 30\%.-Fruif of the Pine-apple (Amanarsa satma), consieting of mumeroo flowers and bucts unlted tokether so as to form a colleative or antbocapons fruit. The ciown of the fioc-apple, c, cooslgts of a seiles of expry bratio prolonged bcyond the fiult.
The siliqua is a dry syacarpous bicarpellary bilocular polyspermal fruit with a replum, dehiscing by tro valres from below upwards, the valves separating from the placentas and learing them united by the replum. The seeds are attached on both sides of the replum, either in one raw or in two. When the fruit is long and narrow it
is called siliqua (fig. 304); when broad and short, it is called silicula (figs. 305, 306). It occurs in Cruciferous plants, as Wallfower, Cabbage, and Cress. In Glaucium and
Eschscholtzia (Papaveraeeous plants) the fruit is siliquaform, the dissepiment or replum being of a spongy nature, and it has been termed a ceratium. In its normal state a eiliqua is supposed to consist of four carpels, but two of these are abortive. There are four bundles of vessels in it, one corresponding to each valve which may be called valuular or pericarpial, and others running along the edge called placental. The replum consists of two lamelle. It sometimes exhibits perforations, becoming fenestrate. Rarely its central portion is absorbed, so that the fruit becomes one-celled. It may become lomentaceous, as in Raphanus and Sea-kale, and it may be reduced, as in Woad (Isatis), to a monospermal condition.

It sometimes happens that the ovaries of two flowers unite so as to form a double fruit. This may be seen in many species of Honeysuckle. But the fruits which are now to be considered consist usually of the floral envelopes, as well as the oraries of several flowers united inte one, and are called multiple, confluent, or polygynocial. The term anthocarpous has also been applied as indieating that the floral envelopes as well as the carpels are coneerned in the formation of the fruit.

The sorosis is a suceulent multiple fruit formed by the confluence of a spike of flowers, as in the fruit of the Pine-apple (fig. 307), the Bread-fruit, and Jack-fruit. Sometimes a fruit of this kind resembles that formed by a single flower, and a superficial observer might tave some difficulty in marking the difference.

The syconus is an anthocarpous fruit, in which the receptacle completely encloses numerous thewers and becomes sueculent. The Fig (fig. 150) is of this nature, and what are called its seeds are the achenin of the numerous flowers ocattered over the sueculent hollowed receptacle. In Dorstenia (fig. 163) the axis is less deeply hollowed, and of a harder texture, the fruit exhibiting often very anomalous forms.

The strobilus, or cone, is a fruit-bearing spike, more or less elongated, covered with seales' (fig. 134), each of which represents a separate flower, and has often two seeds at its base, the scales being considered as braets and the seeds naked, and no true evary present with its style or stigma. This fruit is seen in the cenes of Firs, Spruces, I.arches, and Cedars, which lave received the name of Conifere, or cone-bearers, on this aceonnt. Cone-like fruit is also scen in some Cycadacere. Tho scales of the strobilus are sometimes thick and eloseiy united, so as to form a more or less angular and rounded mass, as in the Cypress; while in the Juniper they become fleshy, and are so incorperated as to ferm a globular fruit like a berry. The dry fruit of the Cypress, and the succulent fruit of the Joniper, have received the name of galbulus. The fruit of the Yew (Taxus baceata) is regarded as a cone reduced to a single naked seed, covered by sueculent scales, which unite to iorm a searlet fleshy envelope. In the Hop the fruit is called also a strobilus, but in it the seales are thin and membraneus, and the seeds are not naked but are contained in pericarps.

The same causes which produce alterations in the other parts of the flower give rise to anomalous appearances in the fruit. The carpels, in place of hearing seeds, are sometimes ehanged into leaves, with lobes at their margins. Leaves are sometimes produced from the upper part of the fruit, which is then called frontiparous. In the genus Citrus, to which the Orange and Lemon belong, it is very common to meet with a separation of the carpels, so as to produce what are called herned oranges and fingercd citrons. In this case a syncarpous fruit has a tendency to
become apocarpous. In the Orange we occasionally find a superaumerary row of carpels produced, giving rise to the appearance of small and imperfect oranges enclosed within the original one. The Navel Orange of Ternambuco is of this rature. It sometimes happens that, by the union of fowers, double fruits are produced. Occasionally a duuble fruit is produced, not. by the ineorporation of two Howers, but by the abnormal development of a second carpel in the flower.

Arrangement of Freits.

I. Jonogynecial fruits, formed by the gynocium of one flower.
I. Capsulary fruits.-Dry, dehiscent, formed by one or more carpels; when by more than one, coherent.
a. Jonocarpellar:-Legume; Follicle.
o Polycarpellary-Capsule; Fyxidium; Siliqua; Silicula: Ceratium ; Diplotegia; Regma.
2. Aggregate fruits. - Polycarpellary; carpels always distinct a. Indehiscent--Eterio; Strawberry; Cynarrhodum. b. Wehiscent. - Follicles (Columbine).
3. Schizocarpic fraits-Dry, breaking up into one-celled inde. hiscent portions.
a. Monocarpellary- Lomentum.
b. Polycarpellary--Cremocarp; Carcerulus; Samara (Acer).
4. Acherial fruits.-Dry, indehiscent, one or few-seeded, not breaking up. Achenium; Caryopsis; Útriche; Samara (Elm) ; Cyprela; Glans.
5 Baccate fruts.-Indehiscent; sceds in julp. Bacea; Una; Hesperidiam; Pepo; Amphisarca; Bdlausta.
6. Drupaceous froits-Indehiscent, suceulent, cndecarp in. durated, usually stony Drupe; Tryma; lome; Nucu. laniuna.
11. Polygynocial fruts, formed by the graxcia of several dowers.

1. Succulent.-Sorosis ; Syconus; Gaboulus.
2. Dry.-Sicobilus; Cone.

b.-The Sced.

When the orule arrives at maturity it constitutes the seed, The seed which is contained in a seed-vessel in the plants called argio. spermous; while in gymmospermous plats, such as Cunferio and Cycadacea, it is naked, or, in other words, has no true pericarp. It sometimes lappens in angiosperms, that the seed-vessel is ruptured at an carly period of growth, so that the seeds become more or less expused during their development; this oceurs in Mignonette, where the eapsule opens at the apex, and in Cuphea phatyentra, where the placenti bursts through the ovary and floral envelopes, and appears as an erect process bearing the young sceds. After impregnation the ovule is greatly changed, in connection with the formation of the embryo. ln the embryo. sae of most angiosperms there is a ciefelopment of cellulat tissue, enveloping, when not previously absorbed, the anti podal cells, and more or less filling the embryo sac. In gymnosperms, as already mentioned, the endospernt is formed preparatory to fertilization. The germinal vesicle in angiosperms, the central cell of the curpuscle in eryptogams, enlarges and divides, forming th : embryo. The em-bryo-sac enlarges greatly, displacing gradually the nucleus, which may eventually form merely a thin layer around the sac, or it may completely disappear. The integuments also become much altered, and frequently appendages are developed from them.

The general integumentary covering of the seed is called spermoderm. In it are recognized two parts, an external membrane, called the episperm or testa (lig. 308, te), and an internal membrane, called endopteura or tegmen, e, which however is often ineorporated with the testa, and hardly separable from it. The testa may consist of a union of the primine and secuadine, or of the primine only, when, as occasionally happens, the secundine is absorbed; the cndopleura, of a combination between the outer layer of the nucleus (sometimes termed the tercine), and the embryosac, or of one of these parts alone. Sometimes the secundine remains distinct in the seed, forming what has been called a mesosperm; and when it assumes a feshy
cfiaracter, it has received the name of sarcosperm or sarcoderm. The nature of the testa depends uponthat of the pericarp. When the pericarp is dehiscent then the seed-covering is of a strong and tough character; but when

Fig. 308.

Fig. 309.

Po. 20s.-The roed of tha Pea (Pisum). dep. ors of one-half of Its integameat Ot giermoderm. The oater covering, called elther eplsperm, exosperm, or testa, Is marked te, the inner, called endoplears, Within thess Integuments is the nucleus, conslsting of cotyledons or seed-lohes contataing nourishing matter, the ferminule or young lenf-bull g, the radicle or young root r, the tigelle or stadk tetween root and bod $h_{\text {. The seed is attached to the placentag by a }}$ cord or fuslculuj f. The dourlehlag vessels rap enter the sucleas at the chat 2 a ch, and the root of the embryo polnta to the micropyle or foramen m. Fio. 309.-Seed of Asclepias, with a cluster of hairs arlsing from the edges of the sulcropgle, and by somo consldered as a balry arll. These halra are for tho purpoes of scatteriog tho seed.
the pericarp is indchiscent and encloses the seed for a long period, its outer covering has a propertional softness. The cells of the testa are often coloured, and have projections and 3 ppendages of various kinds. Thus in Abrus precatorins and Adenmthera pavonina it is of a bright red colour; -in French beans it is beantifully mottled ; in the Almend it is veined; in the Tulip and Primrose it is rough ; in the Gnapdragon it is marked with depressions ; in Cotton and Asclepias (fig. 309) it has hairs attached to it; and in Mahogany, Bignonia, and Firs it is expanded in the form of wing-like appendages (fig. 310). In Collomia, Acanthodium, and other sceds, it contains spiral cells, from which, when moistened with water, the fibres uncoil in a beautiful manner; so also in Cobxa scandens and Calempelis scaber. In the testa of the seed of Ulmus campestris the cells are compressed, and their sinuous bonndaries are traced out by minute rectangular crystals adhering to their walls; and in such plants as the Flax (Linum) the cells are converted into mucilage. These structural peculiarities of the testa in different plants have relation to the scattering of the seed and its germination upon a suitable nidus. But in some plants the pericarps assume structures which subserve the same purpose; this especially occurs in emall pericarps enclosing single secds, as achenes, caryopsides, \&c. Thus Plate Vilí. in Composita (fig. 197) and Valerian, the pappose limb fig. 3.: of the calyx forms a parachute to the pericarp ; in Labiate and some Compositæ spiral cells are formed in the epicarp; and the cpicarp is prolonged as a wing in Fraxinns (fig. 281) and Acer (fig. 296).

Thę endopleura (fig. $308, e$) is usually a thin and transparent layer of cells underneath the testa, frequently incorporated with it. It represents the outcr layer of tho cells of the nucreus, constituting the tercine of th3 avolo, though frequently the embryo sac is incorporated with it. Sometimes there is an additional covering to the secd, fermed after fertilization, to which the name arillus has been given (fig. 311). This is seen in the Passion-flower, where the covering arises from the placenta or extremity of tho funiculus at the base of the ovule and passes 11pwards towards the apex, leaving the micronyle uncovered. In the Nutmeg and Spindle-tree this additional coat commences at the eide of tho oxostome, and is formed from above downwards, constituting in the former case a Plate XII. laciniated scarlet covering called macc. In such instances it fig. 6." has becn called by some an arillocle (fig. 312). This arillode, after growing downwards, may be refiected apwards so as to cover the forainen. The fleshy scarlet
covering formed around the naked seed in the Yew is by some considered of the nature of an aril. On the testa, at various points, there are produced at times cellular bodies, which are not dependent on fertilization, to which the name of strophioles, or caruncules, has been given, the Plate II seeds being strophiolate or carunculate. These tumours 6g. 5. may occur near the base of the seed, as in Polygala, or at the apcs, as in Ricinus, where they are swellings of the exostome; or they may occur in the course of the raphe, as in Blood-root and Asarabacca. The funiculi of the orules frequently attain a great length in the seed; and in some Magnolias, when the fruit dehisces, they appear as long scarlet cords suspending the seeds outside. The hilum or umbilicus of the seed is usually well marked, as a scar of varying size, in the Calabar bean and in oome species of Macuna and Dolichos, extending along a large portion of the edge of the seed; and it frequently exhibits marked colours, being black in the Bean, white in many species of Phascolus, \&c. The micropyle (fig. 308, m) of the seed, with its exostome and endostome, may be recognizable by the naked eye, as in the Pea and Bean tribe, Iris, \&c., or it may be rery minnte or microscopic. It indicates the true apex of the seed, and is impertant as marking the point to which the root of the embryo is directed. At the micropyle in the Bean is observed a small process of integument, which, when the young plant spronts, is pushed np like a lid, and is called embryotega. The chalaza (fig. 311, ch) is often of a different coleur from the rest of the seed. In the Orange (fig. 313) it is cf a reddish-brown colonr, and is easily recognized at one end of the seed when the integuments are carefully removed. In anatropal seeds the raphe forms a distinct ridge along one side of the seed (fig. 314).

Fig. 310.

Fig. 311.

Fig. 312.

rig. 313.

Fio. 310 - Seed of Flr (Pinus). Wlith a membramooa appeodage we tho teata, called a wing. The sectls sald to be minged.
Fic. $311 .-100 n g$ anstropal aced of the White Weter-lily (Nymphax alba), cot vertically. It ls attached to the pliccnta by the fonicolos or umblilcal cord f, cellular prolongationa from whleh form an sril a a. The vessels of the cord are prollonged to the base of the aucleus n by means of the topho r, composed of cells and aplrul vessels. The hase of the noclens ha indimitad ho tha abs:-a $c A$, whllo the apex is at the micranyla - - e cuvertag of the seed tamarked \therefore Is tha tucuetas or perisperm, sorrounded by lts coverlog, and enclosing the suspensor, is coatalued In the sac, the rodiclo polating to the micropyle m . Fio. 812 .-Arillodo a, or falso arll of tho Spindle-troc (Euonymus), artog from Fhemicropyle $\%$.
Fio. 313.-Anatropal sesd of the Oragge (Citrus Aurantium) opeocl to show the chalaze c, whlch forms a brown apot at oue eod.
The position of the seed as regards the pericarp rescmbles that of the ovnle in tho orary, and the same terms aro applied-erect, ascending, pendulous, snspended, curved, \&c. These terms have no reference to the mode in which the fruit is attached to the axis. Thus the seed may be erect while the fruit itself is pendent, in the ordinary meaning of that term. The part of the seed next the axis or ting ventral suture is its face, the opposite side being the back. Sceds exhibit great varieties of \{orm. They may be fattened laterally (compressed), or from above
downwards (depressed). They may be round, oval, triangular, polygonal, rolled up like a snail, as in Physostemon, or coiled up like a snake, as in Ophiocaryon paradoxum.

The endosperm formed in the embryo-sac of angosperms after fertilization, and found previous to it in gymnosperms, consists of cells containing protoplasmic substance and etarchy or fatty matter, or both, destined for the nutriment of the embryo. It arises by free-cell division from the protoplasm of the embryo-sac, -and may occupy the whole cavity of the embryo-sac, or may be formed only at certain portions of it, at the apex, as in Rhinanthus, at the base, as in Vaccinium, or in the middle, as in Veronica. As the endosperm increases in size along with the embryo-sac and the embryo, the substance of the original nuclaus of the ovule is gradually absorbed, and usually at last disappears except the layer constituting the endopleura, and in some cases this goes also. Sometimes, homever, as in Musacea, Cannacex, Zingiberaceex, no endosjerm is formed; the cells of the original nucleus, becoming filled with food-materials for the embryo, are not absorbed. but remain surrounding the embryo-sac with the enbryo, and constitute the perisperm Again, in other plants, as Nymphæaceæ (fig. 311) and Piperacex, both endosperm and perisperm are present. It was from observations on casez such as these that old authors, imagining a resemblance betwixt the plant-ovule and the animal ovum, applied the name albumen to the outer nutrient mass or perisperm, and designated the endosperm as vitellus The term albumen is very generally used as including all the nutrient matter stored up. as a separate mass in the orule, but it would be advisable to discard the name as implying a definite chemical substance. There is a large class of plants in which although at first after fertilization a mass of endosperm is formed, yet, as the embryo increases in size, the nutrient matter from the endospermic cells passes out from them, and is absorbed by the cells of the embryo plant. In the mature seed, in such cases, there is no separate mass of tissue containing nutrient food-material apart from the embryo itself. Such a secd is said to be exalbuminous, as in Composite, Crucifere, and most Leguminose. When eitber endosperm or perisperm or both are present the secd is said to be albuminous.
The albumen varies much in its nature and consistence, and furnishes important characters. It may be farinaceous or mealy, consisting chicfly of cells filled with starch, as in cereal grains, where it is abundant ; Heshy or cartilaginous, consisting of thicker cells which are still soft, as in the Coco-nut, and which sometimes contan oil, as in the oily albumen of Croton, Ricinus, and Poppy ; horny, when the cell-walls are slightly thickened and capable of distension, as in Date and Coffee; and they sometimes become greatly thickened, filling up the testa as a hard mass, as in Vegetable Ivory. The albumen may be uniform throughout, or it may present a mottled appearance, as in the Nitmeg, the aeeds of Anonacere, and some Palms, where it is called ruminated. This mottled appearance is due to a protrusion of a dark lamella of the endopleura between folded protuberances of albumen. The endosperm within the embryosac is.developed from the protoplasm of that sac, but in -many cases as it grows inward the whole protoplasm is not converted into a solid mass, but a cavity is left in the contre which is usually filled with fluid, as in the Coco-nut. In the thickened albumen of this Palm, as well as in that of the Attalea funifera, the Date, and the Doum Palm, the small carity in the centre and radiating spaces are well scen under the microscope. The albumen is a store of matter laid up, for the nourishment of the embryo. The relative size of the embryo and of the endosperm raries much. In Monocotyledons the embryo is usually small, and the endosperm large, and the same is true in the case of Coffice and many
other plants amongst Dicotyiedons. The opposite is the case in othè plants, as in the Labiatr, Plumbaginaceex, de.

In angiosperms aiter fertilization the embryonal vesicle The em. undergoes changes by which the embryo plant is eventually wro.
furmed. The portion of the vesicle nearest the apex of the embryo-sac coalesces with it. The lower portion enlarges and lengthens greatly, and divides by transverse partition until a large terminal cell is formed at the extremity of a suspensor or proembryo (figs. 316, 317), formed of smaller cells. It is this terminal cell which immediately forms the

Fig. 314

Fig. uij

Fig. 316.

Ero. 31t- Entire nnatropal seed of the Orange (Citrus Aurantium), with Its rucose or wrinkled eesta, and tbe rapher ramifylag in the thickness of the tessa on one eide.
Eig. 315-Seed of Wallfower (Cheravthus) cut rertically The need is exalotminout or aperspermic-all the nowrishing matter beng incorporated with the cotyletons e. On removina the integument which is marked by the dark the edges of the cosvledons, which are acculor. Tene the edges of the corytedons, which are accumbent. The phast belongs to tha divisuon of Crecifere, called leurorhizew.
Fig. 315 Gection of the artile of Enothera, ahowing the pollen-tinte t_{1} with Its eniaged ex:remity arpiled to toe end of the embryo-sak, and antroverting it
 The two parts, the upper part omming a confersond septate cuapenaor s, and The iomer dividing into lour pores, mbich form a globlatat maso-the rudimentary Fin $317 .-A$ Dicoeriedonoum embryo in differen
Fin. che sced. At 1 it appears as a globuiar cellalarmstat at the extremidy of a celular cord or surpeneor: at a becomes more ovold, is enarmes ath more the euspensor, and b, the ewo cotyledons. embryo. By longitudinal growth the terminal cell becomes pushed into the endosperm (when present) of the sac, and becomes completely surrounded by it. In the lower part of the central cell of gymosperms a cell is produced which divides until a procmbryo is formed, which clongates and bursts through the central cell. The divisions in this proembryo take place so that several suspensors are formed, penetrating the endosperm. Usually, each of these elongates and bears a large cell at its estremity, which becones an embryo ; thus polycmbryony occurs. The terminal cell of the procmbryo in both angiosperms and gymnospernis increases in size, and divides repeatedly, until a cellular axis 13 formed. This is the rudiment of the embryo. Upon this axial mass, one, two, or more rounded cellular protulerances appear, the indications of the first leaves or cotyledons, and at the point where the embryo joins the proembryo is intercalated a mass of cellular tissue forming the hypophysss, from which subsequently the young root or radicle is formed. The axial mass continues to grow, and soon a differentiation is observable into an outer peripheral layer, the dermatogen or primordial epidermis, covering over the central mass, which soon is distinguishable into a plerom. or axial mass, fron which the fibro-vascular bundles develop, and a portion between it and the dermatogen, - the periblem or primordial cortex. After this has been formed a differcntiation takes place in the hypophysis, by which an upper and a lower layer of cells is formed The upper divides into two layers, the lower of which forms a continuation of the dermatogen of the axial mass, the upper being continuous with the central portion of the axis. The lowermost cells of the hypophysis form the first laver of the root-cap Lateral roots are frequently given off from
the embryo, especially in Monocotynecons, and these arise as cellular processes from the outer or pericambial layer of the plerome in the hypocotyledonary portion of the axis. The primary root of the embryo-is, by reason of its formation, always directed to the micropyle. In Monecotyledons and some Dicotyledons the young root rises deep in the tissues of the embryo, which, when it sprouts, form a sheath or coleorhiza around it. The lateral roots have also sheaths.

The embrye then consists of cotyledons (Ggs. 52, 53, 58, c), er the first laves of the plant produced upon a cellular axial mass. To that part of this axis immediately beneath the cotyledons the terms hypocotyledonary portion, caulicle, or tigellus (t) have been applied, and continuous backwards with it is the young root or radicle (r), the descending axis, their point of union being the collum, collar, or neek. The terminal growiug bud of the axis is called the plumule or gemmule (g), and represents the ascending axis. That extremity of the embryo which produces the first leaves or cotyledons is called the cotyledonary extremity of the embryo, while the opposite is the radicular extremity. The radicular extremity being continuous with the suspensor points towards the micrepyle (fig. 318), or the summit of the nucleus, an important fact in practical botany; while the cotyledonary extremity is pointed towards the base of the nuclcus or the chalaza. Hence, by ascertaining the position of the micropyle and chalaza, the two estremities of the embryo can in general be discovered. In some rare instances, in consequence of a thickening in the coats of the seed, as in Ricinus and some other Euphorbiaces, there is an alteration in the micropyle, so that the radicle does net point directly to it. It is in many cases difficult to recognize the parts in an embryo; thus in Cuscuta, the embryo appears as an elongated axis without divisions; and in Caryocar butyrosum, the mass of the embryo is made up by the radicular extremity and tigelle, in a groove of thich the cotyledonary extremity lies embedded. In some Monocotyledonous embryos, as in Orchidaceæ, the parts of the embryo of the ripe sced are not differentiated, and only beçome so after germination. In parasitic plants which form no cllerophyll, as Orobanche, Monotropa, \&c., the embryo remains without differentiation, consisting merely of a mass of cells until the ripening of the seed. When the embrye is surrounded by the endosperm on all sides except its radicular extremity it becomes internal or intrarius; , when lying outside the endosperm, and only coming into contact with it at certain points, it is external or extrareus. When the embryo follows the direction of the axis of the seed, it is axile or axial (fig. 318), and it may be either external, so as to come into contact with the endesperm only by its cotyledonary apex, or internal. In the latter case the radicular extremity may, as in some Conifere, become incorporated with the endosperm apparently by means of a hickened suspensor. When the embryo is not in the direction of the axis, it becomes abaxile or abaxial; and in this case it may be cither straight or curved, internal or external. In campylotropal seeds the embryo is curved, and in place of being embediled in endosperm, is frequently external to it, following the concarity of the seed (fig. 319), and becoming peripherical, with the chalaza situated in the curvature of the embryo, as in Caryophyllacea

It has been already stated that the radicle of the embrye is directed to the micronile, and the cotyledons to the chalaza. In some cases, by the growth of the integuments, the former is turned round so as not to correspond with the apex of the nucleus, and then the embrye has the radiclo directed to one side, and is called excentric, as is seen in Primulacee, Plantaginacere, and many Palms, especially the Date. The position of the embryo in different kinds of seeds varies. In an orthotropal seed the embryo is inverted or antitropal, the radicle pointing to
the apex of the seed, or to the part epposite the hilum. Again, in an anatropal seed the embrye is erect or hamo. tropal (fig. 318), the radicle being directed to the base of the seed. In some anatropal seeds, as in Castor sil, the exostome is thickened or carunculate, and the codestome does not correspond exactly to it , so that the radicle of the embryo is directed to a point a little remeved from the exostome. In curred or campylotropal seeds the embryo is folded so that its radicular and cotyledonary extremities are approsimated, and it becomes amphitropal. In this instance the seed may be exalbuminous, and the canbryo may be folded on itse'f; or albuminous, the erabryo surrounding more or less completely the endosperm, and being peripherical. According to the mode in which the seed is attached to the pericarp, the radicle may be directed upwards or downrards, or laterally, as regards the oriary. In an orthotropal seed attached to the base of the pericarp it is superior, as also in a suspended anatropel seed. In other anatropal seeds the radical is inferior. When the seed is horizontal as regards the pericarp, the radicle is cither centrifugal, when it points to the outer wall of the evary; or centripetal, when it points to the axis or inner wall of the evary.

Fig. 318.

Fig. 319.

Fig. 3:0.

Fig. 321.

Fig. 322.

Fio. 318 -The seed of the Pensy (Viola tricolor) cut vertenlly. The embryo pt is axial, In the midst of fleshy albumen al. The sced la anatropal, ard the embryo is bomotropal; the cotyledons es polat to the base of the nuelcus or chalaza ch, while the radicle, or the other extrctalty of the embryo polate to the foramen, close to the hilumi h. The hilum or base of the reed, and the The foramen, close to the hilum h. The hilum or babe of the 8 ed
chalaza or base of the nucleus are untted by means of the raphes.
Fio. 310.-Sced of the Red Compion (Lyehnis), cut vertcally, show!ng : he peripherlcal embryo, with its two cotyledons and its radicle. The embryo is periphed round the albumen, so that its cotyledons and radicle both combe acar the hum. The embryo to somctimes called smphitropal
Fio. 320.-Mature Dicotyledonous embryo of the common Almond, with one of the cotyledons removed: r, redicle: t, tikelle or cauniculc ; $c_{\text {, }}$ one of the

Fio. 3.1.-Transverso sectlon of the seed of the Wallfower (Cheiranthus). The radicle r to folded ou the edges of the cotyledons c, which are eald to De radicle r to
Fia. 822-Traneverse section of the aced of the Dame's Violet (Hesperis) The radiclor is folded on the beck of the colyledous, , which are sadd to be incurnbeut
Plants in which there are tro cotyledons prociuced in the embryo are Dicotyledonous. The form of this embryo varies much; and although sometimes resembling in its general aspect that of Monocetyledons, yet it is always distinguished by a division taking place at the cotyledonary extremity (fig. 317), by which twe, more or less evident, lobes are formed. The two cotyledons thus formed are opposite to each other (figs. 58 and 320). The cotyledons are not always, however, of the same size. Thus, in a species of Firrea, one of them is smaller than the other; and in Carapa guianensis there appears to be only one, in consequence of the intimate union which takes place between the two. The union between the cotyledonary leares may continuc after the young plant begins to germinate. Such embryos have been called pseudomonocotyledonous. The texture of the cotyledons varics. They may be thick, as in the Pea (fig. 58), exbibiting only slight traces of venation, with their flat internal surfaces in contact, and their backs more or less conrex; or tbey may bo in the form of thin and delicate lamine.
flattered on both sides, and having distinct venation, as in Ricinus, Jatropha, Euonymus, \&c. In the former case they are called feshy, or seminal lobes; in the latter, foliaceous, or seminal leaves. The cotyledons usually form the greater part of the mature embryo, and this is remarkably well seen in such exalbuminous seeds as the Bean and Pea.
Cotyledons are usually entire and sessile. Dut they occesionally become lobed, as in the Walnut and the Lime, where there are five lobes; or petiolate, as in Geranium molle ; or auriculate, as in the Ash. Like leaves in the bud, cotyledons may be either applied directly to each other, or may be folded in various ways. In Gerahium the cotyledons are twisted aud dovbled; ic Convolvulus they are corrngated; and in the Potato and in Bunias, they are spiral,-the same terms being applied as to the foliage leaves. The radicle and cotyledons may be either straight or curved in varions ways. Thus, in some Craciferous plants, as the Wallioprer, the cotyledons are applied by their faces, and the radicle (fig. 321) is folded on their edges, so as to be lateral; the cotyledons are here accumbent. In others, as the Hesperis, the cotyledons (big. 322) are applied to each other by their faces, and the radicle, r, is folded on their back, so as to be dorsal, and the cotyledons are incumbent. Again, tho cotyledons are conduplicate when the radicle is dorsal, and enclosed between their folds. In other divisions the radicle is felded in a spiral manner, and the cotyledons follow the same course.

In many gymnosperms more than two cotyledons are present, and they are arranged in a whorl. This occurs iu Conifcre, especially in the Fir (fig. 323), Spruce, and Larch, in which six, nine, twelve, and eren fifteen havo been obscrved. They are linear, and resemble in their form and mode of development the clustered or fasciculated leaves o: the Larch. Plants having numerous cotyledous are occasionally denominated polycotyledonous. In the gymnospermous genus Welwitschia, there are two cotyledons which last throughout its life (more than a eentury), and in the course of time they grow to an enomons size, being sometimes six fect long and two or three feet in breadth. They constitute the only leaves of the plant. In species of Streptocarpus the cotyledons are also permanent, and act the prot of leaves. One of them is frequently largely dercloped, while the other is small or abortive.

In those plants in which there is only a single cotyledon (fig. 53) in the embryo, hence called Monocotyledonous, the einbryo usually has a cylindrical form more or less rounded at tho extremities, or elongated and fusiorm, often obliguc. "he axis is usually very short compared with the cotyledon, which in general encloses the plumule by its lower portion, and exhibits on ono side a small slit which indicates the rinion of the edges of the vaginal or sheathing portion of the leaf (fig. 324). In Grasses, by the enlargement of the empryo in a particular direction, the endosperm is pushed on one side, and thus the embryo comes to lic outside at lie base of the endosperm. The lamina of the cotyledon is not developed. Upan the side of the embryo nest the endosperm and enveloping it is a large shield shaped body, termed the scutellum. This is by some athors considered to be an outgrowth from the hypocotyledonary portion of the axis or expansion of the radicular extromity, enveloping more or less the cotyledon and plumule, in some cases, as in Maize; completeiy investing it ; in other cases, as in Rice, merely sending small prolongations over its anterior face at the apex. By others this scutellom is considered as the true cotyledon, nud the fheathing structure covering the plumulo is reararded as a ligule or axillary stipule. In several other ifonocotrledunous plants, as Ruppia and Zostera, this scutellar struc-
tuie is well seen, and in these cases its ncmanczy, as an expansion of the radicular extremity of the emoryo, is clearly discernible; and this is further borno out by such cases as that of Caryocar butyrosum among Dicotyledons, where the radicular swelling oc,upies most of the embryo (fig. 326). In some Grasses, as Oats and Rice a projection

Fig. 323.

Fig. 324

Fig. 225.

Fig. 326.

Fic. 323. - Polycotyledonows ensbryo of tio Pine (Pinus; beginning to sprontThe axis t ehows lis radicidny nartion * atid cotyledonary portion c. The cotyledona e are numerous. Whinh iho cutyledons the primordial leaven are Feen, constitoting tha plumule or ac: t buic of the phant.
 unform condes mass, wha sli s a tho low part. The cotylcdon e envelops the yourg tud. Tnlcia prectu ts at the olt during germination. The Fedcic is developed from the lowur phtiof the axis r.
 of the graing. The rulluluy putin of the embryo fives off rootleterrerr cosered wath coltulur hatro. The pumig.? yoo is the cental one; the others
 ece. The ascending an:s 1, shesthed ta the cotylcdon, rises upwards.
Fig. S26.-Embryo oi Caryocat dutyrum. t, thick thecle or caulicule, forming nesrly the whole mass, ?coming narrowed and cutved at tis critremity, and applied to the groove s. In thic figure thiy nartowed portlo: io elighty sepanated from the groove; c, two rudtacatary cotyledons.
of cellalar tissue is seon yyon the side of the embryo opposite to the scatellom, that is, on the anterior side. This has been termed the emblast. It is very large in Rice. This by some was considered the rudimentary sccond cotyledon ; but this is impossible, ns it arises outside, and nfter the first cotyledon It is merely an outgrowin of the radicular extremity like the scutellum. Tha radicular portion of the axis is usually shorter than ihe cutyledou, and more dense in structure ; but in some instances it becomes much larger, giving rise to what lies been celled a macropodous embryo.

5. Femate Organs and Reproduction in Creptogams.

The female orgens of renroduction, like the maloorgans, Female have not been demonstrited in all Cryptogans. In allorgens itr. vascnlar Cryotogains, and in inosses and Ifepatice, certain higher usually flask-shaped bodies, which have been termed grypto, archegonia or pistillidia (fig. 327), represent the female organs producing cells or spores, which germinate and form new plants (fig. 54). These archegonia have the general structure of a large ccll, the central cell or oosphere (c) surrounded by a layer of smaller cells. From the epex of this oosphere leads a camal, which is bounded by four rows of small cells and constitutes tho neck, and in it is a large cell full of soft muchlaginous matter, which has been formed from the central cell, and is tho canal cell. Upon the wall of the oosphere, turned towneds tho neck, a small portion different from the surrounding part is tho receptive spot. Fertilization is effected by the antherozoids freed from the antheridium, penetrating the neck of the archegonium, and eventually reaching the receptive spot of the central cell or oosphere; they then enter the oosphere and conlesce with it. The fertilized oosphere is termed an oospore, and it then may escape from the archagoniam, and sooner or later germinates; or it germinates within the archegonial cells. These archegonia are, in wascular Cryptogams, produced upon a cellular expansion formed asexually from a spore, and termed the prothallus (fig. 245), which is of varying size and form. Both archegonia and antheridia may be formed on one prothallus, or only one form of organ may be produced, thus indicating a teedency to diclinism.

In Characem the female organ has a peculiar structure,

In Cbs. pacezo.
and is termed a nucule (fig. 240, n). This concists of a large central cell, of which the contents at the apex are clear and hyaline, while the lomer part contains much starch and fat. Rising from its base and twisting round it are five long tubes (fig. 328), at the extremity of each of which

Fig. 327.

Fig. 328.
10. 327.-Archegentam of the Forked Spleenmort (Asplenium septentionale) 1 mmediately after fictilization. a, canal leeding to the large cell (oosp here) cat the base of the acihegenidm; e, nucleated embryonic cell, wbence the sporanEiterous frond proceeds.
Fia. 328.-Nacule of Chara entire, with Ave cells. wound raund a large ceatral cell In a spiral manner : a, crown or coronula of five smaller celis.
Fia. 329 - Plstilidiuna of Liverwort (Marchanfia). It is a cellular body surrounded by an Invelucre (perjgone or calya) b, and septate fliamento (paraphyses) it add it is provided with a stylold calyptra a.
above the apex of the central cell is a single short cell in Chara, while in Nitella it is divided transversely into two. These fire or ten short cells form the crown. They unite together so that their apices project as small teeth. Between the crown and the apex of the central cell, which is termed the apical papilla, a cavity is included, bounded at the sides by the five enveloping tubes, which at this point form the nerk of the nucule. The cavity of the neck is constricted in the middle by the projection inwards of the tubes to form a sort of diaphragm, so that the enclosed cavity has a rude hour-glass like shape, the upper cavity closed above by the crown being connected by a narrow canal with a lower cavity bounded beneath by the apical papilla of the central cell. When fertilization takes place slits are formed betwixt the five tubes of the neck, beneath the cromn and above the diaphragm. The antherozoids from the globule enter by them into the upper cavity, pass through the canal into the lower one, and fuse with the apical papilla of the central cell or oosphere. The oospore thus formed becomes detached from the plant, being covered by the thickened inner wall of the tube which invested it. The nucule rises from the base of one of the whorl leaves in Chara, and is therefore above the globule ; in Nitella it is produced upon the leafy axis beneath the globule.
In Mosses and Heps. tices.

Mosses the archegomia are frequently sitaated along with the antheridia and paraphyses. They are surrounded by the same whorl of leaves, or perichatium, when the moss is said to be hermaphrodite, or they occur separately on the same or on different plants, the moss being then moncecious or diœcious. The term perigone is applied to the whorl of leares around the antheridia. The basal portion of the arehegonia which surrounds the oosphere is termed the epigone. In Hepatice the archegonia (fig. 329) are situated in the substance of the thallus itself, or they may be in various situations, as in Jungermannia (fig. 330); in Marelantia they are produced upon the under surface of a stalked stellate disk (fig. 331).
than the surrounding portion; and oospores are formed. In the Floridex, a group of Alga, the organs are different in character. Here the antherozoids are not motile, having no cilia. On discharge from the antheridium, these are washed into a long filiform hollow body, termed the trichogynium. This is supported usually upon a cellular stalk-the trichophore-at the side of the bese of which is a small cellular mass. The antherozoids having entered the trichogynium, fertilization is effected, and results in the formation, from the cellular mass at the base of the

Fig. 330.

Fig. 331.

Fta. 330.-Archegonia of Jungermannia bicunidara, a, archegonlam, whth a tatio lead ng to a cavity near the hase of which is a cell: b, archegonfurn after fortllzatlon, with the cell e divided into two nucleated portions. Thls doable nucleated body is the rudiment of the frult-bearing stalk. At the apex of the cannt lcading to the cell are seen spermatozolds 3 s.
Fto. 331.- Thallus of Liverwort (Marchantia polymoryha), hearing a stalked frait A. which is the prodinet of the Impregnated cell of ite erchegoniam. The receptacle at the apex of the stalk beare on tis under surface sporangia contalnint sporcs and elaters. The pores, when germinatlog, produce a thallue. on which entheridis and archegonia are formed.
trichophore, of a large cell, the cystocarp, in which sporps are formed. In the Saprolegnjer the antheridia actually penetrate into the oogonium and discharge their antherozoids. Amongst Fungi it is rare to find sexual organs. In some thecasporous fungi, as Eurotium, a sexual process has been observed. The female organ, here termed ascogonium or carpogonium, is of a spiral elongated character, immediately surrounding which are the antheridia.

Fid. 832 - Traniscrese section of a conceptaile of a Searred. (Fucys cencmosus). shawing the spores in the coveringo, p. and paraphymes lining the cavity. Tho sporca escape by an orifice o.
Fto. 333.-Two fiaments of a Confarpaceons Alka (Zygmema), confugatlma, i.f. uniting together by tubes $F_{\text {. Which pass between the different celis. The con- }}$ tents of two cells ce untto co as to form a germinating aporas Ia tho lower two cells splral filaments are aect.
few in number, which open into the apex of the female organ, and discharge their antherozoids. The result is the formation of cellular tissue round the ascogonium. forming what is termed a perithecium, and within the ascogonium large cells (asci) are produced, in which apores
O. sporidia are subscquently developed. In Lichens no sexual organs have as yet been clearly demonstrated.

Amongst Fungi and Lichens there are certain bodies to be noted, which may be connected with sexual reproduction, but the function of which is at present onknown. Embedded in the margin of the thallus in Lichens and on various parts of the plant in Fuagi, certain hollow urnshaped bodies are found, which have been termed spermagones (conceptacles) (fig. 334). These are usually closed all but a small opening at the apex From their base risc peg-shaped projections or sterigmata (fig. 335), bearing at

Fig. 334.
Fig. 335.
.a. 834.-Two opermagones on thalll of Lichens.
ria. 335.-Sterigmsta o and epermotia b of Cladonia fin briata.
their summit elongated, sometimes curved, bodies, termed spermatia, which, when mature, are discharged through the apex of the spermagone. These are ty some considered the analogues of the antherozoids in other Cryptogams. There are also found other eonecptacles, to which the name of pyenidia or pyenides is giveu. These contain large spores, which have been termed stylospores (fig. 336), but their homology is at present unknown.

Another process of reproduction is seen amongst Cryptogams. This is termed conjugation (fig. 333). It differs from the process of fertilization just described in that it consists of a union of the contents of two similar cells, whilst fertilization essentially consists in the mutual influence of dissimilar celle. It is well seen in many Alge, such as Diatoms, Volvosinex, Coujugatie, also in some Fingi, such as species of Rhizopus and Zyzygites. It may consist in the coming together of two cells,-either moving spores, as in Pandorinia, or motionless, as in Diatoms, - which completely fuse, and a compound spore, or zygospore, results; or prolongations of tho wall of two adjacent cells meet, the partition between the two gives way and tho contents from the one pass into the other, and a zygospure is formed, as in Zygnema. Zygospores germinate only after a long period of rest.

Amongst Thallogens especially, though it also occurs in other Cryptogams, the asexual mode of reproduction is very common. But the manner of formation and the nature of the spores is diversified.

Amongst Alga tro modes of asexual reproduction are seen,-by motile spores and by motionless or resting spores. In the former caso the contents of a cell form a new cell, which escapes from the mother-cell, and moves about by means of cilia, which are formed cither all round it, as in Vancheria (fig. 337), or as a tuft at one end, as in Edogonium. These are termed surarm spores, or zoospores, and frequently are of different sizes, being termed respectively microgonidia and macrogonidia. After swimming about for a time they fix themselves, and develop small rhizoids from one extremity, the other growing up into the plant. The motionless spores aro seen in the Florider, where they are formed in cells, four in each, attached together in a row, or as a tetrahedron, constituting the tetraspore (fig. 338).

Amoagst Fungi asexual reproduction is very common. J\$ara spores are rarely formed; but the mode of
formation of motionless spores is very various. They may be produced in the interior of distinct sacs called

Fig. 336.

Fig. 337.

Fig. 335.

Fig. 336-RBasidia a, stylospores b, fiec stylospore. , fiom pyentice of Lecidia. Fio. 337.-Zoospore of nil Alga (Vaucherra), surrounded by moving cillo. cuciatum). inated endospores or ascospores, and the plants are said to be thecasporous or ascosporous. When they are developed on the exterior of sacs called basidia (fig. 340), they are denominated exospores, and the plants are basi-

Fio. 399.-Vcricai section of tho aruetifeatlon of a Fungus (Pretea), showing cellulet f, bearing clovate spore-cases or thecre t, whith contain nucleated cells
 cellular fllaments or paraphyses.
Fio. 340 .-Fortlon of ol lamella or gill of the 3 nnshroom (Agaricus campetris) ent transversely, ehowlng the two liteinl surfaces bearing basidis bus, with four spores spo at thelr apicca, and cysthia cys or bace containing minute ccils. The bymesilum is marhed A. Al a and b are represented the four sporcs.
diosporous. When produced in the midst of a gelatinous mass, without any evident differentiation, they are called myrospores, the plants being myxosporous. Both the endospores and the exospores may by division become seytate, and form compound spores, each of the sccondary spores so formed being termed a merispore. Four or cight basidiospores are usually produced from each basidium. In the asci numerous spores are formed. Other forms of spores seen in Fungi are the sonidia. These are stalked spores which arise from a myeclium.

In Lichens we find asci which produce spores or sporidia just as in Fungi ; and in addition there also exist spermogones with their sterigmata and spermatia as well as pycnides and stylospores. Besides the spores there are organs called soredia in Lichens. These are grouns of srnall round cells or gonidia (fig. 97), surrounded by hyphe, which are capable of independent growth after removal from the thallus. These gonidia are now regarded by many as an Alga, upon which the hypha, which is supposed to be an ascomycetous Fungus, is parasitic.
In Chara a curious mode of asexual reproduction is seen which presents sceeral well-marked modifications, the process almays proceeding at the nodes, and consisting in the growth of a new axis from a nodal cell either isolated or united with other cells.
In all vascular Cryptogams, Muscincex, and many Thal- Alternatic logens, that process of development in which successive dif- of genera. ferent geuerations are produced finally returning to the tions. original form, usually termed alternation of generations, is well seen. The number of such generations varies.

Amongst Ferns the ocspore germinates and producez an asextil generation. The embryo plant formed from this spore is a simple mass of cellular tissue, no cotyledons being formed. This, then, is an Acotyiedonous embryo (fig 54). The same happens in other vasenlar Cryptofaras, which are therefore also Acotyledonous. The embryo ${ }^{3} 30$ formed has a primary meristem, with an apical cell, by division of which it increases in size,-roots being formed downwards and a leaf-bearing axis upwards, upen which, eveninally, the fructification (îg. 341) is formed. This consists in Ferns of the production of either stalked or sessile spore-eases or sporangia, from the epidermis on the baek (Aspidium) cr edges (Pteris) of a leaf (irend), or upon a special branehing axis (Osmunda), or a spicate one (Ophioglossum). These, when situated on the frond, are arranged in definite clusters or sori (fig. 342), either

Fig. 342.
.1g. 341.
ho. 341.-Frond uructiferous leaf) of a Fern (Vighobolus), showing sori, or roand clusters of sporangla at the ends of veins. As these forl are ou the bsck of the frond, the Fern is calted dorsiferous
10. 342-Sonis or cluster of sporangls of a Fern (Aspidium trifoliatum). The sporangle are covered by an induslum or finvolucre. derlved flom the ephermis of the frond. The iovolucre is roond (orblcular). Bud attached by its centre dn an umbilical manner. The eovulate sporangle ere seed at the lower edge of the invoincre.
rounded or elongated. With the sporangia are usually issociated juinted cells or paraphyses. Frequently the sori are covered by a thin cellular layer forming an indusium or involucre, or the margin of the frond folds over them, forming a false indusium. Within the sporangium spores are produced, and when ripe these escape by the rupture of the sporangium, this in many cases being provided for by the formation, at a definite point, of an annulus or ring (fig. 343) of unequally thickened cells. Hence some Ferns aro annulate, others examulate. The cell-wall of each spore is divisible into an outer layer or exospore, and an inner or cnelospore. When the spore reaches the soil it germinatea, and after a longer or shorter period produces the sexual generation. In this process the varionsly marked exosporo is ruptured by the enlarging endospore, which divides so as eventually to form a flattened cellalar expansion or mothallus (fis. 344) with small cellular rhisoids. Upon this, usually on the under surface, the sexnal organs, consisting of antheridia and archegonia, are nroduced. A tendeney to diacism is observed in prothanli, frequently producing only one kind of sexmal vigans. By the mutual influcree of those sexual organs an oospore is formed, from which a new asexual generation arises. Thus in Ferns the alternation consists of two dissimilar generations,-a sexual or prothallial generation, ' and an asexual generation.

In Equisetacee the same alternation of two dissimilar celacera.
in close whorls round the apex of the axis, forming a pyramidal head ($£ g .3 \pm 6, f$), the surface of the scales being

Fig. 343.

Fig. 344.

Ftg. 315.

Fio 243 - 3 iatare sporangiom of the Male Fern (Lasfea Fulis-mas). It is supported on a stalk $p_{\text {, some }}$ sof the cclis of which form an elastic ring or annuins a round the spore-case. The spore-case s opens at the slde to discharge the spores.
Fin. 344- -Young plant of o Fern (Pterin paleacea). showling the commencemeat of the eporanglferons Irood f_{1} arising from the lmpregnated orale ti the archegoniam, the prothallum ρ, belng stlit attached.
Fio 34s-Yoly gonal scale 8 of a specics of Horse tail (Equifsetum), bearing membranous sacs $f_{\text {, whis }}$ whepen on eheir twoer sarface to discharge spores
directed tangentially to the axis. Round the margin of the inner surface of these scales the sporangia are produced projecting ${ }^{\text {ow wards the axis. W'hen ripe each srorangium }}$

Fig. 346.

Fib. 347.

Fig. 343

Fig. 340.

Fig. 350.

Fig. 351.

F10. 356.-Fructhantion of a specles of Ilorse-tail'(Equictum marimum). The stalk 19 sarmonded by a sertes of membranous shecthes a wheh aro fringed by numesous sharp processes or tecth. The fructitcathon im at the extremity of the frond, in the form of a pyramidul mass of polygonal swaics, bearing spores on thelr nitier-surface.
Fig. 347 -lange spores of Club Moss (Lycopadium) enclosed io an involucre. It Is somethmes called an ophorldtum in cobsoguence of canpalnhas ferminatog bodjes (nrulcs). It represents the femaic orkan. Tic lirohacre opeas transversely to dischagge the spores (macrospores).
Fio 348.- Jiacronpare dlseharged from the onphondsam of a Lyenpod (Seliggivella
 p at tho upper coul.
Fto. 349 - levfleal section of a small porton of the prothallium and naper part
 e. developed from a centra! cell of anc il ilve arelacgona a, carticd dowo by the frow th of the mapeasof, bo ay to be erubedded to the ceifular tissue at tho uppec piart of the spoic.
Fig. 350 .-Fructifleation of a specles of Pepperwore (Marsies Fabri). The aporo carp sopens to give out a pecuhar cellular cond of pealunelo f. which et drst was curved la a Hog liko manmer This cord bears sitke-liko fructidealioo $\%$ consisting of antherbda and platilidia cuclosed in sacs
 imprennation, showing the prothatilum, with the embryo in its interior In as advanced state. This embryo etves orimio to the lealy atem.
opens towards the stalk of the scale, and the spores are shed. each having attached to it four clavate filaments sometimes
termed elaters (fig. 3), which are very hygroscopic. By germination of these spores a sexual generation or prothallus is formed.

In Lycopodiacex a sexual process has not been observed in all geuera; but in Selaginelln and Isoetes, where it has been observed, it is exceedingly instructire, as it forms a connecting link between the process as seen in Cryptogams and that observed in Angiosperms. The asexual generation produces the fructification which cousists in the formation of a single sporangium in the axil of each leaf of a certain rart of the axis. In those gencra in which sexual organs bave been discovered these sporangia are of two sizes, termed macrosporangia (fig. 347) and microsporangia respectively. The whole fructification frequently forms a spike. In the macrosporangium or oophoridium few, usually four, large spores (macrospores) are formed, having each an exospore and an endospore. In the microsporangium (fig. 248) numerous small spores or microspores are formed of a similar structure. When the sporangia are shed the capsule decays, and the spores escape. Within the endospore of the macrospore, a development of cellular tissue takes place which eventually completely fills it and constitutes the prothallus, termed sometimes on this account endothallus (fig. 348). As it increases in size the exospore is ruptured triradiately, and the endospore projecting is also ruptured, and thus the prothallus is protruded, in the substance of which archegonia are formed. The microspores, on the other hand, produce within their endospore, sometimes after the formation of a rudimentary prothallos, antherozuid mother-cells, which are discharged by the rupture of the exospore and endospore (fig. 249). By fertilization of the oosphere of the archegonium an oospore is formed, from which the sexual geueration arises. The embryo is formed from the lower part of the oospore, the upper half elongates and forms a suspensor (fig. 349) of several cells, by which the embryo is pushed downwards into the substance of the prothallinm, and there develops into a young plant, rudimentary cotyledons being formed upon the young asis. It will be observed that this process resembles very much the mode of embryogeny in Phanerogams, and, indeed, from this it is but a step to the form iound in Gymnosperms and thence to Phanerogans.

In Rhizocarps the sporangia are formed in the interior of ovoid sacs, termed sporocarps (fig. 350), which are nsually supported on stalks, and rise from the leaves near their base, one or many on the same stalk. In each sporocarp, microsporangia and macrosporangia are formed in various positions; and a prothallium (tig. 351) is formed iu the maerospore, as in Lycopodiacex. From the oospores formed in it the embryos are prodaced, but without ouspensors.

In Characere there is an alternation of a sexual with an esesual condition. From the oospore a small proembryo is first formed, from a cell of which the sexual plant is developed.

In Mosses the sexual generations are produced as lateral ehoots from a filamentous procmbryo or protonema (fig. 352). Upon this leaf-bearing axis either at the apex (acrocarpous) or laterally (pleurocarpous) the sexual organs arise. The asexual generation rises from the oospore and constitntes what is usually termed the fruit (fig. 353) of the moss. It has been designated the sporogonium. The sporogonium is formed by the enlargement of the oospore into an ovoid embryo which presses against the epigone, fually rupturing it, and carries the upper portion upwards with it as the calyptra or cap, the lower portion forming a sheath or vaginula at the base. This calyptra may be either split on one side, dimidiate, or entire, then termed mitriform. The upper part of the sporogenium forms a capsule, urn, or theca: the lower portion acts as a
supporting stalk or seta, whick is often swollen, just bencath the capsule forming the apophysis (fig. 354, a). In Sphagnum the sporogonium is fully developed within the epigonal leaves, and when complete the axis beneath it elongates, forming the pseudopodium, aud projects considerably beyond the perichætium. The walls of the capsule of the sporogonium consist of several layers of cells. It has a central axis or columella, surrounding which are the spores. When mature the capsule uisuifly dehisces,

Fig. 352.

Fig. 353.

Fio. 38 - Moss (Funaria hugrometrica), showing the cellular mutonema F. of proenbryo, with its roots r, and buds a, b, whence arise leary, stems besring the organs of reproutuction
F10. 3:33,-Hygrometric Cord-Moss (Funaria Augrometrica), with its urn-libe theca u supported on stalks p whleh arise from perichetial leaves f. The thece are covered by a calyptra c, which splits on one shde. The opeiculum or hido is seen in one of the thece from which the calyptra has falien. Tho seta la twisted, and displays hygrometric propertics.
either by four longitudinal valves, as in Andræa, or most commonly by a lid or operculum (fig. 355), between which and the capsule an annulus or riag of cells is separated On removal of the operculum the stoma or opening of the capsulo is seen. The margin of this is sometimes entiro (gymnostomi), more usually fringed with teeth or cellular prolongations, constituting a peristome (fig. 355, p), cither in one row (aploperistomi) or in two rows (diploperistomi). Stretching across the mouth of the capsule is frequently seen a thin cellular membrane, the epiphragm. or

Fig. 3:4,-Fructification of the Mali-Moss (Pclyfrrmum), consisting of an aralike (urceolate) case or thecs a, supported on a stalk (scta) s, arnd cuvered by a calyptrac, whleh splits at the base
Fio. 355°. - Theca u of the Extinguisher-Mose (Enea'yl $t a$), showlog the tecth of the petlstome $F_{\text {. which fold io wards when moisture is apphed }}$
Fio. J5tr-Viertical section of a Mushroom (Agamcus campusters), my, revechum ur spawa; ce?, remains of volva or wrapper: si, siljue or stak: an, annulus ur ring, being the remains of the velum real, orcortina; la, laraella or guls of the

tympanum, as in Polytrichum. The spores shed from the capsule germinate and give rise to the proembryo which by budding gives off the sexual plants.

In Hepaticæ the sexual gencration arises eitner directly
from the spore of the asexnal generation, or a small proambryo is first formed. The sporogonium is of various forms, and originates differently in different groups from the oospore. It is always formed within a cellular covering or epigone. In Anthoceros the sporogonia are elongated and open by two valves, and there is a central ccllnar columclla. In Jongermannia the sporogonia are globular, and open by four spreading valves. There is no central column, bat the inner wall displays cellules, called elaters, fixed by one extremity, and containing one or two spiral fibres which by their elasticity scatter the spores. In Raccia the sporogonia are globular, and there are neither elaters nor columella.

Very little is known of the sezual reproduction of Fungi, and regarding the alternation of sexual and asexual geuerations in them. But we have abundant instances of alternation amongst the asexual generations, and aloug with this of that curious phenomenon included under the tcrm heteroecism, which consists in the growth of one generation of a parasitic Fungus upon onc host, and the development of anotber generation upon a different host. By tracing out this phenomenon, many forms, described formerly as distinct species, are now shown to be gencrations of one and the same Fungus. The aseznal spores of Fungi are produced apon certain structures which bave been frequently termed the fructification. For instance, in basidiosporous Fungi the collection of basidia forming the hymenium is usoally situated on large receptacles. The structure commonly known as a fungus (fig. 356) is a receptacle produced upon a mycelium (my). In its young state it appears as a tubercle upon the mycelinm covered•by a volva (fig. $356,20 l$), or * wrapper, which it bursts during growtl. It consists of a pileus or cap (p), at the extremity of a stalk, the stipe (st). On the under surface of the pileus are the lamelle (la) or gills, of various forms, which constitute the bymenial ($h y$) layer, to which the spores are attached. At first the hymenium is covered by a veil or indusium, which during
the growth of the stipe is ruptured, the base remainiron the stipe as the annulus (an) or ring. When, as in the Mushroom, the hymenium is exposed, the fungus is said to be gymnocarpous (fig. 356). In other cases, as in Phalloider, it is covered over by a peridium, and the whole mass so enclosed is the gleba, and the fungos is angiocarpous (fig. 357). In ascosporous Fungi, as Spheria, the asci are usually formed within small roundish receptacles, termed perithecia; and along with the asci are usually numerons abortive filaments or paraphyses. Sometimes these perithecia are situated upan cushions or branching masses of tissue, the stroma. In the myxosporous Fungi the plasmodium, or whole protoplasmic mass of the

Fig. 357.
The Truffe (Tuber cibarium), a aubterrancen Fangus with a black tuberculated or warty extelinal coverlog, and a white cellular Interior contalníg sporiferous ceils. plant, forms receptacles, in each of which is a capillitium, or network of fine filaments, in the interstices of which are numerous spores.

In Lichens spores are formed in asci, which are ar- In Licken ranged along with paraphyses, forming a hymenium in receptacles situated on the thallus, and termed apothecia or lirelle, which are sometimes (fig. 95) supported on a stalk or podetium. The hyphr, from which the asci arise, form a layer immediately beneath the hymenium, termed the subhymenial layer, the thick mass of hyphos beneath being the hypothecium. The outermost laycr of the tissue of the apothecium is termed the excipulum.

Amongst Algæ alterpation of generations is very com. In Algo mro; and here, as in the case of Fungi, it may pass through several gencrations before reaching the origical form. This is well seen in Diatoms, also in Edogoniere, where three generations are passed through, and in Coleochæte, where there are four dissimilar generations, sexual and various forms of asexual repraduction alternating.
(J. н. в.)

Index of Principal Subjects.

nv80rptlon, 119.	Chlorophyll. 87
Achæutum, 151.	Circulation, 83
Acotyledonous plante. 82	Core. 122,103
Acotyledons, stem In. 10\%.	Conjugnton, 139
leeves in. 116.	Connertive, 137.
Acrogenous atem, 99	Comm. 98.
Aeilal roots, 94	Coroulla, 132.
Estivation, 130.	Corpuscles, 116
Albumen, 155	Corymb, 122
Alate, vegetntue organs	Cotyleilons, 1 if.
of, 107; reproduction	Cremoratp, 1is.
of. 162	Cryptogamous plants. 92
Alternation of generatlons. 159	Ciyptogams, male organs in, 110: femule organs
Amentum. 122.	Іл, 157
Anther. 126.	Cyme, 123
Antherdidn. 140	Dehlsctnce. Antherlne,
Archeronin, 157.	$1: 37$.
Aillina. 154.	Dehuscence of Imults. 149
Aserual reproduction, $\text { - } 159$	Dicotyledonous plants. 92. 15.6
Batk. 100	Dicotyledons, stem In. 99 ;
Rerry. 151.	Icares 1n, 115.
Bordered juts, 8s.	fictyopers, 103.
Bracta 119	Disk, 139.
Buanches. 97.	Drupe. 151
Sianching, proviaton tor.	Erohiyo. 185.
92.	Embryo-sac, 146
Bulb. 99	Endog'nous stesm. 99.
Culy $\mathrm{Cl}^{\text {d }} 131$	Enveloper of flower. 131.
Csmbium. 99. 101	Epiderinls, 89
Chentalinic. 84,	Epiphytes. 94.
Euplitum. 123	Essmitial organs of flower.
Cupsulc, 152.	134
Confula. 141	Eshalation. 119
Cusupsia. 1515.	Exogernous stem, 99
Culw, 83	Fall of leaf 119.
Cellular pilania 92	Fascicle. 124
Chbigza, 146.	Fermale argans of playta,
Characces, atem in 10.s.	111-1:3
male orgnna in 140:	Ferns, stem in. 106, ro-
firmile orgera " 0_{0}	protuction of. 160
187.	Fertilization. 14\%.

Fibro-roscular bundies, 92.	Macrospores, 161.
Fioment, 136	Dlate organg of placts,
Flowers, dlferent parts	135-141.
of, 126.	Stedullary ohesth, 100,
Flower-hud, 130.	rays, 102.
Folingo lcaves, 110.	Micropyle, 164.
Follicle, 181.	Microspores. 141, 161.
Formulie, foral, 129	Monocotyledonous plants,
Fovilla 139	82, 157.
Fruit, 148-133	Monocotyledons, stem in,
Fungi, vegetative organs	103: leares in. 115.
of, 107; reproduction of, 102	Mosses, stem in, 106; femate organs in, 158;
Glands, 91.	altemation of gedera-
Globule, 140.	tions ho, 161
Glumes, 119.134	Nat ural classiffications. 80
Gum, 88	Nectarles, 134.
Gyntelum, it1.	Nucleus, 8.
Hairs, 90.	Nucale, 148.
Derbaccous plants. 05	Nut, 131.
Hesper idum, 38.	Nutrition, organs of, 94-
Heteracism, 1 fi2.	119.
Illstory of botany, 39	Olls. 88.
Horsctath, stem !n. 106:	Ovaty, 143.
reproductlon of, 160	Arule, 143.
Inflorescence, 121: tabular	Panlele, 122.
vicw of, 125.	Pappus, 131
Integuments, 89	Paraphyecs, 160,
Intercellinlar eperes, 87.	Perenchyrna 85
Jussdets, 80.	Petuncle, 121.
Laticlicrons pessels, 87.	Pepo, 102
Leal-buds, 95.	Petals, 132
Leaves 108-119	Jetloks, 109, 112
l.caume, 151.	Phancrogamous plant 9.92
Lichens, regetsilse organs of, 10 : repsodue-	l'haneronams. nhale organs $3 \mathrm{n}, 135$
tion of, lfi	Jhyllodium, 113.
Linnews's system of ciss.	Phyillotaxas. 115
sificratmes. 80	13ystology of plants. 81
Lnculanmuts. 143.	Prail. 141.
Lyrnjudiacres. stem in.	
107; reploduction ofim	1 1tchers. 115
161.	IIth, 100

Pits, 86.
Pacenta, 142 I'leurencsyma, 85. Fod, 1:1. Follen, 138. Pullination, 139 I'ome, 152 Prickies, 90. P1imary tissue, 92. Protective organs of Gower, 131. Prothallus, 1 : 0. Protoplasm, 84. Pu'rinus, 118. Putomen, 151. Raceme, 122. Rajthe, 147 Raphides, 89. Receptacle, 121. Repinduction, orgons of, 119-162
Resing, 88.
Resphation, 119. Rhlzocelps, stem!n, 107; reproduction of. 101. Rhlzome, 98. Root, 34 . Root-stock, 98 Rotation, 84. Rumner, 97. Somata، 131 Scsles, 91,115 Sced, 153.157. Sepmis. 131 Scptum. 1/2 Sexcs of plants. 82. 134 Sheath. 114 Sliqua, 18 Sobolea, 88 Sori. 16 Sornsus, $1: 33$. Spmis. 1:2. spathe, 120.

Specles, defultions of 6. Spermagones, 150. Spermatozoids, 140 Spermoderm, 153 Spike, 120. Splikelets, 134 Splines, 97. Spiral tissucs, 88. Sporangia 1 so. Stamens, 135 Stareh, 89. Stem, 95-107 Stigma, 14. Stjpe. 10s. Stipules, 109. 114. Stolon, 97. Stomats, 89.
Strobilus, 122, 153. Style, 144. Suckers, 97 Sucor, 88. Symmetry of fower. I21 Tegmen, 153. Tendrils. 27, 114. Testa 153 Thalamus, 121. Thallogeo 195 ; tem abc teaf of, 107; female orgens in, 158 Thssucs, ós-s7; cf leaven 108 Tranepliation. 119. Trichomes, 90. Tuber, 98 Itmbel. 123 Vascular plants. 97. Venatlom, 109 Vemation, 119. Vertictllasters. 128 Wis. F8.
Woos. 100

Explavation of the Piates.

Plate I. Papaver Khceas, Common Red Poppy, belonging to the Nat. Ord. Papaveracea. The leares are pinnatifid, the peduncles have spreading bairs, the celyx consists of 2 caducous sepals, enclosing 4 crumpled petals, the otemens are indefinite and hypogynous, and the ovary is surmounted by a rediating stigma.
Fig. I. Stamens insarted on the thalamus, below the ovary with its sessile atigma. Fig. 2. Capsule opening by pores below tho sessile radiating stigmas.
Plate 11. Janipha Manihot and Eschseholtzia californica.
Fig. 1. Janipha Manihot, Cassava plant, belonging to the Nat. Ord. Enphorbiacea. The leavea are digitately-partite, snd the flowera are in racemose cymes. Fig. 2. Racemose cyme, with a pentacoceous capsule, which separates in an elastic manner into 5 single-secded carpels. The cyme bears male as well as femalo flowers. Fig. 3. Piatil with stigma. Fig. 4. Stamens and fleshy disk Fig. 5. Seed with strophiole.

Fig. 6. Eachacholtzia cslifornica (naf. size), belonging to the Nat. Ord. l'apareracex. It has a peculiar caducous calyx like a candle-extinguisher, and a tetrapetaloua corolla, with numeroua hypogynous atameng. Fig. 7. Hollowed ead of the peduncle, with tha pistil. Fig. 8. Section of ovary, with numeroug seeds attached to 2 parietal placentas. Fig. 9. Ceratium or siliqnまform capsule inat. size), opening by 2 valves. Fig. 10. Section of the seed, with the Dlcotyledonous embryo, which is shown separately in fig. Il.
Plate III. Malva sylvestris, Common Mallow, beloaging to the Nat. Ord. Malvacees. The leaves have 5 lobes, the inflorescence congists of cymose fascicles, and the æativation is contortive.
Fig. 1. Calyx with a three-leaved epicalyx or involacre. Fig. 2. Obcordate petal, with moaadel phous stamens. Fig. 3. Tube of stamens formed by union of the filaments. Fig. 4. Pistil with numerous carpela and atyles. Fig. 5. Stamen with reniform anther opening round the margin. Fig. 6. Section of ovary composed of numerous carpels.
Plate IV. Anacardium occidentale, Casher-nut plant, belonging to the Nat. Ord. Anacardiacee.
Fig. 1. Branch (somewhat reduced), bearing flowers and fruit. The flowers are in cymes, and the peduncles ara enlarged in a pear-like form, bearing the nut (the true fruit) at their opex، Fig. 2. Flower not expanded. Fig. 3. Flower expanded. Fig. 4. Stamen and pistil, with the calyx ; ono fertile atamen longer than the others. Fig. 5. Stamen ecpamted. Fig. 6. Nut coastituting the fruit. Fig. 7. Nut opened longitudinally. Fig. 8. Seed seperated from the nut. Fig. 9. Cotyledons opened to show the radicle a, and the plumale.
l'late V. Sarothamnue acoparius, Common Broom, belonging to the Nat. Ord. Leguminosæ or Fabacee, Sub-ord. Papilionacere. The angled branches bear ternate leavea, papilionaceous flowers, and legumes.
Fig. 1. Two-lipped calyx. Fig. 2. Broadly ovate vexillum or standard. Fig. .3. Oae of the ale or wings of the corolla. Fig. 4. Carina or keel. Fig. 5. Monadelphoua atameas. Fig. 6. Hairy ovary with the long style, thickened upwards, and apirally curved. Fig.7. Legume or pod.
Plate VI. Cariea Papaya and Andromeda hypnoides,
Fig. I. Corica Papaya, the Papaw trea (much reduced), belong. ing to the Nat. Ord. Papayacem. The leavea are palmately-eleft, and the flowers unisexual. Fig. 2. Portion of a racemosa cyme of affundibuliform male flowers, with united petals. Fig. 3. Gamopetalous male flowor cut open, ahowing tho ten epicorolline stamens alternately ahorter. Fig. 4. Stamen. Fig. 5. Female flowers with s deeply-5-parted corolla.
Fig. 6. Andromeds hypanides (nat. size), belogging to the Nat. Ord. Ericaces. Fig. 7. Flower of Androancda, with 5 -parted calyx, and gamopetalous campanalato corolla. Fig. 8. Bsck view of otamen with its 2 -horned anther. Fig. 9. Front riew of atamen with hicornute and biporose anther. Fig. 10. Pistil with its ovate scumiaato etyle. Fig. 11. Capsule, 5 -celled, with a central 5 -lobed placenta.
Plate VII. Enantha crocata, Hemlock Water-Dropwort, belonging to the Nat. Ord. Umbellifare. Leaves compousd and aheathing, roots composed of fusiform aessile eknobs, stem hollow, and flowers in compound umbels, with general and partial involucres.
Fig. 1. Flowar composed of 5 petala, with inflexed apicula, 5 atemens, and 2 styles with an epigynoua disk. Fig. 2. Lateral view of the cromocarp composed of 2 mericsips or acheves, with blunt convex ribs, aurmounted by the lanczolate teeth of tha calyx, and two atylea with a disk at their base. .. Fig. 3. Back view of the cremocarp.
Plate VIII. Valeriana officinalis, Great Wild Valerian, belonging to the Nat. Ord. Valarianacoes, showing the roots, which are offisinal, the hollow etem, the alternately-pinnate leaves, and flowers in corymbose cymes. 5
Fig. 1. Selurate flower, consisting of an adherent calrx, with
an obsolete limb, an irregular aympetalous corolla, exserted stameas, and 1 style. Fig. 2. Pistil separated, with ovary, style, and stigma. Fig. 3. Monospermal fruit, with the persisteat pappose limb of the calyx.
Plate IX. Leontodon Taraxacum, Common Dandelion, belonging to the Nat. Ord. Composita; Sub-ord. Cichoracea. The leavea are radical and reacinate, the flowers ligulste, and srranged in capitula. The onter phyllaries (iavolucral leaves) are reflexed.
Fig. 1. Capitulum with reflexed phyllaries and ligulate flowers. Fig. 2. A siugle flower, with inferior achene (cypsela), stipitate pappus, a ligulate corolla, 5 stamens united by their anthers, and 1 styla with 2 atigmas. Fig. 3. Receptacle, become dry add convex, with deflexed phyllarics. Fig. 4. Linear-obovate achene.
Plata X. Cuseuta rerrueosa, Warty Dodder, belonging to the Nat. Ord. Cuscutacex, which is often considered as a sub-order of Coavolrulaces.

Fig. 1. Leafless flomering stem of Dodder (nat. sizs), turning from right to left (contrary to the motion of the sun). Fig. 2. Campanulata corolla, with $\bar{\sigma}$ epicorollinc stamens and alternating Bcales. Fig. 3. Persistent calyx. Fig. 4. Cspsule opening transversely near the kage. Fig. 5. Dissepinent and 2 seeds. Fig. 6. Bilocular capsule cut trangversely, showing 2 seeds in each loculament. Fig. 7. Roundish compressed seed. Fig. 3. Seed cut longitadinally, showiag the perisperm with the spirally-rolled-upembryo. Plate XI. Digitalia purpurea, Purpla Foxglove, belonging to the Nat. Ord. Serophulariacex.

Fig 1. Caly: in 5 deep segments, with the pistil. Fig. 2. Pistil separated. Fig. 3. Didynamous stameas. Fig. 4. Stamens, with the anther-lobes collateral and maopened. Fig. 5. Capsule cut transversely, ahowing two loculsments.
Plate X11. Myristica moschata, the Nutmeg-tree, belonging to the Nat. Ord. Myristicacex.

Fig. 1. Msle plant (nat. size) with oblong' nearly olliptical leaves, and flowers in axillary umbellate cymes. Fig. 2. Perianth of male plast laid onen to show the stamens with their united filaments. Fig. 3. Anther, bilocular, and openiag longitudinally. Fig. 4. Female flower cut open, showing the single pistil, with ahort atyle ond 2 -lobed stigna. Fig. 5. Young fruit. Fig. 6 . Ripe drupaccous fruit in the act of burstiag, and showing the mace or arillode. Fig. 7. Section of the ripe firuit. Fig. 8. The nut, consistiog of a hard endocarp enelosing the seed. Fig. 9. The oval geed. Fig. 10. The seed cut vertically. Fig. 11. Yertical section of endocarp and seed, showing ruminato perisperm and the embryo. Fig. 1थ. Enmbryo, showing 2 large foliaecous plicate cotyledons. Fig. 13. Embryo with radicle and cotyledons. Plate XIII. Euphorbia liypericifolia, Tutsan-lcaved Spurge, belonging to the Nst. Ord. Euphorbiacea.
Fig. 1. Plant (nat. size) with opposite oblonglcaves, and flowers in corymbose cymes. Fig. 2. In volucre with appeadages, eaclos. ing male and female flowers. Fig. 3. lavolucre cut open, to ahow the inscrtion of the numerous achlanyydeous male monandrous flowers, and the single naked female flower, all pediccllated. Fig. 4. Involucre deprived of its petaloid appeadages, with female flower showing forked stylea. Fig. 5. Involucre caclosing the ripe fruit (regma). Fig. 6. Stamen. Fig. 7. Fruit with one of the coeci aeparated from the columeila. Fig. 8. Sed. Fig. 9. Sced cut open, showing fleshy perisperm and inverted embryo.
Plste XlV. Artocarpus incisa, the Bread-fruit trce, belonging to tha Nat. Ord. Artocarpace 3.
Fig 1. Braych reduced to 1 rd its natural aizc, with cuneate-ovate pinnatifid learcs, male flowers in a club-shaped deciduous catkin, femsle flowers in rounded clusters. Fig. 2. Transverse zeetion of the mals amentum with numerous H owers. Fig. 3. Male flowers. Fig. 4. Siagle msle flower separated, with a periaoth ia 2 segments and a aingle stamen. Fig. 5. Female flowers. lifg. 6. Single female flower veparated, with ovary, style, and bitil stigma. Fig. 7. Ovary. Fig. 8. Ovary laid open to ahow tho orula. Fig. 9. A rariety of the ovary with 2 loculamenta. Fig. 10. Iransverse aectiod of a bilocular ovary.

Plate XV. Cycas circinalia, a apecies of false Sago-plant, belonging to the Nat. Ord. Cycadaceæ.

Fig. 1. Plsnt reduced to $\frac{1}{1^{2}}$ th its notural gize. The leaves are pinoately-divided and form a crown round the atem. Fig. 2. Male amentum (nat. size), consisting of acales bearing on their under side 2 -ralved anthers. Fig. 3. Uppereside of one of tho acales. Fig. 4. Under sids of a scale, bearing anthers. Figs, 5, 6, and 7. Anther. Fig. 8. Pollen maguified.
Plate XYI. Arum maculatum, Cuckow-pint or Wiske Robiu, belong ing to the Nat. Ord. Aracex. Fig 1. Flowering stelk, wilh hastate-sagittate spotted leares, and epathe encle ag a spadix - bearing male and female lowers. Fig. 2. Amylaceous cona, whence arise buds and roots. Fig. 3. Berrivd fruit, sfter leaveo and apadix have decayed, ia an oblong spike, of a hright ararlut colour.

BOTANY BAY, an iulet on the eastern coast of Australia, to the S. of the city of Sydney, in the Cumberland district of New South Wales, in $34^{\circ} \mathrm{S}$. lat. and 151° 15^{\prime} E. long. In was first visited by Captain Ceok in 1770, and received its name from Joseph Bxaks, the botanist of the expedition, on account of the variety of its flora. When, on the revelt of the New England colenies, the couvict establishments in America were no lenger available, the attention of the British Government, then under the leadership of Pitt, was turned to Botany Lay; and in 1787 Commedore Phillip was commissioned to form a pernal settlement there. Findiug, on his arrival, howerer, that the locality was ill-suited for such a purpose, he removed northwards to the site of the present city of Sydney. The name of Botany Bay seems to have struck the popular fancy, and continued to be used in a general way for any convict establishment in Australia. The transportation of criminals to New South Wales was discontinued in 1840.

BOTHNIA, an ancient provinee of Sweden, which was divided inte East and West by the gulf of the same name. The eastern division, which was bounded on the N. by Lapland, E. by Archangel and Olonetz, and S. by Finland, is now incorporated with the last-mentioned district, having been ceded to Russia in 1809. The western division now forms part of thy Swedish province of Norrland, two departments of which are still known, the one as Vesterbotten or West Buthia, and the other as Norrbotten or North Bothutas The name is probably derived from the Scandinavian bottn, a lake.

BOTHNIA, Gulf of, the northern part of the Baltic, so called from the above province. See Baltic Sea.

BOTHWELL, a village of Scotland, in Lamarkshire, situated near the River Clyde, about $8 \frac{1}{\mathrm{y}}$ miles S.E. of Glasgew, and a faveurite resert of the inhabitants of that city. It contains a Gothie elhureh of some antiquity ; and about a mile from the village are the ruins of Bothwell Castle and the medern mansion of Lord Douglas. In the neighbeurbooi is the scene of the famous battle of Bothwell Bridge, which was fcught between the Covenanters and the forees of the duke of Monmouth, June 22, 1679. Bothwell is one of the most ancient haronies in Scetland, and gives a title to a series of fanilies distinguished in the history of Scotland. Jeanua Baillie was born in the village manse. The population of the parish in 1871 was 9193.
bothwell, James IIerburn, Earl of, in the peerage of Scotland, only son of Patriek, third earl of Bethwell, was bern about 1526. Nething is knewn of his life up to the date of his father's death, 1556 , when he was served heir to his vast estates. For the next few years notices of his doings are few and ebscure; he undoubtedly held posts of higld dignity. such as the wardenship of the Sectish Borders, and the offiee of Lerd Admiral ; and it is certain that he was a vigorous oppenent of the "lords of the congregation." In the end of 15 hv in appears to bave been one of the lurds whe went cyer to France to mect their new queen (Mary). In 1562 oecurred the singular and obscure episode of the consjiracy between Bothwell and Arran to carry off the queen. Arran was well known to bo deeply enamoured of Mary, and Bothwell apparently intended to use this passion as a means of furthering his own designs against Murray. The phot, or the germ of it was disenvered; Arran was found to be all but insane, and an indietment was laid against Bothwell, who fled to France and remained there till 1565 , when he returned to Scetland. The charge, however, was not forgotten; it was renewed by the earl of Murray, and the day of trial was fixed. But Murray's forces were too numerous to make it safe for Bothwell to make his appearance, and he again fled. IIe reappeared at court in a - thort time after the marriage of the queen with Darnley,
and began to rise rapidly into favour. He eseaped from the palace after the murder of Rizzio, and with great promptitude drew together seme forces for the queen's defence. From this time onwards be 'ris in the highest favour with the queen, and all powerfut at court. In 1566 lis was dangerously wounded when on a junicial tour in Liddesdale. Here the queen paid him a visit, riding all the way from Jedburgh, where she was helding a justice eyre. The fatigues of this ride of forty miles brought on a severe illness, during which her life was despaired of After her recovery the project of a divorce from Darniey was mooted, but was deelined by her, and Bothwell seems then to have resolved on the removal of her husband ty any means. On the evening of tho ©th of February the famous crime was committed of Daraley's murder. Public opinion, expressing itself in placards and outcries, fastenod the guilt upon Bothwell and his asseciates, but he was teo powerful to be dealt with by the law. On the 24th April he played his last move, carrying of Mary to Dunbar Casatle, which lad been granted him by the Queen. A diverce from his former wife was easily procured, the dispensation in their favour not being produced at the trial, and on the 15th May the royal marriage was completed. Mary had a few days previously pardoned Bethrell for his abduction of her, and had raised him to the rank of duke of Orkney. The fancied security in which they passed the few dars after their marriage was soen and rudely dispelled. The great lords cellected their ferces ana seized Edinburgh, Bothwell and the queen escaping with the greatest difficulty to Dunbar. At Carberry Hill the onposing parties raet; Mary surrendered to the lords, and Bothwell tled to Dunbar and thence to Orkney. Being clesely parsued he took ship, was cantured by a Danish cruiser, and conïned for a time at Copenharen. He was removed to Malmë and afterwards to Draxhelm Castle, where he died in 1575. He is said to have made a death-bed confession exonerating the queen, but the authenticity of the repert is more than doubtful. There is hardly a redeeming peint in Bothwell's character; he was utterly selfish and brutal, and did not even treat with courtesy or kinduess the woman whe had risked so much for his sake. (See Tytler and Burton's histories of Scetland.)
botta, Carlo Giuseppe Guclielmo, Italian historian, was bern in 1766 at San Giergio, in Piedment. He studied medicine at the university of Turin, and obtained his dector's degree when about twenty years of age. Hlaving readered himself obnosious to the Government during the politieal commetions that followed the Frenel Revolution, he was imprisoned for nearly twe years; and on his release in 1794 he withdrew to France, only to return to his native country as a physician in the French army, whose progress he fellowed as far as Venice. Here be joined the expedition to Corfu, from which he did not get back to Italy till 1798. From that year, when he was appointed by Jeubert a member of the provisional government at Piedment, till the fall of the Napoleonic system in 1814, he eontinued to hare considerable political influence: and though towards the close of that period he aeted with an independence that proved offensive to Napeleon hims. If, and on the resteration of the Beurbens adapted his condect to the cireumstances of the time, he was still in sufficient favour with the Bonapartist party to receive from them, during their brief resumption of authority in 1815, the appointment (soon afterwards resigned) of rector of the university at Rouren. Amid all the vicissitudes of his early manhood Betta had never allowed zis pen to be leng idle, and in the political quiet that followed 1816 be naturally devoted himself more exelusively to literature. By 1824 he had coupleted a history of Italy frem 1789 to 1814 (4 vols.), on which nis fame principally resta, for
though the continuation of Gureciardin, which he was afterwards encouraged to undertake, is a careful and labonons work, he had not the erudition necessary for the satisfactery restoration of the past. Though living in Paris he was in both these works the ardent exponent of that recol aganst everythng French which took place throughout Europe. A careful exclusion of all Gallicisms is one of the marked features of his style, which is not unfrequently mpassioned and eloquent, though at the same time cumbrous and founded upon antuquated models. Butta died at Parss in August 1837, in comparative poverty, but in the enjoyment of an extensive and wellearned reputation. His son, Paul Emile Botta (18051870), was a distinguished tiareller and Assyrian archaologist. His excavations at Khorsabad (1843) were among the first efforts in the line of investigation afterwards pursued by Mr Layard.
The rorks of Ca:lo Botta are-Discription de l'ite de Corfou, 1703 ; an Italian translation of Born's Joaznes Physiophill specimen mona. chologia, 1801, Nouvenirs a'un voyage en Dalmatie, 1502 ; Memoire sur la nature des tons et des sons, 1503 ; Storia della guerra dell Independenza d'-Anerica, 1810, Camillo, a poem, 1810; Storıa d'Italia dal 1789 al 1814, 1824, Soria d'lialia in continuazone al Guicuardini, 1832, \&e., \&ic.

BOTTICELLI, Sandro (for Alessandro), one of the most original and fascmating painters of the school of Florence. Like many Italian artists, he is called not after his father bnt after the master under whum be learned his first lessons in art. He was the youngest son of a citizen named Mariano Filipepi, and was born at Florence in the year 1447. It is related how as a child, thongh quick at whatever he chose to do, he was restless and wayward, and would not take kindly to " any sort of schooling in reading, writing, or arithmetic, " so that his father put him, in despair, to learn the goldsmith's trade with a gossip of his own named Botticello. Thus. his first trainang, like that of Ghirlandaio and many of the best artists of the time, was in jewellery and metal working. He showed talent and fancy, and was presently transferred from the school of Botticello the goldsmith to that of Lippo Lippi the Carmelite brother, then in the beight of his practice and reputation as a painter. Under that master Sandro acqured 2 perfcct proficiency, and on his death in 1468 appears to have begun independent practice. The spectal characteristic of Lippo Luppi's style had been 1ts umon of a bnoyant human spirit of life and enjoyment with the utmost simplicity and tenderness of religious feeling. In Betticelli there was more than all the fire of bis master, and more than all his delight in beauty, together with a sentiment which was altogether personal to himself. All his creations are coloured with an expression of eager and mastful melancholy, of which it is hard to penetrate the sense and impossible to escape the spell. Whether he paints a Madonna with her child surrounded by angels, or a Venus among her Graces and Cupids, the countenances which be shows us are of a kindred type, and have upon them the pale cast of the same nameless passion. He was an artist of immense invention and industry, and in the early part of his career painted in oil and tempera a rast number of pictures both in the classical and the Christian vein. No other work expresses the spirit of the time in a more interesting way, or with so much imaginative refinement and technical charm. His dejected types have an infinite beauty of their own, and though bis figures are not-designed with perfect science, and have some tendency to attenuation, and to coarseness of the hands and feet, they are nevertheless drawn with a determination and finish in the contours, and modelled with a fulness and delicacy of relief, which belong only to the most accomplished art.

Of all the Florentine school, Botticelli is the richest and most fanciful colourist,-often using gold to enrich the
lights on hair, tissues, and foliage, wat a very exquisite effect. That may be the consequence of his early employment upon goldsmith's work, as is, more certainly, bis minute solicitude in all the accessory details and ornaments of his compositions. The patterned and embroidered dresses, the scarves and bead-gear of his figures, are often treated with an incomparable invention and delicacy. No artist has ever painted flowers with a more inspared affection, and especially roses, with which he was wont to fill the backgrounds of his pictures. He preferred, it would scem, the circular form for his compositions; and a large number of devotional pieces in this form, by his own land and that of his schelars, are scattered through the museums and private collections of Europe, and are among the niost poetreal examples of religious art that Italy has left us. He went even beyond his master Lippo Lippi, and thi sculptors Luca della Robbia, Donatello, and Desiderio da Settignazo, in the touching and engaging character of the chuldren who minister, in the form of angels, to bis sacred personages. He designed choirs of such or of grown-up angels dancing between earth and heaven, or carcles of them ranged in the order of the celestial hierarches, with a variety of grouping and a graceful fire of movement that was a new thing in his art. One of the best examples of this kind of work is a round numbered 33 in the gallery of the Uffizj at Florence. Another very famous example of his devotional art is a picture of the Coronation of the Virgin executed for Matteo Palmieri, a Elorentine man of letters and speculative philosopher, whith whon the panter was intimate and who gave suggestions for the design of the pieture. It represents the Virginand Chnst surrounded by the celestial blerarchies according to the seheme (rith some slight divargencles) of Dionysus the Areopagite,-on the ground beneath, the donor and his wite knceling at either side of the Virgin's tomb, the Val d'Arno and the eity of Florence in the distance. This preture is now the property of the duke of Hamilton. But the grandest of all his altar-picces 19 that numbered 47 in the Florence Academy, with a group of life-sized samets on the ground and a danco of angels above. In the Uffiz is an Adoration of the Mage, in which Botticelli has introduced the portrats of Cosimo, Ginliano, and Giorann! de' Medica. By that house he, like all the artists of his time, was much befriended; and for Lorenze's villa at Castellu he painted the most beautiful of his puctures of elassical mythology, the Birth of Venus now at the Uffiz, and the Venus with the Graces now at the Florence Academy. The National Gallery possesses two smaller but admirable works of the master in the same ven. An allegorical figure of Forttude, designed for a serics of which the rest were painted by the brothers Pollainoli, and now in the Uffiz]; a pueture cem. posed from Lucian's account of the Catumny of Apelles in the same gallery; a series allustrating Doccaccio's story of Nastagıo degli Onestı, which has passed into prisate hands in England-these instances will suffice to show the varnety of themes upon which Botticelli exercised bis geams. A St Augustine, painted by him in rivalry with Gbirlandaio in the chureb of the Ognissanti, and still existing, is said to have won great praise from bis contemporarics for its exhibition, in the head of the saint, of "that profound cogitation and most acute subtlety which we are wont to find in persons who are of thoughtful habit and continually abstracted in the investigation of things the most deep and difficult."

In 1478 happened the attempt and failure of the cor spirators of the Pazzi family and their follewers againat the house of Medici. It was the custom in Florence to bave the likenesses of such state offenders painted large upon the outside of the Public Palace, and in this case Botticelli was employed upon the task. It will have been boun after.
wards that he was summoned to Rome by Sistus IV., to decorate the walls of his new chapel in the Vatican. Amoug the great seenes in freseo painted on those walls by Domenico Ghirlandaio, Cosimo Rosselli, Signorelli, and Peragino, three subjects from the haad of Botticelli hold their place with the noblest. They represeat the Life of Moses, the Destruction of Korah, Dathan, and Abiram, and the Teaiptation of Christ. In 1482, probably aftor his return from Rome, he received a commission to paint in the Sala dell' Udienza at Florence, together with Dumenico Ghirlandaio. Nany of the works already mentioned probably fall within the next ten years of Botticelli's manluod. The Boecaecio series belongs to 1487 . In 1491 he was engaged, together with the brothers Ghirlandaio, upon some mosaic decorations in the cathedral of Florence which have unhappily perished. Soon after this time there came into his life a new influence which greatly changed it. It is well known how the genius of the Dominican Savonarola swept like a storn over the affairs of Italy, and what a revolution, after the passage of the French king through Florence, ho brought about in the temper and policy of the republie,-driving out the merchant family who had been its untitled masters for half a century, establishing in place of their rule a new theoeracy of which ho was himself the oracle and minister, turning the hearts of old and young a way from the world and from their lusts. Many of the first artists of the city becauc his most ardent followers, and among them Botticelli. What the actual effect of his conversion was upon him we have scanty means of judging, but it needs must have pat an end to his paintiug of those old nyythologies, over which in earlice days his imacriation had beea used to throw so singular a charm. Vasari, a devoted servant of the later Medici, and therefore a traducer of the greatest enemy that house had ever had, speaks of Savonarola's influence upon Botticelli qs altogether disastrous, saying that he was "obstinate upon chat side," "a partisnn of the sect of Savonarola in such a fashioa that, abandoning painting and having no ineome to live apon, he fell into the ntmost disorder ;" and agaiu how, "playing the Piagnone (the name given to the followers of Savonarola), he fell out of the way of painting, and thereby at last found himself old and poor in such a sort that if Lorenzo Mediei, as long as he lived, had not supported him, and afterwards his friends and many worthy men who felt an affection for his virtues, he would, we may say, have died of hunger." We have few materials by which we can test the accuracy of thas account. We know that in 1496 the young Michelingelo sent through his hands a letter aduressed to this Lorenzo de' Medici (Lorenzo the yonnger, that is,--the son of Giulinno); that in 1498 he was living with a brother in the quarter called Sta Lueia of Ognissanti ; that in 1503 ho was consulted along with other artists as to tho best place for Michelangelo's enlossal statue of Baril. But of more importance and significance than all this is a beautiful picture of a Nativity with mystical by-suenes, in the pessession of Mr Fuller Maitland, which bears an inscription in base Greek by the inaster himself. Tho inscription seems to construe thus :-"This picture I, Alessandro, painted at the end of the year 1500 , in the troubles of Italy, in the half-time after the time, during the fultiment of the eleventh of John, in the second woe of the Apocalypse, in the loosing of the devil for three and a half years. Afterwards he shall he chained according to the twelfth of John, and we shall see him trodden down as this picture." Hence it appears to be established that Buticelli, a year and a half after the downfall and exeention of Savon? rola, had his mind full of his instruetions and lrophecisi; that lie regarded tho death of the Dominicau reformer and his companions as the fulfiment of the Apocalyptic prophecies about the slaying of the
witnesses ; that he thought of the tribulatioas among whices he lived as the "secoud woe" of Rev. xi,, and as coincident with the "time, times, and half a time" of that and other prophetic writings; aed fiaally-such is the originality and excelleace of the work-that his imagination had at this time lost none of its fire nor his hand of its eunning. We are quite with out the means of deciding whether any proportion of the large existing mass of his undated works belong to the years following this; or whether we are really to think of him as failing in his wonted industry in his latter days, from regret and disappointment at his master's fate and at public affairs, from pre-occupation over mystical theology (which had always had an attraction for him, and, in the case of the pieture painted early in lis life for Natteo Palmieri, had brouglt upon him a charge of heresy), or, lastly, from another cause which Visari alleges, but whicl. we have designedly passed by till this place.
In the listory of engraving there are ho productions more precious, more interesting, or more problematical than : number of plates executed in a primitive style, with severs outlines and straight lines of shading, by artists of the Florentine sehool towads the close of the 15 th ceatury. The engravings in this manner include some two tundred. and fifty picees, coveriag the whole range of subjeets that interested the mind of Italy at this most active and fanelful moment of the early Renaissance. The best Lnown of these engravings are as follows:-hree desigas to the earliest book published in Florence with engraved illustrations, called Il Monte Sancto di Dio (1471); a set of nineteen designs to an edition of the Divina Conmedia of Dante (I481); a set of twenty-four Prophets; a set of twelve Sibyls; several suljects of Saints; several of mythology, sucly as the Death of Paris, Thescus and Ariadne, the Judgment of Paris, Loves in a Yineyard, and the like; a famous series (long falsely aseribed to Mantegna, whose manner ia engraving is easily distinguishable fron this) of the Ranks and Professions of Men, thie Virtues, the Arts and Seiences, the Muses, and the Planets (fifty in all); a series of fifteen setting forth the lives of Mary and of Christ ; a subject of the deluge; another of the preaching of the Francisean Fra Mereo, and many more. Between the rations examples of this large class there are considerable differences, but they are all unlike the work of any other school, and all manifestly Florentine of the 15th century. Conjectures the most confident and at the same time the most conflicting have been put forward as to their author. ship. All such conjectures alile have been based on a few passages in Tasari's lives of Botticelli and of Marc Antono. Aceoraing to Vasari, the first Florentine who took impressions on paper froan engravings was Maso Finignerra, and lie, says our author, was "followed by Daccio Baldini, who not having much power of designing, all that he did was with the invention and design of Sandro Botticelli." And again, Vasari says of Botticelli that, "from being a sophis. tical (i.e, thoughtful or ingenious) persoa, he commented a part of Dante, and made figures for the Inferno, and put them into print; apon which pursuit be spent a deal of time; so that not working". (i.e., at painting) "it was o eanse of infinite disorders in his life. He put in prom many more things of his own from designs which he had made, but in a bad manner." On the strength of those passages this whole class of early Florentine engravings has generally been put down by comnoisseurs, as, for instance, loung Ottley, Bartsch, and Tassavant, as the work of Sandro Botticelli and Baecio Baldini, jointly or apart,-each critie attributing separate snljects to the one or the other of the artists according to his private canon ot internal evidence. But a scrupulous exammation shows th:- internal evidence to be both very meagre and very coutradictory. Nor can much be bualt apon the extarnal
cestimony of Vasari. The phrase " put inte print" ${ }^{\text {is am- }}$ biguous, and by it Vasari may mean us te understand either that Botticelli engraved the designs himself or else that he merely furaished them to be engraved by another hand. Te him the chief part in the iavention, to Baldini the chief, part in the execution, is usually and with a fair measure of probability assigned. Vasari's information on the whole subjeet was evidently loose; a Triumph of Faith of Savonarela, which he extols as Botticelli's bestengraving, dees not at present exist at all. None of the designs bear the evidenee of Botticelli's mauner in a suffieiently definite form to be undeniable. On the other band, many of them, by their poetry, their refigement, their singularity, are quite worthy of his hand, nor do they resemble aay other contemporary style more than his. If he designed and executed, or in part exeeuted, them, they are no slight qddition to his fame, and a noble rindication of his industry during that old age of idleness, deeay, and "dssorder," whieh folluwed, if we are to believe Vasari, upon the splendid and inspired aetivity of bis youth and manhood. But the question is one which eritieism, it is to be feared, will never bave the means of fully settling. (Vasari, ed. Lemonnier, vol. v. pp. 110-127; Crowe and Cavalcaselle, Hist. of Painting in Italy, vol. ii. pp. 414-430; W. H. Pater, Studies in the Mistory of the Renalssance; and see also Aradne Florentan, No. ri., by John Ruskin; art. "Baeeie Baldini," by E. Kolhoff in 2 d ed. of Nagler's K"̈̈nstler-Lexikon, and the Academy for February 1871.)

BUTTIGER, Karl august, a distinguished German archæologist, was born at Reichenbaeh in 1760. He was eduested at the famous sehool of Pforta, and at the University of Leipsic. In 1784, after having passed a few years as private tutor in Dresden, he was made rector of the school at Guben, where he remaiaed for six years. He was then transferred to a similar post at Bautzen, and 10 1791, through the influence of Herder, obtained the appointment of reetor of the gymnasium at Weimar. In that town he entered into a circle of literary men of the highest pewers, iacluding Wieland, Schiller, and Goethe, and distinguished himself by the great versatility of his talents. He published in 1803 a lively and learned work, Sabina, oder Morgenscenen einer reichen Römerin, giving a description of a wealthy Roman lady's toilette, and a work od ancieat art, Griechische Vasengemätde. At the same time he assisted in editing the Journal des Luxus und der Mode, the Deutsche Mercur, and the London and Paris. In 1804 he was called to Dresden as superintendent of the studies of the court pages, and received the rank of privy counciller. In 1814 be was made director of studies at the court- academy, and iaspeetor of the Museum of Antiquities. He died at Dresden in 1835.
Of his numerous works, most of which are deroted to sncient art, The following scem most worthy of notice:-Idecn zur Archiologie der Malorei, 1811 ; Kunstmythologie, 1811; Vorlesungen und Aufsitie sur Althe-thumskunde, 1817; Amathea, 3 vol.9., 1821-25; Ideen sur Kunstmythologie, 2 vols,, 1826-36. The Opuscula et Carmina Latina were published separately in 1837, with a collection of his emaller pieces, Kloine Scliriften, 3 vols., 1837-8. A sketeh of his biography has been written by his son, Karl Wilhelm Böttiger (1790-1862), for some time professor of history at Erlangen. who is well known as the author of several valuable histories (History of Gerruany, History of Saxony, History of Bavaria, Universal History in biographis.)
BOTTLE. The first bottles were probably made of the ekins of animals. In the lliad (iii. 247) the attendants are represented as bearing wine for use in a bottle made of goat's ekin, do $\sigma x \hat{\omega} \dot{\text { è }} \boldsymbol{v}$ aiysi φ. The ancient Egyptians used skins for this purpose, and from the language ercployed by Herodotus (ii. 131), it appears that a bottle was formed by sewing up the skin and lesriag the projection of the \log and foot to serve as a vent, which was henee termed rodewiv. The aperture was slosed with a plug or a string.

Skia bottles of various forms oecur on Egyprian monuments. The Greeks sud Romans also were accustomed to use bottles made of skus, and in the southern parts of Europe they are still used for the transport of wirc. The

Fio. 1.-Roman Skin Bottles.
aecompanying illustration is from speciraens at Pompeii and Herculaneum. The first explicit reference to hottles o. skin in Scripture oceurs in Joskua (ix. 4), where it is said that the Gibeonites took "old sacks upon their asses, and wine-bettles old and rent and bound up." Skias are still most extensively used throughout Western Asia for the eonverance and storage of water. It is as error to reprosent the bottles of these ancicnt Hebrens as being nade exclusively of skins. In Jer. xix. 1, the prophet speaks of "a putter's earthen vessel." The Egyptians possessed rases, bottles, de., of hard stoae, alabaster, glass, irory, bene, porcelann, bronze, silver, and gold, ana also, for the use of the people geaerally, of glazed pottery or cenmon earthenware. As early as Thothnies Ill., assumed to be the Pharaoh of the Exodus (1490, в.c.), rases existed of a shape so elegant, and of workmanship so superior, as to show that the art was not, even then, in its infancy lu the annozed cut various specimeas of these aro represented

Fro. 2.-Egyptian Bottles and Vases.-1, 2. Gold. 3. Cat giass 4. Earthenware 5, 7. Porcelain. 6. Hard Stone 8. Gold, witb plstes and bands. 9. Stoze. 10. Alabaster, with lid.
The British Museum contains a fine cellection of these articles. The process of making glass bottles is described under the heading Glass.

BOTYOMRY, a maritime contraet by which a ship (or bettom) is hypothecsted in security for money berromed for expenses incurred in the course of her voyage, under the condition that if she arrive at her destination the ship shall be lisble for repayment of the loan, together with aneb premum thereon as may have been agreed for ; hut that if the ship be lost, the lender shall have no c'aim aganst the berrower either for the sum sdranced or for tho
premium. The freight may be pledged as well as the ship, and, if necessary, the cargo also. In some cases the personal obligation of the ehip-master is also included. When money is borrowed on the sccurity of the cargo alone, it is said to be taken up at respondentia; but it is now only in rare and exceptional cases that it could be competent to the ship-master to pledge the cargo, except under a general bottomry obligation, along with the ship and freight. In consideration of the risks assumed by the lender, the bottomry premium (sometimes termed maritime interest) is usually high, varying of course with the nature of the risk and the dificulty of procuring funds.
A bottomry contract may be written out in any form which sufficiently shows the conditicns agreed on between the parties; but it is usually draty up in the form of a bond. The document must ohow, either by express terms. or from its general tenor, that the risk of loss is assumed by the lender,--this being the consideration for which the high premiuin is conceded. The lender may transfer the bond by endorsation, in the same manner as a bill of exchange or bill of lading, and the right to recover its value becomes rested in the indorsees.
According to the law of this country, a bottomry con'tract remains in force oo long as the ship exists in the form of a ship, whatever amount of damage she may have sustained. Consequently; the "constructive total loss" which is recognized in marine insurance, when the ship is damaged to such an extent that she is not worth repairing, is not recognized in reference to bottomry, and will not absolve the borrower from his obligation. But if the ship go to pieces, the borrower is freed from all liability under the bottomry contract ; and the lender is not entitled to reccive any share of the proceeds of such of the ehip's stores or materials as may have been saved from the wreck. Money advanced on bottomry is not liable in England for general average losses.

If the ship should deviate from the voyage for which the furds were advanced, her subsequent loss will not discharge the obligation of the borrower under the bottomry contract. If she should not proceed at all on her intended voyage, the lender is not entitled to recover the bottomry premium in addition to his advance, but only the ordinary rate of interest for the temporary loan. As the bottomry premium is presumed, in every case, to cover the risks incurred by the lender, he is not entitled to charge the borrower with the premium which he may pay for insurance of the sum advanced, in addition to that stipulated in the bond.
The contract of bottemry seenss to have arisen from the custom of permitting the master of a ship, when in a foreign country, to pledge the ship in order to raise money for repairs, or other extraordinary expenditures rendered necessary in the course of the vogage. Circumstances often arise, in which, without the exercise of this power on the part of the master, it would be impossible to provido means for accomplishing the voyage ; and it is beiter that the master should have authority to burden the ship, and, if necessary, the freight and cargo also, in security for the mency which has become requisite, than that the adventure should be defeated by inability to proceed. But de right of the master to pledge the ship or goods must edways be created by necessity; if exercised withont necessity the contract will be void. Aecordingly, the daster of a British ship has no power to grant a bottomry bond at a British port, or at any foreign port where be might raise funds on the personal credit of the shipomners. Neither has he any power to pledge the ship or goods for private debts of his own, but only for such supplies as are Eadispensable ior the purposes of the veyage. And in all oases he ought, if possible, to communicate with the owners of the ship, and with the propictor of the cargo
before pledging their property. Facility of communication, by telegraph and otherwise, has of late years given additional stringency to this rule.
The bettomry lender must use reasonable diligence to ascertain that a real necessity exists for the loan ; but he is not bound to see to the application of the. money advanced. If the lender has originally advanced the funds on the personal credit of the owner he is not entitled to require a bottomry obligation. A bond procure 1 from the shipmaster by improper compulsion would be wid.
The power of the master to pledge the cargo depends upon there being some reasonable prospect of be lefit to it by his so doing. He has no such power except in virtue of circumstances which may oblige him to assume the charactios of agent for the cargo, in the absence of any other party authorized to act on its behalf. Under ordinary circuisstances he is not at liberty to pledge the cargo for repairs to the ship. If indeed the geods be of a perishable nature, and if it be impossible to get the ship repaired in sufficient time to obviate serious loss on them by delay, without including them under the bottomry contract, he has power to do so, because it may fairly be assumed, in the case supposed, that the cargo will be benefited by this procedure. The general principle is, that the master must act for the cargo, with a reasonable riew to the interests of its proprietors, under the whole circumstances of the case. When he does this his proceedings will be sustained; but shonld he manifestly prejudice the interests of the carge by including it under bottomry for the mere purpose of relieving the ehip, or of earning the freight, the onwers of the cargo will not be bound by the bottomery contract. Any bottomry or respondentia bond may be good in part or bad in part, according as the master may have acted within or beyond the scope of his legitimate authority in granting it. If two or more bottomry bonds have beeu granted at different atages of the voyage, and the value of the property be insufficient to discharge them all, the last dated bond has the priority of payment, as having furnished the means of preserving the ship, and thereby preventing the total loss of the security for the previous bonds.

When the sum due under a bettomry bond over ship, freight, and cargo is not paid at the stipulated time, proceedings may be taken by the bondholder for recorery of the freight and for the sale of the ship; and should the proceeds of these be insufficient to discharge the claim, a judicial sale of the cargo may be resorted to. As a general rule the value of the ship and freight must be exhausted before recourse can be tiken against the cargo. A bottemry bond gives no remedy to the lenders against the owners of the ship or cargo personally The whole liability under it may be met by the surrender of the property pledged, whether the value so surrendered covers the amount of the bond or not. But the owners of the ship, though not liable to the bondholder for more than the value of the ship and freight, may be furtherdiahle to the prepricters of the carge for any sum in excess of the cargo's proper share of the expenses, taken by the boudholder out of the proceeds of the cargo to satisfy the bond after the ship and freight have been exhausted.
The bottomry premiun must be ultimately paid by the parties for whose benefit the advances were obtained, as ascertained on the final adjustruent of the average expend1tures at the port of destination.
See the cases of the "Gratitudine," 2 Fob A. R., 240,272 ; the "Lord Cochrane," 8 Jur., 714 ; the "Cynthia," 20 L T.. 7,54 ; the " Bonaparte," li Jur., 605 ; Benson r. Duncan. ly Jur., 218; Benson v. Clapraan, 5 C. B., 330 ; 8 C. B. 950 ; Shec's Marshall On Insurance. part ii., Arnould On Insurance; Pritchard's Admirnlty Digers.
(J. W.A.)

BOTZEN, Bozen, or Bolzano (the ansicat Pons Drusi), a town of Austria, the capital of the circle of Brixen in Tyrol, is situated at a height of 1120 feet near the confluence of the Talfer and the Eisack, 32 miles N.N.E. of Trent. The town $1 s$ well built in the Italian style, aud has a fine old Gotbic church of the 14th and 15th ceaturies, a castle, several churches and cenveats, ard a gymoasium. Sit nated at the intersection of reads from Italy, Germany, and Switzerland, it has as extensive transit trade, and its four large amnal fairs date fre:n 1024. It has aiso manufectures of linen, cotton, siik, hosiery, leather, and wax. It is protected from suddea inundations by a strong dike of masoury nearly two miles in length, and in some parts 24 feet thick. Botzen is mentioned as early ns 378 . In the 9 th century it was the seat of a Bavarian countship, but in 1027 it was presented to the priacebishop of Trent by the Emperor Cuarad II. For centuries after that date it continued to be an object of strife between the Gernans and Italians, uatil at last, in 1531, the antherity of tha count of Tyrol was acknowledged on all hands. Since then the city has followed the fortules of Tyrol.

BOUCHES-DU-RHONE, a departneat of France, aituated along the south coast, and, as the name imports, at the mouth of the Rhone. It is bounded on the N. by Vaucluse, from which it is separated by the Durance; on the E. by Var, and W. by Gard ; and its area is estimated at 1963 Eaglish square nilcs. The westera pertion consista of a low ind marshy plain, knewn as the Camargue, which is remarkable for its unhealthiness; to the east of this is situated the remarkable stretch of country cailed the Crau, which is strewn with poblles like the sea beach; and further east and north there are various ranges of mountains of moderate elevation belonging to the Alpine system. A few small tributaries of the Rhoae and the Durance and a number of streams, such as the Are, the Toulunbre, and the Huveaune, which find their way directly to the sca, are the only rivers that properly belong to the department. The proportion of arable land is exceedingly srazil, theugh the quartity has been considerably increased by artificial irrigation. Wheat is cultivated with success in some parta of the Camargue, and, if labour were mere easily obtainable, rice might also be grown. Horses and cattle are reared in a half wild condition, and large flocks of sheep are pastured during the wiater on the herbage that springs up ameng the pebbles of the Cran. The numbers of domestic animals in the department were in 1872 as follows:borses 20,665 , cattle 2686 , skeep 262,566 , and goats 17,560. The only mineral furnished to any extent by the departmont is coal, in the mining of which between 1000 and 2000 workmen are engaged, but there are also quarries of limestone, sandstone, slate, gypsum, marl, and marble. The salt marshes, which cover an area of 2290 acres, employ more workmen thar the coal-mines, and the amount of salt obtained exceeds in quantity the prodace of any other department in France. There are extensive manufactures of soaps, perfumes and oils, soda, sulphur, sugar, woollea bosiery, and leatber, and a varicty of other articles. The fereign commerce of the department, which is principally carried on in tho Mediterrancaa basin, is for the most part conceptrated in the capital, Narseilies; the minor ports are Martigues, Cassis, and Ciotat. The department is divided into the three arrondissements of Marseilles, Aix, and Arles; the mere impertant towns in which (in addition to their capitals) are respectively Aubagne, Ciotat, and Roquevaire; Martigues, Salon, and Isores; and Tarascon, Saint Remy, and Chateaurenard. Among the numerous men of mark belonging to Bouches-du-Rhong are D'Uríe, Massillon, Vanleo, Tournefort, Barthélemy, Vauverargues, Thiess, Mignet, Achard, and Reinaud. The populatior, abich in 1872 amounted to 554,911 , contains a large pro-
pertion of foreigners, mostly of Italian nationality. The total thien element in 1872 was represented by 42,855 , the Italian by 33,500 .

BOUFARIK (the " Hanging Well "), a town of Algeria, in the province of Algiers and arrondissement of Blidah, about 21 miles from the city of Algiers near the railway thence to Blidah. It is a therenghly French town, and only dates from 1835, when General Drouet d'Erlon established an entrenched caun on what was thea a mere hillock in the midst of an almost uninkabitable marsh. Shortly after Marshal Clausel determined to build a regular city, which was at first called Medina Clausel in his honour. The draining of the site and neighbourllood wes a costly uadertaking, and was only accomplished by the sactifice of many lives. The town is now one of the most Hourishing in the country, is surfuanded by vast orchards and farms, and affurds a market to the pastoral Arabs of the Metiaja. There are flax-dressing and spinaing mills, and the manufacture of issences and perfumes is carried on to a considerable extent. The population, which is composed of very various cl ments, amounted in 1872 to 2585.

BOUFIERS, Louls Frasicols, Duc De, commenly called the Chevalier loouflers, a peer and marshal of France, and a general of distiuguished reputation, was born January 10,1644. Having early entered the army, be was raised in 1669 to the rank of colonel of draguons. In the conquest of Lorraine he served under Marstal de Créquy. In Holland be served under Turenue, frequeutly distinguishing timself by his skill and bravery ; and when that celebrated leader was killed by a canner-shot in 1675 , he commanded the rear-guard duriag the retreat of the French array. After perf orning various military services in Germany, io Flanders, and on the frontiers of Spain, he was created, in 1690, gensral of the army of the Moselle, and contributed materially to the victory of Fleuris. In the following year he acted as lieuteant-geacral, under the king in person; and during the investment of Mons, he waa wounded in an attack on the town. Ile conducted the bombardmeat of Liége, which was defended by an enemy superier in numbers, and afterwards ferced the allicd generals to abandon Luxembourg. He was entrusted with the command against King Willian at the siege of Namur, and took part in the victery of Steinkirk. For these impertant services be was raised in 1093 to the rank of marshal of Frauce, and in 1695 was made a duke. In 1694 he was appointed gevernor of French Flanders and of the town of Lille. By a skilful manceurre be threw himself into Namur in 1695, and obstinately held out for four months during which the besiegers lost 20,000 men. In the conferences which terminated in the peace of Ryswick he bad a principal share. Duriag the following war, when Lille was ngain threatened with a siege by the duke of Marliorough and Prince Eugenc, Bouflers was appointed to the com$\mathrm{m} u \mathrm{~d}$, and made an obstinate resistance of four menths. He was rewarded and henoured by the king for bis defence of Lille, as if he had been victorious. It was indeed a species of triumph; his enemy, appreciating his merits, allowed bim to dictate his own terms of capitulation. When the affairs of France were tbreatened with the most urgent danger, Boufers offered to serve under his junior, Villars, and was with him at the battle of Malplaquct. Here he again displayed bis nilitary skill, by conducting the retreat so as to lose neither canuon mor prisoners. IIe died at Fontaincblean in 1711.
boUgainville, Louis Antone de, the first French circumnavigater, was bern at Paris in 1729. He stedied law, but soun abandoned the profession, and in 1753 entered the army in the corps of musketeers. At the age of twenty. five be published a treatise on the integral ealculus, as a supplement to De l'Hôpital's treatise Dos infiniment petits.

In 1755 be was seat to London as secretary to the French embassy, aad was chosen a member of the Royal Society. In 1756 he went to Canada as captan of dragoons and aide-de-camp to the marquis of Montcalm; and haring distinguished bimself in the wor aganst England, was rewarded with the rank of colonel ard the cross of St Louis. He afterwards served in the Seven Years' War from 1761 to 1763 . After the peace, when the French Goverament conceived the project of colonizing the Falkland Islands, Bougainville undertook the task at his own expease. But the settlement having excited the jealousy of the Spaniards, the French Government gave it up to them, on condition of their indemnifying Bougainville. - He was then appoiated to the command of the frigate "La Boudeuse " and the transport "L'Etoile," on a royage of discovery round the roorld. He set sail from Nantes an November 1766, taking with him Commercon as naturalist, and Verron as astronomer. Having executed his commission of delivering up the Falkland Islands to the Spanish, Bougainville proceeded on bis expedition, and touched at Buenos Ayres. Passing through the Straits of Magellan, he anchored at Otaheite, where the English navigator Wallis had touched eight months before. The expedition having crossed the Pacific Ocean, and the men now suffering from scurvy, the ships came to anchor off the Island of Corou, one of the Moluccas, where the governor of the Dutch settlement supplied their wants. It was the beginning of September, and the expedition took advantage of the easterly monsoon, which carried them to Batana. Thence they proceeded to the Islo of France, where they left Commerçon and Verron. In 1769 the expedition arrived at St Malo, after a voyage of tro years and four months, with the loss of ouly seren out of upwards of 200 men. Bougainville's account of the royage (Par1s, 1771, 4to) is written with simplicity and with some humour. The art of making astronomical observations at sea was then mueh less perfect than now, and, consequently; Bougainville's charts are found to be erroneous, particularly as to the longitudes. After an interval of several years, he again accepted a naval command and saw much active serviee between 1779 and 1782. In the memorable engagement of April 12, 1782, in which Rodney defeated the Count do Grasse, near Martinique, Bougainville, who commanded the "Auguste," succeeded in rallying eight ships of his own division, and bnnging them safely into St Eustace. After the peace he returned to Paris, and solicited and obtaraed the place of associate of the Academy. He projected a voyage of discovery towards the north pole, but this did not meet with support from the French Government. Bouganville obtaincd the rank of rice-admiral in 1791; and in 1792 , having escaped almost miraculously from the massacres of Paris, he retired to his estate in Normandy: Ho was chosen a member of the Institute at its formation and then returning to Paris succeeded Borda as member of the Board of Longitude. In his old age Napolcor I. made him a senator, count of the empire, and member of the Legion of Honour. IIe died at Paris, August, 31, 1814. He was marned and had threo sons, who served in the French army. His eiloge, composed by Delambre, appears in the Memoirs of the Institute.

BOUGIE, or Bouglas, a fortified seaport town of Algen , in the proviuce of Constantine and arrondissement of Setif, betweecn Cape Carbon and the Wady-Sabell. Among its more important buildings are the French church, the Lospitai, the barracks, the magazines, and the Abd-el-Kider fort, now used as a prison Trade is carried on $1 a$ wax, grain, oranges, oil, aad wne. A basin was construeted about 1870 in the anchorage below the town. The population in 1872 was 2820 , of whom 1134 wcre natives. Rougie, Bugia, or Bugiah is a town of great antiquity. If it is
correctly identified with the Salda of the Romans it pro bably owes its orign to the Carthagntaas. Gensenc, the king of the Vandals, surrounded it with walls and chose it as his capital for some time; and in the l0th century it became, under the Beni-Hammad, the greatest commercial city of the North Afriean coast. The Italian merchants of the 12th and 13 th centuries had numerous. buildings of their omn in the city, such as warehouses, baths, and churches. It beeame a baunt of prates in the 15th century, and in the beginning of the 16 th it was captured by the Spaniards, from whom it was taken by the Turks in 1555. It was a place of little mportance when it fell into French possession about 1833

ROUGUER, Pierre, an eminent French mathematician, was born in 1698. His father, one of the best bydrographers of his time, was regius professor of hydrography at Crosic in Lower Britanay, and author of an exceilent treatise on navigation. Young Bouguer was bred to mathematics from his infancy, and at an early age was appointed to succeed his father as professor of hydrography. In 1727 he gained the prize given by the Academy of Scuencez for his paper "On the best manuer of formung and distrrbuting the Masts of Ships;" and two uther prizes, one for his dissertation "On the best method of observing the Altitude of Stars at Sea," the other for his paper "On the best method of observing the Vamation of the Compass at Sea." These are published in the Prix de l'Academie des Sciences. In 1729 he published Essar d'optrque sur la gradation de la lumiere, the object of which is to define the quantity of light lost by passing through a given extent of the atmosphere. Ee found the light of the sun to be 300 times more intense than that of the moon. He was soon after made professor of hydrography at Havre, and sueceeded Maupertuis as associate geometer of tho Academy of Sciences. He was afterwards promoted in the Academy to the place of pensioned astronomer, and went to reside in Paris. In 1735 Buaguer sailed with Godin and De la Condamine for Peru, in order to measure a degree of the meridian near the cquator. Ten years were spent in this operation, a full account of which was published by Eouguer in 1749, Figure de la Terre determinée. His later writings were nearly all upon the theory of navigation. He died in 1758 .

The following is a list of his principal morks:-Traite doptique sur la oradation de la lumiere, 1229 and 1760; Eniritiens sur la cause d'inclinaison des orbites des planeles, 1734; Trailé de niz. vire, de., 1746, ito; La Figure de la terre determinte, se., 1749. 4to; Nouveau trate de nalvgation, contenant la theorse et la pratique du pilotage, 1753 ; Solution des principaux problemes sur la manouvre des Vaisseaux, 1757; Operations faites pour la verification du degré du méridien entre Paris c\& Amicns; par Mess. Bouguer, Camus, Cassini, et Pingré, 1757.

BOUHOURS, DomintQUE, a French eritic, was born at Paris in 1628. He entered the Society of the Jesuits at the age of sisteen, and was appointed to read lectures on literature in the college of Clermont at Paris, and on rhetonc at Tours. He afterrards became preceptor to the tro sons of the duke of Longueville. The duke died in Bonhours's arms; and the "account of the pious and Christian death" of this great personage was his first publication. He was sent to Dunkirk to the Romanist rcfugees from England, and in the midst of his missionary occupations published several books. Among these were Les Eneretiexs d'Ariste et d'Eugène, a work of a critical nature on the French language, printed five times at Paris, twice at Grenoble, and afterwards at Lyons, Brussels, Amsterdam: Leyden, \&c. It involved him in numerous quarrels, particularly with Menage, who, bowever, continued to live on friendly terms with the author. The fame and merit of tais piece recommended Bouhours so erfectually to the great Colbert, that he intrusted him with the education of
bis son the marquis of Seignelay. He afterwards wrote acveral other works in French, the chief of which are, La MFanier de bien penser sur les ouvrages d'esprit, 1687; Remarks and Doubts upon the French Language, 1694; The Life of St Ignatius, 1679; The Art of Pleasing in Conversation; The Life of St Francis Xavier, 1682 . It was his practice to publish alternately a book on literature and a work on aome subject of piety, which gave occasion to a wag, in a satirical epitaph, to remark of him, "qu'il servait lo mondo et le ciel par semestre." His Pensées ingenieuses des Anciens et des Modernes, though at once instructive and annusing, exposed bim to censure as well as ridicule, on account of some atrange misjudgments and omissions. He has classed Boileau with the loast esteemed of the Italinn aatirical versifiers, and has omitted, in his Thoughts on the Moderns, all mention of Pascal,-a circumstance which is doubtless to be explained by his being a disciple of St Ignatius, who, it may be supposed, would willingly forget the author of the Provincial Letters. Bouhours died at Paria in 1702.
bOUILLON, Godfrey de, one of the foremost leaders in the first crusade, was born at Baisy, near Gemappe in Belgium, about 1060. His father was Eustace II., count of Bouillon in the Ardennes; and through his mother Ida, daughter of Godfrey, duke of Lower Lorraine, he could claim descent from Charlemagne. In the contest betreen Heary IV., emperor of Germany, and Hildebrand, he espoused the imperial cause, and was the first to scale the walls of Rome when the emperor's forces besieged that city in 1084. In reward for bis services Henry invested him with the titles of marquis of Antwerp and duke of Lorraine. It is said that while suffering from fever, having heard of the preparations for the first crusade, he vowed, were his health restored, to seek Palestine ; "whereupon," aays William of Malmesbury, "he shook dieesse from his limbs, and shone with renorated beauty." Having pawned bis lordship of Bouillon to the ehurch of Liége for 1300 marks, be gathered around him 80,000 infantry and 10,000 borsemen, whom be led with rare ability through Gernany to the borders of Hungary, where he shamed bis brother Baldwin by offering to go in his stead as a hostage to the Hungarians. On arriving in 1096 at Constantioople, he obtained the release of his fellow-crusader Hugh of Vermandois fron the wily Greek emperor Alexius, and in the strife which that monareh's duplicity fomented eviaced the sagacity and promptitude of a great general. After capturing Antioch and routing a vast Saracen bost at Dorylæum in Pbrygia, the crusaders arrived, in 1699, at Jerusalem, which was taken after a siege of five weeks, Godirey entering the breach among the foremost, but tarnishing bis glory by ruthlessly ordering a massacre of the infidels. Λ Christian kingdom of Jerusalen was then founded, of which Godfrey was unanimously elected sovereign ; but be refused to wear a crown of gold where his Lord had worn a crown of thorns, and necepted, instead of the kingly title, the humbler designation of defender and baron of the Holy Sepulchre. During the single year of his rule be repelled the Saracens with admirable courage and ekill, routing the Fatimite caliph of Egypt at Ascalon, and with the assistance of others of the pilgrims, drew up from the various feudal statutes of Europe the elaborate system of medizval jurisprudence known as the Assizes of Jerusalem.. Godfres died in 1100, and was buried in the church of the Holy Sepulchre ; and so impartial and temperate had been his rule, that Mabometans as well ws Cbristians bewailed his loss. He combined the favourite virtues of his age; and his exploits, in the quaint words of Gregory de Vinsauf, "were as food in the mouths of thoir narrators." He was as accomplished as brave, and nould speak the Latin and Teutonic languages with equal
ease. Tasso, in the Gerusalemme Liberatu, makes Godfrey the equal of Taucred in the field and of Raymond in the council, and seems scarcely to bave exaggerated his heroism and akill in war, bis piety, wisdom, and purity of life.
boulainvilliers, Henri de, Lord of St Saire, an eminent French writer, descended from a very ancient and noble family, was born at St Saire in Normandy in 1658. He received his education at the college of Juilli, where he early diseovered the uncommonabilities for which he was afterwards distinguished. His historical writings are numerous and important, but deformed by an extravagant admiration of the feudal aystem, which he regarded as the chef d'ceure of the buman mind. He misses nb opportunity of regretting those " good old times," when the people were enslaved by a few petty tyrants alike ignorant and barbarous. His philosophical writiugs have now lost all their value. His pretended refutation of the system of Spinoza is a weak and imperfect exposition of that writer's opinions. He died at Paris in 1722.

His principal works (ell published after his death) are- Ifistoire de l'ancien gouvernment de la France, \&c., La Haye, 1727, 3 tom. 8vo; Etat de la France, avec dis memotres sur l'ancien goutern. ment, \&c., Lond, 1727, 3 tom. fol. ; Histoire de la Pairie de Franee, \&c., Lond., 1753 ; La' "ie de Mahomet (a "Fable of Mahomet," as Mosheim calls it); Histoire des Arabes, Amst. (Paris), 1731, 2 vols. 12 mo .

BOULOGNE SUR MER, a fortifed seaport of France, and the chief town of an arrondissement in Pas-de-Calais,

Plan of Boulogne.

2. 3. Etabilsement. - Including	11. Porte Gayolle.
Baths Aquarium, and Şaung Rink.	12. Sons-Prefectur
4: Place Nasasin.	13. College.
8. Roe Wissocq.	14. Museams.
6. Cathedrad.	15. St Nicholas Church
7. Palale de Justice	16. Market Place.
8. Maitic.	17. Theatre.
9. Convenl (Annomelades).	18. English Churches.
10. Dlace Godefrol.	19. Place Fr. Suuvage.

is situated on the shore of the English Channel at the mouth of the River Liane (ànciently Elna), in $50^{\circ} 44^{\prime} \mathrm{N}$. lat. and $1^{\circ} 36^{\prime}$ E. long., 157 miles from Paris by railway and 28 from Folkestone, Kent. It consists of two parts, the High or Old Town and the Lower or Nem Town. The former, situated on the top of the bill, is of comparatively small extent, and forms almost a parallelogrâm, surrounded by ramparts of the 15 th century, and entered by ancient gateways. In this part are the Palais de Justice, the Cbateau, the cathedral, and the Hôtel de Ville,-the last built in 1774,-and the belfry tower of the 13th century is in the immediate neighbourhood. In the Chateau, now used is barracks, the Emperor Napoleon III. was confined after his fannous attempt to effect a landing in 1840 . At some distance north-west stands the cathedral chureh of Nôtre

Dame, built (1827-1866) on the site of an old building destroyed in the Revolution, having underaeath an extensive crypt which still remains. The New Town extends from the foot of the hill to the harbour and along the shore, and contains several good streets, some of which are, however, very steep. A main street, named successively Rue de la Lampe, St Nicholas, and Grande Rue, extends from the bridge across the Liane (ncar the railway station) to the promenade by the side of the ramparts and the Hôtel de Ville. This is intersected first by the shoreway מamed Quai de la FlotiHe, Quai de la Victoire, \&c. (where there are numerous hotels), and further back by the Rue Napolén and Rue Royale, the principal business part of the town, and where the best shops are situated. The principal buildings comprise a museum, formerly the great sominary, a hospital, a theatre, an elegant établissement (opened in 1863, centaining ball-room, reading-room, \&c.), a custom-house, barracks, various churches and convents, and a fish-market. Connected with the museum is a public library with 30,000 volumes and a large number of very ralnable manuscripts, many of them richly illuminated. Boulogne has for a long time been one of the most Anglicized of French cities; and in the tourist season a continuous stream of English travellers reach the Continent at this point. There is regular steamboat service between tho port and Folkestone, the average passage occupying 31 hours, or about three-quarters of an hour longer than from Calars to Dover. There are two English chapels in the town, and numerous boarding-schools intended for Eoglish pupils. Churchill, who died while on a visit to his friend Wilkes, in 1765, is buried in the cemetery, and the house is pointed out where Thomas Campbell expired in 1843. The shore $1 s$ lined with extensive flat sands, whero bathing is facilitated by the use of machines. Among the objects of interest in the peigbbourbood the most remarkable is the Napoleon columu or Colonne de la Grande Armée, erected on the high ground above the town, in honour of Napoleon I., on occasion of the projected invasion of England, for which he bere made great preparations. The pillar, which is of the Doric order, 166 feet bigh, is surmounted by a statue of the emperor by Bosio. Though commenced in 1804 , the monument was not completed till 1841. On the edge of the cliff to the enst of tho port are soms rude brick remans of an old building called Tour d'Ordre, sad to be the ruins of a tower built by Caligula at the time of his intended invasion of Britain. The entrance to the harbour of Boulogne, which is tidal, is formed by two long plers running out fre n the mouth of the river, and serving during fine weather as excellent promenades. On the western side is the basin excavated by Napoleon for his flotilla of flat-bottomed boats in 1804. A largo wet dock, congiructed at a cost of upwards of $£ 250,000$, was opened it 1872, and adds greatly to the facilities of the port, its area being 17 acres and the leagth of its quay-wall 1150 yards. The depth of water in the harbour 1923 fect at epring-tide and nearly 20 at neap-tide; m the sluce of the floating basin the numbers are $29 \frac{1}{2}$ and $23 \frac{1}{2}$ respectively. The foreign commerce of Boulogne, which is almost wholly carrica on in British ships, consists chiefly in the importation of manufactured goods, jute, silk, Australian wool, coal, machmery, hardwares, paper-hangings, malt, beer, and chemicals; and the exportation of wine, brandy, eggs, artificial flowers, haberdashery, and musical instruments. Tho total valuc of the exports in 1871 was $£ 12,709,675$, and of the imports $£ 11,762,500$. How rapid the development of the commerce with Britain has been niay be seen from the fact, that while in 1840 the British sailing vessels thus engaged amounted only to 66, and the steam-ships to 678 , in 1860 tho correspoading numbers were 341 and

863, and in 1871, 541 and 1061. In the extent and value of its fisheries Boulogue is exceeded by no seaport in France. The most important branch is the herring-fishers, which is prosecuted northwards along the shores of Scotland; next in value is the mackerel fishery, and next again the Iceland cod. Large quantities of fresh fish are transmitted to Paris by railway, but an abundant supply is reserved to the town itself. The fishermen live for the most part in a separate quarter called La Beurière. Among the uumerous industrial establishments in Boulogne and its environs may be mentioned several foundries, with blastfurnaces, cement-manufactories, flax-mills, steam saw-mills, steel-pen manufactories, carriage-works, tile-works, and a fishing-net factory. Shipbuilding is also carried on to some extent. The population of the town, which in $182!$ was 16,607 , amounted by the census of 1872 to 39,700 .

Boulogne is usually, though on somewhat dubious grounds, identified with the Gesorncum of the Roman
 name which has been gradually modificd into the presei. form. The town was destroyed by the Normans in 88: but restored about 912 . From about that time till 147. it was the head of a separate countship, which was united to the crown of France by Louis XI., who ingeniously recognized the Holy Virgin as the superior, and declared himself her vassal. In 1544 Henry VIII.-more fortunate in this than Henry IlI. had been in 1347 -took the town by siege; but it was restored to France in the following reiga.

BOULTON, Matthew, manufactuser and practical engineer, was born at Birmingham on the 14 th of September 1728. He was called early into active life upon the death of his father in 1745 , and soon found ample scope for the exercise of his inventive faculties in improving the manufactures of his native place. His first attempt was a new mode of inlaying steel; and he succeeded in obtaining a considerable demand for the products of his manufactory, which were principally exported to the Continent, and not uncommonly re-imported for domestic use as of foreign manufacture.

In 1762, bis fortuue bcing already considerable, he purchased a tract of barren heath in the neighbourhood of Birmingham, with a single house on it, and there founded, at tho expense of $£ 9000$, the manufactory which flourished so long and was so well known under the name of Soho. His workmen were at first principally employed in the imitation of ormolu, and in copying oil paintings with great accuracy, by means of a mechanical process which was invented by a Mr Eggington, who afterwards distinguished himself by various works in stained glass. Boulton finding the horse-power inadequate to the rarnous purposes of his machinery erected, in 1767, a stean-engine, upon the original construction of Savary, wheh, notwathstanding the iuconveuience of a great loss of steam from condensation, by its immediate contact with the water rased, has still some adrantages from the smplicity of the apparatus it requires, and has been found to succesd well upon a small scale. But Boulton's objects required a stil more powerful machine, and he had the discernment to perceive that they might bo very completely attained by the adoption of the various improvements made in the steam-engine by James Watt of Glasgow: who had obtained a patent for them in $\mathbf{1 7 6 9}$, the privileges of which were extended in 1775, by an Act of Parlament, to a term of twenty-five years. Boulton induced the great inventor to remore to Burmingham. They commenced a partuership in busuess, and established a manufactory of steam engines, in which accurate execution kept pace so well with judicious design, that its productions continued to be equally in request with the public after the expira:100 of
the term of that legal privdege which at first gave the proprietors the exclusive right of supplying them. and which had been confirmed in 1792 by a decision of the Court of King's Bench agsinst scme encroachment on the right of the patentee. It was principally for the purpose of carryiog on this manufactory with greater convenience, that the proprietors established an iroa-foundry of their own at Smethwick, in the neighbourhood of Soho.
In 1785 Boulton was made a fellow of the Royal Society, about the same time with Withering, and several. others of his acientific neighbours. In 1788 heturned his attention to the subject of coining, and erected machinery for the purpose, so extensive and complete, that the operation was performed with equal economy and precision, and the coins could not be imitated by any single artist for their nominal value,-each of the stamps coining, wifh the attendance of a little boy only, about eighty pieces in a minute. The preparatory operation oi laminating and cutting out the metal was performed in an adjoining room ; and all persoual communication between the workmen was rendered unnecessary by the mechanical conveyance of the work from one part of the machinery to another. A coinage of silver was executed at this mint for the Sicrra Leone Company, and another of copper for the East Indies, besides the pence and half-pence at one tume in circulation throughout England, and a large quantity of money of all kinds for Russia. In acknowledgment of Boulton's services, and in retura for some specimens of his, differeat manufactures, the Emperor Paul made him a preseat of a valuable collection of medals and minerals.
In 1797 he obtained a patent for a mode of raising water by impulse, the specification of which is published in the ainth volume of the Repertory of Arts, p. 145. It had been demonstrated by Danied Bernouilli, in the beginning of the century, that water flowing through a pipe, and arriving at a part in which the pipe is suddealy contracted, would bave its velocity at first very greatly inereased; but no practical application of the principle appears to have been attempted, until an apparatus was set. up in 1792 by Mr Whitehurst for Mr Egerton of-Oulton, in Cheshire, consisting of an air-vessel communicating with a water-pipe by a valve, which was forced open by the pressure or rather impulse of the water, when its passage throagh the pipe was suddealy stopped by turning the cock in the ordinary course of domestic economy; and although the pipe through which the water was forced up was of moderate height, the air-vessel, which was at first made of lead, was soon burst by the "momentous force," as Whiteburst termed it. The apparatus had excited muci attention in France, under the name of Montgolfer's hydraulic ram ; and Bualton added to it a number of ingenious modifications, some of which, however, are more calculated to display the vivid imagination of a projector than the sound judgment of a practical engineer, which had in general so strongly characterized all his productions.
He died, August 17, 1809, after a long illness, 10 posses. sion of considerable afflueace and of universal esteem. (See Smiles's Lives of Boulton and Watt, 1865.)
BOURBON. The noble family of Bourben, from which ${ }^{\text {ro many }}$ European kiags hara sprung, took its name from the rich district in the centre of France called the Bourbonnais, which in the 10th century was one of the three great baronies of the kingdom. The first of the long live of Bourbons known in history was Adhémar or Aimar, who mas invested with the barony towards the close of the 9th century. In 1272 Beatrix, daughter of Agnes of Bourbon and her husband John of Burgundy, married Robert, count of Clermont, sixth aon of Louis IX, (St Louis) of France. The elder branches of the fismily luad become extinct, and their aon Louis became duc de

Bourbon in 1327. In 1488 the line of his descendanta ended with Jean II., who died in that year. The whole estates passed to Jean's brother Pierre, lord of Beaujea, who was married to Anne, sister of Louis AI. Pierre died iv 1503 , leaving only a daughter, Suzanne, who, in 1505 , married Charles de Montpensier, heir of the Montpensior branch of the Bourbon family. Charles, who took the title of duc de Bourbon on his marriage, was born in 1489, and at an early age was looked npon as oue of the finest soldiers and gentlemen in France. His union with Suzanne made him the wealthiest aad most powerful French noble; and after his brilliant suecesses in Italy and France, ho becarre an object of dread to Louis XII., who would not give him the command of the army of Italy. In 1515 Francis I., on his aecession, made Bourbon constable of France, and in that capacity he ganed new honours, and was for a time in the highest favour with the king. B:at serious differences soon arose between them; originating, according to common report, in the violent but slighted passion of Louse, duchesse d'Angoulême, the king's nother for the constable. The grossest insults were heaped upon Boubbon; his oficial salary and the sums he had borrowed for his war expenses remained unpaid; in the campaign against Charles V. the command of the vanguard was given to the duc d'Alençon; and after the death of Suz. anne de Bourbon, an action was raised by tho queca dowager, who claimed to be nearest heir. In detiance of Bourbon's marriage-settlement, judgment was given agannst hirr, and he was reduced to absolute begrary. Smarting uader these wrongs he entered into negotations with Charles V., and on these coming to the knewledge " of Francis at once fled from his native country and joined the emperor. He did good service in the mar aganast his countrymen, and especially distingushed bimself at the tattle of Pavia, where his ungenerous sorerelgn Francis vas taken prisoner. Bourbon, however, did not find Charles very ready to fulfil his various promises, and cietermined to seize a kingdom for himself. -With the division under his cemmand he penetrated into Italy, and on'the 5th May 1527 appeared before the walls of Rome. In the assault on the folloming morning he was the first to mount the walls, and fell mortally wounded by a pistolshot, fired, it is said, by Benvenuto Cellim. His army succeeded in taking and sucking the town. With the constable ended the direct line from Pierre, duc de Bourbon. But the fourth in descent from Pierre's brother, Jacques, Louis, count of Vendome and Chartres, became the ancestor of the royal house of Bourbon and of the noble famiiies Conde, Conti, and Montpenster. The fourth in direct descent from Louis of Vonsome was Antome de Bourbon, who in 1548 married Jeanne d'Albret, heiress of Navarre, and who became king of Navarre in 1554. Their son became king of France, with the title Henri IV. Henri was succeeded by his son Louis XIII., who left two sons, Louis XIV., and Philippe, duc aOrleans, head of the Orleans branck. Louis XIV.'s sud, the Dauphin, died before his father, and left three sons, one of whom died without issue. Of the others the elder, Lous of Burgundy. died in 1712, and his only surviving son became Louis XV The younger, Yhilippe, duke of Anjou, became king of Spain, and founded the Spanish branch of the Bourbon family. Louls XV. was succeeded by his grandson, Louis XVI., who perished on the scaffold. At the restoration ths throne of France was occupied by Lous XVIII., brother of Louis XVI., who in turn was succeeded by his brother Charles X. The second son of Charles X., the duc do Berri, left a aon, Henri Charles Ferdinand Marie Dieudonne d'Artois, duc de Bordeaux, and count de Chambord. who is a claimant of the French throne, and is desigated by his adherents. Henri V. From Louis XIV.'s brother,

Philippe, has descended another elaimant of the throne. Philippe's son was the Regent Orleans, whose great grandson, Yhilippe Egalité, perisbed on the seafold in 1793. Egalite's son, Louis Philippe, was king of France from 1830 to 1848; his grandson, Louis Thilippe (born 1838), is the present Comte de Paris.
Spanish Sranch-Philippe, duc d'Anjou, grandson of Lonis X1V., became king of Spain as Philip V.'in 1700. He was sueceeded in 1746 by his son Ferdinand VI., who died in 1759 without family, and was followed by his brother Charles III. Charles III.'s eldest son became Charles IV. of Spain in 1788, while his second son, Ferdinand, was made king of the Two Sicilies in 1759 . Chorles IV. was deposed by Napoleun, but in 1814 his bon, Ferdinand VII., again obtained his throne. Ferdinand was succeeded by his daughter Isabella, who in 1870 abdicated in favour of her son Alphonso, at present (1876) in possession of the Spanish kingdom. Ferdinand's brother, Don Carlos (died 1855), claimed the throne in 1833 on the ground of the Salie law, and a fieree war raged for some years in the north of Spain. His son Don Carlos, connt de Montemolin (born 1818, died 1861) revived the claim, but was defeated and compelled to sign a renunciation. The nephew of the latter, Don Carlos Maria Juan Isidor (born 1848), has been for some years carrying on war in Spain with the objeet of attaining the rights contended for by the Carlist party.

Neapolitan Branch.-The first Bourbon who wore the crown of Noples was Charles III. of Spain, who on his saccession to the Spanish throne in 1759 , resigned his kingdom of Naples to his son Ferdinand. Ferdinand was deposed by Napoleon, but afterwards regained his throne, and took the title of Ferdinand I., king of the Two Sicilies. In 1825 he was succeeded by lis son Franeis, who in turn was sueceeded in 1830 by his son Ferdinand II. Ferdinand II. died in 1859, and in the following year his successor Francis II. was deprived of his kingdom, whieh was incorporated into the gradually-uniting Italy.

Duchies of Lucca and Parma.-1n 1748 the duehy of Parma was conferred on Philip, youngest son of Philip V. of Spain. His grandson, Charles Louis Ferdinand, became king of Etruria in 1801, but was deprived of his possessions by the French. In 1847, however, he received the duchies of Parma and Piacenza on the death of his mother, but after two years abdicated in favour of his son, Charles III. Charles Ill. married the daughter of the due de Berri, and was assassinated in 1854. His son was rroclaimed duke, but the territories of Parma and Piacenza were scized by Victor Emanuel in 1859-60.

Coiffier de Moret, Mistoire du Bourbonnais ct des Pourbons, 2 vols. 1824 ; Berand, Histoire des sites et ducs de Bourbon, 1835 ; Désormeaux, Histoire de la maison de Bourbon, 5 rols., 1782-5's; Achaintre, Histoire gatusalogique et chronologique de la maison royale de Eourbon, 2 rols., 1825-6.

BOURBON, an island off the cast coast of Africa, now known as Réunion. See Refunion.

BOURBON-LARCHAMBAULTT (the Aqua Bormonis of the Itincraries), a town of France, in tho department of the Allier, on the Burge, 19 miles W. of Monlins. It was nuciently the capital of the Bourbonnais, and gave its name to the great Bourbon femily. Its mineral waters, both hot and cold, were formerly in high repute. In 1789 it changed its name for that of Burges-les-Buins, but the former designation was afterwards resumed. It contains a Gothic elureh of the 12th contory, and the outer walls and towers of a castlo finishod ty Anne of Beaujeu in the 15th. Population in 1872, 2400.
bourbon-VEndee, or Nafoleon Vendée, a town of Franee, eapital of the department of La Vendée, now called la Rocue sur Yon, which see.

BOURBONNE-LES-BAINS, a town of France, in the department of Haute-Marne, in the arrondissement of Langres, and 21 miles E.N.E. of that town. It is much frequented on account of its hot saline springs, which are found on the site of the old Ronan baths. The heat of these springs varies from 120° to 156° Fabr. The number of visitors is upwards of 800 annually. The principal buildings are a chureh of the 13th century, the town-house, and the hospital ; there are also the remains of a castle and a priory. The manufacture of beet-root sugar is carried on in the town, and gypsum and alabaster are quarried in the neighbourbood. Population in 1872, 4038.

BOURCHIER, Joen, Lord Berners, born about 1474. was grandson and heir of a lord of the same name, wt was descended from Thomas of Woodstock, duke o! Gloueester, and had been knight of the Garter and constable of Windsor Castle. He was educated at Oxford, and «as ereated a Knight of the Bath on the marriage of the duke of York, second son of Edward IV. He was first known by quelling an insurrection in Cornwall and Devonshire, raised by Michael Joseph, a blackemith, in 1495, which service recommended him to the favour of henry VII. He was a captain of the pioneers at the sigge of Therouanne under Henry VIIl., by whom he was made chaucellor of the exchequer for life, and lieutenant of Calais and the Marches. He was appointed to conduct Mary, the king's sister, into France on her marriage with Lcuis X11., and had the extraordinary fortune of contipuing in farour with Henry VIII. fur the space of eighteen years. He died at Calais in 1532, aged 65. - By king Henry's command lie translated Froissart's Chronicle, whiel was printed in 1523 and 1525 by Pynson, the scholar of Caxton. His other works consisted of translations from French, Spanish, and Italian novels. These were, the History of the most Noble Falyaunt Tingght, Arthur of Lyttll Brytayne; the Famous Exploits of Sir Hugh of Bourdeaux; the Golden Boke of Marcus Aurclius; and the Castle of Loue. He composcd also a book on the duties of the iuhabitants of Calais, and a comedy entitled Ite in Vineam, which used to be acted at Calais after vespers.

BOURDALOUE, Louss, a celebrated preacher, and one of the greatest orators that France has ever produced, was born at Bourges, August 20, 1632. At the age of sixtecn he entered the Society of Jesus, of which be was destined to become one of the greatest ormaments, and there completed his studies. His able masters, who early discerncd his talents, suceessively confided to him the chairs of humanity, of rhetoric, of philosophy, and of nioral theology; and it was only after passing through these different probationary employmente that he arrived at the eminent post which was designed for him, and was decencd qualified for mounting the pulyit.

In order to form an idea of the difficulties which he had to surmount, and of the talents which he displayed, it is only necessary, on the one hand, to call to mind the ridiculous manner and inflated style of the preachers of that period; and on the other, to figure the young Jesuit at issue with the bad taste as well as the bad habits of the time,-combating at once the passions, the viees, the weaknesses, and the errors of humanity, and overcoming his enemies, sometimes with the arms of faith, and sometimes with those of reason.

At first the preached for some time in the provinces, but his superiors aftersards called him to Paris. This took phee in 1669, at the most brilliant epoch of the age of lonis XIV., when nothing was talked of but the sictories of Tureme, the festivities of Versailles, the masterpieces of Corneille and Racine, the cncouragement afforded to the arts, and the general impulse given to the human mind. Buardaloue suddenly appeared in the midst of these fascr.
mations, and, far from diminishing their effects, the severity of his ministry and the gravity of his eloquence served rather to enchance their splendour. His first sermons met with prodigious success, and all voices were raised in loud spplanse of the preacher. Madame de Sevigné, sharing the universal enthusiasm, wrote to her daughter that 'she had never heard anything more beautiful, more noble, more astonishing, than the sermons of Father Bourdaloue." Louis XIV. also wished to hear him, and the new preacher was in consequence sent to court, where he preached during Advent in 1670 , and during Lent in 1672 ; and he was after-- wards called for the Lents of $1674,1675,1680$, and 1682 , and for the A dvents of 1684,1689 , and 1693. This was a thing unheard of before, the same preacher being rarely called three times to sourt Bourdaloue, however, appeared there ten times, and was always received with the same ardour. Jouis XIV. said that "he loved better to bear the repetitions of Bourdaloue than the novelties of any one else." After the revocation of the Edict of Nantes he was sent to Languedoc to preach to the Protestants, and confirm the newly-converted in the Catholic faith; and in this delicate mission he managed to reconcile the interests of his ministry with the sacred rights of humanity. He preached at Montpellier in 1686 with the greatest success, Catholics nond Protestants being all equally eager to recognize in this eloquent missionary the apostle of truth and of virtae.

In the last years of his life Bourdaloue abandoned the pulpit, and devoted himself to charitable asscmblies, Lospitals, and prisons, where his pathetic discourses and concibiatory manners were very effective. He had the art of adapting his style and his reasonings to the condition and the understanding of those to whom be addressed either counsel or consolation Simple with the simple, erudite with the learned, and a dialectician with sophists and disputants, he came off with honour in all the contests in which zeal for religion, the duties of his station, and love of mankind led him to engage. Equally relished by the great and by the commonalty, by men of piety, and by people of the world, he exercised till his death in 1704 a sort of empire over all minds; and this ascendency he owed as much to the gentleness of his manners as to the force of his reasoning. "His conduct," says one of his contemporaries, "is the best answer that can be made to the Lettres Provinciales." No consideration was ever capable of altering his frankness or corrupting his probity.

Bourdaloue may with jnstice be regarded as the reforme: of the pulpit and the founder of Christian eloquence among the French. That which distinguishes him from other preachers is the forco of bis reasoning, and the solidity of his proofs. Never did Christian orator infuse into his discourses more majesty, dignity, energy, and grandeur. Like Corneille, he bas been charged with overlabouring his diction, and accumalating idea upon idea with a needlcss superfluity of illustration-of speaking more to the understandings than to the hearts of his anditors, and sometimes enervating his eloquence with the too frequent use of divislons and subdivisions. But even in subseribing to these criticisms, which are to a certain extent well founded, it is impossible not to admire the inexhaustible fecundity of his plans-the happy talent velut imperatora virtus which he possessed, of disposing his reasonings in the order best calculated to command victory-the logical skill with which be excludos sophisms, contradictions, and paradoxes-the art with which be lays the foundations of our duty in our interest-and, finally, the inestimable secret of converting the details of manners aud habits into so many proofs of his subject. Parallels bave often been drawn betreen Bourdaloue and Massillon; but the talents of these great pulpit orators lay in diffcrent directions, and they may,
therefore, be more fitly contrasted than compared. "Bo tween Massillon and Bossuet," sags Lord.Brougham, whose judgment of Bossuet errs, however, on the side of severity, (Works, vol. vii.), "and at a great distance certainly above the latter, stands Bourdalove, whom some bave deemed Massillon's superior, but of whom an illustrious crtio (D'Alembert, Eloge de Massillon) has more justly said that it was his greatest glory to have left the supremacy of Massillon still in dispute. It is certain that he displays a fertility oif resenrces, an exuberance of topics, whether for observation or argument, not equalled by almost any other orator, sacred or profane" If Massillon is now read with a more lively interest, he owes that advantage to the cbarms of his style rather than to the force of his reasoning. Among the critics of the present day, the preference is unhesitatingly given to the riral of Racine, to the painter of the heart, to the author of the discourse on the small number of the elect; but if we consult the contemporanes of Massillon himself, we shall find that they assign him only the second rank. According to them Bourdaloue preached to the men of a vigorous and masculine age-Massillon to those of a period remarkable for its effeminacy. Bourdaloue raised bimself to the level of the great truths of religion-Massilion conformed himself to the weakness of the meu with whom he lived The bishop of Clerment will always be read: but if the simple Jesuit could raise bis commanding vorce from the tomb, and again roll forth a majestic stream of divine truth, the courtly accents of his rival would no longer be beard, and the charme of his diction would be forgotten. The first part of his celebrated Passton, in which he proves that the death of the Son of God is the triumph of His power, has generally been considered as the great masterpiece of Christian eloquence. Bossuet has said nothing stronger ot mere elevated. The second part, however, is inferior to the first, though considered by itsclf alike beautiful and convincing.

The discourses of Bourdaloue have been described by a celebrated French critic as embodying in them a complete course of theology. This is perhaps going a little too far; but still their general merit is very great, and for nothing are they more distinguished than their conprehensiveness. The diction of this great preacher is always natural, clear, and correct, sometimes deficient in animation, but without racuity or languor, and generally relieved by outbreakings of much force and originality.

Two editions of Bourdaloue's works were published at Paris by l'ére Bretonncau, a Jesuit,-one in 1.6 vols. 8 vo, 1707-34, and the other, from which the editions of Rouen, Toulouse, and Amsterdam were afterwards printed, in 18 vols. $12 \mathrm{mo}, 1709-34$. The Versailles edition appeared in 1812-13, in 16 vols. Svo. It is much inferior to the former. Of recent editions, the best are those of 1822-26, 17 vols. Sro; of $1833-34$; of $1840,3 \mathrm{tom} 8 \mathrm{vo}$, of 1847,18 vols.; and of 1864,4 vols. The Sermons inédites de Bourdaloue, published by the Abbé Sicard in 1810, are apocryphal. (Sce Vie de P. Bourdaloue, par Madame de Prigny, 1705; Esprit de Bourdaloue, par l'Ablé de lo Porte; St Arnand, Sotice sur P. Bourdaloue, 1862.)

BOURG, the chicf town of the department of Ain in France, and formerly the eapital of the province of Bresse is situated 27 miles N.E. of Lyons, on the Lanks of the Reyssouze, a tributary of the Sôone. Its streets are narrow and crooked, and the whole town is very irregularly laid out Among its public buildings are a new prefecture, a theatre, a liorary (with npwards of 22,000 volumes), an asylum, a foundling hospital, a lyeeum, and a theological seminary. In the suburb of St Nicholas is the famous chnrch of Nôtre Dame de Brou, which was built in the first half of the 6th century by Margaret of Austria, and is remarkable
for the richness of its sculpture and earving. Two of the equares of the town are ornamented, one with a statue of Bichat by David d'Angers, and the otier by an obelisk to the memory of General Joubert. The mannfactures of the place consist of cleth, linen, hats, hosiary, hern combs, and pottery; and there is an active trade in grain, cattle, horses, and wine. The early history of Buarg and its identificatien with any of the places recorded by the Roman writers bave been mateers of considerable dispute. In the earlier part of the Middle Ages it seems to have been called Tanum. Raised to the rank of a free tewn in the end of the 13th century, it was afterwards chosen by Amadeus IV. of Savey as the ehief city of the province. In 1535 it passed to France, but was restored to Duke Philibert Enannuel, who in 1590 built a streng citadel, which afterwards withstcod a sis mentus' siege by the soldiers of IIenry IV: The tewn was finaliy ceded to France in 1601. In 1814 the inhabitants, in spite of the defenceless condition of their town, offered resistance to the Austrians, who put the place to pillage. Yaugelas the grammarian and Lalande the astronomer were both born at Eourg-enBresse. Pepulation in 1872, 12,912.
bourgas, Burghaz, or'Borgas, called in the Middle Ages Pyrges, a seapert town of Turkey in the province of Rumelia, situated on a bay of the Black Sea, to which it gives its name, about 70 miles N.E. of Adrianople, in 42° $30^{\prime} \mathrm{N}$. lat. and $27^{\circ} 30^{\circ} \mathrm{E}$. It is neatly built, and has a large pubiic square surrounded with stalls. for the accommodation of 5000 herses. Pottery and pipes are manufactured with great taste from clay obtained in the neighbeurhoed, and there is a considerable trade in grain, woolien stuff, tallew, butter, cheese, resewater, and other productions of the surreunding country. Not far distant is Litzin, a faveurite summer watering-place. In 1825 the Russians besieged the town. The population is estimated at 5000 .

BOURGELAT, Claude, who may be ealled the father of veterinary science, was born at Lyons in 1712, and died in 1799. He entered the profession of law, but abandoned it in disgust at having gained an unjust suit for a client. Embracing the military profession he served in the eavalry, and thus had ample oppertunity of studying the diseases of animals. In 1772 he opened at Lyens a veterinary sebool, which soon became eelebrated over Europe. His great success induced the Gevernment to establish several similar institutions; and Bourgelat was appeinted to superintend the sehool established at Alfo t, which became, and continues to be, the chief seat of veterimary science in France. Beurgelat was a member of the Academies of Sciences of Paris and of Berlin, and corresponded with some of the most eminent men of science of histime. His nerks on veterinary subjects are numerous and valuable; porhaps the most important is the Traité de la conformation estérieure du cheval, de sa beauté et de ses défautes, 1776.

BOURGES, a city of France, formerly the capital of the p rovince of Berry, and now the chief town of the department of Cher, is situated about 100 miles S. of Paris, at thie confluence of the Auron and Yevre, in $47^{\circ} 4^{\prime} 59^{\prime \prime} \mathrm{N}$. lat. and $2^{\circ} 32^{\prime}$ E. leng. The sixty watch-towers by which it was formerly defended bave been remered, but it is still surrouuded by ramparts laid out as promenades, and its atrects are remarkable for the numerons specimens which they preserve of medixval architecture. The eathedral, which dates in its earlier portions from the 13th century, is regarded as one of the firest in France, and the llôtel de Ville, originally tho heuse of Jacques Cocur, the famons jewellor under Charles VII., is a splendid example of the florid style of the 15 th century. The house of the Lallemant family, brilt about 1520 , that of Cujas, the fameus jurist, dating frem the 16th century, and now used as barracks for the gendarmerie, and the gate of Saint Ours, are also
worthy of notice. The archiepiscopal palace, the gleat prison, and the grand seminaire, now cenverted into cevalry barracks, are the most important of the otller bnildings. There are also in the town a museum, a large publis library, and a number of celleges. A certain aneunt of trade is carricd on in grain, hemp, wood, skins, wool, and cattle ; and cloth, leather, and cutlery are manufactured. Thero are also several breweries, and the nurseries in the neighbourhved are famens. In 1861 the city becane the scat of a military arsenal, which is now of considerable importance. The population, stated at 22,465 in 1851 , amounted in 1872 to 27,377 . Bourges occupies the site of the Gallic turn of A varicum, mentioned by Cæsar as one of the inost importait of all Gaul. In 52 b.c., during the war of Verciugetorix, it was completely destroyed by the Reman conqueror, but under Augustus it resé again inte impertance, and was made the capital of Aquitania Prima. In 252 A.D. it became the seat of a bishop, the first occupant of the see being Ursinus. Captured by the Goths in 475, it continued in their possession till about 507 . During the English occupation of France in the 15 th century it becane the residence of Charles VII., whe thus aequired the pepular title of king of Beurges. In 1463 a university was foumded in the city by Leuis XI., which continued for centuries te bo one of the most famous in France, especially in the department of jurisprndence. On seven different occasions Bourges was the seat of ecciesiastical conncils, -the most impertant being the council of 1438 , in which the Pragmatic Sanction of the Gallican Church was established, and that of 1525 in which the Lutheran dectrines were condemned.
bOURIGNON, Astonsette, a singular eathusiast of the 17 th century, who excited considerable commotion by her religious doctrines, but whose name is now alnost forgetten. She was born at Lille in the beginning of 1616; and her appearance as an infant was so deformed that the question of preserving her alive was seriously discussed. She manifested, while still rery young, an extraordinary spirit of religious fervour, fostercd, apparently, by her loneliness and the neglect of her parents. As she grew up this spirit increased in intensity. So few, it seemed to ber, lived accerding to their professed C'hristian principies that she desired to be carried into the Cbristian countrics. The unhappiness that she observed at heme, fren the sererity of her father to her mother, gave her an inviacible repugnance to marriage,-so much so that when it was desired that sho should naary at the age of twenty sie fed frem her father's house in disguise. Her disguise, bowever, was soon discevered, and having fallen into the hands of a soldier, she ran worse risks than if she had remained to face ber destiny at home. Her autebiegraphy dreells upon theso and other similar events of her life, when her virtue underwent vielent assault, which she was bappily able to resist. She is said to have been "endewed with a wenderful chastity, which remained unassailable by all ferce or onticement, and which not only preserved her own person pure, but diflised areund her an ardour of continence."

Having been delivered from the lands of the seldier into which she had fallen in her wanderings, she became known to the archlishep of Cambray, under whose sanction she established a small society of nuns. She seen, however, becarue restless in her new occuration, in which she dees not seem to have been successful. The archbishep withdrew his comtenance, and fer a time she returncd to ber mative country, where she is said to have "passed many years in privacy and in a great simplicity of life." On the death of ber parents she beame entitled to some fortune, which she at first declined, but afterwards took pessessien of. She seems then to lave become the head of a hospital at lille for some time (165.3, et seq.), but scandal having broken out in comection with it, she left and fled to Ghent (1662).

Here, apparently, she entered upon the higher prophetic phase of her life. "God revealed great secrets to ber," which she began to proclaim; and soon she gathered around her a few ardent disciples. Her prophetic views were specially expounded in one of her books published at this time at Amsterdam, entitled The Light of the World. Some of her disciples formed the design of settling in the island of Noordstrand in Holstem. At first she seems to have declined to join them, but afterwards set out for the purpose. She did not remain long, disturbances having arisen net only against her opinions, but in the ranks of ber own followers. She was evidently impatient of sharing her influence with any one, and is said to have been of very difficult and self-willed temper. She returaed to Holland, and died there in 1630.

It is difficult to give any estimate of A. Bourignon's character and opinions. So far as appears, she was a visionary of the ordinary type, only distinguished by the rare persistency and audacity of her pretensions. Amidst all her enthusiasm she seems to have known how to look after her own interests. She is said never to have given alms to the poor, net even to the bospital which she superinteided. She was willing to assist with her band, but not with her money. Her main idea about religion was that it was a mere internal ecatasy, independent of both church and Bible. She had innumerable visions, frem which source ahe chiefly drew her religions inspiration and knowledge. Among others she saw in rision Antichrist and Adam before the Fall; and she describes the appearance of the former minutely, even to the colour of his hair. Her visions and views she gave to the world in numerous treatises and pamphlets.

Her followers in Holland seem to have dwindled rapidly away, if they ever had any of the life of a distinct aect; but, strangely, her influence revived in Scetland in the beginning of the 18th century, so much so as to be a source of alarm to the Presbyterian Church, and to call forth net only one but several Acts of the General Assembly in denunciations of ber doctrines and earnest caution against their contagion. These Acts are found severally in 1701, 1709, and 1710; and even at this last date it is alleged that "the gross heresies and errors going under the name of Bourignianism are greatly prevailing in the bounds of
the national church." This is the explanation, no doubt, of the fact that Bourignianism is amongst the heretical sects which the clergy of the Church of Scotland are taken bound oto "disomn" at their ord nation in a series of questions appointed to be put in 1711. The very name, however, is now generally unknows in Scotland, notwithstanding this strange survival of i; and shculd any one turn to the Act of Assembly of 1701 , which professes to enumerate the opinions of M. Antonia Beurignor, and describes them as "impious, pernicious, and damnable," he will hardly get more light as to the naturo of these epinions than elsewhere. They present an unintelligible conglomeration witheut coherency or order,-such subjects as the denial of election, the permission of sin, and the bondage of the will being mixed up with the quality of Cbrist's human nature, the perfection of the present life, and "that generation takes place in heaven, aud that there are no true Christians in the world." Mlle. Bou ignou's works were published in French at Amsterdam in 1686, in 19 vols. 8 vo . Her Vie extérieure, by herself, to be found'in the first volume is the chief authority for the earlier part of her life. La Vie continuée de Mlle. Bourignon, which occupies the whole of the second volume (author's name net given), treats of her life at length, but in a e emi-legendary manner. Three of her works at least have been translated into Eaglish,-An Abridgment of the Light of the World, London, 1786; A Treatise of Solid Virtue, 1699; The Restoration of the Gospel Spirit, 1707.

BOURNE, Vincent, one of the most able medern writers of Latin verse, was born at Westminster towards the close of the 17 th century. In 1710 he became a scholar at Westminster school, and in 1714 entered Trinity College, Cambridge. He graduated in 1717 , and obtained a fellowship three years later. Of his after life exceedingly little is known. It is certain that he passed the greater portion of it as usher in Westminster school. He died on 2d December 1747. During his lifetime be published several small collections of bis Latin peems, and in 1772 there appeared a very handsome 4to volume containing all Bourne's pieces, but also some that did not belong to him. The Latin poems are remarkable not only for perfect mastery of all linguistic niceties, but for graceful expression and genuine poetic feeling. A number of them are translations of English poems, and it is not too much to say that the Latin versions almost invariably surpass the originals. Comper, an old pupil of Bourne's, Beattie, and Lamb have combined in praise of his wenderful power of Latin versification.

BOURNEMOUTH, a watering-place in the south of Eagland, situated on the Hampshire coast about five miles from Christchurch. Its sheltered situation and desirable winter climate began to attract notice about 1840 ; and now it possesses five or six hotels, ecveral churches, a library and reading-room, assembly-roums, baths, and the usual accompaniments of a frequented waterıgg-place. In. 1855 a sanatorium for consumptive patients was erected oy subscription, and various establishments of a aımilar nature have since beea founded. A pier 800 feet long was opened in 1861, and in 1870 railway communication was afforded by a branch of the South-Western from Ringwood. The climate is remarkable for the equability of its temperature. A coordiug to observations from 1862 to 1872 the average maximun by day in July is $\tilde{7} 1^{\circ} \cdot 9$, and the average minimurn by night in January $35^{\circ} 6$. The rainfall is about 30 inches in the course of the y car, and the subseil carries off water with great readiuess. The surrounding country is extremely beautiful; and the buildings of Bournemouth itself are picturesquely disposed on the slope of a richly wooded bill. Population in 1871, 5906.
bourrienne, Louls Antone Fauvelet de, the early friend and biographer of Napoleon, was born at Sons in 1769. His friendship with Napoleon began at the military academy of Brienae, where they were class-fellows, but they did not meet fer some time after leaving school, as Bourrienne's humble birth precluded him from military service. In 1789, having embraced the carcer of diplowacy, he was sent as attaché to Vienna, and thence proceeded to Leipsic where he studied for some time. In 1792 be returned to Paris and renewed his close acquaintance with Bonaparte. Towards the close of the eanie year he was sent as Secretary of Legation to Stuttgart, but the fall of the monarchy a few months later threw him out of office. He was imprisoned for a short tume by the Sason Government as an adherent of the Revolution, and did not return to Paris till 1795 . In the following year, after a slight coldness between the friends, Napoleon invited Dourneune to become his private secretary. The offer was accepted, and for six years the two lived on the most intimate and friendly terms. It was during this period that he accompanied Napolenn to Egypt. In 1802 moplication in the disgraceful failure of the army-contractors Coulon caused his admissal. Three years later, howerer, he was sent as chargé d'affaires to Hamburg. There be was accused of peculation, and was in consequence recalled anit compelled to pay one million francs into the public treasury. Bourrienne never forgave this; he became one of Napoleons bitterest enemies, and after ibe first abdication
IV. -23
held office for a short time under Talleyrand In 1815 be was spectally excluded from Napoleon's ampesty and fled to Belgium. After the fall of the emperor he sat for some years in the Chamber of Representatives, but his official salary could not support his extravagance, and in 1828 be took refuge from his creditors in Belgium. There be occupied himself in drawng up the Mémores of Napoleon, which were published in 1823 and 1830. The revolution of 1830 and the discomforts of his pravate life so preyed upon his mod that bis reason became unhinged, and be had to be removed to an asylum near Caen, where he died in 1834 Bourrienne's Memorres, 10 vols. 8 vo. 1829-31, contain much interesting information regarding Napoleon, but while lively and entertaming, they are in many points to be recenved with cantion. Some of the inaccuracies were ponted out by Boulay de la Meurthe in Bourrienne st ses errents, 2 vols 1830

BOURSAULT, Edmund, a French dramatist and satırıst, was born at Muci-l'Eveque, Burgundy. in 1638. On his first arrival in Paris in 1651 his power of language was limited to Burgundian patois, but he soon ganed such reputation as an author, that Lous XIV. directed him to draw up a book for the education of the Dauphin. In comphance with thas order Boursanle produced his Feritable ètude des souverains, which pleased so greatly the king that he offered to appoint the author tutor to his son, an office which Boursault's ignerance of Latin compelled bim to dechne. He obtained a considerable pension as editor of a rhyming gazette, which uas, however, suppressed for ridiculing a capuchin, and Boursanlt was only saved from the Bastille by the influence of Condé. Two of his dramas. Esope a la Ville and Esope da la Cour were highly pupular, and Corneulle declared bis tragedy Germanicus to be worthy of Racıne. His best comedy was Mercure Galant, or Comedie sans Titre, as it was afterwards, named. He accused Moliere of impiety, and assailed L'Ecole des Femmes in Le Portrait du"Peintre. Moliere retaliated by contemptnously referring to him in L'Impromptu du Versalles. His Satyre des Satyres was directed against Boilean, whom, however, he afterwards generously offered to assist. Jn return for this kindness Boileau crased Doursault's name from his satires. Boursault died at Montluçon, where be held the oflice of collector of taxes, September 15, 1701.

BOUSSA, a town of Africa, situated on an island in the Niger, in $10^{\circ} 14^{\prime} \mathrm{N}$ lat. and $6^{\circ} 11^{\prime} \mathrm{E}$. long. The populaion 18 estimated at about 12,000. See Borgu.

BOUTERWEK, Friedrice, a German philosopher and Lustornan of literature, was born in Lower Saxony in 1736. He was educated at Göttingen university, and seems to have contemplated jomng the legal profession; but his literary achinations proved too powerful, and he devoted bimself entirely to works of poetry and romance. He published several poems, and a romance Graf Donemar. Towards 1790 de began to study with great eagerness the Kantian philosophy, and in 1591 delivered a serics of lectures on that subject in Guttingen. lle was dissatisfied with the Kantan system, regarding it as too fomal, particularly in the departmont of ethics, and was suon attracted to the system of Jacobi, which appeared to give the element of real existence omitted by Kant. Bouterwek's most important work, Idee etner allgmenen Apodiktik, 2 vols. 1799, is deserving of scrous stody, both as a critique of Kantianism, and as a substantial contribution to philusophy: In 1802 he was made professor of philosophy at Guttingen, and published several valuable works, anong others Asthetik, 1806, Lehrbuch der phit. Wissenschaften, 1813; and Religion der Vernunft, 1824 During his later years Bouterwek was entirely devoted to an extensive iterary work To hm had been entrusted the scction on pocery
and eloquence in the great German series of bistories of the sciences from the Renaissance downwards. The first volume of the Geschichte des neuern Poesie und Beredsamkeit appeared in 1805, the twelfth and last in 1815. It is a work of great research, and has very substantial meits. It is, however, somewhat unequal, the portions on German and Spanish literature being superior to any of the rest. Part of the extended work bas been translated into English as a History of Spanish Literature. Bouter rek died in 1828.

BOVALI, Bouali, or Boali, a town of Africa, capital of the kingdom of Loango, situated in $4^{\circ} 30^{\prime} \mathrm{S}$. lat. and 12° 1^{\prime} E. long., on the right bank of a river of the same name not far from the coast. The vicinity is fertile but unheality A large trade is carried on in pepper, dye-woods, wory. and slaves. Population estimated at 15,000 .

BOVES, a township of Italy, in the province of Cunes iu Piedmont, situated at the foot of the Alps, about 4 miles from the city of Cunea. There are iron-mines and marble juarries in the ncighbourhood. Population, 9549.

BOVJNO (the ancient Vebinum or Fitonium), a fortifed town of Italy, province of Capitanata, 18 miles S.S.W. of Foggia It is the seat of a bishopric and of a court of primary jurisdiction, and has a catbedral and several churches and convents. Here the Imperialists defeated the Spaniards in 1734 . Population, 7088 .

BOW, the weapen of the archer. See Archery, vol ii. p. 371, and Arms and Armover, p. 553.

BOWDICH, Thomas Edward, an English traveller, born at Bristol in 1790, was trought up by his father for commercial life, and in 1814 obtained an appointment on the western coast of Africa. Two years afterwards, on his return home, he was sent ont by the African Company as their agent to the king of the Asbantees. In 1819 be published a quarto volume giving an account of that remarkable people. He then seems to have spent a considerable time at Paris in the study of the natural sciences. During his stay in El rops he edited several works on Africa, and pubtished ar excellent pamphlet on the British settlements on the western coast of Africa. He again visited Africa m 1822, with a firm resolution of devoting himself to the exploration of its interior; but he was attacked by fever on the Gambia, and died January 10 , 1824. His widow, who had accompanied him, edited several productions of his pen after his death.

BOWDITCH, Nathaniel, a self-taught Amercian mathe matician, born in 1573, of humble parents, at Salem in Massachusetts. He was bred to his father's business as a cooper, and afterwards apprenticed to a ship-chandler. His taste for mathematics early developed itself; and he acquired Latin that he might study Newton's Principia. In 1795 be sailed as supereargo, in which eapacity be made four long voyages; and, being an excellent navigator. be afterwards commanded a vessel, instructing his crew: in taking lunar and other ibservations. He edited three editions of Ifamilton Moore's Narigation, and in 1802 published a valuable work, New American Practical Nan. gator, founded on the earlier treatise ky Moore. In 1804 be became actuary to a Boston insarance company; and in the midst of his active and useful carcer published a translation of the Micanique celleste of Laplace, with amotations - a work which will better prove the grent aequirements of this self tatight philosopher then any laboured panegyric. He died at Boston in 1838. A life of Bowditeh was writien by bis son in 1839, and is pre. fixed to the last volume, pullished posthumously, of the translation of Laplace.
bowles, Caroline Anve. See Southey, Caroline.
BOWLES, Wiliam I.sele, poet and critic, was born at King's Sutton, of which his father was vicar, in 1702. At
the age of feurteen he was entered on the foundation at Winchester scheol, the head-master at the time being Dr Josepb Warten. In 1781 be left as captain of the school, and proeeeded to Trinity Cellege, Oxford, to a scholarship to which he had been elected. Two years later he gained the chanceller's prize fer Latin verse, and soon after left the university, not taking his degree as master till 179? In 1789 be published, in a small quarto volume, Fourteen Sonnets, which met with considerable favour at the time, were hailed with delight by Coleridge and his young contemporaries, and have since bsen recognmed as the first notes of the modern recolt against the artificial school of peetry, the traditions of which bad desconded from Pope. The Sonnets even in form were a revival, a return to the older and purer poetic style, and by their grace of expression, melodious versification, tender tone of feeling, and vivid appreciation of the life and beauty of nature, stood out in streng contrast to the affected common-plaees which at that time formed the bulk of English poetry. is second edition of the little volume was called for in the same year in which it had appeared, and there have been many subsequent editions. A few short pieces were published in 1790 and 1792, which were also received with faveur. After taking his degree at Oxford he entered the church, and was seen appointed to the vicarage of Chicklade in Wiltshire. In 1797 be received the viearage of Dumbleton in Gloucestershire, and in 1804 was presented to the vicarage of Brembill in Wiltahire. In the same year he was collated by Bishop Douglas to a prebendal stall in the cathedral of Salisbury. In 1818 he was made chaplain to the Prince Regent, and in 1828 he was elected residentiary canon of Salisbury. He died at Salisbury in April 1850, aged 88. Of the lenger peems published by Bowles none attain a very high standard of excelience, though all are distinguisbed by parity of imagination, cultured and graceful diction, and great teaderness of feeling. The most extensive were The Spirit of Dissovery, 1804, which was mercilessly ridieuled by Byron; The Missionary of the Andes, 1815°; The Grave of the Last Staron, 1822; and st John in Patmos, 1833. Bowles is perhapa more celebratel as a critic of poetry than as a poet. In 1807 be published an edition of Pope's works with netes and an cssay on the pretucal character of Pope. In this essay be laid down certan canons as to pretic imagery which, with slight monification, have been sinee recognized as true and valuable, but which wero received at the time with strong olposition by all admers of Pope and his style. The "Pope and Bowles" sontroversy broughe into sharp contrast the opposmy news of poetry, which may be roughly described as the matural and the artificial. Bowles manamed that mages drawn Irom nature are poetically finer than those drawn from art, and that in the lighest Einds of poetry the thenes or pas. srons handied shoutd be of the general or elemental kind, and not the trensient manners of any society These posithons were rigorously assailed by Byron, Campbell, Roscoe. and others of less mote, while for a time Lowles was hhost goltary. Hazlitt and the Blackwood critucs, how. -ver, came to bis assistance, and on the whele Dowles had .easen to congratulate hinself on having once for all stablished certain proncoples wheh might serve as the basis of a true method of poetical critiesm, and of haring tnaugurated, both by precept and by example, a new era in English poetry. Among other prose works from bis prolitic pen was a Life of Lishup her. 2 vols., 1830-31.

BOWLS, one of the oldest and most popalar of English pastimes, the origm of which can be traced back to the 12 th century. Wilham Fitzstephens, in his Survey of London, written during the last quarter of that century, states that in the summer holidays youths took exercise amongst other pasiises in jactu lapidum, "in throwing of stones,"

This might be taken as referrung to throwing stones by slings or other artificial mesns, were it not that the next pastime mentioned is "slinging of missiles to be delivered beyold a certain mark (amentatus missilibus ultra metam expedind is)." Fitzstephens was both an accurate observer and a careful writer, and be clearly alludes to two distinct exercises. In early days stone spheres are bnown to have been used for howling, and the like thing and nand were in vogue for the nest two centuries, in fact till 11 Henry IV. (1409). There is little doubt, thercfere, that Fitzstephens here refers to bowls. It bas been a matir of speculation whether bowling was first practised in th open air on turf or under cover in alleys, and Fitz stephns may help to decide the question. He states that the cizens went outside the city walls into the suburbs to witnes these games, but the alleys were within the walls and in he midst of the population. Again, these elleys were alays held up as scenes of vice and debauchery, and it is cenun that had they existed at this date they would lave be included in the resorts forbidden to the clergy by the fistitutions of Walter de Cantilupe, bishop of Worceste 24 IIenry III. (12+0). In the Close Roll, 39 Ed. IIT. (366) mem. 23, jactus lapidum, "throwing of stenes," mentioued as one of the lucios inhonestos et munus ubs aut valentes, "games alike dishonourable, uselcss, al unproftable." But then there was a reason for this dreciation. The king was concerned lest the practice otrehery, so much more important to the military spirit of th kingdom, should suffer, and the same reasen proupted p action of Parliament. By 12 Rich. II. cap. 6 (1388), stants, artifeers, and labourers were forbidden "amongst ther games to play at gettre de peer, or "casting cthe stone," as the practice of archery was becoming la This statute was confirmed by 11 Henry IV. cap. 4. $409-10$), wherein "gettre de peer" is again forbulden. foru 17 Ed. IV. cap. $3(1+77-8)$ it appears that bowlingtll remained in disrepute; fer "balf-bowl" is meludet amothe " many new imagined plays" which were tollow dy aylasses "to their own imporerishment, and by their unksous procurement and encouraging do inducen otherto such plays till they be utterly undone and umpoverst of their geods." Even murders, robberies, and flemes y the consequence. Accerdingly, it was enacted that atpo playing at half-bowl after the following Eastar, or occupier or governor of any "house, tenement, gardfor other place," where such games are pernittecl. shoupe punished by fines and mprisorment. llere L^{4} is frote that beth the outdoor and indoor game are refert to, as "house" and "garden" are mentorned, and it nibe concluded that by this time alleys had sprong into stence in towns. This then may be consildered the filbention of the game as practised under cover, thoush it inatly clear that alleys had not entirel supersedel greens:
By 3 liemry eap. 3 (1511-12) the previous statutes agamit quful games were confirmed; the word "bowls" fur first time oecurs, and the game is demed an illegal hit. Owing, however, to the implossibility of followno outdoor game except during the sumaur, and the altion of plaving fields for hulding pupposes, publie alldontinued to thourish, as they were agan the cause of tation in 27 IIenry VIII cap. 25 (1535-6), whilst 33 Ey V1IL cap, 4 ($1511-2$) mav very severe indeed on the They were distiuctly mentioned hy name, and it wa eted that no one " by hmolf.
factor, deputy, servart factor, deputy, servat other person. shall, ior his or thear gain, lucre, or ag, keep, bave, held, oceupy, esercise, or maintain fommon bouse, alley, or place of bowling;" and magist might search suspected ten
ments and make arr Oddy cnough, howerer, no might search suspected tent
Oddly enough, bowerer, no
punishroent was to be inflicted, except binding offenders over by their own recognizances, and making them tind sureties not to break the law again. Artificers, servants, and the like, might play during Christmas time in fheir masters' houses and presence, but no one could at any time "play at any bowle or bomles in open place out of his garden or orchard," Fhilst a licence might be grapted to any one werth over $£ 100$ per annum to play privately in his own domain, but not to keep any common or ouen place of play. By 2 and 3 Mary, cap. 9 (1555), tiese licences were cancelled, evidently for religions and nolitical reasons, as they were considered excuses for"u alawful assemblies, conventicles, seditions, and conspircies." The evil atill continued and remaired irrepressible. Stphen Gosson, in his School of Aluse (1579), says-
"Common bowling alleys are privy moths that eat up tt credit of many idle citizens; whose gans at home are not able, सeigh down their losses abroad; whose shops are so far from mataining their play, that their wives and children cry out ior breas and go to beif supperless ofter is the year."

Again, twenty yeara later, Stow, in his Survey oLondon, states-
"What should I speak of the ancient daily exercises the long bow by citizens of this city, now almost clean left off a forsaken? 1 overpass it ; for by the means of closing in the comrr grounds, our archer3, for want of roon to shoot abroad, creep io bowling alleys and ordinary dining houses nearer home, whe they have room enongh to hazard their money at unlawful game: And there Ileave them to take their pleasure."
Stow also mentions in another place that thgardens of old Northumberland House, in Culeman Stret City,

- Were made into bowling alleys, and other pa into dining mouses, common to all comers for their money, ere to bowl and hazard; but now, of late, so many bowling ays and other housea for unlawful gaming bave been raisel in ther parts of the city and suburbs, that thas, their ancieat andyly patron of misrule, is left and forsakea of her gamesters." 1 gain, Goswell Street is described as "repleaished with small ven ents, cottages, alleys, gardens, baqueting houses, and bowling "cs."

The law, doubtless, was trausgressed witmpunity until the beginning of the 18 th century, when wer was given by 2 George I1. cap. $28, \S 9$ (1728), and afirmed by 18 George 1I. cap. $34(1745)$, to commit oflers to prisou. From this date alleys were rigorously spressed, whilst greens began to increase repidly; and aring the 18 th century, no country geatlerasn's mansi, was considered complete without one. There is evide that it was a royal game, since Stow states that bing allegs mere amougst the additions made by Henry II. to Whitehall, and the unfortonate Charles 1. Was anthusiast of the open-air pastime. Duriag his confient at Holmby, Northamptonshire, he frequently menter to Lord Vaux's at Harrowden, and Earl Spencer's Althorpe, both of which stats possessed morivalled bong greans. He 13 said to hare been engaged at the to when seized u g Cornet Joyce. After the suppre" of alleys "long bowling," or "Dutch rubbers," waractised for a short time. It consisted of bowling at ${ }^{1 e}$ pins, placed on a square frome 30 yards distant, bu'es not appear ever to Lave fond much favour in Ems . The first regular bowling club of which thare exists trace is the Willombank Club founded in Glasgow be commencement of the 19 th century. The game isw chiefly practised in the northern connties of Euglaind in Scotland. In the fresent era of violent athlexereises its prineipal votarics aro middle-agch and $-\bar{F}$ persons, to whom it affords a lloarat and not too ement exercise during summer evenints.

For tho cutclour pastime thet requisito ia a smooth and level plot of turf, well he watered, rolled, and kept in order,-hence the arison, "as smooth as a bowling green." The earlilclineation extant of the gamo shons iwo phyera mith all each, but no fuct: or
mark to bowl at. It is presumed from this that the nrest cast his bowl to constitute a mark for the second to play at and knock from its position. Probably it was soon found expedient to introduce some definite mark, and in a 13 th century MS., marked 20 Ed. IV., in the Rofal Library, there is a picture of a game of bowls being played with a small cone erected at each end. Here the principle was evidently the same as at present, viz., to seo who could cast his bowl nearest the mark. The modern green may be laid out on any suitable piece of smowth and level turf. The dimensions vary, according to the grouad araidable, but from 90 to 150 feet in length, will. a proportionale width, is found most suitable. The koul: are made of lignum vitue; and, instead of being perfect apheres, are more or less ova! with a bias. Formerly bias was eccorded them by loading one side with lead, but now the more simple method of turaing one-balf of the orad smaller or leaner than the other half is universally adopted. The chief difieulty of the game consists in each player's mastering the bias of his own particular bowl. The "jack" or mark to be bowled at consists of a white ball of smaller size, which has superseded the old-fashioned cones. "Tegs" are a length of cord, with one end firmly attached to a bone or rooden peg, and the other passing through a hole in a similar peg. They are used for measuring which of two bowls is nearest the jack; and, if the distance be under a yard, the "standard"-consisting of a light straw or reet -may be called into requisition. A "rub" or "set" is when a jack or bowl, in transitu, comes in contact with any object on the green. The "footer" is the small piecs of material-cocoa-nut matting is the best- xhereon each player atands io delivering his ball. "Cast," or "point," is the term for each unit in acoring the game, which is "un" or won when the number of casts agreed on have been obtained by the winning side. A "dead bowl" is one knocked off the green, or against one lying in the diteh, er an illegally played bowl, and wost at oace be removed from the green. Should the boundary of the green consist of fencing, touehing the feace constitutes a dead bowl. "Slark," or "set a mark," meana the delivery of the jack at the commencement of a game. The jack nust be bowled at least 63 feet from the footer and not over 3 feet from the edge of the green. The bowling gencrally takes place alternately from the two "ends" of the green. A "void cad" is when neither side can score a cast. "Turning the jack" is shen a player clams the game to be finished as the bowls then lie, and cen only eccur when one side has but a single bowl to deliver, all the opposite side's bowls having been cast. For the rules of the outdoor game ss now played, reference rasy be made to Mitchell's Manualof Boul-playing, Glasgow, IS65.

In Freace, according to Cotgrave, there formerly eaisteu a game termed carreau, somewhat similar to bowls, the jacls or marr being set upon a square stone at the end of an alley.

In the Urited States of America a game of bomla termed "Ten Pius." is very popular. It is strictly a. indoor game, played in alleys 60 feet by 4 fect Ten wooden pins are set up at the further cad of the alley, is the shape of an equilateral triangle with the apes (ternad the "king pin)" towards the players. The object is to knock demn the greatest namber of pins with the fewest balls. These are niade of lignum vike, unlimited in size or weight, but perfect spheres, anstead of being biassed. A game cousists of ten "rods" of three balls each (if neccsary), or thirty in ali. The seore is kept on a large vertical slate mith ten divisions, corresponding to the ten rolls, for each flayer. The chief point is to ary and hit the bing piu at the sper of the triangle, as this chiods the best chance of knocking down all the pins. Should a whwo mocercl in doing so with the fi-st ball of a rull he
gains a "double spare," his bowling is over for that roll, and be is entitled to add whatever number of pins he knocks down with the first two balls of the next roll to the ten already down. Should he gan another double spare with the first ball of the succeeding roll he has to wait for the first ball of a third roll before the total score for the first roll can be ascertained, and so on in succession. Accordingly, should a player obtain"a double spare in each roll-or ten in all-his total reaches 300 , the bighest attainable. If a double spare be scored with the first ball of the tenth roll, the player is entitled to bowl bis two remarning balls at once as he has no further rolls to play Should he knock down all the pins with the first tivo balls nf a roll, he gans a "single spare," liss bowling 18 over for that roll, and he is in a similar manner entitled to add whatever number of pins he knocks down with the first ball of the next roll to the ten already down. The technical name for this method of scoring is "comuting old and new." There are a few ten-pin alleys in London and the suburbs, but the pastime is not nunch practised in England. The rules will be found in The Modern Pocket Hoyle, New York.
BOWRING, Sir Jonn, an eminent Enghsh linguist, translator, political economist, and miscellaneous writer, was born at Exeter, October 17, 1792 He was a descendant of an old Puritan family; and he became in early life an ardent disciple in the school of utilitariansm. and philosophical radicalism, whose prophet was Jeremy Bentham. He did not, however, share his master's contempt for poetry and the belles lettres, but was a diligent student of literature and forcign languages, esplecrally those of Eastern Europe. His attainments as a linguist were of romarkable extent. He stated that he knew two hundred languages and conld speak one hundred. This, of course, does not mean more than that he had some shight acquaiutance with them; but it is certain that he had a pretty good knowledge of forty, and these were languages of various classes. This gives him a place, with Mezzofanti and Von Gabelentz, among the greatest linguists of the world. The first fruits of his study of forcign literature appeared in Specimens of the Russiun Pocts, publishod in two volumes in 1821-23. These were specdily followed by Batavian Anthology (1824), Ancient Poetry and Romances of Spain (1824), Specimens of the Polish Poets, and Servian Popular Poetry, both in 1827. Durng this period he began to contribute to the newly-founded Westminster Review, of which be was appointed editor in 1825. By his contributions to the Reviey he obtaiacd considerable reputation as political economist and parliamentary reformer. He advocated in its pages the cause of free trade long before it was popularized by the eloquence of Richard Cobden and John Bright. He pleaded earnestly in behalf of parliamentary reform, Catholic emancipation, and popular edncation. In 1828 he risited Holland, and during his stay there the university of Groningen conferred on him the degree of doctor of laws. In the following year he was in Denmark, occupging himself with preparitions for the publication of a collection of Scandinavian poetry. Bowring, who had been the trusted friend of Bentham during his life, was appointed his biterary executor, and was charged with the task of preparing a collected edition of his works. This appeared in eleven volumes in the years 1838 and 1839. Meanwhile Bowring had entered Parliament in 1835 as member for Kilmarnock; and in the following year be was appointed bead of a Government commission to be sent to France to inquire into the actual state of commerce between the two countries. He was engaged in similar investigations in Switzerland, Italy, Syria, and some of the German States. The results of these misssions appeared in a series of reports laid before
the House of Commons. After a retirement of four years he sat in Parlament from 1841 till $184 y$ as member for Bclton During this busy period be found letsure for hiterature, and published in 1843 a translation of the Manuscript of the Queen's Court, a collection of old Bohemian lyncs, de. In 1849 he was appointed Britsh consul at Hong-Kong, and superntendent of trade in Cbina, a post which he keld for four years. After his return he distungushed humself as an advocate of the decimal system, and published a work entitled, The Decmal System in Numbers, Conns, and Accounts (1854). The introduction of the florin as a preparatory step was chaefly due to has efforts. Kinghted in 1854, he was agan sent the same year to Hong-kong as governor, invested with the supreme military and naval power. It was during his governorship that a dispute broke out with the Chinese, and the 1 ratation caused by his "spurited" or high-handed policy led to the second war with China. In 1855 he visited Siam, and negotiated with the king a treaty of commerce. After the usual five years of service he retired and recelved a pension. His last employment by the English Government was as a commssioner to Italy in 1861, to report on our commercial relations with the new kngdom. Sir John Bowring subsequently accepted the appointment of minnster pienipotentiary and envoy extraordinary from the Hawaiian Government to the courts of Europe, and in this capacity ncgotiated treaties with Belgum, Holland, Italy, Span, and Switzerland. In addition to the works already named he published-Poetry of the Magyars (1830), Cheskian Anthology (1832); The Kingdom and People of Stam (1859), a translation of Peter Schlemihl ; translations from the Hungarian poet, Alexander Petöf (1866), and various pamphlets. IIe was elected F.R.S. and F.R.G.S., and received the decorations of several foregn orders of kuighthood Bowring was twice married; his second wife survived lum, with several sons, who have attaned distinction in varous fields. He died at Claremont, near Exeter, November 23, 1872.

BOXWOOD, the wood oltaned from the Euphorbaceous genus Buxus, the primepal species being the well-known tree or shrub, B. sempervirens, the common box, in general use for borders of garden walks, ornamental parterres, de. The other source of the ordinary boxwood of comancree is B. balearca, which yields the variety known as Turkey boxwood. The common box is grown throughout Great Britam, in the southern part of the European continent generally, and it appears to extend through Persus into Inda, where it is found growing on the slopes of the Western Himalayas. Only a very small proportion of the wood suitable for madustral uses is now obtained in Great Britan. The bor is a very slow growing jlant, adding not more than $1 \frac{1}{2}$ or 2 mehes to its dameter in twenty years, and on an average attaining only a height of 16 feet, with a mean diameter of $10 \frac{1}{2}$ inches. The leaves of this species are small, oval, leathery in texture, and of a deef :glossy green colour. B. balearica is a tree of considerabls size, attaining to a height of 80 fect, with leaves three times larger than those of the common box. It is a native of the islands of the Mediterranean, and grows in Turkey, Asia Minor, and around the shores of the Black Sea, and is supposed to be the chief source of the boxwood which comes into Euronean commerce by way of Constantinople. The wood of both species possesses a delicate ycllow colour, it is very dense in structure and has a fine uniform grain, which gives it unique ralue for the purpases of the woodengraver. In addition to the ever-increasing demand for the wood by engravers, a very large amount is used in the manufacture of measuring rules, various mathematical instruments, flutes and other musical instruments, as well as for turning into many minor articles, and for inlaying,
and it is a favourue wood for small carvings. The use of boxwood for turnery and musical instruments is mentioned by Pliny, Virgil, and Ovid. The quantity of the wood which passes out from Constantinople yearly is estimated at from 5000 to 7000 tons, with about 1500 tons more of - nferior and small pieces. While the consumption is contioually increasing the present sources of supply are rapidly becoming exhausted, the forests near the sca are denuded of their best trees, and access to the wood growing in the Interior of the countries around the Black Sea is difficult owing to the want of means of internal communication. The consequent increase of the cost of boxwood has led to frequent attempts to discover other woods which might take its place for the purposes of the wood engraver; but none of the numerous substitutes proposed have bitherto been found to possess the necessary combination of propertics.

BOYACA, a village in the state of Boyaca, in the Republic of Colombia, situated about 20 miles south of the capital Tuaja, and celebrated as the scene of the victory of Bulivar over the Spaniards in 1819. See Bollvar.
boyce, Hector. See Boece, vol. iii. p. 849.
BOYCE, William, an Eaglish musical composer of eminence, was born in London in 1710, and died there in 1779. As a chornster in St Paul's he received his early musical education from King and Dr Grenne, and he afterwards studied the theory of music under Dr I'epusch. In 1736 be was appointed organist of St Nichael's church, Cornhall, and in the same year he became composer to the chapel royal. In 1749 be receaved the degree of doctor of music from the University of Cambridge, as an acknowledgment of the merit of his setting of the ode performed at the installation of the duke of Newcastle as chancellor. 11 e became master of the kiag's band in succcssion to Greene in 1757, and soon afterwards he was appointed priacipal organist to the chapcl royal. As an ecclesiastical composer Loyce raoks among the best representatives of the Euglish school. His two church services and his anthems, of which the best specimens are By the Taters of Babylon and O, Whare shall Wisdom be found, are stlll frequently performed Of his other works the best known are the serenade of Solomon, a setting of David's lamenta. tion over Jonathan, and twelve trios for two violine and a bass, which were long popular One of has most valuable services to the art was his mblication (1760) of a collection of English church music in three volumes quarto, which included all the best compositions of the two preed ing ceataries. The collcction had been begun by Greene, but it was manaly the work of Boyce.

BOYD, Zachary, a learned clergyman of the Scottish Church, was born towards the end of the 16 th contury, and died io 1653 or 1654 . He was for many years regent $1: 1$ the college of Saumur in France, but returned to has natwe country in 1621, to eseape the persecution of the I'rotescants. In 1023 be was apponted immster of the Barony church in Glaggow, and leld the office of rector of the naversity in the years 16.34. 1635, and 16m5. He bequeathed to the unversity the half of has fortune, a sum amounting to $x^{2} 20,000$ Scots, lesides his hbrary aud MSS. His bust over the gatrway witum the court commemorates his impurtant benefactions. The number of his published works was considerable and eighty-sis of has Diss. are sald to be preserved in the library of Glasgow College. Il is poctical compositions are not without some merit, though the remarkathe eccentrietty of some of them has gencrally made them a source of wnasment rather than edification. The common statement that be made the prining of big metracal version of the BBle a condition of the ruception of his grant to the undersity is a mistab:e.

His best known works are The Last Batte of the Souls in Death, 1629, of which a new edition, with a biography by Mr Neil, was published at Glasgow in 1831; Zion's Flowers, 1644; the Eng'ish Academie; and Songs of Zion.
BOYDELL, Jonn, an engraver, chiely known by bis plates illustrating Shakespeare, was born at Dorrington: $:$ 1719. At the age of twenty-one he came to London ath was apprenticed for seven years to an engraver. In 174's he published a volume of views in England and Wales, crin? started in business as a printseller. By bis good tasit and liberality he managed to secure the services of tuse best artists, and his engraviags were executed with such skill that bis business became extensive and lucrative. He succeeded in his plan of a Shakespeare gallery, and obtained the assistance of the most eminent painters of the day, whose contributions were exhibited publicly for many years. The engravings from these paintings form a splendid companion volume to his large edition of Shakespeare's works. Towards the close of bis life Boydell sustained severe losses through the French Pevolution, and was compelled to dispose of his Shakespeare gallery by lottery. It had been his wish and intention to bequeath it to the nation. He died in 1804 before the lottery took place. Some sears before his death he lad Leld the position of Lord Mayor of London.

BOYER, Abel, a well-known lexicographer and historian, was born at Castres in France in 1664. Upon the revocation of the Edict of Nantes he first weat to Geneva, and then to Francker, where he finshed his studies. Finally he came to England, where he soon acquired such a proficiency in the Eaglish language, that be became an author of considerable note, and was cmployed in vriting several periodical and political works. He lad for many years the principal management of a newspaper called the Postboy, and he likewise published a monthly work eatitled The Political State of Great Britain. He died at Chelsea in 1729.
He wrote-Life of Queen Anne, folio; History of Willinm IHI., 3 vols. 8vo; Annals of the Reign of Quetn Annc. 11 vols. 8 ro; his best known work is the Dictionary and Grammar of the Frersh Linguage.

BOYER, Alexts, a distinguisbed French surgeon, was bora on the 1st of March 1757, at Uzerches in Limousin. His father was in the humble station of a tailor, and the son received the elcments of a medical education in the shop of a barber-surgeon in a provincial town. His evident talent induced his friends to procure his removal to Paris, where he lad the good fortune to attract the notice of his two distinguished masters, Lonis and Dessault; and bis unwearied perseveraoce, his anatomeal skill, and finally Lis dexterity as an operator, became so conspicuous, that at the ago of thirty-sevea he ohtained the appontment of scond surgeon to the Hotel Dicu of Faris, anal was clected professar of operative surgery ia the Ecole de Sante. 'Tha latter appomment be soon exchauged for the chait of clinical surgery,-a department in rbich has manual desterity and has admarable lectures on surgacal subjects gamen bim the highest reputation. and introdaced lum : extensive practice. Perhals no French surgeon of has thme thonght or wrote with greater clearness and good sems than Buyer; and while his natural modesty made but disirustful of maowaton, and somewhat tenachous of estabhished modes of treatment, he was as juhenoms in lis diagnosss, as coul and skilful m masurulatag. as he was cautious in forming his judgment on modndual cases. In 1805 Napuleon nommated lam inmertal fanily surceon. and. after the brithant canyaigus of $1800-7$, conferted on him the legron of honomr, wath the tatle of Baron of the Emptre, able a salary of 25.000 frames. On the fall of Napoleon the merits of Boyer seeured him the farour ob the succecding sorercigas of France, and he was consuinns

In 1835 he succeeded Deschamps as surgeon-in-chief to the Hôpital de la Charité, and was chosen a member of the Royal Academy of Sciences of the Institute of France. From the period of his wife's death, which he took much to heart, his health declined, and he died November 23, 1833, at the age of seventy-six.

His two great works are-Traite complet de lanatomie, in 4 vols. 8ro, 1797-99, of which a fourth edition appeared in 1815, and Traits des maladics chiruraicales et des operations qui leur conviennent, 11 vols. 8 vo, 1814-26. Of this work a new edition (the 5th), with additions by M. Ph. Boyer, in 7 vols., was published in 1844-53.
bOYER, Jean Baptiste, an eminent French pbysician, born at Marseilles in 1693 . He devoted a long life to the special investigation and treatment of contagious epidemice, with a courage and success which have rarely been surpassed. On the last appearance of the plague in western Europe in 1720, he was one of the physicians sent from Paris by the Government to succour the inhabitants of his native city, then visited by this great calamity. The fearless zeal and ability which be displayed on that occasion procured him a pension and the title of physician in ordinary to the king. Much of his subsequent life was spent in similar expeditions, devoted to philanthropy, wherever pestilential epidemics prevailed; and the value of the services of Boyer were fully acknowledged at Paris, Treves, Beanvais, Montagne, Brest, and at several places in the Spanish peninsula He died in 1768.
His best known writings are-Account of the Playue at Marseilles in 1720, and obscrrations an the Epidento that prevailed at Beauvais, Paris, 1750.

BOYER, Jean Pierre, a mulatto general, and for some time the President of Hayti, was born at l'ort-au Friuce in 1776 . He joined the negroes in their war of independence, but after the secession of Toussaint l'Ouverture with his party, was compelled to retire to France. He was well received by Napuleon, and obtained a coumission in Leclerc's expedition. After the death of Dessalines, the king of Hayti, Boyer joined Pétion in proclaining a republic and resisting Cluristople, Dessalines's successor. He gahantly and successfuly detended Port-nu-Prince against the negre trueps of Christephe, and on the death of Petion was named president of the llaytian repuldic. Two years later the death of Christopho reraved his only rival, and he gained almost undisputal possession of the whole istand. Absoluto power, however, produces its usual effects; Boyer became nrbitrary, capricious, and cruel. In 1825 tho Frenela compelled the Haytian senate to acknowledge their supremacy, and to guarantce a payment of 150 millions of franes in return for certain lilerties granted. The weight of this enormons debt excitel the greatest discnatent in Hayti Doyer was able to carry on his government for somic years longer, but in 1812 a vielent insurrection orerthrew his power, and compelled hin to take refuge in damaca. He resided there till 1848 , when lie remored to Paris, where ho died in 1850.

BOYLE, Caarles, earl of Orrery in Ireland, and baron of Marston, in the county of Somerset, the sccond son of Roger second earl of Orrery, was bernat Cheisea in 167th. He was edumated at Christ Church, Oxford, and soon distmguished himself by bis learnug and atihnties. Like the first earl of Orrery, he was an author, soldier, and states man. He translated Plutarch's hifo of Lysander, and published an edition of the epistles of Phalaris, which chgaged him in the famons controverey with Bentley. Sce Atterbury and Bentley. He was three times inemher for the town of Huntingdon, and on the death of his brother, Limel, earl of Orrery, in 1703, be sueceeded to that title. He entered the artmy, and in 1703 was rased to the rank of major-general, and sworn (ase of her Majesty's privy council. At the battle of the Wood he acted with
distinguished bravery. He was appointed queen's envoy to the states of Brabant and Flanders; and having discharged this trust with ability, he was created an English peer, as Baron of Marston, in Somersetshire. He received several additional honours in the reign of George 1., but having bad the misfortune to fall under the suspicion of the Government he was committed to the Tower, where he remained six months, and was then admitted to bail. On a subsequent inquiry it was found impossible to criminate him, and he was discharged. He died, after a slight illness, on the 28 th of August 1731. Among the works of Roger, earl of Orrery, will be fuund a comedy. entitled As you find it, written by Charles Boyle. Tho orrery, an astronomical instrument, invented, or at leasa constructed, by Graham, was named after the earl, who used to amuse his leisuro hours with mechanical toys.

BOYLE, John, earl of Cork and Orrery, a nouleman distinguished fur bis herary attainments, was the only sun of the subject of last notice, and was born Jaunary $2,1707$. He was edueated at Christ Church College, Oxford, and was led by indifferent health and many untuward accidents to cultivate in retirement his talents for herature and peetry. His werks are ncither numerous nor remarkable. His trauslation of the Letters of Pluny the Younger, with various notes, for the use of his eldest son, was published in 1751, 2 vols. 4to. He also published a Lije of Swijt, in several letters addressed to his second son, and Menoirs of Robert Curey, Earl of Monmouth, from a manuscript presented to him by a relation. He diad A'sember 16, 1762. His letters from Italy did nut alpear until 17.1, when they were cdited, whih his hio frefixed, by the Rev. J. Duncombe.

BOYLE, Richard, one of the greatest statesmen of tho 17th century, generally styled tho Great Earl of Cork, was the youngest sun of Roger Doyle, and was botn at Canterbury, October 3, 1566. He studied at Benet Collwer, Canibndge, and afterwards Lecame a student in the Matho Temple. Having lost his parehts, and temg unable th sulport himself in the prosecution of his studies, his became elerk to Sir Richard Manwoud, chici basen of the exchequet; but finding this emforyment little likily is improve his fertune, he went to Ireland. Ho was the:s about twenty-two years of age, graceful in person, ans! posscssing many accomphishments, which enalled him to render hamself useful to some of the principal persons eniployed in the Guvernment. In 1595 he married ,no of the daughters and co-herenses of Wham Apsley. This lady died four years afterwards, leawng lam: landed estato of 2500 is year. He purchased land extcnsisely, and $8: 9$ looked upon with great jeatensy by some of the neightur: ing proprieters, who dad all they combl to backen his character. Bat be was fortumate enomgh to fimet a patron in Queen Flizaleth, and his furtunce, which bal leere broken ly the Munster rethellion, rapidly impoeved. In consequence of various services and the great abulity tho displayeal, be gradually ruse to the higheat offices; and in 1616 the was created, by king James I., Lard Boyle, Baron of Limghall the the conty of Cork. Tour yeara later he wascreated Viscomit Dungarsan and earl of Corl. and in 1 bi31 he was appointed lorit treasurer uf Jreland. an honour that was made herelitaty in his iamly. He partectarly distaguished hameli by the mande atand he made whein the great rebelliun broke on 11 Ir tant in th. relem of Charles 1 ., acting with as much travery at. miltary skill as if he hat beem tramed fom lis infane to the profession of arms. Havnig turnuld the castle of Lismore, his principlal seat, into a fortress. be mmediatel. armed and discuplined his servants and Pictesaut tenants: and with their assistance, and a snall army, raised and maintained at his own expense, which le fat under the
command of his four sous, be defended the province of IIunster, and took several strong castles. During this fime be paid bis forees regularly; and when all his money was exhausted, he converted his plate into com. He died on the 15 th September 1644.

BOYLE, Richard, earl of Burlington and Cork, son of the subject of last notice, was born in 1612 . He greatly distinguished himself by his loyalty to Charles I., Whom during his troubles he supplied with both money and troops; but at last he was obliged to compruand for his estate. He contributed all in his power to the Restoration, and by Charles 11. was created earl of Burlington (Bridlangton) in 1663 . He died in January 1697-8, aged eighty-six.

BOYLE, Robert, one of the greatest natural philosophers of his age, and one of the founders of the Reyal Suciety of London, was the eeventh son and fourteenth child of Richard Boyle, earl of Cork, and was born at Lismore Castle in the province of Munster, Ireland, January 25, 1627 . In his earhest years he learnt to speak Latin and Freneb, and he was only eight years old when he was sent to Eton, his father's friend, Sir Henry Wotton, being then provost of the college. Here he studied about abree years, and was next placed as private pupil with the rector of Stalbridge in Dorsetshare, where his father had just taken up his residence. In IG38 after a visit to London he travelled in France aceompanied by a French tutor, and studied above a year at Geneva. In the auturnn of 1641 be visited Switzerland and Italy, spending the winter of 1641-42 at Florence. Here he studied the works of Galileo, who died near Florence the same winter. On reaching England in 1644 he learnt the death of his father, who had left to him the manor of Stalbridge and estates in Ireland. It was in the following year that be became a member of a society of scientific men, who in consequence of the politieal agitation of the times used to bold their meetings with as much privacy as possible, Grst in London and afterwards at Oxford; this became subsequently famous as the Royal Socicty. In 1646 he settled at Stalbridge, and from that time his whole life was devoted to study, scientife rescareh and experiments, and authership. After making several visits to his estates in Ireland he took up his abode at Oxford in 1654, and there enjoyed the society of many learned men: He resided at Oxford for fourteen years; and itwas during this period that he mado important improvements in the air-pump, and by a long series of experiments with it made various diseoveries on the properties of air, the propagation of sound, \&e., which are recorded in his voluminous writings. Boyle was at the same time an ardent studeut of theology, and numbered among his friends the eminent Orientalists Pococke, llyde, and Clarke, and Dr Thomas Barlow, Bodleian librarian and bishop of Lincoln. At the Restoration he ras favourably received at court, and was advised to enter the church; but this be decliued to do, alleging that it was not his vocation, and that he believed his writings on religious subjects would have greater weight coming from a layman than from a paid minister of the church. His anaiety to promote the spread of Christianity appeared in vanous mumficent acts. He bore the expense of jreparing a Malay translation of the Gospels and the Acts of the Apostles, and of an lmsh version of the Dilhe. He contributed largely to the cost of the Welsh Bible and of a Turkish New 'lostament, and gave a large sum to the translator of the work of Grotius De Feritate into Arabic. He sup. forted liberally the frojects for spreadiug the Gospel in Indra and in America, and gave away ammally a large som for charitable purposes. He juade his first appearance sis author in 1660, by the Publication at Oxford of 1 arolume entitled New Experimens, Jhysico-Ncwanzal,
touching the Spring of Air and its Effects, and of 8 devotional work entitled Seraphic Love, or some Motive: and Incentives to the Love of God.

When the Royal Society was ineorporated (1663) Bayle was named a member of the council He communicated many important memoirs to the Philosophical Transactions, and, in 1680, was eleeted president of the soeiety, but from a seruple about oaths be declined this honour. Boyle was at one time deeply interested in alchemy, and ćarried on experiments on the transmutation of metala, in which Newton also took much interest. It was through his efforts that the statute of Henry IV. cap. 4, against the multiplying of gold and silver was repealed in 1689 . After leaving Oxford in 1668 he settled in London; and bere he spent the rest of his days, residing in the bouse of bis sister Lady Ranelagh. He was never married. In person he was tall, slender, and of a pale countenance. His constitution was far from robust, and throughout his life be suffered from feeble health and low spirits. While his scientife discoveries proeured hirn wide and lasting renown, his prirate character and virtues, the eharm of his social manners, his wit and conversation, endeared him to a large number of personal friends. As a man of seience he was ranked by his contemporaries among the greatest ; and although some abatement of this very high estimate has siuce been admitted, he still holds a place of distinction as the first great investigator who carried out in his labours the principles of the Novin'Organum. So earnest was his devotion to Bacon that for many years he could not be persuaded to read the works of Deseartes, lest be should be tempted out of bis chosen path. His strength lay in the patient researeh and observation of facts. He did not display that power of dirination of their meaning and of detection of their relations whieh is the characteristic of genius. His desite was to contribute by bis researches, in the true spirit of the Baconian philosophy, to the service of man's life; aud in this he had a large measure of success. The same practical aim is apparent in his theological writings. He was no controversialist, and does not appear to have taken much, if any interest in the great political and religious movements of bis day. About 1690 his health began seriously, fail, and he wes obliged gradually to withdraw from his public engagements. He discontinued the communication of memeirs of new discoreries to the Royal Soeiety, resigned the post whieh he had long held of governor of the corporation for propagating the Gosped in New England, and announced by public adrertisement his inteution no longer to receive visits. The "retired leisure" which he thus seeured was devoted to important chemical investigations, the account of which be left "as a kind of hermetic legay to the studious disciples of that art." His bealth became worse in 1691 . On the 23 d of December of thlu year bis sister, Lady Ranelagh, with whom he had lived for more thau twenty years, died; and a week later, Decem かer 30, Boyle died himself. His remains were interred in the churchyard of St Martin's in the Fields, and his funeral ermon was preaehed by his friend Dr Burnet, bishop of Salisbury, auther of the History of the lieformation. By his will he founded and endowed the " Poyle Lectures," the purpose of which is the demoustration of the truth of the Christian religion against athoists, theists, lagans, Jews, and MaLometans.

It is unnecessary to do more than enumerate the more importan: piblicutions of this laborious investigator. His tirst work has already been mentioned. It was fellowed, in 1662, by The Secmical Chemist, subsequently reprinted with addations. Hlis Considerations touchmg the Usfuimess of Expertmental Jatunt? Philosophy appeared in Itids, and was followed by a secent part in 1671. His Expermmend and Consilerations upm colours, uth Ubservations on a Diamond tha Shines in the Dark; also atpeared in 1663 -a treatise which lru: fround on a thome afterwards more profoundly trated by New:

His neat scientific work was entitled, New Experiments and Observations uyon Cold (16C5). This was followed by the Origin of Forms and Quaitites according to the Corpuscular Philosophy (1666); a con. tinuation of his first work on the air (1669); Tracts about the Cosmical Qualities of things, the Temperature of the Subterraneous Regions, and the Bottom of the Sea (1669), a volume which gave rise to much discussion, its statements being founded on experiment; Origin andVirtues of Gems (16i2) ; Essays on the Subtilty and Determinate Nature of Effuvia (1673); iracts on the Saltness of the Sea, the Moisture of the Air, the Natural and Preternatural State of Bodics, Cold, Hidden Qualities of the Air,. Celestial Mannets, Hobbes's Problem of a Vacuum, and the Cause of Attraction and Suction(1674) : Experiments and Notes about the Mechanical Orign or Production of Particular Qualities, including a discourse on electricity (1676); the Acrial Noctiluca, or sume new Phenomena, and a Proecss of a Factitious Self-shining Substance (1680) i New Experiments and Observations upon the ley Noctiluca, to which is added a Chemical Paradox (1682); a further continuation of his first work on the air (1682); Memoirs for the History of IFuman Blood (1684) ; Short Memoirs for the Natural Experimental History of Mineral Waters (1685); Medicina Hydrostatica (1690); and Experimenta et Observationes Physice (1691). Of his religions and theological writings we may mention, An Essay on Seripture, of which one portion was published in 1663, and the whole at a later date by his friend Sir Peter Pett; Occasional Reffections upon several Subjects (1665), a strange medley of trivialities and grave thoughts, amusing, yet not wholly unwise, which was assailed and ridiculed by Dean Swift in A Pions Mcditation upon a Broonstick, in the Style of the Honourable Mr Boyle, and by Butler in An Occasional Reflection on Dr Charlton's fecling a Loo's Putse at Gresham College (a neat reprint of the Occasional Reflections was published at Oxford in 1845); The Excellency of Theology, compared with Philosophy, written in the year of the Great Ylague, but not pnblished till 1673; Considerations about the Reconcilableness of Reason and Religion, with a Discourse about the Possibility of the Resurrection (1655) ; A Discourse of Thongs abous Reason, inquiring whether a Plilosonher should admui any such (1681); a tract on the High Veneration Man's Intellect ows to God (1655); A Free Inquary anto the rulgarly received notion of Nuturs (1686); and The Chres. tian Virtzoso (1590). Several other works appeared after his death, 3nd among these were-The General History of the Air designed and begun; an account of his making the phosjhorus, September 30, 1680 ; and Vedicinal Experiments. An incomplete edition of Boyle's works appeared at Genera some years before his denth. A nseful classified abridgment was published by Dr Peter Shaw, editor of an abridgment of Bacon's Philosophical Works. The tirst complete edition was that of Dr Birch, which appeared, with a life of the author, in 5 vols. folio, in 1744. Another complete edition was issued in 6 vols. $4 t 0$, in 177_{2}^{2}. A portrait of Boyle, by Kerse. boom, which is in the possession of the Royal Society, formed part of the National Portrait Exhit:*ion at South Kiensington in 1866. Borle bequeathed his nataral hastory collections to the loyal Society.

BOYLE, Roger, carl of Orrery, fifth son of the Great Earl of Cork, was born in April I621, and was made Baron Broghill when only five years old. He distinguished himself while a student at Dublin Colloge, and afterwaris made the tour of France and ltaly. Soon after his return he married Margaret Howard, sister to the earl of Sufolk, and passing over to Ireland with his bride be found the commery in a state of rebellion, and assisted his father in opposing the insurgents. Upon the execution of the king, be retired to his seat at Marston in Somersetsbire; but his spirit could ill brook this state of inactivity, and he therefore resolved to cross the seas, and apply to Charles Il. for a commission to raise forces to restore the monarchy and recorer his own estate. Under the pretence of visinng Spa for his health, he proceeded as far as London, where he received a mossare from Cromwell, then gencral of the parliamentary forces and a member of the committce of state, intimatine has intention to wait upon him. During the interview Cromwell told him that the committee were apprised of his design, and when Broghill assured him that the intelligence was falsc. Cromwell produced copies of scveral of his confidential letters, whicb reduced him to the necessity of asking Cromwell's pardon, avd requesting his advice in such a conjuncture. Cromwell told him, that though he had hitherto been a stranger to his person, he was not ao to his merit and character; that he had heard how callantly he had behaved in the Irish wars: and he
concluded by offering him a command as general officer, exempt from all oaths and engagements,-adding that he should not be obliged to draw his swerd against any but the Irish rebels. Lord Broghill, greatly surprised at so unespected an offer, requested some time for deliberation. But Cromwell brusquely told him that he must determine instantly, that he bimself was about to return to the committee, who were still sitting, and that if he rejected their offer, they had determined to send him to the Tower. Broghill, finding that his liberty and life were in the utmost danger, pledged his honour that he would faithfully serve against the Irish rebels; and accordingly, by Cromitell's instructions, he passed over into Ireland, where by many important services be fully justified the opinion which had been formed of him. A troop of horse which he had raised was soon increased to a regiment of 1500 men, and these he led into the field against the rebels. He was speedily joined by Cromwell, who placed the highest confidence in his new ally, and found him of the greatest value to the interests of the commonwealth.

When Cromwell becamo Protector, Lord Broghill was made one of bis pricy council, and admitted to great intimacy and confidence. He continued for some time to assist Ricbard Cromwell with his counsels, till, seeing that the weak nature of that amiable man would infallibly bring on bis fall, he deemed it imprudent still to cling to one whom he could not save, and accordingly retired to bis command in Ireland, where affairs shortly after took a turn extremely favourable to the design of the king's restorstion. Lord Broghill was not a little instrumental in bringing about that event, and, in consideration of bis emment serrices, Charles created him earl of Orrery, September 5, 1660. He was soon after made one of the lords justices of Ireland; and his conduct, whilst at the head of affairs in that kingdom, was such as to add greatly to the general csteem in which his character was previously held.

His active and toilsome course of life at length brought on discase and infirmity; but, notwithatanding, be went orer to Encland in 1665, at the king's desire, and mediated with success in a serious misunderstanding which existed between Charles and the duke of York.

On his return Lord Orrery, by his prodent and skilful measures, rendered abortive the scheme of a descent upon Ireland by the Dutch and French, planned by tho duke de Bcaufort, admiral of France.

About this time a quarrel with his old friend the dute of Ormond, arising frou mutual jealunsies, became so scrious that the disputanta resorted to England to defend their respective iuterests. This quarrel, though of a privato beginning, became at last of a public naturc. Lord Orrery was impeached, but defended himself so well that the prosecution failed. He lost, however, his public emplorments, but, retaining the king's favour, he still came frequently to coort, and was often consolted on affairs of importance. His last vovage to England was for the purpose of obtainng medical advice, but his disease, which was gout, proved mortal, and be oxpired on the 16 th of October 1679, in the fifty-muth year of his age. Lord Orery was the author of several works, chetly dramas and poems now forgotten Walpole remarks "tant be wever made a bad figure, but as a poct" As a solduer te was distngeushed by brs personal bravery and bis skill in handling troops; as a statesman be was upright anc manly, and has credit ever stood hyg for integrity, and for generous fidelity as a frocud.

BOYNE, a nuver of Ireland, which rising in the Beg of Allen, near Carbery in Kildare, and flomnge in a N.E. direc then, passes Trim, Navan, and Dregheda and enters the Insh Sea, about four miles below the last-mentioned town. It

its mouth. About a mile west of Drogheda, an obelisk, 150 feet in height, marks the spot where the forces of William III. gained the celebrated victory over those of James II., on lst July 1690, known as the "battle of the Boyne."

BOYSE, or Bois, John, ove of the translators of the Eoglish Bible, was born in Suffolk in 1560 . He was educated by his father, the rector of West Stowe, and at an early age exhibited great intellectual powers, being able to read IIcbrew when only tive years old. He completed his studies at Cambridge, particularly devoted himself to Greek, and for ten years was lecturer on that language in St John's College. At the age of thirty-six he married, and became rector of Boxworth, in Cambridgeshire. Ile was selected as one of the translators of the Bible, and is said to have completed not only his owo share, the Apocrypha, but that of another elergyman. He received a prebendal stall in Ely eathedral from Bishop Andrews in 1615, but had no other preferment. He died in 1643, leaving behind him au immense mass of MSS.

BOZRAH. There are, according to the more usual opinion, two places of this name mentioned is Scripture, one a city of Edom, and the other a city of Noab. About the ideatifieation of these citres there has been much discussion, some mantainng that the former occupied the site of the modera village of el-Buserrah. about 25 miles S.E. of the Dead Sea, and that the latter was the city afterward knowo to the Romans as Bostra and at present as Busrah; while others suppose that the various passages of the Seriptures all refer to one place, and nthers again that there are two places, but that petther of them is to be identified with Bostra. The first view seems to be freer from difficulties than the other two. Bozrah, or el-Buserah, is now a small village with a strong fortress on the top of a hill. It is the centre of a pastoral district, and its inhabitants, who number between 100 and 200 , are all shepherds. Bozral, Buzrah, or Bostra, on the other hand, is a very extensive collection of runs of various ages, situated about 80 miles S . of Damascus. The area within the walls is about a mile aod a quarter in length, and nearly a mile in breadth, while extensive suburbs lie without, to tho east, north, and west. The principal buildings that can otill be distinguished are a temple, an aqueduct, a large theatre (enclesed by a castle of much more recent workmanship), several baths, a triumphal and other arches, three mosques, and what are known as the church aod convent of the monk Bohera. In 105 A.D., the city was beautified and perlaps restored from run by Trajan, who mado it the capital of the proviuce of Arabia. In the reign of Alezander Severis it. was made a colony, and in 245 a native of the place, Philippus, ascended the imperial throne. By the time of Constautane it seems to have been Christianized, and not long after it was the see of an exteusive bishopric. It was one of the first cities of Syria that was subjected to the Mahometans, and it successfully resisted all the attempts of the Crusaders to wrest it from their hands. As late as the 14 th ceatury it was a populous city. (Sce Burckhardt's Travels, Robinson's Biblical Researches, Poiter's Damascus, Freshfield's Caucasus.)

BOZZARIS, Marcos, a Greek patriot, was boro io Suli towards the close of the 18 th century. With the remnant of the Suliotes he creased in 1803 to the Ionian islands, and in 1820, with some 800 of his countrymen, joined the sultan against Ali Pasha They soon, however, eame over to Ali's party, and fought grallantly against ther old chomies the Turks. After the death of Ali the Suliotes arried on the war with great success, and in 1822 were inined by a body of regular troops mader Prince Marrosurdet) At the battle of Putta the Greeks were betraved
and defeated with heary loss. Bozzaris fell back to Missolonghi, which he successfully defended until tb. arrival of a Hydriote fleet compelled the besiegers to retirc In the summer of 1823 he learned that a large Turkish force had again been despatched agaiust the town, and resolving to anticipate the attack, he set out secretly with 1200 men. On the 20th of August he came npon the encampment of the Turkish vanguard, and a night attack was crowned with success. F The victory of the Suliotes was saddened by the loss of Bozzaris, who fell while leading on his men. The assault on the Turkish camp has been made the subject of a very fine poem by Fitz-Greene Halleck.

BRA, a town of Italy in the province of Cuneo and district of Alba, on the River Stura, 25 miles N.E. of Cuneo. It bas three parish churches, a gymnasimm, a hospital, manufactures of silk and linea goods, and a considerable trade in corn, cattle, wine, and silk. Population, 12,946.

BRABANT, an extensive district in the Netherlands, which formerly constituted a separate duchy, but is now divided between Belgium and Holland. The Belgian portion iacludes the previnces of Brabast and Antwerp, while the whole of the Dutch portion is still koowo by ite ancient name. Godfrey the Bearded, count of Louvain, who lived in the beginning of the 12th ceutury, was the first to assume the title of count of Brabant, which his great-grandson, Henry I. the Warrior (1190-1235) exchanged for that of duke. The duchy passed in regular succession to IIenry II. the Magnanimous (1235-1248), and Henry III. the Debonuair (d. 1261); but on the death of the latter the natural heir was supplanted by his younger brother John I. the Victorious, who added the district of Limburg to his possessions by the battle of Woeringen in 1288 , ic which he killed his competitor Henry of Luxem. bourg with his own hand. The next duke, John Il., is memorable for the privileges he bestowed on his subjects by the statute of the Commou Weal and the charter of Cortemberg. His successor, Joha III. the Triumphant, had to contend against a rebellion of Brussels and Louvain, and an offensive alliance of his neighbours, but managed to make bimself not only secure but formidable. His three sons hiving died before him without issue, be was succeeded by his daughter, who had married Wenceslas of Lusembeurg. The count of Flanders Land claim to the duchy, and, after a coosiderable struggle, was ouly bought off by the surreader of Aotwerp. Io 1404 the whole of Brabant was handed over to the countess of Flanders, and ia 1406 ber son took the title of duke. On his death at the battle of Agincourt in which he fought on the side of the French, be was succeenled by John IV., whese marriage and divoree created much excitement in his day. In 1430, on the decease of Philip: second son of John IV., the duke of Bargundy, Philip thr Good, was also recognized as duke of Brabaut; and it 1440 the country passed to the house of Austria by thi marriage of Mary of Burgundy his graoddaughter to Maxı milian the emperor, whe 1 ransmitted it to Charles V. and thus to the crowh of Span. In 1648 tbe dorthern portion of the duchy succeeded in freeung itself from the Spanish tyranny, wile southera Brabant continued under the yoke till 17l4. Brabant possessed a liberal constitution known as tho Joyeuse Entrée, Blyde Inkomst, or Joyous Entrance, which, iater ala, prevented the duke from raising the clergy abeve the other states of the realm, from prosecuting his subjects except in the regnlar courts, and from appeinting forelgners to political oflice. A consens of the three states-the clergy, the nobles, and the repre sentatives of the chief eities-was necessary for the passin: of a lars: and the towns had the right of refusing assistan
in any military expedition with the object of which thoy had not been previously made acquainted. The states usually met every two years, and a permanent committee of the three orders held its session in Brussels. The Brabantine court, under the native dynasty, was famous for the encouragement which it afforded to learning and literature ; and more than one of the dukes have left proof of personal culture in the shape of songs. (See Dinaux, Trouvères Brabancons, Hainuyers, \&c., 1863.).

Brabant, North, the modera Dutch procince, has an area of 231 square miles, and in 1870 the population was $4,832,612$. The surface is fat and the soil alluvial. The priacipsl rivers are the Mass, the Aa, and the Dommel. The capital is's Hertogenbosch, a city of 24,395 inhabitants, and the other chief towns are Breda (14,721), Bergen-opZoom (8352), Helmond (5301), and Tilburg (5262).

Brabint, South, the modera Belgian province, has an area of 1262 square miles, and in 1870 the population was 879,814 . Its general features are much the same as those of the Dutch province, though the surface is rather more varied in its elevation. The principal rivers are the Senne, the Dyle, and the Demer. The capital is Brusscls with 177,954 inhabitanta ; and the other cities of importance are Louvain (32,976), Tirlemont (12,354), Niveiles (8800), Diest (7561), and Vilvorde (6844).

BracCiOLLNI, Francesco, an Italian poct, born at Pistoia, of a noble family, in 1566 . On his remevng to Florence he was admitted into the aeademy there, and devoted himbelf to literature. At Rome he entered the service of Cardinal Maffeo Barberini, with whom he afterwards went to France. After the death of Clement VilI. he returned to his own country; and when his patron Barberini was elected pope, under the aame of Urban VIIL., Bracciolini repaired to Rome, and was made sccretary to the Pope's brother, Cardinal Antonio. He bad also the honour conferred on him of taking a surname from the arms of the Barberini family, which were bees; whence lie was afterwarda known by the name of Bracciolini dell' Api. During Urban's pontificate the poet lived at Rome in considerable reputation, though at the same time be was censured for his sordid avarice. On the death of the pontiff he returned to Pistoia, where he died in 1645. There is scarcely any species of poetry, cpic, dramatic, pastoral, lyric, or burlesque, which Braceiolini did not attempt; but he is principally noted for his mock-heroic poem Lo Scherno degli Dei, published in 1618, similar but confessedly inferior to the contemporary work of Tassoni, Sccchia Rapita. Of his serious heroic poems the most celebrated is La Croce Racguistata.

bracciolini, Poggio. See Poggio.

BRACELET, or Armlet, a personal omament, made of different materials, according to the fashion of the age and the rank of the wearer. The word is the French bracclet, which Ménage derives from braceletum, a diminutive of bracile, all formed from the Latin brachium, the arm, on which it was usually worn. By the Romans it was called armilla, brachiale, occabus; and in the Middle Ages boga, Bauga, armispatha.
In the Bible there are three difierent words which the authorized version renders by "bracelct." These are-1. ins etzadah, which occurs in Num. xxxi. 50, 2 Sam. i. 10, and which being used with reference to men only, may be taken to be the armlet; 2. TMy tzamid, which is found in Gen. xxiv. 22, Num. axxi. 50 , Ezek. xvi. Il ;where these two words occur together (as in Num. xxsi. 50) the first is rendered by "chain," and the second by "bracelet;" 3. תni* sheroth, which occurs only in Isa. iii. 19. The first probably rueent armlets worn by men; the second, bracelets worn by women and sometimes by men; and the third, a peciliar bracelet of chain-woils
worn only by women. In 2 Sam. 1. 10, the first word denotes the royal ornament which the Amalekite tonk

Bracelets
from the arm of the dead Saul, and brought with the other regalia to David. There is little question that this was such a distinguighing band of jewelled metal as we still find worn as a mark of rojalty from the Tigris to the Ganges. The Egyptian kinge are represented with armlets, which were also worn by the Egyptian women. These, however, are not jerrelled, but of plain or enamelled metal, as was in all likelihood the case among the Hebrews. In modern times the nost celcbrated armlets are those which form part of the regalia of the Persian kings, and which formerly belonged to the Mongol emperors of India. These ornaments are of dazzling splecdour, and the jewels in them are of such large size and immeose ralue that the parr are reckoned to be worth a million of our money. The principal stonc of the right armlet is famous in the East under the name of the Deria-e-nur, or "Sea of light." It weighs 186 carats, and is considered the diamond of finest lustre in the world. The priocipal jewel of the left armlet, although of somewhat inferior size (146 earats) and value, is renowned as the Toye-mat, "Crown of the moon." The imperis] armlets, generally set wuth jowels, may also be observed in most of the portraita of the Indian emperors.

Bracelets have at all timea been much in use among barbaric nations, and the women frequently wear beveral on the same arm. The fincr kinds are of mother of pearl, fine gold, or silver; otbers of less value are made of plated steel, horn, brass, copper, beads, \&c. "
This species of personal ornsment was exceedingly common in Europe in prebistoric times. The bracelets of the Bronze Age were either of gold or bronze, silver being then unknown. In shape they were oval and penannular with expanding or trumpct-shaped ends, having an opening between them of about half an inch to enable them to be easily slipped over the wrist. Thosc of gold were generally plain, hammered rods, bent to the requisite shape, but those of bronze were often chased with elegant designa shoring n cultivated taste. Some forms of spiral armleta of bronze, peculiar to Germany and Seandinavia, covercd the whole fore-arm, and were doubticss intended as much for defence against a sword-stroke as for ornament. The Etruscan and early Roman forms of bronze bracelet were for the most part cylindrical, with overlapping ends, or spiral and serpent-shaped. These were also the common forms in the Iron Age of Northern Europe, while Eilver bracelets of great elegance, formed of plaited and intertwisted strands of silver wire, and plain penannular hoops, round or lozenge-shaped in section and tapering to the extremities, becarae common towards the close of the pagan period. The late Celtic period in Britain was characterized by serpent-shaped bracelets and massive armlets, with projecting ornaments of solid bronze and pertorations filled with enamel. In the Middle Ages bracelets were mucb less commonly used in Europe, but the custom has continued to prevail among Eastern mations to the present time, and many of the types that were common in Europe in prehistoric times are still worn in Central Asia. A treatise De Armillis I'terum, by Thomas Lartolinus, was publiahed at Amsterdam in 1676.

BRACHIOPODA

THE Braceiopoda constitute an impertant and welldefined class of Invertebrates, but the exact position the group should occupy in that division of the auimal kingdom is still a matter upon which anatomists have not entirely agreed. For many years the epecies composing the class were referred to the genus Anomia of the Lamellibranchiata, but, as was judiciously obeerved by Edward Forbes, "a close examination shows that there is no relationehip between them, but only a resemblance through formal analogy." Milne-Edwards separated the Mollusca into two great divisions, Mollusca and Molluscoida, and in the last he placed the Brachiopoda, Polyzoa, and I'unicata, an arrangement that has been followed by many naturalists. Although the greater number of zoologists have admitted the close connection existing between the Polyzoa and Brachiopoda, considerable doubt has been expressed with respect to the affinities and pesition of the latter in relation to the Tunicata; moreover, a streuuous effort has been made within the last few years by Steenstrup, Morse, Kowalevsky, A. Agassiz, and others, to demonstrate that the affinities of the Brachiopoda and Polyzoa are with the Worms, and that they should form classes of Annulosa, and be placed close to the Annelids.

According to Agassiz, the transition between such types as Pedicellina to Membranipora and other incrusting Polyzoa is readily explained from the embryology of Thecidium, and, in fact, all iucrusting Polyzoa are only communities of Brachiopods, the valves of which are continuous and soldered together, the flat valve forming a united floor, while the convex valve does not cover the ventral one, but leaves an opening more or less ornamented for the extension of the lophore. Both Gratiolet and Hancoek have expressed the opinion that the Tunicata are in no way related to the Brachiopoda, and that we canuot place these last and the Polyzoa along with the Tunicata in the same division. Gratiolet and some others have considered the Brachiopoda to be allied to the Crustacea, while even the asteridian affuities of the class have been binted at by King.

No doubt can be eutertained, after perusing the admirable memoirs by Morse and Kowalevsky on the embryology of Terebratula, Terebratulina, Argiope, and Thecidium, that the genera composing the class and Amphetrite possess many important features in common, but almost any Iavertebrate groups might be aunelidalized by overrating certain points in their affinities. Mi Dail thinks that the general conclusion with reference to the affinities of the Brachiopoda 'will be something like this. There is much reason for supposing that all the Molluscs and Mulluscoids came from the stock out of which the Worms have developed. Indeed, 'as IIuxley has said, they are unly isomerous Worms with many special modifications, It is natural, therefore, that the oldcst and lowest forms should retain many of the characteristics of the oldest and most simple Worms, especially those whieh have been modified by a tubular habit. But, ou the whole, the noclifications are so inportant that we may continue to cousider (if in the specializing tendeney of present study we can retain any general divisions of Invertebrates) that the Molluscoids and Molluses do form two groups somewhat aside from others, and somewhat more nearly related to each other thau to the divisions external to them. Therefore, although it may turn out that the Brachiopoda eonstitute a chass close to the Anmelids, it cannot bo deuied that they possess many mollusean characters that cannot be overlowed, and are, under any circumstances, entitled by their importance aud numerous
distinctive features to constitute a well-defined and separate class.

The name Brachiopod ($\beta \rho a x i \omega v$, an arm, $\pi=$ ús, $\pi 0 \delta o ́ s$, a foot) was proposed for the class by Cuvier in 1805 , and by Dumeril in 1809, and has since been very extensively adepted. Blainville in 1824 proposed as a substitute for the Cuvierian name that of Palliokranchiata (pallium, a mantle; branchice, gills), on account of the respiratory system being combined with the mantle on which the rascular ramifications are distributed. Prof. King has always adopted the latter name, and perhaps rightly objects to Cuvier's on the ground that it is a misnomer, for the two variously curved and cirrated brachial or labial appendages, improparly designated as arms or feet, were subsequently found not to subserve the function of locomotive organs.

Before describing the varioss parts of the animal and Two cirn. its shell, it may be as well to mention that it had bcen sions. many times suggested by Oweu, Bronn, Huxley, Gill, and others, that the class could be advantageously divided into two primary groups. Thus, for the first division, including Lingula, Discina, dic., the names Lyopomata (Owen, 1858),

Fios. 9-11-Tretentersta
Fia. 1.- Mialdhemia cranem. A. Fontral, A, dorsed vivo

Figs 3 ant 4 -Thery hum.

Fig 10.- Jhscand hamelosa Fig latal mpurndages.
and lab
Dleurupygia (Broun, 1862), Inarticulata (Huxley, IE60), I yolmata (Gill, 1871), have been made use of ; while for the second division, comprising T'crebratula, Nhyn chonella, se., the names Athropomata (Owen, 1855), Alygia (Bronn, 1862), Articulata (Huxley, 1869), Artbro.
pomsta (Gill, 1871) have been proposed. Prof. King, consutering these names to be objectionable, snd in some cases iusdmissible on ceriain greunds, in 1873 substituted the name Tretenterata for the first group, the intestine being prorided with an anal aperture, while the second group, to which he gives the name of Clistenterata, would embrace animals that are destitute of that organ; but it must also be remembered that the presence or absence of sn anal a perture has been ascertained in only three or four recent ginera, and that we are compelled, in a measure, to toke for granted that what we find to be the case in Lingula snd Terebratula is also so in the many extinct families aud genera of which the animal candot be exsmined.
With the character sbove enounced, we generally find structural modifications of the hiage and other differences in the animal, and especially so in what relates to the muscular systen. In the opinion of Prof. King the absence of an snal vent in the Clistenterata makes then inferior to the saiferous Tretenterates.
The animal of the Brachiopod is in all cases protected bo - shell composed of two distinct valves; these valves are always, except in cases of melformation, equal-sided, but nst equivalved. The valves are, consequeatly, essentially symmetrical, which is not the case with the Lamellibrancliata or Conchifers,-so much so, that certain Brachiopod shells received the name Lampades, or lamp shells, by some early naturalists ; but while such may besr a kind of resemblance to an antique Etruscan lamp, by far the larger namber in no way resemble one. The shell is likeriss cost beautiful in its eadless shspes and variations. In sume species it is thin, semi-transparent, and glassy, in others massive. Generally the shell is from a quarter of 3n inch to about four iaches in size, but in certain species it attains nearly a foot in breadth by something less in leagth, as is the case with Productus giganteus. The valves are slso in some species very unequal in their respective thickness, as may be scen in Productus Llangollinsis, Davidsonia Verneuilii, \&c., sud while the space Nlotted to the animal is very great in many species, as in ferebrutula sphcoroidalis, it is very small in ot hers belonging to Sirophumena, Leptena, Chonetes, \&c. The ventral valve is usually the thickest, and in some forms is sir or seren times as great as the opposite one. The outer surface of many of the species presents likewise the most exquisite sculpture, heightened by brilliant shades, or spots of greca, red, yellow, and bluish black Traces of the original Colorr have also been preserved in some of the fossil forms; radiating bands of a reddish tint have been ofteu secn in well-preserved examples of Terebratula hastata, T. saculus, T. communis, T. biplicata, and of several athers. Some specimens of T. carnea are of a beautiful pale pink colour when first removed from their matrix, and E. Deslongchamps has described the tint of several Jurassic species.

The valves have been distinguished by various aames, but those of doreal and ventral are in most general use. The ventral valve is usually the largest, and in many genera, such as Terebratula and' Rhynchonella, has a rominent beak, with a circular or otherwise shaped perforation or foramen at or near its estrenaity, partly completed by one or two plates, termed a deltidiura. Through the foramen passes a bundle of muscular fibres, termed a peduncle, by which the auimal is in many species attached to submarise objects during at least a portion of its existence. Other forms show no indication of ever having been attached, while some that had been moored by means of a peduncle during the early portion of their existeace have become detached at a more advanced stage of life, the opening becoming gradually cicatrized, as is so often seen in Strophomena rhomboidalis, Orthesina anomala, de Lastly, eome species have adbered to aubmarine
objects by a larger or smaller portion of their ventral ralre, as is the case with many forms of Crania, Thecidium, Davidsonia, dc. Some Cranias are slways attached by the whole surface of their lower or ventral valve, which models itself snd fills up all the projections or depressions existing either on the rock, shell, or coral to which it adhered. These irregularities sre likewise, at times, reproduced on the upper or dorssl valve. Some species of Strophalosia and Productus seem also to have been moored during life to the sandy or muddy bottoms on which they lived, by the means of tubular spines of grester or lesser leagth. The interior of the shell varies very much according to families and genera. On the inner surfice of both valves several well-defined muscular vasculsr and ovarian impreasions are observable; they form either indentations of greater or lesser size and depth, or occur as varioualy shaped projections. In the Trimerellida, for exampla some of the muscles are attached to a massive or vauted

Figs. 12-18.
Fia. 12-Waldheimia flavescens, loterior of veatral vive f, foramen; d delth. diom; t teeth; a. adductor Impresslons ($=$ occlosors, Hancoet): © dirateator
 ($=$ ecessory divaricators (muscles djucteurs accessoires Goatioled); b, ventrad adjastor $(=$ ventral peduncular moscles, or musples du pedoocule paire supen edre, Graisolet); 0^{\prime} peduncular musle.
Fig. 13 ,- Wradidimia fiarescent. Interior of dorsal valro. c, ci, cardinal procest.

Fio. 15-Terebratuda citrea. lateitor of dofsal vaire b, loop; b, hinge-plate: a cardinal process
F10. 16. LDop of Tretratuaina capur metzontus.
Fig. 1i.-Lougtudiaal sectivn of Trieturelfa dorsata. areforeaces as ls. He 14) Fio. 13.-Longitudinal section of Jugas purtitu.
platform situated in the medio-longtudinal region of the posterior half or umbonal portion of both valves. In addition to these, there exists in the interior of the dorsal valve of some genern a variously modificd, thin, calcified, ribbon-shaped lamina or skeleton for the support of the labial or brachial appendages; and so varied, yet constant in shape to certain species is this laminal apophysis, that it has served as one of the chicf characters in the creation
of wotis recent and extinct genera. The apophysis is more or less developed in some genera than in others. In cettain forms, as in Terebratula and Terebratulina, it is short and simple, and attached to a small divided hingeplate, the two riband-shaped lamina being bent upwards in the middle (fig. 15). The cardinal process is prominent, and on each side of the binge-plate are situated the dental sockets; the loop in Terebratulina becomes anvular in the adnlt by the union of the oral processes or crura (ing. 16). In Waldheimia it is elongated and reflected; the hingeplate large, with four depressions, under which originates a mesial septum, which extends more or less into the interior of the shelI (figs. 13 and 14). In Terebratella the loop is attached to the hinge-plate and to the septrom (fig. 17). In Megerlia it is three times attached, first to the hingeplate, and then to the septum by processes from the diverging and reflected positions of the loop. In Magas the apophysary sygtem is composed of an elevated longitudinal septum reaching from one valve to the other, to which are affixed troo pairs of calcarcous lamellæ, the lower ones riband-shaped; attached first to the hinge-plate, they afterwards procced by a gentle curve near to the anterior portion of the septum, to the sides of which they are affixed, the second pair originate on both sides of the upper edge of the septum, extending in the form of two triangular anchorshaped lamelle (fig. 18). In Bouchardia the septum only is furnished with two short anchor-shaped lamellæ. Many more modifications are observable in different groups of which the great family Terebratulide is composed, and which will be found fully described in Davidson's and other authors' works on the Brachiopoda In Thecidium (figs. 3,4) the interior of the dorsal valve is variously furrowed to rcceive a testaceons ridge folded in two or more lobes. In the family Spiriferidee there are two conical spires directed outwards, and nearly filling the cavity of the shell (fig. 5) ; while io Atrypa the broad spirally coiled lamellre are vertical, and directed towards the centre of the valve. In tho Rhynchonelicdee there are two short slender curved laminx, while in many genera and even families, such as the Productide, Strophomenide, Lingulidx, Discinidee, \&c., there exists no calcificd support for the labial appendages. The ventral valve in many of the genera is provided with two curved hinge-teeth, which fit into corresponding sockets in the opposite valve, so that the valves cannot be separated without breaking one of the teeth. Nearly all the genera composing the division Clistenterata have their valves articulated, while those forming the Tretenterata have theirs kept in position by the means of muscles especially adapted to that purpose; but in one of the most natural groups, riz., that of the Productidx, we find gencra presenting both conditions.

The intimate structure of the shell has been minutely investigated by Dr Carpenter, Prof. King, Dr Gratiolet, and several others, and been found to be distinct from that of the Lamellibranchiata and Gasteropoda. Dr Carpenter informs us that there 15 not in the shellof the Brachiopoda that distinction between outer and inner layers, either in structure or mode of growth, which prevails anong the ordinary bivalves; that it scems obrious, both from the rature of the shell substance and from the mode in which it is extended, that the whole thickness of the Brachiojnd shell corresponds with the outer layer only of the Lamellibranchiata ; and that he has occasionally met with a second layer in recent Terebratale, within the earlier portion of the shell, but confincd to only a part of tho surface instead of cxtending beyond it. In some familics anmosing the Clistenterata it consists, according to Prof. King, of three divisions, the inncrmost and middle ones, which constitute the entire thickness of the valve, being calcareous with a prismatic or fibrous simeture, while the
oute divisions would consist of a very thin membrane. The innermost and intermediate divisions are in some families traversed by minute tubular canals, which pass from one surface to the other, for the most part in a vertical direction, and at tolerably regular intervals, but just before terminating near the outer surface of the epidermis their oritices suddenly become dilated, the lower half of the canals being often considerably smaller in diameter than the upper half. The canals are occupied by cecal processes proceeding from the mantle or the fleshy covering of the animal. Their function is, according to Dr Carpenter, branchial or subservient to respiration; but if there exists an outer epidermis, as described by King, which covers their expanded terminations, there would be no communication between the surrounding sea water and the mantle. It the Rhynchonellides and in some other families the shel! structure would, according to Dr Carpenter, consist of flattened prisms of considerable length, arranged parallel to each other with great regularity, and obliquely to the surface of the shelt, the interior of which is imbricated by their outcrop. In certain genera, such as Lingula and Discina, no canals traverse the shell from the inner to the outer surface. The shell structure, according to Dr Gratiolet, would consist of two distinct elements, that $1 s$ to say, a corneous or horny animal substance, and a testaceous one ; these occur in alternate layers of unequal thickness. ©. The testaceous layers recall the structure observable in the Terebratulida, being traversed by pumerous canals of extrene or microscopic minuteness. As Mr Woodward observes in his excellent manual of the Mollusca, Prof. Huxley has suggested that the ceeca are analogous to the vascular processes by which in many Ascidians the tune adheres to the test, the extent of which adhesion varies in closely allicd genera. It seems, however, strange that these tubular perforations sbould not have been essential to the species of every family composing the class if they are really subservient to respiration. The subject will therefore demand further consideration.

The anat omy of the Brachiopoda has been the subject of Sur $1 \cdots$ elaborate investigations by Cuvier, Vogt, Iluxley, Hancock, of the Gratiolet, Woodward, Deslongchamps, King, and others, ammat while of Iate years much light has been likewise thrown on the embryology and early stages of the groups by Steenstrup, Lacaze-Duthers, Morse, F Müller, Oscar Schmidt, M"Crady, liomalessty, and others. Some differencos in opinion, it is true, have been and still are entertaned with respect to the eact function to be at: ; buted to certain parts of the anima!, but on all csse:t:al questions there is a preity gencral agreement.

According to Morse the Brachiopada are repormbed hy eggs, generally Lidney-shaped and irregular, whicit are discharged from the anterior margin of the shell, and drop just beyond the pallial membrave, hausing in clustors from the setw. Some uncertanty has prevailed as to whether there is a male and fcmale individual. Lacaze. Duthiers and Morse state that the sexes are separate, and describe them as such in Thecidium and Jerebratalina, and the French zoologist goes so far as to suggest that a diriercuce is even ohservable in the shell, but tho statencmt requires verification. Prof. Morse describes the emberyo of Teretratulana with great minuteness during its six staree of development. It $1 s$ divided into two, three, or four lobes clcthed with vibratile cilia, and before beconams attached swims or whirls head foremost by means of vimatile cila rhich cover the body. The same distinguished American zoologist describes with equal care the formation of the shell from its first stage of development to the adult condition. . Lacaze-Duthiers alludes to tro $\mathbf{a n}^{1}$. four cye sputs in the embryo of Thscidium, and states thar. tise ammal appears to be in some meanme sensible to lige:.

The moutn conducts by a narrox cesophagus to a sunple stomach which is surrounded by i large graculated liver. Owen's "hearts" have been found to be ounducts, while the true heart consists of a pyrnform vesicle appended to the dorsal suriace of the stomach. The digestive organs and viscera, as well as the muscles, which take up only a small place in the neighbourhood of the eak, are separated from the great anterior cavity, and protected by a strong membrane in the centre of which the month situsted. The nervous fystem consists of a principal ganglion of no great size.

- Both valves are lined by a delicate membrane termed the pallium or mantle; it secretes the shell, and is generally fringed with horny bristles or setæ. It is composed of an outer and inner layer, between wh ch are situated the blood channels or lacunes; in fact, all he internal parts of the shell are lined by the inner layer of the mantle, wift the exception of the spots where the muscles attach themselves to the shell. The outer layer liues closely the inner surface of the valves to which it adb:res, and in those speeres in which the shell is traversed i, y cauals there exist, on the surface of the mantle facing the inner surface of the valves, corresponding short eylin rical membranous projections or lacunes, which inse \& themselves into the small tubular orifices that traverse the thell. The cexcal prolongations do not exist in those genera, such as Rhynchonella, where the shell is deprived f iupular perforations. The inner layer is rather thicker than the opposite one, and is covered with vibratile cilia. As stated by Nicholson and other anatomists, the blood ehannels form a remarkable aystem of more or less branched tubes, anastomosing wath one another, and ending in the cæcal extremittes. This, which has been termed by IIuxley the arterial system, communicates with the perivisceral cavity b_{i} means of two or four organs, which are called pseudo-hearts, and which wero at one time supposed to be true hearts. Each pseudoheart is divided into a narrow, elongated external portion (the so-called "ventricle"), which communacates, as Hancock has proved, by a small apicial aperture with the pallial cavity; and a broad, funnel-st aped eo-called "auricle," communicating on the one hand by a ce istricted neck with the so-called "ventricle," and on the otl er by a wide petent mouth with a chamber which occupios most of the cavity of the body proper, and sends more o'r less branched diverticula into the pallial lubes (Huxley). The channels vary in their dispositions and details in different genera, and as they project to some small extent, leave corresponding indentations on the inner surface of the shell, so that ther shape and directions can very often be traced on fussil and extinet genera as well as if the animal was still in life; this may be seen in the numerous illustrations appended to Davidson's and other authors' works treating of fossil Brachiopoda. There aro usually four principal arterial trunks in each lobe of tho rrantle; the tworceutral oues run direct to the front, near to which they bifurcate, while the outer ones give off at intervals on the side facing the lateral margin of the valves a series of branches which bifurcate several times. It has been observal by Hencock that the inner lamina of the mantle, and mere particularly that portion of it fcrming the floor of the great pallisl einuses, will undoubtedly assist in purifying the blood. In 1854, in his review of Davidson's great work on British fossil Brachiopoda, Oscar Schmidt called attention to an important auatomical omission, namely, the existence of a rast number of microscopic, flattened, calcareous, denticulated plates or spicule on certain parts of the surface of the mantle, and destined, no doubt, to stiffen and protect the portions that contain them; and it was, moreover, observed by Hancock, and afterwards by Deslongehamps, that these calcareous plates are not to be found equally distributed over all the surface of the
mande, but only in those purtions in connection with the great lacunes or veins, the labial appendages, and the peravisceral cavity. These spicula do nut appear to be present in evcry species, and are tutally absent in Lingula, Rhynchonella, and others. Deslongehamps observes that If we examine the genera Kraussina, T'rebratula, Terebratulina, Megerlia, and Platylia, we have a series wherein the number and consistence of the calcareous portions increase in a very raud manacr, and that the spucules lie over each other several times, leading the observers by insen. sible degrees to Theculium, iu which the spicule are soldered together, and incrust the mautle to such an. extent that it is no longer distinct from the shell itself.

The brachial appendages are a pair of singular organs eminently charac teristic of the Braehiopoda, they often are more correctly termed labial appendages on account of each mem. ber being a prolongation of the lateral portion of the lips or margin of the mouth. The Lamel. libranchs or Conchifera have aualogous appendages,

Fix. 19. but very much less developed. They assume different shapes in different genera, and are supported, or otherwise, by the more or less complicated skeleton already described. The labial appendages, whatever may be the shape and convolutions
they may assume, fill the larger portion of tho cavity of the shell in front of the visceral chamber; they aro furmed of a mem. branous tube, friaged on one sido with long flexible eirri, and occupy almost the whole of the pallial cavity, but were not capable of betag protruded in those families in which they were foldod back upon themselves and supported by a calcareous skeleton, as in Waldheimia, Tereiratella, Megerlia, \&c. Barrett, who

Fig. 20.
Faldheimia fawicens. Longltudinat section with a portion of the anlrual d h. brachial appendages: a, adductor: $\mu c, c$, divarlcator muscles, s, septum. peduncular muscles have beon purpusely omitted. has examined the animal of Terebratulina caput serpentes in life, states that it showed more of itself than Wald. heimia cranium, which might be supposed from the labiai appendages being in the first very slightly supported by a small loop. Barrett obscried, likewise, that it protrud a its cirri further, that the cirri on the reflected part of tho brachial appendage are shorter thanon the first part and wero
almost constantly in motion, and often seen to convey small particles to the channel at their base, and that the ciz. are bent up when the brachial appendages are retracted, but are generally uncoiled and straightened when the shell is opened, before which the animal has often been obscrved to protrude e few of its cirri; and move them about to ascertain if any danger threatened. In Rhynchonella, where the elongated spiral labial appendages are slightly supported only at their origin by two short calcareous processes, they can at the will of the animal, aceording to O wen and Morse, be unrollod zad protruded to some distance beyond the margins of the valves, and when forcibly stretehed out they are said to be more than four times the length of theshell, and tosupport some 3000 cirri. We may mention, likewise, that Otto Frederick Nüller, baving dredged from the Lake of Droe-

Fig. 21. Cack, in Norway, a Rhycthonelta psittacea. Interlor of doraal rave.
 (probably belonging to appendaze extended or unrouled.
Rhynchonella psittacea), and placed them in a glass of drater, bo observed that they gracefully extended their spisally coiled brachial appendages. It must, however, remain for ever uneertain whether, in the extinct genera Spirifera, Atrypa, and others, in which the spirally coiled fleshy labial appendages were supparted throughout their entire length by a calcified skeleton, the animal could protrude them beyond the margin of the valses. In some families-Rhynchonellida, Productidu, and others-these organis are spiral and separate; in many the separation is only at their extremities. There can be very little doubt that these elegant organs, provided as thes are with eirri and cilia, are not only instrumental in eonveying mieroscopic organisms to the mouth, which, as seen in fig. 19, is situated between the appendages at their origin, but are likewise subservient to the functions of respiration. 'Hancock observes that to prove that the brachial organs subserve the function of gills, as well as that of sustentation, it is only neçessary to refer to the manner in which the blood circles round the labial appendages and is carried to the cirri, but more particularly to its cireulating through these latter organs, and returning direet from them to the heart.

As the number and position of the museles differ materially in the two great divisions into which the Brachiopoda bave been grouped, and to some extent also in the different genera of which each division is cormposed, it may be desirable to treat this subject under two separate healls. Unfortunately almost erery anatomist who has written on the muscles of the Brachiopoda las proposed different names for each innsele, and the confusion thence arising is much to be regrested. In the Clistenterata, of which the genus Terebratula may lie taken as an example, five or six pairs of muscles are stated ly Hancock, Gratiolet, and others, to be connected with the opening and closing of the valves, or with their attachment to or movements upon the pedinscle. First of all, the adductors or ucclusors consist of two muscles, which, bifureating near the centre of the shell cavity, produce a large quadrupde impression on the internal surfite of the sumall valve (fig. 13, a, a^{\prime}), and a single divided une towards the centre of the large or ventral valve (fig. 12, a). The function of this pair of muscles is tho closing of the valves. Gratiolet, who has likewise described with great minuteness the museles of the Drachinginde, informs us that those which closo and open
the yalves were the only ones known to Pallas; but that be defined their position and funetiona clearly. The same was done-by Blainville and Quenstedt, but the absence of good figares caused much uncertainty to prevail.. This

Faldheimia farescens. Dlagtam showing the muscular system (afief Fancock) M. ventral, N, doreal valre; h_{1} loop: V, mouth; 2 , extremits of intebtine; a M. ventral, N, dorsal valve;, lcop; V, mouth; 2 , extremity of intebtine; q
adductor; c divaricators; c, accessory divaricators; b, ventral adjustors; b adductor; c, divaricators: c, accessory divaricators:
peduncular muscles; $b^{\prime \prime}$, dorsal adjustors; P. peduncle.
deficiency was subsequently supplied by Hancock and Gratiolet's admirable illustrations, Two other pairs have been termed divaricators by Hancock, or cardinal muscles (" museles diducteurs" of Gratiolet), and bave for function the opening of the valves. The divaricators proper are stated by Hancock to arise from the ventral valve, one on each side, a little in advanec of and close to the adductors, and after rapidly diminisbing in size become attached to the cardinal process, a space or prominence between the sockets in the dorsal valve. The accessory divaricators are, according to the same authority, a pair of small muscles which bave their ends attached to the ventral valve, one on each side of the median line, a little behind the united basis of the adductors, and again to the extreme point of the cardinal process. Two pairs of museles, apparently connected with the peduncle and its limited movements, have been minutely deseribed by Hancock as having one of their extremities attsched to this organ. The dorsal adjustors are fixed to the ventral surface of the peduncle, and are again inserted into the hinge-plate in the smaller salve. The ventral adjustors are considered to pass from the iuner extremity of the peduncle, and to become attached by one pair of their extremities to the ventral valve, one on each side of and a little behind the expanded base of the divaricators. The function of these muscles, according to the same sutbority, is not only that of erecting the shell, they serve also to attach the peduncle to the shell, and thus effect the steadying of it upon the peduncle. Gratiolet describes the peduncle with great care and states it to he composed of two portions-lst, of a horny sbeath formed of concentric cpidermic layers, very analogous to that which Vogt has deseribed in Lingula; and 2d, a fibrous stem enveloped by the sheath. This stem, composed of tendinous fibres, is fixed by its free extremity to diferent submarine objects; the other extremity passes through the foramen, and is ended by a bulbous projection.
Such is the general arrangement of the shell mriscles in the division composing the articulated Brachiopoda, making allowance for certain unimportaut noodifications observable in the animals composing the different familics and genera thercof. Owing to the strong and tight interlocking of the valves by the means of cursed teeth and sockets, many species of Brachiopoda could open their valves but slightty In some species, such as Thecidium, the animal could raise its dorsal valve at right angles to the plane of the ventral one (fig. 4).

In the Tretenterata, of which Lingulu and Disrina mas
be quoted as examples, the myology is much more complicated, and anatomists have differed considerably in their respective views edncerning the function of some of the muscles. They have been carefully described by Owen, Vogt, Hancock, Gratiolet Woodward, and others, and more

Figs 23.24.
Lingula arotina 23, Inteitor of ventral valve: 24 interior of doisal valre (after \boldsymbol{K} ing). g, umbonal muscobar impreasions (open ralves); h, central touscles (close valves); i, tronsinedial or sliding muscles: o, parietal bend: $\%$. 4. lateral muscles (j, sonteriors; k, middles: l. outalders), enabligg the valves co move forward and backward on each otber
-
recently by King, whnse views seem to carry with them a greater degree of plausibility Of the shell or valvular muscles he makes out five parrs and an odd one, and Individualizes their respective functions as fol-lows:-Three pars ze lateral, having their members limited to the sides of the shell, one parr are transmedians, each mem. ber passing across the middle of the reverse side of the skell, while the odd muscle occupies the urabonal cavity. The cen. tral and umbonal muscles effect the direct opening and closing of the shell, the laterals enable the valves to move forward and backward on each other, and the transmedians allow the sumilar extremities (the rostral) of the valves to turn from oach oller to the right or the left on an axis eubcentrically situated, that 18 , the medio-trans. verse reglon of the dorsal valve. It was long a matser in discussion whether the animal could displace its valves sideways when about to open its shell, but this has been actually observed by Professors Semper and Morse, who

Fig. 25.
Lingula anatina. Dlagram bhowink the thus. cularsysiem (a/ter Hamrock, Tlue letteis Indicate the muscies as in higs 23 and 24 A, dorsal, B, ventral valve; p, peduncle; a heat: a, nimentory tube: t. anal saw the animal perform the operation. They mention that it is never done suddenly or by jerks, as the valves are at
first always pushed to one side several times and back agano on each other, at the same time opening gradually in the transverse direction till they rest ouposite to one another and widely apart. Those who have not seeh the anmal in life, or who did not believe ṭa the possibility of the valves crossing each other with a slight obtiquity, would not conseut to approprating any of its muscles to that purpose, and consequently attributed to all the lateral muscles the simple function of keeping the valves in an upposite position, or holding them adjusted We have not only the observatious of Semper and Morse, but the anatomical investigations of King, to contirm the sliding action or lateral divarication of the valves of Lingula.

In the Clistenterata, where no such sliding action of the valves was necessary or possible, no muscles for sulh ao object were required, consequently none took rise from the lateral portions of the calves as in Lingula, but in an extunct group, the Trimerellida, which seem to be some what intermediate in character between the Tretenterata and Clistenterata, bave been found certain scars, which appear to have been produced by rudimentary lateral muscles, but it is doubtful (considering the shells are furmished with teeth, though but rudely developed), whether such muscles enabled the valves, as in Lingula, to move forward and backward upon each other We do not yet possess any reliable observations as to the manner in which Dhserna opens its valves, but Mr Barrett, who observed Cranta in life, informs us that the valse opens by moring upon the straight binge, without sliding the valve. There are muscles connected with other portions of the anmal in both groups, such is the paretal muscles, strongly defined 10 the Tretenterata, and distinctive ficenliarities of the peduncle, but the hmited space at our disposal will not admit of entering upon further anatomical details.

The Brachiopoda all inhabit the sea, and are supposed to have attaned therr full growth 111 a single season A vast amount of important and accurate information bas been collected during the past tea jears with respect to the geographical distrabution of reccut species, as well as to the marine depths they tahabit or prefer This important knowledge 18 manly due to the numerous well condu+ed and equipped dredgung expeditions carried on by private individuals and by the Governments of the leading maritime states. It would not be Irossible to give here the names of all those naturalists who have contributed to this porton of our information, but we cannot pass over those of Edward Forbes, J G; Jeffreys, W B. Carpenter, w H. Dall, W Thonson, E Suess, A Adans, H. Cuming, \&e. Yrevous to these investigations the data we possessed with respect to the habitat and ranges of depth were in most cases rague and unsatisfactory. It bas been ascertained that the Brachiopoda are much localized, and usually occur in great numbers in their farourite haunts. Jeffreys does nut beheve that the habitat of any Invertebrate animal is affected by bathymetrical conditions, and that the same species will occer at various deptbs. We can say nothing certan with respect to the ranges of depth at which the extinct species lived, but some idea as to their probable defths can be surinised from a study of the recent species As far as our present information will carry us the Tretenterata do not appeat to have been found at a greater depth than 1360 to 2000 fathoms. . . Lingida abounds in particular haunts at about half the tide-mark, and partly buried in mud, or at depths parying from three or four inches from the surface of the sea to sceventeen fathoms. Prof. Morse describes a species which he found in wast numbers in a sand shoal at low water; the peduncle, six times the length of the shell, was partly encased in a eand tube (fig. 9). He observed likewise that this species (Lingaly pyramidata) bad the power of moring over the
saod by the sliding motion of the two values, using at the same time the fringes of setw, whach sumg promptly back and forth like a galley of oars, leaving a peculiar tract in the sand. "In the metion of the setre he noticed the impulse eommencing from behind and ruming forward. Discina bas been found attached to stones at low water mark, and dredged from depths ranging from 5 to nearly 2000 fathoms. They are very often clustered together in vast numbers, each adheriog by its peduncle to the surface of the shell of its neighbour, one above the other, till they form a living mass of coesiderable breadic and thickness. Crania is found in great numbers adherng to stones and shells at depths of from 18 to 530 fathoms. The genera and species of the Clistenterata live at depths ranging from about half tide mark to that of $2 G 00$ fathoms. Terebratulina caput serpentis was found by the late R. T. Loweliviry attached to rocks at low water mark on a part of the Scottish coast, where the tido falls only a few feet, hut the same speeies has been dredged alive from depths varying from 3 to upwards of 150 fathoms. Prof. Jukes got immense numbers of specimens of Waldheimat flavescens or Australis while boating in Australia ampng the reefs. They were merely washed by the tide, and he gathered them with his hand like limpets on the shore. M. Velain pieked up a small speeies of Kraussina in vast numbers on the shore in the interior crater of the island of St Paul, the shell being alternately covered with water and left dry at every tide. Kraussina rubra, from the coast of Natal in South Africa, was described by Dr Gray as having been found attached in great numbers to aseidia and stems of sea-weeds, and Mr Jeffreys had also previously noticed a small European species similarly fixed to sea-weeds. Io general, however, it may be said that the larger number of species inhabit depths varying from 5 to 300 or 400 fathoms. Several species live attached to coral reefs. Waldheimia cranium bas been obtained from depths varying from 160 to 228 fathom:s. Barrett and Jeffreys state that Terebratulina caput serpent is manifested a remarkable power and disposition to move on its peduncle, and that it was incessantly opening and folding its brachial appendages, and drawing in and sacking in, by means of the whirlpool thus caused, every animalcula within its influence.
lt is now necessary to say a few words with reference to the classification of the Brachiopoda, and in drawing up any scheme of arrangement due regard must be paid to the extinet forms, which rastly outnumber those of the present seas. The first epecies belonging to the class were imperfectly and quaintly described as well as figured by Fabio Columna as far back as 1606. Since then so many palæontologists have contributed to the clucidation of the fossil speeics that it would not be possible to give all their names ; we must not, however, omit to securd thuse of Linneras, Defrance, Von Buch, Alcile Dơrbigny, De Blainville, Sowerty, Barrande, Do Vernenil, Deshonechamps (father and son), De Koninck, E. Suess, W. Kiner, I' M Coy, J. Hall, Billings, Dilman, Dall, Fischer, Pander, C. Moore, Eichwald, Kutorga, Keyserling, Sandberger, Sequenza, Salter, Morris, Meek, and Davidison.

Various schemes of elassilication have heen proposed, but none as yet ean be said to le more than provisiomally satisfactory, beeanse before one can classify it is necessary to understand all the characters of the species one lias sto-arange in their more or less natural groups, and wo are not yet in possession of all that necusary information.

In 1853 Davidson dirided the Brachiopeda into eight families, comprising twenty-fourgenera and ahout as many anth-genera, hot during the years that have elapsed from that to the present time, about seventy more genera and
sub-genera have been described, so that as many as one hundred and twenty-three so-temed genera bare ninw to be classed iuto their respective families, a task which has not yct becn satisfactorily accomplished. It 18 , however, rery probable that the number above given has been exaggerated, and that when our koowledge has nereased, some of thern will have to be placed among the synonyms.

It will be necessary in every scheme of elassification to admit the two great divisions Tretenterata and Clistenterata.

The Tretenterata would comprise the famihes Longulida, Dascinider, Craniade, Tramerellidue, and perhaps one or two others.

The Clistenterata would include the families Terebratulida', Thecudeder, Spirijeride, Fhyachonellida, Pentameridue, Sirophomeridu, Orthida, Productidue, and perhaps two or three others that will have to be characterized. Ey far the larger number of deseribed genera and specics would find their place in this last great division and the above-named families. We will now very briefly notuce some of the characters of the families above indicated.

Tretenterata-Family 1. Lingulidu.-Shells generally either oblong or circular, with a peduncle, sometimes of considerable length, passing out between the valves or through a narrow channel in the hinge margin; texture horny; no calcified supports for the labial appendages; tho fleshy spural coils directed upwards. This family would comprise the following genera: Lingula, Lingulella, Lirgulops, Lingulepns, Glotlidia, Monobolina, Obolus, Obolella, Dignomea, Schmiltea, Acritis, J'olborthia, \&e. Lingulella is one of the oldest known types of animal life, while Lingula appeared for the first time about the middle of the Cambrian period, aud has continued to be represented up to the present time.
Family 2. Discinide. -Shells more or less circular or oval shaped, attached by a pedunclo passing through a foramen in the ventral valve; shell calcareous or horny; scte extremely long, barbed with cilia of great leagth; labial appendages tleshy, curved backwards, with smal! terminal spire directed dowuwards as in Crania (fig. 11). Genera - Discina, Trematis, Discinisca, Fuboraina (i), Acrotrata (3), Siphonotrata (1). Diseina arpeared about the middle of the Cambrian period, and has continucd to exist up to the present time.

Family 3. Craniada.-Shells orbicular or limpet-like, entirely free or altachod by a greater or lesscrextent of tho under surface of their ventral valve; labial appendages spirally coiled, directed towards the bottom of the dorsal ralve (fig. 1l); sbell calcareous, perforated by mioute canals. Genera-Crania, Craniops, Craniscus, Pholidops. The genus Crania appeared for the first time during the Silurian peried, and has continucd to be represented up to the present time.

Family 4. Trimerellide.-Shells transversely or longitudinally oval; ventral valves usually the largest and flattest, with a more or less develonell beak and area; ventral valves geuerally the most convex; linge rudely or faintly dentary; all the genera are provided with a solid or vaulted mascular platform in the interior of both valves; no calcargous support for the labial apmendages; shell ealcarcous, and in two of the genera very massive. All the forus are extinct. Genera-Trimerella, Monomerello, Dinobolus. The species of this family are restricted to the Silurian period.

Clistenterata-Fauily 5. Terehratulide.-Shells very variable in slape, with a prominont heak, truncated by a circular perforation, partly completed by a deltidium in ono or two pieces; lakial appendages united to each other by a membrano, variously folded upen themselves, and in some genera spiral at their extremities. These appendages are entirely or partially simported ly a calcided process,
arisumug great variety of shape (figs. 1, 12 to 20 , and 22). a!] the species lived attached to submanine bodies by the atans of a peduncle. Shell structure punctated. Genera - Terebratula, Terebratulina, Terebratella, Walahemna, Megerlia, Kraussina, Kingıa, Terebrirostra. Magas, Mannia, Boucharelia, Platidia, Argrope, Cistella, Reusselarıa, Zellania. Guynia, Macandrevia, Diclasma, Megantheris, Soringocephalus, Tropidolcpis (1). Terebratula appeared at the conclusion of the Silurian period, and continues to be represented up to the present time, but the larger number of genera have had a rery limited distribution in time.

Family 6. Thecidadar.-Shells small, thick, varied in ahape, attached by a larger or smaller portion of the shell substance of their ventral valve; area flat; deltidium indistinct; valves articulated; loop in the dorsal valve folded into tro or more lobes lying in hollows of corre sponding shape excavated in the substance of the valve (figs. 3, 4). This loop, or apophysary ridge, supports the brachial membrane, whose thickened cirrated margin is apparently attached to the inner sides of the grooves, shell structure punctated. Only one genus, Thecidium. It ap:peared in. the Trias, and has continued to bo represented up to the present time.

Family 7. Spiriferidar.-Shells variable in shape, ovate, elcngated or transverse trilobed, with the hinge-line at times straight aud extended into wingshaped expansions; valves articulated, with or without a flattened area in ventral valve; animal free or attached during at. least a portion of its existence by the means of a peduncle, or by muscular fibres issuing from an angular or circular foramen in the beak or area of the ventral valve; dorsal ralve internally furnished with two calcarcous spiral processes, connected in different manners, and directed ontrards towards the sides of the shell (fig. 5). These processes afforded support to the brachial appendages. This family composes the following impunctate or punctate genera: Spirifera, Cyrtia, Spiriferina, Cyrtina, Martenia, Athyrts, Merista, Meristina, Retzia, Nucleospira, Trematospira, Rhynchospira, Meristella, Zygospira. Cociospira, Rhynchotrenvi, Uncites, Ambocolia, Charionelia, Syringothyris, Eumetria, Suessia, Vetulina (i). The first species belong lug to this family made its appearance duriug the Silurian period, and the family became entirely extinct in the Iuferior Oolite.

Family 8. Rhynchonellidee.-Valves articulated, very variable in shape, more or less trigonal, often trilobed or ovate, amooth or plicated (ig. 2); formen beneath a usually produced and pointed beak, completed by a deltidium at times concealed.; brachial appendaces ficshy and spirally rolled, flexible, and supported only at their origin by a pair of short-eurred-shelly processes, or thruughout by two broad spirallycoiled lamella (these spres are vertical, closely appreased, and directed towards the centre of the valve); sheli structure fibrous and impunctate. This family composes the following genera: Rhynchonella, Atrypa, Eatonia, Leptncalia, Brachymerus, Anastrophia, Leiorhynchus, Camarophoria, Rhynchopora, Khynchonellina, and one or two others.' The first speeies appeared during the Silurian period, and representatives of the family havo continued to the present time.

Family 9. Pentamerido. - Shells ovate, somewhat pentagonal; valves articulatcd, without hinge-area; foramen angular; no deltidium; inside of sentral valve iso contiguous vertical septa of greater or lesser length, which eoalesce iuto one median plate, and then diverge to form the destal plates, enclosing a triangular trough-like chamber. In the interior of dorsal valve are two longitudinal septa of rariable dimensions, to which the socket walls sinverge and whob they join, forming tro more or less decinued and inclined plates, to the produced extremities of
which were no doubt affixed the fleshy apiral labial appendages. Shell structure impunetate. Genera-Pentamerus, Pentamerella, and perhaps one or two others. The speeses of this family are limited to the Siluran, Devonan, and. Carboniferous periods.

Family 10. Strophomenidae (figs. 6, 7). -Shells semicricular, transverse, or elongated; valres usually concare. convex, regularly arched, geniculated or depressed, so tbat the valve which is convex in some speces is concaro 10 others, and vice versa; hinge-line long, straight; area in ventral valve tlat, with a fissure partly arehed over by a pseudodeltidium, while the extremity of the beak is either entre. or perforated by a small circular foramen. In the dorsal valve the projecting bifid cardinal process fills up almost the entire cavity of the fissure tha: may not have been arched orer by the pseudo-deltidium of the opposite valve. Valves sometimes uniformly convex, the dorsal one sometimes depressed with an arca divided by a triangular foramen. In the interior of the dorsal valve a small, simple, projecting cardinal process is situated between prominent socket walls, to the inner extremities of which were (probably) attached the brachial appendagea. Genera -Strophomena, Streptorhynchus, Strophodonta, Leptoena, Orthis, Orthesina, Skenidıum, Brachyprion, Discolosa, Meekella, Daudsonia (1), and several others. The first species appeared during the Silurian period, and the last in the upper Lias. It may, however, be necessary to group the genera provisionally placed in the Strophomenida into one or two families or sub-families. A family Orthidoe might be established. Strophomena differs from Orthes in having a closed fissure, and the cardinal process bifid or trilobed, white in Orthis it is generally formed of one prece. In Strophomena it is situated directly between the dental soekets, or has between them and it a small prominent ridge, or brachial process; for this last is scarcely developed, where it exists, and forms a marked contrast to what we find in the same valve of Orthes. There are also four more or less distinetly defincer ndductor depressions, which are longitudinally parallel to each other, and separated ly ridges, white in Orthes these four divisions are placed in pairs one above the other.

Eamly 11. Productida.-Sbells more or less concaren convex, oval, sem-oval, or angular and generally auriculated; tho hage-line stmight, with or without tecth and sockets for the articulation of the valves (fig. 8) ; surface of ventral valve or hinge-line more or less furnished with tubular spines, sometimes of considerable length; no calcarenus .processes for the support of the brachial appendages; shell structure perforated by canals ; cardinal process prominent, bilobed or trimbed. Under this a narrow longitudmal ridge generally extends to about hali (or more) of the length of the valve, and on each side are seen the ramifed dendritic mpressons, which may be attributable to the adductor muscle. Outside, and in front of these, are the tro reniform impressions 80 characteristic of the family. Gemera-Productus, Strophalonia, Aulosteges, Chonetes, Productella. The Productido made their. first appearance during the Silurian time, and became extinct at the close of the Palxozoic period.

Assuming that the reader is acquainted with the geological divisions into which the earth's crust has been grouped, it may be observed that the Brachopoda, after the Trilobites, occupy the most important place in the Cambrian or Primordial fauna. Thus, in 1871, out of 211 species knorn to Barrande as composing the animal kingdom of that pertod, 179 are referable to the Trilobites and orber Crustaceans, 28 to the Brachiopoda, while 24 species would be divided between the Annelids, Pteropodes, Gasteropoda, Bryozoa, Cystidians, and Spongida. Sulsequently to these rescarches sereral additional species of

BRA-BRA

Trilobites and Brachiopoda have been added to the list throngh the indefatigable exertions of Prof. Linnarsson, Mr Hicks, and others. The Brachiopoda, along with the groups mentioned by Barrande, are in all probability the earliest representatives of life at present known; for Mr Hicks has obtained ondonbted examples of Lingula or Lingulella (L. primara) from the very base of the whole Cambrian series of St David's in Wales. It is impossible for the present to offer more than an approximate comparison, based on numbers, of the genera and species that have existed during the various geological more or less extended periods; and many years will have to pass.away before some master mind will be able to grapple with the accumulated ubservations of a century or more, and redace the number of genera and species within reasonable limits, from which something like reliable data may be formed. Lycll has stated that nothing is more remarkable in the Silurian strata generally of all countries than the prepondera:ce of the Brachiopoda over other forms of Mollusca. Their proportional numbers can by no means be explained by supposing them to have inlabited seas of great depth, for the contrast between the Palæozoic and the presint state of things has not been essentially altered by the late discoveries made in our deep-sea dredgings. We find the living Brachiopoda so rare as to form abont one firty-fourth of the whole bivalve fauna, whereas in the Lover Silurian rocks, and where the Brachiopoda reach their maximum, they are represented by more than twice as many species as the Lamellibranchiate bivalves. There may indeed be said to be a continuons decrease of the proportional number of this lower tribe of Nollusca as we proceed from the older to the newer rocks. Owing to the great number of synonyms it would not be possible at present to offer even an approsimate statement with reference to the number of known species. Bigsby states that some 1754 species of Cambrian, Silurian, Devonian, and Carboniferous species of Brachiopoda havo been found in America; 1905 in Europe. It is probable that as many as between four or five thousand species of Brachiopoda
have been described, and it is noterworthy that the species. so immensely abundant during the Cambrian, Silurian, Devonian, and Carboniferous periods, became much less numerous during the Permian and Triassic, while they again became abundant, although comparatively reduced in number, during the Jurassic and Cretacevus periods. Io the Tertiaries they had materially decreased in number, and they are represented at the present time by about. 100 species. It has also been clearly ascertained that a certair number of genera and species passed from one system or formation into the one that followed it. Thus, approximately, it may be said that nine genera appeared for the first time in the Cambrian system, fifty-two in the Silurnan, twenty-one in the Devonian, seven in the Carboniferun, two in the Permian, three in the Triassic, eleven in the Jurassic, five in the Cretaccous, three in the Tertiary, atd nine in ti.e recent jeriods. But what wonderful changes have been operating during the incalculable number of ages in which the creation and extinction of a large number of genern and thousands of species have taken ןlace,-some few only of the priuurdial or first created genera, such as Linguta, Discina, and Crania, having fought therr way and struggled for existence through the entire sequence of geolugical time. Many were destined to eompratuely ephemeral duration,while others bad a greater or lesser prolongation of existence.
The importance of the study of the Brachiopoda must te obvious to all. They are, as already stated, atoong the first well-known indications of life in this world, and they have contured to be very extensively represented up to the present time. They are also very characteristic fossils by which rocks at great distances, whether in New Zealand or Spitzbergen, in the Himalayas or the Audes, can be identified, without its being even necessary for the Palrontologist to visit the district whence the fossils are derived; they are, as Mantell would Lave termed them, sure medals of creation, the date of their arpearance firmly staniped upon them, and their distinctive characters ... legibly impressed as to defy misinterpretation. (r. D.)

BRACHYLOGUS, a title applied, for the first time in the middle of the 16 th century, to a work which contains a ssstematic exposition of the Roman law, and which some writers have assigned to the reign of the Enperor Justinian, and others have treated as an apocryphal work of the l Kth century. The earliest estant edition of this work was published at Lyons in 1549, under the title of Corpus Legun per modium Institutionum; and the title Brachylogus totius J uris Civilis appears for the first time in an edition published at Lyons in 1553. The origin of the work may bis referred with great probability to the 12 th century. There is internal evidence that it was composed subsequently to the reign of Lonis le Débomaire, as it contains a Lombard law of that king's, which forlids the testimony of a clerk to be received against a layman. On the other hand its stylo and reasoning is far superior to that of the law writers of the 10th and 11 th centuries; whilst the circumstance that the method of its author has not been in the slightest degree influenced by the school of the Closs-writers (Glossatores) leads fairly to the conclusion that ho wrote before tbat schuol herame dominant at 13nogna. Savigny, whe has traced the histery of the Brachylogus with great care, is disposed to think that it is tho work of Irnerins himself. Its value is chichly historic.l, as it furnishes evideace that a knowledge of Justinian's i-gislation was always maintaned in Northern ltaly. The a thor of the work has adopted the Institutes of Justimian at the basis of it, and draws largly on the Digest, the

Code, and the Norells; whilst certain passages, evidently taken from the Scntentice Recepte of Julins Paulus, imply that the author was also acquainted with the Visigutlic code of Roman law eompiled by order of Alaric II. An edition by l'rofessor Bocking was published at Derlin in 1829, under the title of Corpus Legum sive Drachylugus Juris Civilis.
bracton, Henry de, a learned ceclesiastic, who was chief justiciary in the reign of IJenry III. He is supposed to have been born at Bretton-Clovelly in Devonshire. He studied at Oxford, where he took the degree of doctor of laws, and is believed to bave delivered lectures in that university. Ife was appointed a justice itinerant for the counties of Nottingham and Derly in 124.5, and his aame aplyears as a justiciary or judge of the Aula liegis an the Fine Rulls in 1249 and in each of the next scventeer years, written indifferently Bratton and Bretton, which circumstance bas led Sclden and others to attribute of him the authorship of the carlicst treatise on the law of England in the Franch tunguc, known ns liretone or Bretumn. In 1254 the king assigned to bima ly letters jatent, in which he was designated "dilectus clerions noster," the use of a house in London belonging to William late carl of Derby during the soinority of the heir, and in 1263 be was collated to the archeleaconry of Darnstanle. This office, however, be resigned in the following year; and in 126: he was apponted chief justiciary, and held that effice unth the end of 120.7 , when all notice of him ceases. He wroin
a most comprehensive and systematic work on the laws of Eagland in five volumes, entitled De Legibus et Consuetudinibus Anglice, which is modelled after the Institutes of ustinian, and is supposed, from internal evidence, to have been completed about the time when he was appointed chief justiciary, as it contains referonces to changes in the law made shortly before that time, but takes no notice of the statute of Marlborough passed in 52 Henry III. A Latin abridgment of Bracton's work was written by Gilbert de Thornton, who was appointed Chief-Justice of the King's Rench in the 17 th year of the reign of Edward I., of which Selden possessed a copy, but no copy of it is at present known to exist. There are numerous MSS. extat of Bracton's wurk, but only two editions of it have been printed, the first in folio in 1569, the second in quarto in 1640 . The text of these editions is identical, as well as the paging.

BRADFORD, a parliamentary and municipal borough of Eogland, situated in the northern division of the West Riding of Yorkshire and the wapentake of Morley, on an afluent of the Aire, 34 miles S.W. of York, 9 miles W. of Leeds, and 192 miles from London by rail. The burough comprises 7220 aeres, and is divided into five townships -Bradford, Manningham, Horton, Bowling, and Bolton. Bradford has returned two members to parliament since 1832, was incorporated in 1847, and is governed by a mayor, 15 aldermen, and 45 councillors. The parish includes the thirteen townships of Allerton, Bowling, 3radford, Clayton, Eccleshill, Haworth, Heaton, Horton, Mauningham, North Bierley, Shipley, Thornton, and Wilsden, and comprises 34,146 acres. The population of the borough in 1871 was $145,830,-68,905$ malcs and 76,925 females.

During the Saxon period Bradford was included in the parish of Dewsbury; but William t'ie Conqueror, who mentions it in Domesday Book, include I it in the barony of Pontefract, which he granted to llbert do Laey. The manor of Bradford remained iu the hands of the De Lacies until the beginning of the l4th century, when it passed by marriage to the family of the earl of Lancaster, John of Gaunt holding it at the time of his death in 1393. The manor was held by the Crown from that time down to the reign of Charles I., who sold it for a small yearly rent tu the corporation of London. Afterwards it piassed into the possession of the Marsdens of Hornby Castic, but since 1795 it has been held by the Rawson family, from whom the curporation have recently purchased all manorial rights. In the struggle between Charles I. and the Parliamentarians, Bradford adhered to the cause of the latter, and twice successfully resisted the royal forces that besieged the torn. Subsequently the earl of Neweastle defeated Lord Fairfax at Atherton Moor, a iew miles distant, and the Jarliamentarian general retreated upon Bradford, givinr the defence of the town over to his son, Sir Thomas Fairfar, who, however, was altimately eompelled to yield to the superior numbers of the Reyalists. From that time the career of Bradford has been almost entirely a commereial one.

Situaten in a populous, well-watered valley, abundantly mpplied with iron, coal, and stone, Bradford has, since the atroduction of steam, made exceedingly rapid progress. During the Plantagenet and Tudor periods the manufacturs of woollen cluth was carried ou in Bradford, the trade being greatly assisted by the settlement of a number of Flemish weavers in the district. About the cnd of the 17 th century, however, the worsted trale, which till then had been chiefly confined to Norwich, was introduced into Bradford, and in course of time became the staple trade of the town. In 1773 a piece ball was erected, and for many years served as a market-plaee for the manufacturers and merchants of the district. On the introduction of steampower and machinery the worsted trade advanced wath
great rapidity. The first mill in Bradfurd was built w 1798 ; there were 20 mills in the town in $1820,3 \pm$ ir 1833, and 70 in 1841; and at the present time there are between 200 and 300 , of much greater magnitude that the earlier factories. In the seventy years between 1801 and 1871 the population of the town increased tenfol.f. during which period the worsted trade has been developer to an astonishing extent. In 1833 Mr (now Sir Titus) Sal developed the alpaca manufacture in the town; mohair was shortly afterwards introduced; aud more reeently Mr S. C. Lister bas introduced the silh aud velvet manufacture, having invented a process of manipulating silk waste, whereby what was previously treated as refuse is made into goods that will compete with those manufactured from the perfect cocoon. In the Bradford staple trade alone it is estimated that there is now an annual turn-over of between $£ 60,000,000$ and $£ 70,000,000$.

Bradford has been greatly improved in appearance during the last few years, many important public buildings having been erected, and new and spacious thoroughfares opened out where narrow and ungainly streets formerly existed. Amongst the more prominent public buildings may be mentiuned-St George's liall, used for public meetings, concerts, de., and capable of accommodating nearly 4000 persons, built in 1853 ; the Exchange, built in 1867, at is cost of $£ 40,000$; the market buldings, opened in 1572, and the Town-Hall, opened in 1873, and built at a cust of $\mathfrak{f} 100,000$. The town is built entirely of the frecstone which is so plentiful in the district. Many of the ware. houses are large aud of considerable architectural beauty, and the factories are mostly of great extent, sume single establishments giving employment to between 3000 and 4000 worh people.

The parish churea, buili in 1485, on the site of an old Norman church, is dedicated to St Peter, The living is valued at $£ 1300$ per annum. There was no other church in the town until 1815, when Christ Church was built. In 1833 St James's Church was erected, and between thar date and 1853 five others were built. More recently ten adilitional churehes have been built by the Bradford Church Building Societs, the last of the ten (St Bartholomew's) being upened in 1872. There are now over twenty churches in the towu. The dissenters havo upwards of forty places of worship in Bradford, many of which are large and handsome edifices. Tbe Roman Catholics likewise possess several churehes.

The educational facilities of the town are considerable. The Airedale College, for the education of students intended for the Independent ministry, is situated here, and has a large annual revenue. Until a fers years ago there was also a Baptist college here, but it has been removed to liawdon, six miles distant. The Bradford Grammar School existed in the 16 th ceutury, and in 1663 received a charter of incorporation froat Charles II. Latterly, the Endowed Schools Commissioners have reconstituted the sehool; a new building, giving accommodation to between 300 and 400 scholars, was erected in 1873, and Mr Forster M.P., Mr Henry Brown, and others, have pres nted a number of scholarships to the school. Since 1832 there bas been a Mechanics' Institute in the town, and in 1871 a new one was erected at a cost of $£ 32,500$. There are several other educational institutions, includiag a Church Literary lastitute and a Feraale Educational Institute, and a Free Librany was established in 1872 . Under the direction of the school board eight or ten handsome and commodious schools hare been erected.

Bradford possesses a general infirmary, a fever hospita! an eye and ear hospital, an institution for the blind, and several other charitable institutions. It has two theatres and several nusic halla. There are tovo public pa: las,--pec
l'ark and Lister l'ark, - each comprising over 50 acres, and also two smaller parks. The first temperance hall in England was erected at Bradford in 1837. There are two courthouses for the holding of the county and West lliding courts; the borough court is held in the town-hall. Numerous political and social clubs flourish in the town. Three daily and four weekly papers are published. Statues of. the late Sir Robert Pecl and Richard Oastler, "the factory king," were put up in adrantageous pesitions some years ago; and recently the statues of two local commercial celebrities, Sir Titus Salt and MrS. C. Lister, have been erected. Bradford has communication with all parts of the country by the Midland, Great Northern, Laucashire and Yorkshire, and London and North-Western Railways. A branch canal in connection with the Leeds and liverpool cana! was opened in 1774, but in 1871 it was closed by injunction, in consequence of the polluted condition of its water. Since then, however, it has been purified and re-oplened.

In addition to its extensive operations in connection with the worsted trade, Bradford is largely engaged in the masbine, stone, coal, and iron trades. The well-known Bowling and Low Moor Ironworks are within a short distaice of the town. Formeriy a septennial festival was held at Eradford in honour of Bishop Blaize, the patron saint of the woel-combers, but after 1825 it was discontimed. The market days are Monday and Thursday.

BRADFORD, Joun, was born at Manchester in the early nart of the reign of Henry VIII. Being a good penman and accountant, he becaiue secretary to Sir Johu Harrington, who was paymaster of the English forces in France. Bradford at this time was gay and thonghtless, and to support his extravagance he appropriated some of the money entrusted to him; but being unable to bear the load of his guilt, he made restitution, and relinquished his employment. Abont 1547 he took chambers in the Inner Temple, aind began to study law; but finding divinity more congenial to bis taste, he removed, in the following year, to Catherine Hall, Cambridge, where he studied with such assiduity that in little more than a year he was admitted to the degree of master of arts, and was soon after made fellow of Pembroke Hall. Bishop Ridley, who in 1550 was translated to the see of London, sent for him to the metropolis and appointed bim his claplain. In 1553 be was also wade chaplain to Edward VI., and became one of the most ppular preachers in the kingdom. Soon after the accession of Mary be was arrested on a charge of sedition and confined in the Tower, where be continued a yeer and a balf. During this time he wrote several epistles which were disyersed in various parts of the kingdom. He was afterwards removed to South wark, and was at last brought to trial before the court in which Gardiner sat as chief, where be defended Lis principles to the last, in defiance of all attempts to elfect his conversion. He was condemned to the dames, and suffered in Smithfield. July 1, 1555 . His writings, which cunsist chiefly of sermons, meditations, tracts, letters, aud nreyers, have beca published in $12 m o$ by the Religious Tract Society.

BRADLEY, Dh Jampa, one of the most eminent British 2stronomers, was bom :t Sherhorne in Gloucestershire in March 1692. Ife enterul Hahbol College, Oxford, in 1710 , and graduated as B.A. in 1714 and as M.A in 1717. At the honse of his uncle, the Rev. James Pound, himself known as an acute observer, he had fom linstruments and means for carrying on a regular series of astronomical observations. 1te lecame a memher of the Ropal Socicty in 1718, and though he touk orders in the following year. and was presented to the vicarige of Bridstow, he did not \#wo up his seientific pursuits. He also obtained a small thecure living in Wales, but in $17 \% 1$, ou his elpoint-
ment to the Savilian professorship of astronomy at Oxforl, be resigned all his ecclesiastical preferments. In 1727 communicated to the Royal Society his great paper on aberration, a remarkable combination of exact observation and profound induction. Some years afterwards Bradley began his lectures at the Oxford Museum, and in 1742 hf was appointed to succeed Harley as astronomer royal. Ir 1747 his minute observations led him to the second of hir great discoveries, the nutation of the earth's axis. The remainder of Bradley's life mas devoted to the Greenwich Ohservatory. In 1748 he succeeded in getting a small grant for instruments from the public funds, and in 1752 be was rewarded with a pension of $£ 250$. He continued his labours till 1761 , when his health began to give way. He then retired into the country and died at Chalford, Gloucestershire, in July 1762. The immense mass of useful obserrations left by him at Greenwich ras singularly neglected by English astronomers; but since Bessel presented them in systematic form to the world (see Bpssel, vol. iii. p. 616) their true value has been recognized. For an acconst of Bradley's scientific discoveries see Asteonomy and Aberration.

Copious information as to Bradley's life and works will be found in Prof. Rigaud's Memoir prefixed to Miscellaneous :"orks and Correspondence of the Kev. James Eradley, 1832.

BRADSHAW, Henry, an English poet, born at Cheste: about the middle of the 15 th century. Early displaying \& taste for religion and literature, he was received while a boy into the Benedictine monastery of St Werberg in tha. city; and he was afterwards sent to Gloncester (now Worcester) College, Oxford. After studying there for a time with the novices of his order he returned to his convent, where, in the latter part of his life, he applied binself chiefly to the study of bistory. He died in 1513. His poetry in some respects is not inferior to that of any of his contemperaries. His works are,-(1), De antiquitate et magnificentia Urbis Cestria; (2), Chronicon; (3), The Life of the Glorious Firgin St Werberg, printed at London, 1521, 4 to, in verse, and now extremely rare. The life of St Werberg forms only part of this work, which contains also a description of the kingdom of Mercia, a life of St Etheldred, a life of St Sexburg, the foundation and history of Chester, and the chronicles of some kings.

BRADSHAW, Joun, president of the High Court of Justice which tried Charles I., appears to have been born in 1602 at Marple Hill, near Stockport in Cheshire. He was of good family, and is believed to have been connected with Nilton, the mother of the latter haring married a Bradshaw. At all events, whether cmnected or not, the two knew and respected each other. Milton gires a highly eulegistic account of Bradshar's character in his Defensio Secunda, and Bradshaw left by will $£ 10$ to Mhlton. His education scems to have been carried on at Stock port free school, and afterwards at Bunbury and Middleton. He was called to the bar at Gray's Inn in April 1627, and in 1045 became a bencher. For some time he acted as judge in the Sheriff Courts of Iondou. As a lawyer he had considerable chamber practice, especially among those whom Clarendon calls the "factious." In 16.44 he was employed by Parliament as one of the proscentors of the Irish Lords Macruire and Macmahon. In Octoker 1646 be was roted loy the Commons as one of the commissioners of the Great Seal, and in March of the following year he was appointed ehiefjnstice of Cheshire. On Octolicr 12, 1648 , he was raised to the rank of serjeant. In January 1649, when it was found dificult to compose a conrt of justice for tho trial of the ling, Bradshaw mas proposed as presid it, and at once elected. 11 is demeanour on the trial is tell known, but bas been varionsly judged. He contimued to retnin. the title of Lord Iresideni fo: some timo after the triad,
and received large rewards from Parliament for his valuable services. On the formation of a council of state Bradsham was elected a member, and for three years held office as president. After that time the presidents were elected in cutation, and beld their appointment for a month. When, on the 20 th April 1653, Cromwell, after dismissing the Parliament, came to dissolve the council, Bradshaw is said to bave confronted him beldly, and denied his power to dissolve the Parliament. This story rests on the authority of Ludlow, who was not a witness, and who does not say that Bradshaw was president of the council on that occasion. Bradshaw, an ardent republican, ever afterwards showed himself an uncompromising adversary of Cromwell. He was returned for Cheshire in the Parliament of 1654, and spoke strongly against vesting the power in a single person. He refused to aign the "engagement" drawn up by Cromwell, and in consequence withdrew from Parliament. Some time afterwards he was concerned with Harrison and others in one of the numerous repablican conspiracies, and it has even been snspected that he was at least cognizant of some of the fifth monarchy men's desperate plots. He failed to obtain a seat in the Parliament of 1656 , and on 1st August of the same year Cromwell ordered bim to be dismissed from the cbief justiceship of Chester. It is nat quite certain that this order was carried out. After the abdication of Richard Cromwell, Bradshaw again entered Parliament and became a member of the council of state. His health, however, was bad, and his last publie effort was a vehemens speech on the seizure of Speaker Lenthall, in which he denounced the military despotism of the time. He dicd on the 22d November 1659, and was buried in Westminster Abbey. His body was disinterred at the Restoration, and exposed on a gibbet along with those of Cromwell and Ireton. Bradshaw's character will he found very differently drawn by Clarendon (History of the Rebellion, bk. xi.) and Milton (Defensio Secunda).

See Foss, Lives of Judges: Ormernd's Chestor, iii. 408-9; Benvilies of England and Walcs, ii. 264, s79.; Noble, Lives of the Eny!'sh Legicides, vol. i.; Caultield, High Court of Justice; Golwin. History of the Conmonwealth; Ludlow's Menoirs; Forster's Statesner of the Commonwealth. On Bradshave's connection with Dtilion see Diasson, Life of Millon, i.

BRADWARDIN, Thomas, Arebbishop of Canterbury, surbamed the Profound Doctor, was born at Hartield in Sussex towards the elose of the 13th century. IIe was educated at Merton College, Oxford, where he took the degree of doctor of divinity, and acquired the reputation of a profound sebolar, a akilfnl mathematician, and an, able divine. He was afterwards raised to the high offices of chancellor of the university and professor of divinity. From being chancellor of the diocese of Lonion, be became chaplain and confessor to Edward III., whom he attended during his wars in France. After his return from the war the was made prebendary of Lincoln and subsequently archbishop of Canterbury. He died of the plague at Lam3 3eth, in the ycar 1349, forty days after his consecration. Claucer in his Nun's Priest's Tale ranks Bradwardin with אit Augustine.

His great work is a treatise arainst the Pelagians, entitled De eausa Dei, printed at London, 161 s , folin, by Sir llenry Savile. He viote also De Gromelria speculntire, Paris, 1495, 1512,1530 ; De Arithmetica practica, Paris, 1502, 1512; De Proportionitus, Paris, 1495, Venice, 1505, folio; De Quadratura Circkli, Palis, 1495 , folio.

BRADY, Nicholas, D.D., whose name is familiar as the translator, in conjunction with Tate, of a new metrical version of the Psalms, was born at Bandon in the connty of Cork in October 1659. He received his early education at Westminster achool, and then studied at Christ Church, Oxford; but he graduated at Trinity College, Dublin. He was in due time made a prebendery of Cork. He was a
zealous promoter of the Revolution and suffered in conse quence. When the troubles broke out in Ireland in 1690, Brady, by his influence, thrice prevented the barmng of the town of Bandon, after James II. had given orders for its destruction; and the same year he was employed by the people of Fandon to lay their grievances before the English parliament. He soun afterwards setited in London, where be obtained varous preferments. At the nue of his death in 1726 he beld the livings of Claphant and Fichmond. Besides his version of the Psalms, which was licensed in 1696, be translated Virgul's Lin bed, and wrote several smaller poems and dramas. His prose works consist of sermons.

BRAGA, a city of Portugal, capital of a district in the provioce of Minho, is situated on an elerated plan near the River Cavado (Nabis), in $41^{\circ} 43^{\prime} \mathrm{N}$ lat and $8^{\circ} 16^{\prime} \mathrm{W}$ long. The city proper, which has extensive suburbs, is surrounded by walls and tuwers, and has broadand wellbuilt streets. The cathedral, which dates from the 1 2th century, is an mposing structure, and cootams a large number of interesting ubjects of art. Anuong the other churches Santa Craz is pre-cmmear. Thereare alsosseveral convents in the city, an archreprscopial palace, a lyceum, a Library, an orphan asylum, and a large hosphtal; also the ruins of a theatre, a tenule, and an aqueduct of Roman workmonsbip, and a great variety of nunor antiquities of different ages. The prinepal manufactures are fire-arms, jewcllery, aud cutlery, und weaving and was-bleaching are also carried on. A large cattle market is lield in June and September. About two and a half miles distant is the celebrated sanctuary of Jesus de Monte, to whth pilgrimages are frequently made. Population, 18,467.

Braga is identified with the Bracara Augusta of the Romans, tho capital of the Callanci Bracari. About the 5tl century it became the chief city of the Sues ; it prassed successively tuto the hands of the Goths and the Moors, and was captured from the latter by Al phonso of Castile. It lias for a long tixue been the seat of the promate of Portugal, who also clamed to be head of the Spanish church, and before the conqucst of Combra and liston it mas the residence of the Portuguese court.

PRAGANCA, a town of Portugral, the capital of the province of Tras-os-Montes on the Ferrenza, 26 miles N.W. of Miranda. It consists of an upper and lower town; the former surrounded with walls, is the seat of the bishop of Bragança and Miranda, and has a citadel, a college, a hospital, and a poor-house, and soma manufactures of silk and relvet. The reigning houses of Portugal and Brazil are descendants of the old dukes of Braganca. Popalation, 4503.

BRAMAM, Jons, a celchrated English rocalist, was born in London in 1774, of Jewish parentage, his family name being Abrabam. He received his first lessons in singing from Leoni, a well-known ltalian artist, and made his appearance on the stage of the Covent Garden Theatre so carly as 1787 , when he sang bravura aira composed for Madame Mara. On the breaking of his voice his public career was interrupted for a time, and he had to support himself by teaching the pianofurte. In a few years, however, he recovered his voice, which proved to be a tunor of exceptionally pare and rich quality. His second llebut was made in 1794 at the Iath concerts, to the conductor of which, Rauzzini, he was indebted for careful training, extending over a period of more than two years. In 1796 he reappeared in London ar Drary Lane, the opera being Storace's Mahmoud. With the view of perfecting himself in his art be set out for Italy in the autumn of the following year. On the way he gave some concerts at laris, which proved so successful that he was induced to remain, contrary to his original intention, for eight months in that city. His career in Italy was one of continuous triumph; he sppeared in oll the principal opera-housea,
and was universally recognized as being without a rival even in that land of song. In 1801 be returned to his natuve country, and appeared once more at Covent Garden in the opera Channs of the Heart by Mazzingh1 and Reeve. So great was his popularity that an engagement he bad made when abroad to return after a year to Vienna was reneuneed, and be remained benceforward in England. For nearly forty years from this date his powers continued unimpaired, and he sang occasionally in public till within a year or two of his death, which oceurred on the I7th February 1856. There is, perbaps, no other case upon record in which a vocalist of the irst rank enjoyed the use of his organ so leng, between his first and last public appearances considerably more than sixty years intervened, durng forty of which be beld the uadisputed supremacy alake in opera, oratorio, and the concert-room. Braham was the composer of a number of vocal pieces, which being sung by himself had great temporary popularity, though they liad little intriasic enerit, and are now deservedly forgotten. A partial exception must be made in favour of The Death of Nelson, which still keeps its place as a standard popular English song.

BRAHE, Tycbo, an illustrious astronomer, descended from a noble family, of Swedish origin, which had settled in Denmark, was born on the l4th December 1546, at Knudstorp, in the county of Schonen. He learned Latin at the age of seven, and studied five years under pravate tutors. On the death of his father his uncle sent him, in April 1559, to study philosophy and rletoric at Copenbagen. The great eclipse of the sun, on the 21 st of August 1560 , happenng at the precise time foretold by astronomers, be began to look upon astronomy as something divine; and having purchased the Ephemerides of Stadius, he gained some knowledge of the theory of the planets. In 1562 be was sent by his uncle to Leıpsic to study law ; but astronomy wholly engrossed his thoughts, and he employed all bis pocket-moncy in phrchasing books on that science. Having procured a small celestial globe, be used to wait till his tutor went to bed, in order to examme the constellations and learn their names, and when the sky was clear, be spent whole nights in viewing the stars. He rcturned to Denmark in 1505 , but seon left for Wittenberg, whence he was driven by the plague to Rostock. There in the following year bis choleric disposition onvolved him in a ducl with a Danish nobleman, in which he had the misfortune to lose part of his nose, but thas defect he so skilfully suppited liy means of gold, silver. and wax, that it was scarcely perceptible. In 1509 he took up his residence at Augsburg and remained there two years, busily engaged in astronomical and chemical researches. In 1571 be returned to Denmark, and was faroured by his maternal uncle Steno Belle with a convenient place at his castle of IIcrritzvad near linudstorp for making his observations, and building a laboratory. But his marrying a peasant girl occasioned a violeat quard betwen hum and his relatives, and the king was obliged to interpose morder to reconcile them. In 157., by royal command, be read some lectures at Copenhaten; and the year following he began his travels through Cermany, and procected as far as Venice. Wo then resulved to remose has fambly, and settlo at Baset; but Frederick 11, unwilling that Denmark should lose the hogour of has resinlence. bestowed upor him for life the Island of Huen m the Suund, for the erection of an ubservatory and laboratory, and conferred on him a fee in Norway, a pension of two thousand crowns cut of the treasury, and the canonry of Roschild, which brought him a thousand mere. The first stone of the observatory was laid on the 8th of August 1576. dames VI. of Scotland, atterwards James I. of England, on his sisit to Denmark to marry the Princess Amme, went to sec Tycho

Brabe in his retirement at Úranienburg, made him several presents, and wrote some verses in his praise. Soon after the death of King Frederick, the astronemer was deprived of his pension, fee, and canonry. Finding bimself unable to defray the expenses of his observatory he went to Copeninagen, whither he carried some of bis instruments, and continued his astronomical observations in that city, till, by the order of Cbristian IV., be was obliged to discontinue them. Be then removed his family to Resteck, and afterwards to Holstem in order to selicit Henry Ranzau to introduce bun to the emperor: and accordingly he was receired by Rudolph 11. at Prague with the most gratifying marks of respect. That prince gave him a magnficent house till he could procure for him one better fitted for astronounical observations, assigned binı a pension of three thousaded crowns, and promised, upon the first opportuanty, a fee for him and bis descendants. But he did not long enjoy his good fortune, for, on the 24th of October 1601, be died of a strangury, in the 55th year of has age. He was interred in a magnificent manner in the principal church at Prague, where a noble monument was erected to his memory. Shertly before has death be had been jouled by Kepler, who owes his fame to the lessens of carefu observation and cautious inference impressed on him by Tycho.
The materials for Brabe's life are to he found in Gassend. With T Brahei, 1654. For later surveys of his life and labours, sed Delambre, Astronomue moderne; Lalande, Bibliographze astrinnen. J Bertrand, Lis Fondateurs de l'Astronomue moderne: Brewsier, Martyrs of Sczence. For Brahe's contributions to astronumy, seo Grant, Bistory of Physical Astronomy, and the article Astronомх.

BRAHMA SAMAJ, the new theistic church in India, owes its origin to Raja Ram Mohan Rai, one of the lcadıng men whow Iudaa has produced in later times. Rám Moban Rál was born in the district of Bardwan in 1772. He mastered at an early age the Sanskrt, Arabic, and Persian largaages, Impressed with the fallacy of the religious ceremonics practised by his countrymen, he impartually investigated the Hindu Shastras, the Koran, and the Eible, repudiated the polytheistic worship of the Shastras as false, and moculcated the reformed principles of monotheism as found in the aucient ©pamashads of the Vedas. In 1816 he established a society, consisting ouly of Hindus, in which texts from the Vedas riere recited and thenstic bymns chanted. This, however, soon died away on account of the opposition it inet from the Hindu commumity. In 1830 the Raja orgamzed a Hindu socıety for prayer-meet. ungs, which may be cousidered as the foundation of the present Brâbma Samaj The following extract trom the trust-deed of the building dedicated to at will show the religuous belicf and the purposes of its founder. The bulding was mtended to be "a place of public meeting for all sorts and deseriptions of people, witheut distmetion, riho shall behave and conduct thenselves in an orderly, sober, religions, and devout manner, for the worshp and adora. tion of the ctermal, unsearchable, and immutable Beng, who is the author and preserver of the umense, but not under and by any other name, designation, or title, pecuharly used for and applied to any particular beng or bengs by any man or set of men whatsoever, and that no graven image, statue, or sculpture, carring, painting, picture, portant, or the likeness of anything shall be admitted wathan the said mossuage, buiking, land, tenements, bereditament, and premses, and that no Eacrifice, oflering. or nhbtan of any kind or thang shall ever te permutted therem, and that no anmal or living creature shall whin or on the said messuage, de., be depraved of life enther for relighous purposes or food, and that no eating or drmkitig (excepir such as shall be necessary by any accident for the preservation of life), feasting, or rioting be peraiated
therein or thereen; and that in conducting the said worship or adoration, no object, animate or insnimate, that has been, or is, or shall hereafter become or be recognized as an object of worship by any man or set of men, shall be reviled or slightingly or contemptuously spoken of or alluded to, either in preaching or in the bymns or other mode of worship that may be delivered or used to the sard messuage or building; and that no sermon, preaching, discourse, prayer, or bymns be delivered, made, or used in auch worship, but such as have a rendency to the contemplation of the Author and Preserver of the universe, or to the promotion of chanity, morality, puty, benevolence, virtue, and the strengthening of the bonds of union between men of all religious persuasions and creeds." The new faith at this period held to the Vedas as its basis. Ram Mohan Rál soon after left India for England, and took up his residence in Bristol, where he died in 1835 . The Brâhma Samaj mantaned a bare existencetill 1841, when Bábu Debendra Nath Tagore, of the Tagore family of Calcutta, devoted himself to it. He gave a printing-press to the Samaj, and established a monthly journal called the Tattroabodhint Patrika to which the Bengah language now owes much for its strength and elegance. About the year 1850 some of the followers of the new religion discovered that the greater part of the Vedas $1 s$ polytherstic, and a schism took place, -the adranced party holding that natareand intuition form the bass of fath. Between the years 1847 and 1858 branch societies were formed in different parts of India, especially in Bengal, and the new church made rapid frogress, for which it was largely indebted to the spread of English education and the lebours of the Christian mislionaries.

The Brahma creed was definitively formulated as bollows. (1.) The book of nature and intuition supplies the basis of religious faith. (2.) Although the Bratmas do not consider a ay book written by man the basis of their religion, yet they do accept with respect and pleasure any religious truth contained in any book. (3.) The Brahmas believe that the religious condition of man 19 progressive, like the other departments of his condition in this world. (4.) They believe that the fundamental doctrines of their religion are also the basis of every true religion. (5.) They believe in the existence of one Supreme God-a God endowed with a distinct personality, moral attributes worthy of His nature, and an intelligence beftring the Governor of the universe, and they worship Him alone. Tbey do not believe 10 any of his incarnations. (6.) They believe in the immortality and progressive state of the soul, and declare that there is a state of conscious existence succeeding life in this world and supplementary to it as respects the actio of the unversal moral government. (7.) They believe that repentance $1 s$ the only way to salcation. They do not recognize any other mode of reconcilement to the otfended but loving father. (8.) They pray for spiritual welfare, and behore in the efficacy of such prayers. (9.) They believe in the providential care of the divine Father. (10.) They avow that love towards Him, and the performances of the works which He loves, constitute His worship. (11.) They recognize the necessity of public worship, but do not believe that communion with the Father depends upon meeting in any fixed place at any fixed time. They mantan that they can adure Him at any time and at any place, provided that the time and the place are calculated to compose and direct the mind toward IIm. (12.) They do not believe in pilgrimages, anc declare that holiness can only be attained by elevating and furifying the mind. (13.) They put no faith in rutes o ceremonies, nor do they believe in penances, as instrumental in obtaining the grace of God. They declare that mora righteousness, the gaining of wisdom, divine contecmplation,
charity, and the cultivation of devotional feelungs are their rites and ceremoares. They further aay, Govero aud regulate your feelings, discharge your duties to God and to man, and you will gain everlasting blessedness, purify your heart, cultivate devothonal feelings, and you will see Him who is unseen. (14) Theoretically there is no distinction of caste amoag the Brahmas. They dectare that we are all the children of God, and theretore must cessider ourselves as brothera and sisters.

For long the Brahmas did not attempt any sncial reforms But about 1860 the younger Brabmas, headed by Babu Kesab Cbandra Sen, tried to carry their religious theories into practice by excluding all idolatrous rites trom their yocial and domestic ceremomes, and by rejectug the distunction of caste altogether. This, however, the older members opposed, declaring such innovations to be premature The theoretical schism nuw wideued into a visible separation, and benceforth the two parties of the Brabmas wereknura as the Conservatives and the Progressives. The progressive Brahmas, or, as they call therr church, the "Brahma Samaj of Inda," bave made coustderable progress. They have built a chapel in Calcutta, which is crowded every Sunday evening; and they eucuurage the establishment of branch Samajes in different parts of the country. The number ot arowed Brahmas probatly does not exceed 3000 , but the greater part of the educated natives of Bengal symparhize more or less with the movement. (w w. B.)
BRAHMANISM is a term commonly used to denote a system of religious institutions originated and elaborated by the Brähmans, the sacerdotal and, from au early period, the dominant caste of the Hindu communaty la liks mander, as the language of the Aryan Hudus bas undergone continual processes of modification and dialectic disu810n, so thear religious belief has passed through variols stages of development bruadly distinguished from one another by certain prominent features. The tarliest phases of religious thought in India of which a clear idea cau nuw be formed are exhibited in a hody of writugs, looked upon by later generations in the lignt of sacred wrat, under the collective name of Veda ("knowledge") orSruti ("revctation"). The Hindu scriptures consist of four separate collections, or Sanhitas, of aacred texts, or Mantras, including hymas, ancantations, and sacrificial forms of prayer, viz, the lich (nom. ang. rik) or Regveda, the Saman ur Samureda, the Yajush or Yayurieda, and the Atharvan or Athariaveda. Each of these iour text-books has attached to it a body of prose wrinngs, called Brahmanas, which presuppose the Sanhitas, purportang as they do to explan chetly the ceremonial applacation of the texts and the onghi and import of the sacnicial rites for which these were supposed to have been composed. Bestdes the Brahmanas proper, these theological works, aud in a few isolated cases sume of the Sanhitas, include tro kinds of uppendages, the A ranyakas aud Ctpanishuds, both of which, and especially the latter, by their language and contents, generally betray a more modern urigin than the works to whel they are annexed. The subject of the furmer class of these treatises is on the whole similar to that of the Brablmanas, which they supplement. giving at the sane time somewhat roore promnence to the mystical sense of the rites of worship The Cpanthads, on the uther hand, are taken up to a great extent wath speculations on the pruthems of the umverse and the religous ams of man,-subjects often touched upon in the carlier vritings, but bere cealt with 1. a more mature and systematic way. Two of the Sanhtos; the Suman and the \dot{Y} ajush, owng thene existence to purely ritual purposes, aud belug, besides, the one almost enurely, the otber partly, compused of serses taken from the lingectu are only of secondary martance for our pro sent inquiry. The bymns of the figiteda constituto the
earthest lyrical effusions of the Aryan settlers in India which have been handed down to posterity. They are certainly not all equally old; on the contrary they evidently represent the literary activity of many generations of bards, though their relative age cannot as yet be determined with anything like certainty. The tenth and last book of the collection, hewever, at any rate bas all the characteristica of a later appendage, and in language and spirit many of its bymns approach very nearly to the level of the contents of the Atharvan. Of the latter cellection about one-sixth is found also in the Rigreda, and especially in the tenth book ; the larger portion peculiar to it, thongh including nu donbt aome older pieces, appears to owe its origin to an age net long anterier to the composition of the Brähmanas.

The state of religious thought among the ancient bards, as reflected in the kymns of the Rigveda, is that of a wership of the grand and striking phenomena of nature regarded in the light of personal conscious beings, endewed with a power beyond the centrol of man, though net insensible to bis praises and actions. It is a nature-wershrp porer than that met with in any other polytheistic form of belief we are aequainted with,-a mythology still comparatively little affected by those systematizing tendencies which, in a less simple and primitive state of thought, lead to the construction of a well-ordered pantheon and a regular organization of divine gevernment. To the mind of the early Vedic worshipper the varions departments of the surreunding nature are not as yet clearly defined, and the functions which be assigns to their divine representatives continually flow into one another. Nor has he yet learned to care to determine the relative worth and position of the objecta of his aderation; but the temperary influence of the phenemenen to which he addresses his praises bears too strongly upon his mind to allow him for the time to consider the claims of rival pewers to which at other times be is went to look ap with equal feelings of awe and reverence. It is this immediateness of impulse under which the human mind in its infancy strives to give atteranee to its emotions that imparts to many of its outpouringa the ring of monatheistic fervour.

The generic name given to these impersonations, viz, deva ("the shining ones"), points to the conclusion, sufficiently justified by the nature of the mere prominent objects of Vedic adoration as well as by commen natural occurrences, that it was the beautiful phenomena of light which first and most powerfully swayed the Aryan mind. In the primitive wership of the manifeld phenemena of nature it is not, of course, so much their physical aspect that impresses the human heart as the moral and intel. lectual forces which are supposed to move and animate them. The attributes and relations of some of the Veduc deities, in aceordance rith the nature of the objects they represent, partake in a high degree of this spiritual element; but it is not inprobable that in an earlier f hase of Aryan worship the religious conceptions were prerwaded by it to a atill greater and more genral extent, and that the Vedie belief, though retaining many of the primitive features, has on the whole assumed a more sensinous and anthropomorphie claracter. This latter element is especially predominant in the attributes and imagery ajplied by the Vedic poets to Indra, the god of the atmospheric region, the faveurite figure in their pantheon. While the representatives of the prominent departments of uature appear to the Vedic bard as consisting in a state of independence of one another, their relation to the mortal worshipper being the chicf sulject of his anxiety, a simple method of classtication was already resorted to at an early time, consisting in a triple division of the deities into gods residing in the bly, in the air, and on earth. It is not, homever,
until a later stage,-the first clear indicatiun veing cote veyed in a passage of the tenth book of the Rigveda, that this attempt at a polytheistie system is followed ur. by the prometion of one particular god to the dignits of chief guardian for each of these three regions. On the other hand, a tendency is clearly traceable in some of the hymns towaris identifying goda whose functions preser: a certain degree of similarity of nature; these attempls Would seem to show a certain advance of religious reflection. the first steps from polytheism towards a comprehension of the unity of divine essence. Another feature of the old Vedic worship tended to a similar result. The great problems of the origin and existence of man and universe had early berrun to engage the Hindu mind : ard in celebrating the praises of the geds the poet was frequently led by his religions, and not wholly disinterested zeal to attribute to them cosmical functions of the very highest order. At a later stage of thought, chiefly exbibited in the tenth book of the Rigveda and the Atharvaveda, inquiring sages conld not but perceive the ineonsistency of such concessions of a supremacy among the divine rulers, and tried to solve the problem by conceptions of an independent power, endowed with all the attributes of a supreme deity, the creator of the universe, including the gods of the pantheon. The names under which this menotheistic-icea is put forth are mestly of an attributive character, and indeed some of them, such as Prajapata ("lord of creatures"), lisvakarman ("all-doer"), occur in the earlier hymns as mere epithets of particular gods. But to other minds this theory of a personal creator left many difficulties unsolved. They saw, as the poets of old had seen, that everything around them, that man himself, was directed by some inward agent; and it needed but one step to perceive the essential sameness of these spiritual units, and to recognize their being but so many individual manifestations of ove universal principle. * Thus a pantheistic conception was arrived at, put ferth under various names, such as Purusha ("soul"), Näma ("desire"), Bráhman (nentr. ; now. sing. bráhma) ("devotion, prayer"). Metaphysical and theosophic speculations were thus fast undermining the simple belief in the old geds, until, at the time of the composition of the Brāmanas and C'parnitheds, we find them in complete possession of the mind. of the theologians. ए. Whilst the theories crudely suggested in the later hymns are now further matured and elaborated, the tendency towards catholicity of formula fareurs the combination of the cenflicting monotheistic and pantheistic concentions; this compromise, which makes Podapati, the personal creator of the world, the manifestation of the impersonal Brafma, the universal self-existent soul, leads to the composite pantheistic system which forms the chard acteristic dogma of the Brābmanical period,

The spirit of Yedic worship is pervaded by a strong belief in the efficacy of invecation and sacrificial offering. The earnest and well-expressed prayer cannot fan to draw the divine power to the worshipper and make it rield to his supplication; and offerings, so far from being mere acts of devotion which give pleasure to the god, represent the very food and drink which render bim vigorous and capable of battling with the enemies of his mortal frient. This intrinsic power of invecation found an early expression in the term brakma (neuter) ("religious derotion, prayer, hymn"); and its independent existence as an active moral principle in shaping the destinies of man became recognized in the Vedic pantheon in the conception of a gon, Bribaspati or Brahmanaspati ("lord of prayer"), the guardian of the pious worshipper. This feature in the Hindu belief could scarcely fail early to engender and foster in the minds of the people feelings of esteem and reverence torrards those whe possessed the inspired gift of foetical erpression. as
well as those who had acquired an intimate knowledge of the various forms of ritual worship. The common term $u: e d$ in the Veda for the officiating priest is brahmán (vase.; nom. sing. brahmă), originally denoting, it would seem, "one who prays, a worshipper," or "the composer or reciter of a hymn (bráhman, n.)" In some passages the word also signjifes a special class of priests who vifciated as superintendents during sacrificial ceremooies, the complicated aature of which required the co-operation of several priests. It-is probable that in most eases the function of the poet or composer of hymns was combined with that of a minister of worship. In the Vedie hymos - wo classes of society, the royal (or military) and the priestly al sses, were evidently recognized as being raisel above the lesel of the Vis', or bulk of the Aryan community. These social grades seem to bave been in existence even before the scparation of the tro Asiatic branches of the IndoEuropean race, the Āryans of Iran and India. It is true that, although the Athrava, Rathaestās, and Västrya of the Z end Avesta correspond in position aod occupation to the Brähman, Rājan, and Vis' of the Veda, there is no similarity of names between them; but this fact only shows that the common vocabulary had not yet definitely fixed on any epecific names for these classes. Evea in the Veda their nomenclature is by no means limited to a single desigoation for each of them. Moreover, Atharvan occurs not infrequently in the hymns as the persocification of the priestly profession, as the proto-priest who is supposed to bave obtained fire from heaven and to have instituted the rite of sacrifice; and although ratheshtha ("standing on a car") is not actually found ia connection with the Rajan or Kshatriya, its synonym rathin is io later literature a not unusual epithet of mea of the military caste. At the time of the hymns, aod even during the common IndoPersian period, the sacrificial ceremonial had already become sufficiently complicated :o call for the creation of a certana number of distinct priestly office: with special duties attaehed to them. While this shors clearly that the position and oceupation of the priest were those of a profession, the fact that the terms brähsana and brahmaputra, both denoting "the son of a brahman," are used in certain hymus as synonyms of Brahman, seems to justify the assumption that the profession had already, to a cortain degree, becomo hereditary at the time when these hymns were composed There is, howeser, with the exception of a solitary passage in a hyma of the last book, no trace to be found in the Rigeeda of that rigid division into four castes separated from odeanother by unsurnountable barriers, which in later times constitutes the distinctire feature of Hindu society. The idea of caste is expressed by the Sanskrit term varna, originally denoting "colour," thereby implying diffe ences of complexion between the several elasses. The word occurs is the Veda in the latter asanse, but it is used there to mark the distinction, not between the three classes of the Aryan community, but between them on the one hand and a dark-coloured hastile peoplo on the other. The latter; called Disas or Disyus, consisted, no doubt, of the indigenous tribes, with whom the Aryans had to carryon a continual struggle for the possession of tho land. The partial subjection of these comparatively uncivilized tribes, as the rule of the superior race was gradually spreading eastward, and their subunission to a state of serfaom under the aame of Südras, added to the Aryan community an eleracnt, totally separated from it by colour, by habits, by language, and by occunation. Moreaver. the religious belief of these tribes being entirely dificrent from that of the conquering people, the pious Aryas, and especially the class habitually eagaged in acts of worship, could hardly fail to apprebend considerable danger to the purity of their own faith from too close and intimate a
contact between the two races. What mere natural, therefore, than that measures should have been early devised tolimit the intercourse between them within as narrow boundsas possible. In course of time the difference of vocation, and the greater or less exposure to the scorehing influence. of the tropical sky, added; no doibt, to a certain admixture of Südra blood, especially in the case of the common people, seem to bave produced also io the Aryaa population different shades of complesion, which greatly favoured a tendency to rigid class-restrictions originally a wakened and. coutiouaily fed by the lot of the servile race. Deanmbile the power of the sacerdotal order having been gradually enlarged in proportion to the development of the minutia of sacrificial ceremonial and the iberease of sacred lore, they began to lay claim to supreme authority in regulating and controlling the religious and social life of the people. The author of the so-called Purusha-sükta, or bymu to Purusha, above referred to, represeats the four castesthe Brähmanas, Kshatriyas, Vaisyars, and Südras-as baving severally sprung from the mouth, the arms, the thighs, and the fect of Purusha, a primary being, here assumed to be the source of the naiverse. It is very doubt!ul, however, whether at the time when this hyma was couposed the relative position of the two upper castes could already bave been settled in so decided a way as this theory muight lead us to suppose. There is, on the contrary, reason to belicve that some time had yet to elapse, marked by ferceand bloody struggles for supremacy, of which only imperfect ideas can be formed from the legendary and biassed accouots of later generations, before the Kshatriyas fioally submitted to the full measure of priestly pretension.

The defoitive establistment of the Brähmanical hierarchy marks the begmning of the Brâhmadical period properly so called. Though the origio and gradual rise of some of the leading institutions of this era can, as has been shown, betraced io the earlier writings, the chaia of their development presents a break at this juneture which no satisfactory materials enable us to fill up. A considerable portion of the literature of this time has apparently been lost ; and several important works, the original cowposition of which has probably to be assigned to the carly days of Brähmanism, such as the institutes of Manu aid the two great epies, the Mahäbūrata and Rämáyana, in the form in which thes have beea handed down to us, show enanifest traces of a more modern redaction. Yet it is sufficiently elear from internal evilenee that Man's Code of Laws, though it is tuerels a metrical rifacimento of older materials, reproduces on the whole pretty faithfully the state of IIndü socicty depicted in the sourees from which it was compiled. The final overthrow of the Kshatrya power was followed by a period of jealous legislation on the part of the Brahnaban. For the time their chief ain was to improve therr newly gained vantage-ground by surrounding everything connecteil with their order with a halo of sanctuty calculated to impress the lay community with.feelugs of awe. In the lirahmanay and even in the Furusha Ilym, and the Atharvan, divine origus bad already been ascribed to the Vedie Sanhutas, especially to the three older collections. The same privilege was now successfully claimed for the later Vedic literatore, so imbued with Brihmame aspirations and pretensions; and the authonty impled in the designation of Srata or revelation removed heuceforth the whale body of sicerd writinge irom the sptere of dont and criturin. This concesstur neccssarily involred an acknowledzement of the new social order as a cirime institution. lis statility was, however. rendered still more secure by the elaboration of a systeus of conventional precerts, partly formong the lasis of Manu's Code. which elearly defined the relative position and tise duthes of the several castes, and determined the peualtices to to ioflicted on any trangstessions of the lianits assignad
to each of them. These laws are conceived with no humane or sentimental scruples on the part of their authors. On the contrary, the offences committed by Brāhmans against other castes are treated with remarkable clemency, whilst the punishments inflicted for trespasses on the rights of higher classes are the nore severe and inhuman the lower the offender stands in the social scale. The three first castes, however unequal to each other in privilege and social standing, are yet united by a common bond of sacramental rites (sanskāras), traditionally connected from ancient times with certain incidents and stages in the life of the $\bar{A} r y a n ~ H i n d \bar{u}, ~ a s ~ c o n c e p t i o n, ~ k i r t h, ~ n a m e-g i v i n g, ~$ the first taking out of the child to see the sun, the first feeding with boiled rice, the rites of tonsure and hair c"sting, the youth's investiture with the sacrificial thread, and his return home on completing his studies, marriage, fineral, \&c. The modes of observing these family rites are liid down in a class of writings called Grithya-sútras, or domestic rules. The most important of these observances is the upanayana, or rite of conducting the boy to a spiritual teacher. Connected with this act is the investitury with the sacred cord, ordinarily worn over the left Ebonlder and under the right arm, and varying in material according to the class of the wearer. This ceremony being the preliminary act to the youth's initiation into the study of tho Veda, the management of the consecrated fire and the knowledga of the rites of purification, including the savitri, a solemn invocation to savitri, the sun, which has to be ropeated every morning and evening before the rise and sifter the setting of that luminary, is supposed to constitute the second or spiritual birth of the Arya. It is from their participation in this rite that the three upper classes are colled the twice-born. The cerenony is enjoined to tale ficce some time between tho eighth and sixteenth year of E.ge in the case of a Brahman, between the eleventh and trenty-second year of a Kshatriya, and between the twelfth and twenty-fourth year of a Vaisya. He who bas not been invested with the mark of his class within this time is for ever excluded from uttering the sacred savitra and becomes an untcast, unless be is absolved from his sin by a conncil of Brahmans, and after due performance of a purificacory rite resumes the badge of his caste. With one not duly initiated no righteous man is allowed to associate or to outer into connections of affinity. The duty of the Sudra is to gerve the twice-born classes, and above all the Brihmans. He is excluded from all sacred knowledge, and if he performs sacrificial ceremonies be must do so without asing holy mantras. No Brahman must recite a Vedic text where a man of the servile caste might overhear him, nor must he even teach him the lawz of expiating sin. The occupations of the Vaisya are those connected with trade, the cultication of the land aud the breeding of cattle; while thoso of a kishatriga consist in ruling and defending the people, administering justice, and the duties of military profession generally. Both sharo with the Brabman the privlege of reading the Veda. but only so far as it is taught and exphined to them by their spiritual precaptor. To the Bribman belongs the right of teaching and expounding the sacred texts, and alse that of interpreting and determining the law and the rules of caste. Only in exceptional cases, when no teacher of the sacerootal class is within reach, the twiceborn youth, rather than forcgo spiritual instruction eltogether, may reside in the house of a non-Brahmanical preceptor; but it is specially eujoined that a pupil, who secks the path to heaven, should not fail, as soon as circumstances permit, to resert to a Brabman well versed in the Vedas and their appendages.

Notwithstanding the barriers placed between the four asesea, the jractice of intermarrying armears to bave been couprevalent in early times to bavo uituitled of measures
of so stringent a natire as to wholly repress it. To marry a woman of a higher caste, and especially of a caste not immediately above one's own, is, however, decidedly pro hibited, the offspring resulting from such a union being excluded from the performance of the sräddha or obsequies to the ancestors, and thereby rendered incapable of inheriting any portion of the parents' property. On the other hand, men are at liberty, according to the rules of Manu, to marry a girl of any or each of the castes below their own, provided they have besides a wife belonging to their own class, for only such a one should periorm the duties of personal attendance and religious observance devolving upon a married woman. As regards the children born from unequal marriages of this description, they have the rights and duties of the twice-born, if their mother belong to a twice-born caste, otherwise they, like the offspring of the furmer class of intermarriages, sbare the lot of the Südras, and are excluded from the investiture and the savitri. For this last reason the marriage of a twice born man with a Súdra woman is aliogether discountenanced by some of the later law books. At the time of the code of Manu the intermixture of the classes bad already produced a considerable number of intermediate or mixed castes, which were carefully catalogued, and each of which had a specific occupation assigned to it as its hereditary profession. The self-exaltation of the first class was not, it would seem, altogether due to priestly arrogance and ambition; lut, like a prominent feature of the post-Vedic belief, the transmigration of souls, it was, if not the necessary, yet at least a natural consequence of the panthcistic doctrine. To the $\mathrm{Br} \overline{\mathrm{a} h-}$ manical speculator who saw in the numberless individual existences of animate nature but so many manifestations of tae one eternal soul, to union with which they were all bound to tend as their final goal of supreme bliss, the greater or less imperfection of the material forms in which they were embodied naturally presented a continuous scale of spiritual units from the lowest degradation up to the absolute purity and perfection of the supreme spirit. To prevent one's sinking yet lower, aud by degrees to raise one's self in this universal gradation, or, if possible, to attain the ultimate goal immediately from any state of corporeal existence, there was but one way,-subjection of the senses, purity of life, and knowledge of the deity. "He" (thus ends the code of Manu) "who in his own soul perceires the supreme soul in all beiogs and acquires equanimity toward them all, attains the highest state of bliss." Was it not natural then that the men who, if true to their saered duties, were habituelly engaged in what was most conducive to these spiritual attainments, that the Brăhmanical class early learnt to lock i!!on themselves, even as a matter of faith, as being foremost among the human species in this universal race for final beatitude? The lifo marked out for them by that stern thenry of class duties which they thomselves had worked out, and which, no doubt, must barc been practised in early times at least in some degree, was by no means oue of ease and amenity. It was, on the contrary, singularly caleulated to 1 momote that complete morti fication of the justincts of amimal nature which they considered as indisperasable to the inal deliverance from the revolution of bodily and personal cxistence.

The pious Bribman, Ionying to attain the summum bonum on the dissulution of his trail hotly, was enjoined to pass threngh a succession of four cmber er stages of life, viz. those of brahmachèrin. or relighous stadent; grihastina (or grihamedhin), wr houschulder: van:māein (or vianaprastha), or anchorite : and sonnumin (or himatho), or religious mendicant. Theoretically this course of life was open and even recomrnended to every twice-born man, his distanctive class. occupations heing in that case restricted to the secono station, or that of marricillife ?'seticalls, koverer, those
belonging to the Kshatriya and Vaiśya castes were, no ioubt, contented, with few exceptions, to go through a term of studentship in order to obtain a certain amount of religious instruction before entering into the married state, and plying their professional duties. In the case of the sacerdotal class, the practice probably was all but universal in early times; but gradually a more and more limited propertion scem to have carried their religious zeal to the length of self-mortification involved in the two final stages. On the youth baving been invested with the sign of his caste, be was to reside for some time in the house of some religious teacher, well read in the Veda, to be instructed in the knowledge of the scriptures and the scientific treatises attached to them, in the social duties of his caste, and in the complicated system of purificatory and sacrificial rites. Accerding to the number of Vedas be intended to study, the duration of this period of instruction was to be, probably in the case of Brâhmanical students chiefly, of from twelve to forty-eight years; during which time the virtues of modesty, duty, temperance, and self-control were to be firmly implanted in the youth's miud by his unremitting observance of the most minute rules of conduct. . During all this time the Brälman student had to subsist entirely on food obtained by begging from house to bouse; and liis behaviour towards the preceptor and his family was to be that prompted by respeetful attaehment and implicit obedience. In the case of girls no investiture takes place, but for them the nuptial cercmony is considered as an equivalent for that rite. On quitting the teacher's abode, the young man returns to his family and takes a wife. To die without leaving legitimate offspring, and especially a son, to perform the periodical rite of obsequies, consisting of offerings of water and cakes, to himself and his ancestors, is considered a great misfortune by the orthedox Hindū. There are three saered "debts" which a man has to discharge in life, viz., that which is due to the gods, and of whieh he acquits bimself by daily worship and sacrifieial rites; that due to the rishis, or ancient sages and inspired seers of the Vodic tcxts, discharged by the daily study of the scripture ; and the "final debt" which be owes to his manes, and of which be relieves himsclf by leaving a son. To these three some authoritios add a fourth, viz., the debt owing to humankind, which demands his continually practising kindness und hospitality. Henee the necessity of the man's entering into the married state. When the bridegroom leads the brido from her father's hense to his 0 Kn home, the fire which has been used for the marriage ceremony aecompanics the couple to servo them as their gärhapatya, or domestic fire. It bas to be kept up perpetually, day and night, either by themselves or their children, or, if the man be a teaeher, by his pupils. If it should at any time become extinguished by neglect or otherwise, the guilt incurred thereby must be atoned for by an act of expiation. Tho domestic fire serves the family for proparing their food, for making the five' necessary daily and other occasional offerings, and for performing the sscramental rites abeve alluded to. No food should ever be eaten that has not been duly consecrated by a portion of it being offered to the gods, the beings, and the manes. These three daily offerings are also called by the collective nsme of vaisuadeva, or sacrifiee to all the deities. The remaining two are the offering to Brahmă, i.e., the daily lecture of the seriptures, aecompanied by certain rites, and that to men, consisting in the entertainment of guests. The domestic observances, many of which must be considered as ancient Āryan family customs, surrounded by the Hindūs with a certain amount of adventitious ceremanial, were generally performed by the householder hinself, with the assistance of his wife. There is, however, another class of sacrificial ceremonies of a mora pretentious
sad expensive kind, called trauta rites, or rites based on sruti, or revelation, the performance of which, though not indispensable, were yet considered obligatery under certsin eireumstances. They formed a very powerful wespon in the hands of the priesthood, and were one of the chief sources of their subsistence. Owing to the complicsted nature of these sacrifices, and the great amount of ritualistic fermulas and tests muttered or recited during their performsnce, they required the employment of a number of professional Brähmans, frequently as many as sixteen, who bad to be well rerarded for their eervices. However great the religious merit aecruing from these sacrificial rites, they were obviously a kind of luxury which only rieh people could afford to indulge in. They conetituted, as it were, a tax, voluntary perhaps, yet none the less compulsory, levied by the priesthood on the wealthy laity. It is true that the priest who refuses to accept any reward for ofliciating at a sacrifice is highly eulegized by the Brähmanical writers; but such cases of disisterested zeal seem to have occurred but rarely. The manuals of Vaidik ritual generally enumerate three classes of srautiz rites, viz., ishtis, or oblations of milk, curds, clarified butter (ghee), rice, grain, \&c., animal offerings, and libations of soma. The soma, an intoxicating drink prepared from the joice of the Asclepias acida (a kind of milk-weed, sometines called the meon-plant), must have played an important part in the ancient worship, at least as early as the Indo-Persisn period. It is continually alluded to beth in the Zend Avesta and the Rigveda. In the latter work the hymns of a whole book, besides others, are addressed to it, either in the shape of a mighty god, or in its original form, as a kind of ambrosia endewed with wónderfully exhilarating powers. In post-Vedic mytholegy Sona las become identified with the lunsr deity, to whom it seems to have had seme relation from the beginning. Among the Vaidik rites the soma-sacrifiees are the most. oolemn and complicatel, and theso to which the greatest efficacy is ascribed in remittiug sin, conferring offspring and even immortality. They require the attendance of sixteen pricsts, and are divided inte three groups, according as the actual pressing and offering of the serna occupies only one day, or between one and twelve, or more than twelve days. The performance of all śrauta sacrifices requires two other fires besides that used for demestic rites. The zet of first placing the fires in their respective receptaeles, after due consecration of the ground, constitutes the essential part of the first ishlit, the agnyàdhena, which the householder should have performed by four Brähwans immediately after his wedding. To the same class of sacrifieial ceremonies belong those performed on the days of the new and full moon, the oblation at the commoncement of the three seasons, the offering of first-fruits and other periedical rites. Besides these regular saerifiees, the srauta ceremonial ineludes a number of mest solemn rites which, on account of the objects for which they are instituted and the enormous expenditure they involve, could ouly be performed on rare occasions and by powerful princes. O^{2} these the mest impertant are the rājasūya, or inauguration ceremony of a monarch laying claim to supreme rule, and the asvamedha, or herse sacrifice, a rite of great antiquity, enjoined by the Brahmanical ritual to kings desirous of attaining universal sovereignty. The effieacy aseribed to this ceremony in later times was se great that the performance of a hundred such sacrifiees was considered to deprive Indra of his position as elief of the immortals.
When the bouseholder is advanced in years, "when be perceives his skin become wrinkled and his hair grey, when he sees the son of his son." the time is eaid to bars come for him to enter the third stage of life He should now disengage bimself from all fanily ties,- except that his wife may accompany him, if she chnoses.-and rephis
to a lonely wood, taking with him his sacred fires and the implements required for the daily and periodical offerings. Clad in a deer's skin, in a single piece of cloth, or in a aark garment, with his bair and nails uncut, the hermit is to subsist exclusively on food growing wild in the forest, such as roots, fruit, green herbs, and wild rice and grain. He_{0} nust not accept gifts from any one, except of what may be absolutely necessary to maintain him ; but with his own little hoard he should, on the contrary, honour, to the best of his ability, those who visit his hermitage. His time must be spent in reading the metaphysical treatises of the Veda, in making oblatione, and in undergoing various kinds of privation and austerities, with a view to mortifying his passions and producing in his mind an entire indifference to worldly objects. Having by these means zucceeded in overcoming all sensual affections and desires, and in acquiring perfect equanimity towards everything around him, the hermit has fitted himself for the final and most exalted order, that of devetee or religious mendicant. As such he has no further need of either mortifications or religious observances; but "with the sacrificial fres repesited in his mind," he may devote the remainder of his days to meditating on the divinity. Taking up bis abode at the foot of a tree in total solitude, "with no companion but his own soul," clad in a coarse garment, he should carefully avoid injuring any creature or giving offence to any human being that may happen to come near him. Once a day, in the evening, "when the charcoal fire is extinguished and the smeke no longer issues frem the fireplaces, when the pestle is at rest, when the people have taken their meals and the diskes are removed," he should go near the babitations of men, in order to beg what little food may suffice to sustain his feeble frame. Ever pure of mind he should thus bide his tioie, "as a servant expects his wages,". wishing neither for death nor for life, until at last his soul is freed frem its fetters and absorbed in the eterral spirit, the imparsonal self-existent Brahma.

The nenter term Urahma is met with in the Rigveda bnth in the abstract sense of "devotion, worship," and in the cencrets one of "prayer, hymn." Closely cennected with it is found the masculine term brahmot, "a worshipper, a priest." The popular belief in the efficacy of invocation coastituted a prominent feature of the Vedic symbolism, which the traditional and professienal activity of the peet and minister of wership did, no doubt, much to keep up and foster. In the theesophical speculations of the later Yedic peets this mystic pewer of dovotion found its fullest expression in the receguition of the bráhmă as tho highest dosmical principle, and its identification with the pantheistic conception of an all pervading, self-existent essence, the primary source of the universe. Whether this identifeation was originally due to some extent to the influence of classinterest possibly aided by the ceincidence of name, or whether it was solely the product of a highly-wrought religious imagiation, it is difficult to decide. Certain it is, however, that the term bralka bugan to be used abont the same time as the abstract designation of priestly function and the 'Brâhnanical order in general, in the same way as the word Fshatra came to denote the aggregate of functions and individuals of the military chass

The tendency towards a compreleusion of the unity of divine essence had resulted in some minds, as bas leen marked before, in a kind of inonotheistic notion of the origin of the nniverse. In the literature of the Drahmana priod we mect with this conseption as a common element Jf speculation; and so far from its being considered incompatible with the existence of a universal spirit, Prajapate, the personal creator of the world, is geverally allowed a rominent place in the panthcistic theories. Yet the stste of theolegical speculation, reflected in these writings, is one
of transition. The general drift of thought is essentially pantheistic, but it is far from being reduced to a regular bystem, and the ancient form of belief still enters largely into it. The attributes of Prajāpati, in the same way, have in them elements of a purely polytheistic nature, and some of the attempts at reconciling this new-fangled deity with the traditional belief are somewhat awkward. An ancient classification of the gods represented them as being thirty-three in number, eleven in each of the three worlds or regions of nature. These regiens being associated ench with the name of one principal deity, ihis divisiou gave rise at a later time to the notion of a kind of triple divine government, consisting of Agni (fire), Indra (sky) or Vāyu (wind), and Sürya (sun), as presiding respectively over the gods on carth, in the atmosphere, and in the sky. Ot this Vedic triad mention is frequently made in the Brâhmana writings. On the other hand the term prajäpati (lord of creatures), which in the Rigveda occurs as an epithet of the sun, is also once in the Atharvaveda applied jointly to Indra and Agni. In the Brāhmanas Prajāpati is several times mentioned as the thirty-fourth god; whilst in one passage be is called the fourth god, gnd made to rule over the three worlds. More frequently, however, the writings of this period represent him as the maker of the world and the father or creator of the gods. It is clear from this discerdance of opinion on so important a point of dectrine, that at this time ne authoritative system of belief had been agreed upon by the theologians. Yet there aro unmistakable signs of a strong tendency towards censtructing one, and it is possible that in yielding to it the Brähmans may have been partly prompted by political considerations. .The definite settlement of the caste system sod the Brähmanical supremacy must probably be assigzed to semewhere about the close of the Brähmana period. Division in their own ranks was hardly favourable to the aspirations of the priests at such a time; and the want of a distinct fermula of belief adapted to the general drift of theobgrical speculation, to which they could all rally, was probably felt the more acutcly, the more determined a resistance the military class was likely to oppose to their claims. Side by side with the conception of the Brahmă, the universal spiritual principle, with which speculative thought had alrcady become deeply inbued, the notion of a supreme personal being, the author of the material creation, had come to be considered by many as a necessary complement of the pantheistic doctrine. But, owing perhaps to his polytheistic associations and the attributive nature of his name. the persen of Praja pati seems to have been thought but insufficiently adapited to represent this abstract idea. The espedient resorted to for solving the difficulty was as ingenious as it was charactcristic of the Brähmanical aspira tions. In the same way as the abstract denomination of sacerdotalism, the neuter bralma, had come to express the divine essedce, so the old desiguation of the individual priest, the masculine term brahona, was raised to denote the supreme personal deity which was to take the place and attributes of the Prajapati of the Brälimanas ent Upanishads. By this means the very name of the gen expressed the essential oneness of his nature with that of the diviue spirit as whose manifcstation he was to lo cousidered. Even in the later Tedic writiogs Bralmain is but rarely mentioned; and in some of these passaycs he is expressly identified with Prajapati. It is in tho institutes of Mann, where, ns we have seen, the system of castes is propounded in jits complete development, that bis definite place is assigned to him in the cosmogony According to this work, the universe, before undiscrneed was made discernible in the begiming by the sole, bet: csistent spirit (brahmä). He, then, having willed to produce from his own substance various creatures, created the
waters by meditation, and having placed in them a productive seed which developed into a golden egg, he was born in that egg as the male Brabmã, the forefather (and creator) of all beings. The theory of Brahma being born from a golden egg is a mere adaptation of the Vedic conception of Hiranyagarbha ("gold-embryo"), who is represented as the supreme god in a bymn of the tenth book of the Rigveda.
However the new dogma may have answered the purposes of speculative minds, it was not one in. Which the people generally were likely to have been much concerned; an abstract, colourless deity like Brabmã could amake no sympathies in the hearts of those accustomed to worship gods of flesh and oloot. Indeed, ever since the primitive aymbolical worship of nature had ondergone a process of disintegration under the influence of metaphysical speculation, the real belif of the great body of the people bad probably become more and more distinct from that of the priesthood. In different localities the principal share of their affection may bave been bestowed on one or another of the old gods who was thereby raised to the dignity of cbief deity; or new forms and objects of belief may bave sprung up with the intellectual growth of the people. In some cases even the rorship of the indigenous population may not bave remained without esercising some influence in modiffing the belief of the Arran race. In this way a number of local deities would grow up, more or less distinct in name and characteristics from the gods of the Vedic pantheon. There is, indeed, sufficient evidence to show that, at a time when, after centuries of theological speculations, some little insight into the life and thought of the people is afforded by the literature handed down to us, such a diversity of worship did exist. • Under these circumstances the policy which seems to bave suggested itsclf to the priesthood, anxious to retain a firm bold on the minds of tho people, was to recognize and incorporate into their system some of the most prominent objects of popular devotion, and thereby to establish a kind of catholic creed for the whole community subject to the Bràhmanical law. At the time of the original composition of the great epics two such deities, Siva or Mfahideva ("the great god") and Vishnu, seem to bave been already admitted into the Brahmaniea! 2ystem, where they bave ever since retained their place; and from the manner in whick they are represented in those works, it would, indeed, appear that both, and sepecially the former, enjoyed an extensive worship. As several synonyms are attributed to cach of them, it is not improbable that iu some of these we have to recogaize special names under which the people in different localities worshipped these gods, or deities of a similar nature which, by the agency of popular poetry, or in some other way, came to be combined with them. The places assigned to them in the pantheistic system were co-ordinate with that of Brabmà; the three deitics, Brahmã, Vishnu, and Sira were to represent a tripls intpersonation of the divinity, as manifesting itself respeetirely in the creation, preservation, and destruction of the universe. Siva does not occur in the Vedie hymns as the name of a god, but only as an adjective in the sense of "kind, auspicious." One of his synonyms, bowever, is the name of a Vedic deity, the attributes and nature of which show a good deal of samilarity to the post-Vedie god. This is Rudra, the god of the roaring storm, usually portrayed, in accordance with the element he represents, as a fierce, destructive deity, "terrible as a wild beast," whose fesfilalarrows cause death and disease to men and cattle. He is also called kiapardin ("wearing his bair spirally braided like a shell"), a word which in later times became one of the synonyms of Sive. The Atharoaveda mentions
several other names of the same god, some of which appesr even placed together, as in one passage Bhava, Sarra, Rudra, and Pasupati. Possibly some of them were the names under which one and the same deity was already worshipped in different parts of Northern India This wes certainly the case in later times, since it is expressly stated in one of the later works of the Brähmana period, that Sarra was used by the Eastern people and Bhava by a Western tribe. It is also worthy of note that in this work (the Satapatha-brähmana), composed at a time when the Vedic triad of Agni, Indra-Vayu, and Sūrya was still recogoized, attempts are made to identify this god of many names with Agni ; and that in one passage in the Mohabha. rata it is stated that the Brabmans said that Agni was Siva Althongh this identification can searcely be correct, it seems to point to the fact that, in adapting their speculetions to the actual state of popular worship, the Brähmans kept the older triad distinctly in riew, and by means of it endeavoured to bring their new structure into harzony with the ancient Vedic belief. It is in bis character as destroyer that Sira holds his place in the triad, and that he must, no donbt, be identified with the Vedie Rudra Another very important function appears, however, to have been early assigned to him, on which much more stress is laid in his modern worship-that of destroyer being more especially exhibited in his consort-viz, the character of a generative power, symbolized in the phallic emblem (linga) and in the sacred bull (Nandi), the favourite attendant of the god. This feature being entirely alien from the nature of the Yedic god, it has heen conjectured with some plausibility, that the linga-worship was origiually yreralent among the non- Āryan population, and was thence iutroduced into the worahip of Siva. On the other hand, there can, we think, be little doubt that Sira, in his generative faculty, is the representative of another Vedic god whose Lature and attributes go far to aceount for this particular feature of the modern deity, viz., Püshan. This god, originally, nc doutt, a solar deity, is frequently invoked, as the lopd of nourisbment, to bestow food, wealth, and other blessings He is once, jointly with Soma, called the progenitor of heaven ond carth, and is conpected with the marriage ecremony, where be is asked to lead the bride to the Lridegroom and make her prosperous (Sivatamã). Moreover, he has the epithet kapardin (spirally braided), as bave Rudra and the later Siva, and is called Pasupa, or guardian of cattle, whence the latter derives his name Pasupati. But he is also a strong, powerful, and eveu fieree and destructive god, who, with his goad or golden spear, smites the foes of bis worshipper, and thus in this respect offers at lenst some points of similarity to Rudra, which may have favoured the fusion of the two gods. Tishnu occupies already a place in the Vedic mythology, though by no means one of such prominence as would entitle him to that degrec of esaltation implied in his character as one of the three bypostases of the divinity. Moreover, although in bis general nature, as a benerolent, genial being, the Vedic god corresponds on the whole to the later Vishnu, the preserver of the world, the latter exhibits many important features for which we look in rain in his prototype, and which were most likely the results of sectarian worship or of an amalgamation with local deities. In one or two of thein, such as bis names Vassudera and Yaikuntha, an attempt may again be traced to identify Vishnu with Indra, who, as we have scen, was one of the Yedic triad of gods. The characteristic feature of the elder Vishnu is his measuring the world with his threc strides, which are explaired as denoting either the three stations of the sun at the time of rising, culminating, and setting, or the triple manifestation of the luminous element, as the fre on earth, the lighining in the atmosphere, and the sun in the
heavens. The modern god is represented as undergoing, for the benefit of mankind, a number of avatāras or inearnations, ten of which are espeeially dwelt upen by the fervid imagination of his fullowers. The exact time at which these seyeral episodes were incorperated into the cult of Vishnu cannot at present be ascertained. As they are for the most part conceived in a decidedly Brāhmanical spirit,-the special object for which Vishnu assumes a human form being generally to deliver the people from the oppression of seme wicked tyrannons prince,-it is probable that they were mostly introduced at a time when there was still some danger of the Kshatriyas defying the Brähnanical rule. Of semewhat different origin were, perhaps, two of Vishnu's most popular and important incarnations, v12., these in which he manifests himself in the persons of Krishna and Räma, two heroes whese exploits are celebrated in the Mahãbhărata and Rāmāyana. It is possible that these warriers and their legendary achievements had been favourite subjects of heroic poetry for some time previons to the overthrow of the Kshatriyas, and that, being already regarded by the latter as representatives of Vishnu, they were afterwards recognized as such by the Bräbmans, and thus gave rise to the system of Avatäras.

The male nature of the triad was supposed to require to be supplemented by eaeh of the three gods being associated with a female energy (Sakti). Thus Vāch or Sarasuatī, the goddess of speech and learning, came to be regarded as the sakti, or consort of Brahmā ; Srī or Lakshmī, "beauty, fortune," as that of Vishnu; and Umā or Párvatī, the daughter of Himavat, the god of the Himalaya mountain, as that of Siva. On the other hand, it is not improbable that P ärvat $\bar{\imath},-$ who has a variety of other names, such as Kälz ("the black one"), Durgā ("the inaccessible, terrible one"), Mrahä-devī ("t the great goddess"),-enjoyed already a somewhat extensive wership of her own, and that there may thus have been goed reason for assigning to her a prominent plaee in the Brähmanical system. In later times a speciel sect, that of the Sáktas, or followers of any one of the sakitis, was priacipally devoted to her service; and up to our own days an almost national festival, the Durgà $p \bar{u} j \bar{i}$ or Dasarāa, accompanied by sanguinary sacrifices, is annually, in Septenber or October, celebrated in her honour in Northern and Western India.

A compromise was thus effected between the eseteric doctrine of the metaphysieian and some of the most prevalent forms of popular worship, resulting in what was henceforth to constitute the orthodox system of belief of the Brāh. manicel community. Yet the Vedic pantheon could not be altogether discarded, forming part and parcel, as it did, of that sacred revelation (sruti), which it had been taught was the divine source of all religieus and soeial law (smriti, "tradition"), and being, moreover, the foundation of the sacrificial cercmonial on which the priestly authority so largely depended. The existenee of the old gods is therefore likewise recegnized, but reeognizcd in a very different way from that of the triplo divinity. For while the triad represents the immediate manifestation of the eternal, infinite soul-while it constitutes, in fact, the Brahma itself in its active relation to mundane and seemingly material occurrences, the gods are of this world, are individual spirits or pertions of the Brahma like men and other creatures, only higher in degree. To them an intermediate sphere, the heaven of Indra (the svarloka or svarga), is assigned to which man may raise himself by fulfilling the holy ordinances; but they are subject to the same laws of being ; they, like men, are liable to be born again in some lower state, and therefore, liko them, yearn for emancipation from the necessity of future individual existence. It is a sacred duty of man to worship these superier beings by
invocations and sacrificial observances, as it is to honour the pitris, the spirits of the departed ancesters. The dead, on being judged by Yama, the Plnto of Hindū mythology, are supposed to be either passing through a term of enjoy. ment in a region midway between the earth and the hearen of the geds, or undergoing their measure-of punishment in the nether world, situated somewhere in the southern region, before they return to the earth to animate new bodies. In Vedic mythelogy Yama was considered to have been the first mortal who died, and "espied the way to" the celestial ahodes, and in virtue of precedence to have become the ruler of the departed; in some passages, however, he is already regarded as the ged of death. Although the pantheistic system allowed only a suberdinate rank to the old gods, and the actual religious belief of the people was probably but little affected by their existence, they centinued to oecupy an important place in the affiections of the poet, and were still represented as exercising considerable influence on the destinies of man. The most prominent of them were regarded as the appointed Lokapālas, or guardians of the world ; and as sueh they were made to preside over the four cardinal and (according to some authorities) the intermediate peints of the compass. Thus Indra, the chief of the gods. was regarded as the regent of the East ; Agni, the fire (ignis), was in the same way associated with the south-east; Yama with the sonth; Siurya, the sun(${ }^{(H \lambda}{ }^{2}$ cos), with the south-west; Varuna, originally the representative of the all-embracing heaven (Oípavós) or atmesphere, new the god of the ocean, with the west; Vayu (or Pavana) the wind, with the north-west ; Kubera, the god of wealth, with the north; and Soma (or Chandra) with the north-east. In the institutes of Manu the Loiapalas are represented as standing in close relation to the ruling king, who is said to be composed of partieles of these his tutelary deities. Tha retinue of Indra consists chiefly of the Gandharras (etym connected with кévaavpos), a class of genii, eonsidered in the epics as the celestial musicians; and their wives, the Apsaras, levely nymphs, who are frequently employed by the gods to make the pious devotee desist from carrying his anstere practices to an extent that might render him dangereus to their power. Narada, an a zeient sage, is considered as the messenger between the gods and men, and as having sprung from the forehead of Brahmā. The interesting office of the God of love is held by Kamadera, also called Ananga, the bodyless, beeause, as the myth relates, having once tried by the power of his mischievous arrow to make Siva fall in love with Parratī, whilst he was engaged in devotienal praetices, the urchin was reduced to ashes by a glance of the angry god. Two other mytholegical figures of some impertance are considered as sons of Sira and Pärvatī, viz., Áärtikeya or Skanda, the leader of the heavenly armies, who was supposed to bave been festered by the six Krittikas or Pleiades; and Ganesa, the elephant-headed god of wisdom, and at the same time the leader of the dii minorum gentrum.

Orthodox Brähmanical schelasticism makes the attainment of final emancipation (mukti, moksha) dependent on perfect knowledge of the divine essence. This knomledge can only be obtained by complete abstraction of the mind from external objects and intense meditation on the dirinity, whieh again presuppeses the total extinctiou of all sensual instincts by meaus of anstere practices (tapas). The chosen few whe succeed in gaining complete mastery over their senses and a full knowledge of the divine nature become absorbed into the universal soul immediately on the dissolution of the body. Those devotees, on the other hand, whe have still a residuum, bowever slight, of ignorauce and worldiness left in them at the time of their death, pass to the werld of Brahmià, where their souls, invested with subtile corpereal frawes, await their reunion with the
eupreme. The pantheistic doctrine which forms the foundation of the Brāhmanical belief found its earliest systematic exposition in the Mīmansā philosophy. Inasmuch as its tenets were supposed to be in perfect harmony with the sacred scriptures, the Jīmannsä was regarded as the only true orthodox scheol of philosophy. It divided itself iuto twe parts or branches, viz., the Puirva- (prior) or Karma- (work) Mimānsā, the practical, and, no doubt, older school of Jaimini, which prepounda a system of reasoning with a view of facilitating the correct interpretation of the Veda; and the Uttara- (latter) or BrahmaMimansā, or commonly called Vedanta (conclusion of the Veda), the metaphysical system ascribed to F'yasa, which professes to supply a complete exposition of the theological doctrines adrauced in the Veda, especially in its speculative portions, the Upanishads. But other darsanas, or philoaophical systems, were started, which, though admitted inte the pale of orthodoxy, were yet considered as not altogether compatible with a belief in the revealed character of the scripturcs. These were the Sänkhya schoel, founded by Kapila, with its more medern branch, the theistic Yoga of Patanjali; and the dialectic Nyāya of Gotama, with the atomistic Vaiseshika of Kanäda. The time at which these several schools originated is still very uncertain; but it is highly probable that at least the tro Mimãasās and the Sankhya preceded Buddhism. The Vedānta seemed to be unable satisfactorily to account for the origin of matter, the existence of which its followers in later times found themselves compelled altogether to deny, and to reclare to be a mere illusion (māyä) produced hy imperfect knowledge of the soul. Kapila cut the knot by proclaiming the eternal existence of a material principle, unconscious, but endowed nith volition in regard to its orn development; from it all matter had emanated, and into it it would ultimately reselve itaelf. He called it Pradhäna, ("principal" thing) or múla-Prakriti ("original nature"). By the side of this plastic element he recognizes the existence of a primary apiritual essence (ātman, "soul," or purusha, "person"), which is not one but manifold, and has from all beginning entered into matter. It is in itself unintelligent ; but being in the first place indued with a subtile body termed the "great one" (mahat), which conasts of intelligence (buddhi), and is the first emanation of plastic nature, it thereby receires the faculty of knowing. A being composed only of these elements is the Sannkhya deity which is thus partly material, its aubtile body (buddhi) being the aecondary source of all further developinents. The immediate production of the intellectas principle is the ahankāra ("I-making," i.e., egotism; self ${ }^{2}$ consciousness), which, combined with the spiritual element, constitutes the intelligent, self-conscious, individual soul. In this way Kapila derives all that exists from twentyave principles (including the twe primary essences), perfect, knowledge of which qualifes the soul for emancipation from its connection with matter, the source of all pain. By predicating volition of the spiritual principle and withholding it from matter, the eternal existence of which he likewise recognized, Patanjali became the founder of the theistic (sesiciara) Sankbya (ie., the system with a god, stara) ; whereas Kspila's doctrine was termed nirissara, atheistical The $N^{\prime} y \bar{a} y a$, including the Vaiseshika, on the other band, represents the univerae as having emanated from nine primary substances, five of them-viz., earth, water, light, air, and mind (manas)exiating eternally in the form of atoms; three (cther, time, and place) being one and infinite; and soul (atman) being either one end infinite as the supreme spirit, the omniscient
Lord (zuvara), or manifold in the shape of the vital spirit (6f animata beings (jīuātman).
Tho taachings of these masters, especially those of

Kapila, were thus decidedly antagonistic to the doctrine of an omnipotent creator of the world ou which the Brahnanical system was based. So far, herwever, from acknowledging their heterodoxy, they never failed to fall back on the Yeda, as the revealed source of religious belief, to establish the truth of their theories; and se much bad liberty of speculative thought become a matter of tradition and necessity, that no attempt seems ever to have been made by the leading theological party to put down such beretical dectrines, se long as the sacred character of the privileges of their caste was net openly called in questien. Yet internal dissensions on such cardinal peints of belief could not but weaken the authority of the bierarchical body ; and as they spread beyond the narrew beunds of Brabmanical schools, it wanted but a man of moral and intellectual pewers, and untrammelled with class prejudices, to render them fatal to pricstly pretensions. Sucb a man arose in the person of a Sakya, prince of Kapilavastu, Gautama, the founder of Buddhism (about the 5th or 6th century вc.) Had it only been for the philosophical tenets of Buddha, thes need scarcely have caused, and probably did not cause, any great uneasiness to the orthodox theologians. He did, indeed, go one step beyond Kapila, by altogether denying the existence of the soul as a substance, and admitting only certain inteicetual faculties as attributes of the body; perishable with it. Yct the conception which Buddha substituted for the transmigratery soul,-viz., that of karma ("deed"), as the sum total of the individual's good and bad actions, being the determinative element of the form of his future existence, might have been treated like any other speculative theory, but for the practical conclusions be drew from it. Buddua recognized the institution of caste, and acceunited fur the social inequalities attending on it as being the efice:s of karma in former existences. On the other hand he thto. gether denied the revealed character of the Ycda and the efficacy of the Brähmanical ceremonics deduced from it, and rejected the claims of the sacerdotal class to be the repositaries and divincly appointcd teachers of sacred knowledge. That Buddha never questioned the truth of the Brähmanical theory of transmigration shows that this early product of speculative thought had become firmly rooted in the Hindu mind as a point of belief auounting to a moral cenviction. To the Hindū philesophcr thas doctrine seemed to acceunt satisfactorily for the aplarent essential similarity of the rital elcment in all animate beings, no less than for what elsewhere has led honest and logical thinkers to the stern dogna of predestination. The belief in eternal bliss or punishment, as the just recompense of man's actions during this bricf term of human life, which their less reflective forefathers had at one time beld, appeared to them to involve a moral impossibility. The equality of all men, which Buddha preached with regard to the final goal, the niriana, or estinction of karma and thereby of all future existence and pain, and that goal to be reached, not by the performance of penance and sacrificial worship, but by practising virtue, could not fail to to scceptable to many peeple. It would be out of phace bere to dwell on the rapid progress and internal development of the new doctrinc. Suffice it to say that, owing no doubt greatly to the sympathizing patronagc of ruling princes, Duddhism appears to bave been the state religion in most jarts of India during the early centurics of our cra. To what extent it became the actual creed of the bedy of the peeple it will probably be ampossible ever to ascertain. One of the chief cffecta it produced on the worshiy of the old gods was the rapid decline of the authority of the orthodox Brāhmanical dogma, and a considerable development of scctarianism. Among the great variety of dities :/ the pantheory, Sira, ǐrshme, and Pärrali bave since clainted
by far the largest shane of adoration, and it is in syecial accounts of the Síaiva, Vaishnava, and Santa sects rather than in an exposition of the Brabmanical belief, that the religions history of India from about the berinning of our era can ba dealt with satisfactorily. At that time the worship cf Vishnu in his most popular aratiar, in the person of Krishna, appears to bave received much conntenance at the hands of the priests, with a viem of counteracting the growing influence of Buadhism. Tho sectarian spirit gave gradually rise to a special ciass of works, the modern Puranas composed for the express purpose of promoting the worship of soms particular deity. In the 8th or 9th sentury Siunkera-ăchārys, a Malabar Eräjman of the Saira eect and Vedanta school of pilosophy, made an attempt, by ongaging in cont:oversy with the leaders of various eects, to restore tho Brabmanical system of belief to its former imposing position. Ifis examplo and teachiags seem to hara inenited tho Etuhmanical comotunity with a grod deal of reiigious zeal, and even fazaticiam, nud thus to have greatly contributed to the fach overthrow of the Buddbists. Ia the Th century tho authority of Sakyaziouni's doctrine was already on tho wane, as is evident from Biouen Thsong's complaints of the number of ruined temples and deserted monasteries, and tho great proportion of heretics. At tho time of Sankara its declins must have been still moro adsanced, and a few more centuries probably sufficed to mako the last liring remains of the Buddhist feith diaappear from the contment of India; except, indeed, in Nepal, where it prevails to this day. There also atill caista in India a very imporiant sect which scems to hare early brazched off from tho Budahist doctrine, viz, the Jains. Although, in tino long rua, Judahism has been cnab!e to maintain the ground it had won from tho Brabmans, tho huroanizing spirit of its ductrines has left a deep impress on the IEindumiad. Oue of tho practical and loast selutary efecis it has produced is the adoption of monastic insitictions ly most of the Brähmanical sects. The maiks or conjenta, in which a coneiderable portion of the clergy of the variona religions budies roside togetber, are presided over by matanats or cuicricrs, and are scatiered all orer India Siankara founded soveral catablishments of, this kind in various paris, especisily oce still existing su Śriugcri, on tho Western Ghats. In spito of its levelling toddencie3, Buddhism seems never to have uncceoded in checking the further development of the caste rystem. At the time of Sankara seventy-two mized classes, or eighteen subdivisions of each of tho four original castes, are said to have existed, and ever since they have become more and more numerous. Indeed, thers can be no doubt tiat Hindüs do not feel, and perhaps never felt, their class ivstrictions as being in any way burdensome, or still less a disgrace to them, and that oven the lowest man looks upon bis easte as a privilege as high as that of tho Bräbmar. In the opiniun of the Prihmens only one oriciasl caste is now axtant, viz., their own, all ihe others having resulted from suceessive intermixtures.

Mr Sherring, in his Mindu Tribes and Castes, makes tho following remarks on the Enuhmanical caste at the present day:-"The Brahman occupies the highest rank anong Kindus for at least three rezrons. The first is his assumed eanctity. By the peorie generally he is regarded as a pure, stainloss, twice-horn being, dizine as well as human, worthy of unbounded admiration and worship. He is the priest of the IIndu religion, directing the coremonies performed at tho temples, sacied mells, sareal tanks, sacred rivers, and at ril hallowod phaces thronghout the land. He is present to arnction, end give effect to, the great social fustivals of his countrymen beld at marriages, at births of cons, arel at c. Ala. Ho easts the horoscope, tells the lucky davs, gives Sicilturl counsel whispers mantras or ingsterions words,
evecutes magical incantations and charms, and is at onco houscho'l god, family priest, and general preceptor and guide in behalf of the many millions of Hindus residing in the vast country lying between the Himalayas and Capo Comorin. The second reason of the Brahman's superiority is that, for many ages, perhaps from tho outse: of his career, when with other Aryans he first entered the plains of India, ho has been intellectually in adrance of the rest of the Eindu race. . . . The third reason is a consequent of the second. The Brahman is not only a thinking, bat also a reading man. He possesses and, perbaps, reads the holy canon-Veủas, Shastras, and Purāas. He has been the author of Hindu literature. . . . Light of complezion, his forebead ample, his countenance of striking significance, his lips thin, and mouth expressive, his eyes quick and shart, his fingers long, his cartiage noble and almost sublime, the true Brahman, uncontaminated by European inlluence and manners, with his intense self-consciousness, with the proud conviction of superiority depicted in every muscle of his face, and manifest in every movement of his body, is a wonderiul specimen of bumanity walking on God's earth. Yet the Brahman Las lived his day. His prestige is rapidly on the decline, and is only maintainel at its ancient pitch in remote villages and in the fastnesse. of superstition in great citiea. Here, as of old, it eavelopwa bim like a glory. But the further he mores from sucis places, the more dim becomes the glory until it faces aray altogether. Education and other infuences are treating the Brahman roughly. Iet the fault is his own. He has had a better start by reason of his great natural endowments than any Mindu of the other castes below him; but lie Las neglected his opportunities. I fear he has been too provid, too self-satisfied to a vail himself of them."

On the modern observance of religious duties Professor Wilson remarks :-"Now it is true that in the present constitution of Indien society the distribution of the periods of life, beyond that of the student, is never regarded except ty a few, who prefer a life of lazy mendicity, or by some hali-crazed enthusiast, who thinks it possible to realize the letter of the law. The great body of the people, Eriahmans included, pursue their worldly arocations as long is their faculties permit, spend the decline of life in the hosom of their families, and die peaceably and deeently at home. But although the practice is discontinued, the doctrine remains and infuencea opinion; and devotional ceremonies, pilgrimage, penance, and abstract contemplation have an cadue preponderance in the estimation of the people, eved tho best informed among them, over active duties and the precepts of morality. As to the common people they have a still lower siale, and they find a ready substitute for tho inconveniences of all morai restraint in tho fervour of that faith which they place in Vishnu, and tho unwearied perseverance with which they train a parrot or a starling to repeat his nacees, to articulate KrishnaRādhā, or Sitā-Tiān.'

The study of the ancient literature of tho Hindus, has taught as that some practices which have hitherto, or until recently, prevailel in India, and which haro contributed so much to bringing llinjui morala into diarepute, are but comparatively monern ionorations. Thus, the rite of suttic (properly suti, i.e., "the faithful wife"), or roluntary immolation of whenss, which wes abolished some thirty feurs ago with considerable dificulty, seems to havo sprung up oricimally as a local habit arsong the hishatriyas, and, on becoming moro and more trecalent, to have at lengtls receival brahmanical sunction. Tho alleged eonformity of the rite to the ILindu scriptures has been shown to hav: rested chielly on a misquotation, if not an intention... garbling, of a ecttain passage of the Rigveda, which, so f in from authorizing the concremation of the widom, bids $L:$
return from the funeral pile to her home and resuma her worldly duties.

Cases of infanticide are still, unfortunately, too common in many parts of India, especially among the Rajputs. To thie honour of the priests be it aaid, however, that they Lave never sanctioned this abominable practice. Its origin has, it appears, to be sought in the enormous extravagance of wedding feasts, and a mistaken notion of parents being dısgraced by their daughters remainıng husbandless. Hence also the practice of early marrages, which is the more mischievous, as Hindū law does not allow widows to remarry.
'l'be cow has been held in high honour in India from early times. This religious feeling was not, however, carried formerly to the extreme to which it is carried now-a-days, when the slaughtering and eating the Hesh of kine is considered as one of the most beinous crimes. It has, on the contrarg, been shown conclusively by a Hindu acholar, that beef formed in former times a staple article of food in India, and that in showing hospitality to an honoured guest it played as prominent a part "as did the killing of the fatted calf among the Jews"

See H. H. Wilson, Essays on the Religion of the Hindus. J Muir, Original Sanskrit Texts; M Miller, History of Ancient Sanskrit Literature; C. Lassen, Indische Altcrthumshunde. Elphinstone, History of India, ed. by E. B. Cowell.
(J. E.)

BRAHMAPUTRA, one of the largest rivers of India, with a total length of 1800 miles, rises near the lake Mansarowar in the plateau of Thibet, where it is known by the name of Sanpu, flows eastward for about 1000 miles, and skirting round the eastern passes of the Himalayas not far from the Yang-tse-kiang and the great ruver of Cambodia, patera the plain of British India on the north-eastern frontier

Aasam. It then runs westward, dividing the province
Assam into two unequal portions, turas southward into Lastern Bengal, and joins the Ganges opposite Goalanda, the terminus of the Eastern Bengal Railway. The onited stream then flows south-west, joins the Meghna, and after another aouthern stretch of about 100 miles, empties itself into the Bay of Bengal. The body of water formed by the union of these three noble rivers, the Brahmaputra, Ganges, and Meghna, expands during the latter part of its course into a vast estuary, studded with large islands The Brahmaputra proper in Assam is formed by the unson of three streams, in $27^{\circ} 45^{\prime} \mathrm{N}$. lat. and $95^{\circ} 30^{\prime} \mathrm{E}$. long., -t the Sanpu or Dihang, the Dibang, and another stream, which, although the least of the three, the Hindus have taken as the main branch, honouring it with the name of Brahmaputra, and sanctifying it in their mythology This branch, which many European writers hava accepted as the main Brahmaputra, takes its rise in a valley called the Brahmakundn, no the side of the eastern extremity of the Himalaya Sountains bedeath the snowy range.

The upper part of the Brahmaputra is entirely in Thibet, and divides the broal plateau drained by the very elevated Thibetian hates from the narrow plateau which divides the northern and southern Hirnalayan ranges, where the ambents of the Ganges spring from perennial snow. At the western extremity of the Brahmaputra basin the main river is 14,000 feet above the sea, and after a course of 600 miles it is atill 11,000 feet high. Nothing is known cf its passage across the Himalaya Mountains. The features of the passage are probably similar to tuose exhilited by the gorge of the Sutlej; but it is a reproaeh to the science and enterprise of the 19th century to allow such a problent to remain unsolved. Eastward the basin of the Brahmaputra is beunded by that of the Yang-tse-Kiang, whieh here flows through tremendous gorges on its way to the plains of China and the Yellow Sea. Some contend that the basins of the Irawadi, Salwin, and Cambodia rivers, are interposed between the Brahmaput and the Yang.tse-Kiang, although they approach each other withnn 150 miles. On the south, the Patkai Mountains, terminating in the Manipur and Chittagong bills, separate the Brabmaputra from the Irawadi and the basins of the Arakan coast. The prineipal trihutaries of the Brahmaputra are the Dibru, Euri Dihing, Disang, Siblansiri, Manás, Bághmi, Dharla and Tista. The Brahmaputra
forms many islands during its eourse; among which that of Majuli, encle sed by the Brabmaputra and its braneh the Lobit, contains an area of 282,165 aeres, and is well inhabited and cultivated. In Assano the Brahmaputra also bears the name of the Hiranya, and above its junetion with the Ganges it is called the Jamuai. The prineipal towns on its banks in Assam are Dibrugarh. Tezpur, Gauháti, Goalpara, and in Bengal Sirajganj. Its volume of water has been computed at Goalpara during its lowest ebb at 146,188 cubic feet per second. During the rains, when the river attains a height of 30 to 40 feet above its common level, its body of water may fairly be computed at four times the above quantity The Brahmgputra is navigable as far as Dibrugarh, but in the dry season only for steamers of light draught. In the rains it overflows its banks and spreads over the country for bundreds of square miles. At Goálanda, where it joins the Ganges, the current is so strong during the rains, and the eddies and whirlpools formed by the meeting of the waters so numerous, that large and powerful river steamers are often unable to make headray, and have to he for days until the river subsides. The main branch of the Brahmaputra formerly flowed through the eastern district of Maimansinh, but the greater part of its water now finds its way through the Jamuna. The total length, as above stated, is 1800 miles; but if its souree be taken at the Brahmakunde, the length of the river only amounts to 930 miles. Until 1765 the Brahmaputra River was unknown iu Europe as a first-class river, and Major Rennel, on exploring it, was surprised to find it larger than the Ganges. The bore, or npward wave caused by the sudden influence of the tide, occurs in all the passages betreen the islands of the estuary formed by the united streams of the Brahmaputra, Ganges. and Megbná
(w w H.)
BRAIN See Anatomy, Payshology, Psychology, and Mental Diseases

BRAINERD, DAvid, one of the most zealous and successful of modern Christian missionaries, was bord at Haddam, in the state of Connecticut, m 1718, and ded October 9, 1747, in the house of his friend President Edwards. His heronc and self-denying labours among the Amencan Indisns wore out in the course of a few jears a naturally feeble constitution, but left behind them important fruits. The narrative of his mission is contained in his journal published in 1746 . His life, compiled chiefly frour his own diarg, was written by President Edwards, and has gone through many editions. Brainerd was a man of strong mental powers, extensive knowledge, and great sagacity; and as a preacher lec was forcible and pathetic

BRAINTREE, the Rannes of Domesday Book, a markettown of Essex, eleven miles N. by E. of Chelmsford. It is onc of the polling-places for North Essex, and is the seat of the Braintree Poor Law Union The parish church, St Michael' 8 , is a finc Gothie edifice of carly date. A corn exchange and a mechanics' institute may also be mentioned. The bishops of London had at one time a palace in the town, but there are no remains of the building. The manufactures of silk and crape, which employ about 1000 persons, hase quite superseded that of woollen cloth, which was introduced by the Flemings who fled to England to escapo the persecution of the duke of Alva Straw-plaiting is also carried on There is a free school in the town, besides geveral charities. Two annual fairs of three days each are held here, commeneing May 7 and Octoher 2 Population of the parish in 1871, 4790

BRAKE, a town in the Grand Duchy of Oldenburg, ou the left bank of the Weser, about half-way between Bremen and the mouth of the river. It was for centuries the port of Bremen; and though, sunce the founding of Bremerbaren, it no longer possesses a monopoly of the river traffic as before, it still continues to flourish Large docks have been recently constructed, and a railway has been opened from the town to Bremen. Ship building and the wearing of woollen cloths are carried on to some extent. Population in 1871, 3800

BRAKE is an instrument by means of which mechanical energy may be expended in overooming friction. It is used for several entirely differcut purposes, the priacipal of these being (a) to limit or decrease the velocity of, or in some cases to bring completely to rest, the body or system
of bodies imparting the energy; (b) to measure directly the amount of frietional resistance between two bodies; or (c) to measure, indireetly, the amonnt of energy given out by the body or system of bodies producing it.

The first case is the familiar one occurring in the brakes of locomotives, railway carriages, and wheeled vebicles generally, and in those applied to such machines as cranes, winches, \&c. Here some system of bodies,-or for simplicity's sake we may say some body,-originally at rest has been set in motion, and has received acceleration up to a certain velocity, the work which has been done in that accelera"tion being stored up as" aetual energy" in the body itself. Before it ean be brought to rest it must part with this energy, expending it in overeoming some external resistance. Very frequently the actual energy is very large in proportion to the usual resistance opposing the motion of the body, so that that motion would continne-for a long time, or through a great distance, before the whole energy had been expended and the body brought to rest. For the sake of convenience, and in certaib cases for the sake of safcty, it is often neeessary that this time or distance should be greatly shortened. This may be done by artifeially increasing the resistance for the time being, and the most convenient method of doing this is the use of a brake.

The construction of railway brakes falls to be treated in detail in the article Railways. In other rebicles the brake belongs generally to one of two classes-it is either a block which can be prosised against a wheel by a ouitable arrangement of levers under the control of the driver, or a slipper or "skid" which can be placed under a wheel, and which is attached by a chan or otherwise to the body of the vehicle. The increased resistance is due in the one ease to the friction between the block and the wheel, and in the other to that between the skid and the road.

In the case of hoisting-machines the brake is used very frequently as a means of controlling the veloenty of the descent of the load. In the process of "lowering by a brake," its frictional resistance is alone opposed to the load, and suitable meehanical means are provided for varyung that essistance so that the velocity of the descending weight may be kept within the desired limits. The brake used in these machines very frequently consists of a cylindrical pulley or narrow drum encireled by a flexible beit of iron or steel. One end of this belt is fastened to the framing, and it is so formed that in ordinary work the drum revolves in it nithout tonching it. When necessary, however, the position of the movable end can be so altered as to bring a larger or smaller area into contaet, the surfaces being held together with a pressure which can bo varied to suit the requirements of each case This is effeeted either by a cimple lever (in small machines worked by the foot), or for heavier work by the aid of a serew and hand-wheel.

In what are known as "differential" brakes the brakeband is not fixed to the frame of the machine, but both its ends are attached to points in a movable lever in such ? way that motion of the everafficts them unequally, "ghtening one more than it losens the other, or loosening one more than it tightens the other. The principle of such an arrangement is shown in fig. 1. Here A is the pulley, B the brakeband, and C' tho working lever; B being aftached to the latterat points

Fio.1-Differential Brake. 3 and b unequally distant from the fulerum D. It is obvious that for any motion of C the angular motions of the arms Da and $\mathrm{D} d$ are equal, but the instantaneous
linear mations of the points a and o in the directions of the band are unequal; varying directly as $D a, D b$, the ratio of the normals from D upon those directions. Thus any motion of C to the right tends to tighten we lower part of the belt and to slacken the upper part, but the slackening takes place through a larger distance than the tightening, and the belt is therefore released from the drum. By moving the lever to the left, on the other hand, the opposite action oceurs, and the belt is correspondingly tightened.

Instead of using the friction between two solid bodies, in some special cases the frictional resistance of a fluid is employed, as in what Professor Rankine called fan brakes and pump brakes. In the one case the motion of revolving blades (eoramonly) is opposed by the resistance of the atmospheric or liguid medium surrounding them, and in the other the motion of a liquid is opposed by the resistance dne to a narrow passage or orifice.

The measurement of the frictional resistance between two bodies of known material or form is often of great importanee, and it is still more often of importance to measure, by means of the frictional resistance which it can balance, the amount of e ergy given cut by some engine or machine. Buth these measurements, can be and aro frequently made by means of brakes. For this purpose the apparatns must be so made that the actual resistance can be accurately measnred,-that this resistance can be kept sensibly constant for any length of time, but can be altered at will,-and also that the brake can be kept continuonsly at work for any desired period. The brake used for this purpose common!y takes the form of a revolving drum of iron, encircled by a ring of hard wood blocks connected together by thin iren bands. To this ring is attached a weight of known magnitude, at a known distance from the centre of the pulley. The wheel being set in motion the blocks can be gradually pressed upon it by a serew until the friction occurring is just sufficient to lift the weight and keep it off the ground or its support. So -long as these conditions can be waintained the frictional resistance is exactly known, for its magnitude must be to that of the weight inversely as thair distanees from the eentre of the wheel, and the energy expended in any given time will be equal to this resistance minltiplicd by the spaco passed through in the time by any point in the periphery of the drum.

Figs 2 and 3 show the construction of a brake of this kind, conicd from drawing kindly furnished by MrW. H. Maw, the desiguer. The

Fias. 2 and 3.-12 R.P. Friction Brake (designed by W. H Mtsw)
drum A has a turned cylindrical surface 32 inehes in diameter and 31 inches wide; it is fixed unon the sheft B whih which it tevoires. 'The brake-ring consists of fourteen woodes horks CC, co: rected
by the etraps DD of hoop-iron, and 60 arranged that they can be tightened up by the screw E. To the ring there is attached at G a pin with pointed ends, from the centre of which hangs the rod H carrying, by means of the plate at K , the weights. The blocks are made to exert such a pressure npon the wheel that the pin G, from which the weights are suspended, remains alrays in the position shown, its pointed ends coinciding with the top of gauges-upon the fired wooden beams beside the brake. This apparatus is made to a certain extent self-adiusting by means of two compensating levers. The upper end of one of these, M, moves freely through an eye N some dis. tance below the centre of the shaft; the hoop-iron rings are attached to its lower end at O and P, the latter further from N than the former. If N coincided with the centre of the shaft the lever would cause no impediment to the motion of the ring along with the drum ; as it is actually placed, however, if any motion occur the point 0 must move through a relatively smaller distance than in the other case, because the ratio $\frac{O N}{\mathrm{PN}}$ is less than $\frac{O B}{\mathrm{~PB}}$. The consequence of this
is, that if throngh any cause the drum carry the ring round with it through any small distance, O tends to tighten the belt, and P to elacken it, but the relatively larger movement of the latter causes the final result to be a slackening, so that the reight drops back intolits proper place. If, on the other hand, the ring hegins to slide back on the drum, a similar, but reversed, action at OP increases the pressure on the blocks, and the drum again gripping them, bringe the weight back into its original position. The dash-pot L contains a piston very nearly fitting it, below which is water or oil, its object being to prevent too sudden a fall of the weight. It is really a little brake in itself, in which the energy given ont by the descend. ing weight is expended in overcoming the frictional resistance encountered by the water in passing uprards through the narrow spacc round the piston.

In order that a machine of this kind may be run continuously at a high velocity it requires careful and abundant lubrication if the surface be too small, water will have to be nsed, but with a welldesigued and not over-worked brake, tallow is the best lubricant.

With regard to the proper proportioning of surface, numerous ex. periments with brakes of different sizes run at different sjeeds seem to show that the surface required varies as the energy transmitted, and (approximatcly) inversely as the peripheral velocity of the drum. The conclusions drawn from them, put in the most general form, are (for a brake having a cast-iron drum and woodep blocks) as follous: -Let E he the energy (in foot $\mathbf{l b s}$) to be absorbed per minute (that is, the work done per minute by the machine driving the brake), T the number of revolutions of the drum per minute, I its radius (in feet), and a the area (square inches), and b the breadth (inches) of the drum ; then in order that the latter may not heat, "a should not have a smaller value than $286 \frac{\mathrm{E}}{\mathrm{T}}$, while it 18 frequently and very properly made as muçh as $357 \frac{\mathbf{E}}{\mathbf{T}}$. Expressing the same relation in other terms, we have $b=$ from $0038 \frac{\mathrm{E}}{\mathrm{RT}}$ to $0048 \frac{\mathrm{E}}{\mathrm{KT}}$, or from $024 \frac{\mathrm{E}}{\mathrm{V}}$ to $.03 \frac{\mathrm{E}}{\mathrm{V}}, V$ being the peripheral velocity of the drum in feet per minute. If the work be expressed in horses' power (P) the equation is very nearly equivalent to $b=$ from $\frac{800 \mathrm{P}}{\mathrm{V}}$ to $\frac{1000 \mathrm{P}}{\mathrm{V}}$.

A brake may have automatic apparatus attached to it for showing or registering its speed or performance.
(A. B. W. K.)

BRAMAH, Joseph, a practical engineer and machinist, was born at Stainborough, in Yorkshire, on the 13 th of A pril 1749. He cxhibited at a very early age an uuusual talent for the mechanical arts, and having been incapacitated, when he was about sisteen, by an sccidental lameness in his ankle, for the pursuit of agricultural labour, ho was apprenticed to a carpenter and joiner. When the term of hia cagagement had expired he obtained employment for some time in the workshop of a cabinetmaker in London, end soon after established himself as a principal in that business. His first patent for some improvements in the mechanism of water-elosets was taken out in 1783. In the following year he took out a pateat for the peculiar locks which have long been named after him. His fertile invention led him to derise-new arrangements for pumps, fire-engines, steam-boilers, and paper mackinery, for all of whieb he obtained patents. The invention which has proved of most practical service, the hydraulic press, was first brought forward in 1796. Its principle is that of the bydrostatic parador, snd it has been found of very great
use in all operations requiring the application of immease mechanical foree. In 1806 Bramah patented a very ingeaious printing-machine, specially adapted for bank notes, which was adopted in the following year by the Bant of England. During the latter years of his life Bramah erected some large machines at the Thames bank for sawing stones and timber, began to devise some m. provements in bridges and in locks for canals, and was at one time actually employed in the execution of somo water-works belonging to the department of the ciril engineer, which he completed with ability and success. H.i great and various exertions appear in some measure iv hare eshausted the strength of his coustitution; and his last illness was immediately oceasioned by a severe cold, taken in the prosecution of his experments in Holt Forest on the tearing up of trees. He died in his sixty-sisth year, on the 9th December 1814. (See notice of his life and works by Dr Cullen Brown in New Monthly Magazme, 1815.)

BRAMANTE, or Bramante Lazzari, one of the most celebrated architects of Italy, famons also as a painter, ras bora at Casteldurante, in Urbino, in July 1444 . He showed a great taste for drawing, and was at an early age placed under a painter of some distinction, Fra Bartolommeo, called Fra Carnavale. But though he afterwards gained some fame as a painter, his attention was soon absorbed by the sister art, architecture. Ho appears to have studied under Scirro Scirri, an architcet in his native place, and perhaps under other masters. Ho thea set out from Urbino, and procceded through several of the towns of Lombardy, executing works of various magnitudes, and examining patiently all remains of ancient art. At last he reached Milan, drawn thither by tho fame of the great Duomo, and remaned there for several years. Information as to this part of his life is singularly seanty, but he scems to have left Milan for Rome about 1500 . He painted some frescoes at Rome, and devoted himself to the stady of the ancient buildings, both in the city and in all the district as far suuth as Naples. About thas time the Cardizal Caraffa, hearmg of his studies in architecture, commissioned hiew to rebuild the cloister of the Convent della Pace. The celerity and still with which Bramente accomplished his task gained fur thim the good offices of the cardinal, who modroduced hin to Poje Alexander VI. llo begau to be consulted un nearly all the great architectural eperations in Rume, and excecuted for the Pope the pulace of the Cancelletia, ur chancery, which was much admired. But under Alexauder's suctessur, Julius Il., Bramante's talents began to obtain an adequato sphere of exercise. His first large work was to unite the straggling buildings of the palace and the Belvedere. 'This he accomplished by means of two long gallenes or corridors enclosing a court. The design was only in jart completed before the death of Julius and of the architect. So impatien: was the Pope and so cager was Bramante, that the founda thons were not sufficiently well attended to; great fart of it had therefore soon to be rebuilt, and the wiole is novo so much altered that it is hardly possible to decypher the original desjgn.

Fiesdes executing numerous smaller works at Rome and Bologna, among which is specially mentioned by older writers a round temple in tho cluister of San Pictro-aMontorio, Bramante was called upon by Pupe Julius to take the first part $1 n^{*}$ one of the greateat architectural enterprises ever attempted, tho rebullmy of Si Peter's. Bramante's designs wero complete, aul he Inshed on the work so fast, that before has death he had erected the four great piers and their arches, and completed the cornice and the vanlting in of this portion. He also vaulted in the princinel chanel. After ins doats in 1514 hin das:gn was
much altered by the architects engaged to carry on the work, and in particular by Michel Angelo Competent judges are strengly of opinion that Bramante's designs, if carried out, would have had a much greater effect than those which were finally adopted

Bramante had a great influence in Italy. By bis careful study of the ancient forms of art he became the real introduecr of the so-called elassical style His own genius was bold and inventive, delighting in mass and breadth. but occasionally failing in the perfection of detail

BRamantino See Suarda
BRAMBANAN, a village in Java, notable for extensive and remarkable runs of Hiadu character The place lies directly soutli of the great volcante cone of Mis-Api (8640 feet) in the territery of the sultan of Yugya-karta (written by the Dutch DjoLjo-karta), and 10 miles east of the capital, just on the border of the other native state called Surakarta or Solo.

The remains embrace six groups of temples, besides troo buildings intended for residence, perlaps monastic. The most remarkable of the former is that called Chandi Sewu, or "The Thousand Pagodes." The centre of the group is a large tenple of 'cruciform. plan, standing on a terraced basement, and surrounded by four (origiaally, perbaps, by five) concentric squares, formed by rews of small detached cells or temples, the whole area forming a square of upwards of 500 feet to the side. Statements differ as to the exact number of these cells, but a plan given by Raftes shows 238 as new standing. - They are sculptured externally with mythological relieff, each is crowned with a small dagoba of the usual Buddhistic pattern (i.e., very like the minor domes over the west portico of St Paul's), and probably all originally contaned images of Buddha in the ustal cross-legged attitude (of which a few still remain), whilst the central shrine contained, no doubt, a great image or images of Buduha also. Mr Fergusson thinks the grour to be Jana rather than Buddhist; and this a closer examination of the images and their symbols alone can decide. But similar series of sbrines, clustered round a centrat pagoda, are found in Buddhist Pegu. There is a professed restoration of the central temple of Chandi Scwu in Raftes'e Iistory; but the details of this plate (pl. 40) are not to be relied on.

Another Buddhist edifice, single but more perfect, is known by the name of Chandi Kali Baneng. This also is eruciform ; it stands on a boldly moulded basement, and the external decaration eshibits pilasters richly carved in screll-work;, and massive double caraices. Small Buddhas in niches reman, but the great figure which must have oecupied the interior has disappeared.

A third group of temples, once, probably, the most important. is known as Lara Jongran These are so ruined that at a short distance they preseat the aspect of vast and shapeless carns of stone One of them contains in three upper cells fine gigures of purely Hiadu and Brabmanical character To the nortb is Durga (bere in the character of a strong tout beneficent power) slaying the demon Mahishasura, -precisely the same subject that is to be found in Moer's Hindu I'antheon, pl. 35 Thes is the Lara or Virgn, who gives the popular name to the group, of temples To the west is the elephant-headed Ganesha, and to the south a fine Jovelilke Siva bearded and trident-beanng. Offerings are sometimes made to these umages by the peasautry, in spite of the uriversal Mahometan profession

The name of the place 18 said by Friedrich to be properly Parambinan, and to mean probally "the Place of Teachers" The whole of the temples are alleged, is traditional rhymes, to have been crected between 1266 and 1296 4.D. But the chronology aind histury of the dher

Javanese remains is still very obscure, and probably the date of some of the Brambanan temples must be earried much farther back The destruetion of the last-deseribed group must bave been the work of earthquake, and we must suppose the date of the otber buildings to be subsequent to the destruction. Some general points worthy of note in regard to these buildings are the following:-
(1.) They are all built of bewn stoaes without the use of any cenient.
(2.) There are distunct traces showing that the exterior and interior of the buildings were once corered with a fine coas or stucco, not excepting the most elaborate senlpture in seroll-work, se. We know that the sculptured cave-ralls of Ellora, the great iddls at Damian, and the Doric order at Seluus nere similarly coasted; and probably in all these cases the stucco tras interded to be.ir colour or gilding.
(3.) Nio real arch exists in these luildings. The ranlts and doorways are covered by the corbelliog, or stepped projection, of the horizontal courses. Mr Crawfurd makes a contrary statemeot, but that historian, usnaly so thustworthy, was certainly mistaken ou this point
(4.) Dany of the peculiarities of this architecture, both in geueral plan and in orumental details, indicate a close relation to ihe medizval styles of Burmah and Camboja ; and poiats altrost necessarily to an original common type in ludia, a type which as yet we cannot trace satisfactorily. In this lies a problem of noterest. which the accumulation of photograpbs will pertaps allow of being worked cut. It is notable, borever, that in the Burmese medixval brick buildings of aaalogous character the true arch is used pro. fisely.-(Chiefly from the notes of a risit to Brambanan by w_{1} o urier.)
(H. Y.)

BRANDE, William Thomas, cbemist, was born at London in 1788. After leaving Westminster school be spent some time on the Continent, and acquired a knowledge of French and German On his return be began the study of medicine, and in 1806 a communication of bis to the Royal Saclety was prunted in their Transaclions. In 1809 he was made a fellow of the Rayal Society, an became assistant to Sir Humphrey Davy at the Royal In stitution. He succeeded Davy in the chair of chemistry in 1813, and in the same year received the Copley redal of the Royal Society. From 1816 to 1836 he was joint editor witb Faraday of the Quarterly.Journal of Sicence and $A r t$. In 1825 be waa made superintendent of the die department 10 the Mint, and in 1853 be received the bonorary degree of D.C.L. of Oxiford. He died on the llith February 1866. Besides numerous papers, which marked bim out as one of the most vigorous and able chemists of the day, Brande was the author of several important works. The Manual of Chemistry, 1819, and Elcments of Chemistry, 1831, were the best works of the time, and soun became popular He also published a Dictionary of Matera Medica in 1839, and a Dictonary of Science, Literature, and Art in 1842. The latter is an excecdingly able and valuable work of reference; a new edition of it has recently appeared under the editership of Mr G. W Cox. 1875 Brande was the auther of the third of the Dissertations (that on the progress of Chemical philosophy) prefixed to the supplement of the fourth edition of the Encyclopadia Britannica.

BRANDENBURG, one of the largest prownces of Prussia, and the division from which that powerful monarchy origimally sprung. It lies between 51° and $53^{\circ} 34^{\prime}$ N lat and $11^{\circ} 25^{\prime}$ and $16^{\circ} 10^{\prime} \mathrm{E}$ long., and is bounded on the N. by Mecklenburg and the province of Pomerania, E by Posen and Silesia, S. by Silesta and the kingdon and pronace of Saxeny, and W. by Anhalt and the pravioces of Saxony and Hanover If has ao area of 15.403 square miles, and is divided men the two gorernments of Fotsdam and Frankfort, the capinal. Rerlin, formang a sepasrate jurisdaction The province sa a sandy plain aterspersed with numerous fertle districts and considerable stretehes of woodland Its barrenness was formerly mueh exngeerated, oud 1t was popularly described as the sandbor of the holy

Roman Empire. It is generally well-watered by tributaries of its two priacipal rivers, the Elbe and the Oder, and is besides remarkable for the number of its lakes, of which no fewer than 600 or 700 great or small are enumerated. The miaeral products comprise coal, limestone, gypsum, alum, and potter's earth; barley and rye are the usual cereals; fruits and vegetables are abundant; aad considerable quantities of hemp, flax, hops, and tobacco are raised. The breeding of sheep receives great atteation, and the province furnishes a greater export of wool than any other in the kingdom. Bees are kept io considerable numbers, especially in the neighbourhood of Sorau. The climate is cold and raw in winter, excessively hot ia summer, and there are frequently violeat storms of wind. The manafacturiag industry of the province is both saried and exteasive, but is for the most part concentrated in the priacipal eities. The most important branches 3 re the apianing and weaving of wool and cotton, the manufacture of paper, and the distillation of brandy. Educational inatitutions are very numerous, not only in the capital, but throughout the province. There are ia all 135 torns in the province, the most important being-

Potsdam, population		43,834
Frankfort	,	43,214
Brandenhurg	,'	25,822
Spandau	,	19,690
Prenzlau	"	14,442
Luckenwalde	"	13,539
Ruppin		11,590

In 1871 the population ras $2,863,229$, of whom $2,720,242$ were Protestants, 86,047 Roman Catholics, and 47,484 Jews.

Brandenbdro, a town of Prussia, capital of the circle of West Havelland, in the goverameat of Potsdam, and province of Brandenburg. It is situated on the River Havel, and on the Magdeburg and Berlin Railway, 37 miles W.S.W. of Berlin. The town is enclosed by walls, and is divided into three parts by the river, 一the old town on the right and the new town on the left bank, while on an island between them is the "cathedral town," also called, from its position, "Veaice." Many of the bouscs are built on piles, through which the watcr of the river flows. The cathedral, an ancient structure of the 14th century, the old church of St Katharine, erected in 1410 , and the council-house, deserve notice for their antiquity and as works of art. There are also a castle, a gymnasium, a riding academy, a public library, a theatre, and several hospitals. In the market-place stands a Rolandssäule, a colossal figure 18 feet in height, hemn ont of a single block of stone; and a little to the N . of the town is the Marienberg, ou which the heathen temple of Triglaff and afterwards the church of St Mary's were built. The town has a very considerable trade, with manufactures of woollens, silks, lineas, hosiery, and paper, as well as breweries, tanneries, aad boat-building. Population in 1871, 25,822.

Brandenburg, originally Brennabonch, was founded by some Slavonian tribes, from whom it was captured in 928 by the emperor Henry I., who surrounded it with strong fortifications. A bisbopric was founded there in 949 , subject to Playence, and subsequently (968) to Magdeburg ; but the heathen Wends succeeded in getting possession of the town, and were only expelled by Albert the Bear in 1161.
brandis, Cbristian Adoust, a distinguished scholsr and bistorian of Greek philosophy, was born on 13th February 1790 at Hildesheim. His father, a physician of some distinction, held for a time a professorship at the university of Kiel. His education was begun at the gymasis of Holzminden and Kiel, and in 1806 be entered the university of the latter town. His attention was soon drawn from theology, in the study of which he was then engaged, to philosophy, particularly to Plato. In 1809 he
accepted the post of private tutor is the family of Count Adam Moltke at Nütschau, and there became acquanated with Niebuhr, whose aoble character made a deep impresainn on him. In 1812 he gradnated at the aniversity of Copenhagen, and presented ss his thesis "Commentationes Eleaticx,'s a careful collection of theiragments of X enophanes, Parmenides, and Melissus. Two years later he atteaded the university of Göttingen, and in 1815 presented as his inaugural dissertation at Berlin an easay On the Idea of tha History of Philosophy (Fon dem Begriff der Geschichte der Philosophie). In 1816 he bad the offer of an extraordinary professorship at Heidelberg, but preferred to accompany Niebuhr to Italy. Sis years were spent in esamination of the principal libraries, and Brandis begas the labours on Aristotle which mere to occupy many years of his life In 1821 he was made professor of philosophy in the newly founded university of Boon, and in 1823 appeared his edition of the Metaphyscs of Aristotle (Aristotelis et Theophrasti Metaphysica). To this was added in 1837 a second part, Scholia Graca in Aristotelis Metaphysica. He became part editor, along with Poeckh and Niebuhr, of the new classicai journal Rheinisches Afuseum, and contributed largely to it. His articles on Socrates $(1827,1829)$ are particularly deserving of notice. In 1835 appeared the first part of his great work, Handluch der Geschichte der Griechisch-röm. Phil., and in 1836 the Scholia in Aristo. telem, forming the 4 th volume of the Berlin edition of Aristotle. The following three years were spent in Greece, whither he had gone as instructor to the young king Otho. Some of his experiences in Greece were published in 1843 (Mittheilungen über GGriechenland). The remainder of his life was devoted to his history of Greek philosophy, the last part of which was published in 1866, little more than a year before his death, which took place on the 24th July 1867.

Brandis's great work, that by which he will be best remembered, appeared at interrals from 1835 to $\mathbf{1 8 6 6}$, and altogether fills sir volumes. It is charaeterized gencrally by great extent of reading, sound judgment, and critical examination of authorities. But it ia to some ertent defective in speculative insight and in porer of exposition. The history for the most part is moulded too rigidly on the work of the author under consideration, and the whole course of exposition follows the order of the author's thouglat. Thus in many cases it is apt to degenerate tnto what is little more than a running commentary or summary of the onginal text. This is particularly noticeable in the portions on Plato and Aristotle. There is no attempt made to bring togetber information from all quarters and to work the whole into an organic unity. A comparison of the work of Brandis with that of Zeller would bring out the contrast between the two methods. At the same time tho Handbuch will always retain a high ralue, even by the aide of Zeller's later work, and its best portion, that on Aristotle, is perhaps as complete and accurate an account as can be desired. That Brandis bimself felt the defects of his own method of history is shown by the fact that be threw the whole matter of his larger treatise into a smaller and more systematic form, the very title of which, History of the Developments of Greck Philosophy (Geschichte der Enturickelungen der Gruchaschen Philoscphie, 2 vols., in threo parts, 1862, 1864, 1866), indicates the change made. This smallier work is decidedly one of the best and completest histories of Greek thought in existence.
A aketch of the life of Brandis, with full list of his works, mill be found in the notice read by Trendelenburg to the Berlin Academy. 1868 ("Zur Erionerung an C. A. Erandis," Abh. der Kön. Akart. d. Wissen., 1868, pp. 1-24).

Brandt, Sebastian, German satirist, was bore at Strasburg about 1458 . He atudied at Basel, took the degree of doctor, and scems to have beld a professorship for some time. After his retura to Strasburg he was made syndic and then chancellor of the town. He died in 1521. Among his writings are some Latin poeme and treatises on law ; but the work by which he is best known is the satirical poem Das Narrenschyff, published in 1494. The Ship of Fools, though without artistic beauty of atructure, snd though its satire ia often coarse, took the popular taste.

It ras tramsated into Latin in 1497 by Locher, and soon appeared in almest every European language. Alezander Barelay's Ship of Fooles (1509) is a free imitation of the German poem, and an abridged prose translation was pallished by Watson in $\mathbf{1 5 1 7}$.

BRANDY, a spirituous liquar obtained by the distillation of wine, the aroma of which is due to ether and other volatile products. It may be distilled from any wine, but red wines yield a less pure and less aromatie spirit than light coloured tarietics. In the denartments of Charente and Charente Inférieure a varicty of crape is cultivated exclusively for the production of brandy, the gield of which constitutes the cognac of cownerce. In portions of the departments of the Landes, Gers, and Lot et Garonne, the preperation of brandy is also an important industry, and the produce is commercially knom as armagnac, from tho name of the district. The cognac district which produces the most rich and celicate spirit distilled is sepmated into distinct zones of production, ancording to the quality of the spirit each yrelds. In the cantre of the district on the left bant of the Cbarcnte is the Grande Chumpagne, and radiating Lueyond it are the Petite Chempagne, the Promiers Bois, and the Seconds Eois successively. The Grande Champame is the source of the finest brandy anyrbere produced; and as the area of cultivation recedes from that centre, the quality of the spirit proportionately lessons. The quantity of brandy exported in 1868 from Tonnay Charente was $9,187,416$ gallons, valued at $£ 1,887,678$, the greater part of which was consigned to British ports; wut the exprorts fuctuate greatly accurding to the charater of the years. Thus in 1872 the total inoports to Great Britain were only $2,505,295$ galions, while in 1873 the quatity vas $6,483,486$ gallons, of which $6.378,398$ gallons came from France. By storage in oat casks the spirit takes up a portion of tannin, which gives it a delicate golden hue, bat the deeper colour of krown brandy is communicated by caramel. Cognace is selt a carefully ventilated stores for two years, during which tine it decreases in bulk and strength by eraporation, but anllews and develers aroma which continues to increase the longer it is lept. Brandy is rery jopular as a medicimal stimulant, and for use in cases of eickness, diarrhou, and simasm. It is very ofien adulterated, and a rast amount of spirt which passes under the name is really either buetruit spirit or grain whisky coloured and armatizen with the cognat-Haroured cenanthic ether or Jlumgamen wil. See Distihlation.

BRANTEORO, a tion of the Domin:on of Caneda, in the province of Oniarno, canital of the cousty of Brant, is situated on the Gramb lis:cr, ahont :2 4 :ailes sumblh-west of Hamilton. It is an mporimet station wn the Goderieh and Buffalo lige, with extensive es meworks and foundries. Brass, iron, and tin wares, arciculturel implements, window blinds, and fottery are its fincipabl :manafactures. It is lighted with gas, and has a good sumbly of water. As the river is not narigable as far as the town, a canal has heen constructed which gives eommancerlion with La'se Erie. There are fine county buidings, ten charches, an orphame, banks, and newspaper offices. Topuhtion in 1871, 8107.

Bliantôme, Prmme de Pontrdeluge, Semgetrde, French bistorian and hiographer, was bern ahont 1540. Ife was the third son of the Viscmant do Bundeilles, and at an carly ago entered the profession of arms. flo anproved hingelf a brave soldier, and was bromegt into contact with most of tho great leaders who wero sceking famo or fortune in the wars that then distractu? the Continent. Su,n afier the leath of Charles IX. he retire! from active life, and spent his last years in writing his Memoirs of the Hhatrims men and women whem he hal known. He died -n the 15 th Jnly 1614 . He left distinct erders that his inauuscript works should be priuted, and afirst edition ap-
peared in 1665-6, not sery complete. Of the loter editions, the most valuable are-one in 15 rolumes, 1740; another in 8 tols., 1787 ; one in 2 vols., 1842 , by Buchon, that of the Biblinthèque Eléviranne in 3 rols., $1858-9$, and Lalannc's edition for the Sociéte de l'Histoire de France, 6 vols., 1865, seq. Brautome can bardly be regarded as a bistorian proper, and his Bemorrs cannot be accepted as a rery trustrorthy source of information. But be writes in a quaint conversational way, pouring forth his thouchts, obserantions, or facts without order or system, add cith the greatest frankness and navete. His works cartainly gave an admirable picure of the general court-life of the time, with its ueblushing and undisgursed profigacy. There is not an homme illustre or a cteme galante in all his gallery of portraits who is not staned with race; and yet the whole is narrated with the most complete unconsciousness that thero is anytaing objectionablo in their conduch. There does not appear to he any Eaglish translation of Brantome.

BRASIDAS, one of the most faracus if the Spartan leuders in the early part of the Peloponnesian War, first disturgushed himself by the relief of Meihune, which was besieged by the Aihenians ($431 \mathrm{~B} . \mathrm{C}$) For thes service be vas publicly commended at Spartis. In 429 be was sent to assist Cnewns, and cipears to bave taken part in the unsuccessful attack on the Pirxecs. Tro years later he accompenied the admmal Alcidas to Coreyra, but did not succeed in inducing his superior to make an attack on the city. Be was severely rounded in the assault on Pylos (425), and lost lis shie!d, which was picked up and carried in tieir triumph by the Athenians. When it was resolved by Sparta to carry the war into Thrace, Brasidas was selected as leader. He relieved Megara in 424, and in the same year succecdel in passmg through Thessaly and in effecting a junction with Perifices of Macedon. He assisted Perdiccas to put down a revolted rassal, Arrhibxus, and then, in an extreme'y sbort tume, partly by his skilful policy, partly by the rapidity and boldness of his movements, succecded in gaining possession of Acanthus, Stagira, Amphipolis, and Zorone. In the spring of 423 a truce was agreed upon; but Brasidas insisted upon retaining Scione, which bad capitulated a day or two after the truce began; this was denied, however, by the Suartan gencral. The revolt of Dende gave bim another opportunty, and La scize! that iuwn. Later du the same year be again accompmicd lerdiceas aganst Arrhibeus, and made a most skilful retreat. He received no reinforcements from Sparta, where the leaders scemed ienlona of his success, his conciliatory manners, and his dexterous policy. The Athenians, on the other hand, sent out a new armament, retook Mende, and repelled on assault on Potidea. In 422 Cleon with the fresh Athenian troops besieged Amphipolis. A suift sally, directed by the shilu' gencralship of the Spartan leader, was crowned with suceess. The Athenians were routed, and Clcon slain, but Thensidas limself was mortally wounded. He was interred at Ampipulis, the inhabitants making lim the founder of their city, and institnting ycarly sacrifiecs and games to his memory. Mrasidecia were alse celebrated to his honour in his native city, none but pure Spartans being allowed to join in the games. Frasieas is the only Spartan general whose elaracter displays mbility or grandeur. He had to sone extent thrown off the mental stifnesa produced by the rigid oligarchical institutions of his native city. He couli make himself popular with the allies, and the charm of his personal character sceurel for Lacedwinon many a city which would not otherwiso havo joined the league. Thueydides gives him great praise, deseribes him as being eloquent for a Spartan, and modions his reputation for justice, liberality, and wisdom. Brasidas was indeed the
anviour of E. .ura in the early period of the war, and bad he lived the contest might have come more quickly to an vel.
BRASS, an olloy of copper and zinc, the composition of zhich will be discussed under the heading Coprer. In this flace we have to do simply with its history, and the various applications of the alloy in tbe arts. Although the term brass frequently occursin Scripture from the era of Job lownmards, there is no indication that brass, as known in modern tinnes, was in use previous to the period of the Roman empire. By the Romans a compound was used under the name oricalchum or auriculchum, which appears to bave possessed the composition and properties of brass. With their conquests they carried a knowledge of the arts they culticated into the countries they subdued, and from these the art of preparing the alloy extended with civilization throughout Europe. The earliest traces of brass in Great Britain are found in the medirsal monumental "brasses," found commonly over the tombe of ciril and ecelesiastical dignitaries (see Brasses). That the alloy was manufactured in England during the reign of Heary VIIL., bowever, is indicated from the passing of an Aet of Parliament prohibiting, under severe penalties, the export of brass, a prohibition which was not withdrawa till so recent a date as 1799. During the reign of Queen Elizabeth the manufacture was systematically developed and extended, and a patent for working calamine stone (the principal ore of zinc) and making brass was granted by the queen to William Humfrey and Christopher Schutz, securing to them the exclusive right of manufacturng srass. The patent rights granted to these persons were gradually extended and merged into a company under the name of the "Governors, Aesistants, and Socicties of the City of London of and for the Mineral and Battery Works," which continued to exercise its functions down to the year 1710 . In the ycar 1721 it was estimated that about 30,000 persuns found employment in the brass industries. From a very early date brassfounding was prosecuted in Birninghan, and by degrees it there assumed more important proportions till it has become the most distinguishing indastrial feature of the town. The late Mr W. Aitken, in his valuable report on brass and brass manufaetures, to which source of practical information we hare to express our obligation, says:-"What Manchester is in cotton, Bradford in wool, and Sheffield in steel, Birrnagbam is in brass; its articles of cabinet and general brassfoundry are to be found in every part of tho world: its gas-fittings in every city and town into which gas has been introdued from Indus to the poles."-(Birncingham and the Midland Harduare Districts, London, 1865.)

The brass trade of the present day is, according to Mr Aitken, conducted under nine differeut heads.-(1), brasscasting ; (2), cabinet, bell, and general brassfoundry ; (3), coek-making and plumbers' brassfoundry; (4), starnped brassfoundry ; (5), rolled brass, wire, and slicathing; (6), tube-making; (7), lamp-making; (8), gas-fittings; and (9), naval brassfoundry. It frequently happens that several of these departments are carried on in the same establishmeat; but numerous as are these divisions, they by no means e-haust the industries in which brass plays a priacipal part. Thus the pin manufacture, buton-making, and the gilt jeweilery trade, are eminently chameteristic of Bisuingham, and in these brass is the priscipal metallic substance employed: According to the different forms under which brass is to be emplosed it is fashioned by the various frocesses of -1 st, casting; 2d, relling and drawing; 3a, stamping; and dth, tube drawing and casing; and to these, with 5 th, brass-finishiag, we shall briefy aliude.

Casting.-The frst operat:on necessary in connection with castiog is the preparation of patterns of the object to
be cast. - Castings, of course, rary in alt ucjrees in intricacy and elaboration of details, and the gettiug up of tho more ornamental patterns necessitates the employment of persons of artistic ability to prepare the design, and superior artisans to finish the pattern blocks. Three ciasses of castings are recognized in the trade-lst, common castings, made from any plain pattern, an impression of which can be formed and the pattern tasen out withut breaking the mould ; Id, cored castings, such as plumbers' cocks and oiber tubular work, wherc the metal must be poured round a central core ; and 3d, false-cored castings, where the pattern is so undercut that the mould must be bult up of such a number of separable sections as the intricactes of the patern may require. When the mould is formed cach of these sections is lifted off, the pattern is takel out, and they are then built together in thoir oryginal position. This descrip. tion of moulding requires much skiil and desterity. Mouldz are made in sand of a free, fine-grained, and uniform characte: ; and moulding-boses of wood or cast-iron which fit together in trio or more parts, with mouldiag-boards of wood and clamps to bold the parts together, are employed in casting. In the forming of common castinga, the lower division of the moulding-bos 19 packed wath sand, and the pattern, if deep, is driven half its depth into it, partung sand is dusted orer the surface, and the upper part of the box is fitted on and similarly packed with sand. When the box is filled, a moulding-boari, forming a top or bottom to it, is isid on, the two halses of the box are scparated, the pattern withdrawn, and "gates" or channels formed between the mould and the aperture by which the metal is poured in. The surfaces are then dusted over with tour or powdered charcoal, and the mould placed in an ores to dry. On ther withdramel from the oven the two parts of the moulding-bos are clamped together, the molten metal is poured in, aud a perfect cony of the pattern produced. In makng common castings as many patterns as the supericial area of the ruoulding-box will accommodato are cast at once. "gates" leading to the entire serics; and for many plumbera' castings, \&c., a series of half patterns, with thoulded gates, nre fixed on tro sides of a 1 late by which the whole may be moulded and tinished at one operation. The cores lur tubnlar work are separately made, und are supported on bearings in the mould. When the casting is cold the hardened core is puckel out, and the article is then ready for finishing. Fine ornaurental casting which contain minute details are moulded with special care 10 very tine sond, faced with charcoal powder, which faithfully reproduces the most delicate lincs. The meta! is poured direct from the crucible in which it is prepared, by the aid of strong tonss, and all spilt metal is carefnlly swept up, cleaned, and remelted.

Sheet Rolling and Wire Drazong.-The raw material of a large proportion of the brass trade conssista of sheet-brass, as from it stanned work of all kinds is prephred, and jointeld tubing and sheathing are made, and, generally, the processes of rolling must be adopted when shects of largo dimensions or of great thinness are required. For the purpose of rulling the metal is medted and cast in lroad flat moulds of cast-iron; and in casce where a large guantity is deale with, the moulds are hewn out m granite. These moulds are rubbed with onl and powdered with charcoal before being used. The ingots for rolling, termed "strips," are in the cold state passed succesevely luenect rolla (pairs of chilled-iron cylinders) of large size which oquceze then out and exteed them lengtbrise. As often as weccessary in the procces the shcet is annealed in a mattic ot reverberatury rurnace, being allowed to cool donater cach anrealing. The sheet is finished, after "pickling" in acid. ty fressing it through a pair of kighly polished rollis. Montz's sheathing metal is a form of brass containing a latge proportion of
IV. -38
zunc, and as this alloy can be rolled out hot it is much more cheaply and expeditiously prepared than ordinary sheet brass.

Wire Drawing.-Brass wire is consumed in enormous quantities, first and chiefly for pin-making, next for shoorivets, then for brush-making, for paper-makers' wire web, and many other purposes. The, metal for vire drawing is rolled into long strips of a suitable thickness and cut into "strands" by means of slitting rolls. The strands, which are square in section, are drawn through a succession of circular holes in a steel draw-plate, till the desired degree of "neness is reached, and are wound upon a rotating drum or tiock. The wire has to be repeatedly annealed as it passes through the plates of ever diminishing gauge.

Stamping.-A large number of useful articles, as well as many ornamental details, which were formerly produced by the process of casting, are now cheaply and expeditiously made by stamping out of sheets of rolled brass. In this way the ornamentation applied to the cheaper kinds of gasaliers, balance-weights, chain-links, \&c., are formed, and carnice-pole ornaments and cartain-rings made; and the process is also applied to the making of door and shutter knobs, finger plates, and lamp-burners, and to the striking up of many useful articles, such as basins and other vessels. In the process of stamping, a die, in which the pattern tu be formed is sunk, is prepared by the ordinary process of die sinking, and securely fixed to a heavy iron block sunk into the ground. From each side of this block rise two cast-iron guide pillars, which act as guides to the heary hammer or ram arranged to slide upand down between them. Into this hammer a "force," or exact connterpart of the sunk die, is fitted, so that on the fall of the hammer the force exactly fits into the die. The work of the stamper in raising his hammer is much lightened by passing the lifting belt over a palley attached to a shaft moved by steam-power. By this arrangement the workman has only to bold his cord sufficiently tight to create the friction between the belt and pulley necessary to raise the weight, and by letting go his holl, the stamp is allowed to fall with its full momentum against the die. In a compound of such harduess and brittleness as brass it is necessary to raise any pattern by repeated strokes, annealing the metal between each separato blow. The number of blows necessary to bring up any pattern depends on the depth and convexity of the die. The "forces," or connterparts of the die, are made of lead, tin, or other soft metal, while for finishing the stamping when the die contains fine details a " force" made of brass is cmployed. A modification of the steam-hammer has been adapted for use in the process of stamping. Stamper work as compared with castings is deficient in depth and richness, as it is not practicable to attain any great boldness and sharpness of outhine, and the "force" having to fit into every portion of the die, no undercutting is possible. Globular artieles, such as balance weights, are stanped in two (or if necessary more) parts and the pieces jomed by solderme. Mr James Atkins of Pirmingham has patented an mgenous method of filling \therefore amped shells, such as balance-weights, whth maltea iron by simply keeping the shell in water while it is being filled.

Tube-making- - Brass toles are of three principal kinds: -lst, ordinary soldered; 2d, cased; and 3d, solid tubing. llain soldered tubes are made from sheet brass by cutting off, with circular shears, strips of the breadth necessary for the gauge of the tube to be made. These strips are passed through "cuphng-rolls," by which they are partially bent round. The end of the strip is then formed into a tang, ranght and drawn through a tool called a combuctor, which folle over the strip into a circular form, lraging the two edges into close contact. The tube so formon is tightly
tied up with wre at short intervals to neep the eures together in the process of soldering; a maxiure of granu lated brass and borax is filled into the seam, and the tobe is passed slowly through a strong heat in the soldering stove, whieh melts the granulated brass and so unites the edges. The wires are then cut away, and the superfluous solder filed off, the tube is pickled in sulphuric acid, and again passed through the steel conductor. In the case of tubes which require great accuracy of internal gauge, a mandril or sulid cylinder of steel is placed inside the tube before it is finally passed through the tool. The external pressure causes the tube to fit closely to its internal support, and while the outside takes the outline of the steel conductor, the inside is made true to the shape of the mandril. Tubes of any given section are thus formed by the use of mandrils having the outline required. Ornamental patterns are impressed on plain tubes by fitting them on mandrils and passing them through a tool, which consists of a strong iron frame carrying three or more rollers so mounted that the open space betwcen their external edges has the sectional form of the tube to be ornamented. On the external face of these rollers is sunk the design which is to be impressed on the tube, and as it is drawn through them the powerful squeeze they give is sufficient to impress ornaments of considerable depth and boldness. Cased-tubes or rods, that is, tubes or rods of iron cased in brass, were invented in 1803 by Sir Edward Thomason, who thus described his invention:--"In watching the operation of drawing brass and copper tubes upon the mandril, I found it required as much power to slide off the hollow tube from the mandril as was required to draw it on. Reasoning from the adkesion of the brass tube to the steel mandril, I found by experiment that the union of copper and iron or brass and iron could be firmly attached by pressure, and conceived that such an application would be useful for making copper bolts for shipping, solid brass rods for stair carpets, solid brass to go round the top of a room to suspend pictures, as curtain rods for drawing-rooms, and as balustrades for staireases." Wood is cased in brass by a similar process, and used for such purposes as brass cornice-poles. Solid or seamless brass tubes, which are in very extensive demand for locomotive and other steam boilers, are mado by drawing down short thick cast cylinders of brass till they reach the desired gauge and thimness. The iostrument in which this drawing is accomplished is similar to the apparatus for impressing ornamental patterns on plain brass tubes. Four steel rollers are mounted in a strong frame, the sectional outline of the ooter surfaces of which have the size and form to which the tobe is to be drawn, and through a series of such tools the cast cylinders are passed, after anuealing at each operation. Mr G. F. Muntz in 1852 patented a method of drawiag tubes east in an oval form in the heated state.

Brass Finishing.-The operations in brass finishing comprise "dipping, "" bornishing," and "lacquering,", and in some cases brass-work is finished by "bronzing." After the article to be finished has been cleaned by pickling in acid, it is passed for dipping into an earthenware jar containing a solution of aquafortia (nitric acid). For brighs dipping the acid is used strong, and the brass is inme. diately withdrawn from the bath, but for "dead" dipping, i.e., for producing a litten, frosted appearance, the bath-is made weaker and the metal left in it till a creatoy appearavee is seen on the surface. Burnishing is accomplished lyy rubling with pulished steel tools, called buruishers, the parts of dead dipped work which are to be brightened: The work is then passed through water soured with acid, ronsed, and dried in boxwood sardust. For lacquering, the work is heated over stoves, and while it is hot, a coatin: of varnish, made of seed-lac dissolsed in swirit, is carefully
and uniformly upread over the surface. Bronzing consists in applying to the surlace of the metal an opaque pigment, which alters its colour. Ordinary brassfounders' bronze consists of a solution of hyd:ochloric acid and sal. armoniac, or of the same acid, arsenic, and smithy scales. It is ebiefly to cabinet brassfoundry and stamped work that such finisbing processes are applied.

Vessels of brass for cooking and other domestic purposes are very extensively employed in the East Indies, and the alloy is there also a lavourite material for the bangles and otber personal ornaments of the lower orders. A large traje is carried on in brass wire, for ornamental purposes, betxeen Birmingham and various African stations; a species of currency called Guinea rods, made from thick brass wire, is made and exported to the Guinca coast; and a kind of cast-brass coin, called a manilla, current in the :quatorial regions of Old Calabar, is frequently supplied by irmingham manufacturers.
(J. Ps.)
brasses, Monumental, a species of engrared sepulebral memorials which in the early part of the 13th century began to take the place of the tombs and effigies carved in stone, which formed such conspicnous features in most of tie great churches. Made of bard latten or sheet brass, let into the pavement, and thus forming no obstruction in the space required for the services of the church, they speedily carnc into general use, and continued to be a favourite style of scpulchral menorial for three centuries. Besides their great value as historical monuments, they are specially interesting as zuthentic contemporary evidence of the varieties of armour and costume, or the peculiarities of palæograply and heraldic designs, and they are often the only authoritative reciurds of the intricate details of family history. Although the intrinsic value of the metal has unfortunately contributed to the wholesale spoliaticn of these interesting monuments, they are still found in remarkable profusion in England, and they were at one time equally common in France, Germany, and the Low Countries. In France, however, those that survived the troubles of the 16 th century were totally swept away during the reign of terror, and almost tho only evidence of their existence is now supplied by the collection of drawings bequeathed by Gough to the Bodleian Library. The fine memorials of the royal bouse of Saxony in the eathedrals of Weissen and Freiberg are the most artistic and striking brasses in Germany. Among the 13 th century examples existing in German churches the full length memorials of Yso Von Welpe, bishop of Verden (1231), and of Bernard, bishop of Paderborn (1340), may be mentioned. Many fine Flemish specimens exist in Belgium, especially at Bruges. Only two or three examples, and these of late date, are known in Scotland, among which nre the memorials of Alexander Coekburn (1564) at Ormiston; of the Regent Murray (1569) in the collegiato ehurch of St Giles, Edinburgh; and of the Minto family (1605) in the south aisle of the nave of Glasgor Cathedral. Eugland is the only country which now possesses an extensive series of chese interesting memorials, of which it is calculated that there way be about 4000 still remaining in the various churches. They are most abundant in the eastern eounties, and th:s fact has been frequently adduced in support of the opinion that they were of Flemisb manufacture. But in the days when sepulchral brasses were most in fashion the eastern counties of England were full of commereial activity and wealth, and nowhere do the engraved menorials of eivilians and prosperous merchants more rlound than in the churehes of $I_{p s w i c h, ~ N o r m i c h, ~ L y n n, ~}^{\text {L }}$ and Lincoln. Flemish brasses do oceur in England, but they were never numerous, and they are readily distinguished from those of native workmanship. The ficuish
examples have the figures engraved in the centre of a large plate, the background filled in with diapered or scroll-work, and the inscription placed round the edge of the plate. The English examples have the figures cut out to the outline and inserted in corresponding cavitits in the slab, the darker colour of the stone serving as a background. This is not an invariable distinction, however, as "figure-brasses" of Flemish origin are found boto at Eruges and in England. Bat the character of the engraving is constant, the Flemish work being more florid in design, the lines shallower, and the broad lines eut with a chisel-pointed tool instead of the lozenge-shaped burin. It is interesting to find that the brass of Robert Hallum, bishop of Salisbury, the euvoy of Henry V. to the Council of Constance, who died and was interred there in 1416, precisely resembles the brasses of England in the peenliarities which distinguish them from Continental specimens. Scarcely any of the brasses which now exist in England can be conedently referred to the first half of the 13th century, though several undoubted examples of this period are on record. The best knowa of the 13th ceatury examples is that of Sir Roger de Trumpington (circa 1290), who accompanied Prince Edward in Lis espedition to Pelestine, and is represented cross-legged. About half a dozen instances of this peculiarity are known. The 14th century brasses are much more vumerous, and present a remarkable variety in their details. The finest specimen is that of Nicholas Load Burnell (1315) in the ehurch of Acton Burnell, Shropshire. The full-sized brass of Sir John d'Abernon at Stoke d'Abernon in Surrey (circa 1327) bas the decorations of the slield filled in with a species of enamel. Other examples of the occur, and the probability is, that, in most eases, the lines of the engraving were filled with colouring-matter, though brass would scareely bear the heat requisite to fuse the ordinary enamels. In the 15 th century the design and execution of monumental brasses had attained their highes: excelience. One of the best examples of plate armour is that of Sir Robert Stantoun (1458) in Castle Donuington church, Leicestershire, nod one of the finest existing brassua of eeclesiastics is that of Abbot de la Mare of St Albans. It is only in the 16 th century that the engraved representations become portraits. l'revious to that period the features were invarially represeuted conventionally, though sometimes personal peculinities were given. A large number of brasses in Enzland are palimpsests, the back of an ancient brass having been engraved for the more recent memorial. Thusa brass commemorative of Margaret Bulstrode (1540) at Hedgerley, on being removed from its position, way discovered to have been previously the memorial of Thomas Totyngton, abbot of St Edmundst Bury (1312). The abbey was only surrendered to llenry Vilf. in 1539, so that before the year was out the work of spoliation had begun, and the abbot's brasslad been removed and re-engraved 4 Margaret Bulstrode. In explanation of the frequeney with which aucient brasses have thus been stolen and re-erected after being engraved on the reverse, it may be remarked that all the shect brass used in England previous to the establishment of a manufactory at Esher by a Germad in 1649, had to be inported from the Continent.
See Cotman's Engravings of the mast remariab?e of the Semulchral Erasses of Norfolk, 4to, London, 18:3-16; and seconil edition, with additional plates and notes by Dieyrick, Albert Whay, and Sir Harris Nicolas, 2 vols. folio, Loudon, 1839 ; Manual jor the Sivaly of Monumental Brasses, Osford, 1948 ; Boutell's Bomumental Brasses of England, engravings on wocd, folio, Loudon, 1849 ; Waller's Siric's of ironumenta? Lrasses in Engiand, London and Oxford, Parkers, 1563.

BRASSEY, Teonas, an emanert English railway contractor, a man remarkable for his character and abilities as well as for the vast estent and aingular suceess of his
undertakings, was born at Baerton, near Chester, November 7, 1805. He was the son of a landed proprietor, of ancient family, and received an ordinary commereial edueation at a Chester school. He began his professional eareer at the age of sixteen as apprentice to Mr Lawton, a surveyor, and on the completion of his term became the partner of his master. . Soon after his marriage his master died, and he assumed the sole management of the business. In the loeal surveys to which he devoted his attention during his early years he acquired the knowledge and practical experience whieh were the necessary foundation of his great reputation. His first engagement as railway contractor was entered apon in 1835, when, on the invitation of the distinguisbed engineer Joseph Locke, he undertook the execution of a partion of the Grand Junction Railway. Soon after Mr Locke entrusted him with the completion of the London and Southampton Railway, a task which involved contracts to the amount of $£ 4,000,000$ sterling and the employment of a body of 3000 men. At the same time he was engaged on portions of several other lines in the north of England and in Scotland. In conjunction with his partner, Mr W. Mackenzie, Brassey undertook, in 1840, the construction of the railway from Paris to Rouen, of which Mr Loeke was engineer. He subsequently carried out the extension of the same line. A few years later he was engaged with his partner on five other French lines, and on his own account on the same number of lines in England, Wales, and Scotland. "At this time," says The Duilder, "the industrial army set in motion and eontrolled by Mr Brassey amounted to 75,000 men, and his weekly payments must have distributed, as the price of labour, from $£ 15,000$ to $£ 20,000$ every Saturday. The capital involved in these various contracts amounted to some $£ 36,000,000$ sterling." But his energy and capaeity were equal to still larger tasks. He underteok in 1851 other works in England and in Scetland; and in the following year he engaged in the construetion of railmays in Holland, Prussia, Spain, and Italy. One of his vastest undertakings was the Grand Trunk Railway of Canada, 1100 miles in length, with its astonishing bridge over the River St Lawrence. In this work he was associated with Peto and Betts. In the following years divisions of his industrial army were found in almost every country in Europe, in India, in Australia, and in Soutn America. It must be remembered that, besides actual railway works, be originated and maintained a great number of subordinaie assistant establishments, coal and iron-works, dockyards, \&c., the direction of which alone would be sulficient to strain the energies of a commen mind. His prefits were, of course, enormous, but prosperity did not intoxicate him; and when heary losses came, as sometimes they did, he took them bravely and quictly. Among the greatest of his pecuniary disasters were those caused by the fall of the great Barentin viaduct on the Ronen and Harre railway, and by the failuro of Peto and Betts. Brassey was one of the first to aim at improving the relations between engueers and contractors, by setting himself against the corrupt practices which were common. He resolutely resisted the "scamping" of werk and the bribery of inspeetors, and effected what he called the "smothering of the engineer" by destroying the power of the inspectors and preventing all just grounds of lissatisfaction. Large hearted and gencrous to a rare degree, modest and simple in his tuste and manners, he was cunscious of his power as a header in his calling, and knew how to use it wisely and for uble ends Honours came to lim unsriught. The cross of the legion of Honun was conferred on him. From Victur Enmanuel he received the cross of the Order of St Maurice and St Lazarus; and from the emperor of Austria the decoration of the Iron Crown, which it is said had not before been given to a foreigner. Me died at St

Leonards at the age of 65, December 8, 1870. His ufe and labours are commemorated in a small volume published by Sir Arthur Helps in 1872.

BRAUNSBERG, a town of Prussia, capital of a circle in the government of Königsberg, on the Passaye, between three or four miles from its mouth in the Frische Haff. It is the seat of the Roman Catholic bishop of Ermeland, and possesses numerous Roman Catholic institutions. Of these the most important are the Lyceum Hosianum, founded in 1564 by the Cardinal Bishop Hosius, and in 1818 raised to the rank of a faculty of theology, and the deaf and dumb asylum which was established in 1811. There is also a school for the education of schoolmasters. Brewing, tanning, and weaving are the most important industries of the tewn, which also earries on a certain amount of trade in corn, ship timber, and yarn. The riser is navigable for small vessels. Braunsberg was founded by the Teutonic knights in the middle of the 13 th century. Destrojed by the Prussians in 1262 it was restored in 1279, and admitted to the Hanseatic League in 1284. Aftcr numerous vicissitudes it fell into the hands of the Poles in 1520 , and in 1626 it was eaptured by Gustavus Adolpitus. The Swedes kept possession till 1632. Population in 1871, 10,471.

BRAY, a seaport town and fashionable watering-place of Ireland, 12 miles S.S.E. of Dublin on the railway to Wexford. It is situated on both sides of the River Bray, which separates the two counties of Wicklow and Dublin, the portion in the latter county being Enown as Littlo Bray. The torm is neatly built, and has a new parish church, a large Roman Catholic chapel, an old castle, a hospital, a court-house, several hotels, and Turkish baths. An esplanade runs along the shore for about a mile. The harbour admits small vessels only, and the trade is of little importance. There is a large brewery, whieh has been in existence for a considerable time. In the 12th century Bray was bestowed by Strongbow on Walter de Reddesford. who took the title of Baron of Bray, and built a castle in the town. It has since passed into the hands of various families. Its progress during the present century may be estimated by the gradual increase of the population-1841, $3185 ; 1851,3156 ; 1861,5363 ; 1871,6077$.

BRAY, Sir Reginald, arehitect, was the second son of Sir Richard Bray, one of the privy council of IIenry VI. Having been instrumental in the adrancement of Henry VII. to the throne of England, he was greatly in favour with that prince, who bestowed upon ham honours and wealth. His taste and skill in arehiteeture are attested by those two exquisite structures, Henry T'II's chapel at Westminster and St George's chajel at Windsor. Ite direeted the building of the former, and the finishing and decoration of the latter, to which, moreover, he was a liberal contributor. He died in 1503 , and was interred in St George's chapel.

BRAY, Dr Thomas (1656-1730), was born at Marton, in Shrepshire, and educated at Oxford. After leaving the university he was appointed ricar of Over-Whitacre, and rector of Sheldon. Bishop Compton scut hinn as his commissary to settle the affairs of the infant church of Maryland. He took a great interest in colonial mussions, and busied himself in raising sums for purchasing snall libraries for the use of missionaries; and to promote this design, be published his Billiotheca Parochialis, and a discourse on Apostolical Charity. He endeavout io establish a fund for the extension of the Cliristian tatith, especially among the American Indians, and it is to his excrtions that the Soeicty for the l'ropagation of the Gespel owes its existence. ile was the author of Catechetical Lectures, Martyrology, or Papal Lisurpation, Directorium Mfissionarium, and other works.

B R A Z I L

IN presenting an acconnt of this extensive and important conntry, the only Ainerican monarchy we shall give, first, a condensed view of its physical geography, meteorology, and natural products; secondly, a brief historical sideten of the progressive diseovery of its coasts and interior, of its gradual settlement, and of the auspices under which its aocial institutions have developed themselves; and thirdly, an aecount of its existing political and social condition.

Brazil is bonnded on the N . by Columbia or New Granada, Venezuela, and the Guianas, British, French, and Dutch; on the E. by the Atlantic; on the S . by the republics of Uroguay and the Argentine Confederation; and on the W. by Paraguay, Bolivia, Peru, and Ecuador. It extends from about $4^{\circ} \mathrm{N}$. lat. to $33^{\circ} 41^{\circ} \mathrm{S}$. lat., and from 35° to $70^{\circ} \mathrm{W}$. long. Its greatest length is about 2600 British miles, its greatest breadth about 2500 ; and it has a seaboard of about 4000 miles.

The original line of demarcation between the Portnguese and Spanish possessions was fixed by two bulls of Pope Alexander VI., the one of the 2d, the other of the 3d of May 1493. The kings of Castile and Portugal afterwards concluded the treaty of Torrzillas, whech was approved by tho Pope in 1529. The remmon of the two crowns in 1550 suspended all diseussions about the boundaries. They, however, recommenced after the revolution and independence of Portngal. The treaty of Utrecht in 1777 regulated many points, but the treaties always referred to rivers, mountains, and other positions passing through deserts, the names of which were not well established. For sometime past the Government of Brazil has taken great pains to establish amicably with the neighbouring states the boundary lines of the empire. In 1851 these were established with the republic of Uruguay, in 1857 with the Argentine Republie, in 1858 with Peru, in 1859 with Venezuela, in 1867 with Boliva, and in 1872 with Paraguay; the lines determined on have in some cases been already surveyed and marked out on the aetual frontier, while at present mixed commissions from Brazil and each neighbourng country are employed in tracing out the other lines agreed upon.

With Uruguay the frontier has been marked out along a line passing from the coast in $33^{\circ} 41^{\prime} \mathrm{S}$. lat., through the scathern portion of Lake Mirm and along the River Jaguaräo, which falls into it, to its most sontherly source stream, thence by a line crossing the head of the Rio Negro to the dividing ridge called the Cuchilla Sta. Anna, and afterwards down the stream of the Cuarein or Quarahim to the IRiver Uruguay.

The Uruguay River, from the mouth of the Quarahim upwards to the confluence of the Pepiry on its right bank in $27^{\circ} 10^{\prime}$ lat. divides Brazll from the Argentine Republie, the remainder of the mutual frontier of these countries being formed by the Pepiry to its source and tho São Antonio from its rise to its union with the Y-Guasu or Curityba, which river marks the boundary to the Parana.

Between Paraguay and Brazil the frontier runs from the mouth of the Y-Guasu up the Alto Parana to the great fall of Guayra, called Sete Quedas by the Brazilians, and from that westward along the water-parting of the Cordillera of Maracaju, southward of the basin of the Igatimi, to the berghts of Amambahy', and along these to the sonrce of the Rio Apa-Estrella, following it down hence to the Paraguag.

With Bolivia the boundary lies along the Rio Paraguay from the mouth of the Apa in 22°, npwards to $20^{\circ} 11^{\prime}$, where the Bahia Negra joina it; along the Bahia Negra, and thence in a line to the lake of Caceres, cutting through the
midst of this lagoon, and passing onward to Lakes Mandiones Gaiba, and Uberaba, and from the last to the south end of the ridge called Corixa Grande; from this in a direct line to Morro de Buenavista (Boavista), and to the sonrees of the Rio Verde; along the middle of that stream to its mouth in the Guapore, and along that river and the Mamore to the Beni, where the Madeira begins in $10^{\circ} 20^{\circ} \mathrm{S}$.; a direct line thence to the sonree of the Yavari River (found by Chandless in 1867 to be a little sonth of $7^{\circ} \mathrm{S}$. lat.), forms the limit of Brazil with Northern Bolivia and Central Peru. The Yavari continues the boundary between Brazil and Peru down its ehannel to the confluence with tho Amazon at Tabatinga, and the limits commission has been at work duriog 1874 and 1875 in determining the position of this line. Farther on, the boundary of Brazil with Northern Peru has been described as a line passing northward from Tabatinga towards the mouth of the Rio Apaporis in the River Japura, the frontier with Peru terminating on this line where it interseets the Rio Putumayo, and that with Ecuador beginning there. From the mouth of the Apaporis the contanuation of the limit mith Columbia or New Graneda to that with Venezuela follows a line drawn along the waterparting of the range called the Collina do Guarea or Serra Aracuara, which divides the streams flowing to the Guainia, or Rio Negro, above the Casiquiare, from those which join it below the anastomosis of that natural canal. This line meets the Rio Negro about 20 milcs below the separation of the Casiquiáre. From the Sicrra Cucuby, or Pa d'Azucar, on the opposite or left bank of the liio Negro, the limit continues eastward over the level ground to the middle of the natural canal called the Maturaca, which in tinses of flood unites the Cababoris tributary of the Rio Negro with the Barna, a sub-tributary of the Casiquare channel. Hence the limit is drawn from tho Maturaca to the hill of Cupi, the firss of the long range of Serras which divide the waters flowing to the Amazon from those tributary to the Orinoco, and those passing through British, Duteh, and Fremeh Guians to the Atlantic. This boundary follows the curves of the water-parting eastward along the Serras named Guaby and Ucuruciro; northward on those of Tapirapeco and Parima; eastward agan along the Merevary and Pacaraima heights; sonthward between the rivers Tacutu and Rupunnny, and again generally eastrard along the Serras of Acarahy and Tucumuraque to the source of the River Oyapok. This river, from its sonree to the Atlantic in $4^{\circ} 22^{\prime} \mathrm{N}$. lat., is the present eastward limit of French Guiana. Several islets in the Atlantic belong to Brazil ; among them that of Fernando Noronha, 250 miles from Cape S. Roque, high, and having about 6 square miles of area, is important as a penal settlement of the empire.

The immense territory comprised within the line just described and the Atlantic is upwarda of 3,288,000 English square miles in area, or not far short of tho extent of Europe.

The great river of the lowlands of Brazil, the Amazon, Rivers bas been ealled the Mediterranean of South America, and is the largest stream of the globe in every respeet, affording, with its great tributaries, free navigation over not less than 30,000 miles within Brazilian territory (sce Amazon).

After the Amazon the Tocantins is the great river of the northern watershed of Brazil. Rising in the Serra das Vertentes in Ceatral Brazil, the Araguaya, its longer head stream, and the Tocantins flow northward for 900 miles, separated by the Cordillera Grande of Goyaz, and unite at about 300 miles from their wide estasry, called the Rio Para, formed between the island of Marajo and the main-
land. Midway in its. course the Araguaya forms the remarkable island called the Ilha Bananal or Santa Arna, which is eacompassed by branches of the river 220 miles in dength, and contains a central lake of 80 miles in extent. The Araguaya is navigable, but the upper Tocantins is barred by falls, and there is a rapid at some distance below their confluence round which a read has been recently made to unite the navigable nartions.

The Turyassú, Maranbĩo, and Paranabyba are the largest of the other rivers of the tith-eastern slope. The last vaned flows for the greater part of its ceurse of 700 miles through level swampy lands, recelving many tributaries from eastward, but few from the west; it S_{s} without obstructions, and navigable for a great distance
The São Franciseo oeeupies a wide enelosed basin of the eastern highland. Rising in the Serra do Espinhaço and the Vertentes of Minas Geraes, it flews nerth and eastward in a eourse of 1800 miles. But for a few obstacles the greater part of the river would be navigatle, since it has great volume. The chief barrier is in the Falls of Paulo Affonso, about 168 miles from the sea, where the river is contracted between rocks, and phunges in a series of cascades inte a uarrow reck-impeded channel. Immediately below this, however, it spreads out as a broad ealm river, which is regularly navigated by steamers from the Porto das Piranhas.to the sea

Among the rivers of the coast slope south of the São Franeisco the chief are the Paraguasú, the largest stream of the province of Babia, obstructed by many falls; the Rio de Contas or Jussiapé, a considerable river in the south of the province, also innavigable ; the Belmonte or Jequitinhonba from the high mountains of Minas Gerass, interrupted by many rapids and cascades, and iorming a series of magnificeut falls over the eastern edze oi the plateau, in whieh it deseends at least 300 feet; tie Rio Doce or Chopotó in the province of Espiritu Santo, affording a considerable length of navigation, with portages at its recfs; and the Parahyba do Sul, flowing between the Seria da Mantiqueira and the coast range of Rio de Janeiro, navigated regularly by steaners from its mouth for 60 miles to Săo Fidelio. Theugh these coast streams are among the little rivers of Brazil, every one of them is two or three times the length of the Thames.

The great rivers of the southern watershed are the Parana and Paraguay. The former has its rise in a broad basin, extending for a width of nearly 700 miles across southern Brazil, enclosed by the coast range of the south, the Serra da Mantiqueira, the Vertentes, and its southward interior branch running down into Paraguay. The main and longest head stream of the Paraná is called the Rio Grande or Pará, which rises in the Serra da Mantiqueira, one of its sourees being on the slope of 1tatiaiossú, the highest point of the whole empire, 110 miles north-west of Rio de Janciro. The Paranahyba joins the Grande on the right'from the Pirencos range in the north, and further on the Parana-Panema, with its tributary the Tibagy, conles in on the left bank from the inner slopes of the south coast range; the Rio Pardo, Jvinhima, and Igatimi are smaller tributaries on the left bank from the interior ranges. After the confluence of the Grande and Paranahyba the Paraní takes its proper name and flows southward out of Brazil in forming the limit between the empire end the republic of Paraguay. The fall of Urubupunga, 40 miles below the eonduence of the Grande and I'aranahyba, is an obstacte to the navigation of the upper river; but thenee to the great " salto" of Guayza on the frontier of Paraguay, in $24^{\circ} \mathrm{S}$., it is freely navigablo. - The fall of Guayri, Setoquedas, or Seven Falls, is ihe greatest eataract of Prazil. Immedistely above it and below the large island which the Paraad forans betweeu 23° and 24° the river is about $2 \frac{1}{2}$
miles in width; its chamnel is contracted first in passing through a diagonal line of seven islands which streicebes aeross it, and then between the walls of a roeky gorge only 65 yards in breadth, into which the whole mass of water plunges with terrifie fury, descending over a slope inelined about 50°, and for a perpendieular height of about 60 feet. The roaring of the cataract may be heard for many leurues round. Pelow the fall, the river rushes down in a narrow bed with high eliffliko banks, only becoming less rapid and navigable with dificulty as it leaves the Brazilian frontier at the confuonce of the Y-Guasú. This tributary, also named the Curityba, has a westward course to the Paraná, from many heads in the inner side of the south coast range, and like all the tributaries of the Paraná between it and the great fall, descends into the deep gorge of the mair river by a fine waterfall of 66 feet.
The River Paraguay, the upper basin of which lies in a much lower region of the continent, in the south-western interior of Brazil, is far superior to the Paraná in respect of its navigable qualities, and in the grand patural outlet it afiords to the southward. Its sources are in several small lakes on the southern slope of the Serra das Vertentes, between 13° and $14^{\circ} \mathrm{S}$., immediately opposite the head streams of the Tapajos, and it flows thence southrard, fed by many lateral streams from the range. Its important tributary the Cuyaba, or Sia Lourence, rises not far east of the Paraguay, but does not join it untill both have passed about 400 miles south. The Taquari, the Mondero, and the Apa, the boundary river of Erazil and Paraguay, are important tributaries from the range which divides the basins of the Pa:aguay and Parant; and from the hills of eastern Bolivia ihe Ěn Juan and Bahia Negra join the Paraguay on the right bank. Tbroughout its eourse the Paraguay affords uninterrupied navigation, and is regularly traversed by large Brazilian steaners from the Rio de la Plata to Curumbí, in the province of Matto Grosso, a distance of about 1000 mites in a direct line from Buenes Ayres. Thence smaller vessels carry on a regular traffic for 300 miles further, by the São Lourenço tributary, to Cuyaba in tho very heart of inner Brazil. An inmense tract of the low country on each side of the upper Paraguay, called the Xarayes, between 17° and 19° lat., is subject to inundation in times of flood.
While the Amazon begins to rise in February or March, and is at its highest flood in June, the Paranh is irregular in its risings, but has its greatest volume in December, and the Paraguay again, regularly swelling and falling, is highest in June.
The surface of Brazil in respect to its elevation is divided Surface. into the higher region of plateaus, ridges, and broad open ralleys, occupying the whle of the country south of the parallel of Cape S. Reque, and the vast lowland plain of the A mazon, extending inland to the base of the Andes of Peru, Eyuador, and Columbia, and risiog again in the extreme north to the:anges whieh form the boundary with Venezuela and Guiana.
 Brazil is not eentrally placed, but is formed by the chains and named the Serra da Mantiqueira and Serra do Espiuhaço, plateans. which extend between 18° and 23° south lat., at a varying distance of from 100 to 200 miles from the soutb-cast coast. These are the highest and most important mountains of Brazal, from which the other ranges and plateaus radiato outwards north, west, and south; one of the summits of the Scrra da Mantiqueira is the Pico do Itatiaiossi, which is almost certainly the culninating point of Erazil, but the elevation of its peak has been rery variously eitimated aud measured at from 6250 to 8900 and 10,300 fect. Itacolumi, near the town of Ouro Preto, reaching about sion fect, and Itambe is the north of the Serra do Espinhago, 430°)
feet, are the ather high points of these ranges. The sonthern coastal range, or the Serra do Mar, begins irmmediately north of the Bay of Rio de Janeiro, where the Orägos or Organ Mountains, with sharp peabs, rise to perhaps 7500 feet, and follows the line of the shore southward at varying distances from it to near the 30th parallel. The line of the Serra do Eipinhaço is prolonged northrard by another maritime chain or phateau edge, more distant from the ocean, forming the eastern barrier of the great valley of the Rio São Francisco, and terminating where the river turas eastward to reach the sea.

A range of high plateaus, probably from 3000 to 4000 feet in gencral leleration, and named collectively the Serra das Vertentes, or the range of the watersheds, but bearing a multitude of different names in its local sections aud branches, extends westrard from the Serra do Espinbaco, uearly at right angles to its direction, 4 raversing the entire country in curving lines inland for, upwards of 2000 miles to where the plateaus of Brazil terminate on the great bend, and the eataracts, of the Rio Madeira This very estensive range divides the waters flowing northward to the lower A mazon and to the Atlentie shores of the north-east, from those tributary to the great basins of the Paraguay and Parana in the south Its highest known portion is that ealled the Montes Pyreaeos, between the heads of the Tocantins and Paranahyba in the province of Goyaz, one of the summits of which has been found to be perbaps 9600 feet sbove the sea (II. R. Dus Genettes, 1868). Long branches ramify northward and southward from the Vertentes; the priacipal of those trending northward is that which, learing the main line of division at'the Pyreneus, curves round the basin of the São Francisco, terminating in many minor branches on the coast on each side of Cape 6. Roque. A lateral branch from this divides the streams of the Tocantins and of the northern Parauahyba. Farther west the Curdillera Grande of Goyaz runs nerth from the Vertentes, separating the Araguaya and Toeantins, and still more inland minor ranges mark out the basins of the Xingu and Tapajos. A southward arm of the Yertentes, or rather a series of plateaus extending from it, divido the Paraguay from the Alto Paraná, and run into Paraguay $2 s$ the heights of Amambahy, which bave an elevation of Little orer 2000 fect abore the sea where they cross the frontier. These are the main lines of beight, but orer the whola of the plateau of Southern Brazil a great number of lesser ridges run out from inese between each of the tributary river basins.

The extremely level character of the great northern lowlands may be judged of by this, that the banks of the Amazon where it enters Brazil at Tabatinga, more then 1500 miles in s direct line from the sea, are act more than 250 feet above the ocean level, and a continucus nevigation is afferded by its tributary the Rio Negro, the Casiçuiare, and the Orinoco, to the northern coast of the continent.

The great consituent of all the mountaic ranges of the southern tighlands of Brazil appears to be giveiss, varying from schistose to coarse-grained and porylyritic, or homogeneous and granitic ; and though much of it if seen in a small specimen would be and has been described as granits, the larger masses are almays stratified. These rocks are of great thickness in the proviuce of Rio, and the Serra do Mar and Serra da Mantiqueira are wholly composed of them; not only does gniess form the great coast belt from Maranhao to the mouth of the Rio de la Plata, but it sends off a liand into Minas Geracs and Gogaz, where the Pyreneos range and a great part of the mountain region are complosed of it. The same rock shoms itself in the cataracts of the Tocantins, Xingu, Tapajos, and Madeira, as well as in the Parina Mountains north of the Amazon basin, showing that the high land of Brazil is probably ercrywhers auderlaid by it. Clay-sia.es
with auriferous veins occur in Minas Geraes and in the vicinity of Cuyabá in Matto Grosso, everywhere so metamorphosed that all trace of fossils has been obliterated. True Carboniferous strata occur in Brazil, the coal basins lying just south of the tropic, and being a coast-formation not known northward of Rio. Carooniferous rocks also occur on the Guapore, a tributary of the Madeira on the Bolivian frontier. Red sandstones occupy a large area in the province of Scrigpe, underlying the Cretaceous forma. tion. The Jurassie rocks, which extend on the Andes from Chili to Peru, appear to be altogether wanting in Brazil. Cretaccous roeks very probably underlie the great plain of the Amazon; they do put appear on the coast south of the Abrolhos rocks in 18° S., but they oceur at jatervals northward, and have been esamined on an affinent of the River Purus in the upper basin of the Amazon. These appear to have heen deposited at a period when the northern part of Brazil was mere depressed, while the southern may hare. been higher than it is now. Tertiary clays and ferruginons sandstone, in horizontal and undisturbed beds, overlie the Cretaceous rocks unconformably on the coast plains outside the plateaus and in the Sà Francisco ralley; the horizontal deposits of th s plateau of Sào Paulo evidently belong to the same group.

Surface "drift" deposits, ascribed with the greater amount of probability to the ageney of glacial iee, though the hypotbesis has been much disputed, occur as a great shect of pebbles atd orerlying clay, extending over an immense arca of the cimpire,--orer the whole of the provinces south of Ric, oser Minas Geraes in the north-eastern ceast provinces, and in the valley of the Amazon westward to the confines of Peru, and not only'on the hills lhit over the lower "camos." Deposits of imanense boulders of trap and gneiss evidently the moraines of former local glaciers, were first described by Professor Agassiz, who found them at many points along the coast land.

True coral reefs occur at irregular intervals along tho northern Brazilian coast from the Abrolhos islets, which rise on the submerged border of tie continent from a lews depth than 100 feet, as far as the shores of Maramhen. Thes lie in patches at short distances from the const, learing navigable channels between them and the manland. Another class of recfs, also termed "reeifes," but al totally differant erigin, are the consolidated stone beachus, such as those seen at Porto Seguro, Bahia, and Perambinto (where the reef forms the brealiwater of the harhour); thase are ei preciely uniform character, and have been described iy Professor liartt as the consolidated cores of an ancicut beach which has beperated from the mainiand ly the encroachment of thesea (Geology and Physical Giouraphy of Brazil, by Ck. Fred. Hartt, 1870.) The limestones of the upper Sã̀o F -aycisco basin have celebrated bone caverns, which have been made a special object of study ty the Danish maturalist Lund. In somo of these the remains of estinct an!:nals of higb antinuity have been found, such as those of the mastodon, glyptodon, mylodon, tosodon, and megatherium ; end with these the stone implements and remaius of uan, so buried with the bones of the extinct fauna as to leare no doubt ilat man was contemporaneous with tbem.

No volcanic arpearances bave been observed in Brazil. Werm Warn siringz occur in several provinees; those of Itapi spmivis cura in the prowince of Bahia bave temperatures varying from 85° to 106° Falr. and are saline; the bot springs of Fore water in Sant: Catharian range from 96° to 113° Fahr., aud there are a great number of alkaline springs about th: district of Santa Cruz, in the province of Guyaz, rangiag up to 119° in temperature. Near the rillare of Caldess it Simas Geraes the but wells are rezy rolum:tous, and twe,
what suipternus whers have tumeratures betaer
106° and 113° Fahr. These are at an elevation of about 6000 feet above the sea.
Monerases. The metallic and mineral products which occur in the geolegical formations above deseribed are very various.

Diamonds.

 Diamonds were first discovered in the Serra do Espinhaco, in the vicinity of Diamantina, about 300 miles north of Rio, in 1786 . In this neighbourhood there are shales, sandstones, aad conglomerates; upon the sandstone there is or was a stratum of quartzite, still very distinct in many places, and among the sands created by the disiategration of this rock, diamonds are found. This district is named the Chapada of Diamantina, a term applied to small elevated plateaus, usually consisting of horizontal deposits, aed separated by deeply croded valleys. The diamond-producing soil extends along the Serra do Espinhace as far as the Horthern borders of the province of Minas, along the valley of the upper Belmonte, and ia the interior of the province of Bahia, as well as in the mountains that lie south-west of the sources of the Sano Fraaciseo. Diamoads of smaller value have also been fouad ia the province of Goyaz (on the Rio Clare) ; in Natte Gresso, where the valley of the Paraguay about Cuyaba and Diamantiae bas diamonds in considerable abuødance; in Paraná, on the Rio Tibagy, a tributary of the Parana-Panema; in São Pedro do Rio Grande do Sul; and in São Panlo;-but the area of their distribution is far from being well ascertained. The diamonds are generally obtained by washing; an excavation is made to reacb the stratum called cascalho, a gravel composed principally of quartz and iragments of different rocks of the neighbourhood, and mixed with a reddish clay. The washers are seated cither by a pond or running stream, and a pertion of the gravel, being thrown into a large shallow wooden pan, is mixed with water and stirred about in the current, so that the muddy water escapes and the gravel and sand remain. This is now passed through a sieve, which scparates the larger gravel from the smaller; the pebhles are then picked out, and the overseer examining the sand easily selects any diamonds that may be present. The diamends are often of considerable size. Burton mentions one found in the Chapada of Bahia weighing $76 \frac{1}{2}$ carats, which when cut into a dropshaped brilliant proved to possess extraordinary play and lustre. Emeralds, sapphires, ubies, topazes, beryls, tourmalines (black, blue, or green), ad amethysts are found, especially in the provinces of Minas Geraes. Gurnets oceur in great profusion, though of inferior quality. Rock crystals, perfectly pure and of large size, are obtained in Minas, Guyaz, Săo Paulo, and Paraná ; upals, chalcelonies, agates, and carnelians are found nearly throughout the country, but have become an article of export chiefly from the banks of the Uruguay, in the province of Rio Grande do Sul.One of the Brazilian coal basias lies in the province of Santa Catbarina, between the plateau and the sea; and along the banks of the Tubarão, beds of bituminous coal of fair quality are exposed, and were first noticed in 1841. Three separate coal-fields have been traced in the province of Rio Grande do Sul: the largest is situated in the valley of the Jaguarino (the boundary river with Uruguay), and ia that of the Candiota, covering an area of about 50 ailes by 30 miles; the sccond occurs in the valley of a tributary of the hio Jacualiy, near the centre of the prosince; and a third near the village of Sano Jeronymo, on the bank of the Jacuahy. The Candiota field is now being worked by an English company. At the Arroyodos liatos in the same province, mines have been worked on a small ecale; the coal from which is used by the steam-hoats which thy on the Largoa dos Patos, or on the rivers. Bitumen is suand in most of the provinces, and is worked near the south coast of the province of Labia.
Switcer.
Sulphur exists in a native state in the proviuce of Rie

Grande do Norte, and in small quantity in Ric Grande do Sul, as well as at Furquim and Corrego do Ouro, in the district of Mivas Novas in Minas Geraes. Saltpetre Saltpet occurs with salt over a large area of Minas Geraes and Babia, but is also abundantly formed in the floors of the ealcareous caves of the Rio São Franciseo valley from the city of Ouro Preto downwards. . Saline efflorescence is Salt. observed at innumerable localities in the drier pertions of the Brazilion platean; efflorescences of nearly pure sulphate of magnesia are also to be found in the ralley of the Rio das Velhas in the São Francisco basin, and in the province of Ceará, where chloride of sodium also appears.

Gold in Brazil is found in quartz veins traversing the old Gols metamorphic rocks, such as clay-slate, mica-slate, or iron sebist, in drift gravels and clays, and in alluvial sands and gravels derived from the wear of these. Most gold is afforded by the elay-slates traversed by auriferous quartz lodes, by the rock called Itacolumite (metamorphic rock of Lower Silurian age), and by certain iron ores known as Itabirite and Jacutinga, the latter deseribed by Burton as a substance composed of micaceous iron schist and friable quartz, mixed with specular iron oxide of manganese and fragments of talc. Over a very large area of the proviace of Minas Geraes, in the vicinity of Ouro Prete, the country is auriferous, and here ore the richest geld manes of Brazil. The celebrated Morro Velho mine is situated on the westera side of the valley of the Rio das Velhas, not far from Sabark, and was at first worked by native miners, but afterwards with great necess by a company. The mines of Gonge Soco lie abort, 20 miles east of Morro Velho, on the opposite side of the Velhas, and were at one time very productive. Another company owns a tract of 21 square miles, not far from the Norro Velho. Other mines have been worked in this veighbourhood at the Morre de Sta Anna, at Maquiné near it, and in the Serra of Cata Branea, 2 mi , east of the village of Corrego Seco. These mines with two exceptions have proved failures in working, after a period of success, and this netoriously from bad manageneat. The mines, however, are very far from being exhausted; indeed the underground wealth of the country is as yet almost uutouched. Much of the remaining portion of the province of Minas, and especially the upper basin of the Sãe Francisco, is auriferous. La Northera Brazil the only gold mine yet opened is that of Tury-assú in the province of Maranhão; but concessions for working gold have been granted by Government ia many parts of the provinces of Bahia, lernambuce. Parabyba, Piauhy, Gogaz, Ceara, and S. Paulo. In southern Brazil geld is known at Caçapara, Rio Pardo, Sta Maria, aud Cruz Alta, in the province of Rio Grande do Sul; and at the first-aamed locality a Brazilian company is carrying on the work of mining. Gold washings oceur in alnost every proviace, but especially in the district of Minas Novas, 200 mdes north of Ouro Preto, where the metal is found in grains or nuggets iu a cascalho of quartz pebbles, often cemented-into a conglomerate by iron oxide. They are carried on, however, in the rudest and most irregular way, and with mere modera appliances might prove very remanerative

The geld of Drazil is almays alloged with silver, and this sils.r. anctal is present in many of the galenic formations which are known in almost every province, as well as with the copper in the mines of Rio Grande do Sul. At the hill of - Araçoiva, in the municipality of Sorocaba in Sio F'aulo, silver was extracted nearly two conturies ago. liich mines Mercury of mercury oceur in the province of l'arana not far from the capital. Copper is abundant in the provinces of Matto Corper. Grosso, Goyaz, and Minas, near the capital of Bahia, in Maranhăo and Ceará, but clietly in Iio Grande do Sul, where at Santo Antonio das Larras, in the municipality of

Caçapara, there are the ricbest copper mines of Brazil, the mineral froun which yields 60 per cent. of pure metal.

Manganese exists in abundance in the vicinity of Nazareth, at the bead of the estuary of the Jaguaripe, adjoining the bay of Bahia. Galena mines are in operation in many parts of the empire ; the chief are those of Iporinga, Sorocabra, Iguape in the province of São Paulo, and those of the Rio Abaeté and Sete Lagũas, the most productive of all, in the provinee of Minas. Lead minas also exist along the whole coastal region from Santa Catharina to Maranhão, those of the bill chain of Diapaba on the borders of Ceara and Piauhy being important.

Every part of Brazil contains iron, in ore or in other forms, and an almost unlimited quantity appears to exist in the mountains of Minas Geraes. At São João de Ipanéma, in S. Paulo, there are heary deposits of magnetic iron, which are mined and smelted almost on the spot; ant other seams of like eharacter appear in the provinees of Alagoas, Ceará, Rio Grande do Norte, and Parahyba. Some of the Brazilian mines are quite free from pyrites. In 1810 a company of Swedish miners and founders settled at Ipanéma, and erected two small refining furnaces. In 1817 they produced nearly 4000 arrobas of iron, which was manufactured on the spot into horses' shoes, nails, locks, and other artieles. There is now a very considerable establishment, at which moulding and refining is carried on, the woods of the neigubourhood furnishing an ahundant supply of charcoal. A railway is projected to unite the works with S. Paulo and its port. Not far from these mines there are extensive quarrics of marble of valuable sorts.

A country so extensive as Brazil, and so diversificd in its surface, necessarily exhibitg a considerable variety of climate. The great northerrilowland lying entirely within the tropies bas great heat, and its year is divided between the simplo wet and dry seasous. The elevation of the central and southern bighland of Brazil introduces great variety in the scasons and climates of the intertropical portion of that region; and towards the south beyond the tropie a temperate zone is reached in whieh four seasons are marked, though not so distinetly as in central Europe. The whole wide plain of the Amazon hasin has its rainy season from January or December till May or June, the remaining lale of the year being dry, though intervals of fine weather may oceur within the wet period, and of showers in the dry season. The fall during the rainy months is excessive, raising the level of the great river full 40 feet, and much thunder and lightning always accompanies the Leavy rain. This belt of single rainy and dry season appears to terminate about the line of the River Paranabyba, between the provinces of Maranbão and Piauly; at the town of Maranhio the anmual fall bas been found to be on an average 280 inches. Inland, across the higher southern watershed of the Amazon, from the interior of the provinces of Maranbio and Pianhy, over Goyaz and northern Matto Grorso as far as the falls of the Madeira, the rainy seasons follow the passage of the sun towards and away from the southern tropic, and oecur from Oetober or November to Mareh or April, with more or less marked inturvals of drier weather.

In lower Maranhio showers also occur in October, and are called the 'Cashew rains.' On the north-east coast slope, in the provinces of Ceara, Rio Grande do Norte, and northern Bahia, the rains appear to be governed by the prevalence of the north-east winds from the Atlautic, and occur from March or April to June, July, or August. The coastal region from southern Bahia to Sa Paulo and the São Francisco valley bave again a more or less marked double rainy season between October and April or May; the heaviest rains oceur in the São Francisco valley from January to May, the high ast. f-ashets of the river being in

March ; the coast rivers, suci as the Rio Doce, rise firs: it Deeember, and again to an almost equal swelling in Mar.. At Pernambuco the amount of the annual ramfall is : $:$ wards of 100 inches; at Rio de Janeiro it has decreasa: to 59 inches, and a gradual diminution of the quantit is observed from the Amazon southward. In Sino I'unt. the rainy season is, in summer, from November till Aprit, the greatest quantity of rain falling in January. In ste Catharina the rains begin to be irregular, aud from this to the southward over Rio Grande do Sul the four seaseris of the temperate zone begin to be distinguishalle. The whole country is, as a rule, abundantly watered, the only burtion which may sufier from drought being that of tha interior between the Säo Franciseo and the Pamahyba, where extraordinary dryness bas sometimes prevailed.

In temperature the vast Amazon basin is remarkable for Tempera the small seasonal variation of beat, accounted for by its ture. equatorial position and immense surface of water and forest ; within its limits the thermometer at its highest readings averages 90° and the lowest 75°. At Parit the register kept by Costa Azevedo between 1861 and 1867 gave a mean temperature of 80°, a maximum of 95°, and a minimum of 65°. Observations are very deficient for the greater portion of the empire. About the Falls of the Madeira, Keller estimates the mean annual temperature at 77°, with lut small variation in the seasons. In the latitude of Rio de Janeiro the summer or Jennary temperature near the sealevel has an average of about 75°, that of July descending to about 65°; aud in the extreme southern provinces the corresponding figures may fall to 70^{3} and 50° Fabr. in sumner and winter. But an immense variety of temperature and climatic condition are found on the central and southern table-lands and mountain ranges of Brazil, from the hot and humid air of the coast to the mustains where in winter it frequently snows, and where lakes may be corered with a coating of "ce. In the high plains of Rio Grande and Sino Paulo the thermometer may also fall to below the freezing point.

The prevalent winds of the greater portion of Brazil are Wiads. the trade-winds from the east, which, gathering the vapours. from the whole breadth of the equatorial Athantie, give cut their excessive moisture over the northern forest plains of the Amazon, reaching inland as far as the high wall of the Andes. The east winds are strongest in the Amazon valley from July till Novemher, mitigating the heat of the diy season. Ou the maritiuse regions of central Bpazil the north-east or south-east trades prevail aceording to scason. In the far interior the general winds take a more north and south direction, blowing usually from the south when the sun is in the northern tropie and from the north doring summer. Land and sea breezes are very constant along the consts. At the mouth of the Sin Francisen, for example, the morning is still and calm; about nine o'elock a breeze steals over the water, rippling its surface and gradually increasing to a stiff wind about noon the breeze cuntinues steadily till might-fall, when it again falls calm.

With the exception of the marshy banks of some of the fleath. rivers and the lowlands and swamps, where intermittent fevers are very prevalent, the conntry is generally healihy. On the sea-coast and inland in some of the maritime provinces, epidemics of yellow fever and cholera morbus liave been experienced since 1850. The mortality in the wost populous towns of Brazil is not, however, above but rather. below that of the large cities of Europe.

The broadly-marked features given to the landscape by the vegetations of different eharacters in Brazil are distin-: guished by several names. Matlas or beavy forests cover the immense morthern lowland which is watered by excessiser rains, and these occur also in belts of greate; or irsa widt over the lower portions of the contrat, and sontares
region. Catinga is the general name applied to the lower growing and open woods of the alopes of the Brazilian highland which lose their leaves in the dry season. These merge into the wide open plains or gently rounded hills and ridges, covered witl. grass or scattered bushes, which ane called the Campos feraes. The systematic buraing over of these great grass lands, to allow the young crop to appear, has completely destroged in them all trees and shrubs which cannot bear the scorching, and so has wrought a great alteration in the fora of these regions. The name sertēo, meaning originally the interior as distinguished from the maritime conutry, has come to be arplied to dry, hilly, and stony districts of the campos only onited for pasture. To the agricultural ceast belt of the eastern provinces tho name Beira mar is given.

Ercept on the loftiest mountains, and on the wide sertion, the vegetation of Brazil is lusuriant beyond description. Io the mountain passes in the neighbour hood of the sea-shore, the conjoint effects of heat and moisture produce a superfluity of vegetable life, which man's utmost efforts cannot restrain. Trees split for paling in the neighbourhood of Rio Janeiro send forth shoots and branches immediately, and this whether the position of the fragments be that in which they originally gres, or inverted. On the banks of the Amazons the loftiest trees destroy each other by their proximity, and are bound tugether by rich and multiform lianes. In the province of Maranhano, the reots, grasses, and other plants extending from the shores of pools, weave themselves in time into a kind of vegetable bridge, along which the passenger ircads, unaware that he has left the firm earth, until the jarrs of a cayman protrnde through the herbage before tim. The regretable productions of Brazil have a strong analogy with thuse of Cuiana. The most common are the Compositce, Leguminose, Euphorbiacer, Pubiacte, A roidece, snd ferns of the most varied forms. The vegetation of the valleys differs from that of the campos, as it again does from that which occurs in the sertios. Along the const, the mongruves are the most numerous and prominent species. The most markel pectiarity of this class of plants is, that the eeeds begin to shoot before they drop froms the parent plant, and that the drooping branches strike roots into the soil. They are never found inland excen whero the surface is scarcely elerated above the level of the sea. They hourish from Rio Grande do Sul to Maranhão, conserting the land ioto a morass wherever they are allowed to loorish unmolested. Immediately behind them numerous families of palms raiso their graceful heads. The underwood in the neighbourbood of Rio Janeiro consists priacipally of crotons. Esery large river of Brazil has its own appropriate form of veretable life, giving a peculiar character to its banks. The vegetation of the Ainazon may be divided into three classes;-(1) that which we find on the islands, (2) the vegretation upon the banks overflowed at regular intervals by the stream, and (3) that which stands ligh and dry. The difference between them consists is the character of the bark and the species of the plants. Brushwood and herhage are nowbere to be seeu; everything teuds to the gigantic in size. The wost various forms group awkwardly togcther, crossed and iutertwined with leares. The preponderance of trees with feathery foliage, and with glossy, tleshy leares, lends alternately a teuder and a luxuriant character to the scene, which is in every other respect manful from its monotony. Representatives of the most estrange natural families grow side by side. St is only ca the islimils, where the willow and some other plant: sof found in mumbers, that we are reminded of the mifumatyo on northern vegetation. Cocoa trees and the vanilht, (iupsicum grueseres, and difierent hinds of pepper,

flora of all the tributaries of the Amazon 18 similar to what we have described, until the traveller ascends above the falls, and finds himeelf in another region. The sources of the Madeira alone offer a partial exception, retaining a vegetation indicative of estensive plains, lakes, and morasses. The vegetation of the southern campos (cerresponding to the North Amcrican prairies) is widely different. On the plains of the southern provinces we find scattered abum strong tufts of greyish-green and hairy grasses, sprinci's' from the red clay. Mingled with these are numerou: herbaceons flowers, of the mosi varied colours and elcgant forms. At intervala small groves of trees, seldom exceed. ing 20 feet in height, so distant that the individual form of each is easily recognized, with spreading fautastic branches and pale green leaves, break the monotony of the scene. Solitary rayrtles, numerous varieties of pleasing fruits, and now and then a cactus, add to the variety. A similar vegetation, but with a richer variety of plants, occurs in the diamoud district. On the western declivity of the Seria do Mar, and along the upper banks of the Rio São Francisco, extends a wooded "catinga " country, of a character entirely different from that which is found in the valleys below. Malva, Euphorbiacea, Mimose, and the like, are the prevailing types on the Rio Francisco; cactuses, palms, and ferns abound on the Serra do Mar. In this latter district the ipecacuanha flourishes best: It is, however, in the glowing steppes of Pernambuco that we find the coetus predominant. In the valley of the Paraguay the most striking feature is presented by the water plants, which in one river are suificiently strong to impede the narigatio of a stream both deep and broad.

The forests of Brazil contain almost every species of useful and ormamental wood. The cocoa-tree is found in great quartities in the provinces on the sea-shore, and furnishas one of the most important items of internal commerce. A considerable surplus of cocoa is annually experted One of the most valuabie sorts of timber is fuanished by the Ibiripitanga or Brazil-wood (Casalpinia brasiliensis), which yiclus a fine red dye. The wood itself is very bard and heary, and takes a beautiful polish. It grew at one time in great abundance along the coast; but being a Government monopoly (thence called pao da rainho, Queen's wood), it was cut down in a reckless manner, and is now by no meaus so abundant as it once was. The other trees most worthy of mention are the jaracind α or rosewond tree, the trumpet tree (Secropia peltata), the laurel, the soap-tree, the tapia or garlic pear-tree, and the whole family of paims. Of these the Garuauba Palm (Copernicia cerifera), which grows in the north-east coastal province, is perhaps the most useful tree of Brazil ; every part of it is valuable, and the wax yielded by its leaves is now a considerable article of trade. Net least important is the Siphonia elestica, or caontchouc tree, which during the season is tapled every day, and furnishes in considerablo quantities a gum which is poured into moulds; the export of this product from Erazil averages a value of more than f1,000, (100 annually. The banana is one of the most useful of all the trees that grow in Brazil, sad its fruit is the ehief food of the native Indians. The fruits of Brazil are mumerous and cxcellent. The hest of these are the pine-apple, the mange, the custard-apple, the guava, and the various kinds of melons and nuts
In au emnire of such vast extent as Brazil, embracing as it Fegotabie does every varicty of temperature and elevation, the valu. producta and importance of the agricultural products cannot fail to be very great. So small, however, is the number of farmers, compared with the extent of the soil, that it is believed that not one acre in 200 is unde- cultivation. In some provinccs, especially those near the aea, the auantity of grain raised is uot sufficient to eupply the
acmaud, and thus largo quantities of wheat are annually fmported from the United States. The reason of this is that the soil under tillage is occupied in the production of articles for foreign markets. The chief products of Brazil are coffee, sugar, cotton, manioc or cassava flour, tobacco, rice, maize, fruits, and spices. Of these by far the most important now is coffee, while sugar ranks next in value, and cotton after sugar. The coffee plant, introduced from Arabia into the Frencla colony of Cayenne in 1722, was soon after brought to Brazil; but it was not until 1810 that Brazilian coffee came to be bighly valued in the European markets. In that year, bowever, Dr Lecesne, a ,lanter, expelled by the revolution from San Domingo, iettled near Rio, and introduced the most improved inethods of rearing the coffee-plant. So successful has the result of the new system been, that its cultivation now extends from the Amazon to Sãe Panlo; and whereas in 1818 the anmual exports of coffee did not amount in value to $£ 240,000$, in 1873 the exporte were worth nearly
$s_{\text {ogser }} \quad £ 13,000,000$. The cultivation of sugar has not iucreased nearly in the eame proportion ss that of coffee, and in recent years a disease of the cane has affected the cultivation seriously. It is produced in greatest quantity in the districts sdjoining Bahia. The quantity of sugar cxported in 1850 was 16,200 bales, representing a vilue of about $£ 1,700,000$; in 1875 the vslue of the experts was $£ 3,120,000$. Cotton is found to thrive best in the dry table-lands of the northern provinces, especially in Maranhano and Pernambuco. Its quslity is considered excellent; but the rude and expensivo method of its culture, and the high rates of cerriage in these inland districts, operate very unfavourably for this branch of traffic. The anuual value of cotton exported is not much above $£ 3,000,000$. The
othar sro.
duits. Ilex curitibensis, and other varieties of the bolly, which yields the yerba mste, or Paraguay tea, are indigenous to the southern provinces of Rio Grande, Santa Cathrrina, and Parant Some attempts have been made towards the cultivation of this product, but the greater part of the tes is rudely made from the tree in its wild stato in the woods. The amount annuslly exported to the River Plate averages, between $£ 300,000$ to $£ 400,000$ in vslue. Tobacco is chiefly cultivsted in the provinces of Bahia, Minas, S. Paulo, and Yara, and in some localities of Rio de Janeiro. Though it is inferior in quality to that of the West Indies, it is exported to the vslue of between $£ 700,000$ and $£ 800,000$ annusily. The cultivation of cocos, hitherto obtained from the valleye of the Amszon and Tocantins, is jucreasing in the provinces of Bahia snd Ccarí. Rice grows in considerable quantities, and not being much used by the natives for food, a large aurplus remains for exportation. The cassava or msoicc is extensively grown and forms the staple food of the lower classes The root, which is tho part of the plant used for this purpose, contains a deadly poison. It is easily expelled, however, by the action of fire, and the residuum is ground into a wholesome and nutritions flour or fsrina Tapioca, which is oxteneively used in Europo, ie a proparation of the starch from the root of the cassava.
Anixals
The verieties of animated Life in Brazil are more numerous perhaps than in sny other region in the world. Of beasts of prey, the most formidable are the jaguar or Sonth American tiger, the ocelot, the tiger-cat, the puma, the guara or red wolf, and the Brazilian fox or widd dog. Large herds of the peccary roam in the forests, in which also is to be found the tspir or anta, the largest South American mammal. The capivara, or mater hog, abundant on the river banks, is the largest known rodent. Diverso species of deer inhsbit the campos; representing the Edentata there are several epecies of armsdillos and ant-eaters, and the eloths; and of the Marsapialis, several species of opossum
occurring over the whole of Brazil. The varieties of the monkey tribe that abound in the forests appear to be almost infinite. The largest belong to the genus Stentor, meluding the guaribas or howling monkeys. The Simua jacchus has never been seen elsewhere. There are several varieties of bats, of which the Vespertilio leporinus and the V. spectram ore the largest. No less imuense is the varrety of birds, from the ouira, sn eagle far larger than our most poweriul birds of prey, to the humming-bird, no larger than a bee. The rhea, a species of ostricb, is fonad in Brazil. The Bra. zilian birds are celebrated for the beauty of their phumage. " Red, blue, and green parrots," says Malte-Brun. "frequent the tops of trees. The gallinaceous jacús, the hoctos, and different kinds of pigeons, baunt the woods. The oriolcs resort to the orange groves; and their sentincls, stationed at a distance, annonnce with a screaming noise the ap. proach of man. Chsttering manakins mislead the hunter; and the metallic tones of the uraponga resound through the forest like the strokes of a hammer on an anvil. The toucan (Ramphastos) is prized for its feathers, which are of a lemon sad bright red colour, with transverse stripes reaching to the extremities of the wings. The different species of humming birds are more numerous in Drszil than in any other country of America. One sort is called by the people the Gnanthe engera or winged flower." Snakes of every kind sbound in the marshy districts, some of which, sucl as the rattlesnake and the jararaca, are renarlably venomous; while otbers, such as the boas, attain an enormous size and strength. A rast number of troublesome ingects infest the margins of all the great rivers. Of these the most formidable is the puim, which is $s 0$ small as to be gesrcely visible, and inflicts a most painful and even dsugerous bite. The red ant is peculiarly destructive to vegetation, snd whole districts are sometimes laid waste by its ravages. The spider here attains an enormous size, but is not so venomous as might be expected from its appearance. The gayest butterflics futter through the air, the blue shining Menelaus, the Adonis, the Nestor, and the Lacrtes. More than ten species of wild bees bave been observed in the roods, and the greater number proluce honey. The Cact's roccinellifer, sud the insect peculiar to it, are found in tiow province of S. Paulo. Lizards and caymans sbound. The quantity of turtle in the Amazon and its principal tributaries is almost incredible. The waters swarm with fish in thousands of species, many of which bave nat yet been described. Among the largest is the Pira rucit, the principal food of large numbers of tho people of Parí and Amazonas. Of domestic auimals, tho most important are the horse, the ox, and the sheep. Vast numbers of horses, sprung from the original Eurvican stock, rosm at large orer the cextensive plains of the southern provinces. They sro generally found in droves of twenty or thirty. Oxen aro also allowed to wander half wild. They are hunted down with the lasso in great numbers, and aro valued chietly on account of their hides, horns, aud tallow, which aro exported in immense quantities. The chief cattle-breeding districts of Brazil are the island of Marajo in Pará, Goyaz, Matto Grosso, Piauhy, S. I'aulo, Minas, Paraná, snd Rio Grande do Sul. Sheep do not thrive in Brazil at all so well as the larger kinds of csitle.

Brazil was discovered in 1499 by Viaceat Yañez Pinçon, Herorr. a companion of Columbus. He descried the land near Cape St Augustioe, and sailed along the coast as far as tae River Amazon, whence he proceeded to the month of the Orinoco. He made no settlement, but took possession of the country in the nsme of the Spanish Government, and carried home, as specimens of its natural productions, some drags, gems, sud Brazil-wood. Nest year the Portuguese commander, Pedro Alvarez Cabral,
appointed by his monarch to follow the course of Vasco de Gama in the East, was driven, by adverse winds so far from his traek, that he reached the Brazilian coast, April 21, and anchored in Porto Seguro ($16^{\circ} \mathrm{S}$. lat.) on Good Friday. On Easter day an altar was erected, mass celebrated in presence of the natives, the country declared an apanage of Portugal, and a stone cross erected in commemoration of the event. Cabral tespatchedasmall vessel co Lisbon to announee his discovery, and, without forming any settlement, proceeded to India on the 3d of May On the arrival of the news m Portugal, Emanuel invited amerroo Vespucei to enter bis service, and despatched him with three vessels to explore the country. This navigator's first voyare was unsuceessful; but in a seeond he discovered a safe port, the site of which is not accurately known, to "which ha gave the name of All-Saints. He remaned there five months, and maintained a friendly intercourse with tha natives. Some of the party travelled forty leagues ninto the iaterior. Vespucei crected a small fort, and leaviog twelve mea, with guas and provisions, to garriso: it, eubarked for Portugal, having loaded his two ships with Brazil-wood, monkeys, and parrots.

The poor and barbarous tribes of Brazil, und their country, the mineral riches of which were not immed ately discovered, offered but few attractions to a Governmen . into the coffers of which the wealth of Juda and lfrea was flowing, Vespucci's settlement was negleeted. For sarly thirty years the kings of Portugal paid no further atte ation to their newly-acquired terntory than what consisted in combating the attempts of the spaniards to occupy it and dispersing the private adventurers from Franee who songht its shores for the purposes of commerce. The colonization If Brazil was prosechted, however, by subjeets of the Portuguese monarehy, who traded thither chiefly for Brazilwood. The Government also sought to make criminals of some use to the state, by placing them in a situation flere they could do little harm to society, and might help to uphold the dominiou of their ation.

The first atterapt on the part of a Portuguese monarch to introduce an organized gevernment into his dominions was made by Joño III. Ho adopted a plan which had been found to succeed well in Madeira and the Azores,dividing the country into hereditary captaineics, and granting them to such persons as were willing to undertake thear settlement, with unlimited powers of jurisdiction, both civil and criminal. Each captaincy extended along fifty leagues of coast. The boundaries in the interior were sindefined. The first settlement made under this now systern was that of S. Vineente Piratininga, in the present provioce of S. Paulo. Martim Aftonso de Sousa, having obtained a grant, fitted out a considerable armament, and proceeded to explore the conntry in person. He began to survey the coast about Rio de Janeiro, to which he gave that name, because he discovered it on the first of January jn3l. He proceeded south as far as La Plata, naming the places bo surveyed on the way from the days on which the respective discoveries were made. He fixud upon an miand, in $242^{\circ} \mathrm{S}$. lat., called by the matives Guaibe, for his settlement. The Goagnazes, or prevailing tribe of Indians 2n that neighbourboad, as son as they discovered the intentions of the new comers to fix themselves permanently thero, collected for the parpose of expelling them. Portmately, however, a shipwrecked Portuguese, who had lived many years under the protection of the principal chief, was successful in conchudug a treaty of perpecual alliance utween his countrymen and the natives. Finding the spot chosen for the new town ineonvenient, the colonists removed to tho adjoining island of S. Vincente, from which the enptaincy derived iis name Cattle and the sugarcane wero it an carly periol autrudaced from Madeira,
and here the other captaincies supplied themselves witb both.

Pero Lopes de Sousa received the grant of a captaincy, and set sail from Portugal at the same time as his brother, the founder of S. Vincente. IIe chose to have his fifty leagues in two allotments. That to which he gave the name of S. Amaro adjoined S. Vincente, the two towng being only three leagues asunder. The other division lay much neaser to the line between Paraiba and Pernambuco. He experienced considerable difficulty in founding this second colony, from the strenuous opposition of a neighbouring tribe, the Petiguares; but at length he succeeded in elearing his lands of them; and not long afterwards lie perished by shipwreck.

Rivu e Janeiro was not settled till a later period; ani for a considerable time the nearest eaptaincy to S. Amaro, sailing along the coast northwards, was that of Espiritu Santo. It was fonnded by Vasco Fernandes Coutinho, who heviag aequard a large fortane in Iodia, sunk it in this scteme of colomzation. He carried with him nu less than s:xty fidalgos. Tley named their towa by anticipation, Our Lady of the Victory; but it cost them some hard fighting with the Goagnazes to justify the title.

Pedro de Campo Tourinho, a nubleman and excellent mavigator, received a grant of the adjoining captaincy of Porto Saguro. This, it will be remembered, is the spot where Cabral first took possession of Brazil. The Tupinoquins at first offered some opposition; but having made feave, they observed it faithfully, notrithstanding that the eppression of the Portuguese obliged then to forsake the conatry. Sugar-works were established and ennsiderable quantities of the produce exported to the mother country.

Jorge de Figueirclo, Escrivam da Fazenia, was the first donatory of the captaincy of Ilbéos, 140 miles S. of Bahia. His office preventing him from taking possession in person, ie deputed the task to Francisco Romeiro, a Castilian. The Tupinoquins, the most tractablo of the Brazilian tribes, made peace with the settlers, and the colony was fonde: rithout a struggle.

The coast from the Rio S. Francisco to Lahia was gir inted to Franciseo Pereira Coutinho; the bay itseli, rith all its crecks, was afterwards added to the grant. Vhen Coutinho formed his establishment, where Villa Velha now stands, ho found a noble Portugnese living in the neighbourhood who, having been shipwrecked, had, by means of his fire-arms, raised himself to the rank of chiel among the natives. He was surrounded by a patriarchal estahlishment of wives and children: and to him most. of the distinguished families of Bahia still trace their lineage. The regard entertained by the natives for Caramaru (signifying man of fire) induced them to extend a hospitable welcume to his conntrymer, and for a time everything went on well. Continho had, however, learned in India to be an oppressor, and the Tupimambas were the fiercest and mos: powerful of the nativertribes. The Purtugucse were obliged to abandon their settlement; but scveral of them returned at a later period, along with Caramaru, and thus a European community was established in the district.

Some time beforo the prod at which these captaincies were established, a factory had been phanted at Ternambuco. A ship from Marsenlles took it, and left seventy men in it as a garrison; but being eaptured on her return,and carried into Lisbun, immediate measures were taken for reoceupying the place. The captaney of Pernambuco was granted to Don Duarte Coelho Pereita as the reward of his serviecs in India. It extemped along the coast from the Rio S. Francisco, northward to the Rio de Juraza. Duarte sailed with his wife and children, and many of his kinsmen, to take possession of his new colony, and landed in the port of Pernambuco. To the town which was there founded he gave the name of

Ulinda. The Cabetes, who possessed the soil, were fierce and pertinactous; and, assisted by the French, who traded to that coast, Coelho had to gain by inches what was granted bim by leagues. The Portuguese managed, however, to beat off their enemies; and, having entered into an alliance with the Tobayanes, followed up their success.

Attempts were made about this time to establish two other captaincies, but without success. Pedro'de Goes obtained a grant of the captaincy of Paraiba between those of S. Vincente and Espirito Santo; but his neans were too feeble to enable him to make head against the aborigines, and the colony was broken up after a painful struggle of seven years. João de Barros, the historian, obtained the captaincy of Maranhão. For the sake of increasing his capital, he divided his grant with Fernan Alvares de Andrada and Aires da Cunha. They projected a scheme of concucst and colonization upon a large scals. Nine hundred meu, of whom one hundred and thirteen were horsemen, embarked in ten ships under the command of Aires da Cunha. But the vessels were wrecked upon some shoals about one hundred leagues to the south of Maranhano; he few survivors, after sulfering inmense hardships, cscaped to the nearest settlements, and the undertaleing was aban toned.

By these adventurers the whole line at Brazilian coast, from the mouth of La Plata to the mouth of the Amazun, had become studuld at intervals with Portuguese settlements, in all of which lat and justice were administered, however inadequately. it is worthy of observation, that Brazil was the first culony founded in America upon an agricultural principle, for until then the precions metals were the exclusive attraction. Sufticient captal was attracted between the year 1531 in which De Sousa founded the first captaincy) and the year 1545 to reader these colonies an object of importance to the mother country. Their organization, however, in regard to their means of defence against botn cxternal aggression and internal violence, was extremely defective. Their territories were surrounded and partly occupied by large tribes of savages. Belind them the Spaniards, who had an establishment at Asuncion, had penetrated almost to the sources of the waters of Paraguay, and had succecded in establishing communica tion with Peru. Orella na, on the other liand, setting out. from Peru, had crossed the mountains and sailed down the Amazon. Nor had the French abandoned their hopes of fecting an establishmeat on the coast.
The obrious remedy for these evils was to concentrate 'ue exccutive power, to render the petty chiefs amenable " ene tribunal, and to confide the management of the !efensive force to one hand. In order to this the powers of the several captains were revoked, whilst their property in their grants was reserved to them. A governor-general was appointerl, with full powers, civil and criminal. The judicial and financial functions in each province were vested in the Ouvidor, whose authority in the college of fuance was second only to that of the governor. Every colonist was enrolled either in the Milicias or Ordeneness. The former were obliged to serve beyond the houndarics of the province, the latter only at home. The chief cities recejved municipal constitutions, as in Portugal. Thome de Sousa was the first person nominated to the important post of governor-general. He was instructed to build a strong city in Bahia and to establish there the seat of his goverument. In pursuance of his commission he arrived at Bahia in April 1549, with a ficet of six vessels, on board of which were three hundred and twenty persons in the king's pay, four hundred convicts, and about three hundred free colonists. Care had becn taken for the spiritual wants of the provinces by associating six Jesuits with the expedition.

Old Caramaru, who still survived, rendered the governor
essential service by gaining for tis countrymen the good wll of the natives. The new city was established where Babia still stands. Within four months one bundred houses were built, and surrounded by a mud wall. Sugar pluntations were land out in the vicimty. Durng the tous years of Sousa's government there were sent out at different times supplies of all k nds, female orphans ot noble families, who were given marrage to the othices, and portioned from the royal estites, and orphan boys to be educated by the Jesuits. The capital rose rapidly in importance, and the captameres iearned to regard it as a common head and centre of wealth. Neanwhle the Jesume undertook the tworaland religions culture of the natives, and of the scarcely less savage colonists. Strong oppositron was at first experienced from the gross ignorance of the Indiuns, and the depravity of the Portuguese, fostered by the licen. tions encouragement of some abandoned priests who hav found their way to Brazil. Over these persons the Jesuits had no authority; and it was not until the arrival of the first bishop of Brazil in 1552, that anything like an efficient check wese inaposed upon them. Next year Sousa was sueceeded by Duarte da Costa, who brought with him a reinforcement of Jestits, at the head of whon was Luis de Gran, appointed, wath Nobrega the chief of the frist aussion, joint provincial of Brazil.

Nobrega's first act was one which has exercised the most beneficial infuence over the sucial system of Brazl, namely, the establishment of a college on the then uneclaimed plains of Piratininga. It was named S. Paulo, and has been at once the source whence knowledge and civalization have been diflused through Brazil, and the ucleus of a colony of its manliest and hardiest citizens, which sent out successive swarms of hardy adventarers to people the interior. The good intentions of the Jesults were in part frustrated by the opposition of Duarte the governor; and it was not until 155s, when Mem de Sa was sent ont to supersede him, that their projects were allowed free scope.

Rio de Janciro was first ocenped by Freneh settlers. Nicholas Durand de Villegagnon, a bold and skilfud seaman, having visited Brazil, sall at once the advantages which might aceruc to his country from a settlement there. In order to secure the interest of Coligny, be gave out that his projected colony was intended to serve as a place of refuge for the persecuted Huguenots. Under the patronage of that admiral, he arrived at Rio de Jaueiro in 1558 with a tram of numerous and respectable colouists. As som, however, as he thought his power secure, he threw off the mask, and began to harass and Gppress the Hugnenots liy every manas be could devise. Many of them were forced by his tyramy to return to France; and ten thonsand Protestants, ready to embark: for the new colony, were deterred by their representations. Villegagnon, funding has force much diminished in consequence of his treachery, salled for France in quest of recruits ; and durmg has absence the Portugucse governor, by order of his court, attacked and dispersed the scttlement. For some years the French kept up a lind of busb warfare; but in 1567 the Portuguese succeeded in establishing a settlement at lio.

Mem de Sar continued to hold the reins of government in Crazil upon tirms of the best understanding with the clergy, and to the gecat adsantage of the colonies. for fourteen years. On the expiration of his power, whels was nearly contomporary with that of lis life, an attempt was made to d vide Brazil into two govermments; but this having failed, the tersitory was remited in 1578 , the - car in which Diege Laurenço da Veiga was appentied governor. At this time the colonios, although not yet independent of tupplies from the inther country, were in a flourishing ecndition; but the uourpation of the cruws
of Fortugal by Yulip II. changed the aspect of affairs. Brazil, believed to be inferior to the Spanish possessions 1a mines, was consequently abandoned in comparative neglect for the period intervening between 1578 and 1640, during which it continued an apanage of Spain.
No sooner had Brazid passed under the Spanish crown, than English adventurers directed their hostile enterprises against its shores. In 1586 Witherington pluadered Bahia; in 1591 Cavendish burned S. Vincente; in 1595 Lancaster took Olinda. These exploits, however, were transient in their effects. In 1612 the French attempted to found a permanent colony in the island of Mariju, where they succeeded in maiutaining themselves till 1618. This attempt isd to the erection of Maranhāo and Para into a separate Estado. But it was on the part of the Dutch that the most skilful and pertinacious efforts were made for securing a footing in Brazil ; and they alone of all the rivals of the Portuguese have left traces of their presence in the national spirit and institutions of Erazil.
The success of the Dutch East India Company led to the establishment of a similar one for the West Indies, to which a monopoly of the trade to America and Africa was granted. This body despatched in 1624 a fleet against Bahia. The town yielded almost without a struggle. The fleet soon after sailed, a squadron being detached against Angola, with the intention of taking possession of that colony, in order to secure a supply of slaves The Portuguese, in the meanwhile, began to collect for the purpose of expelling the permanent intruders, and the hearty co-operation of all the natives against the invaders haring been obtained through the descendants of Caramaru, the Dutch were obliged to capitulate in May 1625. The honours bestowed upon the Indian chicfs for their assistance in this war broke down in a great measure the barrier between the two races; and there is at this day a greater admixture of their blood among the better classes in Bahia than is to be found elsewhere in Brazil.

Is 1630 the Dutch attempted again to effect a actlement; and Olinda yielded after a feeble resistance. 'I cy were uuable, however, to extend their power beyoud the limits of the town, until the arrival of Count Maurice of Nassau in 1630. His first step was to introduce a regular government among his countrymen ; his sccond, to send to the African coast one of his oticers, who took possession of a Portuguese settlement, and thus secured a supply of slaves In the course of four years, the limited period of his gevernment, be succeeded in confirming the Dutch supremacy along the coast of Brazil from the month of the S. Francisco to Maranhăo. He promoted the amalgamation of the different races, and sought to conciliate the Portuguese by the confidence he reposed in them. His object twas to found a great empire; but this was a project at variance with the wishes of his employers-an association of merchants, who were dissatisfied because the wealth which they expected to see flowing into their coffers was tapended in promoting the permanent interests of a distant eountry. Count Maurice nas recalled in 1644 His successors possessed neither his political nor his military ti'snts, and had to contend with more energetic encmies.

In 1640 the revolution which placed the house of Braganca on the throne of Portugal restored Brazil to mesters more inclined to promote its interests and assert its possession than the Spaniards. It was indeed high tume that some exertion should be made. The nerthern provinces bad fallen into the power of Holiana; the southera, peopled in a great measure by the hardy descendants of the successive collonists whe had issued on all sides from the central establishment of S. Faulo, had learned from their habits of unaided and successful caterprize to court independence. They bad ascended the
waters of the Paraghay to their sources. "Hey had extended their limits southwards till they reached the Spanish settlements on La Plata. They had reduced to slavery numerous tribes of the natives. They were rich in cattle; and had commenced the discovery of the mines. When, therefore, the inhahitants of S. Paulo sar themselves about to be transferred, as a dependency of Portugal, from one master to another, they conceived the idea of erecting their country into an independent statc. Their attempt, however, was frustrated by Amador Bucno, the person whom they had selected for their king. When the people shouted "Long live King Amador," he cried out " Long live João IV.," and took refuge in a convent. The multitude, left without a leader, acquiesced, and this important province was sccured to the house of Bragança
Rio and Santos, although both evinced a desire of independence, followed the example of the Paulistas. Bahia, as capital of the Braziliai states, felt that its ascendency depended upon the union with Portugal. The Government thus left in quiet possession of the rest of Brazil, had time to concentrate its attention upon the Dutch conquests. The crown of Portugal was, however, mach too weak to adopt energetic measures. The tyranny of the successois of Nassau, by alienating the minds of the Pertuguese aud natives, drove them to revelt before any steps were taken in the mother country for the reconquest of its colonies. Jeão Fera*ndes Vieyra, a native of Madeira, organized the insurrection which broke out in 1645 . This insurrection gave birth to one of those wars in which a whole nation; destitute of pecuniary resources, military organization, and skilful leaders, is opposed to a handful of soldiers adrantageously posted and mell officered. But brute force is unable to centend with scientific salour. Vieyra, whe Lad the sense to see this, repaired to the court of Portugal, and discovering the reakness and poverty of the cxecutive, suggested the establishment of a company similar to that which in Holland had proved so successful. His plan, notwithstanding the opposition of the priests, was apyroved of, and in 1649 the Brazil Company of Portugal sent out its frst fieet. After a most sanguinary war, Vicyra, was enabled in 1654 to present the keys of Olinda to the royal commander, and to restore to his monarch the undivided empire of Brazil. After this, except some inroads on the. frontiers, the only foreign invasion which Brazil had to suffer was from France. In 1710 a squadron, commanded by Duclerc, discmbarked 1000 men, and attacked Rio do Janeiro. After having lost half of his men in a battle, Duclerc and all his surviving companions were made prisoners. The governor treated them cruelly. A new squadron with 6000 troops was intrusted to the famous admiral Duguay Trouin to revenge thisinjury. They arrived at Rio on the 12th September 1711. After four days of hard fighting the town was taken. The governor retreated to a position out of it, and was only amaiting reinforcements from Minas to retake it ; but Duguay Treuin threatening to burn it, to was obliged or the 10th October to sign a capitulation, aud pay to the French admiral 610,000 crusades, 500 cases of sugar, and provisions for the return of the deet to Europe. Duguay Trowin departed to Bahi, to obtain fresh spoils; but laving lost in a storm tro of hi. best ships, with an impertant part of the money received, he renounced this plan and returned directly to France.

After this the Portuguese governed undisturbed their colony. The approach of forcign traders was prolibited, while the regalities roserved by the crown drained the country of a great proportion of sts wealth.

The important part which the inhabitantz of Saso Paulo have played in the history of Brazil has been alrendy adverted to. The establishment of the Jesuit collige had altracted settlers to its neighbourhood, and frey inat
marriages bad taken place heween the Indians of the district and the colonists. A hardy and enterprising race of men had sprung from this mixture, who, first searching whether their new cuuntry were rich in metals, soon began adventurous ralds into the interior, making excursions also aganst the remote Indian tribes with a view to obtanng slavcs, and from the year 1629 on wards repeatedly attacked the Indian reductions of the Jesuits in Paraguay, although both provinces were then nominally subject to the crown of Spain. Other bands penetrated into Minas and still farther north and westward, discovering mines there and in Goyaz and Cuyaba. New colonies were thus formed round those districts in which gold had been found, and in the beginning of the 18th century five principal settlewents in Midas Geraes had been elevated by royal charter to the privileges of towns. In 1720 this district was separated from Sào Paulo, to which it had previously been dependent. As early as 1618 a code of laws for the regulation of the uinang industry bad been drawn up by Philip III., the * xecutive and judicial fuactions in the mining districts being vested in a provedor, and the fiscal in a treasurer, who received the royal fifths and superntended the weighing of all the gold, rendering a yearly account of all discoveries and produce. For many years, however, these laws were little more than a dead letter. The same infatuated passion for mining speculation which had characterzed the Spanish settlers in Sonth America now began to actuate the Portuguese; labourers and capital were damed off to the maning districts, and Brazil, which had hitherto m great measure supplied Europe with sugar, sank betore the competition of the English and French A new source of wealth was now opened up; some ndventurcrs from Villa do Principe in Minas, going north to the Seria Fro, made the discovery of diamonds about the year 171 f , but It was not till 1730 that the discovery was for the first time announced to the Goverument, which immectately declared them regalia. While the population of Brazal contioued to increase, the moral and intellectual culture of its inhabitonts was left in great measure to chance; they grew up with those robust and healthy sentiments which are engendered by the absence of false teachers, but with a repugnaace to legal ordinatices, and encouraged in their ascendency over the Indians to habits of volence and oppression. The Jesurts from the tirst moment of their laoding in Brazil bad constituted thenselves the protectors of the natives, and though strenuously opposed by the colonists and ordinary clergy, had zathered the Indians together in many aldeas, over which officials oi their orler exercised spiritual and temporal authonty. A more efficacious stop, however, was put to the persecution of the Indians by the importation of larye numbers of negroes from the Portuguese possessions in Africa, these being foond more active and serviceable than the ative tribes.

The Portuguese Govermment, under the administration of Carvalho, afterwards raarquis of Pombal, attcapted to extend to Brazil the bold spirit of innovation which directed all his efforts. The prond minister had been resisted in tis plans of reform at home by the Jesuits, and, determming to attack the power of the order, first deprived them of all temporal power in the state of Maraniano and Pari. These ordinances soon spread to the whole of Brazil, and a pretext being found in the suspicion of Jesuit miflucnee on some partial revolts of the Indian troops on the Rio Negro, the order was expelled from Brazil under circum stances of great severity in 1760. The Irazilan Company founded by Vieyra, which so material:y contributed to preserve its South American pussessions to l'ortugal, had been abolished in 1721 by Juâo V., but such an instrament being well suited to the bold sprit of Pombal, he established a clartered company agan in 1755, to trade exclusively
with Maranhão and Para; and in 1759, in spite of the remonstrance of the British Factory at Lisbon, formed another company for Paraiba and Pernambucu. Pombal's arrangements extended also to the interior of the country, where he extugurshed at once the now udefinite and oppressive claims of the orignal donatories of the captanccies, and strengthened and enforced the regulations of the minung districts. The palicy of many of Pombal's measures is more than questionable, but his admission of all races to equal rights in the cye of the law, his abolition of feudal privileges, and the firmer orgapzation of the powers of the land which he introduced, powerfully co-operated towards the development of the capabilities of Brazil. Yet cas the death of his king and patron in 1777, when court intrigue forced him from his high station, he who bad done so much for his country's institations was reviled on all hands.
The most important feature in the history of Brazil during the first thirty years following the retirement of Pombal was the conspiracy of Minas in 1789 . The successful issue of the recent revolution of the English colonies in North America had filled the munds of some of the more educated youth of that province, and m mitation, a project to throw off the Portuguese yoke was formed,--a cavalry officer, Silva Xavier, mokmaned Tira-dentes (toothdrawer), being the chiet conspirator Eut the plot being discovered during their mactivity, the conspirators were banished to Africa, and Tira dentes, the leader, was Langed. Thenceforward affars went on prosperously; the mung districts continued to be enlarged, the trading companies of the littoral provinces were abolished, but the impulse they had given to agnculture remaned.

Removed from all commumcation with the rest of the world except through the mother country, Brazil renamed unaffected by the first ycars of the great revolutionary war in Eurupe. Indirectly, however, thic fate of this isolated country was decided by the consequcnces of the French Revolution Brazil is the ouly instance of a colony becoming the seat of the Government of its uwn mother country, and this was the work of Napoleon. When he resolved upion the mrasion and conquest of Portugal, the I'ruce Regent, afterwards Dom Joano VI, having no means of resistance, decided to take refnge in Brazil. Hs created a regency in Lisbon, and departed for Brazil on the 29 th Noveniber 1807, accompanied by the Queen Donna Mara I., the royal famly, all the great officers of state, a large part of the nobility, and numerous retanocrs. They arrived at Bahn on the 2 Ist January lens, and were recelved with enthusiasm The regent was requested to estalilish there the seat of his govermment but a more secure asylun presented atself in tio de Janeiro, where the royal fugitives arrived on the 7 th of March Befure leaving Bahia Dou Jobn took the tirst step to emancupate Brazul, opening its "forts to [irems cirmmerce. atw permitung the export of ald Brazalan produce under any thag, the royal monorghea of damunds and Brazal-wom excepted Once establashed in Ro de danerro, the government of the regent was directed to the creation of an admunstranive machunery for the domamons that remaned to ham as they exsted in Portugal. liesides the munstry which bad come with the regent, the councal of state, and the departments of the four ministries of hothe, thances, "al and maman then existing, there were created in the "Gorse wh geat a sujreme court of justice. a board if patronage and admumstration of the pruperty of the charch and mintary orders, an mferior court of aymeal, the court of exchequer and royal treasury, the royal mint, tank of Brazil, royal pronting office, powder-mully on a large scale, and a supreme military court. The mantenance of the conrs, and the salarics of so large a uumber of high officials, entaved the
imposition of new taxes to meet these expenses, Not. withstanding this the expenses continucd to augment, and the Guvermment had reconrse to the reprebensible maasure of altering the money standard, and the whole- monetary system was soon thrown into the greatest confusion, a state if thines from which the country suffers even at the present day. The bank, in addition to its private functions, farmed many of the regalua, and was in the practice of advancing large sums to the state, transactions which gave rise to extensive corruption, and terminated some years later in tho breaking of the bank.

Thus the Government of the prince regent began its eareer in the new world with dangerous errors in the financial system; yet the increased activity which a multitude of new custumers and the increase of curculating medium gave to the trade of Rio, added a new stimulus to tha industry of the whole nation. Numbers of English artisans and shiptuilders, Swedish iron-fonnders, German engineers, and French manufacturers sought fortunes in the new country, and diffased industry by their example.

In the beginuing of 1809, in retaliation of the occupation of lootugal, an expedition was sent from Parí to the French colony of Guiana, and after some fighting this part of Guiana was incorporated with Brazil. 'This conquest was, however, of short duration; for, by the treaty of Vienna in 1815, the colony was restored to France. Its occupation contributed to the improvement of agriculture in Brazil ; it had been the poliey of Portugal up to this time to separate the productions of its colonies, to reserve sugar for Brazil, and spices to the East Indies, and to prohibit the cultiration of these in the African possessions. Now, however, many plauts were imported not only from Guiana but from India and Africa, cultivated in the Royal Botanic Garden, and thence distributed. The same principle which dictated the conquest of French Guiana originated attempts to seize the Spanish colonies of Mionte Video- and Buenos Ayres, Portugal being also at war with Spain. The chiefs of these colonies were invited to place them under the protection of the Portuguese crown, but these at first affecting loyalty to Spain declined the offer, then threw of the mask and declared themselves independent, and the Spanish governer, Elio, was afterwards defeated by Artigas, the leader of the independents.

The inroads made on the frontiers of Rio Grande and Sa.o Paule decided the court of Rio to take possession of Monte Video; a force of 5000 traons was sent thither from Portugal, together with a Brazilian corps ; and the irregulars of Artigus, unable to withstand disciplined troops, were forced, after a total defeat, to take refuge beyond the liver Uraguay: The Portuguese took possession of the-rity of Mante Video in January 1817, and the territory of Missiones was afterwards occupied. The importance which Brazil was acquiring docoled the regent to give it the title of kingdom, and liy decree of the 16 th January 1815, the Portugnese soverignty thenceforward took the title of the Umted Kingdom of Portugal, Brazil, and Algarves. Thus the ohl colonial fremment disappeared even in name. In March 1816 the Quteen Donna Maria I. died, anl the prince regent Lecome king under the title of Dom Jonu VI.

Although Brazh hat now become in fact the head oi its own mother country, the severmument was not in the liands of Practhans, lout of the l'ortugnese, who had fillowed the court The discontent arisime anmeng Bowhins from this eause was heiphtened by a decrec ampany a beary tax on tho chinf limzilian custom honsas, to be in opectition tor forty yars, for the henefit of the ' wherse noldenn who liad suffereld during the war wath liraice. The amiable character of the king precerreet has cown popularity, but the Government was ignomat and 1 rofhgiac, justice was
ill administered, negligence and disorder reigned in all :ts departments. Nor was the discontent less in Portugai on account of its anomalous position. These causes and the fermentation of liberal principles produced by the Frenc!? Revolution originated a conspiracy in Lisbon in 1817, which was, however, discovered in time to prevent its success. . A similar plot and rebellion took place in the province of Pernambuco, where the inhabitants of the important commercial city of Recife were jealous of Rio ε nd the sacrifices they were compelled to make for the support of the lusurious court there. Another conspiracy to establish a republican government was promptly smothered in Bahia, and the outbreak in Pernambuco was put down after a republic bad been formed there for ninety days. Still the progress of the republican spirit in Brazil caused Dom Joino to send to Portugal for bodies of picked troops, which were stationed throughont the provincial capitals. In Portugal the populer discontens produced the revolution of 18% when 1 dipesentative government was proclaimed-t? Spanish constitution of 1812 benge provisionally ador:-:
In Rio, the Portuguese troops with which the king hat surrounded himself as a defence agrainst the liberal spiric of the Brazilians, took up arms on the 26 th February 1821, to force him to accept the system proclaimed in Portugal. The prince Dom Pedro, heir to the crown, who now for the first time took part in public affinirs, actively exeried himself as a negotiator between the king and the trooms, who were joined by bodies of the peopie. Atter attempting a compromise the king finally submitted, took the oath, and namei a new ministry. The idea of free government filled the people with enthusiasm, and the principles of a representative legislature were freely adopted, the first care being for the election of depaties to the C'ortes of Liston to take part in framing the new constitution. As the king could not abandou Portugal to itself he determined at first to send the prince thither as regent, but Don Pedro Lad acquired such popularity by his conduct in the revaiution, and had exhibited such a thirst for glory, that the king feared to trust his adventurous spirit in Eur pe, and decided to go himself. The Brazilian deputies on arriving in Lisbon expressed dissatisfaction with the Cortes for haring begun the framing of the constitution before their arrival, for Brazil could not be treated as a secondary part of the monarchy. Sharp discussions and augry words passed between the Brazilian and Portuguese deputies, the news of which excited great discontent in Prazil. Arinsulting decree was passed in the Cortes, ordering the prince Dom Pedro to cone to Europe, which filled the Brazilians with alarm; they foresaw that without a central authority the country would fall back to its former colonial state suljeet to Portugal. The Provisional Government of Sato Paulo, influenced by the brothers Andradas, began a mevement for independence by asking the prince to disobey the Cortes and remaia in Brazil, and the council of Rio de Janciro followed with a similar representation, to which the prince assented. The Portuguese tro ph of the capital at tirst assumed a coereve attitude, but were furcell to gire way before the ardonr and military preparations of the Braziliaus, and submitted to embark for Portugal. These scenes were repeated in Peruambuco, where the Portuguese, after various conticts, were obliged to leave the commery: in- Dahin, howerer, as well as in Marmha and lari, the Tortuguese prevaled In Ric the agitation for independence euntimued. The two brothers Andrathas were called to the ministry; and the muniepal council comterred mon the prince regent the title of Terpecmal Defender of Dazzil. With great activity he set off to the central provinces of Minas and Sano Paule to suppress disatfected movements aui direct the revolution. In Sio Paulo, on the ith of September 1822, he proclained the mutucutence of Erazil On his return to Rio de

Janeiro on the I2th of Octoher he was proclaimed constitudions ele zeror with great enthusiasm.
TLe Cortes at Lisbon close Bahia as a centre for resisting the independence, and lerge fores were sent thither. But the city was vigorously besieged by the Brazilians by land, and finally the Portugucse were obliged to re-embark on the 2 d of July 1823. A Brazilian squadron, under command of Lord Cochrane, attacked the Portuguese vessels, embarrassed with troops, and took several of them. Taylor, another Englishman in Brazilian service, followed the vessels across the Atlantic, and even captured some of the ships in sight of the land of Portugal. The troops in Monte Video also embarked for Portugal, and the Banda Oriental renained a part of Brazil with the title of the Provincic Cisplatiza. Before the end of. 1823 the authority of the new emperor and the independence of Brazil were undisputed throughout the whole country.
Republican movements now began to spread, to suppress which the authorities made use of the Portuguese remaining in the country; and the disposition of the emperor to consider these as his firmest supperters muel influenced the course of his Government and his future destiny. The two Addradas, who imagined they could govern tho young emperor as a sovereign of their own creation, encountered great opposition in the constitutional assembly, which had been opened in Rio in May 1823, to discuss the project of a new constitution. In July the emperor resolved to dismiss them and forrt a new ministry, but against this the brothers raised a violent opposition. In November the emperor put an end to the angry debates which ensued in the assembly by dissolving it, exiling the Andradas to France, and conv bing a new assembly to deliberate on a proposed constitution more liberal than the former project. The proclamation of a republic in the provinces of Pernambuco and Ceara, with the rebellion of the Cisplatina provinee, favoured by Buenos Ayres and its ultimate loss to Brazil, were the result of the coup d'état of November 1823. The Brazilians were universally discontented, -on one side fcaring absolutism if they supported the emperor, on the other anarely if he fell. Knowing the danger of an un lefined position, the emperor eaused the councils to dispense with their deliberations, and adopt, as the constitution of the empire, the project framed ly the conncil of state. Aceordiagly, or March 25, 1824, the emperor sworo to the constitution with great solemnity and publie rejoicings. By this st oke of policy he saved bimself and Brazil. Negotiations were opened in London between the Brazilian and Portrgnese plenipotentiaries, treating for the recosnition of the independence of Brazil; and on the 25th of Algust 1825 a treaty was signed by which the Portuguese king, Dom João Vi., assumed the title of Emperor of B:azil, and inmediately abdicated in favour of his son, aeknowledging 3razil as an independent empire, but the treaty obliged Brazil to take upon herself the Portuguese debt, amounting to nearly two millions sterling.
The rebellion of the Banda Oriental was followed by a declaration of war. with Buenos Ayres which bad supported it , and operations by sea and land were conducted against that republic in a feeble way. Neanwhile the well-deserred popularity of the emperor began to decline. He had given bimself up to the influence of the Portuguese; the most popr lar men who had worked for the independence were banished; and a continual change of ministry showed a dispusition on the part of the sovereign to prosecute obstinately measures of which his advisers disapproved. His popularity was regained, howerer, to some extent, when, on the death of his father, he was unanimously acknowledged king of Portugal, and especially when
be-abdicated that crown in favour of his daughter, Donna Maria; but his line of policy was not altered, and commercial treaties entered into with European states conceding them favours, which were populariy considered to bo injurious to Brazilian trade, met with bitter censure.

During the year 1827 the public debt was consolidated, and a department was ereated for the application of a sinking fund.
The year 1828 was a calamitous one for Brazil. It began with the defeat of the Brazilian army by the Argentine forces, and this entirely through the incapacity of the commander-in-chief; and misunderstandings, afterwards compensated by humbling money-payments ou the part of Brazil, arose with the Uuited States, Franee, and England, on aecount of merchant ressels captured by the Braziliau squadron blockading Buenos Ayres. Financial embarrassments inereased to an alarming estent ; the emperor was compelled by the British Goverament to make peace with Buenos Ayres and to renounce the Banda Oriental ; and to fill the sum of disasters Dou Miguel had treacherously usurped the crown of Portugal. It was under these unlucky auspices that the elections of new deputies took place in 1829. As was oxpected the result was the eleetion everywhere of ultra-liberals opposed to the emperor, and in the succeeding year people everywhere exbibited their disaffection. During the session of 1830 the chambers adopted a criminal code in which punshment by death for political offenecs was alolished. It was openly suggested in the journals to reform the constitution by turning Brazil into independent federal provinces, goverued by authorities popularly elected, as in the United States, Alarmed at length at the ground gained by this idea in the provinees, the emperor set off to Minas to stir up the former cothusiasm in his farour from recollections of the independence, but was coldly receired. On his return to Fio in Mareh 1831 seenes of disorder occurred, and great agitation among the Liberal party. Imagining himselt sure of a brilliant destiny in Europe if he lost his Brazilian crown, the emperor attempted to risk a decisivo attack against the Liberals, and to form a new ministry composed of men favourable to absolutism. This step caused excited public mectings in the capital, which were joined in by the troops, and deputations went to ask the emperor to dismiss the uppopular ministry. He replied ly dissolung the ministry withon? naming anotber, and by abdicating the crown in farom if the heir apparent, then only five years of age. Dom Fetro immediately embarked in an English ship, leaving the new Enperor Dom Pedro 1I. and the prineesses Januata, Francisca, and Paula. The subsequent carecr of this unfortmate prince belongs to the history of Portugal.
A prorisional and alterwards a permanent regeney, composed of three members, was now formed in Brazil, but scenes of disorder suceecded, and discussions and struggles betweer the republican party and the Government, aud a reactovary third party in favour of the restoration of Dom Fedro, occupied the succeeding years. In 1834 a reform whieh was well received consisted in the alteration of the regeney, from that of three members elected by the legislative chambers, to one regent chosen by the whole of the electors in the same manner as the deputies; and the councils of the provinees were replaced by legislative provincial assemblies. Virtually, this was a republican government like that of the United States, for no differenee existed in the mode of clection of the regent from that of a president. The ex-minister Feijoo was chosen for this office. With the exception of Para and Rio Grande the provinces were at peace, but these were in open rebellion; the former was reduced to obedience, but in the latter, though the imperial troops occupied the town, the country
was ravaged by its warlike inhabitants. The regent was now accused of couniving at this rebellien, and the opposition of the Chamber of Deputies became so violent as to necessitate his resignation. Araujo Lima, minister of the home department, whe strove to give his governmeat the character of a moaarchical reaction against the principles of democracy, was chosen by a large majority in his stead. The experiment of republican governmeot had proved so disereditable, and had so wearied the eountry of cabals, that men hitherto known for their sympathy with demecratic principles became more monarehical than the regeut himself; and under this influenee a movement to give the regency into the hands of the Princess Donna Januaria, now in her 18 th year, was set on foot. It was soen perceived, however, that if the empire could be governed by a princess of eighteen it could be managed better by the emperor himself, whe was then fourteen.
A bill was aecordingly presented to legislature dispensing with the sge of the emperer and declarug his majority, which aiter a noisy discussion was carried. The majority of the Emperer Dom Pedro II. was proclaimed on the 23d July 1840. Several ministries, in which various parties predominated for a time, now goverued the country till 1848, during which period the rebellious province of Rio Grande was pacified, more by negotiation than feree of arms. In 1848 hostilities were roused with the British Gorernment through the neglect shown by the Brazilians in putting in force a treaty for the abolition of the slave trade, which bad been concluded as far back as 1826; on the other hand the governor of Buenos Ayres, General Resas, was endeavouring to stir up revelution again in Rio Grande. Tho appearance of yellow fever in 1849, until thea unkuewn in Brazil, was attributed to the importation of slaves. Public opiniou deelared against the traffic; severe laws were passed against it, and were se firmly enforced that in 1853 not a single disembarkation took place. The ministry of the Viscende de Olinda in 1849 entered into alliances with the governors of Mente Video, Paraguay, and the states of Entre Rios and Cerrientes, for the purpose of maintaining the integrity of the republics of Uruguay and Paraguay, which Resas intended to re-unite to Buenos Ayres, and the treops of Rosas which besieged Mente Video were foreed to capitulate. Rosas then deelared war formally against Brazil. An army of Correntiae, Uruguayan, and Brazilian troeps; under General Urquiza, assisted by a Brazilian paval squadron, advanced on Buenos Ayres, completely routed the forees of Rusas, and crusbed for ever the pewer of that dietater. From 1844 Brazil was free from intestine cemmotions, and had resumed its activity. Public works and education were adraneed, and the finances rose to a degree of prosperity previously unknown.
In 1855 the emperor of Brazil sent a squadron of eleven men-of-war and as many transperts up the Parand to adjust several questions pending between the empire and the Republic of Paraguay, the most important of which was that of the right of way by the Paraguay River to the interior Brazilian procince of Matto Grosso. This right had been in dispute for several years. The expedition was not permitted to ascend the River Paraguay, aed returned completely foiled in its main purpese. Theugh the diseord rosulting between the states on aceount of this failure was subsergently allayed for a time by a treaty granting to Brazil the right to navigate the river, every obstaele was thrown in the way by the Paraguayan Government, and indignities of all kinds were offered net only to Brazil but to the representatives of the Argentme and the United States. In 1864 the ambitions dietator of Paraguay, Francisco Solano Lopez, without previcus declaration of war, captured a Brazilian vessel in the Paraguay, and
rapidy followed up this outrage by an armed invision of the provisces of Matto Grosso and Rio Grande in Brazil, and that of Corrientes in the Argentive Republic. A triple alliance of the invaded states with Uruguay ensued, and the tide of war was soon turned from being an offensive one on the part of Paraguay to a defensive struggle within that republic agaiast the superior uumber of the allies. Se strong was the natural position of Paraguay, howerer, and so complete the subjection of its inhabitants to the mill of the dietater, that it was not until the year $18 \pi 0$, after the republic had beer completely drained of its manhood and resources, that the long war was terminated by the cajture and death of Lopez with his last handful of men by the pursuing Brazilians. From its duration and frequent battles and sieges this war involved an immense sacrifice of hife to Brazil, the army in the field having been constantly maintained at between 20,000 and 30,000 men, and the expenditure in maintaining it was very great, haviug been calculated at upwards of fifty millions sterling. Large defieits in the financial budgets of the state resulted, iavolviug iacreased taxation and the contracting of loans from foreign countries.
Notwithstanding this the sources of public wealth in Brazil were uuaffected, and commerce centinued steadily to increase. A grand social reform was effected in the law passed in September 1871, which enacted that from that date every child bern of slave parents should be free, and also deelared all the slaves belonging to the state or to the imperial household free from that time. The same law prorided an emacipation fund, to be aunually applied to the ransom of a certain number of slaves omned by private indiriduals. Since that time the emancipation of slaves has gone on rapidly, the work having been promoted largely by the slave owners and by prisate philanthropy. It is estimated that since the cessation of the importing of slaves in 1853, and especially after the enactment of $1 \mathrm{s71}$. not less than a million of slaves have ebtained their freedom; and the total extinction of slavery within the empire is not far distant. From the edratremely rapid progress of this movement difficulties har? been experienced in a considerable degree in procuring a sufficient supply of labour for the Brazilian plantations, but the general effect of the law has been to give new directions to the empleyment of capital, and the construction of railroads and telegraphs, and the improvement of internal communication by reads and rivers have been largely promoted. Attention has alse been strongly directed towards the further development of the provinces by the increase of European immigration. Enterprises of all kinds hare multiplied, and public instruetion has received a vigorens impulse.

The Emperer Dom Pedre II. and the cmpress, a sister of the king of Naples, are universally beloved and respected for their intellectual and moral eadownents, and their affectionate interest in the welfare of their subjects. Princess Isabel, born in July 1846, and her sen bora in October 1875, are their only surviving offspring.

Until after the year 1872, when a complete census of Populs the empire was legon, every estimate of the population of tion. Brazil was based upen-the official returns of 1817-18, and these bave cousequeatly been mere appreximations, varying very considerably in the hands of different authors. In the first census referred to the whole number of people was $4,396,000$, iucluding an estimated number of 800,000 Indians; in 1850 the total was reckoned roundly at $7,000,000$; and in 1860 at $8,000,000$.

In the following talle the results of the census of 1872 have been iacerporated, as far as these have yet been. published, the remaining figures being made up from the estimates tuatherly g:ven for eaeb of the prowinees. The
table also contains the area of each of the province; from planimetric calculations made in Gotha in 1872, the official raturns on this subject being most obviously exaggerated, and claiming for the empire an area equal to that of:Brazil with all the surrounding republics on the north and west taken together.

Prorinces,	Ares in Engllsh Square Bule.	Populatioa.			Chlef Towas.
		Free.	Sleve.	Total.	
Alo Amezones	758, 669	66,681	979	87,610*	Mandoa
Grato Park...............	412,467	232,622	27,190	269,821	Parsi or belem.
Maranh ${ }_{\text {Mo.............. }}$	141.651	284,101	74,989	359,040	$\left\{\begin{array}{l} \text { S Laly do Var } \\ \text { nnbäo. } \end{array}\right.$
Piouhy	81.779	178,427	23,785	202.222	Therezina.
Coara	80.262	689.773	21,912	721,686*	Fortaleze.
Ric Groode do Norte	20,130	220,959	13,020	288,979	Natal.
Parebyba	20,346	241,648	20,014	362,587	Parabyba
Pernamhaco	46,257	732.511	89.028	$841,533^{*}$	Reclfe.
Alagues.	11,642	312.268	35.741	848,009*	siacelo.
Serngpe	12,035	139,912	21.495	161,307	Aracaju.
Bahia....................	204.R03	1,120.84 ${ }^{\text {R }}$	162.895	1,283,141	frahis.
Eaprritu Santo.........	17,030	39,478	22.659	82.137^{4}	Victoria
R1o de Japeiro $\}$	18.490	$\left\{\begin{array}{l}456.880\end{array}\right.$	270.726	727.576	Rio de Jadeiro.
Neat. Municipty, ${ }^{\text {Ste }}$	18490	$\{226.033$,	48.939	274.972*	Rio de jadeiro.
Sio Paulo.	90,541	680,742	166,612	837.354**	São Paolo.
Parana	108.657	116,162	10,360	126.722*	Curitibs
Sta. Catharina.........	18.924	144.818	14,984	159,302	Desterto
Ruo Grande do Sul...	110.216	S64:002	66.876	430,878	Porto-Alegre.
MInas Geraes	257,481	1,642,449	266,574	2,009,028	Ouro Preto.
Goyaz	268,373	149.743	10,682	160.395*	Goyaz.
Matto Grosso	668,655	53.758	6,667	60,417	Cuyabi
	3,288,110	8.223.620	1,476,567	0,700,187	

-The population fgures marked thus are the results of the ceosus began in 1872; the othere are made op from the most receat promacind estimatee.

The population of Brazil presents a number of distinct types as well as many varieties blended from these. The aboriginal Indiana of the conntry bave to a large extent become amalgamated with the settled population, especially in the eastern or maritime provinces; but in the vast forests and grass plains of the interior they remain in a more or lesa completely aavage condition. In general description the Indians are of copper colour, of middle height, thick-set, broad-chested, and muscular, with wellshaped limbs and small lands and foet. The bair is black, thick, and straight; the featurcs broad, cheek bones not generally prominent, eyes black and sometimes oblique, like those of the Tatar races of Eastern Asia; they are of apathetic and undemonstrative naturc. Their tribes and subdivisions, acattered over the enormous interior area, are countless; though thesc may vary somewhat in physical characteristics, in language, and customs, they belong apparently to one original atock, called by ethnoraphers, the Tupi-Guarani. Most of the semi-civilized Indians of Brazil, especially those of the castern provinces, speak the Lingoa-Geral, a language adapted by the Jesuit missionaries from the original idiom of the Tupinambaras, one of the larger eastern tribes. The less civilized and savage Indians are termed collectively Gentios (heathens) by the Brazilians. The only tribe of the eastern coastlands which has resisted civilization in some pertion of its numbers is that of the Botocudos, inhabiting the ferests between the Rio Doce and Rio Pardo, sunk in the lowest barbarism and fast disappearing. From the Europeanchiefly Portuguese-immigrants, by mixture with the native Indians, are descended the Mamelucos, a variety which first made itself prominent in inland raids and conquests in the southern provinces, especially from the neighbourhood of São Paulo, whence they were named Paulistas. The negroes, introduced from Africa in immense numbers, constitute one of the largest elements of population. From these, by intercourse with the white race, have sprung the mulattoes, and the descendants of these, becoming progressively whiter. The Brazilian creoles, who call themselves Brazileiros, descendants of these mixed races, prove little inferior in capacity, physical strength, or intelligence to the pure race of Portugnese. The rapidly progressing
emancipation of the African alaves in Brazil has been referred to previously. A strong desire pervades those of the slaves not born in Brazil, even though they may have been made captives when mere infants, to return to Africa. Associationa have been formed among them in many parts, both for the purebase of the freedom of those still in bondage and for sending the freedmen back to their native country, a movement which has actually taken place to a considcrable extent. A result of the emancipation and consequent deficiency of labour, chiefly felt in the nceghbourbood of Rio and the previnces to the south of it, bus been the deportation of large numbers of slaves from the northern to the more southerly provinces.

An increase in the population of Brazil being one of the C_{u}, riea prime requisites for the advancement of the country, the state cncourages immigration by every possible means, and especially of late rears, since the labour queation began to be serious, has made great efforts to entice European colonists. For this end an official agency … established at Rio de Janeiro in 1864, to provide for the conveyance and landing of colonists and for forwarding these to the various localities. The passage from whatever country to Brazil, and thence to the special colony iuland, is also defrayed by Government, and other adrantages are beld ont. Notwithstanding the zeal with which the many schemes of state or private colonization in Brazil have been promoted, the results have been far from satisfactory; as far as British, Gorman, and Swisa cxperience goes theas have becn in many instances very disastrous; and whaterer seductive representation of advautages may bo held out, any acheme for the introduction of north European colonists into Brazil cannot be too strongly deprecated. Not only is the climate and soil, except perhaps of the extreme southern province, unsuited to the Anglo-Saxon race, but the abandonment of nationality and of language, of customs and laws, and the obnoxious surrounding: prove fatal to success.

The chief state colonies are at the following places. Santa Leopoldina, thirty-three miles distant from the capital of the province of Espiritu-Santo, having free access to it by the Sta. Maria River,-is chielly a German, Swiss, and Dutch colony. Rio Noro is in the same province. Mucury, in the province of Minas Geraes, is also a German colony: Canarea in the province of São Panlo, 14 miles from the sea-coast and near the town of the ame name, is mainly Eaglish. Assungay, 62 miles from the caputid of the province of Parana, Ltajahy, 29 miles from the port of the same name in the province of Sta. Catharina, and Blumenau, also in that province on the navigable River Itajaly, are chicfly German. Sta. Muria do Soledade, near São Lcopoldo, in Rio Grande do Sul, is also a state colony. Several places long colonized have passed ont of the colonial regime, and bave buth formed into municipalitics. Such are São Leopoldo in livo Grande, Santa Isalel in the province of Sta. Catharim. Nova Friburgo and Petropolis in elevated districts of tho Organ Mountains in Rio de Janeiro.

Private and provincial colonies are rather numerous. Of these there are eight in Rio Grande do Sul, the chef being that of Sta Cruz; Sta Catharina has two; Minas Geraes and Bahia, cach one. Taken together the state. provincial, and private colonies embraced, in 1873 , upwards of 40,000 people. Dering the past two ycars the unsettled condition and financial difficulties of the La Plata states bave thrown large numbers of foremgn-chiefly Italionsettlers inte destitution, and many hundreds of these lave been induced, by the offer of free passage and lant, to sects a new home in Brazil.

The Frazilian monarchy derives from the ancient momarchy of Portugal the principle of hereditary uncession to

Political the crown. The laws of succession are defined with great constitution.
distinctness in the constitution, and are the same as in England.

In Brazil there is no privileged aristocracy, but descent from the noble families of Portugal, length of time in the service of the country, or large fortune, gives a certain claim to the privileges of aristocracy readily admitted by the Brazilians. The emperor rewards services, according to their difficulty or inportance, with the titles of marquis, count, baron, or knight (moģos fidalgos). Titles are uut hereditary, but if a son prove himself worthy of his father, he inherits his title. There are in the empire six orders of chivalry; those of the Sonthern Cross, the order of Dom Pudro I., and of the Rose, created by the first emperor between 1822 and 1829 ; and those of Christ, St Benoit of Aviz, and St Theodoric, adopted by Dom Pedro II. The senate represents the ouly element of aristooracy recognized by the constitution, and the democratic element preponderates, but its action is modified by the complicated system of election. The constitution established four powers, the moderating, the legislative. the executive, and the judicial.

The moderating power is vested exclusively in the emperor as chief representative of the nation, that he may maintain the equilibrium and harmony of the other powers He exercises this fnnction with regard to the legislature by being empowered to chuose the senators, to convoke or adjourn the genera] assembly, to dissolve the chamber of deputies, aud to sanction the decrees of the assembly; as regards the executive, by appointing or dismissing at will the ministers of state; and over the judicial power, by suspending the magistrates, pardoning or commuting penalties, and granting amnesties. The penson of the emperor is sacred, inviolable, and irresponsible.

The legislutive power is vested, for the affairs of the empire, in the general legislativo assembly with the sauction of the emperor, and for the provincial affairs in the provincial assemblies with the sanction of the president (governor) of the province. The geaeral legislative assembly consists of two chambers, that of deputies and that of senators. The deputies are nominated by indirect election. Citizens, and even manumitted slaves, born in the empire, who possess an income of $\mathfrak{L 2} 2,10$ s., choose the electors in parochal assemblies, and these electors nominate the deputies. The qualification for an elector is au annual ancome of $£ 45$; that of a deputy an income of $£ 90$. Minors, monks, and servants, are debarred from voting; maturalized foreigners, aud persons not frofessing the religion of the state, are incapable of being elected deputies, but they can be senators. The deputies to the nuator of 122 are clected for four years, and must hold an animal session of four months, opening on the 3d of May. The senators (58 in number) aro elected for life. Every pro. vince bas a number of senators, equal to half its number of deputies; but they are nominated in triple lista, from which the emperor selects ono-third. A senator must be forty years of age, and must possess a clear annual iacome of El80. The allowance of a senator is one-half more than thist of a deputy. Each house nominates its own officers. Whon the tro honses sit in geneml assembly, as at the opening and close of the session, to hear the emperor's spech, \&c., the president of the seuate presides, and the senators and deputies sit promisenously. They sit apart nol proced by way of bill, when ther make laws, interpret, and suspend them; they determine the public charges, and assess the contributions, dc . The chamber of deputies has the intiative in taxes, in recruiting, and in the choice of a new dyarsty. The senate bas the exclusive privilege of taking commzance of offences committed by members of the imperial famly, councillors of atate, semators, and
deputies, during the session; of enforcing the responsibility of secretaries and councillors of state, of convoking the assembly in case the emperor fail to do so within two months after the period fixed by law; and also of calling it together on the death of the cmperor.

The executive power is rested in the emperor, assisted by his ministers and secretaries of state, who are responsiblo for treason, corruption, abuse of power, acts contrary to the liberty, security, or property of the citizens, and wasts of public property. From this responsibility they cannot escape upon the plea of orders from the emperor. The executive functions are such as the convocation of the general ordinary assembly; the nomitation of bishops, presidents, governors of provinces; commanders by sea and lank, and ambassadors, the formation of allimees, and all foreing negotiations; the declaration of peace and war; and th. granting letters of naturalization.

The ministers are seven, one for each of the departments of the empire and ecclesiastical atfairs; justice, "ar; marine; finances; foreign affirs ; and agriculture, commerce, and public works. One of these $1 s$ president or premier. To these is superadded a conncil of state composed of twelve ordinary members, besides which it may have as many as twelve extroordinary members, all of them apmonted ior life. The council is divided into sections corresponding to the seven ministries, or sits in full meeting, presided over Ly the emperor. The prince or princess imperial, on attaining the age of eighteen, has a seat in this assembly. The council is merely consultative, and though its use is optional it is always beard on any important public question or appeal to the crown. The provincial governments are entrusted to a president in each, appointed by the executive power acd immediately under its control i. he is the supreme representative of government in the province, sanctions the resolutions of the provincial assemblies, and appoints provincial functionaries. The provincial assemblies, elected every two years by the same citizens who elect members of the chamber of deputies, deal only with matters imuediately relating to the private or local interests of tie province.

Esery city, town, and village, with the surrounding district, has a mmicipal council composed of nine or seven members, elected directly by the citizens who possess an ammal income of $£ 22,109$. This conncil is charged with all that concerus the good of the district, meets four times. a year, besides extraordinary sessions, and every meeting may last as many days as may be found necessary for the expedition of business. They impose fines to a certan amount, and even cufores their decrees by a penalty of tbirty days' iuprisonment. They anmally draw up a unnicipal budget, which is submitted to the provincial legislative assembly for approval. If their revenue and the produce of tines be not suticient to defray expenses, an allowance from the provincial treasury is granted. Them decrees are called postmas, and the penalties imposed by them are enforced by the justices of peace. Theur enactments eau be aunulled by the provmenal legishati:" assembly.

The judicial power is indepment; the judges ho: i their offices for lifc, and cannot lose them excent by a condemnatory sentence. They are, however, responsible for any abuse of anthority, and may be summoned before a surreme court of judicial ministers. In crimal cases all procedings are public after the indictwent. In civil cases arhitrators may he aphointers. whose decisions are without apmeal, and no crail lawsuit can be carned on without previons declaration that conciliatory means were trical is vain.

and political rights. Individual liberty is subject only to law, and in the same way liberty of thought and of the press are guaranteed. No one may be persecuted on account of religious belief, and every kind of labour or industry is free which does not interfere with public well-being. No one can be arrested without written orders from lamful suthority.

For purposes of election the empire is divided into districts, each of which elects a fixed number of deputies for the general and provincial assemblies. These are again divided into colleges and parish assemblies. There aro 46 electoral districts, 408 colleges, and 1451 parish assentblies. For administrative purposes the Brazilian territory is separated into 20 provinces, comprising 642 municipalities, including that of the capital; from various causes the number of municipalities is fluctuating. The ecclesiastical jurisdiction is exercised in 12 dioceses, one of which, that of Sào Salvador, comprchending the province of Babia and Serigpe, is a metropolitan archbishopric. The whole of the dioceses are divided into 1473 parishes and 28 curacies. The diocese of São Salvador is the seat of a metropolitan court of appeal (Relaçao), composed of judges of appeal (clesembargadores), who decide clerical matters finally. The diocese of São Sebastiào comprises the municipality of Rio de Janeiro, its province, those of Espiritu Santo and Sta. Catharina, and the eastern side of Minas Geracs. The provinces of Alagõas, Pernambuco, Parahyba, and Rio Grande do Nerte form the bishopric of Olinda; Marauhão and Piauhy the bishopric of the former name; Para and Amazonas the diocese of Belem do Pari. The diocest of Saio Paulo includes that province, Parana, and southern Minas Geraes; that of Goyaz its province and western Minas; the remainder of Minas forms the bishoprics of Marianna in the central, and of Diamantina in the northern part of the province. The diocese of Cuyaba consists of tha province of Matto Grosso. The provinces of São Pedro do. Rio Grande do Sul and of Ceara correspond to their respactive bishoprics.

The judicial division of the empire is into eloven districts, each having a-court of appeal competent to try all questions affecting the judges and military commanders. From the entences of these courts there is but one appeal to a supreme court of justice, the members of which are denominated ministers, and by the constitution are counseliors to the emperor: this highest court takes cognizance of offences or errors committed by its ministers, by the judges of appeal, or by archbishops or bishops in nen-ecclesiastical matters.

The districts of the Courts of Appeal are groups of provinces as follows:-
Pard and Amazonas with the seat at Belem.

Maranh ${ }^{\circ}$ o and Piauhy
Coard and Rio Grande do Norte.....
Perrambuco, Parahyba, and Alagoas
Bahia and Serigpe
Rio and Espiritu Santo
8. Paulo and Paraná

Rio Grande do Sul and Sta. Catharina
Minas Gerias
Matto Grosso Goyaz
Causes which do not ascend above a certain value, determined by law, are judged by juizes de direito within certain minor territorial limits, termed comarcas, again divided into termos or beroughs, which may include one or nore municipalities, each of which has a municipal judge
The civil laws, originally the same with those of Portugal, have bean greatly modified by a number of new ones A criminal code was organized in 1830 on the principles of Jeremy Bentham, and is considered very perfect and clear. The new form of procedure, and the new organization of
justices, 1 s embodied in a code decreed in 1832. Finally, a new code of commerce, nearly copied from that of France was decreed in 1850 .
To carry on the war of the Independence, and to crush. Finanea a subsequeut revolution in the northern provinces, the Governmeut contracted two loans in $1894-5$, of the nominal amount of $£ 3,686,200$; and on the rccognition of its independence by Portugal in $18 \% 5$, it undertook tho liability of a loan of $£ 1,500,000$. The war with Buenos Ayres, aud the assistance rendered by Dom Pedro to the constitutional party of Portugal, led to two farther loans in 1829, of the nominal amount of $£ \mathbf{7 6 0 , 2 0 0}$. Internal dificulties in 1839 compelled the regency to contract another loan of the nominal amount of $£ 411,200$. The dissensions in Portugal caused a temporary suspension in the payment of the dividends on the Portuguese loan, and in 1842, 2732,600 stock were delivered to the Portugucse agents in settlement of this claim. The debt contracted and assumed by Brazil between 1823 and 18 ± 3, therefore, amounted to $£ 7,090,200$ nominal; and throughout all its difficulties and cmbarrassments the Imperial Government punctually and honourably provided for the dividends as they becanc due.

By the renewal in 1844 of the sinking fund, the operation of which had been suspended since 1828 , the Portuguese and other loans were becoming gradually reduced. The long war with Paraguay from 186.4 to. 1870 , however, very considerably auginentcd the publie debt, costing the empire more than 460,000 contos of reis, or nearly $£ 52,000,000$. The public debt is now dividcd into thi consolidated foreign and internal debts, and the floating debt. The foreign debt proceeds from loans negotiated in the Londou Exchangs in 1865, 1871, and 1875 ; the internal debt from policies authorized in 1827, but mainly from a home loan of 1868 . The floating debt consists of the small remaining portion of that contracted previously to 1827, of loans borrowed from various internal sources, of exchcquer bilts, and paper money. Under these heads the debt of the empirc was officially stated on the 31st of March 1875 as follows :-

$$
\begin{aligned}
& \text { External Debt (at } 5 \text { per cent. interest), 177,166:222 contos. } \\
& \text { Interna] } \\
& \text { Floating " " " 201,980:973 ", } \\
& \text { Total Debt, } \\
& 664,733: 395=£ 74,7 \leqslant 3,000
\end{aligned}
$$

(177,166:222 $=177,166$ contos, 222 milreis; a conto or millinn of reis, gold $=£ 112,10 \mathrm{~s}$, or $£ 1=8.890$ milreis. 1 milreis $=85$. 34. The tinancial accounts are kept in paper reis, of depreciated valuo, in proportion varying from 194 to 214 reis paper to 100 reis ghli.)
For a few years previously to the declaration of the enueror's majority, the imperial expenditure lad not been largely in excess of the revenue, and in 1830-37, the deficit only amounted to $£ 50,600$; but in 1840-41, the jear of the enteror's majority, it luse to $\mathbf{\$} \$ \mathbf{0}, 000$, and in consequence of a revolution in liio Grande co Sul it went on increasing till in 1845 it had reached nearly treblo that sum. But before 1850 tha deficiency had not only been made good, but a large surplus began to accumulate, which remained at about an annual aum of $£ 400,000$ after 1853 . On the outbreak of the war in $186\{$, increased taxation was necessary to enable the oxchequor to neet the extraordinary expenses, but on the close of the ministerial accounts for $1870-71$, a surplus of upwards of $£ 900,000$ rcmained. In amount the revenues of the empire have progrcssively ascended from $£ 1,380,000$ in 1837 to upwards of $£ 6,000,000$.
The financial account of the year 1872-73, presented to the Cham. bers in May 1875, was as follows:-

Revenue.	
Customs	£3,390,
Taxes on Shipping	32,000
Export Daties	1,087,700
Railmays	390,900
Posts	47,700
Telegraphs..	7,700
Stamps	227,000
Inland Tases	756,000
Extraordinary receipts from bonds, issue of paper money, and deposits..	281,800
Carry forward	3,221,

Brought forward Fund for emancipation of slavea	$\begin{array}{r} £ 6,221,600 \\ 86,200 \end{array}$
Total atate revenue 112,131: 104 contos paper, ${ }^{1}$ or	£6.307,800
Provincial receipts	1,210,000
Municipal receipts	256,000
Total (138,195 : 180 contos)	$\underline{\text { ¢7,773,800 }}$
Expenditure.	
Home Department	£405,800
Justice	224,700
Foreiga Affairs	58,900
Marinc	1,006,600
War	1,358,300
Finances	2,375,000
Commerce	1,426,000
Total (121,874 : 462 contos)	£6,855,300

In the Budget for 1876-77 tha receipts are estimated at :07,133-070 contos or $£ 6,026,200$; the expendituro at $105,378: 814$ contos or $£ 5,927,600$.

There are twenty-three custom houses, the amount of duties collected being largest in that of the capital, next in order those of Pernambuco, Bahia, and Pará.

Armis and N'avy.

The effective strength of the array and nary is cevery year fixed by the general legislative assembly, npen the data furnished by the ministers of the two departments. The army was eriginally organized on the principles eatablished by Marshal Beresford when in the service of Iortagal. It is principally from the northern provinces that the infantry is rccruited, and from the southern that the best cavalry is obtained. A board, presided orer by H: R. H. the Comte d'En, marshal of the crmy, is charged with the reformation of military legisiation, and has been in session for some years. The actual army is thus composed, on a peace footing :-

$$
\begin{aligned}
& \text { a. Special corps, staff engineers and sanitary corps } \\
& 427 \\
& \text { b. Iufantry, } 21 \text { battalions } \\
& \text { c Cavalry } 5 \text { recrments and } 2 \text { batalious } \\
& \text { d. Artillery, } 3 \text { regiments and } 4 \text { batteries. with } 1 \\
& \text { battalion of engineers. } \\
& \begin{array}{l}
\text { a. attalion of engineers.......................... } \\
\text { e. A division stationed in Paraguay, of various arms } \\
1,894
\end{array} \\
& 17,949
\end{aligned}
$$

Oa a war footing the ermy 18 raised to 32,000 men.
Besides the regular army there is a national guard, which was organized in 1831, and comprised nearly $750,000 \mathrm{mcn}$ an the latest returns, in cavalry, artillery, infantry, and reserve. This force has heen disbanded for the present, to be re-organized on the completion of the ceusus begun in 1872.

The police service of the empire is performsed by city guards under military organization, under the provincial legislatures. The provinces of Pari, Pernambuco, Bahia, Rio Ctrande do Sul, and Matto Grosso possess military arsenals, recently reorganized. Military colonies for disciplinary or penitentiary objects, and also for protection of tha frontiers, are dotted round the ontskirts of the cmpire.

The navy is under the coutrol of the minister of marine, assisted by a naval council institnted in 1855, organized siter the plan of the French admiralty. There are six wreerals, atnd a pyrotechnical laboratory was established near Rio in 1848

The navy is principally manned by civilized aborigines and negrecs, organized in bodics called imperial sailors, with a certain military discipline. The aborigines have a peculiar aptitudo for a maritime hfe. Officers destined for the Brazilian navy receive a suitable education in the naval school of Rio. and for some years the Gorermment introduced the practice of sending the more apt schelars to serve in the British, French, and American navies. In this may a hedy of efficient naval efficers has beenformed.

[^4]In 1875 the naval force was thus constituted :a. Stean-vessels- Number Gom

Frigate ..
Corvettes
61
Gun-hoais .. 47
b. Sailingporessels-

Corvette...	1	22
Sloops and smeller vessels	2	15

These vessels were manned by 4136 seamen, including gunners and marines. One armoured vessel and fous correttes were on the stock in 1875 .

Tho Roman Cathelic is the established religion of the Religwa empire. All other forms of worship are tolerated, but may only be practised privately. Dissenters enjos all political and civil rights, with the sole exception of being elected inte the chamber of depotics. The peculiarity of the ecclesiastical organization of the Brazilian clurch is, that the clergy do not receive the tithes. As a conquest of the militery and religious crder of Christ, all the chnrches of Brazil beionged from the beginning to that order, whose grand-naster appointed the bishops, and submitted them directly to the approbation of the Pope. The order became so powerful that the king obtained the union of the grandmastership to the crown, and so dispesed of all the livings and other bencfices of the order, and paid from his treasury the salaries of the clergy, receiving the tithes from the people as a civil tax. The tithes were afterwerds abolished is oppressivc. This organization is still recognized by the Holy See, and in the capacity of grand-master of the order of Christ the cmperor appoints aill tle bishops and other ecclesiastical functionaries. There are convents of Franciscans, Carmelites, and Benedictines. These are very rich, and gencrally very learned men, who are usefully cmployed in teaching the sciences. They pay double annual taxes as a compensation to the treasury for net paying thes uion transfers of property, as theirs is net transferable.

Primary and public schools, supported by the state through the provincial and municipal legislatures, for gratnitous instruction, have been established throughout the empire, under the general control of the ministry of the interior. In some of the provinces instruction has been made obligatory. Besides these, in which the teaching is limited to moral and religious instruction, reading aud writing, the elements of grammar and arithmetic, there is a second or higher order of schools in most of the prorinces, either public or private, in which such subjects as the elements of history and geography, especially that of Brazil, the principles of the physical sciences, elementar: mathematics, drawing, Portuguese, French, and Enghsh aro added. The Dom Pedro II. Imperial Cullege of the capitas has twenty-two professors, and provides a course of study of seren ycars, at the termination of which a degree of I.A. may be gained. Each diecese has a seminary for theological instrnction, and these, with the cxception of that of S. José in the capital, are subsidized by Government. Military training is under the care of the war department, and is carried on in preparatory and regimental schools, and further in military academies in the capital and in Rio Crande do Sul. A practical school of guanery is established in the Campo Grande, near the capital ; a central college with cleven professors also educates in the higher braselies of militany science and engineering.

An imperial astronomical observatory has been appended to the central college for the instruction of observers, and the recerding of astronemical and metcorole fical phenomena. There is asso a state observatory in ternambuco. The maval college is estahlished on board a war vessel,the calets being drafted to it frem a preparatory naval
school A practical school of artillery is attached, and naval construction is taught in some of the higher national schools; but students are also sent to the best European navy yards. There are two faculties of medicine, one at Rio de Janeiro, and another at Bahia, each baving a curriculum of sis years, and conferring degrees. The faculties of law are seated at São Paulo and Recife in Pernambuco. An institute of commercial instruction is presided over by a Government conmissioner in Rio. Other remarkable institations are these for the education of the blind in Rio, and a deaf and dumb institute. An academy of fine arts is established, with schools, in Rio, as well as a conservatorium of music. A national museum of natural history was created in Rio in 1817. and is the most important of Seuth America. Others of like character have been founded in Pará, in Ouro Prete, and in Ceara. The national public library is Rio is the most important establishment of its kind, having more than 100,000 volumes on all subjects. Extensive libraries are also attached to all the celleges and academies; and popular libraries have been created in each of the provincial capitals.

The press is represented by six daily newspapers in the capital, of which the Diario do Rio is the oldest, having been founded in 1817. The provincial towns together have nearly 200 newspapers.

The most important of the scientific societies of the empire is the Historical, Geographical, and Ethnugraphical Institute of Brazil, founded in 1838. There are besides this twenty larger scientific associations in Rio and the provincial capitals. With all these appliances, however, owing to the immense territory over which the population is scattered, the spread of instruction is exceedingly difficult, and the grossest ignorance yet abounds in the interior of almost every province.

It is obvious, from the insufficient establishments for general education, that the intellectual development of individuals must have been fer a long period achieved in a yeat measure by unaided exertions. Now things are bu Jer, but in the mere thinly inhabitcd districts devotios to such pursuits must not be expected in men cxclusively ecupied in procuring subsistence and securing self-defence. Tven where the, population is mere dense, a lazy feeling of animal comfort represses the exertions of the majority. It is among the more aspiring class, who aim at the learned professions or state employmest, and who are conscquently obliged to cultivate their minds, that we must look for that attachment to intellectual pursuits which is rarely acquired except from babit. In the theological seminaries, established at the seat of each bishop, little mere was inculcated than a knowledge of the classics, an outworn scholastic system of logic, and a knowledge of the rontine duties of a priest. The schools of medicine in Rio Janeiro and ia Bahia, from the attention bestowed upon practical surgery and anatomy, have done more to a waken the mind. The situations under Government requiring a certain proficiency in practical mathematics and natural history have alse diffused a knowledge of and a taste for these pursuits.: The number of foreign engincers and naturalists encouraged to settle in Brazil has rendered the natives in some measure acquainted with all that has been of late achieved in Europe in the mathematical and experimental sniences.

In parliament and by the press the most delicate politicai questions have been discussed with suecess, and the progress of the Governuent and of legislation evinces a certain administrative foresight aud prudence rarely displayed by other new states.

The Brazilians who frequent the university of Coinbra in Portugal often distinguish themselves among their fuiluw-students; and notwithstanding the difficulties they
have to contend agaiast, not unfrequently rise to the highest offices of the state.

The mest remarkable writers in the Portuguese languaga : :teratars on political economy and commercial law were Couttinho, bishop of Pernambuco, and Silva-Lisboa, afterwards Viscount de Cayroa, a senator of the empire, both Brazilians. Among historians the Brazilian Rocha Pita is distinguished, and Moraes the lezicographer of the Portuguese language belonged to Pernambuco. Portugal is poor in dramatic Literature, bat one of her most distinguished comic poets was the Brazilian Silva, who afterwards fell a victim to the inquisition of Lisboo. In epic poetry, on the other hand, Portugucse literature is rich. Brazil claims the authorstip of two of its most beautiful poems of this class, the Caramuru of Durão, and the Uruguay of Gama. The best of the minor poets is Gonzaga, whose collection of tyries is well known under the title of Marilia de Dircē.. Little inferior to him is Souza Caldas, whese translation of the Psalms denetes a talent of the first order. Claudio, Avarenga, Gregorio de Mattos, Euzebio de Mattos, Gusmĩo, ia former times; and more recently, Odorico, Mendes, Borges de Barros, Deningos Magalhaēs, Marquis of Paranaguá, A. de Macedo, Porto Alegre, Barbosa, and others are well worthy of notice as lyric poets.
Religious eloquence was formerly much cultivated in Brazil, and Vieira is one of the most original and eloguent preachers known. In more recent times Antonio Carlos and Montalverne deserve particular notice. In the satural scieaces Frei Leandro, Arruda, Camara, and José Bonifacie de Agdrada are kaewn for their works and discoreries.
Ia sacred music José Mauricio, a mulatto, left compositions of merit that were esecuted in the chapel of D. John VI.

The Brazilians have a natural taste for music, and an Italian theatre, maintained with but little interruption in Rio do Janciro, has assisted in improving and refining this taste. The old-fashioned Brazilian instrument, which was a particular kind of guitar, has almost disappeared from the large cities, but is still frequently employed in the provinces to accompany the modinhas (romances) which are peculiar to Brazil, and which have a particular style.

The school of the fine arts of Rio de Janeiro has produced some good but no remarkable painters. Of late, however, the most promising artists have been annually sent to Italy at the public expense to prosecate their studies in that ceuntry.
The Braziliaus are in general hospitable, generous, and National charitable, endowed with great pride and vanity, and characte: susceptibility of character, and are casily led away by flattery. The unlimited power they excreise over the African slaves, and the colonial system from which they have but a short time been freed, the imperfcct religious education, the facility with which they can live in abundance at small cost, while the climate enables them to dispense with many things necessary in other countries, the enervating effects of the hot atmosphere, all combine to stimulate the qualities and vices which we must expect in this people.
There is in the Brazilian national charaeter, with grcat mildncss and generosity, a certain tendency to vindictiveness. Homicides for the sake of vengeanee alone are proportionally as numerous in Brazil as in certain countrics of Europe; while the erimes against property are much fewer. The greatest number of homicides, however, takes place in the must backward provinces of the centre and north.
The Roman Catholic religion predominates in Brazil, and although there are enlightened men among the clergy, a great number of the priests are ill educated, and the institution of celibacy keeps the members of the nrucipal
families from entering the profession. Such is the want of priests that the Goverument finds itself obliged to send to Italy for them. Among educated classes the spirit of materialism of the French writers of the 18th century made great progress, but a considerable reaction has lately taken place. The lower classes, above all in the interior, are still deplorably superetitious.
In several of the provinces contentions have arisen of latc years between the church and freemasonry, and the excommunication of the members of the craft and the elosing of the churches to which they belonged have a wakened religious diseussions and agitations. The Jesuit priests were expelled from the province of Pernambuco in 1875, aud the bishop of that diocese, tried before the lay tribunal, was condemned to fine and imprisonment.
Brazil is not specially ε manufaeturing eountry, and its national industries of mining (with smelting of the metals), collecting and polishing precious stones, and salt making, already referred to, with tanning and hide working, have the widest range. The state bas, however, encouraged and in some cases subsidized special mavufactures which were of value in developing the resources of the country. Among these serenteen foundries, manufacturing engines and agricultural implements, have supplied a great national want. The home hat factories of Brazil have now all but superseded the imported hats by their products. In almost every city there are manufactories of soap, oil, and candles, which are made. not only of stearine and tallow, but of wax, and in the north from the valuahle Carnauba palm. Rum distilling is largely carried on in the sugar districts, and elgars are extensively made, especially at Bahia. Gold and silver smith rand jewel workers are foremost among the delicate handicraftsmen, and excel in their workmanship.

There are now tho eotton-cloth factories in Rio, five in Bahia, two in Minas, and sereral in S. Pavlo, aud this braneb ef industry is extendiug.

Stip.

tuil ling

Sistories.
Ship-building is diligently prosecuted in many of the ports, and Rio has launched several fine iron-clad vessels from the navy yard. A law passed in 1871 enabled Government to subsidize companies for the construction of nore comrmodions docks, and these have been begun in Rio, Bahia. and Maranhão, at Santos in S. Paulo, and at Paranagut in Paraná.

Whale-fishery is carried on to some small extent from the ports of Balia and Sta. Catharina. The fiue coastal fisheries are not jet taken advantage of to nearly their full power; on the other hand, large quantities of dried cod-fish are imported. On the upper Amazon and its tributaries a considerable quantity of oil is collected from the eggs of the turtle, and is sent down in earthen pots containing 50 to 60 lb weight each.

Jerked beef, an important articte of general consumption, is chiefly preparcd in the "Charqueadas" of Bio Grande do Sul.
Sommaniation

The constal and fluvial communications of the empire are maintained by tighteen lines of steam-vessels, which receive an annual subsidy from the state (amorating to £150,000 in 1875). A North Amcrican company, keeping up a regular traffic between the ports of Brazil and the United States, is also aided by Government. Besides these the ocean lines of large vessels from Britain, Germany, and France, touch regularly at the chief points in passing to the La Plata. Almust all the navigable rivers of Brazil have now their regular steam packets. The Amazon has liceu navigated ly stean for nearly twenty years; and since the passing of the decree of September 1867, by which its waters were opened to the trading ships of aill nations, direct commerce from foreign countries with the interior ports on isa be:aks has begun to be developed

Within recent times the construction of railroads bas been progressing very rapidly under the Government and in private bands. In 1807 there were but six short lines working; in $18 i 3$ there were fifteen distinct railways. Three main trunk lines are being actively extended by the state: the first called the Dom Pedro II. lite, passing from Rio de Janeiro to Minas Geraes, is beng estended thence to the head of the navigation of the Såo Francisco, and is planned to reach the valley of the Tocantins and Para; the second trunk line is designed to unite the navigation of the Amazon with that of the Paraguay, through the head of the valley of the Tocantins and Araguaya; the third line, already partly executed, beginning at Rio will pass through the capitals of $\$$. Paulo and Paraná to Porto Alegre in Rio Grande do Sul. Mariy other lines have been begun or are projected under the superintendence of the provincial assemblies. The ordinary roads are in an exceedingly backward condition throughout the empire, and those which are more than rude traeks are of very small cxtent. A fine mąeadamized road, however, called the "Umion and Industry," joins the capital with Ninas Geraes, and others extend for short distances from the chief towns. There are also a few canals. It is but seventeen years since the first small line of telcgraph was stretched in Brazil within the capital, but now a double line unites the maritime towns from Pernambuco to Rie Grande do Sul. Many other lines are being constracted, and in June 1874 submarine telegraphic cable was complcted from Europe to the Brazilian ports.

The commerce of Brazil, despite the disadvantages Commera against which it has had at various times to contend, has been on the whole uniformly progressive. These disadvantages consisted chiefly in the restrictions originally imposed on the young colony by the jealousy of the mother comary, which refused to admut the Brazilian products except at certain stated seasonş of the year. The exportation of native productions to the Old World was limited to the ports of Rio, Babia, Olinda, and Paraiba These restrictions continued in force long after analogous measures bad Leen exploded in the commercial systems of ofler countries, and were not repeated till the beginning of the present contury. In 1810, all the ports of Brazil were thrown open to British goods on the payment of duty at the rate of 15 per cent., and though this rate has been great! increased by the tariff of 1844 , the average ammai value of manufaetured soods imported into Bhazil from Great Britain alone, ebiefly cotton, iron, woollen, and linen goods, amounts to nearly $\$ 4,500,000$.

The value of the imports ami exports of Brazil in 1808 was esti mated at $£ 2260$; ut has gradually increased, whth little thuctuation. till at the present time the anuual value of trade is not less than $£ 40,000,000$. The trade of the empre is mainly wath Great Bitan: (which sends more than a third of the imports, and recewes a grea! share of the exports). France, the United States, Poltugal, Germany the Argentine Republic, and Belgium. In the order of then value the chief exports are coffee, bides, sigar, cotion, india-robben, tobacco, yerba-mate, diamonds, and rum Since 1853 the vnlue a the exports from the country has in most years been somewhat in excess of that of the imports. The whole number of slips ental ang and leaving the Brazilian gorts in recent years averages about $30,000$.
See Braziland the Brazilians, Rev. D. P. Kidder and J C. Fletcher, 1857; The Naturalist on the Eiver Amazons, 11. W. Bates, $1 \$ 63$, Travels on the Amazon and Fio Diegro. Alfred R Wallace, 1853: The Amazon and Madira, translated by Church, Keller, 1874, Explurations of the Mighlands of Brazel, Capt. R. F. Burton, 1steg, Journey an Brazil, I'rofessor Louis Agassaz, 186S; Scientific Results of a Jumene? in Erazil oy Professor Lou1s Agassiz, by Professor C. F. 11 artt, 18.0 ; Chmad, goblogue, fiaune, ct gtographie botanique du Brasit, Emmanuel Lais, 1872 ; Notions on the Choroyraphy of Brazil, J. Maroel de Macedo, tranglated by Le Sage, 1873 ; The Enyire of Brasil at the Vienna Exhatiton, Ro de Janero, 1s73; The coust of Erazil, and trade of iss gorts, Lieut.-Commr. 11. 11. Gorringe, Washangton, 1873: Athas do Imperia do Erazt, por Candido Mendea de Almeida, Rio de Janciro. 1568.
($\mathrm{K} . \mathrm{J}$.

BRAZIL, Tslasd of, and other imaginary islands in the Atlantic. Fur a long time before the discovery of America, the fancies of nuvigators or of cosmographers had scattered over the Atlantic n number of islands, either wholly imaginary, or so detached from the germ of truth which had suggested their existence as to represent no fact in nature. Several such islands are described in the Arabic geography of Edrisi (1153-54 A.D.), and if, passing over more than four hundred years, we take up an atlas of Mïrster or Mercntor we shall find that the northern Atlantie, iustead of presenting a vast blank as in our most recent charts, is alinost as full of islands and shoals as the heaven is of stars. To our present category belongs the island of St Brandon, the supposed discovery of an Irisin eremite of the 6th century, of whose voynge many wonders are related. Such alse were Antilia and the Island of the Seven Cities, connected with another legend of uncertain date, which described this as the refuge of a body of Christians, who, in flight from the Saracen conquerors of the Peninsula, bad, under the guidance of their seven bishops, committed themselves to the wide ocean; such were Mayda or Asmaide, the Isla Verde, or Green Isle (which the natives of the Hebrides still think they see beneath the western sun), bat none more fameus and recurrent than the Isle of Brazil. The name of this island connects itself with the red dye-woods known by that name in the Middle Ages, a name thnt possibly also may bavo been appiied to other vegetable dyes, nod so mny descend from the Insula Purpurariax of Pliny. Its first appearance on a map appears to be (I. de Brazi) in the Venotiar. pertulano of Audrea di Bianco (1436), where it is found attached to one of the larger islands of the Azores. When this group became better known and was culonized, the island in question got the name of Terceira. And the couservative spirit of map-mabers then songht n new position for that Island of Brazil which they found in the charts of their predecessurs, and this island grew in (imaginary) importance and size. In time, ketter knowledge of the Atlantic showed that theso must be exaggerated, but belief in the island's existence endured.

The conservative spirit just referred to has indeed preserved in aome shape most of the names mentioned alore. The name of the Seven Citics survives as applied to a volcanic district of the Island of St Michael's (Azores). Aintilia and St Bramion's islc were conopicuous on the maps which were probably in the bands of Commbus on his first western voyage. The latter name has disappeared indeed, but the former survives in a plur.ei form, as applied to ihe. West Indies (Antilles). So also it is probable that the familiar existenco of "Brazil" as a geographical name led to its bestowal npon the rast continental region of South America, which was found to supply dyewoods kindred to thoso which the name properly denoted. The older memory, however, ourvived also, and tho Psland of Brazil retsined its place in mid-ocean, some hundred miles to tho west of lreland, both in the traditions of the forecastlo and in charts. In Purday's Generai Chart of the Atlantic, "corrected to 1850," we find the Mayda indeed noted as " very doubtcal,"- but "Ssle Vorte or Grien Rock" ($44^{\circ} 48^{\prime}$ N. hat., and $26^{\prime} 10^{\prime}$ W. long.) with the remark, "Existence lately confirned ;" and "Brazil Rock (high)," with no indication of doubt, in $51^{\circ} 10^{\prime} \mathrm{N}$. lat., $15^{\circ} 50^{\circ} \mathrm{W}$. iong. In a chart of currents by the late Mr Findlay, dated 1853 , theso names appear again. But in his 12 th edition of Purday's Memoir Descriptive and Erplanalory of the N. Atlantic Ocean (1885), the existence of these isiands is briefly discursed and rejected by Mr Findlay, with the intimation that their uames would be entirely omitted in future editions.

Thus the oficial aepulture of tine oll tradition of the island of Brazil took place only eleven years before the dete of this article (1876). And now the anrface of the Athatic, as ropresented in the latest Admiralty charts, shows between St Kilda and Bermuda, between Newfoundland and the Azores, but one point rising above the water, viz., tbo sugar loaf of Fockall, in $57^{\circ} 35^{\prime} 52^{\prime \prime}$ N. lat., $13^{\circ} 42^{\prime} 21^{\prime \prime}$ W. long.
(H. Y.)

BRAZIL NUTS are the seeds of Bertholletiá execlsa (B. nobilis of Miers), a gigantic tree belonging to the natural order Lecythidaceor, which grows in the valleys of the Amazons and generally throughout tropical America.

The tree attains an arerage height of 130 feet, having a smoeth cylindrical tronk, with a diameter of 14 feet 50 feet from the ground, and branching at a height of about 100 feet. The lower portion of the trunk presents a buttressed aspect, owing to the upward extension of the roots in the form of thin prop-like walls surronading the stem. The fruit of the tree is globular, with a diameter of 5 or 6 inches, and consists of a thick hard woody shell, withiu which are ciosely packed the seeds which constitute the so-called nuts of commerce. The seeds are triangular in form, having in hard woody testa enclosing the "ternel;" and of these each fruit contains from eighteen to twentyfive. The fruits as they ripen fall from their lofty position, and theyate at the proper season annually collected and broken opia by the Indians. From Para alone it is estimated that upwards of twe and a half millions of fruits, equal to fifis millions of "nuts," are exported anntally, in addition to the large quantities which leave other Brazilian barbours, and Demerara, Cayenne, de. Brazil nuts are largely eaten; they mlso yield in the propertion of about 9 oz. to each pound of kernels a fine bland fluid oil, highly valued for use in cookery, and used by watchnakers and artists.

BRAZIL WOOD is one of several dye woods of commerce which come from the West Indies and South America, belonging to the genera Casalpinia and Peltophorum of the natural order Leguminosa. The species to which the various rioods belong have not been well determined, but commercially they are distinguished as Brazil vood, Nicaragua or Peach wood, Pernembuco wood, and Lina wood, each of which has a different commercial value, although the tiactoria! principle they yield is similar. Commercial Brazil wood is imperted for the uso of dyers in billets of large size, and is a dense compact wood of a reddiah brown colour, rather bright when freshly cut, kut becoming dull on exposure. The colouring-matter of Lirezil wood is freely soluble in water, and it is extrasted for use by simple infusion or decoction of the consely. pewdered woed. When freshly prepared the eytract is of a yellowish tiat; but by contact with the air, or the addition of an alkaline solution, it develops a brick rad colonr. A chemical principle, termed brazilin, has been isolated from Brazil wood. It erystallizes into hearagenal amber yellow crystals, winich are solnble in water and alcohol. The solution When free of oxygen is colourless, but on the access of cir it assumes first a yellow and thereafter a reddish yellow colour. With sodaley it takes a brilliant deep carmine tint, which colour may be dischargcd by heating in a closed vessel with zine dust, io whid condition the solution is excessively sensitive to oxygen, the siughtest expostire to air immediately giving a decp carmine. With tin mordants Brazil wood gives brilliant but fugitive stenin reds in calico-printing; but on eccount of the loose nature of its dyes it is seldom used except as an adjunct to other colours. It is used to form lakes which are employed in tinting papers, staining paper-hangings, and for various other decorative purposes.

BRAZZA, the ancient Brattic, an island in the Adriatic, off the coast of Dalmatia, in tho circle of Spalatro, and eight miles from that city. It has an area of 170 square miles, and a population of 15,500 . The surface is rugged and mountainous, but is indistrionsly cultirated, and its wine is accounted the best in Dalmatia. It rroduces alse oil, figs, almonds, and saffron; but the corn crop scarcely supplies the wants of the inhabitants for three menths. There are abont twelve or thirteen hamlets in the island, the mosi important being San Pietro, Neresi, Bol, and Milnä.
bREAD. See Bafing, vol. iii. p. 250.
BREAD-FRUIT. This most important food staple of the tropical islands in the Pacific Ocean is the fruit of

Arlucarpus incusa (nat. ord. drtocerpased). The tree attains a moderate height, bas very large, acutely lobed, glossy leaves, the male towers in spikes, and the female flowers an a dense head, which by consolidation of ther Geahy earpels and receptacles furm the fruit. The fruit is globular 10 shape, about the size of a melon, with a tuberculated or (in some varieties) nearly smooth surface. Many varieties of the treo are cultivated, the fruits of some ripening numerous seeds, which are eaten as chestnuts; but in the best kinds the seeds are aborted, and it is only these that are highly prized as vegetables. The tree is a uative of the South Sea Islands, where its fruit occupies the important position that is held by cereals in temperate latitudes. Tue fruit, which on distinct varieties ripens at differeut periods, affording a nearly constant supply throughout the year, is gathered for use just before it ripens, when it is found to bo gorged with starchy maiter, to which its esculent value is due. It may be ceoked and prepared for use in a great variety of ways, the common practice in the South Sea Islands being te bake it entire in het embers, and scoup out the interior, which when properly cooked should have a softsmeeth consistence, fibrous only towards the heart, with a taste which has been compared to that of boiled patatoes and sweet milk. Of this fruit Mr. A. R. Wallace, in his Malay Archipelago, says,-"With meat and gravy it is a vegetable superior to anything I know either in temperate or tropical countries. With sugar, milk, butter, or treacle it is a delicious pudding, having a very slight and delicate but characteristic flavour, which, like that of good bread and potatoes, one never gets tired of." In the Pacific Islands the fruit is preserved for use by storing in pits, where the fruits ferment and resolve themselves ioto a mass similar in consistency to new cheese, in which state they emit an offensive odour ; but after bakiug under het stomes they yield a pleasant and nutritious food. Another and more common method of preserving the fruit for use censists in cuting it into thin slices, which are dried in the sun. From such dried slices a flour may be prepared which is useful for the preparation of puddings, bread, and biseuits, or the slices may be baked and eaten without grinding. The tree yields other products of econemic ralue, suck as native cloth from the fibrous inner bark of young trees; the wood is used for canoes and articles of furniture; aud a kind of glue and caulkiug material are obtained from the viscid milky juice which exudes from incisions made in the stem.

The bread-fruit is now iound throughout the tropical regions of bath hemispheres, and its first introduction inte the West Indies is connected with the famous mutiny of che "Bounty," and the remarkable history of a small company of the mutineers at Pitcairn Island. Attention was directed to the fruit in 1688 by Captain Dampier, and later by Captain Cook, whe recommended its transplantation to the West Indian colonies. In 1787 the "Bounty" was fitted out under command of Lieutenant Bligh- to proceed to Tahiti to carry plants thence to the West Indian Islands; and it was after the cargo had been secured and the vessel was on her way that the mutiny broke out, and Lieutenant Bligh and some of his crew were turned adrift in a small boat in the open sea. The mutincers returned with the vessel to Tahiti, wheace a number of them, with a few native men and women, sailed to the desolate and lone islet of Pitcairn. Licutenant Bligh ultimately reached England, and was again commissioned to uadertako tho wor's of transplauting the plants, which in the year 1792-3 ye successfully accomplished.

A somewhat similar but much inferier fruit is produed by an alhed species, the Jack or Jak, Artocarpus integrifoliz, growing in South India, Ceylon, and the Easten Archipelacre. This tree is chiefly valuable on account of
its tumber, whicu tas a gran very sliullar to mahoganj, and although at first light coloured it gradually assumes much of the appearance of that wood.

BREAKWATERS differ from piers in their not being necessarily adapted for commercial purposes. They do not, therefore, require to have roadways for the accommodation of traffic, or parapets for keeping water or spray from passing over them. Breakwaters are artmicial structures consisting generally of stones or blecks of cancrete, built or deposited in deep water. Their object is to tranquillize those partions of the sea which they cover, and which thus become sheltered anchorages. They may be dirided intu three classes:-(l.) Vertical or nearly vertical structures of built masonry for arresting the onshore progress of the waves, and for either reflecting them seawards or deflecting thew laterally. (2.) Sloping structures of rubble stones dropped into the sea from timber stages or floating harges, and hence termed pierres perdues, having a sloping face on each side, termed a talus or glacis. These slopes, which, after the blocks have been consolidated, are generally protected above low water by stones set clesely tegether, called pitching, are the angles of repose assumed by the loose blocks under the influence of the waves, and vary in steepness from above bigh water to below low water, where the force of waves is least. They vary frem about 1 foot borizontal to 1 foot vertical to 7 feet horizontal to 1 foot vertical. (3.) Wbat may be termed composite breakwaters are partly sloping and partly vertical, and act by causing the waves to break, and alse by partially reflecting them seawards or deflecting them laterally. The new breakwater at Aberdeen and the Dover Admiralty pier, wheh acts also as a breakwater, are examples of the first elass. Plymouth breakwater, which rises with a geaeral sea-slope of from 2 to 5 homzontal to 1 vertical to a beight of 23 feet above bigh water, is at example of the second class. Cherbourg, which slope from low water to high water, above which level there 15 a vertical barrier rising to $12 \frac{1}{2}$ feet above high water, is au example of the third class. Breakwaters, though passive, are nevertheless real agents by which work is done in combating the waves in oue or ather of the three modes which have been defined. For further iaformation regarding the design of breakwaters and the details of their construction see Harbours.

BRECHIN, a parliamentary burgh of Scotland in the county of Forfer, $7 \frac{1}{2}$ miles W. of Montrose, and connected by a branch-line with the Caledonian Railway. It is situated on au abrupt declivity on the north bank of the River South Esk, here crossed by a stone bridge of very early date. The principal buildings comprise the parish church (with steeple and spire 128 feet high)-forming part of en ancient and uncempleted cathedral, of Gothic architecture, which has been injured by modern alterations, several other churehes, a town-heuse, the public and Smith's school, a mechanics' institute, and an infirmary. T'he diocesan library hall of the Episcopal church centains an exteosive and valuable collection of beoks, many of them presented by Bishop Abernethy-Drummond, and about 2000 by the late Bishop Forbes, who erected the building. Some ruins remain in the "veanel" of the Maison Dieu, or hospitium, founded by William of Brechin in 1256. The most remarkable edifice, however, is the round tower, situated in the churehyard near the eathedral. This tower is simular to those so cemmen in Ireland, but in Scetland is only rivalled by the tower at Abernethy. Like similar huildiags, it contains no stair, and the only access to the top is by means of ladders placed on wooden foors, which rest on circular stone projections within the tower. The height from the ground to the reaf is $86 \frac{3}{4}$ feet, the inner diameter within a few feet of the bottom is S feet, and the thickness of the wall at that part about 4 feet; the circume :
ference is very dear 50 feet; the inner diancter at top ss 6 feet 7 inches, the thickness of the wall 2 feet 10 inches, and the circumference 38 feet 8 inches. These proportions gire the building a high degree of elegance. The top is roofed with an octagonal spire 18 feet high, which makes the whole height of the building 101 feet 9 inckes. Brechin Castle, which was a plaee of some strength during the Wars of the Independence, now a seat of Lord Dalhousie, lies a Jittle to the south of the town. There is a public parls mear the town, and two large nurseres. There are three extensive power-loom linen factories (one of them a building oi much taste), two bleach fields, two distilleries. a brewery, and a paper-work; and extensive freestone guarries exist in the neighbourhood. The cown is lighted with gas, and ani ample supply of water has been intreduced at great expense. Weekly markets are held on Tuesdays; and statutory fairs for horses, cattle, and sheep are beld at Trinity Muir, about a mile north of the town. Brechan unites with Montrose, Arbroath, Forfar, and Bervie in returning one member to parliament. The population of the parliamentary burgh was in 1871, 7959 ; and of the royal burgh, 5083.
Brechin is a place of great antiquity, and was chosen by the Culdecs as the site of one of their convents. It is said to have been burned by the Danes in 1012 . In 1150 it was erected into a bishopric by David I. In 1572 James VI. gave a grant for founding a bospital in the burgh, which still supphies the magistrates with ' funds for charity. In 1645 the town and castle were harried by the marquis of Montrose. Maitland the topographer and Gillics the historian of Greece were natives of Brechin.
BRECON, or Brecenocrshire, an inland county in South Wales. Its greatest length from south to porth is about 53 miles, and its greatest breadth from cast to west about 46 miles. It possesses an area of 719 squaro miles, or 460,158 acres, and is thus the fonrth largest county in Wales. It is said to have derived its name from Brychan, a Welsh prince, who flourished in the fifth century.
The Old Red Sandstone is the prineipal geological formation in this county, and occupies the whole of the central portion from east to west. Along the southern boundary there extends a narrow belt of carbonife:ous limestone, millstone grit ("farewell rock" of the miners), and the outerop of the coal beds,-together forming the northern rim of the coal measures in the great Sonth Wales coal-field. At Clydach in Llanelly, Brynmawr, Hirwaun, and a few other places on the south-eastern border of the county, there are extensive iron-works. The narrow projecting part of the county to the north, lying between Radnor and Cardigan, is occupied by the Upper and Lower Silurian beds; and there is a somewhat singular narrow penmsula of the former projecting into the Red Sandstone for a distance of ten miles, in a S.W. direction, and terminating at about five miles north of tho town of Brecon, A belt of limestone extends from the town of Hay on the east, and passing in a S.W. direction throngh the town of Brecon, terminates at the Brecknockshire Van. A prominent band extends along the border of the Old Red Sandstone on the N.W., where it joins the Silurian beds.

The general aspect of the county is mountainous, and the scenery is marked by beauty and grandeur. A chain of the loftiest mountains in South Wales completely encireles the sonth, composed in the east of the Black Mountains, 2545 feet in beight, and the curious Sugar Loaf rising to the height of 1760 fect. On the west of Brueknockshire are the Van and Talsarn mountains 2596 feet, and Mount Capellante 2394 feet in height; while the centre of the crescent is occupied by the masses of the Brecknockshire Beacons, the highest point of which, Cader Arthur, or Arthur's Chair, attains an altitude of 2910 feet. In the north, a range of barren hills, called Mynydd Bulch Groes at the most westerly end and Mynydd Encot
towards the east, enters the boundary of the county at a short distance from Llandovery in Carmarthenshire, an: extending in a N.E. direction, terminates near Builth.
Of the valleys the most distinguished for beanty is tha of the Usk, stretching from east to west, and dividin: the county into two nearly equal portions. The Wye i the chief river, and forms the boundary on the N. an N.E. from Rhayader to Hay, a distance of upwards o twenty miles; while the Towy, the Afon Claerwen, and the Elan separate the county from Cardigan and Radnor on the N.W. and N. The Usk rises in the Carmarthenshice Var on the west, and flowing in a direction nearly due east through the centre of the county, collects the waters fron the range of the Beacons in the south, and from Mynyd Bwlch Groes and Myuydd Epynt in the north, by means of numerous smaller stroams (uf which the Tarell and the Honddu are the most important), and enters the county of Monmouth near Abergaveny. The Taff, the Hepstau, and the Tawe, all rise on the south of the Beacon range, and pass ing through Glamorganshure, flow into the British Channe]

Llyn Safaddu, Llangorse Lake, or Brcckinioc Mere, the largest lake in South Wales, is situated at the foot of the Black Monntains, and within tho county. It covers an estent of nearly 1800 acres, and is about two miles long by one mile broad. Upon an artiticial island in the lake traces of habitations raised on piles have lately been dis covered, tngether with the bones of red deer, wild boar, and Bos longifrons. Tralition affirms that beueath the lake is a snbmerged town, which has been rashly identified with the Roman station Loventium.
The climate is moist, but temperate and salubrious; and the soil of the valleys, often consisting of rich allnvial deposits, is very fertile. The eultivated crops consist of wheat, oats, barley, rye, turnips, pease, potatoes, and vetches; of these the gteater part is consomed within the county: The uplands are clicfly in pasture, and are stocked with sheep, eattle, and ponies, which with wool, butter, and oak-bark, form the staple of a considerable trade with the adjoinng English counties, and with the iron districts lying to the south. The farms are generally small, but are well caltivated in the lower parts of the county. The highland occupiers are a very humble, hard-working class of men. It is calcolated that about two-thirds of the lands in the county are enclosed.

Breconshire is intersected by the Mid Wales, Brecon, and Merthyr Railway, and a branch of the London and North-Western, by means of which there is ready communication with all parts of the kingdom.
The principal towus are Brecon, Builth, Crickhowel, and Hay. The county returns one member to parliament, and has done so since 1536. The political influence is chiefly in the hands of Lord Tredegar and Sir Joseph Bailey. Constituency in 1875, 3574. Rents in the valley of the Usk and around Brecon are high, but on the mountain lands very low; it would be deceptive to give an average per acre. The ammal value of teal property paying income-tax is $£ 316,208$. The population of the county by the last census was 50,201 , giving an avemge of 83 persons to a square mile, or 768 acres to cach person. Of the total number 29,928 were males, and 29,973 females. The number of inliabited honses was 12,617, givirg an average of 17.5 inhabited henses to a square mile, and 4.7 persons to each house. The following returns show an increase of population amounting to 34 per cent during the last fifty years:-

	43,826
1831.	47,763
1841.	.65,603
1851.	.01,474
1861.	61,627
1871.	.59,901

The Welsh language is still that of the peasantry and widdle elass, and the members of the Chureh of England are largely out-numbered by the Daptists, Calvinistic Methodists, and Independents.

Brecknoekshire formed part of the territory of the Silures, and its ocenpation by the Romans could never have been very complete. After their expulsion the district (Brycheiniog) was ruled by native princes and was the secne of many a berder struggle. Many of the castles which are seattercd over its eastern border had their origiu at this period; and some of them mar be regarded as advanced posts erected by the English during the mars which preceded the formation of Offi's Dyke. Subsequently, when'Bernard de Newmarch and his Norman followers obtained possession of the country, they were converted into regular fortresses, by which the neighbourhood was kept in awe, and the mountain passes defeoded. The district between Breeon and Builth was the seene of the last struggle betreen the Enclish and Llewelyn in 1282, when the Welsa chieftain was defeated and slain. Since that date Breconshire has not been associated with any important historical events, nuless we include among then the raids of Owen Glyndwr. It formed part of the Welsh Marches until their noion with Eagland in 1532. Among the emineat natives of the county may be mentioned Sir David Gam (Shakspeare's Fluellen), who lost his life at Agineourt while defending Hener V.; the ill-fated Henry Stafford, dnke of Buckingham; John Penry ("Martin Marprelate"); Henry Vaughan, the poet; Dr IIngh Price, founder of Jesus College, Oxford; Thomas Howel, bishop of Bristol (less known than his brother; the letter writer); Theo. Jones, historian of the conuty; and Mrs Siddons.
Brecon, or Brecenock, the capital of the county of the same name, a market and borough town, 145 miles N. by W. from London, pieturesquely situated in a fine open vallcy, at the contluence of the Hondlu and Tarell with the Usk, and nearly in the centre of the county. It is supposed to occupy the site of the Roman station Bannium, but it is more probable that it was partly constructed with materials driwn from that spot, which lies to the W. of tho presen: Aown, on the Yia Julia Montana. There are three main steeets, with several smaller ones. The houses are for the most part constructed of stone, and are generally well built. Brecon has a fine eruciform church (Early Eaglish in style), which has been restored by Sir Gilbert Scott. There are two other churches, and two Independent, two Baptist, and one Calvinistic Methodist chapel. The eorporation consists of a mayor, recorder, four ahdermed, and twelve councillors. The borough has returned one member to pariament since 1536 . Constitueney in 1875, 813. The assessed taxes yield annually $£ 1259$, and the annual value of real property paying incometar is $£ 24,941$. There are weekly markets, and ssveral fairs in the course of the year. The quarter sessions and assizes are held here. Brecon has a foundation called the College of Christ Churoh, of which the bishop of St David's is $e x$ officio cien, but after the death of its present officers its revenues will develve to the ecelesiastical commissioners and be appropriated to coclesiastical uses. The ruins of the ancient castle are enclosed in the beantiful grounds of the Castle Hotel, and theugh unimportant in themselveq, derive an interest from their connection with the Fitzmalters, de Braoses, do Bohuns, and Staffords, sneceasive lords of Brecon. The principal fragment now remaining is Ely Tower, so called from its having formed the prison of Morton, bishop of Lily, where he concerted with Lis eustodian, Henry Stafiord, duke of Buekingham, the dethronement of Richard III., and the union of the bouses of York and Lancaster. There are some fine

Roman and other remains in the immediate ricinity. Population of municipality in 1871, 5845 ; inhabited houses, 11 is.

BREDA, a town of Holland in the province of North Brabant, and capital of a circle, is situated in a marahy plain on the Merek, 24 miles S.W. of Bois-le-Duc, and 30 N.N.E. of Antwerp. It is strongly fortified and defended by a eitadel (rebuilt by William III. of England), asd tho surrounding district may be laid under water when required. The town is well built, with wide and well-paved streets, is intersected by several canals, and has a fine cquay, a townhall, an arsenal, an observatory, an orphan asylun, a eathedral, and several Roman Catholie and Protestant churches, one of the latter having a spire 362 feet in height. It has also a Latio sehool and a military academy, and manufactures of linen and woollen goods, carpets, bu:beer, and nusical instruments. Population (1869), 14,1-?
Breda obtained municipal rights in 1252 from Hemry, but: :as not surrounded with walls till 153 . The old castle, which had been built in 1350 by Jan Yan Polanen, was restored about the sance time. In 1696 William Prince of Orange and king of Englant caused the erection of tha new castle, which was regarded as one of the finest buildings of the period. It was afterwards the residenco of Charles II. in his exile, and dow the scat of the military acudcung. The town was captured by the Spaniards in 1551, by Maurice of Orange in 1590 ; again by the Spaniards, under Eyinola, in 1605 ; and by Heary of Orange in 1637. It was fually ceded to Holland by the treaty of Westphalia in 1ofs. Dusing the wars of the French Rernlution it mas taken by Dumounjez is 1793 , and agaiu by Pichegru in 1795. Much of its celebrity is due to the rarious political congresses of which it has been the scene. In 1560 the nobles of the Netherlands formed there the league known as the Conspromise ; in 1575 a conference was held between the ambassadors of Spain and those of the United Provinces; in 1607 a peace was signel between England, Holland, France, and Deumark; and in 1745-7 the representatives of the same powers met in the toan to discuss the terms of another treaty.
blied., Jar Var, a Dutch painter, was the son of Alexander Yan Breda, an artist of considerable merit, and was born at Antwerp in 1683. He imitated the style of Wouvermans and Breughel with such dexterity, that even connoissears are often unable to distingnish his copies of their pictures from the originals. He visited Eogland, where he was so well cmployed, that in a few years he was able to retire to his native conntry with a competence. The earl of Derwentwater was one of his chief patrons. He died at Antwerp in 1750 .

BREDOW, Gashiel Gottrnied, a Germanhistorian and professor in the university of Breslau, was ioru at Berlin in 1753. He is knewn in England by his Manual af Aucient History, which was translated iuto English in 1827; Researches on History, Gooprophy, and Chronology; and his valuable Historical Tublics, which come down to 1811. This last work was translated into English by Major J. Bell, who continued the tables down to 1820 , and produced a popular and very useful work. Bredow died in 1814.

BREEDS AND BREEDIGG. The word brecds is usually applied to the rarietics of domestieated animals only, but since the phenomena presented under cultivation by all classes of orfanisms are entirely similar in character, and since, moreover, much of our knowledgo on the subject has been gainel from botany and horticulture, wo shall include, under the one term breeds, the warieties of domestic animals and of enltivated plants. The natural and simple definition of krectiag nould be the ert by which breeds are produced. But here the objection ariscs, thiat in this definition too much is assumed. It may be argued that our doncsticated animals and plants are each

[^5]identical with a wild prototype either hving or extinet, and that man has merely deprived them of liberty and regulated their environment and propagation in the manner mest advantageous to each kind. At the present day, when the whele rauge of biological thought is so largely permeated by the principles of the doctrine of evolution, this objection will probably not be advanced. Yet, when it is remembered that such an authority as Col. Hamilton Smith held the belief that each breed of dog had its wild protatype, it appears necessary to modify the definition above given. Let it be said that the art of breeding consists in changing the conditions of life and regulating the repreduction of animals and plants.

Since a breed is a domestic variety, it implies tha existence of a group of individuals marked off from their congeners by the possession of certain characters which are transraitted to their offspring. It is this transmission of peculiarities which is the essential characteristic of a breed; for any collection of domesticated organisms could be divided into groups of individuals distinguished by certain points, but such groups would not necessarily form breeds. It is evident, then, that the law of beredity which asseris that " like begets like" muat hold geod, or the cxistence of oreeds will be an impossibility. Again, if it were absolutely true that like begets like, that is, if the offspring were in all cases identicel with the pareut, it is evident that neither by man's interference, nor by the operation of nature, could a breed or race arise. It scems, then, that were it not in the nature of all organic beings to reproduce their kind in the manner formulated in the principle of heredity, and were it not for the continnous alight infringement of it expressed by the principle of variability, breeds could not have arisen. It is therefore necessary to examine these two principles as part of the subject under consideration.

Whatever viows we may entertain respecting the origin of our domestic animals and plants, there can be no doubt as to tha matter of fact that breaders have alwoys proceeded on one principle,-select the best individuals in each generation and pair them. Now wa have found that the qualitics of organic beings (forming in a certain sense the material on which the breeder has to work) can be generalized under two principles-heredity and variability. And in the same way the art of breeding is itself capable of a hind of generalization under the principle of sclection. There are thus three great principles or lows--heredity, variability, and aelection,-the last relating to the art of man, the other two to those qualities of organic beings which render the art practicable.

Heredity.-The simplest form of beredity- is found amongst those organisms which reproduce their kind by division inte two parts similar to each other. This process is illustrated by the fission of a Moneron. The next advance in complexity of reproduction occurs when the two portions into which the organism divides are dissimilar to one anothar ; hera the process by which both portions ultimately assume the form of the parent is not one of aimple nntrition, i.e., of formation of tissue like that already formed. The process by whieh man propagates some of his cultivated plants is one of artificial reproduction by fission. For instance, a cntting or part of a shoot, or even a leaf (as with Degonia), if placed in suitable soil, will repronuce the original plant in all its minute details. We are here face to face with the mystery of reproduction; for we have the ever wonderful fact that in a few cells lies dormant the vital impetus which enables them to produce from inorganic pabulum a"most complicated structure, which in its totality is utterly unlike themselves. And this example ahows us, morcover, how essentially the same are saxual and asexual reproduction; for there is no intrinsic difference bet ween reproduction from a amall part aitificially separated
from a simple feliar organ (a leaf) and the same sequence oi growth originating in a small portion naturally segregated from a transformed foliar.organ (the ovary). The conditions of growth are not the same in the two cases, and there all essential difference eads; for the bread distinction which the ccagress of two individuals in one case ajpears to make is swept away by the facts of Parthenogenesis. In the lowest of living things we have seen that growth and reproduction are almost identical aspects of life. And this connection is not less elose among ligher orgauisms; as Mr Herbert Spencer obscrves, - "When in place of its lost claw a lobster puts forth from the same spot a cellular mass, which, while increasing in bulk, assumes the form and structure of the original claw, we can have no hesitation in ascribing this result to a play of forces like that which moulds the niaterials coniained in a piece of Begenia leaf into the shape of a young Begonia. In the one case as in the other the vitalized molecules composing the tissues show their proclivity towards a particular s arangement; and whether such proclivity is exhibited in reproducing the entire form or in completing it when rendered imperfect matters not." The main fact of inheritance is so obvious that it is apt to be forgotten. Mr Darwin remarks,-" It is hardly possible, within a modernte compass, to impress on those Who have not attended to the subject the full conviction of the force of inheritance, which is slowly acquired by renring animals, by studying the various treatiscs which have been published on the varions domestic animals, and by conversing with brceders."2 Cerinin peculiarities have appeared only once or twice in the history of the world, but bave resppeared in children or grandchildren of the individusla so characterized. Thus Lambert " the porcupine man," whose skin was covered with warty projections, which were periodically moulted, had all his six children and two grandsons similarly affected. The most striking cases of inleritance have, as in this instance, been obscrved in man; but the very existence of the numerous breeds of domestic minasls is clear evidence of the possibility of the transmission of every kind of peculiarity. For instance, it is believed that the varietics of the domestic pigeon amount to at least 150 , and these races differ from each other in many ways, and all breed true to their kind. Some very eurions peculiarities have becn perpetuated. A race of eattle callca "Dutch buttocked" was formed in Yorkshire by selecting in each generation the animals with the largest hinder-quarters. When the breed began to be established it was found that the large size of the calves' hind-quarters increased the dangers of parturition to a considerable extent. This caso is interesting as showing that hurtful peculiaritics may be inherited just as readily as those which are beneficial, and as bearing witness to the improbability of the view that there is an innate tendency to vary in the right dircetion. The terrible strength of inheritance exhibited by disease is a fact which is only too well established in the case of man ; and in the maladies of domestic animals the same law holds good. It appears that nearly all the diseases to which the horse is subject are hereditary,-for instance, contracted fect, curbs, splints, spavin, founder, and weakncss of the fore legs, roaring or broken and thick wind, melanosis, specific ophthalmia, and blindness, and even such habits as crib-biting and jibbing, are all plainly hereditary. The fact that any, even the most complex combinations of qualities are capable of hereditary transmission, is, perhaps, more forcibly brought home hy considering the monetary aspect of the art of breeding, than by the fullest collection of special instances. As Mr Herbert Spencer remarks :-" Exeluding those induction

[^6]that have been so fully verified as to rank with exact science, there are no inductions so trustworthy as those which have ondergone the mercantile test. When we have thousands of men whose profit or loss depeade on the truth of the inferences they draw from simple and perpetually repeated obscrvations; and when we fin that the inferences arrived at and handed down from geneation to generation of these deeply interested observers has become an onshakeable conviction, we may accept it without hesitation. In breeders of animals we bave such a class, led by such experiences and entertaining such a convictionthe conviction that minor peculiarities are inberited as woll is major peculiarities. Hence the ịnmense prices paid for successful racers, bulls of superior form, sheep that have certain desired peculiarities." ${ }^{1}$ Not only are slight and gradual changes inherited, but in some cases sudden and well-marked variations are strongly transmitted. The case of the Niata cattle is now well known; a similar case is recorded of a rabbit born with only one ear, from which a breed was formed which steadily produced one-eared rabbits. These remarkable cases of sudden and large variation being inherited are closelyallied to the still more curious phenomean of the inheritance of mutilations. The most striking cases on record are those of Brown-Séquard. ${ }^{\text {a }}$. In his experiments on the inheritance of artificially produced epilepsy he found that guinea pigs, after having undergone section of the sciatic ncrve, often nibbled off portions of their hind legs in consequence of the anasthesia of those parts. Now the offspring of these self-mutilated animals were in thitteen cases born without toes. To appreciate the true value of this case it must be noted that Dr BrownSéquard has for thirty years kept guinea pigs, and has had many thousands under observation, and not a single case of congenitally toeless animals has occurred excepting among the offspring of mutilated parents. In epite of the universal tendency towards the transmission of ths form and qualities of the parents to the offspring, were occur capricious and inszplicable lapses in inheritance. It is not possible logically to distinguish a want of inberitance from a cass of variation; but when the difference between the offspring and the parent consists merely in the absence in the former of a quality possessed by the parent, it may be morc conveniently clissed as a want of inheritance than as an instance of rariation. Although a weeping or pendulous habit in trees is in some cases strongly inherited, in other instances the want of inheritance is equally well marked. Mr Rivers sowed above 20,000 seeds of the weeping ash, and not a single seedling was in the least degree pendulous. M. Borchmeyer has also observed the same fact in Germany. In all cases it must ba remembered that the form and qualities which the offspring of at animal or plant will assume when fully developed are not solely dependent on the narure of the bercditary impetus with which it staris; the initial tendency is as it were calculated so as to impart under certain couditions a certain form to the organism. If the conditions change, the initial tendency will not lead to the proper result; and it is to be noted that the apparent amount of alteration in the conditions is no measure of the amourt of effect produced on the organism. For instance, none of the English breeds of sheep can be kept puro in France, the lauls of cren the first geaeration lose rigour as the beat of the summer comes on, and the breed becomes absolutely d generate. It is extremely curious that the force of inheritunce which seems all powerful in England should give way sc utterly onder such a slight clunge of circumstances.

[^7]The method by which a breed was formed, combiuing the valoable qualities of the English shetep wath a constitution fitted for the Freach conditiens of life, is most. instructive, and is a triumph of thoughtiful and scientific breeding. The successful attanment of this end is due to M. Maliagie-Nonel. He found that the offspring of a cross between a pure English ram and a French ewe inherit the desirable form of the sire, bnt, onfortunately, also his. undesirable constitution. He accordingly paired a ewo. taken from a border district, and therefore intermediate between two breeds, with a similar intermediate ram. He thus produced a sheep "combining the four races-Berry, Sologne, Merino, and Touraine. without decided character, without fixity, . . but possessiag the merit of being used to our climate and managenent."3 It was now found that the lambs born of this mongrel ewe by purely-bred New Kent rams combined the English form with the French constitution, and transmitted this dicsirable combiaation to their offspring, and in this way the "Charmoisc" breed was produced.
In this instance it seems as if the tendencies supplied by the ewe formed so discordant a combination that no strong tendency resulted for any of the French forms to appear, so that the form of the English ram was strungly impressed on the offspring. On the other hand, the constitutional tendencies coming from the mother's side were not discordant, but united in impressing the French constitution on the offspring. This case is instructive as cstablishing the possibility of an important kind of acclimatization, and as bearing on a somewhat exceptional phenomenon of heredity, bamely, that when both parents exhibit a given character strongly, the offspring do not inherit it so surely as when oae, pareat only is cspecially well characterized. Thus a successful breeder of laced Sebright bantams says,"I am comfident that these that are best laced frequently produce ofspring very far from perfect in their markings, whilst those exhibited by myself which have so often proved successfur were bred from the union of bearily laced birds with those that werc scarcely sufficiently laced." ${ }^{1}$ The class of cases just noticed is, moreover, of great interest as bearing on a form of inheritance which has been named "prepotency of transmission." When the 'offspring, instead of being intermediate between the parents, strongly resemble one of them, the latter 19 said to be prepotent in transmitting its likeness. The famous bull Favourite is believed to have had a prepotent influence on the short-horn racc. It has also been observed with English race horses that eertain mares have generally transmitted their own chararicr, while other mares of equalls purc blood have allowed the character of the sire to prevail.
In other cases a remarkable weakness of transmission of character is found to exist. A striking instance is given by Mr Brent. ${ }^{5}$ It must be promised that the breed of pigcons known as "trumpeters" is characterized by a tuft of feathers over the beak, by a crest on the head, and by a most peculiar cos. Mr Brent crossed a trampeter with another breed, and then recrossed the mengrels with trumpeters. But it was only at the fourth generation, when the liirds bad $\frac{18}{18}$ trampeter blood in their veias, that the characteristic tuft appeared, and eren then the peculiar trumpeting coo was absent.
It is frequently asserted that the male is prepotent over the female in transmitting certain characters. It has been shown, hewercr, that such zules do not bold good except

[^8]to a very limited extent, and in certain groups only. it frequently happens that a character cxisting in one of the parents is transmitted more powertully to the oftspung of the sex to which that parent belongs than to the opposite sex. The large and important subject of sucondary sexual characters hinges entirely on this phenomenon. The resemblance between prepotency and sexual limitation becumes clear when we remember that where the offspring are of one sex it may be impossible to distinguish between these forms of heredity. The most interesting point conmected with secondary aexual peculiarities in relation to the subject of breeds is, that they are sometimes found in domesticated animals whose nearest wild congeners show no auch limitation of character. Thus in the sheep, the males of certain races differ greatly from the females in the shape of their horns, in the development of fat in the tail (in certain fat-tailed breeds), and in the outline of the forehead. These differences are interesting because, so far as we know, similar secondary sexual differences are not found in the nearest allied wild species of sheep. On the other hand, secondary peculiarities which originally distinguished the sexes are in some cases diminished or removed by domestication. Thns our improved brecds of pige have to a large extent lost the formidable tusks of the wild boar. The existence of secondary sexual characters gives a striking iliustration of another important law of inheritance. This law asserts that the age at which any character first shows itself in the offspring is the same as that at which it appeared in the parent. Now, secondary aesual charactersthose, for instance, presented by the male sex-have appa. rently been developed by sexual selection, and this force can only be brought to bear on variations occurring in adult animals. If, then, the male offspring do not develop the aclected peculiarities until they arrive at puberty, the age at which it appeared in their male parent, it is clear that they eannct differ from the fomale until the age of puberty arrives. And this is well known to be the case, for at an early age the sexes are usmally undistinguishaole by any secondary characters. (See Descent di Mun, vol. i chap. viii.)

The inceresting form of inheritance exemplified by the transmission through the female line of diseases necessarily confined to the malc sex has been already alluded to. This latency of male characters is clearly illustrated by what frequently occurs to old hens. It is well known that a large number of female birds, when old or diseased, partly assume the secondary male characters of their sjecies. Waterton (Essays on Aat. Hist.) gives a curious instance of a hen which had ceased laying, and had assumed the plumage, voice, spurs, and warlike disposition of the cock. The opposite case of the assuniption by the male of female characters is illustrated by the fact that capons sometimes acquire the sitting unstinct of the hen.

The possibility of eharacters existiag in a latent condition is of the utmest moment to the breeder, since upon it de. pends the possibility of reversion or atavism. Reversion is a matter of extreme importance to the brecder, for it is one of the serious hindrances to the progress of his art. Since the time of the famous Bakewell during last century, Leicester sheep have been bred with the most scrunulons care, yet grey-faced, black-spotted, or wholly black lamos occasi n-. ally appear. In this case the most caraful selection has be en necessary to hattle against the tenlency of the oricinal colouring of the sheep to reapuear. And in all cases of aelection it is this teadency that has to be struggled agmenst by the breeder. On this principle the gardener huks over his beds and weeds out the "rogues." Even from seeds gathered from the finest cultivated varictics of the heart's-ease (Viola tricolor), plants [erfectly wild both in fowers and foliage are freguently rroduced. The prozi-
mate canse of any particular casc of reversiun is utteriy whscure; but some of the general causes may le set down. It is frequeltly asserted that domestic arinals or cultivated plants, when allowed to ron wild, always revert to the ongmal parent form of the species. This assertion appears to rest on insufficient evidence, and to be an exaggerated statement of what is known on the subject. Nevertheless some weight must be allowed to it. Pigs have run wild in various parts of the world, and have everywhere acgnired the general characters of tiee wild pig, and the yomg have re-aequired the longitudimal stripes. This last character is interasting, since it is not in any way a direct result of the changed conditions of life, as the thicker bristles and ancreased size of the tusks might be supposed to be. Another well-established cause of reversion is crossing. The rase is exceedingly striking when the oflspring of a cross do not resemble any near progenitor, but throw back to very remote ancestors. In illustration may be mentioned the experments on pigeons detailed in the Fariation of Animals ant Plunts under Domestration (vol. i. p, 200). There can be but httle donbt that all our domestic races of pigeons have descended from Coluniba livia, the wild rock pigeon; the common dovecot pigcons exhibit the coloration of the parent form, and the most purely-bred fancy breeds, when of a blue colour, often show these characteristic marks. One of the above-mentioned experiments consisted in pairing a " mongrel female barb fantail with a mongrel male barb spot, neither of which mongrels had the least blue about them." It appears that blue barbs are exceedingly rare, that the spot has been known as a pure breed for nearly 200 years, and that a white fantail throwing any other colour is almost an unknown occurrence; nevertheless the offsping from the above two mongrels were of exactly the same blue tint over the whole back and wings as ihat of the wild rock pageon from the Shetland Islands. Moreover, every charactenstic mark of the wild pigeon was repeated in their mongrel offspring. This experiment demonstrates in the most striking way the tendency of a cross to produee reversion. The same result was also obtained by pairing black Spanish cocks with hens of rarious white lrceds. In this case the offipring reverted to the rell colouring of Gallus bankiva, whichmay be safely ranked as the parent form of our domestic fowls. In these instances the effispring revert to a character originally possessed by the ancestors of both parents, and here the cross is in no way essential to the reversion; it merely acts as a disturbing canse (although, probably, no other equally strong disturbing lower could be named). In these cases reversion to a chavacter of any degree of antiquity may oecur. In the other class of eases where the character to whel the ofispring revert is one given by a single cross with a distinct variety, the tendeney to rerersion becomes weaker in each generation removed from the cross, and may ultimately be obliterated. The length of tirae requsite to effect obliteration has formed a sulject of discussion. The question can bardly be answered, but the fact that it has been asked shows at least that obliteration may in some cases be effected in a practically finite puriod. In other cases even charncters gained in this way by a sughe eross seem incapable of extermination. Fowis hare been known to exlibit a Malay character, due to a cluss with that breed forty ;ears previously.
iuriubilaty. - When in any case we find the offpring differing from the parent, "i sei at duwn at frot aight as an imsiade of varability. Rut in the discovery being
 derised from á renute ancestor, it can $1: 0$ longer be so considered, and mast be attrihnted to reversion. Many cascs of apperent variation are the to this eanse. Thus Gertner declares, and Lus experience is of the highest value
on euch a point, that when he crossed distinct species of native planta that had not been cultivated, be never once saw in the offspring any new character; but that, from the odd manner in which the characters derived from the parents were combined, they sometimes appeared as if new. It appears, therefore, that the point at which the line of distinction is drawn between reversion and variation depends in many eases on the stato of our knowledge of tha subject. In some other points, also, the relations between inheritance and variation are extremely intrieate and difficult to unravel. These two principles are often spoken of as opposed to one another. The following cise shows that any defuition of variability implying that it is necessarily equivalent to a breach in the law of heredity is incorrect. Some kinds of sheep and cattle dogs are congenitally almost destitute of a tail ; and this Stonehenge attributes to the fact that under the old excise laws only those dogs whose tails had been rewored were exempt from taration; so that this motilation was universally practised until the deficiency became hereditary. The production of a tailless breed of dogs must certainly be considered a cuse of variation, yet in this ease it is not a breach of the law of heredity, but a remarkable instance of chedience to that law, that is to say, of the transmission of the effects of mutilation. In other cases external exuses produce some constitutional or otherwise impereeptible changes in the parent, and these in being transmitted to the offspring become correlated with some external or querceptible alteration, and in this way new characters may appear. This is undoubtedly a true case of variation; nevertheless, strictly speaking it is due to the inherited effects of a eause acting on the parent. And it seems illogical to separate it in a radical manner from eases such as that of the tailless breeds of dogs. Considering, therefore, the great difficulty in which the subject is enveloped, it will be well to abandon theorețical considerations, and merely to state that characters at least practically new do undoubtedly appear in the offspring. In every group of organisms a degree of variability, sutficient to give material for the breeder to work on, probably exists. The Laplander knows and gives a name to each of his reindeer, though, as Linnæus remarks, "to distinguish one from another aulong such mnltitudes was beyond my comprehension, for they were like ants on an ant:hill." A still more striking case is that of the old Dutch florist Voorhelm, who kept above 1200 varieties of the hyacinth, and was hardly ever deceived in knowing each kind by the bulb alone. These cases are important as showing that, even in natural ohjects which appear identical to the unpraetised eye, perceptible differences do exist. Man can effect nothing until some of his stock begin to vary in the desired direction. But horticulturists have found by experience that when any Iarticular character is desired, the first step is to get the plant to rary in any manner, and to go on selecting the most variables individuals even though they vary in the wrong direction, for the fixed character of the species being once broken through the desired variation will sooner or later rppear. The great numler of races of many domestic anicals and plants-for instauce, of pigeons, sheep, wheat, \&c.-demonstrates clearly their variability in many diverse characters. In other domestic animals, however, very few distinct races exist ; yet we must not conclude that these animals have not varied. There are several causes besides that of no inherent ant of plastieity which may have been at work. It will bere suffico to allude to a few of themr.

1. If any particular group has not been especially subjectod tu, selec. tion, the absence of distinct races in such agroup is no proof of want of variability. Tbis applies to asses (in Euglund oniy).
2. If the breoder has not a large number of indivituris t, selnit

Hence animals kep,t in small lots do not form taces (e.g., sheep on small heldings).
3. If intercrossing cannot be prevented, it is obvious that any variety which may appear will hare no chance of being perpetuated. but will be dilntcid down to the normal type. This applics to cate, which, from their wandering and nocturnal labits, cannot be paired.

It may appear a truism to say that every variation must have a distinct eause, but it is a truism very often overlooked. The case of twins, each born with a peculiar crook in the little finger, is instructive, for here the conclusion is irresistible that the same definite, though onknown, cause produced the malformation in the tro children. This case may also serve to illustrate the extreme obscurity in whieh the causes of any given variation are hidden, and the great difficulty of investigating them. Some general causes which induce variability nay, howerer, be set down.

There appears to be no doubt that organisms subjected to the unnatural and changeable conditions implied by domestication are more variable than those living in a state of nature. Thus monstrosities are comparatively frequent among domestic animals and plants. ${ }^{1}$ Domestication causes a number of changes in the condition of life; it is therefore of interest to determine n hich of these are the most impertant. Contrary to what might have been expected, change of climate is not an imputant cause of rariation. This is repeatedly shown by A de Candolle in bis Géographie Botanique; and a change to a more genial climate is certainly not necessary, fur the dwarf kidney beau, which is often injured by our spring frosts, and the peach, which requires the protection of a wall, bave raried much in England. (See Acclimatisation.)

In some moths the colour of the perfeet insect is affected by a change in the food of the caterpillar, but there seents to be no evidence that this cause has been active $1 \cdot$ inducing variability in our domestic races. On the other haud, excess of food is probably an important cause of variability. This view was held by Andrew Knight, aud the same idea is expressed in the following remark of a "great raiser of seeds :"-" It is a rule invariably with us, when we desire to keep a true stock of any one kind of seed, to grow it on poor land without doog; but when nie grow for quantity we act contrary, and sumetimes have dearly to repent of it."'2 Nevertheless it appears that many of the best varieties of fruit have not been produced under cultivation. Thus it is asserted that some of the Ginest French pears were originally found growing wild, and this was the case with an English variety of apple. The most interesturg fact conneeted with changes in the couditions of life is that the results of such changes are capable of accumulation. It is this peeuliarity that accounts for the fact that when new flowers are first introduced into ous gardens they do not rary. Thus the Swan River daisy did not break from its original colour until it had been subjeeted to seren rears of bigh culture. Many facts might be given showing by what slight changes of habitat the health and geneml derelopment of animals and plants may be affeeted, ${ }^{3}$ but with these cases we are not especially concerned. (See Acclimatisation.) The causes, how ever, which jucluce an unstable condition of general variability are of great importance to the breeder. Ol the causes not already tonched on the most important is intererossing. In considering variations under this aspect no attempt will be made to distinguisb from trne cases of variation the cases in which new characters are simulated by combinations of old ones. In the first place, it is protable that erganisms propagated by sexual reproduction

[^9]are usually the most liable to variation. For here the offapring has a double chance of being influenced by circumstances affecting the parents; and by the concentration of a duuble aet of tendencies into one individual, a better chance is given for the origin of variationa produced by combinations of ancestral characters. In the same way, to a certain extent, a cross with a distinct variety produces a disturbance or loss of equilibrimm in the reproductive system from which a tendency to the production of variations results. Thus Gärtuer asserts that seedlings from Dianthus barbatus, when crossed by the hybrid D. chinensibarbatus, were more variable than those raised from this latter bybrid fertilized by the pure D. barbatus. Diax Wichura insists strongly on an analogous result in the case of willows; and Kölreuter says that to obtain an endless number of varieties from bybrids they should Be crossed and recrossed.

1. Some peculiarities in our domestic races are to be attributed to the inherited effects of habit and of disuse. Splints and ring-bones on the legs of horses appear to be certainly hereditary; and veterinary surgeons agrec in pronouacing these growths to be the result of travelling on hard roads, and of the horses being shod. The effects of disnse are clearly shown in the skeletal characters of our domestic races. These effects arc well marked in tame birds, which are necessarily prevented from exercising their wings in flight. Thus in the domestic duck the crest of the sternum is less prominent, the furculum, coracoids, and scapula are all reduced in weight relatively to that of the whole body; the bones of the wing are shorter and lighter, and the bones of the leg longer and heavicr in comparison with the aame bones in the wild duck. Clusely connceted with this' class of facts is the subject of rodimentary organs. In organisms living in a state of nature the constant pressure of the atruggle for existence tends to keep useless structures in a rudimentary condition. But domestication, in removing this pressure, docs away at the same time with the principle of econouny of growth; and accordingly, we find that organs rudimentary in a state of nature become developed nader domestiontion. Thus cultivation has made true branches out of the thorna or rudimentary branches of the wild pear. Again, the radimentary fifth toe on the dog'a hind foot becomes in some cases considerably developed, and forms the "dew-claw" of a few large brecds.

Correlation has probably played an inportant part in modifying domestic races; for in sclecting a giren character man has frequently perpetuated many othocr peculiaritics correlated with the first.

Firally may be mentioned the curiona phenomena of "apalogous variation." This term is applied to those cases in which varicties of one specics resemble distinct but allied apecies. Where this occurs it is probsbly due to the two forma having arigianted in a conimon progenitor, so that modifying causes evolve similar varicties in the two casea because of the aimilarity of the matcrial which these forces have to act on. Analogous variation is therefore, properly speaking, a branch of the subject of reversion, and once mere points out the close connection existing between the latter phenomenon and varibbility.

In purely bred fowls of many races, birds may occasionally bc found closely resembling the Gallus bankiva. Here the case is one of simple reversion, and has already been alluded to. The production of spangled sub-breeds of Hamburgh, Polish, Malay, and Bantam fowls is not an obvious case of reversion to a known ancestor. It may be due, however, to descent from the parent iorm of the Gallinacex, considering the frequency of apangled markings throughout the order.

Selection.-Selection may be defined as the process by which the procreators of each fresh gencration are chosed
out of the preceding one. But with reference to the formation of our improved breeds something more than this is meant by the term. The modern development of the art, which has been distinguished by Mr Darwin to methodical selection, always implies that the breeder bas before his mind an ideal form,-a model on which be attempts to mould his strain. To be successful in this respect a man must not only possess in the highest degree the powers of discrimination, enabling him to determine which individuals are tending in the right direction, that is, which most nearly approach his ideal, but be must be able to decide, in the most judicious manner, as to which of his selected individuals ought to be paircd togetber. The subject, therefore, falls naturally into two divisions(1) the discrimination of individual differences, (2) the arrangement of the pairing.

1. Discrimination of Indizidual Differences. - The extremely fine powers of perception and the great petience required by the breeder might be illustrated by numerous instances. Sir John Scbright is said to have sometimes spent several days in weighing the rival merits of five or six birds. In Germany the merino sheep farmers do not even trust theirown judgment, but employ professional "sheep classifiers" to select the best of the flock for breeding purpases. Not merely outward form, but internal and constitutional peculiaritics have been carefolly attended to by breeders. Thus, Bakewell (tha first true methodical breeder of whosa procecdings we bave any knomledge) bred almost cutirely for the early maturity and fattening qualities of his strain; and again, in the improred short-horn hreeds, the masses of internal fat or tallow have been increased to an almost incredible extent. ${ }^{1}$ Piofessor Low states, ${ }^{2}$ as an instructiva instance of the limits that should be put to the exaggeration of any one point, that even the great hakewell appeara to bave made this mistake in causing a useless accumulation of fat where it was not needed. It scems that the fat mingled less with tha lean than eren in the old hreeds, and that it spresd in layers under the skin, formiug cushions of fat. He quotes a witer who observes that, having with great difficulty formed a race of cattle that would "make fat," Bakewell left his successors under the necessity of producing a breed that would "make lean." The same kind of error was at onc timo committed with the improved short-homs, whose progenitors were pre-eminentlygoodmilkers; here the breeders, by attending exclusively to other qualities, have in some cases injured the milking powers of the race. Yount is convinced that this losa is not necessarily correlated with rapid feeding qualitics. a Ila asserta that by careful selection a strain may be obtained (and this has, in fact, been effected) in which the cows are first-class milkers, and when dried fatten quickly and well.

In spite of these wamings against exclusiveness and exaggeration, it should be remembered that the difficultics of selection are greatly increased by attention to several points at once. An illustratiou ol this may be taken from the leas inportant art of fancy breeding. Au eminent fencicr in speaking of the alnomd tumbler pigeon (a breed baving tive pointg, viz., plumage, carriage, head, bcak, and eye), remarks that " there are some young fanciers who are over covetous, who go for all the above five properties at once; they bave their reward by getting nothing." Mr Darwin ouscrves, "We may gmile at the golemnity of this precept, but he who laughs will win no prizes."

It shouid be remarked, however, that "fancying" is not governed by rules identical with those which r"gunate breeding for economic purposes. The fancier often has to strive after extreme abnormal devclopment, amounting to monstrosity; it bas often been remarked that he will not tolerate anything ahort of this extreme divergence. On the other hand the economic breeder is prevented by solid mone. tary considerations from being nisled, to any great extent, by fasbion. Hence, instead of the wids diferencer observable in "fancied" anims 9 , we find a remarkable unitomnity in certain characters among many of those bred for use. Thus all the iniproved races of the pig closely resmble each other in their shortened legs and muzzles. their large bairless bodies and small tusks. Well-itred cattlo of aeveral distinct raceg exhibit a similar convergence of character.
2. Arrangement of the Pairing (includirg crossing). - We have already alluded to tbe remarkabla case in which it aecms an advantage to the offipring that one parent only ahould possess the desired quality in an especiol degree. This may be considered an extreme case, yet it hears some relation to the principlea on wich breeders usually regulate the arrangement of the pairings. Gecerally apeak. ing, individuala having certain points peculiarly well developed are matched with those excelling in other directions. It is probable that a physiological law which would formulate the exceptionel cases abova mentioned would also favour the more common practice
${ }^{2}$ Youatt, Catlle, 1834, p. 227, et sey
${ }^{3}$ Demesticated Animals, 15:5, p. 378
3 cip. cit., p. 539.
now under consideration. For it woulh allow the transmission of qualities from either parent, unlisturbed by the influeace of the other, to the olfspriag. In this part of his work the breeder once moreffinds occasion for the utmost skill and judgment; but so difionlt to formulate are the fruits of his experience that he oftea Berms guided in his clonice by instinct rather than by reason. Every new breed must originate in a few individuals possesciag some special peculiarities. Therefore, nearly-related individuals mast at first be inatched; in other words, close "in-and-ia" breeding must be practised, or the race cannot be "fixed." I a consequence of the inniformity obtained by pure breeding, charaters otberwise uaira. portant become valuable as marks of purity of race. Thas the dark red colour of the Devon cattle becomes a criterion of "blood."

The advantages of io-and-ia breeding have heen insisted upon ty the improvers of our domestic breeds, and some of them have declared that no ill results follow from the practice. But ia spite of this assertion it is generally admitted that degeneration either in constitation or in other ways does ultinately easue: so that at any cost the breeder is absolutely compelled to admit blood from another family or strain of the same race. In speakiog of this necessity io the case of sheep. Youatt says that the breeder will choose "a ram from a soil and kind of food not dissimilar to his own, . . . with poiuto as much resembling his own sheep as may be-quite as good as those in his own flock-superior if possible in some points, inferior in none." But in opposition to Youatt it may be argucd, from the practice followed by some great poultry breeders, that animals having the same physical characters, but which have been kepo under different comititions, ought to be selected for crossing. By this means tone and vigour are infused into the stock without minterially altering its character. In other cases a different plan has heen followed. For instance, Colling for what purpose is not clear, on acconnt of the secrecy in which he carried out his art) erossed his sloort-horns with a dis-inct breed - the Galloway. He thus prodnced a sub-strain or family, called in reproach the "Alloy," but possessed of great merits, which, by recrossing with short-norns, became quite equal to the pars breed, ${ }^{\text {a }}$ and produced animals which solet for enormous prices. This muthod of making one "violent" cros, and trusting to subsequent recrossing with the pure parent form (together with long contianed selection, has sometimes been followed where some especial ouality is required. Lord Orford's vell-known attempt to infuse pluck into bis greyhounds try ineans of a cross with a bull-dog is a case in point. Stonehenge recorls a carefully-obeerved experiment al the same kind, whioh shows that the objectionable form of the bull-dog can be thoroughly eradicated oven in four generations. In other cases a cros's with a distinet varioty is effected with the object of forming an intermediate race which shall transmit its characters.

Crossing.-An ipjudicious exaggeration of certain qualities, ns in some cases before alluded to, has taken place in breeding long-woollod sheep. Here the feece has becn almost exclusively attended to, and the quality of the carcase allowed to deteriorate. No doubt, an improved breed remodying this evil might have been formed by sedection, but this process would bave been slow and estremely difficult; and, fortunately, there existed' the readies method of forming a eross-breed race combiniug the desirablo claracteristics of both varietice. Messrs Druce and Pusey ${ }^{2}$ have pointed out the great incresse of profit yillded by a eross between the long and short woolled sheep. The following table gives in the first column the number of Cutswoids, Soutlidowns, and sheep of a "cross breal" internediate between them, which a given area will support ; the second gives the total value of tlecee and carcaso in each case for the number of animals given in the first column :-

Cotswold	100	$£ 496$
Southdown	120	489
Cross-breed	115	587

Crossing has, in fact, entered largely into the formatiou of nearly nll our improved sheep. ${ }^{3}$

In some cases the offypring of a first cross between distinct speeies possess valuable qualities, but owing to their sterility an intermediate race canno be formed. If, lowever, the combination is valuatle the cross may be repeated at will. The brocling of mules is a farmilar example of this method. In tho same way cross bred cattle, which though

[^10]nat sterile are yet incapable of transmitting their valuable qualities to their orfspring, are bred for the butcher by a repetition of the first cross.
Some of the more important points in cornection with methodical selection and the modern art of breeding have now been briefly indicated. The results obtained hare been truly astonishing. Lord Somerville graphically remarked that the modern sheep-breeder appored to have "drawn a perfeet form and then to have civen it life." These extraordinary improvements have licen effected almost within the last century; and it may be objceted that because selection as now practised is of modern date, the differences whieb ebaracterize many races of great antiquity cannot have been produced by man. This objection, however, is not rald, for it call lse shown that au unnoticed and therefore unrecorden canse of nodification has long been in existence. This mportant agent has been araed "unconscious selection," it is illustrated by the following ease: In speaking of two flocks of the New Leieester sheep possessed respectively by Messrs Buckley and Burgess, Youatt remarks that "both of therr flocks have been purely bred from the original stock of Mr Bake. well for upwards of fifty years. There is not a suspicion existing in the mind of any one at all acquainted with the subject, that the owner, of either of them has deviated in any one instance from the pure blood of Mr Bakewell's flock; yet the difference between the sheep pessessed by these two gentlemen is so great that they have the appearance of being quite different varieties." "

Now we may feel sure that neither of these breeders intended to alter the character of his flock, he merely strove to produce the best possible New Le: cester sheen and selected those which approached bis ideal most closely. Yet owing to slightly different standards of exer llenco baving been unconsciously aimed at in the two cases, the inportant results pointed out by Youatt arese. It is an exceeding remarkable fact, that changes so small as not to be pereeived by the trained eye of the modern breeder may by accumulation produce obvious results in the short space of fifty years. And if such changes may occur unnoticed under the supervision of men keenly alive to the peseibilities of change, a far greater field for this kind of modification must have been offered before any such knowledge was general. An unperceived disergence of character will arise whenever men, actuated by some vague belief in heredity, begin to seleet the best individuals, roughly speaking, for reproductive parposes. Each man will uncensciously take a standard of excellence slightly different from his neighbours, and thus his strain will imperceptibly begin to differ from theirs. Now there can be no doubt that an ameunt of selection suffieient for this purpose must have been practised from a very remote period. Youatt, after an examination of the passages in the Old Testament bearing on the subject, asserts that some of the best principles of breeding wert then uuderstood. The antiquity of breeding is also proved by eertain passages in ancient Chinesu encyelopsedias.

The ancestors of nations at present civilized must hare passcl through itages in which they resenbled the sarages of the present day; therefore it may fairly be assumed that eustoms which are found among lowly developed savages are of great autiquity. Now few races are more barbarous than the Anstralians, yet even ther take pains is the breeding of their dogs, matching the finest together and providing good food for the mother in order that the young may be well nurtured. From a large body of similar eridence there can be no doubt that a degree of selection sufficient for the developaient of unperecived divergenee has been
practised from exceedingly ancient times. The results produced by prolonged selection of this kiod may be estimated in varieus ways. For instance, although it is certain that the pointer originally came from Spain, no such breed exists there at the preseat day. So far as is kuewn no efforts have ever been made to modify the pointer; hut every one bas wished to possess as good dogs as possible, and by as uaconscions conseasus of opinion, the desire for improveruent has resulted in a slow progressive clange in a certaia direction. But the amount of divergence produced by lons. centraued selection may be illustrated more forcibly by general considerations than by special instauces. The fact that the progenitors of many cultivated plants and domestic animals cannot with certainty be determined points out the great divergence frem the wild parent form that has been effected under donestication. The genus Auchenia may serve as an illustration. There are four forms in this genus the guanaeo and ricuina, found wild, and undoubtedly distinct species, aud the llama and alpaca, known only in a domesticated condition. Most professed naturalists have looked on all four forms as specifically distinct, and have made the assumption that the wild llama and alpaca have become extinct. But Mr Ledger appcars to have proved conclusively ${ }^{1}$ that the llama is the domesticated descendant of the guanaco, and the alpaca that of the vicuuna, -so that a large amount of divergenee must bave been effected in this case. And as we know that careful selection was anciently applied to thes animals, there is nething inconceivable in such a transformation laving been effected. The power of long-continued selection is well shown by the fact that, in domestio avimals and plants, the parts or qualities salued by man have been most modifed; thus the sheep has been prized durigg many ages for its flecte, the horse for its strength and fleetness, and, accordingly, we do not find breeds of sheep differing from each other in strength and fleetaess, or breeds of horses distinguished by the ruperties of their hair, bnt on the contrary both aninals bave produced races characterized by differenees in the qualitics for whieh they are valued. The same law is even inore clearly demonstrated by plants under cultivation. In the radish, which has beed estecmed exclusively for its root, it is the latter that differs in the several rarieties, while the flowers, seed, and foliage are almost identical in all. Again, the varieties of the gooscherry differ much in their fruit, but hardly perceptibly in their Bowers and organs of reproducLion. In some cases structures neglected by man bave varied by correlation; but allowing for this exception, they may be said to have cscaped the effects of selection, and accordingly to bave remained stationary, while the selected qualities have gradually improved.
In attemptigg to frame an answer to the questionHow mueh has man actually effected? it will be well first to estimate the amount of modification which may be claimed as his work, and then to measure the efficency of the agents by which these results are belicved to have been effected.
(1.) Organic beings resemble each other in descending degrees, so that they can be classed in groups under groups, -classes, orders, genera, \&c. The doctrine of evolution gives life to this arrangement and makes it truly a "natural" classification,-the idea of different degrees of community of descent being added to that of arbitrary classification by community of characteristics. Thus it happens that the number and distinctness of the genera centained in a natural family become to a certain extent a gauge of the amount of divergence which the modifying causes of oature have produced, since tha time when all the genera were united in the parent form of their family. And by a similar

[^11]methot we may estimate the amount of divergence that man bas effected. For instabce, there can be no doubt that all the varicties of the domestic pigeon are the descendants of the rock pigeon, and bare sprung up, under the care of man during the long period of time that has elapsed sinco their wild ancestor was first domesticated. These varieties amonnt to more than 150 in number; and there can le no question that, supposing them to be found wild, they would be gronicd uuder at least five distinct genera,- so great are differences existing amoug them. This instance gives some idea of the marvellous amount of modification that may arise under doruestication.
(2.) Are the powers which man possesses of producing modification sufficient for the work assigned to them? it will be well to set down the assumptions which may failly be made in connection with this point.
lirst, the labours of the great breeders teach us what enormous changes can be efficted in the short space of one man's life ; and we know that the essential princ.|les involved in the process were anciently known and fullowed
Secondly, we may feel cortain that great divergence of character is unconsciously produced during long continued selection of any bind; and we know that some kind it selection must have existed from remote periods. Logically considered, therefore, the possibility of almost any degree of divergence baving been effceted turns in great measurs on the question of the antiquity of selection.

It is therefore important to note that an indirect kind of selection must almost necessarily be coeval with domestication. For this cau be shown te be the case with tame adimals possessed by the rudest sarage, who decs not regulate their increase in accordadere with erea the raguest belief in heredity. In each litter of puppies, for instance, somo would neccssarily be destroyed, for their master would be noable to preserve all the young ones which were produced. He would certainly not save those which were small, feeble, or deficient in any valuable quality. The finest in each generation would then be preserved, merely because it was believed that they, individually, would be useful, and not with any idea of "breeding." Nevertheless, it would in. directly follow that the supcrior individuals in each generation would, as a rule, form the progeniturs of the nest one; that is, a kind of indirect selection would arise. If then we can be sure that donestication, in some form, has existed from remote times, we may feel tolerably certain that the above-described rude form of selection must be of nearly equal antiquity. Apart from the direct proofs on this head which we pessess in the remains of the prebistorie period, there is a high antecedent probability in favour of the extreme antiquity of domestication; for it is certain that tame animals are of great use to savages, and the wild progenitnrs of many of our domestic creatures are rendered tame with ease. This is the case with wild dogs, pigs, cattle, ducks, \&c. In the case of regetables, it appears that, in times of scarcity, savages devonr almost any berries or leaves which they can obtain, often sufferiag terribly in consequence; and in this way plants stell superier io nutritions qualities would assuredly be discovered. We may, therefore, con-clude-(1), that the demestication of animads and the culture of plants date from exceedingly remote antiquity; (2), that a certain amount of sclection must have been nearly cocval with demestication; (3), that some degree of divergence of character must almost necessarily bave accompanied selection ; and (4), that, consequently, the large amount of modification claimed to have beed produced by man is a conceivable and sredible result.
(F. D.)

BREGENTZ, the ancient Erigratia, rapital of the circle of Vorarlberg, in Tyrol, staids on a bill at the S.E. eod of the Lake of Censtance. It has an old castie, tro convents. and au urphanage. Silt and cottonare maruac.
iured, and it carries on an active transit rade. It wiat long the eeat of a Roman garrison, and in the Middle Ages it gave the title to a powerful family of counts, whose territory paseed to Austrian pessession in the 16 th century. In 1646 the town was captured by the Swedes; and in 1850 it gave its name to a treaty by which Austria, Bararia, and Würtemberg formed an alliance against Prussia. Population in 1869, 3686.

BREHON LAW, the law of Ireland previous to the Conquest, and of some communities of the Irish down to the 17 th century (from breitheam, genitive breitheamain, a judge; root, breith, a judgment; compare Vergobretus, "vir-ad-judicandum," Cæs., De Bell. Gall., i 16). Three volumee of these laws, comprising the code called the Senchus Mor, alleged to have been revieed by St Patrick, have been published by a Royal Commission appointed in 1852, and other portions in the second series of O'Curry's Lectures on the Materials of Ancient Irish Mistory, edited, with a learned iatroduction, by Dr W. K. Sultivan in 1873. The antiquated and often obsolete language both of the original text and of the intertined glosses, coupled with the fact that pertions of both are cited in compilations considered not later than the 10 th century, are arguments for their acceptance as fraguents of a primitive system unmodified by Anglo-Saxen, Danish, or Norman influences. The Roman (or civil) law is hardly traceable in them, except as regards ecclesiastical affairs, and that sub modo only. From the first-mentioned cause also, the provisions sre often obscure and eometimes unintelligible; but enough appears to indicate the general nature and much of the details of these laws.

As compared with the collections koown under the generic title leges barbarorum, they are remarkable for their copiousness, and furnish a striking example of the length To which moral and metaphyeical refinements may be carried under rude social conditions. They present a state of zocicty such as may be conccived to have existed uhder the older manorial erganization, when the land was to a greater extent "folk"-land than "boc"-land, and comprised commone of tifiage as well as of pasture. This kind of occupaacy entailed annual repartitions of the tillage, recalling the usage of the ancient Germans (Cres., Bel. Gall., vi. 20), and of which, as practised on a miner scale in Ireland in 1782, Sir Henry Piers bas given an account in bis description of Westmeath (Vallancey, Coll., vi. p. 115). Traces of such repartitions survived under the name of Rundale (Irish ranudach, "partıre") in the Highlands of 3cotland and in seme parts of the West of England till recent times (Maine, Early Inst., p. 101). There is no evidence, however, in the Brehon code, as now published, of merely family occupancy, in which one bousehold living together, or even one village community, enjoyed the land and its produce in common, although euch an origin may be theoretically conjectured for the institutions described. The social unit comprised separate families and households numerous enough to occupy a crich or quasi manor, within which existed a court and complete system of primary social organization: In each of these, mensal lands were set permanently apart for the chicf, and means existed by which portions of the common land could, within certain limits, be acquired in sereralty ly iudividual owners. The crich formed pertion of the twath, or quasi barong, one or more of which constituted the mor tuath, or petty kingdom, equivalent to a county or several counties, governed by a ri or regulus, who, in theory at least, bore allegiande, through superior reguli, to the monarch. The grades of rank were numerous, but the distinctions of wealth which grounded them appear very arbitrary. The upper classes were all "Aires." To be eligible to the aire grade, the frceenan should possess, besides a certann amount of wealth
an cattle, a prescribed assortnent of agricuitura implementes and household goods, the meagreness of which exemplifies the slow progress of the arts of life in early states of soclety, and he should have a house of given dimensions, ranging from 17 to 27 feet in leagth, and containing a given number of compartments. The houses were of timber and wattle-work, ourrounded by open spaces uf prescribed extent for each class. The lower limit for this space was the distance to which the owner seated at his door could throw a missile of given welght; multiples of that distaoce determined its exteat for the higher classes. Tacitus has noticed a like custom of keeprag clear spaces round the several dwellings amoug the early Germans; and this. regulation has probably contributed to retard the progress of the early Irish out of pastoral and agricultural into civic haoits. There was a serf and slave population, who were desigaated ernaans, as representing the earlier Firbolg ard Pictish colonists, who did not enjoy these privileges, eacept by the process of becoming fuidhirs or tenants of the separate lands of the nobles, who called themselves Gaidel, or Gael, and claimed a different descent. Besides these teazats, or "feuers," there were depeadants called ceilés, who stood to the wealthy classes in a relation resembling thet of the clients of the Roman commonalty to their patrons. Bath they and the fuidhirs owed suit. Ead bomage to their flaths or lords, as well as services and rents in kind aud in refections. The food-rents, biadh, correspouding to the Auglo-Saxon feorme (wheace "farmer"), were supplied both at the residences of the chiefs and at the tables of their teants, wheace originated the customs of coyne and livery of later times.

The use of coined money was practically unknown, and the unit of value (sed, seota, "asset3") was the cow. The ceiles appear to have been attached to their lords by largesses, or "commendations" of cattle which they used in their own tribal lands. It i_{3} in the fuidhir class that a law of tenure of land originated, and possibly in these relations we may discover the rudiments of a partly-developed feudalism. The fuidhir is, in the theory of the native etymolegists, the fo-tir or "landunderling," as one who helds land of another. The rules regulating these eeveral kinds of enjoyment of the land sre peculiar to the Brchon code, and, as may be observed of all its provisione, are extraordinarily minute, being designed to fix all rights and liabilities, under every probabla state of circumstances, in values numbered, which may be one cause for the slow social progress made under their operation. For each supply of cattle to the ceilé a definite return to the airć is fixed to the end of seven ycars, when the property vests in the ceilé. But the eupply should not (xcced fixed limits if the recipient would pre. serve his status as a freeman. The fucilhir, or base tenant, was bound to larger returns in rent and services, and the lord might, \mathcal{A} violation of the tenant's engagements, resume the possessi in of the land; but it would appear that during the fuidrir' occupation he could net be otherwnse disturbe 1 without a measure of compeasation. On the death of the ceile or of he fuidhir, a quasi heriot was payable to the lord.

The succession to the territorial hadships was elective within her citary limits ; the succession to tribal rights of occupancy, and individual rights of ownership in the separate hereditame 3ts acquirable by individuals, was bcreditary. The law of distribution of a deceased person's property is very minute in its provisions, though obscure, orsing to the technical description of the classes and persons entitled; but it appears to have contemplated divisions per capitG and not pee stirpes. The law of marriage is remariable for the variety of irregular relations which it appears to sauction. sud for its careful protection of the scparate pro-
perty of the irregular as well as of the lawful wife, both during cohabitation and on separation, which appears to have been frequent. The lawful wife seems to have had no other protection against the introduction of the "adaltraich" wife than the withdrawal of her separate property, in addition to certain mulcts payable to her on the occasion. She possessed independent rights of alienating a portion of her separate property, and could, to some extent, control the rights of alienation of her husband. The looseness of the marriage tie eridenced th these lams was one of the evils calling for reform alleged by the Irish prelates in their letter moving Pope Alexander III. to ratify the grant of the island made by Adrian IV. to king Henry II.

The practice of putting out the children of the mealthier classes to be nursed and educated may hare contributed to make euch relations less incompatible with domestic peace. The law of fostergge, of which few if any recognizable traces, outside the low of apprenticeship, have survived elsewhere, provides for the external nursing and cducating of the children of the upper class by poorer members of the community, who, besides the fosterage-fee received with the infant, had a claim on the foster-child for support in old age. The fostering began from infancy, and terminated, in the case of daughters, at thirteen, and of sons, at seventeen yeare of ege. A crrtain smount of instruction should be imparted. Girls of the less realthy class should be taught to use the handmill (quern) and sieve, to bake, and to rear young cattle; those of the higher class to serr, cut out, snd embroider. The boys should learn kilndrying and wood-cutting, and those of the uaper class. chess-playing, the use of missiles, horsemanship, and swimming: The lawful food for sll was porridge. Their clothing, besides the nursing clothes supplied by the parents, was according to their status, from sober coloured stuffs for the children of the less wealthy to scarlet cloth and ailks for the children of those of the rank of king. Provision was made for the necessary correction of the pupil, with mulcts for excess. During the fupiage, the foeter-fsther mas entitled to all compensation for injuries to his charge, snd liable to all mulcts for their offonces. If the child died in its pupilage, anether might be sent in its place. If returned before the completion of the term, or imperfectly educated, the foster-father should refurd. The fixing of the proportionate amounts due in thesercral cases gives rise to much minute regulation. The law of military service like the others, was based on a system of fines levisble for non-attendance and even for desertion: in the feld. To what has been said on the land-law it may be added that public contributions were leviable for the repair of roads and bridges, and the maintenance of the chicfs or king'e fortresses; and that each communty had a public mill, fishing-Det, ferry-boat, sc., besides such objects of this kind as were possessed in severalty by the wealthier members. There was also a law of waifs aud strays, and of wrecks of the aea, with prorisions for the entertainment of ahipwrecked seamen at the commion charge of the district entitled to the distribution of the wreck. There is lutthe mention of testamentary disposition; and from the language employed, a Roman origin may be prebably surmised for it. To counterpoise the excess of privilege incident to the possession of wealth, the mulets payable for misfeasances end nonfeasances of all kinds were graduated in the interests of the poorer classes. Crime and breach of cor. tract might red ace from the highest to the !owest grade.

Aa regards the law of contracts generally, the disabilitiss arising from tribal partnership, infancy, imbecility, coverture, and obligation to the lord give rise to many exceptions and qualifications, the general rule being that -acquiescence, after netice, by the parties jointly interested, -or standing in relations of protectorship. has the effect of
validating what would otherwise be vold. Distinct pernods are limited within which the parties entitled to disagree may avoid the bargain ; and, in all cases, a locus pocnitentice of twenty-four hours is annesed to the oral agreement. within thich time either party may rescind it. The nature snd effect of a varranty on sale appears also to have been understood and provided for; and frequent reference is made to the cases arising on unsoundness, latent or supervening. There are some traces of a law of the market, but how far, if st all, it qualified the ordinary rules of contract, does not appear. The Aenachs, or great fairs, were held at distant places and at long intervals of time. Various immunities are given to the persons frequenting them; and a riolation of some of the necessary provisions for securing the peace and decorum of the meetings was exceptionally ponishable with death, while almost every other offence might be condoned by a pecuniary payment. A highly interesting account of one of these great assemblages, which was held triennially st Carman, near Wexford, is given in a tract translated in the $2 d$ series of O'Curry's Lectures, wherc, anong the various classes resorting there for amusement and traffic, mention is made of Greek merchants bringing commodities for sale. Tke laws themselves give little intimation of their own origin or sanctions. They appear to have undergone no substan tial changes from time immeroorial; but some evidence exists of local law-making authority excreised at meeting: of the freemen of the crich, subject to revision by some higher authoritg, and one of the objects of these fairs or comitia was to publish such enactments as well as the general body of the laws and customs from time to time. The law of torts regarded all offences, with the nomina? exception of murder, as condonable by fines until the offender and those liable for him could pay no more, when the defaulter lost his status and fell into the servile class. For some of the offences of the indiridual, the finne or family were responsible; for others, particulat sureties. Whether this system of quasi frank-pledge dic not extend to breaches of contract, as well as to cases o non-feasance, misfeasance, and breachcs of the peace sppears uncertain. The scale of mulcts for the sevcra sorts of homicides, wounds, and personal hurts, is in outline the same with those of the other western Europeaz nations; but, in addition to their definite fine of so muct for such and such a lesicn or bruise, it provides by rateable deductions for excusatory circumstauces of intention, innorledge, contributory ncgligence, accident, and necessity, all of which are considerable rcfinements on the contemporaneous systems of the Continent. The penalty of death for murder was of ecclesiastical introduction, and, like ths law ordaining the payment of tithes, appears to have fallen into desuetode before the Conquest. Chief Baron Gilbert, in Dwyer's case (Gilb., Ev., vol. i. p. P) has an observation apposite to the state of society disclosed by this system of measured mulcts and mutual surctyship, in treating of the stite of Britain before murder had become puaishable with death under the later law of Canute:-

[^12]Imprisonment, among the Irish at the period of these laws, does not appear as detention in a common gaol, but as a personal fettering of the culprit; and some of their subtlest distinctions concern the liabiling of the person bound to provide the fetters, in case of the culprit's escape. It has been suggested with much appearance of reason, that refinements of this kind, inter apices juris, with which the Brehon law abounds, are rather exercises of the writer's ingenuity in framing suppositional cases illustrating classes of abstract rules than evidences of any actual application of law to the particular subjects. Such are the law of the mensure of damages for injuries by bees, by cats, by the bunting hound, by traps for game, \&c., all which are elabcrated to a pedantic nicety. Of the courts in which these laws were administered we have but an imperfect view. The primary looal tribunal was a quasi court baron, called the Airecht, composed of freemen of a certain status. The inferior classes were écoma airechta, that is, "impares curiz." The office of Brehon in the court is very obscurely indicated. The stays and imparlances (anad, esain, dithim), src., incident to the process of bringing causes to final judgment, and the fact tbat damages were, in all cases of ordinary occurrence, assessed beforehand by specific rule, gave iapeated opportunities for settling out of doors. There were professional adrocates and means of carrying the case to courts of ligher jurisdiction, but how these were consti. tuted does not appear; but mention is made of several gradations from the airecht urnaidh (sheriff's tourns ?) to the cul-airecht, or ulterior court, which indicates some resont by way of appeal. Their rules of evidence, in additinn to the testimony of the cye, admitted, in questions of title to land, that of the ear, cluais, or general report, and lailh (cantus) or history in the form of a poem publicly renited (a remarkable example of practical functions'belenving to the office of a bard) as well as the evidence of lendimarks or mearing stones. These, it seems (O'Curry, 2 d series, Sullivan, Introd., claxxvii.), should be sunk under the surface, as Martia in his account of the Western Isies of Scotlagd (p. 114) has described :-
"They preserve their boundaries from being liable to say debates by their sucenssors, thus. They lay a quantity of the eshes of burnt wor? ia the pround, and fut hig stones above the same; and for curging the kowledge of this to firsterity, they carry some boys from both Fillages next the boundary and then whip "em soundly s,ut tell it to their childrea. A debate haring arisen between the yllages of Cse and Grovan in Skye, they foud ashes as above mentiunca under a stone, which decided the controversy."
This gives countenance to the tradition that, prior to the reiga of Acd Slaine in the 7 th centurg, there were no fonces in the country, but all was open save the walls and mounds surrou ding' drocllings. It is dificult to accept this statement uaresersedly, partly on account of the habit of assigning febulus origius indulged by all archaic, and notably so by the Irish writers, but chicfly because the Eriton code comprises a very full law of fences. The maierials, dimersiohs, and several sorts of quick-setting of these are laid down with great particularity, and the rights and liabilitias of sdjoining owners are miuntely describal. Returning to the sabject of judicial administration, we hare a much clearer view giten of the nature and incidents of frocess by which the jurisdiction of the court was made to attact, than of the constitution of the court itself. This was by distress, or the seizure of the goods of the defenant, in some cases immediate, in others proceded by stommens, and, in the case of the privileged classes, by trosgad or fasting on the part of the plaintiff, a practice still known in snme parts of India, and much relicd on as an evidence of nomam Aryan origin for the ancient Irish and present Hinla legal systems. The distress wight either remain in the bunts of the defendant, if of the superior stade. by
way of attachment (fornasc), subject to a lien, on security for his appearing and abiding the award of the court, or it might at once be driseu to a pound (jorus). Here it was kept during a certain tine or "stay" (anad), varying with the nature of the complaint, during which the defendant might have it back on like security. Failing this, a process of forfeiture (lobad) commenced, and ultimately the distress or so much of it as sufficed to satisfy the claim, vested in the plaintiff, the defendant receiving back the balance, if any. On security being given, the merits of the dispute were determined by the court. A proceeding analogous to the action of replevin was thus incidental to every litigation; and this appears to have been the early course of the common law in all the local courts, not proceeding on the king's mits, both of England and Scotland, down to the times of Bracton (fo. 156. 2, Reeves's Hist. Eng. Law, 59), and of the enactment "Quoniam attachiamenta" (Leges Rar. Scot., i. and cxi.). One of the few cases cited in the Brehon law (voi: i. p. 65) states the procedure in what was substantially an inter-tribal action of ejectment for recovery of land, in the incidents of which a resemblance is found to many principles of jurisprudeace and methods of procedure of the common law of England, suck as prescription, limitation, set-off, entry, ouster, distress, rescue, fresh pursuit, withernam, replevin, surety in replevin, avowry, Welsh mortgage, writ of possession, and return of distress. The case was this:-
Land had been assigned by way of Welsh mortgage in part parment of a mulct or fine. The mortgagee and his descendsnts itmaioed in possession until it became a question whether the law of prescription (rudrad) had not giren them the absolute estate. To try the title, a bailiff of the claimant tribe put his horses on the land. The bailiff of the trite in possession drove them off, accompanyiag the act with an admission that formerly the clainant tribe bad been in possession. The claimant's bailiff then distraned three cows of the occupier's bailitif outside his cattle shed, and drore them to the border of the territory, where they lay dows. It veculd have been his duty here to give public notisicstion of his proceed. ings, and to have driven his distress to the nearest pound of the externat territory; but the cons, not hsring been milked, escaped, and returned to the'r calves, which bad been left behind. The distrainer, making fresh pursuit by the traces of the milk dropped on the groun 1 (regerded probably as a constructive Leepiog in riew). recaptured them at daybreak at the homestead of the owner, and. with them, in addition, distrained and impounded three [six i] others, taken from [out of] the door of the cattle-shed, by way of aitherach gatail, or second caption, to double the amount for what seems to have boen considered a constructive rescue implied by the escaped beasts heing again in tho orner's custody. Nutwithstavding these facts, the regularity of the proceeding was admitted by the tribe in possession, whose regulus now came forward aud bad back the distress, on giving pledges to try the question at 1 aw , and to retura the cattlo if unsuccesful. Further security was eleo given by him for soms other liability. The action which, so far, was in the nature of replevin, now assumed the charaster of eiectment, and the personal wroog of ousting the bailiff who bad irade the eutry merged in the question of title to the possession of the land. It was held that the period of prescription, being the time of three successions to the kingship, had not capincul, one of the sucesssions leing irregular. The land was, therefur, still redcem. able, asd, on taking an account and settiog off the receipts, inclading a mulct of less a mount due by the mortgage, agaisst the originel balance due to him, it was found he had been fully prid, and a return of the cattlo was awarded, and possession of the lands delivered to the claimant. (See "On the Rubiments of the Co:nocn Law discoverable in the published portion of the Senchitu M ore" "a Trans. Roy. Irish Acadimy, vel. xxiv. p. \$3, 1867.)

It appears from this that the prorisions of the statuta of Marloridge (52 Heary.IIL. c. 4) in Eugland, forbidding the driving of distresses beyond the bounds of the countr, and of the "Regiarn Majestatem" (re-cnacted by 1 Robert, i. c. 7) in Ecotland, requiring that when drisen beyond the bounds of the territory the distress shall be exbibited before witnesses, are to be regarded not as merely iutroductive canctments, but as substantially declaratory of the previous state of the common law; further, that the old ouning that "ali administration of justice was at first ic
the king's hands, but afterwands, as the kingdom was divided into counties, handreds, iee., so the adninistration of justice was distributed ariong divers courts, of which the sheriff had the government of the cunty court, de.," is probably grounded on an mintersion of the actual progress of the faets; and that when it 1 s said of the right to recover land in a personal action, of set-off, and of other equitable incidents of justice, that such rights did not exist at the common law, the words "in actions commenced by original writ," should probably be understood ; for there is no diffeulty in conceiving how all the main meiderts and principles of law disclosed by the Irish case could have ariscn regularly in the connty court, always a court of equity for the defendant, when the bishop was associated with the sheriff, and the right of the snitor to be his own apparitor had not yet been abrogated ly the faw of Canute, re-enacted by William I. (Leg. Gtr'. Cunq., sliv.). How these resemblances have come to exist in the early laws of the two islauds may be a question for the historian and ethnologist. It is well to know that, whencesouver derived, the common law may to so great an extent be recognized as substantially a common inheritance of all the populations now organized into the United Kinglom. (s. s.)

BREISLAK, Scipione, an eminent geologist, was born at Rome in 1743. He early distiuguished hinself as professor of mathematical and nechanical philosophy in the college of Ragusa; but after residing there for several years he returned to his native city, where he soon became a professor in the Collegio Nazarcue, and began to form the fiue mineralogical cabinet in that institution. His leisure was dedieated to geological researches in the rapal States. His aceount of the alurimous district of Toffa and edjacent hills, published in 1786, gained for him the notice of the king of Naples, who invited him to inspect the mines and similar works in that kingdon, and apponted him professor of mineralogy to the Reyal Artillery. The vast works for the refining of sulphur in the voleanie district of Solfatara were erected under his direction. He afterwards made many journeys through the ancient Carmpania to illustrate its geology, and published in 1628 his Topografia Fisica della Campanza, which contams the interesting results of much accurate observation. Breislak also published an essay on the physical coudition of the seven hills of Rome, which he regarded as the remains of a local volcano,-an opinion which more recent investigations appear to disprove. The political convulsions of ltaly in 1799 brought Breislak to Paris, where he remaned until 1802, when, being appointed inspector of the saltpetre and powder manufactories near ditan le removed to that city. . Me died on the 18th of February 1826
During tho latter part of his career he published the following works:-Del Salnitro e dell" Arte del Salnitraio; Nemorus sulla Fathbricazione e Raffinazione der Nitri; Instrusime pratica per le piceolc Sabbricazione di Niitro, da farsi dalle pursone di Cumpegna. His valuahle Introdusione alla Geologia appeased in 1811, a French edition with additions was published in 1019. Finally, the Austrian Government, in 1822, took on itself the expense of jublishing lis L:scrizione Geologica chlld Provincia di Mílano

PREMEN, eno of the three free cities of the new German smpire, is situated on the River Weser, about 50 miles from the ese and $60 \mathrm{~S} . \mathrm{W}$ of Hamburg. The latitude of the observatory is $53^{\circ} 4^{\prime} 36^{\prime \prime}$ N., and the longitude $8^{\circ} 45^{\prime} 54^{\prime \prime}$ E. The city consists of three parts-the old town (flt Stadl) and its suburban extensions (Forsealt) on the right bank of the river, and the nere town, dating from the Thirty Years' War, on the left. The ruver is crossed by three bridges, of which the last was built in 1874-5. The ramparts of the old town hare long been converted into beantiful promenades and gariens, latt breh the when an? the new town are still surromaded with meats. The :rea of the whole city is grest in propertion to its popilatura,
the houses in general being buit to coutam onls one famuly. The pubic buildings, situnted chictly in the old town, comprise the following :- the cathedral, erected in the 12 th centurs, on the site of Charlemagne's wooden church, and famous for its Bleikelier, or lead-vault, in which bodies may be kept a long time wathout suffering decomposition; the church of St Ansgarins, built about 1243, with a spire 400 feet high; the Rathhaus, a building of the early part uf the 15 th centnry, with a celebrated underground winecellar; the town-house, formerly the archicpiscepal palace, and converted to its present uses only iu 1819 ; the Schiatting, or merchant's hall, originally built in 1619 for the guild of cloth-traders; the exchange, completed in 1867 , the theatre; the town library; the high-school, a gquite recent erection; avd the new post-office buildings. St Rembert's church and the colosseum may be mentioned in
 the Vorstadt; and the barracks in the new town. At the head of the monetary establishments stands the Bremes Bank, which was foumled in $185 h^{6}$ as a private speculation. and is only allowed to issue notes to the amount of its realized carital. Seven other banks were in operation ir the beginning of 1875 . There are in the eity eighteen public and thirteen private schools, the former including a ravigation and an industrial sehool, and the latter ar institution for the extension of female labour.

New waterworks, constructed by an English company on the left side of the river, were opened in 1872, and supply the eity with water of a grod quality from the Weser; a large fire-brigade establishment has also been fonnded in imitation of a similar institution at Berlin; aud an extensive park, tho Burger Park, bas been laid ont in the old Bürger Wcide, or meadows. Railway communieation is rapilly ancreasing, and a central terminus for all the lines is proposeci. The most important of those alreaty opei coninect the city dircetly with Hanover, with Oldenhurg, with Eremerhaven, with Hamburg, and with Minden. The manufactures of Bremen aro of considerable extent and varicty, the most important being those of tubacco, snuff and cigars, though they lave somewhat declined since the formation of the empire. In 1872 no fower than 2500 people were employed throughout the state in preparing cigars alone, while the making of eigrar-boses occuried 250 more. The shelling of rice is also largely carried on, and there are sugar-refinerics, soap-works, shipbuildingyarls, sail-cloth factories, a large iron foundry, distilleries, asphalt-works, and colour-facteries. In the extent of its furcign trade Bremen is one of the chief cities in Gerrmany, and as a port of emigration it is only rivalled by Hauburg. It deals largely with the United States, Great Britain, Eritish India, and Ikussia. Its yrincipal imnorts consist of eostun, twoace, cuffec. rye, rice coals, iron guods, petro. lems, class, hides aud shins, s!!e, muv, iizen, aud uyes,
and its exports of many of these articles in a manufactured siate. In 1874 the arrivals were 3407 vessels, frth a register of 990,101 tons,- 650 belonging to Eremen, 418 to Britain, and 317 to Holland. Much of the skipping trade of the eity is conducted at Brewerhaven and Vegesaek, because vessels drawing more thar 7 feet cannot get up to the town. Among the sucteties of the city are a nautical association, the German Lite-Boat Institution, and the chamber of conmerce.

As early as 788 Bremen, toea a mere fishing village, was made the seat of a bishefric by Charlemagne; and in 858 it was raised to an archbishopric by Ansgarius, arclibishop of Hamburg, who tad been driven from that city by the Normans about 817. The i.aportance of Bremen soon increased; and its citizens took an activo chare io the more remarkille movements of the time, such als the Cusades, the establishmeat of the Tutooic Order, and the founding of Niga. In 1283 they joined the Hanseatic League, and in 1289 formed a treaty with Gisallert, their archbishop, by which he agreed to consing himself to the spiritual effairs of his diocese, leaving sacular conceme to the civic authorities. In the course of the 14th century, there was rouch intestine conflict in the city, and in the 15 th it had to defend its commerce against tbe pertinacious hostility of the Frisian pirates; but from both perils it issued with increased vigour. About 1522 the archbishop and most of the intalitanta declared for Protestantism, in defeace of which they two's a foremost part, and liad on rarious occasions to suffer soverely. The city was twice besieged by the imperial forces in 1547. At the peace of West phalia (1645) the arohieriscopal diocege was secularized and raised to a grand duchy, which was ceded to Sweden. In a wsir between Deamark and Sweden in 1712 it was conquered by the furater, ani in 1715 it सaspurchased from that power by Hanover along with the duchy of Verden. The transfer was confirmed by the Uict of 1732 , and the district now forms part of the Hanoyrisp province of Stade. The city of Bremea had meanwhile had its civic rights more or less thoreughy recognized during these vicissitudes. Ia 1806 it was taken ly the Frenck, snd from 1810 to 1813 it was the capitul of the depart meat of the Jloutbs of the Weser. Resiored to independence by the coagress of Vienoa in 1815, it subsequintly ticcante a member of the German confederation, and in 1857 joined the new confederation of the North German Shate, with which it was merged in the new German erapire. It has now one rote in the federal council, and sends a represeatative to the imperial dict. The feedom of its port is aecured, and in compensation it pays an aversum of 250,000 thalers to the customs unioa.

The territory of Bremen bas an area of 63,400 English arres, about $B 000$ reses heing occupied by the town of Premen, Bremerbaren, and Vuresack, and ahout 1000 by the bud of the Weser. Of the remainimg ares about, two-Giftha are arable land and two firths meadowlani, the extent of woodland heing rery slight. The soil is for the most part sandy, though bere and there marshes or bugs occur, Of the population, which in 1873 was 130, 711,88 , $1 \leq 6$ werc inh mbitanta of Bremen the city, 12,129 of Dremerhaven, and 3543 of Vege. anck, and esb,753 of the runal districts. With the exception of akeut $2 \operatorname{son}$ Pomun Catholica and 21 Jews, the iohabitants ar Lutherma or Calvinists of verious deriomiatious. According to the constitutinn of 1819, modifird by sarious cnactmonts in 1554, the seuate, which is the exentive power, is composed of eightcen menabers, nele i ibu the "hurghership" un preseotation by the senate. Of these, ten at luast must be lawyers, and five merchants, and two of the number are nominated by their colle ertws as burgorasters, who preoile in succeasion, and hold office the fuur years, one retiring every two year3. The burghershif consiate of $150($ formerly 300) representa. tives rhosea from the citizens for six years. Sixtesu are clected by ihose of the in babitants of the city who hare atteaded a university. 48 by the merchants, 24 by the maufacturem and artisans, and 30 by the other citizens; of tho revaining represeotatives 6 ere furaished by Bremerharen, 6 by Vegusalk, aud 20 by the country population The revenue in 1873 a mountel to $£ 545.581$, aud the erpenditure was $£ 1,094,222$, so thet the ricficit was 2 sisw.691. The tatal debt ot the end of the year was 天枵i76,732. The territury and city are still outside the limits of the cosioms uaiou. lo the whole state there were in 1870 forty-five yulie aud thirtera private ucbools, with a total attendace of $12,794$.

BREMER, Fredrika, the most celebrated Swedish novelist, was born near Abo, in Fiuland, on the 17th sivgust 1801. Her father, a descendant of an old German facily, was a wealthy iron mas!er and merchant. He left Fiulind when Fredrita was three years old, and after o year's resideuce in Śtocktioln, purchased an estate at Arsta, about 20 miles from the caputal. Taerc, with occorional

belonged for a tirne to ber father, Frectilia mased her time till 18:0. The education to whieb she and her sisters were subjected was unusually strict; their parents, especially their father, were harsh and took little or no pains to understand the temperaments of the children. The constant repression, the sense of being misunderstood, and the apparent aimlessness of such an existence told with greatest force umon Fredrika, who was of a quick and eager disposition, fond of praise and conscious of porers which it scemed to her must lie for ever uraused. She felt as if ber life were being wasted; there was nothing on which ste could expend her energy; no carcer mas open to a boman. Her health began to give way; and in 1821 the whole farrily set out for the south of France. They travelled slowly ly way of Germany and Switzerland, and returned by Paris and the Netherlands. It was shortly after this time that Miss Bremer became acquainted with Sehiller's poetical works, which made a very deep impression on her. Her home life, however, was still unsatisfying, and in ber pessionate longing for some work to which she could devote herself, and through which she might do some good in the world, she for a time resolved to join one of the Stockholm bospitals as a nurse. This plan was given up on the entreaty of her sister. Meauwhile, she had found relief for her pent-up feelings in writiog, or rather in eontinuing to write, for she had been an authoress of a sort from the age of eight. In 1828 she determined to attempt publication, and succeeded in finding a publisber. The first volume of her Sketches of Every Day Lije (1828) at once attracted. attention, and the second volume (1831), containing one of ber best tales, The H_- Family, gave decisive evidence that a real novelist had becr found in Sweden. The Swedish Aeadeny awarded her their smaller gold medal, and the fortunate authoress became famous. From this time Miss Bremer had found her vocation. Her father bad died in 1830 , and her life was thereafter regulated in aecordanee with her own wishes and tastes. She lived for some years in Norway with a friend, after whose death she resolved to-gtatiíy a long-repressed desire for travel. In the autumn of 1849 she set out for America, and after spending uearly two years there returned through England. The admirable translations of her works by Mary Howitt, which had been received with even greater eagerness in America and England than in Sreeden, secured for her a warm and kindly reception. Her impressious of Anerica, Homes in the New Horld, were published in 1853, and were at once translated into English. After her return Miss Bremer devoted berself to her great scheme for the adranceweat or, one may say, emancipation of women. On this sub. ject she bad thought deeply, and her own experience was of value to her in shaping ber ideas of what the education and function of woman should be. "She wished," says her sister, "that women should, like men and together with them, be allowed to study at the elementary sebools and academies, in order to gain an opportunity of obtaining su:table empluymeuts and situations in the service of the state.

She said she was firmly eonrinced that women coudd aequire all kinds of knowledge just as well as men, thai they ought to stand on the same level, and that tisy ought to prepare themselves in the publie sehools aud universities to becomo leeturers, professors, judges, plysicians, and functionarics in the service of the state" (Life, sc, pp. 81-2). Some of these riews were expounded in her later novels, Hertha and Father and Daughter, which maturally were not so successful as her other works. Miss Bremer not only wrote of her plans, but endeaveured, so far as she could, to induce women to devote themselves to scme kind of work. She organized a society of ladics in stockbolm for the purpese of visiting the prisons, and fivisi: tha chuiora mised a suciety the object of which
was the care of children left orphans by the epidemic. In 1856 she again travelled, and spent five yers on the Continent and in Palestiue. Her reminiscences of these countries bave all been translated into English. On her return she settled at Arsta, where, with the exception of a visit to Germany, she spent the remaining years of her life. She died on the 3lst December 1865. Miss Bremer bas becn called, and with justice, the Miss Austen of Sweden. Wer novels have the purity, simplicity, and love of domestic life, which are characteristic of the English writer. She 13, bowever, inferior to Miss Austen in construction of plot and in delineatiou of character. Some of her best Forks show slight traces of overstrained sentiment, and the situations are occasionally somewhat melo-dramatic. The Neighbours is the most popular and the best of her tales; it is an admirable picture of Swedish home life, showing at times the quiet humour which is more prominent in The H- Family. All the works have beed translated into German and English, and the greater number of them into Frencb. In America they have circulated very widely, and have been extremely popular.
Sce Life, Lecters, and Posthumous Works of F. Bremer, by her sister, translated by Milow, London, 1868.
BREMERHAVEN, a sesport town belonging to the free city of Bremen, on the right bank of the Weser at the mouth of the Geest, in $53^{\circ} 32^{\prime} \mathrm{N}$. lat. and $8^{\circ} 34^{\prime}$ E. long. It is built on a piece of ground surrendered to Bremen in 1827 by Hanover, and increased by treaty with Prussia in 1869. The port was opened in 1830, and there are now, besides an excellent barbour, four large wet docks, Eve dry docks, bydraulic cranes, and lines of raidway running along the quays. The entrance is free from ice nearly all the year round, even when the other ports of the neighbouring coasta are closed, and vessela drawing 22 feet can enter saifely. The town is rapidly extending and will soon be tuited with Geestemuinde. Among its public buildings the most remarkable is the grest hospitium for emigrants, erected in 1830, which can accommodate 2500 persons. The Hanoverian fort and bitteries, which formerly protected the town, have been removed, and their place is supplied by similar works farther down. The pepulation, which in 1850 was only 3500 , amounted in 1871 to $10,596$.

BRENNUS, the name given in history to two kings or chiefs of the Celtic Gauls, probably not an appellative, but a title, the Cymric "brenhin" = king. (Dr Pritchard thinks it more probably the equivalent of the Welsh proper nane "Bran.") The first Brennus crossed the Apennines into Italy, at the head of 70,000 of the tribe of Gauls known as Senones, and ravaged Etruria, 391 e.c. Some envoys from Rome, aent to watch their movements, were said to have taken an active part in a skirmish before the walls of Clusium ; and the Gauls, friling to obtain the surrender of these men, marched at once for Rome. A Romes army of about 40,000 men was bastily despatched to meet them, and took up a position on the banks of the little river Allia, within twelve miles of the city. Here Brennus attacked aud defeated them with great slaughter; and it ho had pressed on at once, Rome would have lain at his merce; for the greater pari of the beaten army liad placed the Tiber between thenselyes and the conquerors. But the Gauls lingered on the field of battle, mutiating the dead, and drinking to excess. The Romans grined time to occupy and provision the Capitol, though they bad not force aufficient to defend their walls; their women and children were sent off to Veii ; and when on the third day the Gaula marched in and tool possession, they found the city occupied only by those aged patricians who had held high office in the state. Toe old to be ot service in the little garrison, and two proud to fly. they hrd ald solematy revoted themselves io death. and sut each ir the purct of
bis house, in full official robes, a waiting the invadera. For a while these withheld their hands from them, out ol awe and reverence; but the ruder passiona soon prevailed and they were all slaughtered. The city was sacked and burnt; but the Capitel itself withstood a siege of mora than six months, saved from surprise on one occasion only by the wabefuloess of the sacred geese and the coutrage of Marcus Maolius. (See Manlius.) At last the Gauls consented to accept a ransom of a thousand pounds of gold. As it was being weighed out the Roman tribune complained of some unfairness. Brennus at once threw bis heavy sword into the scale; and when asked the meaning of the act, replied that it meant "Va victis"-"the weakest must go to the wall." The Gauls returned home with their plunder, leaving Rome iu a condition from which she took long to recover. A later legend, most probably an invention, represents Camillus as having suddenly appeared with an avengiug army at the mowent when the gold was being weighed, and having defeated and cut to pieces Brennus and all his host (Livy, v. 49).

The second Celtic chief tho bears the name of Breanng in history is said to have been one of the leaders of an inrosd made by the Gauls from the east of the Adriatic into Thrace and Macedonia, 280 n.c., when they defeated and slew Ptoleny Ceraunus, then king of Macedonia. Whether Brennus took part in this first invasion or not is uncertain; but its success, and the rich spoils brought home, led him to urge his countrymen to a secund expedition, when be marched with an army of 150,060 foot and 60,000 horse through Macedonia, defeating such forces as were brought against him, and passing thence into Thessaly, ravaging ${ }^{n} 3$ be went, until he reached the bistoric pass of Thermorylow To this point the united forces of the Northern GreeksAthenians, Phocians, Bcootians, and Ætolians-had fallen back; and bere the Greeks a second trme held their foreiga invaders in check for many days, and a second time had their rear turned, owing to the treachery of some of tho natives, by the same path which had been discovered to the Persians two hundred years beforo. Their land force, however, succecded in getting on board the Atherian fleet, which was lying of the shore to co-operate with them. Brennus and his Gauls marched on to attack Detphi, of whose sacred treasures they had heard much. But the little force which the Delphians and their neighbours had collected-about 4000 men -favoured by the strength of their position, made a gallant and successful defeace. With or without the help of Apolle, who is said to have come to the aid of his sanctuary, they rolled down rocks upon the close ranks of their enemies as they crowdcd into the defile, and showered missiles on them from their vantage ground. A thunderstorm, with hail and intense cold, increased their confusion, and when Brenous himsel! was wounded they tr.k to flight, pursued by the Greekall the way back to Thermopylec. Brearus killed himsel "unable to endure the pain of his wounds," says Justin, more probably determined net to return home defeated. Few of the invading force eventually escaped.
brentano, Clemens, German dramatist and novellat. was born at Frankiort-on-the-Maine in 1777. His siste; Elizabeth was the well-known Bettina von Arnim, Goethe' correspondent. He studied at Jena, and afterwarda resided in Heidelberg, Vienna, and Berlin, leading a somewhat restless and unsetted life. In 1818 his disgust with al mundane affaira reached such a height that he withdren from ordinary life and lived in the strictest. seclusion al Dülmen. This continued for six yeara ; the latter part of his life he spent in Ratisbon, Frankfort, and Munich. He died at Aschaffenburg 28th July 1842. Brentano belongs to the remantic school of German poetry, and his worka, tike ali ohers of that class, are marked hy excess of
fantestic imagery and by abrupt, bizarre modes of expression. His first published writings consisted of satires and poetical dramas (Satiren und Poetische Spiele, 1800) ; of his later dramas the best are Ponce de Léon, 1804, and Fictoria, 1817; of has poems the best is Die Gründung Prags, 1816. On the whole his finest work is the short tale, or novelette, Geschichte vom bruven Kaspar und dem sclönen Annerl, a very perfect little piece, which bas been translated into English. Brentano also assisted Ludwig Achim von Arnim, his brother-in-law, in the collection of the tales and roems forming Des Knaben Wunderhorn, 1800-8. The collected works appeared at Frankfort in 1852.

BRENTFORD, a tomn of England, in the county of Middlesex, 8 miles west of London, on a loop line of the South-Western Railway, in $51^{\circ} 28^{\prime} \mathrm{N}$. lat. and $0^{\circ} 20^{\prime} \mathrm{W}$. long. It is divided by the River Brent into two parts, known as Old and New Brentford (the former the larger of the two), and is separated from Kew by the Thames. The Grand Junction Canal joins the Brent some miles further up, so that the town has extensive water comsuanication, and is enabled to maintain a considerable trade. Among its manufacturing establishments are gindistilleries, a brewery, malt-kilns, soap-werks, saw-mills, and colour-works. The Graud Junction Water-warks, which supply the rest end of London, are stationed here, the great stand-pipe, 226 feet high, forming a striking tower-like structure. Market-gardening is largely carried on in the neighbourhood, and there is a weekly market which dates from the time of Edward I. The elections for the county of Middlesex are lield in the town. Its population in 1871 was 11,091 .
Iu 1016 Brentford, or, as it was often called, Braynford, mas the seens of a great defeat inficted on the Danes by Edruad Jronside. In 1280 a toll was grented by Edward $\mathbf{1}$. for the construction of a tridge across the river, and in the reign of Henry VI. a hospital of the Nino Orders of Angels was founded near its Western side. In 1642 a battle was fought here between the royalists and the pariamentary forces, for his services in which the Scotsman Ruthven was made earl of Brentford, a title afterwards conferred on Marshal Schomberg. Brentford ras dnring the 16 th and 15 th engturies a fapourite resort of the London citizens; and its inn of the Three Pigeons, which was kept for a time by John Lowin, one of the first actors of Shakespeare's plays, has been frequently alinded to by the dramatists of the period. We have aloo Shakespeare's "Fat Woman of Brentford" in the Merry Hives of IVindsor, "Gillian of Brention " in Westward $H \theta$, and various other reforences in old plays. Thomson, in his Castle of Indolence, refers to the pigs for which the town was formerly famous-

> "E'er so through Brentford town, a tomn of mud, An herd of tristly swine is pricked along."

The two kines of Breatford, so well kuown from Corper's allusion, beem to owe their mythical existence to Buckingham's Rehearsal, where Baycs prides himself on the skill of his plot, in which he surposes "troo kints to be of the same place, as for example at Bremtord." See Athencum, 1847, P. 1196; and Notcs and Querics, ed ser. vol. viii.

BRESCIA, or Breschane, a province of Italy, in Lompardy, bounded on the N.W. by Bergamo, N.E. by Tymol E. by Verona, from which it is separated by the Lago di Garda, S.E. oy Mantua, and S.W. by Cremona. Its ares is rather moro titan 1 C 43 square miles. The northern part, or about one-third, is occuphed by a chain of mountains which belong to the Rtaotian Alps; the remainder forms part of the great plain of Lombardy, and shares in its general fertility. The ncincipal rivers, all tributaries or sub-tribntaries of the Po, are the Ogho, the Mella, and the Chicse. Com, finx, hemp, the ulive, and the vinc aro extensively cultivated, and in some districts the traveller passes for miles throngh the midst of orchasis. The monntainous parts, and especially the walley of Trompia, sield iron, copper, marble, alabaster, and rranite. The manufactures consist principally of silk, wodler, linen and cotton foods, iron, eteel. andi copper wares, gioss, and
paper. Among the principal townships are Rovato, Chiari, Orziunovi, Monte-Chiaro, Salo, and Ponte-vtco. Population in 1871, 456,023.

Brescia, the capital of the above province, is situated between the Mella and the Garza, about 155 miles by rail from Turin, in $45^{\circ} 32^{\prime} \mathrm{N}$. lat. and $10^{\circ} 14^{\prime} \mathrm{E}$. long. It lies at the foot of a spur of the Alps, on the summit of which is a fine old castle formerly known as the Falcon of Lombardy. The town is well built, has fine arcaded streets, and compares favourably in point of cleanliness with other cities in the North of Italy; but it has hardly so many buildings of first-class importance. The old cathedral, a remarkable specimen of the circular form, is sadly disfigured and neglected, and the new cathedral by its side (1604-1825), though built of white marble, is of little architectural merit, St Afra and San Francesco being more worthy of notice. The Broletto, or old palace of the republic, dating originally from the lith or 13 th century, is a large and interesting building; but it has snffered greatly by successive alterations. The episcopal palace contains an extensive public library, consisting principally of the books and manuscripts-many of great antiquity and value-bequeathed to the city by Cardinal Quirini in 1750. There is an exceptionally rich collection of both mediæral and classical antiquities, preserved in a beautiful Roman building, usually known as the Temple of Hercules, built by Vespasian and excarated in 1822; and throughout the numerous churches and mansions of the city are to be found many of the masterpieces of Italian art. Among the other buildings are the Loggia or communal palace erected in 1508, a theatre, a hospital, a lyceum, and various public fountains. The botanical gardens are morthy of notice. Brescia is a busy town. Its arms and cutlery have been famous for centuries; whole streets are occupied by coppersmiths; silk, woollen, and linen. gonds, paper, leather, and oil are manufactured; and an extensive transit-trade is carried on. The population in 1871 was 38,906 .
Brescia, the ancient Brixiz, is supposed to have been founded by the Etruscans. It was afterwards a town of the Cenomani, and, finally, a Roman free town. After the fall of the empire it was sereral times pillaged by the barbarians, especially by Attila in 453 . From the Lombards under whom it was the capital of a duchy, it passed to the Franks. It was made a free imperial city by 0 thio -the Great, and shared and suffered in the contests between the Guelfs and Ghibellines. It then fell into the power of the Signiors of Yerona, and in 1378 into the hands of the Milanese. It was taken in 142 by Carmagnola the Tenetian general; besicged by the Milanese general Picinino in 1453 , but assigned to the Venstians by Pope Martin T.; surreadered by the inhabitants to the French after the battle of Agnano (1509); taben in 1512 by tha Venctian general, Andrea Gritti; delivercd by Gaston de Foix; and besicged again on 1573,1575 , and 1576 . It remained under the Venetian dominion till the dissolution of the republie. It was the capital of the derartment of Mella during the cxistence of the Cisalpine republic and the Napoleonic kingdom of Italy, end fell in 1814 under the yoke of Austria. In the revolution of 1549 the inlabitants rose in arms, but were overpowered, after a destructive siege, by the troops of Haynav. In the war of 1859 it a main sided with the patriotic party, and followed the destinies of the rest of Iombardy. Brescia hos a: varions time suffered severely from restilence and epidemics. It was the hirthplace of Tartaglia the mathematician and the writer Dazuachelli.

BRESLAU, a city of Prussia, capital of the government of Silesia, is situated mainly on the left but partly also on the right bank of the Oder, at the influx of the Ohlau, and on the railway from Berlin to Vienna, 100 miles S.E. of the former city. The latitude of the ohservatory is $51^{\circ} 6^{\prime \prime}$ $56^{\prime \prime}$ N., and its longitude $17^{\circ} 2^{\prime} 18^{\prime \prime} \mathrm{E}$. The city consists of a new and an old town, nud a number of extensive suburbs stecteling out in all directions. The fortifications, mhich were dismanted shortly aftcr 1813, have given place to beautifi yromenades; and even in the older parts of the town, where the streets ars enceally narrow, there are
several open spaces of considerable area. The uld cathedral (founded in the 12 th ceutury, and recently restored), the Catholic churcb of the Holy Cross, the Protestant church of St Elizabeth-with its lofty torrer, the Jewish synagogue, and the bishop's palace are the principal eccleasastical buildings. The Kathhaus (a fine specimen of

Plan of Brestan.

A, Ebnigs Pletz
B. Billcher Platz aod mooumene
C. Hiog Platz

D, Exercler Platz (Panade Grouud)
F. Tauenzien Plata
F. Tauenzien Plata
i. Univesitio.
2. Courthithouse

3 St Elizabeth's Charch (Protestant). 4. Rathhasas
3. Büse (Exchango)
8. Standehans.
8. Royndralace.
8. Syoagogue.
10. Lobo Thestre.
the architecture of the 14 (h century), the tombonse (of quite recen erection), the royal palace (now used as the Qovernment buildings), the chamber of the states, the exchange, the barracks, the theatre, the post-office, and the new court-house and prison are the mure inmportant of the secular structures At the head of the educational inatitutions for which Breslat is celebrated stands the university, which was founded in 1702 by Leopold I. as a Jesuit collage, and was greatly extended by tha incorporation of the university of Frankiort-on-Oder in 1811. Ita library contains upwards of 300,000 volumes; and smong its auxiliary establishments are botouic gardens, an observatory, an anatomical and an antiquarian musenm. In 1873 its professors and teachers numbered 103, and its students 962, the majority in the Faculty of Arts. Among the minor institutions are four gymasiums, a bigher girls' sct:ool, a normal school, a school of arts and manufactures, reveral orphanages, a deaf and dumb institnte, and a blind esylum. There are also seventeen hospitals and numerous charitable fondations. The town is the seat ef several proviacial courts, a chamber of mines, an independent Roman Catholic bishopric, and a Protestant consistory. Its manufactures, which are both varied and extensive, comprise machinery and tools, railway carriages, cast-iron goods, gold and silver werk, carpets, woollen cloth, cotton goods, paper, and musical instruments. A very active export trade is carried ou; and a number of large faira for particular kinds of goods aro bald every year. The dopula-
twon, which was 110,702 in 184θ, had increased te. 171,926 in 1867, when about 33 per cent. was Romaw Catholic, 58 Protestant, and 7 Jewisl. In 1871 the tutal. amounted to 207,977 .

Breslan (Latin, I'ratislavia) is'first meutioned by Ditmar, the chronicler, in 1000 A.D.; and its foundation seems to be of slightly earlier date. It became the seat of a bishop in 1052, and the capital of an independent duchy in 1163. In 1241 it was reduced to ashes by the Mongolian invaders, but it soon recovered its prosperity, and, its population becoming largely Germauzed, it joined the Hanseatic League in 1261. On the death of Henry, the last duke, in 1335, the lordship of Ereslau passed to the Bohemian crown; and several of the Bohemian kings bestowed numerons prifileges on the city, which began to extend its commerce in all directions, to Russia and Tartary, Greece and Italy, the Netherlands aud Flanders. Under the stimulus of prosperity the citizens soon showed themselves disposed to assert their independence, both aganst the arnstocratie element within their walls, and against their feudal superiors without. From 1482 to 1490 they suffered severely from the oppressive measures of Stein, the minister of their king, Corvinus of Hungary; whom they had preferred to George Polliebrad of Bohernia. After the battle of Molacz, Breslau passed with the rest of Siiesia to the house of Austria, in whose possession it continued till 1741, when it was captured by Frederick 11. of Prussia. In 1757 it was retakem by the Austrians ander Charles of Lorrainc, but in the same year the Prussians again made good their clain by force of arms, and took na fewer than 21,000 men prisoners. The attempt of Laudan in 1760 to surprise the city was a failure. It was forced, however, after a lengthened s:ege to yield to the French in 1806-7. Their subsequent investment of it in 1813 was interrupted by the prace.

BREST, a strongly fortified seapurt tom of France, capital of an arrondissement in the department of Finistere, io $48^{\circ} 22^{\prime}$ N. lat. and $4^{\circ} .32^{\prime} \mathrm{W}$. long. It is situated to the north of a magnificent land-locked bay, and occupies the slopes of two bills divided by the River Penfeld,-the part of the town on the icft bank being regarded as Brest proper, while tho part on the right is knowo as Reconvrance, fron the chapel of the Virgin, to whom the shipwrecked sailors used to address their prayer-

Rosdateac of Brest.
for the recovery of their property. Tha hill-sides are in some places so steep that the nscent from the lower to thit upper town has to be effected by flights of atairs; and the second or thisel story of one house is often on a level with the ground story of the nest. The town proper has three long parallel streets, of which the chief beara the name of Rive de Siam, in bonour of the Siamese embassy sent to Louis XIV., and terminates at the remarkable swingbridge, or Pone Imperial, constructed in 1861, which crosses the mouth of the Penfeld. Running along the shore to the south of the town is the Cours d'Ajot, one of the finest promenadea' of its kind in France, pamed aiter the engipeer who constructed it. It is planted with trees and
adorned witt two marble statues presented by the "Gouvernement Consulaire, Le XIIII. Germlnal, An IX." Brest possesses comparatively few buildinga of importance, with the exception of those connected with the great naval establishment. The church of the priory of the Seven Saints, the church of St Lours, the old castle with its seven massive towers (dating in part from the I3th centary), ibe exchauge, the town-house, the ciril hospital, and the thestre are the chief. The great convict establishment, which formerly beld some 3000 prisoners, was vacated in 1860, and is now used as a store-honse. The Gorernment dockyard is very extensive, and contains a sail-loft, a slopshop, a ropery, a foundry and stem-factory, swamen's barracks (known as La Cayenne), and three dry-docks [artly oxeavated in the hill-side. The Kiopital de la Marioe, hule between 1824 and 1835 , contarns 26 wards, each rith 53 beds, and is under the management of a large tand of sisters of mercy. Among tive minor establishnents are a lyceun, a school of navigation, \& medico-chirurgical school, an observatory, a botanizal garden, a public library of 25,000 volumes, and two othera of, 18,000 and 10,000 . The manufactures are few, and the trade is of small extent considering the excellence of the perts. The former ars chiefly leather, wax-clotb, paper, and rope; and the latter deals mainly in grain, leer, brandy, and fish. Napoleon III. did much for the development of the. commerce of Brest, though his extensive plars for a new port, on which $£ 600,000$ were expended during his reign, hare been only partially carried out. It lies at the foot of the Cours d'Ajot, and has thus much greater scope for any necessary development than the old port, which was formed 17 the mouth of the Pcnield. The roadstead of Brest, which is in some places three miles broad, and has an area of 15 aquare leagues, is formed by the promontory of Finistere on the N. and that of Kélernn on the S. It breaks up into numerous smaller bays or arms, formed by he embonchures of streams, the most important being the Anse de Kelernn, the Anse de Poulmie, and the mouths of the Chateaulin, the Dolas, the Laubertach, and the Landernean. It is defended on every side by batteries and forts, the first system of which was erected in 1680 under the personal superintendence of Vauban. The only entrance, the Goulet, is about a mile wide; but the Mingant or Mingam rock in the middle compels vessels to pass under the batteries of either the one side or the other. In 1851 the population of the town was 36,500 ; in 1873 it was 56,272.

Nothing definite is known of Brest till about 1040, when it was ceded by the Count of Leon to the fist duke of Britany. In $18 \mathrm{I}_{2}$ duke John 15 : gave it up to he English on conditen that they should restare it when peace was froclaimed. So important did he consider the place that he declared. "He is not duke of Brittany who is not lond of Brest." On the death of Eduard ill. the castle was made over to the dukes: but when war was ouce mone declared between France and England, an English garrman tock possession agara, and repelled every flort to dislolge it, nor was The place surrendered till 1347, and then only in consideration of a "eary ransom. In the next century at was again captured ly that Enghsh, and retaken by the Frenct; and by the marnue of Leurs XII. with Anne of Bratany, it passed to the Frenth crown. The advantages of the sutuation for a spaport towa ware first recogmizuld by Richeheu, who, in 1631, constuteted harbur with wonden wharyes, which soon became a station of the French nary. Colbert changed the wooden wharves for masonry, and otherwise im. proved the port, and Vanben's fotifications followed in 1 ten-ss In 1699 an English squadron, mul. Prevticy, wals maserably de feated in atterntiog a landurg; but in 1844 , duting the revolutionars War, the Freach flect, under Villaret dic Joyeuce, "as as thoroughly beaten in the same place by the English admall lluwe.

BREST-LITOVSK (in Pulinh Brzesc, and in the chrumeles Berestie and Berestofe), a tomi of Pussia, in the government of Grodno, and 131 miles.s. foun the cuty oi that name, is $52^{2} 5^{\prime} \mathrm{N}$. lat. and $23^{3} 39$ 上 loge at hic
junction of the navigable river Mukhovetz with the Bug. It contains two or three Greek churches, a Roman Catholic church, a Jewish synagogue-which was regarded in the 16 th century as the first in Europe, a monastery, a public hospita], a Jewish almshouse, as important provision storebouse, a custom-house, and a wharf. Brest is the seat of an Armenian bishop, who has authority over the Armemans throughout the whole country; and since 1841 the "Altiander" cadette-corps has been stationed in the town. The industries of the place are comparatively uaimportant. but it carries on a sery extensive and varied trade by means of its rivers and the Royal Canal. The princtpal articles of the traflie are gran, fax, bemp, mood, birch-tar, and leather. The population numbered 19,343101860 . 3394 being Catholics, and 10,320 Jews. In 1867 the total bad risen to 22,493.

First mentioned in the beginning of the 11th century, brest contibued to pass from one principality to another till 1342 , when it was iocorporated with Poland. In 1241 it had been laidnaste by Tatars, and was not restored till 1225 ; its suburbs were bunned by the Teutonicknights in 1379, and in the end of the 15th century the whole town met a sumilar fate at the lands of Mengly-Gberas of the Crimca. In the reign of Sigismund diets wete held in Brest ; and in 1504 and 1596, it was the meeting-place of two remarkalle councls of the bisbops of Western Russa. In 1706 the town was cap:ured by the Swedes; 101793 it was added to the Russiau eropre; and in 173 was the scene of Suwarofirs victory orer the Polish general Sierakofsky

bretagne. See Brittant.

Bretschnelder, Karl Gotilifb, an eminent scholar and theologian, of the more moderate achool of German rationalism, was born on the 11th February 17i6, at Gersdorf in Sazous. From his autobiography, which was fonnd amongst his papers after his death, and was published by his son m 185l, we obtain a very complete picture, not orly of the man himself, but of the times in which he lived, and of the influences by which he was surronnded. His father was pastor of the village of Gersdori, but was translated to Lichtenstein wheu Brotschnieider was only four years of age. He gives an interesting account of his early childbood and school training, of the impression produced upon him by. his father's dignified bearing, and of the agricultural pursuits and piscatortal amnsements by which the clerical and padeatic labours of the latter were diversified. On the death of his father, in 1789, be was ser: to Hobenstein to reside with bis uncle Tag. It is. in leeping with the mental characteristics of the man who niterwards vecame fanous for that cool and deliberate exercise of the reason on theological subjects, which has led many to place him among the catreme school of rationalist divines, to find him at the early ase of fourteen, when he was confrmed by the pastor of Ilohenstem, eriticizing the religions teachag of his instructor, and ponting out that the order in mhich the varmons doetrmes were taught from the Dresden catechism wis bic. such as could commend itself to his own experience, or the cuarse of moral cducatien which be bad undergone. Ble romarks that be deoms the circumstance worthy of mention, " because it was the first time that, having thrned ha:- thoughts to the subject of religion, he could not persuade himself of the truth of what he was taught, and that a smilar process may be gong on in the minds of many a youth in similar circunstances, without the instructor being at all aware et at."

In 1790 Eretschneider mas sent to the lyeeum of Ccemnitz, where the celehrated Heyne bad received huw classical education. Here he remamed four sears. Tt, account mbich he gives os the state of education in ins school (ohich had greatly fallen away from its Sormer reputation), and of the capacity of his irstrictore, 13 interestang, and 28 strikingly illustative of the growth of llat critical dacuits which became so propicent a festure
iu his character. It was while at Chemnitz that Bretschneider became acquainted with the Wolfenbüttel Fragments. The conrector Lessing, a brother of the great Lessing, who was the editor of the Fragments, and who was believed for some time to be their real author, was inconsiderate encugh to warn his pupils against reading any of his brother's works. The datural result followed. The prohibited books were eagerly sought after, and perused with avidity. Contrary, bowever, to what might at first have been expected, the persnal of the Fragments made no impression on the mind of Bretsebneider, The independent judgment of the youth is seen in the criticism which be passed upon the book :-"I read the portion," he says, "whieb treats of the miracles of the Old Testament. But the reading made no impression upon me, for Christianity did not appear to me to rest at all upon the miracles of the Old Testament." ..z
:- In 1794 Bretsehneider entered the university of Leipsic, having resolved to devote bimself to the study of theology. His resolution to adopt this profession was purely the result of circumstances. "His father had expressed a wish that he should do so, and all his mother's brothers were clergymen:" The lectures which he attended were those of Plataer on philosoply, of Keil and Beek and Burscher on various branches of theology, and of Meisner and Kuhnoel on Hebrex. His autebiography contains minute and severe criticisms upen the various professors, in which the defects and mistakes of their teaehing are pointed ont. One or two of these may be quoted as indicative of the mental tendencies of the writer. Speaking of the leetures on philosophy, and after pointing out the defects of Platner's method, he says,-"Even at thia early period, I learned from experience the impossibility for me of adopting any doctrine, except on condition of its standing fully and clearly developed before me,-a peculiarity whict has adhered to me during my whole life, and bas alrays preserved me froas mysticism. and the theology of feeling." Again, in referring to the lectures of Beck on the execesis of. Scripture, the future lexicographer of the New Testament appears in the remark,-"I well remember how burdensome the word $\pi v \kappa i \mu a$ and $\pi r \epsilon i \mu a$ äүo became, which be explaioed now as expressing sensum christianum, and now as fervorem animi, and then, again, as something else. I felt that these explanations were not correct, and consequently could not accept them." With the lectures of Keil, the suceessor of the celebrated Moras, Bretechneider appears to have been better satisfied. He adopted his priaciple of the bistorical interpretation of Scripture, and entered, is he eays, "with the greatest zeal upon the study of the Jewish theolory and its usus loquendi. In consequence of this, a multitude of arbitrary explanations werc set aside, and neither for Teller's dictionary, nor for other modern interpretations, in which new ideas are attached to the words of Seripture, could I acquire the least relish. The efforts to explain away the devil from the bible, to reduce the pasages respecting Christ's pre-existenee and higher nature to a moral sense, io make the miracles of the New Testament by exegetical subtleties mere natural events, were noious to me as denials of divine truth."

Afterspending four years at Leipsie, Bretschnei.jeraccepted the office of tutor to the sous of a Saxon nobleman, a post which ha retained for sone years. During this period his resolution to make the church bis profession seems to have been somewbat shaken. His difficulties, however, were removed by reading the ebservations on assent to ereeds in Reinhard's Christian Ethics, and also "by the thought that many great and estimable theologians varied widety from the elurch faith, and that in general society, and in the learned world. the eniightened theologians (for the term
rationalist was not common then) atood in the highest repute, and were regarded with universal respect. This state of things I supposed would be permanent, and I could not then bave believed that only a single generation would pass before the enligbtened theologians wonld be assailed with such violeace and bespattered with filth as they now are. Had I been able to foresee this, I should certainly bave deroted myself to the study of lav.,"-
In 1802 Bretschneider passed with great distinction the examination for coudidatus theologue, and on that cceasion attracted the faveurable regard of Reinhard, the celebrated court-preacher at Dresden, who became his warm firiend and patroo during the remainder of bis life. In Istit Bretsehneider established himself as privat-docent at the university of Wittenberg, where he remaned about twi years, giving lectures on philosophy and theulogy. It was during this time that be began his career as an author. The first production of his fen was his Dogmatische Enturchlung aller in der Dogmatik varkommenden Degriffe nach den Symbolischen S.hritien der evangelisch-lutherischen und rejormirten Kirche und den wichtigsten dogmatischen Lehrbuchern ihver Theologen, nebst der Literatur vorzüglich der neueren über allo Theile der Dogmatik, which appeared in I805, and reached a fourth edition in 1841, and which is distinguished for the complete account which it contains of the literature of the sulyject. This was followed by otber works, among which may be named an edition of the book of Ecclesiasticus with a commentary in Latin, which was intended to form part of a larger work upan the Apocryphal books of the Old Testament,-an underaking that was never carried out. The advance of the French army under Napolcon into Prussia after the battle of dusterlitz determined Bretschneider to leave Wittenberg, which as a fortified town was liable to be exposed to all the borrors of a sigge. He aecerdingly alandoned has university career, and, through the good (fices of his friend Reinhard, obtained the pastorate of Scbneeberg in Saxony, on the daties of which be entered in March 1807 . In 1808 he was promoted to the office of superintrudent of the churel of Aunaberg, which, in addition to the properly clerical duties which helonged to the charge, involved the consideration of many meters belonging to the department of ecelesiastical law, which had to be decided in acondance with the canon law of Saxny. bretsehneider, hawever, devoted himself energetical!y to his duties. "The Corpus Juris Saxonici," be says, "way alnost always on my takle, and I soen became perfectly acquainted with its contents." In Anmaberg he passed eight years, during which time he twice derlined the offer of a prufessorship of theology, once from Königsberg and once from Berlin. The clinate, however, did not agree with him, and in ennsequence of the demands made upou him by the discharge of his official duties, he was prevented from deroting sutficiont time to bis theological studies. He, therefore, began to desire a change. With a view to this, he fublicly took the degree of ductor of theolegy in Wittenberg in August 1812. The subject of his thesis was "Capita Theologia Judaicx," as gathered cbiefly from the writings of Joserbus. It was the last yablic doctorate of the kind, and cust him 300 thalers (Et5), "an expense," be reaarks, "which he cften regretted, as the title was shorty after made common." It may have keen sume little consolation to him that the peorle of Amaberg on his retura commenorated his promotion in a number of peems composed for the occasion.

The desired change came at last. In 1816, on the death of Loeffier, general suỵerintendent at Gotha, be was appinted, on the recommendation of Von Ammon, lieinhard's suceessor at Fresden, to the racant post, in which he remained until bis death in 1848 . This was the
great perived of bus hiterary activity. By a careful economy of time, he was able to discharge his official duties, and yit to possess euficient leisure for theological study. Of the various productions of his pen, which appeared during bis residence at Gotha, the following are specially worthy of note. In 1820 was published his treatise on the gospel of St John, cutitled Probabilia do Evangelii et Epistolarum Joannis Apostoli indole et origing eruditorum judiciis modeste subjecit K. $^{\text {. }}$. Bretschneider. The se asation which this work produced was immense. In it he collected together with great fulness, and discussed with marked moderation of tone, the various arguments which seem to prove the non-Johanaine authorship of the gospel. As tuight have been expected, it called forth a host of replies, several of which proceeded from some of the ablest scholars and divines of the day. To the astonishnent of every one, Bretschacider announced in the prefact to the second edition of bis Dognatik in I822, that he had never believed iu the non-authenticity of the gosped, tha be bad only published his Probabilia to draw attention to the subject, and to call forth a more complete defence of its gomineness, an object which he considered had now been fully accoraplished. Whatever may have been the effect produced on the mind of Bretschneider himself by the various replies which appeared, they certainly did not remove the doubts of others, for the controversy still appears as far from being definitely settled as it was when the Probabilia appeared more than half a century ago. Bretschneider remarks in his autobiography that the publication of this work had the effect of preventing bis appointment as successor to Tittmann in Dresden, the minister Von Einsiedel violently opposiug the proposal of the city council to call Bretschnetder to the off ce, and denouncing him as the "slanderer of John" (Der Johannis Schänder).
The work by which Bretschneider conferred the greatest service upon the science of exegesis was bis Lexicon Manuale Graco-Lativum in Libros Novi Testamenti, which appeared in 1824, and which attanaed a third edition in 1840. This work is valuable for the use which its author made of the Greek of the Septuagint, of the Old and New. Testament Apocrypha, of Josephus, and of the apostol:c fathers in illustration of the language of the New Testament.
¿Bretschnesder's dogmatic writings were very numerons, and many of them passed through several editions. The only one which has been translated into English is his Manual of the Religion and History of the Christian Church, which appeared in 1857.

The dognatic postion of Bretschneider seems to be internaediate between the extreme school of naturalists, such as Paulus, Rohr, and Wegscheider on the one band, and that of Strauss and Baur on the other. Kecognizing a supernatural element in Scripture, be nevertheless allowed to the full the critical exercise of reason in the interpretaLuon of its dogmas. As a theologian be was deficient in speculative power, and his writings are marked by a cortain dryness. His mental strength lay in the possession of a clear, cool jadgment, which he never allowed to he iufuenced by feeling, and in the faculty of untiring indusiry.

For further information the reader is referred to his autobiography, A us Meinen Leber Sells'biographic von Karl Gothed Brelschncider, Gotha, 1851, of which a tranglation, with nutes, by Professor George E. Day, apporred in the Bihboheca Sacra mad Anerican Biblica? Repository, Noq. 36 and $38.1352,1853$. (F.C.)

BREUGHEL, JAN, e Flemisin painter, son of Peoter Breughel, was born at Brussels almont the year 1569. IIe Grat applied lumself to paintug bowers and fruits, nud aftermards acquired considerable reputation by his land. scapes and son-pieces. Afmr residucg lung at Cologue he sravellad into Italy, where his laniseanes, adorned with
small figures, were greatlg admired He left a largo number of pictures, chictly landscapes, which are ex suted with g:eat skill. Rubens made use of Breughel's h.ind in the landscape part of several of his small pretures,--such as his Vertumnus and Pomona, the Satyr viewing the Sleeping Nymph, and the Terrestrial Paradise, which by sone is regarded as the :casterplece of that great aitstst. Breughel died in 1642.

BREUGHEL, Feeter, a Flemish painter, was the son of a peasant residing in the village of Beeughel uear Breda. After receiving instr, ction in painting from Koek, whose daughter he married, he speni sone time in France and Italy, and then went to Antwerp, wherc he was elected into ihe Academy in I551. He finally settled at Brussels and died there. The subjects of his pictures are chiefly humorous figures, like those of D. Teniers; and if he wants the delicate touch and silvery clearness of that master, he bas abundant spirit and conic power. He is sald to have died about the year 1570 at the age of 60 ; other accounts give 1590 as the date of bis deatt. Several other painters of the name Breughel attained to some distinction.

BREVIARIUM ALARIC/2NUM, a collestion of Roman law, compiled by order of Alaric II., king of the Visiguths, with the advice of his bishors and nobles, in the twenty second year of his reign (506 a.D.) It comprises sisteen books of the Thcodosian code ; the Novells of Theodosius II., Valentinuanus III., Marclanus, Majorianus, and Severus; the Institutes of Gaius; tive books of the Sententia Recepte of Julius Paulus; thirteen titles of the Gregorian coda; two titles of the Hermogenain code, and a fragment of the first book of the Responsa Papana. It is termed a code (codex) in the certilicate of Adianus, the Eing's referendary, but unlike the code of Justman, from which the writings of jurists were excluded, it comprises botb imporial constiout ins (leges) and juridical treatises (jura).
 to it a royal rescript (commonitoruum) directing that copies of it, certified under the hand of Anianus, should be received' exclusively as law throughout the kingdom of the Visigoths the compilation f the code has been attributed to Anianus by many writers, and it is frequently designated the Breviary of An.anus (Breviarium Aniani). The code, however, appears to have been known amongst the Viai. goths by the title of "Lex Romaua," or "Lex Theodosii," and it was not until the 16th century that the title of "Breviarium" was introduced to distinguish it from a recast of the code, which was introduced into Northern Italy in the 9tt century for the use of the Ronans in Lombardy. This recast of the Visigo hic code has been preserved in a MS. known as the Ceder Utinensis, which was fermerly kept in the archives of the cathedral of Udinc, but is now lost, and it was published in the last century for the first tite by Canciani in his collection of nucient laws entitled Barbarorum Leges Antique. It has been putlished in the present century by Walter in his Corpus Juris Germanici, Derolini, 1824. Another MS. of this Lomberd recast of the Visigothic code has lately been discovered by Hanel in the library of St Gall. Neither of these MSS. comprises the whole of the V sigothic code, and it is the opinion of very competent serolars that the Lex Rowann of the Lombards did not contain any portion of the Gregorian or Homogenian code nor the frusment of the Responsa Papiani. The chisf value of the Visiguthic code consists in the fact, that it is the only collection of Roman Law in which the tive first bwoke of the Theodosian code and five books of the somentise Recepte of Julias Paulus bave been preserved, and untll the discovery of a MS. in the chapter library in Vecoma, whilh conteined the greater part of the lastitutes of Gaius, it was the ouly work in which eny portion of the matitutional writings of that great jurisi
had come down to us. The most complete edition of the Breviarinim will be found in the collection of Roman law published under the titie of Jus Civile Ante-Justinianum, Berolini, 1315.

BREVIARY (Lat. breviarum), the book which contans the offices for the canmacal hours. The word first occers ia the 11th century, and is said to denote that the book was an abridgment of several separate ones which had previonsly beea in use. The Englisid equivalent for it is portuary (from the medieralLatio portiforium), portesse, or portuasse, the name probably indicatiog the portability of the volumes.

In the earliest times most of the stated public derotions of the faithful grouped themselves round the daily eelebration of the eucharistic saerifice; but by degrees other offices were added, in which the reeitation of the Psalter formed the principal part. The rise of monasticism gave a great inpulse to the morement, as the monks generally used the whola Psalter every week, and many of them every day. Numerous complieations were added by degrees, in the shapa of antiphons, responses, \&c. Metrical hymus seem to date from St Ambrose in the middle of the 14th ceatury. Select portions of holy Seripture were also read, as well as extracts from works of the Fathers and from lives of the eaints.

The casonical hours are eight in number, the night offico of matina (divided into thres noeturns) and seren day offices,--lands, prime (at 7 A.M.), terce (at the third hour or 9 A.m.), sext (at the sixth hour, noon), nones (at the ninth hour, 3. P.M)., respers (at sunset), and compline before retiring to rest.

From this aecount it will at once be seen that the Breviary services can only be carried out in a monastie community where all other duties give place to worship. Accordingly, the seeular elergy of the Latin churches who are obliged to recite them daily are allowed much latitudo in the way of grouping serviees together, and saying thern at any hour that may be convonient, which quite destroys the grand theory of the aightly and seven-fold daily offices of devotion. There wera three leading types of this serviee book in the Westera eburches:-(1), the Mozarabic Broviary, onco in use throughout all Spain, but now confined to a singlo fonndation at Toledo; it is remarkable for the nomber and length of its bymns, and for the majority of its collects being addressed to God the Son; (2), the Ambrosian, now confined to Milan, where it owes its retention to the attachment of the clergy and people to their traditionary rites which they derive from St Ambrose; and (3), the Roman, which (with many minor variations) forms the ground-work of all others except thuse just mentioned.

Till the Council of Trent every bishop had full power to regulata the Breviary of hisown diocese ; and this was acted upon almost everywhore. Each monastic community, also, had one of its own. Pope Pius V., however, while sactioning those which could abow at least 200 years of existence, made the Roman obligatory in all other places. But the influence of the court of Rome bas gradually gone much beyond this, and bas auperseded almost all the local "uses." The Roman has thue become nearly universal, with the allowance only of additional offices for sziots specislly venerated in each particular diocese.

The Roman Breviary has undergone several revisions. The most remarkable of these is that by Cardinal Quigoon (1536), whieh, though not aceepted by Rome, formed the model for the still rnore thorough reform made in 1549 by the Chareh of England, whose daily morning and evening services are bat a condensstion and simplification of the Breviary offices. Some parts of the prefaces at the beginning of the English Prayer-Book are free translations of those of Quignoa. At the beginaiog of last ceatury
a nacienent of revision took place in Franee, and succeeded in modifying abont balf the Breviaries of that country. Historically, this procseded from the labours of Launoius and Tillemont, who bad shown the falsity of mumerous lives of the saints; while theologically, it was produced by the Port Royal school, which led men to dwe!! more on communion with God as contrasted with the invocation of the saints. This was mainly carried out by the adoption of a rule that all antiphoas and responses should be in the esact words of Seripture, which, of course, cut out the whole elass of appeals to created heiogs. The services were at the same time sumplifed and shortened, and the use of the whole Psalter cyery week (which had become a mere theory in the Roman Breviary, owing to its frequent supersession by sainta' day services) was made a reality. These reformed French Breviaries show a deep kiowledge of hols Scripture, and much carefu! adaptation of different texts; but during the puntificate of the present lople (Pins 1 K .) a strong Ultramontane rave. ment has arisea against them. It was ioangurated by ths Count de Montalembert, but its literary advocates were ehielty the Abbe Gueranger and M. Veuillot of the Univers; and it has succeeded in suppressing thenu everywhere except at Lyons, where the shadow of St Ireazus still proteets the local rites.
The beauty and ralue of many of the Latin Breviantes were brought to the notice of English churchnen by one of the numbers of the Oxford Tracts for the Times, sinee which time they have been much more studied, both for their own sake and for the light they throw upou the English Prayer. Book.
In a bibliographieal point of view some of the early printed Breviaries are among the rarest of literary curiosities being merely local. The eopies were not apread far, bni were soon worn out by the daily use made of them Doubtless many editions bave perisised without learing a trace of their existence, while otbers are known by unique copies. In Scotland the only one which bas survived the convulsions of the 16 th ceatury is that of Aberdeen, revised by Bishop W. Elphinstone, and printed at Edinburgh by Walter Chepran in 1509. Four copies havo been pre served of it, of which one only is complete; but it ha: beco sumptuously reprinted in fac-simile for the MaitlanClub by the munificence of the Duke of Pueclench. It is particularly raluable for the noticos of the carly history of Sentland which are embedded in the lives of the national saints, and which are considered to be very authentic. For the sake of those who are not familiar with Latin typographical contractions, it would be desirable if a more readable edition wera printed, with explanatory notes on the many difficult points which occur in the rubrics.
The Sarum or Salisbury Breviary was much more widely used. The first edition was printed at Venice in 1483, by Raynald de Novimagio in folio; the latest at Paris, 1556, 1557. It may be notieed as a peculiarity that, while modern Breviarics are always printed in four volumes, one for each season of the year, the editions of the Sarum never exceeded two parts.
Further information on this subject will be found in the writers on the services of the Western churches, auch as Maskell and Proater. Seager has printed a small portion of the Sarum Breviary with elaborate notes. The hymas have been printed separately, with more or less completeness, by Dantel, -Nermana, and others; and translations from them form the gronad-work of Hymns Ancient and Modern, now so estensively ased in the Church of England. Foreign writers on this subjeet may be consulted by those who wish to pursus it further, bit they are too oumerous to be raentioned here. They will be found enumerated in bibliographical writers like Taccaria
(c. द. ..)

B R E W I N G

BREWING is the art of preparing an exhilarating or intoxicating beverage by means of a process of fermentation. In the modern acceptation of the word, orewing is the operation of preparing beer and ales from any farinaceous grain (chiefly from barley), which is first malted and gronod, and ita fermentable aubstance extracted by warne water. This infusion is evaporated by boiling, hops having been added to preserve it. The liquer is then fermented.
The art was known and practised by the Egyptians many buadred years before the Christian era, aad afterwards by the Greeks, Romans, and anctent Gauls, from whom it has been handed down to us. All countries, whether civilized or savage, have, in every age, prepared an intoxicating driak of some kind. In the second book of Herodetus, writtea abcut 450 b.c., we are told that the Egyptians, being without vines, made wine from corn ; but ss the grape is mentioned so frequently in Seripture and elsewhere as beng most abundant there, and no record exists as to the vine baving been destroyed, we must conclude that the historian was only partially acquainted with the productions of that most fertile country. Pling (Natural History, xxii. 82) informs us that the Egyptians made wine from corn, and gyves it the name of zythum which in the Greek would mean drink from barley; ant Hellaniens, telling of the introduction of wine at Plinthium a city of Egypt, states : "Hence the Egyptians are though to derive therr love and use of this liquor, which the: thought se necessary for buman bodies, that they inventer a wine made from barley." The Greeks, who derived th greater part of their civilization from the Egyptiana obtained from them alse the knóviedge of artificial fermea tation, the art of brewing in fact, and at a very earl: period. We find it meationed, for example, in the writings of Archilochus, the Parian poet and satirist, whe fleurished inbout 700 b.c., that the Greeks of his day were already acquainted with the art.
Again, we learn from Æschylua (470 B.c.), from Sophocles (420 в.c.), and Theophrastus (300 в.c.), that the Greeks employed barley wine or beer (their zythos) in their daily life as well as in their festive meetings. Thete is, in fact, little doubt that the discovery of beer and is use as an exhilarating drink were nearly as early as those . the grape itself. Xenophnn, io his account of the retreat of the ten thousand Greeks, written 400 years в.c., mentions that the inhabitanta of Armenia used a fermented drink made from barley. Diodorus Siculua states that the Galations prepared a fermented beverage from barley, calling it zuthos, like the Egyptiana. By Sophoeles and other Greek writers it $1 s$ etyled Bpitov. Dioscorides mentions two kinds of beer, one he calls ζi oos and the other коiv μ, but be does not describe them sufficiently tc enable us to distingursh them. Both, he ayys, were made from barley, and similar liquors were made in Spain and Britain from wheat. In the time of Tacitus (whose treatise on the manuers and customs of the Germans was written in the lst century of the Christian cra), beer was their usual beverage, and from his deseription, imperfect as it is, there can be no doubt that they understood the uncthod of converting barley into malt. Pliny wentiona its use in Spain (Nat. Ifist, xxii. 82) under the name of celia atid ceria, aud in Gaul under that of cerevisia or cervisia; and elsewhere (xiv. 29) he says-"The watives who inhabit the west of Europe have a liquor with which they intoxicate themselves, made from corn and water. The manner of making this liquid is somewhat diffcrent in Gaul, Spana, and
other conatries ; and it is called by different names, bat its nature and properties are everywhere the same. The people of Span in particular brew this liquor so well that it will keep good a long time. So exquisite is the cunntry of mankind in gratifyng their vacious appetites; that they have thus avented a method to make water itself produce intoxication."
The cervsia of Pliny evidently tskes th name frow Ceres, the goddess of cern. Plautus calle it Cercalh lipuoc; that is, liquor used at the solemn festival of that goddess. The art of malung and use of beer are supposed to I ve been introduced into Britain by the Romans. That barley was known to the latter is evident from Virgil, who uses it in the plural form, hordea, as we do the word oats ; and Phiny tells of the hordearii gladiatores, a kind of fencers, whose sustenauce was barley. Beer and vinegar were the ordinary beverages of the soldiers under Julius Cæsar. The latter was made very strong, and was drunk diluted with water when on the march. Bee being bo suitsble to the climate, and so easily made by an agricultural people with plenty of corn, it was gladly welcomed, and soon became the national beverage. Previous to this, the usual driaks of the ancient Britons were water, mulk, and mead (an intoxicating driak made from boneg). After the expulsion of the Remana from Britain, the Saxens subdued the natives and learned from them the ert of brewing.

Dr H. J. Menn tells us that the Kaffre races of South Africa bave made for ages, and st:ll make, a formented driak of beer from the seed of the millet (Sorghum vulgare), which is first subjected to a malting process in all essential partieulars identical with our own. The eeed is frst induced to germinate by covering it in a warm place with moistened mats of grass, and the sprouting is then etopped by the application of heat. After simmering for some time in bot rater, the malted grain is set aside to ferment in the sunfragments of a dried sueculent plant having been stirred in to play the part of yeast and start the fermentation. The scum which rises to the surface during the fermentation is skimmed sway from time to time by ladles made of grass stems spread out and loosely woven together at the bowl. When the fermentation is complete the beer is poured through a mat strainer, shaped and tasselled very much Hke an inverted night-cap, into the store vessel, which is made of thickly and firmily woren grass. The natives of Nubis, Abyssina, and other parts of Africa also make sn intexicating drink of great power called bousa, from the flour of the teff (Poa abyssanica), and frem the durrha or millet (Sorghum vulgare), much csteemed by the natives, and perferred by many to palm or date wine, the comimon intexicating drink in trepical countrics. Accordiog to Munge Park, the natives of Africa also make a beverage from the seed of the spiked or eared se t-grass (Holcus spicatus). The Russian drink kvass or quass, a thick, eour beverage, not nulike bousa, is made of barlsy and rye flour, mised with water and fermented. Formerly, the epruco-fir, birch, msple, and ash trces were tapped, and their juice used in Eagland, -the frost two, andred, till within the last fifty years. Koumss, the drink of the Tstar race, is the fermented mulk of ther mares. The Chinese beverage, sam-shee, is made from rice. This is not only intoxicatmg, but, like absinthe, peculiarly inischicrous is its permanent effects. In South America a favourite drink is palque, the fermented juice of the Amercian aloe (.Agaw americana). Guarapo is the juice of the sugar-cane, which, when fermented, forns the common drink of the negro
races, who also prepare a driak from rice and honey. Where beer has once been introduced, however, it bas generally become the national beverage, and is now in universal use 10 the northern and temperate parts of Europe and Asia.

Beer used formerly to he made in England from wheat; but this beverage was not so well flavoured as if prepared from barley-malt, nor did it keep long. It was esteemed in Germany and Denmark, and was called by the Germans Slumme, and by t'se Danes mom. The German Weiss-bier is made from wheat-mall, with a small portion of barleymalt added

We are informed by William of Malmesbury that in the reign of Hen: y II, the English were greatly addi- ted to drinking. Tle monasteries were remarkable for the bereagth and purity of their ales, brewed from mali prep red by the monks p th great care and skill. The water of Burton-on-Trent began to befamous in the l3th cent ry. The secret of their being so especially adapted for bre ring was first discovered by aome monks, who held land in the adjacent neighbourhood of Wetmore. There is a docu-sent etill extant, dated I295, in which it is stated that Ma ilda, daughter of Nicholas de Shoben, had re-leased to the aobet and conveat of Burton-on-Trent certain tenements within and without the town, for which re-lease they granted her, dally for Life, two white loaves from the monastery, two gallons of conveatual beer, and oae penny, besides serea gallona of beer for the men. The abbots of Burton must alao have made therr own malt, for it was a common covenant in leases of mills belonging to the abbey, that the malt of the lords of the manor, both apiritual and temporal, ahould be grourd free of charge. Mary Queen of Scots, in the midst of he- troutles, seems not to hare been altogether assenaible to the attractions of English beer, for when sho was confined in Tutbury Castle, Walsingham her secretary eaked, "At what place near Tutbury beer may be provided for ber majestie'a use?" to which Sir Ralph Sadler, governor of the castle, made reply, "Beer may be had at Burton, three miles off." Plot, in bis Natural History of Staffordshire, written 200 years ago, refers to the peculiar properties possessed by the Burton waters, from which, he says, "by an art well known in this country gcod ale is made, in the management of which they beve a knack of fing it in three days to that degree that it shall not oaly be potable, but is clear and palatable an one could desire any drink of this kind to be." In 1630 Burton beer began to be known in London, being aold at "ye Peacocke," in Gray"s Inn Lane, and, according to the Spectator, was in great demand amongst the visitors at Vauxball. In 1585 Stow relates that there were 26 brewers in the city of London, the suburbs, and West-minster,-13 being English and 13 foreigners, -who brewed 648,960 barrels of beer, of which they exported 26,400 barrels to Embden, the Low Countries, and lheppe. In 1643 the first excise was imposed on beer. In Wiliam Ill.'s reign, the brewer seld his nut-brown ale at 16 s . per barrel, and his small beer from the same grains for 6s. per barrel.

A: the present day the brewing trado bas reached sast proportions in Great Britain. It wol d apjear that its extent bas now attained the maxirum; the quantity produced for export is likely to dasline, as most of the colonies are beginning to make their orn. The pale ale of Tasmania deserses particnlar notice; the climate being specially farourable to hop-growing and malting, that colony not only produces its horne-supply, but carries on an export trade with Australia. Accerding to the report to Messrs Bass by Professor Leone Levi, the number of persons employed in and depending on t'se Eritish liquor trade is $1,500,000$, and the eapital invested in it emounts to $£ 117,000,000$. There are 5000 malisters, 94,000 licensed brewera, 6000 dealers in ales, and 139.000
publica:s. These pay nearly $£ 8,000,000$ a year for permission to make and sell the popular driak. The quantit: of beer brewed in 1869 was $95,542,664$ barrels, of whi h 521,272 barrels were exported; whilst in 1874 the exports were 573,957 barrels, of the declared value of $£ 2,505,883$. It has been estimated that Barclay \& Perkins (successors to Thrale, Jobnson's friend) have £1,500,000 sunk it their trade. Bass, the largest brewer in the world, pays license on $1,000,000$ barrels, and there are eighteen other brewers who pay duty on 200,000 barrels. From the exeise official returns we find the anoual consuniption per bead of the population $1 s$

> In England, 2 bushels of malt, $\frac{1}{2}$ gallon of spirits.
> "Scotland, J. ${ }^{7}$
> ", Ireland, if ".

The first essay known to us on the subject of brewing is by Basil Valentine. Beerbave says of this treatise that it is botb accurate and elegant. In 1573 H . Knanst published a work in five volumes at Erfurt, with thequant title, On :he Divine Noble Gift: the Philosophical, highi, Dear and Wondrous Art to Brew Beer. In the year 1555 Thaddeus Hagecius ab Hayck (a Bohemian), published a treatise entitled De Cereinsı, ejusque conficuend ratzone. natura, viribus, et facultatious. This small work of fifty pages gives a very clear and accurate description of the process of brewing. To Mr Combrune, a London brewer in the earlier part of the 18 th century, we are indebted fur the proofs he gave of the value of tho thermoneter in brewing. In other respects his work entutled The Theory and Pract ce of Brewing, is of no particular value at the present day, though it was very useful at the time in advancing the art, and ran through several editions. Previous to bis time brewera had looked upon the thermometer as a scientific toy, and "rule of thuinb" was the order of the day. In the year 1784 Mr Riehardson of Hull brought out his Theoretic Ilants on Brewing Malt Liquor, and Statistical Estimates of the Materials of Brewing, shouving the use of the Saccharometer. These norks would be benefieial but for tho absurd mystery with which the author iovests the whole sutyect. It was he who first brought publizly to the notice of brewers the value of the saccharometer, an iniprovement of lis own on the hydrometer, or water guage, invented by Martin, the Fleet Street mathematician. Mr Baverstock purchased one of these in 1768, and in $\mathbf{1 7 7 0}$ received a certificate of the value of his instrument from Mr Thrale, the celebrated brewer in Southwark, who bad tested it. It was not, howerer, till 1785 that Mr Baverstock published his Mydrometrical Observations and Experiments in the Breweries; so that Mr Richardson has the merit of bringing his improved bydrometer, which he christened saccharometer, first to the notice of the trade. By thas instrumeut the brewer is enabled to ascertain the anount of saccharme or fermentablo matter in the wort, and thus to take advantage of a particularly good sample of malt, or to compensate for a bad one, so as to procure an uniform atrength. Malt varies in quality aceording to season, the skill of the maltater, and other circumstances. Samples of barley ratsed from the same seed, and grown in adjoining fields, will produce malt wdely diferent, although this is not discovered tull it has been in the mash tun. The quantity of malt which sutlices for a particular "length" to-day may fall far short of affording the same quautity of ale to morrow, and vice zersa. In either case the saccharometer is essential, as it enables the brewer to make his ales one standard strength. The instrument is also of great service in regulating the fermeatations.

Mr Richardsoans saccharometer was constructed on ithe principle that 36 gallons (one barrel) of water weighs 360 h , and if that quantity of rater were converted into wort
and again weighed the difference would show the weight of fermentable matter extracted from the malt. His instrument, therefore, was graduated so as to show one degree for each pound that a barrel of wort weighed more than a barrel of water. He does not, howevor, allow for the displacement of a certain quantity of water by the sacobarine matter dissolved in it; consequently, his instrubent is not quite correct. The saccharometer of Dring end Fage and that of Long, which are both on the same principle as Richardsen's, are adjusted so as to allow for this ipaccuracy; for example, if a gallon of sugar, weighing 16 Bb , be added to 35 gallons of water (together making one barrel imperial measure), their iustrnments show in this infusion, at 60° Fuhr., the excess above that of distilled water, which, in this instance, is 6 D gravity ; thus we have a barrel of wort, weighing 366 Hb , composed of water 35 gallons, and saccharine matter 16 fb . The Excise make their calculations by Allan and Bate's instrnments, which are constructed on the principle of indicating the specific gravity of the wort,-that of distilled water, which is the standard of weight by which all substances have to be compared, being reckoned 1000. It is, however, easy to change the reckoning of the one to the other. Should we wish to reduce the specific gravity indicated by Allan's or Bate's instruments, we have only to divide the specific gravity by $2 \cdot 77$; or if we wish to convert the indication of Dring and Fage's scale into specific gravities wo multiply by the same factor.

Barley is the seed of several species of Hordeum, and belongs to the tribe of grasses, called by botanists Gramiviacece. It has been cultivated from the earliest times. The species most used for malting purposes are the longeared or tworowed barley (Hordeum distichum), and the Hordeum hexastichon, comnonly called bere or bigg. This, in consequence of its being more hardy and ripening more rapidly, is cultivated in Scotland and Ircland. The variety of the two-rowed most in repute is the Chevalier. This was introduced early in the present century by the rector of Stonham, in Suffolk, after whom it was named, and was the result of careful cultivation. Mr Chevalier saw some fine specimens of two-eared barley growing on a manure heap, had them saved, and-cultivated them for several years, selecting only the soundest and largest seeds, until the Chevalier barley became famons and commanded large prices. The land in Great Britain suitable to the growth of the finest grain for malting. is limited,--the most farourable districts being Suffolk, Norfolk, and parts of Essex and Herts. It is, of course, cultivated in all other connties, but not to the same extent. From the Agricultural Returns of Great Britain, presented to Parliament, wo find that in the year 1870, there were 2,600,000 acres under barley, which, if taken together, would form a block $\frac{1}{6}$ th larger than tho countics of Suffolk and Norfolk. Taking the average yield at 32 bushels per acre, the total is $83,000,000$ linshels, or mure than $10,000,000$ quarters. Oif this, $50,000,000$ bushels weru converted into malt, and $4,000,000$ used by the distillers. Farmers find by experiance that somo land is not fit for the growth of this cereal, and maltsters that if it is growu on certain soils it will nut make good malt. Light calcareous or friable Eravelly dry soil is the best. Rich loamy soil producca an eacellent crop, and samdy soil, when well manured, answers; hat culd clayey land, cven when well drained, will not produce the best malting barkey it is a must precurions exop. reguires but little moisture, and a wet seasun is futal to it. When it is in full ear rain, or even heary dew, wall lreak the stalk, and if wet continues for two or three dilys the ears on the ground begia to grow, get stainul, an l bemase qute unfit for malting. It skould remmin in ithestath at least a morth to serson. If "got up" danop, it id hablo to
generate excessive heat, in which case the growing power of the germ is destroyed, and the grain rendered useless for malting purposes. Good barley should have a thin, clean, wrinklcd husk, closely adhering to a plump well-fed kernel, which, when broken, appears white and sweet, with a germ full, and of a pale yellow colour. It is of all cereals the best adapted for malting, containing as it does more starch and far less gluten than other grain, and about 7 per cent. of ready-formed grape-sugar. Its specific gravity is from 1.280 to $1 \cdot 333$, that of malt $1 \cdot 200$. A bushel of barley weighs between 53 Ib and 58 B , depending on climate, soil, and harvest ; the same quantity of bere or bigg weighs from 47 ft to 51 ib . It cannot well be too heary, as it gires a curresponding gravity to the malt, providing it be mellow, thin-skinned, and not steely. The cuticle, or hask, forms nearly $\frac{1}{6}$ th of the weight of barley, and between $\frac{1}{4}$ th and $\frac{1}{5}$ th in bigg. According to Einhoff, 1000 parts of barley meal contain 720 of starch, 100 of water, 68 of fibrous or ligneous matter, 56 of sugar, 50 of mucilage, 366 of gluten, 12.3 of vegetable matter, and 2.5 of phosphate of lime. Hermbstädt gives the following percentages as the mean of ten analyses of barley made by him :-

Great care must be taken when buying for malting, fr sometimes the grain is doctored by kiln.bleaching or drid at too great a heat. Sureral samples, too, may be mired, in which case they will not grow regularly, as heavier barley generally requires to be longer in steep. Corns broken by the drum of the thrashing machine being sct too close spoil a sample; those cut into sections will not germinate, but in warm weather putrefy, as is evident from their blue-grey and mouldy appearance, and ofensivo smell whilst germinating. A good buyer will, by the use of a skilful hand, estimate very closely the weight per bushel in bulk; bis eye will tell him if the grain has been cut before being ripe, in which case there will be a varjcty in the colonr of the barley-corns, some being bright, and some a dead greyish yellow. In consequence of being somn in spring, and not undergoing the equalizing tendency of winter, barley is of all grain the most liable to ripen in a patchy manner, and not come to perfection simultancunsly. The buyer bas also to judge ii it bas been heatul or "mow. burnt" while lying in the freld after being cut, or in tho stack ; this it is apt to do in showery weather, or when tho crop of elover, which is generally sown with or soon after tho larley, is luxuriant. In this case the grain is apt to sprout, and as the process of malting is as near as can be a natural vegetation, barley once sprouted is uscless to tho maltster.
whalting.-The word malt has been variunsly derived from routs that have respectively the meanings of grinding, soaking, and rotting. The last derivation, correspondiag tor the kumor ex hordeo corruntus of Toutus (Germ. 23), is the most probahlo. Maltiag sunsisis in stecping the grain in water to suply mosiure clous a to cause it to germinate, ard "tren the growth is subiciently adranced, topping it by urging :he grain on a kiin. Lefure calaming the process of enaltang we must describe the construction of the sced, and seo the cuemical clanges that take place. A grain of barley is composed of everal pats-..the inner auc onter husks, die cotyledon, the corcule (which includes the plamule or future stem and the ruatel), the investing meabrane,
and the scar or eye, through whieb the seed is nourished durng the process. The hard white part is termed, botanically, albumen. This is the cotyledon, and forms the chief part of the seed, supplying the germ with food during the first fer days of its existence. With the germ, which begins to exist within an beur of being put in ateep, springs also into existence the principle termed diastase. This name (from סíciom μ, to eeparate) was giren it by MM. Payed and Persoz, who made numerous experiments with it.

According to Muspratt, diastase may be obtained by makiog a paste of malted grain at a temperature of 76°, fllowiog it to stand for a ferm minutes, and then pressing out the liquor, which is afterwards filtered and beated io a water bsth at 170°. At this temperature a portion of the foreiga nitrogenous matter coagulates, which is alterwards separated by filtration. The clear filtrate, which contains tolerably pure diastase, is eraporated at a oow temperature to dryness. Disstase is not ooly soluble itelf, but bas the power of dissolring starch, and conferting it into soluble gum, to which is given the name dextrin, und fiqally iato grape sugar, so called beeause, on salyssi, it closely resembles the sugar which naturally exists in the grape. So powerful is diastase, that one part will concert 2000 parts of stareb into grape-sugar This operation will be noticed below under the head of mashing. It is on account of this wonderful power of diastase to convert starch into sacchariae matter, that distillers use one part of malt in mashing to five parts of raw grain. The next part of the seed that comes under notice is the corcule, which is the embryo of the future plant. This germ, feediog on the sugar formed from the stareh of the cotyledon by the action of diastase, grows upwards and dowawards,-the upward growth being the plumule or "aerospire," the downward the radicle or future root. Acetic acid (rinegar), which does note exist ia raw grain in a free state, is now also formed; zhis assists the disstase ia its aetion.
The maltster's object is to obtain as much ssecharine matter as possible, with the emallest loss of substanee, by convertiog the stareb of the barley into sugar, and thus pre. paring it for the bre wery, where it is clanged by fermentation into slcobol. Chemically, starch and sugar are composed of the same elements, carbon, oxygen, and hydrogen; but their atoms are differently arranged,-the mean results of the analyses of Berelius, Gay.Lussac, and Thenard, giving $\frac{17}{100}$ ths of a grain of earbon more in starch than in sugar, whilst sugar contains $\frac{{ }_{1}^{28}}{500}$ ths of a graia more of axygen and ${ }^{\text {f }}$ 最t ths less of hydrogen than starch.
The duty on malt forms sn important item in the revenue, and stringent laws hare been mado to enablo the exeise to lery the duty, and prevent the mallster from defrauding. It mas be remarked, however, that atthough those rules were relayed or abolished, the proeess of manufacture would be carried on as it is Dow. The duty was first raised in the reign of Clartles I. on the following secale :English malt, 4s. 4d. ; Scotte barley.malt, 3s. 8 ! d d ; Scotch bigg-malt, 3s. per busbel, but 2s. of this was a war tax, and the whole was soon repealed. In 1697 a tax was again imposed (to enable William III. to carry on war with France) of 6 gd d. per bushel. The rate has been frequently changed, and has ranged betweet inl and 4s. 5. 5 q , in England, and 7d. and 3s. 91d. in Scotland. For this and much other information we are indebted to a useful little work on malting published by W. R. Loftus. The present rate of duty on malt made from barley is 2 s . 7 d . per busbel, and 5 per cent. additionat, making in all $2 s .8$ sitad ; and on malt from bere or bigg, when male for ennsumption in Scotland or Ireland, 2 s ., and 5 per eent. additional ; when the latter is imported into England the higher duty is charged. The 5 per cent. additional was imposed in 1840 oo ali exciseable articles, except epirits.

Table showing Quantity of Malt made in Great Britain during the years 1871 to 1874 , and the amount of Dutg. levied:-

	Year.	No. of Eashels.	Daty Lerled.
Englano-			
	1871	46,318,153	£6,281,899
From Barley.	1872	51,511,682	6,986,273
From Barley.	1873	52,873,839	7,171,014
Scomand (1874	53,661,0:0	7,277,7:5
Scomand-			
	1871	2,768,187	375,435
From Earley.	1572	2,956,040	400,913
From Earley.	1873	3,171,582	430,146
	1874	2,819,612	382,410
	$18: 1$	37.843	3,973
Prom Bigg..	$18: 2$	23,636	2,482
From Bigg..	1873	26,931	2,828
IPEIAND	1874	20,600	2,163
Ireland-			
From Barley $\{$	1872	2,715,412	397,284 368,278
From Barley.	1873	3,385,624	456,403
(1874	3,221,329	436,593
Fromis	1571	7.515	792
From Bigg ..	1872	7.014	737
From Bigg ••	1873 1874	nil.	ni.

Malting consists of four processes,-steeping, couching, flooring, and kiln-drying.

Steeping is performed in a large sistern of stone, or more usually brick, covered with cement, into which the bsrley (properly screened, to remove the small useless grains) is shot from the store-clamber above. It is then levelied and corered with water to the derth of 5 or 6 inches, all floating kernels and refuse being skimmed of:. This process is necessary for the germination of the seed not only in a chemical hutalso in a mechanical point of riew. The see? is so bard and compract, and the husk so firmly bound to the kernel, that it wonld be impossible for the tender gem. to make its wsy through it ; the steeping imparts vitality to the gorm, snd also assists it in making its way through the busk. The grain now swells about one-fifth in bulk and one-half in weight from the moisture absorbed; or more precisely, 100 d of barley would weigh, after steeping, 147 db , and 100 bushels measure would increase to 122. By law it has to be kept at least fosty hours under water, and fifty if the grain is to be sprinkled tefore the twelfth dny. This time must depend on the kind of barley used, the soil on which it was grown, the heat of the westher, and the hardness or eoftuess of the water in which it is stecped. More time is required in cold than in hot weather. Scotch barley requires aore time, but bigg less. Fifty hours steeping will generally suffice, but sometimes resenty is necessary: The rule is-if a barlegcorn, held lengthwise between the finger and humb, breaks down into a pulpy, mealy state, the process is complete; whereas, if the farina cxudes in the form of a milky poste, it is over-stecped. In warm weather the sicep water aequires an odour from matter dissolved out of the barley skia; and, in consequence of a slight fermentation eaused by the organic matter in the water acting on the decayed grain, the water becomes acescent or putrd. The stecp-water should then be clanged. This the maltster is allowed to do once doring cach wetting, upongiring the notice to tho Excise. Whilst the barley is in steed it is guaged by the excise offeers, to prevent fraud, and to calculate the duty to be paid. Wide Jhanks are placed across the eistern to enalle them to take the "dip,"-suffient light, and headroom of at least 48 in bes, being provided. Numerous experiments show that $81 \frac{1}{2}$ buslels of good dry harley will, after fortr-eight houre sweep, swell to exactly 100 Lusbels. An allowance is therefore made of $18 \frac{1}{2}$ per cent. on the grain found in the
cistern or ceuch frame, but the duty is charged on the greatest amount found, whether in the couch or on the fleor or kiln. When the operation of steeping is complets the water is drawed off in abeut half an hour by means of a gutter laid below the level of the cistern from end to end, with a proper fall, and covered with perforated iron plates. The perforated plates being movable, the gutter is easily cleaned and the plates replaced. The law requires that every cistern shall be permanently constructed with the sides and ends straight, and at right angles to each other, for facility of measurement; the depth-must not exceed 40 inches in any part; the bettom must be oved, with a fall of not mere than balf an iach per foct for drainage. No cistern can be used under a penalty of $£ 100$ until a certificate in writing from the supervisor bas been obtained, stating that he has surveyed the utensil, and that it is constructed 3 ccording to the requirements of law.

Couching.-Tbe couch-frame is formed like the cistern, with the exception that the feurth side may be made of movanle planks at least 2 inches in thickness. Before the year 1827 it was lawful to construct the couch-frame entirely of movable boards; and couches made before that date may still be used by obtaining permission from the Board of Inland Revenue. Into this frame the grani is new thrown with weeden shevels. It must not be cornpressed in any way, under heavy penalties, and mast net exceed 30 inches in depth. If the excise officer has any suspicion that the grain has been trodden down, he may -order it to be thrown back inte the cistern and levelled. The officer will then gauge it again. If he finds that the quantity has increased more than 5 or 6 per ceat. according to the length of time the grain has been emptied from the cistern, any such increase over and above the 5 or 6 per cent. will be deemed cenclusive evidence that the grain has been trodden or forced tegether. A penalty of $\mathfrak{f} 100$ is then incurred; and a like sum for maltsters or their men refusing to return the grain to the cistern. After twenty hours the maltster is at liberty to meve the grain on to the fleors; but, in cold weather, when sufficient heat to forward germination has not generated, it is left two days, and even longer; but if left teo leng, tha grain becemes sour. After sufficient time has elapsed, in order to prevent the heat rising too rapidly, and to equalize it through the whele body of grain, it is thrown forward on to the floors.

Flooring.-Hero the grain must be kept level, with the edges straight to make it easy for the officers to gauge, which is done several times to prevent the introduction of uncharged grain. This operation of gauging requires great care, as, in large houses, a mistake of the tenth of an inch would make a difference of between 20 and 30 bushels to the maltster. On the floors an allowance of one-half is made for tho reotlets; this is generally quite sufficient. Each steeping is called a "floor" or piece, and must be laid in succession according to age, the most recent next the couch, and the oldest next the kiln. Maltsters may have sis floors, including grain in the couch and on the kiln, in operation at one time. Germination now progresses ; the plumule, or stem begins to grow under the bnsk from the same ead as the reot, but instead of percing the husk, turns reund and procceds under it to the other end of the grain. This weuld develop inte the green leaf were its pregress not stopped. Maltsters vary as to the length it is advisable to. let the acrospire attain; some like it not nuch more than half up the back of the grain, others like it $\frac{3}{8}$ ths or even $\frac{7}{8}$ ths of its length, because it is practically found that a friability of the starchy matter takes place pari passu with the length of the plumule. Unless tho Hloors are worked with great skill and regularity, however, somo are
apt to protrude when carried to the latter extent. This shows an exhausted condition within Malsters who sell by weight work the acrospire no higher than is absolutely necessary; the higher it is worked the less starch and the more sugar is produced, and a corresponding luss in weight ensues. The maltster whe sells by measure, however, likes to have the acrospire as high as he can, to increase the bulk of his malt. The writer's experience 13 that a ey fins better, and keep better, when brewed from malt well worked up. In large mash tuns, where the heat can be mamanaed, it is net of se much impertance; but in small tuns, where less than twenty quarters are mashed, if the "spre" "is up $\frac{7}{8}$ ths of the grain, so much the better, so long as $1 t$ is unitorm. The temperature on the floor rises to betueen 50° and 60°, the fibrils of the radicle, the "chick," as it is technically called, shoot from the tip of every cern. The middle of the tloor being the warmest starts soonest, so, after a few hours, the grain is turned or stirred, so as to bring all to a similar state of forwardness. At this peint comes the critical test of the maltster's skill, ne fixed rules can be laid down; he must be guided by experience and circumstances. He bas to consider the quality and growth of the barley, -whether it came off light or heavy soll,the kind of ma't intended to be mads,-the temperature and peculiarities of his particular maling. Hus principal cbject is to get the grain to werk, and to work regularly, to accomplish which, and to check the toe rapid grewth of the rootlets, the grain must be turned several times daily, the interior being always brought to the surface by the sbovels of the workmen. The grann 18 spread more thinly each time, the depth of it, originally $1 \neq$ or 15 inches, being thus gradually lessened to 3 or 4 . This brings $2 t$ to the middle of the process; it is thel thickened as gradually as it was diminished until it is thrown on the kiln. The gran now emits an agreeable odour, something like apples. and if the hand be thrust into the corn it is found wet enough to damp it; this is called sweating. The "chick " develops inte several shert bushy reotlets. As the acrospire grows the constituents undergo a great change, the gluten and mucilage almost disappear; the grain becomes white, mealy, and sweet; carbonic acid is produced; air is absorbed, almost as by animals in breathing; and, consequently, air is necessary to the germination of the grain. It loses during this part of the process from $I \frac{1}{2}$ to 3 per cent. in weight.
There can be no doubt that it is of importance to the maltster that the law allows him to sprinkle water over the "pieces" on the fleor ; this may be done at the expiration of ninety hours after removal from the steep, provided such grain has been kept under water fifty bours. Spriakling is generally commenced on the fifth or sisth day, notice having been given to the Excise twenty-four hours before If in steep less than fifty hours it may not be sprinkled till the expiration of twelve days. Sprinkling is used mest by maltsters whe sell by measure, and therefore want to increase the bulk of their malt; but there are seasens when it would be diticult to make good malt unless meisture wera thus supplied, to make up the water lost during sweating. Too much light is detrimental, as appesrs from the fact that grain under the influence of uninterrupted light is inferior, unless the sky-light be covered with a costing of bluc, which admite the actinic rays, and excludes the calorific and light rays, which hinder germination. Shutters on the sliding principle are the best for regulating buth light and heat. Great care has to be taken not to damage the grain by turning, especially when it is spread thin. To obviate the necessity of turning as much as possible an instrument like a narrow shovel, called a plough, is used, which brings the grains underneath to the surface, and into contact with the cold air, so koeping the germination
regular. Grain is required by law to be kept at least 168 hours on the floors, but maltsters may keep it there as much longer as they like. Barley throws out five routlets, the middle one being the strongest ; and if the young Hoor has been negleeted, this will shout out three times the length of the others and tinn up at the end like an arm When the grain has germinated suffieiently, its growth is arrested by placing it on the kiln, the cbject beiog to drive off superfuous moisture and insure the keeping qualities of the malt.

Kiln-drying. - The kiln is a chamber of which the floor should be made of woven-wire or sheet-Iron, or of perforated tiles. The perforations are necessary to give admission to the hot air, and also to allow the detached rootlets to fall through. The kiln should have a sufficient area to allow the whole of one steeping to be dried at once, at a depth of 8 or 10 inches; by which means the malt is more regular than when dried in two or three lots, as the portion left on the floor will grow, notwithstanding the maltster's efforts to prevent it. The opening at the top of the kilo is covered with a cowl or cupola, which answers the double purpose of excluding raia and allowing the escape of the steam. The furnaees are placed under the floor, nearly in the central line, and the hot air passing through the perforations dries the walt, while the steam is carried off through the vent in the roof. An iron or stone plate, 4 or 5 feet square, called the "disperser," is plac:- uver each fire to dieperse the heat and prevent the malt inumediately above from taking fire. The heat at first should not exceed 90°; if bigher it produces a hardening or vitrifaction of the starchy matter or dextrin, and also heightens the colour of the malt; whereas, if the malt be freed from moisture at a low temperature it may afterwards be exposed to a high heat without gajaing colour. The moisture being disposed of, the heat may be gradually raised to from 125° to 135° for India pale ale malt, and to 170° or 180° for ordinary pale malt,-the difference in the kinds of malt being the anount of heat to which they are subjected on the kilm. During the process the fires should never be allowed to go cut, as the smell of a green fire imparts an uupleasant ilavour. During the last few hours in partieular there should be a bright, elear fire for fuishing off the malt, otherwise the beer will not get bright. It will thus be seen that the process of kila-drying is very important. Dr Ure's remarks on it are pregnant with meaning. He says, "The operathon of kila-drying is not confined to the mere expulsion of the moisture from the germinated seeds, but it serves to convert into sugar a portion of the stareh which remains unchanged, and that in a two-fold way. This 13 , first, by the action of the gluten upon the fecula at an elevated terpperature, as also by the specties of roasting whieh the stareh undergoes, and which renders it of a gumny nature. If we dry one portion of the malt in a naturally dry atmosphere, and another on a moderately warm kiln, the former will yield less saccharine matter than the latter. Moreover, the kiln-dried malt has a peculiar agreeable and faiptly burut taste,-probably from as staall portion of the empyreumatic cil formed in the husk, which not only imparts its flavour to the beer, but also contributes to its preservation." Kiln drying takes from one to four days, according to the depth of malt and amount of beat used. The fire being kept always burning, great care is needed to prevent its breaking out in the night ; it is therefore made up the last thing and then " banked up," that is, covered with a quantity of the ashes which fall through the bars. For ordinary pale malt, about three hours before it is thrown off the kiln the heat is reiscd from 150° to 180°, and during this process it requires turning two or three times, and is thrown off the kiln in a bot state. The rootlets are readily detached from the malt by the turning
on the kiln, and the treading of the men in their list stippers; they are finally separated by screening, and are the best criterion of the colour of the malt, showing at once the amount of heat used. These malt "cembs" or "cummings," as they are called, are valuable food for cattle iu winter; and the fine ones which fall through the kilnHoor on the disperser, mixed with the dust from the fire, are said to be almost equal to Peruvian guano as a top. dressing for turnips.

Malt continues to swell, by absorbing moisture from the atmospbere, for nearly three months, the time rarying aecordiag to the damppess of the air. Dalt in steve is said to be mellowing. Tho iuerease by measure of malt over dry barley, called the "outcast," is from 3 to 8 per cent. ; in bigg the increase searcely amounts to 1 per cent. During the process of malting barley loses unefifth of its weight, in other words, 100 tb of barley converted into pale malt weighs un an aserage 80 tb - but as barley when kiln-dried loses 12 per cent. of moisture, the aetual loss is reckoted at only 8 per cent. The late Professor Thomson thus accounted fur it:-

$$
\begin{aligned}
& \text { Soluble matter carried off by steep-water... } 1.5 \\
& \text { Carbonic acid formed and given of durng germination } 3.0 \\
& \text { Roots. } \\
& \text { Waste } \\
& \begin{array}{r}
30 \\
.05 \\
\hline
\end{array} \\
& 80
\end{aligned}
$$

Dr R. D. Tnomson, who made various experiments on malt for the purpose of ascertainneg its feeding and fattemng propertes, states the loss sustaned to be

Water	© 00
Saline matter..	048
Organic ,	52

Bigg eustains a greater loss than barley, aroounting to 7 per cent. more. The great simmarity which chemical analysis shows to exist between barley and malt, proves that malting is ouly the beginning of the process by wheb saceharine matter in solution is obtamed. A glance at Stein's analysis of the two wall show this:-

	Bartey	Malt
Soluble albuminous compounds	1258	1985
Insoluble \quad,	10928	9.771
Husk....	14854	18817
Dexirio - .. -	6 500	8.232
Fatty matter.	3556	3379
Inorganic mattes..	2421	$2 \cdot 291$
Extractive matter	(1) 846	4854
Starch ...	$54: 52$	50871
Loss..	305	
	100000	$100 \cdot 000$

The following is the composition of barley and malt, as given by Oudemans -

Produce of tornfication..	$\xlongequal[\text { Air-dried }]{\text { Barley. }}$	Malt		
		AIF.Whed	$\left\lvert\, \begin{gathered} \text { Kiln-dried } \\ \text { Paie } \end{gathered}\right.$	
	0.0	00	78	140
Dextrn... .-. ..	56	8.0	66	102
Starch	670	58.5	58.5	476
Sugat -..- ..	00	0.5	0 \%	09
Cellulose	96	144	11.8	11.5
Albumilous substances	12.1	136	105	10.5
Fatty ..	$2 \cdot 6$	22	2.4	$\stackrel{2}{2}$
Ash, \&c.,	$3 \cdot 1$	32	$2 \cdot 7$	2.7
	$100 \cdot 0$	$100 \cdot 0$	$100 \cdot 0$	$100 \cdot 0$

Albuminous compounds in barley and malt (Oude mans)-

	Bariey．	Malt．
Gluten soluble in Alcohol．．	0.28	0.34
Albuminous substances coagulable．．．．．．．．．．．．．	$0 \cdot 25$	$0 \cdot 45$
Albuminous substances not coagulable by hest	1.55	$2 \cdot 08$
Insoluble Albnmen．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	$7 \cdot 59$	6.23
－－－	970	$9 \cdot 10$

There are three kinds of kiln－dried malt－pale，amber， and brown，and one of roasted，called black or patent malt． We have already acen how pale East India malt is made； also that the ordinary pale malt is dried off at a higher semperature by 30° or 40° ．

Amber malt，when ground，is of a rich amber colour， hence its name．This is dried off at a heat of 180° ．Tha fuel used during drying is different．For pale malt，coke or anthracite coal is used，but the celour and flavour of amber malt are produced by burning oak or other hard wood faggets，－the flavour being caused by the pyroligneous acid thrown off during burning．High－coloured malta have advantages over pale ；more dextrin is preduced and more albuminous matter is rendered insoluble；it is，therefore， exsier to brew goed beer from them．

Brown or porter malt is dried in yet another may．The floora of malt－kilns used for drying it must be made of thin sheet－iren or stout wire，as the heat must be raised in a few minutes from 100° to a heat nearly approaching combustion，and lemered as rapidly．The process requires great attention，or the malt weuld take fre．The grain is sproad thin，not exceeding $1 \frac{1}{2}$ inches in depth．；and the whole process is completed in less than two hours．The fuel used consists of faggots of beech，elm，or oak；at first the fre is kept down by being sprinkled with water，but the last half－hour it is allowed to increase，and an intense heat is obtained．This kind of malt weighs about 32 开 per bushel．It is sometimes called＂blown malt，＂from its distended appearance．By this process the gum，augar，and starch are converted into a kind of caramel，which gives the flavour ao much prized in porter．It makes the malt， hewever，deficient in extractive matter，to the extent of frem 20 to 30 per cent．
－Patent malt，which is the legal colouring－matter in perter，is made and charged with duty in the same way as other malt，and then removed to the roasting premises， where it is treated like coffee，being roasted over a fire in cylinders of perforated iron．The law requires that 95 per cent．of this malt shall have the＂spire＂extend to one－half the length of the grain in order to prevent the introduction of raw grain．It is generally made from injured or in－ fcrior malt，as the high temperatnre in drying quite restores the appearance．There is，of course，no acceharine extract from it，that having been converted into caramel or burnt－ sugar；it is only wanted to aupply colour and flaveur． Good malt of this kind should have each grain distinct， of its own original aize and slape，net adhering to caeb ©lier；and when it is bitten the inside ahould be of a rich chocolate colour．

Pale malt differs in appearance from barley；the grains are plump and generally free from wrinkles，and paler than berley．Instead of the tightly－closed end，the opening through which the rootlets lave passed is visible at the base of each grain ；when broken the starch abould be loose， friable，and cretacceus，and should leave a white maris as of chalk when drawa along a black surface．It should be crisp to the teeth，and have a aweet and cmpyreumatic flaveur，free from the least monld or mustiness of smell or taste．Malt ahould weigh from 39 咭 io 43 in jer bushel． There should be no vitrified appearance when broken；that sould be due to an excess of heat at the begiming of the －Irying process，or to the barleg having bean sirosn is this
rich a seil，or to nized jeed being ased which did not work regularly．A good test is to take 100 eeeds and throw them into water，stirring them well up，good malt， being apecifically lighter than water，should float on the surface；if more than 5 per cent．sink it is bad malt． Another test is to take 100 grains of malt and carefully examing the regularity of thair acrospire，which should extend $\frac{3}{3}$ ths of the length of the grain for large and $\frac{7}{8}$ ths ior small brewers．If more than 5 pcr cent．have projected it showa a waste of material，whereas if more than 5 per cent．hare the acrospire less than half way up，it is a sign of insufficient germination．

Dr Ure＇s analysis goes to show the amonnt of solid extract obtainabla by the brewer．He takes 100 grains of malt by weight，which are powdered and dried half－an－hour by the heat from boiling water；they are then weighed， and the loss shows the quantity of meisture in the malt． This porder is then mixed with cold water，and the vessel containing it is heated in the steam－bath half an hoor， tha contents being occasionally stirred．The husk and inaoiuble matters are then drained off，washed with boiled water，and then dried aud weighed，－－their weight giving the insoluble matter in the malt，and the residue the soluble． extract available to the brewer．Dr Ure found in several experiments the average in 100 parts by waight，to be－

According to thes，if we assume that a quarier of malt weighs 324 tb ，the total solubla extract will be 216.4 db avoirdupois；but as the gum and augar in assuming the fluid form combine with the elements of water，if the extract were dried it would weigh 23 形；and being reduced to the basis of the barrel of 36 gallons would become，in the language of brewers， .87 extract per barrel，which means that，if the wort from a quarter of malt were evaporated down to the bulk of a barrel of 36 gallons，is would weigh 87 ft more than a barrel of pure water． Practice shoms these experiments to be correct，the extract per quarter varying，according to the aample of malt，from 80 fb to 90 fb ．

Malt is made duty－free for distillery purposes and exportation；in both cases the maltster has to enter into a bond with two sureties for $£ 1000$ that the malt goes to its declared destination．It may also be made free of duty for cattle feeding，an Act giving great facilities being passed in 1864 ；it was，however，found to be useless，cxcept in small quantities，as a condiment，and the practice of giving it is entirely discontinued．In 1870 there was not a single bushel made，as there was no demand for it．In the case of malt damaged by fire or water，an allewance equal to the whole of the duty，if totally destroycd，or part if the damaged malt be sold on salvage，is granted by 7 and 8 Geo．IV．c． $52, \S 76$ ．The duty on malt is payable at tho end of every air wecks，but upon entering into a bond with eureties for parment，a maltster is allowed six weeks＇credit． Also by 26 Vict．c． $6, \$ 1$ ，he may defer payment of half the duty on malt made betwcen 1st January and 1st April， and the whole of the duty on malt made between the latter date and 16 th May，for three months，on giring notice of his intention to the proper collector lufore lat April，paying interest at the rate of 3 per cent per anoum for the accommodation，and giving lond for eecurity．

By 7 and 8 Geo．IV．e． $52, \$ 46$ ，it is provided bat，if＇ any workman，maliciously or otherwise，commits an act by which his employers are liable to a penalty，he shall be imprisnad with hard labour for not less than three of mere than treive months．The master is liable for these
penalties incurred by the workman unless he prosecute his eervant within a month of the offence, and show the Commissioners a certificate of such conviction. Some maltsters have a notice put up in their maltings to the effect that their men will be prosecuted if they commit the offences mentioned in the Act.

In America there are no internal taxes on materials used in brewing as such, but there is an import duty on hops and barley,-five cents per m on the former, and 15 cents on the latter per bushel. The barley mostly used comes from Canada, the import duty being equal to about 1 s . 4 d . on an American barrel of beer. The duty is levied in the form of a stamp-tax on the beer fermented, completed, and in barrel, at the rate of $\$ 1$ per barrel of 3 i gallons, and $\$ 2$ per barrel of not less than 63 gallons. No restrictions are imposed as to the materials of which it shall be made.

In Bavaria the duty is raised on malt, but not assessed till the malt is brought to the mill to be crushed. It is made without licence or permission, and may be sold withont restriction ; but traffic in ground malt is strictly forbidden. The case is the same whether the malt is used by brewers or distillers. The consumption of beer and spirits is untased, except through the impost on malt. The means adopted for preventing fraud consist exclusively in the control exercised in the public mills by tho Gevernment inspectors. Private mills-for crushing malt are only allowed when the proprietors have their mills furnished with the regulation self-acting measuring apparatus, together with the Government automatical counter. This apparatus is sealed officially, and thus it is impossible for an ounce of malt to be crushed which bas not first been measured and checked. Besides these means for preventing fraud, there exists a regulation that no malt, whether taxfree or not, may be brought to any mill, or be found there, for which a certifieate (polette) has not been given specifying the date, the quality, and the mill.

Americans are now making beer largely from maize meal and maize malt. The experienee the writer has had of the use of the latter leads him to doubt its economy; the extract is small, and the fine flavour of the ale impaired. However, a small quantity can be used with advantage where the fermentations are sluggish or inactive,-maize being the most pewerful stimulant of this process that we possess. Barley has always been considered, and with good reason, a better, and in favourable seasons a cheaper, grain than any other for malting. The reasons for this are, first, that whilst the husk permits the steep-water to pass through to the stareh it effectually preeludes the escape of the starch; secondly, the aerospire grows under the husk in barley, and so is protected from injury during malting, whereas in whent, maize, \&c., the acraspire forees its way out with and at the same end-as the rootlets, and therefore runs the risk of being damaged by turning on the floors; these damaged grains become mouldy, nad monld being propagated by means of spores, one mouldy grain may send out thousands of these spores among the goed grain, and infect the previously healthy ones; and thiirdly, barley contains a largo ready-made proportion of grape-sugar and starch. It is, therefore, only in bad barley seasons that there will be much demand for malt made from other grain. The average price of barley from 1872 to 1875 bas been 43s., and in I874 the average was as high as 49 s. This high price, which means a material increase in the cost of manufacture, has naturally made a great inquiry for a cheaper sugar-forming product: and there is no doubt that if the duty on malt were either taken off or laid on the manufaetured article, beer, large quantities of other grain dricd on a kiln at from 230° to 240° would be used in bad barley seasons. In Germany the grain is ateeped before kiln-drying for three
or four hours, to remove from the husk the oupleasant flavour it sometimes imparts to ales; the materials used to a considerable extent there are wheat, oats, rice, maize, and even potato starch. Beer made from rice is of a very clear pale colour, of an extremely pleasant, mild taste, foaming strongly, and yet retaining its carbonic acid. Dr Graham, in his instructive lectures on the chemistry of brewing, at the Soeiety of Arts in 1874, explained bow raw grain might be used to obtain a beer either alcoholic in its nature, as brewed in England, or dextrinous, like the Bavaman beer. Mr John Prior, of the firm of Truman and Hanbury, in his examınation befure a committee of the House of Commons, says, "If the malt Acts were not in the way, numerous substitutes for malt might be employed," and that, amongst these, mangelwurzel might be used to any extent; and he goes on to say, "I have tasted as good beer brewed from that alone as any home-brewed beer I have ever tasted in my life."

The only substitute for malt allowed in Great Britain is sugar. Of this, in its different forms, there was used in tie year ending September 30, 1874-

$$
\begin{aligned}
& \text { In England }\left\{\begin{array}{l}
\text { London..............................283, } 28.156 \\
\text { Provinces...................... 422, } 136
\end{array}\right. \\
& \text { In Scotland ... } \begin{array}{r}
\text { 705,872 } \\
\mathbf{7 , 3 2 3}
\end{array} \\
& \text { In Ireland. } \\
& \text { 7,323 } \\
& 768.020
\end{aligned}
$$

being an increase over 1873 of $204,528 \mathrm{cwt}$. Sugar may be used in brewing to the extent of one-third,-two cwt. being equal to a quarter of malt ; the duty is 11 s .6 d . per ewt. It is either boiled with the wort, or dissolved in the underback. Ordinary cane-sugar contains a large amount of dangerous putrefying albuminous matter. It may also be said to cause two distinct fermentations, having to be converted, by the action of the ferment, into glucose before it is broken up into alcohol ; it is, therefore, only good for ales of quick consumption. For store ales it is as well to destroy one of these fermentations, and at the same time convert the cane into grape-sugar or glucose. This is done by treating it with dilute sulphuric acid, the acid being afterwards got rid of by means of chalk or lime, which combines with and carries it down. This is effected very rapidly if the temperature be increased by pressure to 250° or $300^{\circ}, 1 \mathrm{tb}$ of aejd mixed with 600 lb of water converting 100 tb of starch or cane-sugar into glucose in three hours. This action of acids upon cane-sugar has formed the subject of a patent (Garton's), which is being worked on a large scale at Southampton, and the product is sold under the name of saceharine ; it has found great favour with brewers, as it gives a rounder flavour, and more permanent character, to the beers than when brewed from malt alone, and at the same time masks the acidity where any exists, better tha: starch or cane-sugar. Saecharine has beencarcfully analyscu. and the analysis shows the whole of the raw sugar to have. been converted into glucose with a certain percentage of water. The best mode of distinguishing grape from canesugar is by adding to the solution to be tested, in a flask, a few drops of an alkaline solution of tartrate of copper, and then gently boiling it. If any grape-sugar is present a bright red metallic-looking precipitate of suboxide of copper is shortly thrown down ; if no grape-sugar is present the solution remains clear, with a slight blue tinge, from the addition of the eopper solution.

It does not appear that the best judge can, from the taste alone, distinguish between a beer mado from malt and one brewed from a mixture of malt and sugar. This is not surprising, when it is borne in mind that brewing from malt consists in aubjecting the malt to those condi-
tions which are most favourable to the converaton of the muximum quantity of the starch it contans inte grapeaugar, by the action of the diastase produced in the grain by the process of malting.

Hops are the catkios or fiowers of the Humulus Li,pulus, a diœcious plant belonging to the datural order Uricacea, or the nettle family, and the Lienæan Dixeia pentandria. It is the female fowers (which grew on different plants frou the male flowers) that gield the hop known to commerce. The plast is mentiogod by Pliny uader the name of lupus saluctarzus ($N H, \times x 1.50$). It was eultivated in the 9 th century, for we find that 10822 the m llers of Corbey were freed by the abbot from all labours reatiog to hops, aed hop-gardens are mentioned by Ludoricus Germaercus, a few years later. Hops were introduced 10 to England from Flanders about the tume of Heary IV, There is a cunous edict of Henry VIII., forbidding the onxture of either bops or sulphur with beer; but little aitention acems to have been paid to it, for in 1552 hopplantations were formed In 1649 the city of Landea fretioned Farliament agajost "heppes" being used, urging that " this wicked weed would sponl the druk, aud endanger the hes of the people." It came tatc common use 10 Queen Elizabeth's reign.

The hop-clusters are ovoid coaes, corsisting of scales "hach are the enlarged persistent brats eaclosing the frut. They are covered with a tenack us yellow, waxy substance, like powder, called lupulin, and technically "eondition" luder the macroscope this is seen to cousist of manute sem-transparent granules, reind 1π shape; it is the most valuable part of the bop, er ntaining most of its active properties. The amount of powder compared with the total seight of the hop ranes rom 10 to 15 or even 20 per cent Amongst the leaves and powder of the hor, we find essential oils, resia with assactated bitter principles, aed tanme When distilied with water, the powder gives 2 per cent. of ats meight in essential oils (there 18 none in the leaves); one of these diatila at 212° Fabr, but the other requires a much higher temperature for its volatilization Other products are formed from the lupulin-amorig them valerianac acid, which is the disagreeable characteristic of old bops The essential oils nut only give the aroma, but are of importanee, as through therr combination the resins aud bitter substances become soluble in water The resin constututes 50 per cent of the powder, and is solub.e in alcohel. The importance of tannin cohsists 10 tis power to precipitate albuminous matter : of tamun there is only about 2 per cent. It bas been suggested :" merease ths by using the tannic aeid of commatce da a fartal substimte fur hors, and expersmeats bave been made m Dresden by Dr Fleck for thas purpuse. .This must, however, be used wath caution, as an excess of it rould be prejudicial to a suecessiful clarificatron of the bepr.

The most delicate hops are Coldings, grown in East Kent, -Farnbam and Worcester districts being next best, while zoed, strong, servecable hops are grown in the Weald of Rent, Sussex, \&c. Large quantities are mported from Termany, Belgum, America, dc., the best being Boheman, grown near Saaz, which are very excellent in delicacy of favour and aroma; Bararians groxn ia the district round Spalt are valuable for their cleassing and beer-keeping qualitics.

The sereage under hops in England is 65,000,-40,000 being in Kient. This 1 a an merease of more than 15,000 ecres since the commutation of the duty in 1862. In that yoar the duty was taken eff hops, and a charge made on brewers of 1 ls . per quarter, being at the rate of 3 d . yer barrel, on the suppesition that four barrels of beer nero drawn from cvery quarter masbed. The old duty was Id.
per tb and 5 per cent. additional. A hop-gardea cests from $£ 70$ to $£ 100$ to stati, and from $£ 27$ to $£ 30$ to farm per aonum. A rich, deep soil, r ther inchaed to moisture, $1 s$, oa the whole, the best adapted for the crop; but any soil (stiff elay only exeepted) will sut, when properly prepared. It should be enrehed wit, the kind of manure best suited to the land the hops are to be gromn on, stable and cowaouse dung, old rags, shoddy, guano, sprats, and other decompoced matter are used freely, while on some land peat and lime are requirsd. The land is first rendered fine and mellow by being ploughed and harrowed severai times; thea, in the spring, a large bole is made and fllect with rich mellow earth ; inte this "sets" or small pieces of the roots of the kiad of bof intended to be grown are plaated with the buds uppermost and the earth pressed close about them. These sets take three years to come to perfection. Troo or three sets to a pole, three poles to a bill, 1050 billa to an acre, ts the usual calculation. The liils should bo 6 or 8 feet apart, the latter beigg best on rich land, as there the hiae runs the most. The poles are from 12 to 18 feet bigh, according to the adaptabul: y of the ground for vigerous growth, with the eads that go imo the earth charred to preserre them. In America the hep is trsined on wires; this has also been introducced into Eagland, - Mr Farmer, of Worcester, having taken out a paterit. It is very successful, but the first cost, £i5 per acre, has prevented its being used exteasively. The hop crop is a most precarious one, and may be said to vary from oothing up to a ton or even 25 ewt. per aere, and in price from $\mathfrak{£ 3}$ te $£ 25$ per ewt. In proof of this, at the anuual Worcester Fair ia 1874, ooly 74 pockets wero on sale, whereas the year before 1000 pockets were in the market, and 2000 more were offered for sale by sample.

The plant is rery dependent on tha aeasen, and has many enemies io the insect werld, in particular, the fly or aphis, which infests the crop early io its growth, feediag upon its juices and leaves, giving the latter the appearaace of having been riddled with swan shot. The flics come origioally from the sloe bushes, and are produced from eggs deposited ia the premions autuma. These, as well as fleas; red spiders, lice, \&c. may be destroyed by syriaging the plants well with soft soap and water The mould firs: betrays itself in yellow and drooping leaves, finally in the hop itself, eating it up with middew, - the preseace of a few half-eaten leares spering a sample. The blight coats the leaves with a thick socty substance: and when this appears the bop dwiodles away. The fire-blast, as its name moplies, sears and scorches the follage, and withers it up. All these may bo seen workiag mischief at once in the same hop garden.

The eathens of the ber rupen early in Sentember, they are pleked from the bme by thousands of people from Londoa. \&c, whose welfare aud accommodation have been much neglected, but great changes is this respect are made by santary regulations which come mo force this seasun (1875). Besides these simngers, every man, woman, and child of the resident population a made avalahlo for the scason, when generally lasts three weeks. The pay is about $2 d$. per bushel, and an a good season a family cau make 2s. 64. a day per head.

After pucking, the hops are dried on a kiln (osst-house, as its called), - the heat never beng allowed to rise above 90°, lest the aroma and roiatile oil should be thrown of. A small pertioe of sulpbur is sometimes adced te the fire, the appearance of the sample being impresed by the sulphurous aed thus formed. This bas been geacrally con sidered by brewers iojurious to the hop, and a!so to fermentation; but a commission appointed by the Ravariad Government in 1855 (the late Professor Liebig beag ode of its members), after two sears of experiments, arrived at
the conclusion toat the use or sulphur was beneficial to the hop, snd not injurious to fermentation. It is frequently used while the plant is growiog to cure the various diseases to which the hop, like the vine, is liable. The last process before the hops are brought to market is "bagging." This used to be done by "footing," that is, letting the empty bag drop through a hole in the floor, and having the hops stamped down by one man, whilst two others filled; after which they were pressed by hydraulic power. Under s new process the whole operation is effected by machinery in about eight minutes. Hop-growers, as a rule, have no stores or convenience for warehousing hops for more than a month or two; the consequence is the whole growth, whether large or sunall, gets into the hands of a few great hop merchants, whe comroand the market.
The best hops have a yellow, golden colour, and an sgrecable smell; when rubbed between the hands they leave a yellow, odoriferous, sticky porder on them, without any broken parts of the leaves, and yield to boiling alcohol from 12 to 15 per eent. of suluble yellow matter. A very palo green colour indicates that the hops have been gathered beforo they are fit; whilst a deep brown shade would show they were allowed to hang too loag before being gathered, or that they have been over dried on the oast-house floor. A fair teet in choosing hops for India pale ale is to make a etrong deeoction of them with boiling water, putting it into a white bottle, corked and exposed to the sun; if in twenty-four hours the colour has become dark they sre not fit for the purpose.
During the year 1852 only $34,622 \mathrm{do}$ of foreign hops were imported; in 1853 this inereased to $4,759,307$ it, and in 1871 to $24,685,808$. Beforo the hop-duty was taken off there was a great deal of betting on the. crop, which was computed as equal to so much duty; and tho sppearsnee in the Borough of a hop leaf eovered with fly from one of the most favoured distriets used to cause mueh consternation. Sinee tire repeal of tho duty brewers have beon sllowed to usc any bitter instead of hop, provided eueh bitter does not give a factitious strength to beer, snd thus becomes substitute formalt. Many preparations are, in consequence, offered for sale as partial subatitutes for hops; but in these none of the noxious, forbidden artieles, such as Cocculus indicus, de., de., are found, for we learn from the laboratory returns of the Inland Revenue that, in tho year 1872, only six samples of beer tested were found to bo adulterated. Considering the enormous extent of our hrowing industry (it is calculated that $900,000,000$ gallons of beer aro brewed annually), baeh testimony to the purity of tho beer is highly creditable to those engaged in the trade. From the same souree, wo learn that in every instance where an adulterant of a dangerous nature was uscd, the offending parties have been those who brevied and retailed their own beer on a very small scale.

Ago alters and deteriorates the character of hops in a marked and distinet degree, much more so than in most sromatic substances; indeed, it changes them to sueh an extent that, st the end of two years (when they are called "old olds"), they retain littlo but the bitter, the sroma being gone.
In the year ending 30th September 1874, the bops imported into Great Britsin were-

[^13]450 aeres being under cultivation. The Austmlian market, it is supposed, will be eventually supplied from theace. At present between 600 and 700 tons of hops are exportec from Eagland yearly.

Water.-Pure water, protoxide of hydrogen, is obtain. able only by art ; it is therefore impossible, even were it desirable, to use that in brewing. But good water is an indispensable element in the manufacture of good beer. It should be hard and free from organie matter; this last point cannot be urged too strongly, as this alone frequently causes failure in trewing operations. From Cohn's investigations we find that the germs of putretaction are so swall that no filter of charcoal or other material removes them. It is also doubtful if ordinary boiling destroys these organisms. Pasteur asserts they are not killed below a temperature of $100^{\circ} \mathrm{C} .\left(=22^{\circ}\right.$ Fabr.); and Lex found them alice after heating to 260° Fabr. Water eharged with them is a deeided loss to the brewer, as the organic matter is decomposed during brewiog and earries off some portion of the atrength of the worts, besides making the beer liable to spoil. Soft water, or water that has flowed through moorland, and is free from saline matter, is bad for the brewer's purpose. When this has to be used for want of a better it should be impregnated at second hand with eh!oride of sodiuru (common salt) and gjpsum (sulphate of lime). To allow for the deficiency of salt in some water the Excise allow brewers to add sufficient salt to make up, with that naturally in the water, 50 grains per imperial gallon. Soft water gives greater extracts, as it dissolves the albuminous matter in the malt more effectually than hard. With the use of very soft water as much as 100 It of catract per quaster has been obtained; but here the goodness of the extraet was the chief proof of the badness of the water; for it is dangerons to have toon much albuminous matter in solution, exeept in the case of porter or ale that is quiekly consumed, albuminous bodies being sueb powerful agents of change. Heace the Burton brewers, whose beers have to stand a long time, and in all elimates, are perfectly right in praising then water, which contains a large proportion of these mineral salts. The supposed superiority of the Burton ales is due to the water, which is supplied, not from the River Trent, but from wells 20 to 120 feet deep. These wells are supplied from springs rising in the Outwood hills that form the westera side of the valley. The springs take np line in their passage through the gypscons deposits contained in the keuper marls of the district. The presence o: sulphates and earbonates of lime and the absenee of organic matter make tho water of that distriet so advantageous fur brewing. The following is an analysis of the water used in one of the largest brewerics in Burton, showing the amount of ingredients in the imperial gallon, represented in. grains :-

Chloride of Sodium	$10 \cdot 12$
Sulphate of Potash.	$7 \cdot 65$
Lime...	18.95
. Magnesia	$9 \cdot 95$
Carbonate of Lime...	15.51
Magnesia	170
, lron.	$0 \cdot 60$
Silicic acid.	0.79
	65.28

Tho water of another large firm in the same town gives ty analysis $54 \cdot 5$ grsins of sulphate, and 9.93 of carbonate of lime. The temperature of water used to be a great consideration for refrigerating the worts; but this is now of little consequence, as in most largo breweries the water used for that purpose is frist brought to a point just abova freezing, by means of ether spray.

We now come to the actual. process of trewing, or the
art of making the materials we have deseribed into beer. While brewing cannot be considered a difficult or a mysterions art,--good materials, a good method, and strict attention being the secrets of suceess-thero is no process 10 which rules are of less avail. To obtain complete success, it 13 necessary that the brewer sball have formed an opiniou of his materials from personal observation, and hat le should be thoroughly acquainted with the brewery n which they are to be nsed. It is not too much to say, that the same beats and quantities cannot properly be ased in any two breweries. Bearing this difficulty in mind, we shall endeavour to point out where instructions may be safely followed, and where the cirenmstances of locality, \&c., will subject them to certain modifications which eannot bo strietly defined in an article like the prescnt.

Brewing consists of eight distuct nrocesses, which may be classed as follows - -

1. Grinding.	5 Cooling.
2. Mashing.	6. Fermenting.
3. Sparging.	7. Cleansing.
4. Boiling.	8. Raeking and storing

Grinding.-This is a very important cperation; for, if imperfeetly parformed, some of the "goodness," or "extract" as it is called, will be left in the grairs after mashing, thus entailing a heary pecuniary loss on the brewer. The malt is crushed rather than ground between plain metal rollers; this is enforeed by law, for the purpose of facilitating the examination of the gram as to whether it has been malted or not. Previous to the passing of the Aet fraudulent brewers mixed raw grain with their malt, grinding it all op fine, to prevent identification. Each corn should be well broken, that the mashing water may have free access to every partiele; on the other hand, if the malt be ground too fine, it is linale to "set," that is, form a paste in the mash tun. When this bappens it will be difficult to draw the wort off, and when of it will contain so much of the coarser portion of the grain that the flavour and kecping qualities of the beer witl be impaired. If possible the crushed malt should stand about twentyfour hours before being nashed, care being taken to protect it from air or damp, -the object being to allow the heat generated by passing through the rollers to escape.

Mashing is the process of infusion, or mixing the malt with water at such a temperature as shall not only extract the saccharine matter existing in the malt, but shall atso change the still unconverted stareh into grape-sugar. This is aecomplisbed by the prinelple called diastase, the power of which wo have shown under the head of matting. Many masling-machines bave been invented, and many are in use. In some the malt and the water are simply brought into conjunction, and then mix themselves as they fall into the mash-tun; others, driven by steam, perform the eqperation of mixing more leisnrely, and, in some cases, more effectually. The eld-fashioned method of mashing is by means of iron rakes. These rakes are fixed on arms extending from the centre of the tum, and are so construeted that when set in motion, no portion of the ruash escapes them. When ralkes are used a portion of the rashing water is first run into the tuh, ant part of the malt; the machinery is then started, and, whilst the rakes revolve round the tun, the romander of the malt and water are added. The heat of the maching water is a very impertant point; the particular temperature must depend apon the quantity and quality of the malt, and the situation of and anomet of radiation from the mash-tum. Not less than two or more than three larrels of water should lif rin on to every quarter of mali, and the heat of the water should be such, that, when all las rum on. that 19 , when
the malt has combined with this water, the temperatare 2 . the mash shall not be lower than 148° or higher 'an 152°. In some breweries this result will be obtained, y masung at 168°; in others it will be necessary to gu as high as 180°. Neither of these heats will do any harm so long as the heat of the mash does not exceed 152° Most brewers and chemists think that, to ensure the best results, it is necessary for the mash to stand at least two loours It would appear, however, that this belief has no zolid foundation. Recent obscrations have convincell the present writer that an extract as good, and perhaps sounder, is drann from a five minutes' mash as from one that las stood two hours,- a fact which any brewer can test for himself. The.wort should be drawn off by means of sereral pipes running from different parts of the mash-tun. It must Le run off slowly at first, or the malt in the tun ("goods," as it is now celled) will be drawn down so tightly that 11 will be difficutt for the sparging water to run through it It is a good plan to probe the mash now and ther with a thin stick; if the "goods" feel tight, and difficult to pene trate, the wort is being run off too quickly.
Sparging.-When abont half the wort has run off the mash, the operation of sparging sbould be commenced,the object of that process being to wash out the goodress left in the malt after mashing. The sparging-meciue is made and fixed as fellows:-A lar of iron baring an npright pin in the centre is fixed across the mish-tun; on this pin is placed a copper bowl or pan; into this pan are screwed two or three arms, estending to the sides of the tun. These arms are abunt an ineb and a half in diameter, and are peiforated their whole length with stmall boles on their reverse side. The hat water being conreyed into the pan fills the arms, and, running ont through the perforated holes, eanses the arms to revolve round the tun. Ey thas means an equal and continuous shower of bot water is rained upon cvery portion of the goods. The beat of the sparging water, like that of the mashing liquor, must be mudified ly cireumstances. In brews of less than 10 quarters, 200° will be found to be a good heat ; where larger quantities are mashed 185° may be recommended as a safe temperature.
Boiling.-When the wort runs of the mash no time sbould be lost in getting it into the copper or boiling back. In many modern breweries the mash-tun is piaced immediately over the copper, so that the wort runs direct from the former utensil into the latter. Some coppers are builh with an ordinary furnace, others are fornished with a coil, in the fatter ease the viorts are boiled by steam passing through the coil from the boiler. Many brewers prefer to boil hy steam, as it is a cleaner method, and they are able to regulate the operation to a nicety. Where the steam coit is used the boilng back is generally made of weod While the wort is running or being pumped inte the eopper, the heps must be added. Here, again, no positive instructions as to quantity can be given. On this point the brewer must be guided by his customers' tastes, the season of the year, the length of time the becr lias to be kept, and the quality of the bop used. For strong store ales, from 10 tb to 13 n of groed bops to every quarter of nalt is not too much; whilst for ordinary beers, to be drunk within two mentbs, from 6 to to 9 lib per quarter should suffice. India pale ale annl litter beer require from 18 to to 25 th per quater. Various kinds of English and foreign hops can lie used in the same brewing with advantage ; the propertions of each kiad must be left to the judgment of the operator. Of course, the runker Bivarian and American hers must not be so freely used as the nore delicate Enghsh gronths. There is a wide difference of opinion as to the length of time ineer should be buided. Wor heers of guick draught, no bour and a bat
is long enough; stock ales should have half an hour or an hour extra. The finest pale ale is never boiled longer than oae hour. Where it is necessary to bave two boilings in one brewing, the second copper should boil rather longer than the first. The boiling duriag the first twenty niautes should be brisk, in order to break the wort.

Cocling.-When the wort has boiled the necessary time, it is turned into the hop-back to settle. The hop-back is a uteusil made of wood or iron, and fitted with a false bottom of perforated plates; these plates retain the hops in the back, whilst the wort is drawn off into the coolers. The wort should be allowed fifteen or twenty minutes to settle in the back, and when run on to the coolers should be thoroughly bright. In many breweries coolers are not used, the wort running direct from the bep-back through the refrigerator into the fermenting tun. When practicable this is an excellent plan, for worts often take barm whilst lying exposed on the coolers. In every brewery of any bote the worts are cooled artificially by means of a refrigerator. Of these there are several kinds, but all are constructed upon the same principle, which is that of allowing a thin stream of wort to trickle orer pipes containing a running stream of water. The water is either run direct from the mains or is pumped by an engine from a well. In every instance it is aecessary that the mater shall be several degrees colder than the heat the wort is to be "pitched" at, as brewers call it, ia other words, the heat at which the wort is let down into the fermenting tun. This "pitching heat" varies very much. Beers pitched at bigh heats, say from 62° to 66°, come soonest into condition, but do not keep so well. Under ordinary circumstances 60° appears to be the best heat at which to start fermentation, or, in the case of strong ale, $5 \mathrm{~S}^{\circ}$.

Fermentation. -The ferasenting tua may be round or equare, open or closed, and made of wood or stone. Stone squares are universal in the northern couaties of England, but are rarely met with in the southera and midland counties. When beer is fermented in a stone or slate square, it should never be pitched at a lower heat than 66° or 65°; for these utensils are very culd, and therefore liable to check or stop the fermentation. Every fermenting un should be fitted with an attemperator. The attemperator coasists of a series of pipes fixed within the tun, and haviag its inlet and outlet on the outside. It should be possible to run hot or cold water through these pipes at any hour, so that the temperature of the gyle can he raised or lowered at pleasure. The work performed by that matural process which we call fermentation is the conversion of saccharine matter into alcohol. It plays a most impurtant part in the brewer's art, and deserves his most careful attention. In order to obtain a quick and regular fermentation, the brewer employs yeast, or barm, as it is called in some parts of the country. Great care must be takea that the yeast used shall be perfectly fresh and healthy, for it must never be forgotten, that it is impossible to obtain a good fermentation from bad yeast. Yeast that comes from porter should never be used in pale or delicately flavoured ales, as it is apt to impart a burnt taste and high colour. The quantity of yeast required depeads upon the strength of the wort and the quality of the water. Strong worts require more yeust than weak ones; and the same rule applies to hard waters as compared with soft. Worts of about 20 lt gravity should do well with 1 lb of yeast per barrel, whilst stronger worts require twice that quantity. As we have said, 60° seems to be the best heat at whieb to pitch wort, unless it is of a high gravity, or the fermenting tua be built in a very warm place, in which case the temoerature of 58° will not be too low.

The appearance of a gyle of beer durng the earlier stages of a good fermentation is very beautiful. At first the whole surface is covered with a thisk white foam, whieh, withn a few hours, curls itself nto every maginable shäpe and form. Thas meteases in height, intil it presents the appearance of a number of jagged rocks of suowy whiteness. With these the artistic beauties of the fermenti. tion disappear, although the fine thick head of yeast which follows delights the eye of the practised brewer, for it tells him that bis fermentation is drawing towards a successful end. But the progress of the fermentation unust not be judged by appearances alone. Samples should be taken from the tun at least twier a day, and weighed with the saccharometer. By this means the brewer telis at what speed the sugar is beng converted into alcohol ; and when he considers the process has gone far enough, lae stops it by taking away the yeast, which operation is termed cleanoing. At the end of the first twenty-four hours, the gyle should attemate 1 th in every three or four hours, whilst the temperature shonll rise from 1° to 2° during the same space of time. The fermentation may proceed quicker than this without any harm ensuing; but if it does not reach the minimum speed of 1 lb in four hours, it may be said to be sluggish, and requires assisting. This is done by "rousng" the gyle every two hours with a utensil made for the purpose. Wort fermented in stono or slate squares must be roused every hour and a half, without exception. If unchecked the temperature of the gyle will rise to 76° or eren 80°. Any heat above 79° is likely to affect the beer injuriously, for at that tem. peraturs tho acetous fermentation commences. At the samte time, beers for guick consumption may be allowed to rise a few degrees higher, and will perhajs bo improved by the increase of temperature. The attemperator must be used to prevent the gyle reaching too high a Leat.

Cleansing is the act of removing the yeast from the beer, ia order to stop the fermentation. There are three modes of cleansing-1st, by somply skimoing the yeast off as it rises to the surface ; $2 l$, by running the beer into casks, and then allowing the yeast to work out through the bung: boles; and $3 d$, on what is called the Union, or Burton system, which is the second plan with some improvements. When beer is eleansed in the seeond or thirl mode, it is necessary to kecp the casks or Umons full to the bung. They mist, therefore, be refilled every two hours, either by Land or by a self-acting apmatus insented for the purpose. Brewers difier as to the time when the operation of eleansinfg should commence; and, indeed, it is difficult to fix any limit, as much depents upon the character of the ale and the appearance of the formentation. In the writer's opmion strong ales, worked in easks or on the Burton system, slould be cleased when they have attenuated down to 12 or 14 d ; weaker beers and palo ales should be allowed to go quite 210 lower before being cleansed. Stout and porter should be cleansed rather earlier than any kind of ale, 10 order that they may drank full in the month. When all the yeast has worked out of the beer, it is ready for the last jrucess.

Racking and Storing.-Ales intended for quick coasumption should be racked so soon as cleau, or they will be found flat and out of condition. A few of the finest hops should be put into the cask; and in the case of pale ale the quantity should not bo less than 1 it to the barre'. The finest strong and India pale ale should be stored between two and three months before being taped, and even at that age, must be considered young. Ales intended to bo stored some montlis should have a porous vent peg placed in the shive to keep the alle from fretting, and save the I head of the cask from leing hlown out.
(s. A. W.)

BREWSTER, Sir David, natural phlosopher, distinguished especially for his orignal discoveries in the ecience of optics and his numerous and vaned contributions to scientific literature, was born on the 11 th December 1781 at Jedburgh, where his father, a teacher of high reputation. was rector of the grammar school At the early age of twelve he was sent to the University of Edinburgh being intended for the clencal profession Even before this, bowever he had shown a strong inclination for physical inquiries, which had been fostered by his intimacy with a "self-taught philosopher, astronozer, and mathematucian," as Sir Walter Scott called hint, of great local lame-James Vertch of Inchbonny lejtch was partueularly skiful in making telescopes, and may thos bave had some influence in determmang the precise direction of his young compamon's future researches Though be duly finished has theological conrse and was heensed to preach, Brewster's natural preference for other pursuits. conbined with a constitutional nervousness, prevented ham from engaging in the actuve duties of has profession. In 1799 he was noduced by his fellow-student, Brougham. to study the mitection of hight. repeating Newton's experments, and from this date he carried on, almost without interruption, the course of original discovery in the selence of physical optics which constitutes one of has chal clams to distmethon The results of bis investugations were commumeated from ame to time in papers to the Philosophical Transactaons of London and other scientific journals, and were admurably and impartally summarized by Professur James D Forbes in his prelimmary dissertation to the eighth edition of this Encyclopedia The fate that other philoso. phers, notably Malus and Fresnel, were pursuing the same investigations contempranerusly in France docs not invahdate Brewster's clam to indejendent discovery even though in one or two eases the priority must be assigned to others

The most important subjects of his inquiries are enumerated by Forbes under the following five heads.-1 The laws of polarization by refcetion and refraction, and other quantitative laws of phenomena, 2. The discovery of tho polarizing structure induced by hest and pressure, 3. The discosery of crystals with two ases of double refraction, and many of the laws of thers phenomena, including the connection of optical structure and crystalline forms, 4 The laws of metallse reflection 5 Experiments of the absorption of light. In this line of investi gation the 1 rime importance belongs to the discovery (J) of the connection between the refractive index and the polarizing angle, (2) of brasal crystals, and (3) of the production of double refraction by irregular beating These discoveries were jromitly acknowledged by those best qualifice to esumate then value So early as the year 1807 the degree of LLD was conderred ppon Brewster by Marischal College Aberdcen it 18.15 he was made a member of the Royal Society of Lendon. and recenved the Copley medal, in 1818 he recensed the Rumfurd medal of the Society, and 111816 the lirench Instatutc awarded hom whe half of the frize of three thousand Irancs for the twe most important discovences in physical science nade in Europe during the wo preced ing years. Anong the non-scientilac public has fabe was epread more effectually by the invention. in 1816 of the elegant phidesopheal toy, the kalendoscone. fos when there was so great a demand both in England and Aneenca that for some tume the supply could not meet it An astrument of hugher meterst, the stereoscope, which, therugh of mich later date (1849-50), may be nentioned bere. sunce along with the kalchlusenpe it did more than anything else to popularize lus name, was not as has often beed asserted, theinvertion of Dewster wionthomedisencarad
its principle and apphed it as early as 1838 to the construction of a cumbrons but effective instrument, in which the binocular pietures were made to conture by means nf marrors. To Brewster is due the werit of suggesting the use of lensea for the purpose of outung the dissmilar pictures and. accorduagly, the deuticular stereoscope, now in exclosise use, may fairly be sald to be bis invention. A much ware valuable praencal result of Brewster's optical researches may the rueta in the vast improrement of the hghthouse system durng the last hall century It is true that the dopiric apparatus nae frertected independently by Frespe! whu had alsu the satistaction of being the first to.put $1 t$ miv operation. the Fremb Government beng in this, as in many other cases, quicket than the English to percelve the value of new scientific discoveries But it is indisputable that Brewster was earlier in the field than Fresnel that be described the dioptric apparatus in 1812 that be pressed its adoption on those in authority at least as early as 1820 . two years betore Fresnel suggested it and that it was tually mutroduced into Britush lighthouses mandy by his persistent efforts The trubute paid to his memory by has successur at the head of the Unirersity of Edinturgh was therelore as just as ut was graceful. "Every lighthouse that hurns rond the shores of the British empure is a shiming witness to the osefulness of Brepister's life."

Brewster's own discoveries, mportant though they were, were not has only, perhaps not even has chiet service to scrence The extent and variety of bis contributions to scientific hiterature were hitile short ol marrellous. He commenced literary work in 1799 as a regulat contributor to the Ederbugh Hagazene, of which beacted as editor at the age ol tremty In 1807 he entered on a much larger undertaking, which cost him long contmed labour, and, espectally tuwards its close, great vexation and anxity The cbance suggestum of a friend, who knew his varied powers, Jed to the projection, under bis editorship, of the Edzburgh Encyclopadia. ol which the first part appeared in 1808, and the last not uutil 1830 The work was, as might bave been expected, strongest in the scientific department. and many of its most valuable articles were from the fen of its editor At a later ferrod be was oue of the leading scientafic contributors to the Encyclopadia Eratintaca (seterith and engbih eduons), the artucles Electricity, Hydrodynamics. Magnetism, Mıcroscope, Optics, Stercuscope, Voltanc Electricity, de. beng from his bor In 1819 Piewster undertock furthey editorial work ly establisbing, in conjunction wath Jameson, the Edmuergh Ihelosoptacal Journal whels took the place of the Idin. lugh Wagazme After a time the title was agan cbanged to the Edmburgh Juurnal of Sotence. Sixtecn volumes of which appeared ondes Brewster's sole edjor shop. with very mauy articles from his owi pen. To the transactuens of vanous learned sochenes he contri luted from first to lasi between three and four hundred fapers, add fer of has contemporares wrote so moch for the varnous revens In the forth firush literew aleme seventy-five artucles of has apreared a hist of his larger seprate works will be found belon sirecal mentiote, however. must be made of the most inportant of them all - has brography of Newton In E83 he published a shory fryular account of the philusophers hife in Murray's Famely Lil'rary, bot it was not wuth 1855 that he was able to issue the much, fuller Memoms of the Lefe. fl'mums, anel Discovertes of Sur Isaac Diutan, a work which embodied the results of more than twenty years patient investigation of erghal amoserpts and all other available sourecs.

Brewster's relatons as editor brought him into frequent commumation with the most cmment scacnufic inen. al id be was naturallv among the first to recughze the bonch
that would acerue from regular intereourse among labourers in the field of science. In an article in the Quarterly Review he threw out a suggestion for "an association of pur nobility, clergy, gentry, and philosophers," whieh was taken up by others and found speedy realization in the BritisK Association for the Advancement of Science. Its first meeting was held at York in 1831; and Brewster, along with Labbage and Herschel, had the chief part in shaping its eonstitution. It was this service mainly "that was referred to when it was said of him after his death that "the improved position of men of science in our times is chielly due to Sir David Brewster." In the same year in wheh the British Association held its first meeting Brersiter received the honour of knighthood and the deceration of the Guelphic order of Hanover. In 1838 he was sppointed prineipal of the united colleges of St Salvator and St Leonard, St Andrews. Two of the highest honours of the scientifie world were conferred upon him in 1849, when he filled the offiee of president of the British Association and was elected one of the eight foreign associates of the Institute of France in suceession to Derzelius., In 1859 he accepted the offiee of principal of the University of Edinburgh, the duties of which he continued to discharge vigorously until within a few months of his death, which took place at Allerly, Melrose, on the 10th February 1868.
In ostimating Brewster's place among scientific discoverers the chief thing to be borne in mind is that the bent of his genius was not eharacteristically mathematical His method was empirical; he was a painstaking and accurate observer and classifier of facts rather than a theorizer; and the laws which he established, sofme of therm, as has been pointed out, of prime importance, were generally the result of repeated experiment. To the ultimate explanation of the phenomena with which he dealt he contributed nothing, and it is noteworthy in this eonnection, that if he did not maintain to the end of his life the corpuscular theory he never explicitty adopted the undulatory theory of light. These limitations, howerer, nre to be taken as characterizing his genius rather than as detracting from it. Fer will be inclined to dispute the verdiet of Forbes :-" His scientific glory is different in kind from that of Young and Fresnel; but the diseoverer of the law of polarization, of biaxal crystals, of optical mineralogs, and of doutle refraction by compression, will always occupy a foremost rank in the intelleetual history of the age." In addition to the various works of Brewster alreddy noticed the following may be mentioned :-Notes and Introduction to Carlylo's translation of Legendre's Elements of Geometry (1824); Treatise on Optics (1831); Letters on Natural Mayic, addressed to Sir Walter Scott t1831); The Martyrs of Science, or the Lives of Galiteo, Tycho Brahe, and Fepler (1841); More Worlds than One (1854). (See The IIome Life of Sir David Breuster, by his daughter Mrs Gordon.)

BRIANÇON, a very strongly fortified town of Frauee, the capital of an arrondissement in the department of Hates-Alpes, situated on a hill ahout 4300 feet above the level of the sea, near the source of the Durance, in lat. $44^{\circ} 53^{\prime} \mathrm{N}$. and $6^{\circ} 47^{\prime}$ E. long. It comumands the road acress Mount Genevre between France and Italy, and is well defended by its natural position; while the surrounding eminences are erowned with strong forifications conmunicating "with each other and the town by subterranean passages. The torn itself is one of the highest in Europe, and the neighbouring village of St Veran has the loftiest situation of any in France. The prineipal buiddings in Briançon are a church in the Italian style; the departmental prison, and n commnnal college. A single-arch bridge, 127 feet in span and 180 feet high, crosses the valley of the Clarée, affording access from the town to the principal parts of the fortifications. There is an extensive sill-factory
in the old eonvent of St Catherine, which manufactures floss silk, stockings, hats, and other silk goods ; and the other industrial artcles in the town comprise small iron wares, leather, and lavender water. A considerable traffic is earried on in chalk, and in turpentine and other forest productions. The chalk, though known as Briançon chalk, is obtained at Fenestrelles in Piedment ; the Briancon manna is a kind of resin. Briançon is identified with Brigantium, a eity of great antiquity and dubious origin, which became an important military post under the Romans. For a long time after the fall of the Roman empire it msintained itself as an independent republic, and was not united to France till 1349. Made over by the peace of Ryjwiek to the duke of Savoy, it was restored io Eranee in 1713. In 1815 the town made a volle defence. Population in 1872, 3579.

BRIANSK, a town of Russia, in the government of Orloff, 98 miles E.N.E. of the city of that name, in 53° 15° N. lat., and $22^{\circ} 50^{\circ} \mathrm{L}$. lons, on both banks of the Desna, opposite the mouth of the River Snezheta. It is divided into four parts by several smaller streanis. The town is mentioned in 1146, and then bore the names of Briansk and Debriansk. It afterwards formed a separate proneipality, which came to an end in 1356 with the death of Prince Basil Mexandroritch. After the Mongolian invasion Briansk and tho whole Siever country fell under the power of the Lithuanians; but from "ime to time it was united with Russia, and finally became incorporated with the empire in the beginnigg of the 17th century in the reign of Miehael Theodororitch. Under the Girst Demetrius Briansk was taken by tho revels, but successfully resisted the attacks of the socond impostor. Under the Empress Anna, according to the plan of Paul I., there was constructed a dock for the building of ahips, but it was closed iu 1739. In 1778 the town was mads the eapital of a departinent in Orloff, and in 1783 an arsenal, which still fexista, was established for the manufacture of netillery. Briansk has thirteen churehes, of which the eathedral was midt in 1526, and restored in the end of the 17th century. In tho sacristy is presorsed a manuseript eopy of the gospels in the writing of Michael Theodororitch, which dates from 1637 . In tho convent of Feter and Paul is buried Oleg Romanoviteh, prince of ChernigoffandBriansk, who lived in tha 13 th eentury. There are two high schools in the tomn, a hospital, and a dispensary; and the industrial establishments include rope-walks, tobaceofactories, brick-works, tallow-boiling works, flour-mills, and a brewery. A considerable trade is carried on, especially in wood, pitch, linseed-oil, and eattle, which are exported to Moscorw and St Petersburg. There are markets twiee a week, and one anuual fair. In 1860 the population was 12,816, all of the Greek Church except 268 Catholies and 35 Jews. In 1867 it amounted to 13,881 .

BRIAREUS, or Eg.eon, ene of the three hundred-armed (Hekatoncheires) sons of Uranus and Gaia,--lis brothers being named Cottus mad Gyges. The legends regarding them are various and somewhat eontradietory. According to the most widely-spread myth, Eriareus and his brothers were called by Zeus to his assistance when the Titans were making war upon Olympus. The gigantic enemies were defeated and consigned to Tartarus, at the gates of which tho three brothers were placed. Other accounts make Briareus one of the assailants of Olympus, who, after his defeat, was buried under Mount Etna. Homer mentions him as assisting Jupiter when the other Olympian deities were plotting against the king of gods and men. It would be dificult to determino exactly what natural phenomena ars symbolized by the Eekatoncheires. They may represent the gizantic forces ot nature which appear in earthquakes and 0^{+}her convalsions, or the multitudinous motion of the
sea wares. The later inferpretation is rendered moro probable by tho fact that Briareus is frequently called a marine deity, and is sometimes said to have been a son of Pontas and Gaia.

BRIBERY, as a public offence, may be defined as the administration of a bribe or reward, that it may bo a motive in the performance of fonctions for which the proper motive ought to be a conscientious sense of duty. When this is superseded by the sordid impulses created by the bribe, a person is said to be corrapted, and thus corruption is a term sometimes held equivalent to bribery. The offenco may be divided into two great chasses, - the one characteristic of despotisms, where a person invested with power is induced by payment to use it unjustly; the other, which is an unfortunate characteristic of constitational governments, whero power is obtained by parchasing the soffrages of those who can impart it. The former offence is in every sense the more odious and formidable, and indeed it may bo said, that until a country has outgrown it, there is no room for the existence of elective bribery, since the nations among which justice is habitually sold appear to be far below tho capacity of possessing constitutional rights.

When Samuel in his old age challenges a rigid scruting of his conduct, he says, "Whose ox bave I taken, or whose ass bavo [taken? or whom havo I defrauded $\}$ whom have I oppressed? or of whose bands have I received any bribo to blind miac eyes therewith." And Amos, when denouncing the condition of tho Israchites under Jeroboum, says, "They afflict the just, they take a bribe, and they turn asido tho poor in the gato from their right.". It is a natoral propensity, removablo only by civilization or some powerful counteracting influcace, to feel that overy element of power is to bo employed as much as possible for the owner's own behoof, and that its benefits should be conferred not on those whe best descrve them, but on those who will pay most for them. Honce judicial corruption is an inveterato vico of imperfect civilization. It is so decply qeated among Oricatal races, that tho attempts by controlling authority to cradicate it bave been often futile. It has boen the main impediment to tho employment of natives in tho British Eastern empire, sinco no catarnal appearance of respcctability, or apparent systematic rootine of business, can be relicd on as securitics that the whale organization is not contarainated by systematic bribery. It is difficult to get.tho Oriestal mind to understand bow it is reasonablo to expect tho temptation of a bribe to bo resistel. In tho Russian empiro this Oriental characteristic has had another conflict with the demnads of a nigher civilization. Tho organization of tho Government reguires that tho empire should be honestly served by its official men, bat their mora! ity is of the hamblest Oriental standard, and force will not change it. In no country, perhara, has the offenco been visited with more dire chastisement where it bas been discoverod, yct by the concurring testimony of all who are acquainted with Russian socicty, not only the official departments, bat tho courts of law sre still influenced by systematic bribery. There is, yerhaps, no other crimo on which the forco of law, if umided by public opinion and morals, can havo so littlo influerce: for in other crimes, sucb ea violenco or iraud, there is gencrally somo person inimediately injored by tho act, who can give his aid in tho detection of the offeader, bat in the perpetration of tho olfenco of bribery nll the immei iate parties ubtain what they desiro, and aro satisfied.

The purification of tho liench from jodicial bribery has boen gradual in most of the European countries. In Franco it received an impulso in the 16 th century from tho high-minded chancellor L'Hôpital. In Fagland judicial corroption acquired a painful, lut perhaps a wholesome senown, from tho fate of the illustrious Eacon. In Scotland
for some years after the Revolution tho bench was not without a suspicion of interested partiality; but during the present centory, at least, there has been in all parts of the empire a perfect reliance on its purity. The same may be said of the higher class of ministerial officers. There is no doubt that in the period from the Revolution to the end of Qucen Annc's reign, when a speaker of the House of Commons was expelled for bribery, and the great Marlborough could not clear his charaster from pecuniary disbonesty, there was much corrupticn in the highest official quarters. - The level of the offence of official bribery has gradually descended, until it has bccome an extremely rare thing for the bumbler ofticers connected with tho revenue to bo charged with it. It has had a more lingering existencs with those who, because their power is more of a constitutional than an official character, have been decmed less responsible to the public. During Walpole's administration there is no doubt hat members of yarliament were paid in cash for votes; and the memorable saying, that cvery man has his prico, 123 been preserved as a characteristic indication of his method of government.

One of the forms in which administrative corruption is most difficult of cradication is the appointment to office. It is sometimes maintaned that the parity which characterizes the admimstration of justice is here nuattainable, becrose in giviaer a judgment there is but one form in which it can be justly given, but when an office has to be filled many people may be cqually fittcd for it, and personad moties must intluence a cimice. It very rarely happens, however, that direct bribery is sopposed to influence such appointments.

It does not appear that bribery was conspicuous in England until, in the early part of the 18th centory, constitueacies had thrown of the feudal dependeace which lingerod among them; and, indecd, it is often said, that bribery is essentially the defect of a frec people, since its is the sale of that which is taken from others withont payment. It is alluded to by Fielding and Smollett, and had becomo conspicuous in the days of Hogarth, who represents it in its doublo shape of demoralization; one nicture shows a reckless expenditure of money among 1 roHigato expectants, whose demoralization is a systcmatic source of profit to them, while another presents us with the impoverished father of a family urged against his conscieace to relieve the misery of his wife and children by tho salo of his vote.

In England electoral bribery bas been the subject of much legislation, which culminated in tho Corrupt Fractices Prevention Act of 1804 (17 and 18 Vict. c. 102). Ly this Act the following persons shall be deemed guilty of bribery, and shall be punishablo accordingly :-

1. Every person who slall directly or indirectly, by himself or by any other person on his behalf, Inive, lead, de., or offer, promise, or promise to procare, ke, any money or raluable considctation to or for any voter or any other person in order to induce any voter to voto or refrain from voting, or shall corruptly do any such act on account of such voter baving voted or refraiued from voting at any clection.
2. Every person who shall similarly givo or procuro or promise, de., any ollice. place, or cmployment to or for any voter or other person in order to indace thim to vote, de.
3. Every person who shall make any gift, loan, promise, \&c., as aforesaid to any person tu induen such person to procure the return of any person to serve in Parliament or the rote of any roter.
4. Every person who shall, in consequenco of such gift, procure or cugage, fromiso or endeavon to procure the return of any person or the vote of any voter.
5. Every persun who shall fay any nooney with the

Intent that iu would be serew. a bribery, or whorshall pay moncy in repayment of any money wholly or in part expended in bribery.

Persons oo offendiog are guilty of a misdemeanour (in Scotland, of an offence punishable by fine and imprisonment), and shall be liable to forfeit the sum of $£ 100$ to any person who will eue for the same, together with costs. Sect. 3 extends tho offence (1) to persons who before or during an election shall receive or contract for any money, \&c., for voting, or refraining, or agreeing to vote or to refrain from voting; and (2) to persons who, after the election, receive money, \&c., on account of any person having poted or refrained, \&c. Such persons shall be guilty of a misdemeanour and forfeit $£ 10$.

Treating is defined in Sect. 4. Every candidate who gives, procures, or pass for any expenses incurred for meat, drink, or entertainment, or provision to or for any person in order to be elected, or for being elected or for the purpose of corruptly influencing such person to give or refrain from giving his vote at an election, \&c., shall be deemed guilty of treating, and forfcit $£ 50$ to any person who shall aue for the samo; and every person corruptly accepting such meat, drink, \&c., shall be incapable of voting at sucb eloction. Persons found guilty of bribery, \&c., or from . Whom penalties as above mentioned have been ecovered, shall be struck off tho list of voters ly the revising barrister. Prosecutions and actions under the Ac must be begun within ono year. Other sections of the Act prohibit giving cockades to voters at elections, or supplying them with refreshments on account of the r having polled or being about to poll. Any candidate for a county, city, or borough found guilty by an election con mittce of bribery, treating, or undue influence by himself or his agents shall be iocapablo of being elected or sitting in Parliament for auch county, city, or borough, during the Parliament thon in existence. Up to 1868 disputed elections wero dealt with by committecs of the Houso of Commons, but the Parliamentary Elections Act (31 and 32 Vict. c. [25) has transferred tho jurisdiction to Her Majesty's jadges (see Elections). Tho report of thọ judge is to have the same effect as the report of an election committee uader the old lav; and if he reports that corrupt practices have extensicely nrevailed, a commission of inquiry may bo issued under 15 nud 16 Vict. c. 57. Candidates reputed by the judgo to be guilty of bribery shall bo incapablo of being elected to the House of Commons for seven years, and during the same period mas not (1) bo recristered as voters; or (2) hold office under 5 and 6 Will. 1V. c. 7 6, or 3 and 4 Vict. c. 108, or any municipal office; or (3) hold eny judicial office, o: act as justice of the peace. Other persone found guilty of bribery aiter having had an opportunity of baing heard aufor the same disqualifications. Similar provisions against bribery, \&c., at municipal clections are contained in the Act 35 and 36 Vict. c. 60.

If the election cornmissioners, appointed under 15 and 16 Vict. c. 57, repurt the exteusivo prevalenco of corrupt practices, bills may to brought in for the disfranchisement of the constituency. Dridgemater, Leverleg, Sligo, and Cabel were so disfranchised in 18.0. Four boroughs-Totncs; Reigate, Great Yarmouth, and Laneastor-were disfranchised by tho Representation of the Poople Act, 1807, for corrupt practices. In tho caso of a vacancy in a conatituoncy where corrupt practices bave prevailed at last clcction, the liouse may disfranchise it indefioitely, either by a resolution to that eflect or by negativing tho motion for a new writ.

The judges manifested great repugnance to the new jurisdiction conferred on them br tho Elections Act, and vigorously remonstrated against it during the passage of the measure through Parliament. It was feared that the
purity of the bench magt be sullied by being urougut into close conuection with political contests. Public ophion, however, had distinctly :ondemucd the Ifouse of Commons Election Committees, wheh r here neecssarily anythins but judicial in character, and were, besides, tainted with the suspicion of being frequintly actuated by pulitical motives. Many petitions ha e now been tried by tho judges, and in a manner which has given grcat satisfaction to the country. One consequence of the nuw system which might have licen anticipated is the imtroduction of more prccise defintions into the phraseolugy of clection law. "Agency," for example, and "valuable considerition," have been treated by the judges according to the ordinary meaning of the words in courts of law, and candidates have been unseated for the acts of persons, technically their "agents," but persoually unknuwn to them, and for gifto, gencrally reputcd laudable, twi :egally falling within the definition of bribes. lunbery flourishes most vigorously in the English borough constituencies; and the secret vating introduced by the Ballot Act seeins to havo lad very little eflect on tho practice, on account of tho fidelity with which the corrupt voters keep their promises. In a recent election inquiry before commissioners, witnesses declared their belicf that a quarter, or even more, of the constituency was permanently corrupt, and held the balance between the two pulitical parties. Extensivo bribery under the guise of chatitahle distnbations of coal, provistons, \&c., seems to presarl in many constituencics, and a still more indirect form is the payment of largo subscriptions to public parposcs. Necently, it has been obsersed, constituencies hare shown a marked prefereneo for realthy candidates with some lucal connection.

BRICK, a kind of artificial stone made of bakal chav. The usual form of a bruck is a parallelopipedm, about ; inches loug, $4 \frac{1}{2}$ inches broad, and 3 inches thack. The art of brickmaking dates from very early times. We tead that burnt brick was used in builling the tower of Babel Tho walls and various other bu hlings of ancient Baliglor. wero made of burnt brick ; seve al varteties of lirick figure in Assyrian art, ame most of the Assurian literature was m the form of minute characters in Lalied clay (sece baby lon, Babyonia). Brickraking formed tho chiof occupation of the Israelites during theeir dedrading bondage in Egylt. The bricks wero made of clay mixed with chopped strare, and were probablysun drical. We read (2 Sam. xii. 3I) that loarid made the cbildren of $A \mathrm{ma}^{-}$ mon pass through the brick kilo; and whilo tho meaning
 of tho statement is doultful, it s thought that the instrumests mentioned in the context may lave heca uscd in preparation of the clay. INia, informs us of three dificrent kinds of bricks made by the Greeks. dn daly we have abudant evidence that the licmans esell lricks largely; and it was they, probably, who intraducod brickmaking into England. By the time of llemry VIII. the art had reaclied great perfectintr; and many fino brick buildings (e.g., the oluer part of Rampton Court) aro catant from that period. Previuus to the great fire of 1660 , many of the London bouses consisted chiely of timber frawework, filled in wilh lath and plater; but after the fre, brick was used almost exclusively in building. Much of the brickwork temaining from that time is finet
carved with the chused From the latter part of last century (1784) till 1850 , brieks in thas country were subject to taxation. In Holland. Where stone 13 scaree. breks bave i been on use from a very early period. both for domestic and publec buildagg

The quality of bricks depends promarly on the chorce of en earth There are three principal classes of brick. earths - (l) Pure elays consistiog chelly of alumica and silica, in various proportiuns, and witb a small percentage of otber saits, troa, lime, maguesia. de , (2.) Loams or sanúy clays, (3.) Jarls, or tarthe with a considerable proportion of hate. A paste of pure chy alone (made with water), while it may be eastly mulded. will shriuk and crack in drying and firing in proportion to the excess of alumana over silica but thes cas be remedied by mixture with a mider earth or wath sand Loams, agan, ere uften so loose that they require the addition of lime as a flux The London bnekmakers add lume and askes, or bretze, to their loams and marls. both as a tiux and to prerent shrinking, such aloustures also. as will be seev. affect colour. Brick-earths are very varous in composicion The proportion of iogredients in a good earth will be sowething like the followiog :-sulea, three-fifthe, alumma, une-fiftb, ron, lime, maguesia, manganese, soda, and potash forming the other one-fifth The clays of which fre-lirichs fur furnaces are made are almost entrely free from lime, magnesia, and like substances, which act as fluses. they are found throughout the coal measures mmedately beneath the coal The best, that of Stombridite, rill bear the mostintense heat that can be produced, without fusion. The Welsh fire-bruks, and thoso of Windsor. Newcastle, and Glasgow, are other well knomn varieties. The Dinas firebrick consists almost eatirely of silica, to this as added about one per cent. of hme, and the misture, after monlding, is intensely beated. lu Austna, a-very refractory siliceous brack is manufactured by M. Khem, the chief ingreduent being quartz of the highest possible degree of purits.

Tine colcur of bricts as datermined by the proportion of hydrated oxide of aron and other tagredients they contana. also by the degree of beat in burning Where ron is present aithout lume ur such substances, a moderate red heat makes the bracka red, the intensity varying with the proportion of $1 r o n$, with more antease beat, the bricks, if slightly fusible, may be ritrified externally, and beeome greenish blue ($e g$ the blue bracks of Staffordshire). The presence of lime changes the red colour prodiuced by ron to a cream frown maguesia also arrests the development of red Clays burmag a pale red ridl burn yellow if mexed with a fusible white sad. such as is often found on heatiss. Some clars, as thuse of Deronsbire and Dorsetshire, burn of a clear white The London malms gire a rieb brimstone yellow. The art of ornamental polychrome bricia mork has of late years been much developed. espectally by the German archutects The frmerpal varueties of common bricks made in England are place brecks, grey and red stocks, marl ficing loroks, and outing brucks. Tha first two are used in ordmary walling. The marl facing lrieks. made on the nergbonurbod of London, are superior to the stoeks, and used in the outsules of buildings Cutnog bricks, which are the finest kind of marl and red bricks, are used in arehes over whdone ond doors.

The process of bruekmaking varies considerably in difforent localities. In the followng account we shall, in the first instance, confine our attention to methods adopted in the ricinity of London, and thereafter note some of the peculiarities of other systems. The biost common mode of prepring the clay, in the Lowdon district, is that of malming. Amoner the varicties of brick-earth foum there molm is a substanco that can be used for bricks without any addition. But it is now rare, and an artarial malm
is made by mixing chalk and clay, previously reduced to pulp, aud allowing the muxture to consulidate by evaporation Bricks of the best quahty are made with this alone; but for the commoner sorts some of the malm as added Ito the clay or loam, suffient to make it fit for brick. making

The earth ts dug up in auturas, and placed on a level floor baukca round in order to retan the malm in the process of malmang Exposed daring the winter, it $1 s$ more or less broken up and pulverized by the frost, de. The machinery for malming consists of two washing-mills, nz the chalk and clay mills, which are placed together, dot far from the brick-earth The chalk-mill is a circular trough in wheb chalk is ground in water, by tro heavy Wheels with epiked tires, drawn round by horses. The pulp thus made passes by a shoot into the clas-mill, another and a larger circular trough, where it gets mixed with clay that is being ent and stirred in water by knires and harrows, also put in motion by borses. The creamy liquid malm passes through a grating into shoots which convey it to the brick-earth, over which it is distributed as equally as pus. sible. It is now left to sethe for a month or more, the water berag drained off at interrals, till the mass is Eral enough to bear a man walking over it. A thin layer of ashes, about 3 inches for every spit of earth, is spread orer the surface (this process being techuically called soiling), and the whole 13 now ready for the mouding season, whien commences generally in April.

The mass of earth, malm, and ashes is first tempered, or thoroughly turned over and mixed with the spade, whue Water is added 10 gire it the proper consistence. Tha tempered clay is then consejed to the pug-mill, -a conical tub, in which revolves (driven by borses) a vertical shaft with hormontal koves so inclined that the clay is slowly forced domn to the aarrom end by their motion. Several of these knife-arms are furnished mith cross l:nives, which assist in the cutting and kweading process. The clay comes out laterally at the bottom as a uniform mass, and is ready for moulding

The moulder stands at a table or stool, on which are Mouldang placed some of the tempered clay in iront of him, a little dry sand to the right and left, a small tub of water with the strike in it, a brick-mould, and e stock-board. Back. wards from the stool extends the page. a pair of iron rails, on wood, on which the raw bricks are pushed amay lyy the moulder. The brick-nould is a rectangular pase of slectiron, without top on bottom, hanng the two longer sides strengthened with mood The stock-baard, supported on four pins in the moulder's stoul, fits easily into the mould; it has olien a soldd elevation in the middle, for prodncing a hollow in the brick The moulder recenves from the clotmoulder (usually a woman), standing on his rigit. a freca of clay somenhat larger than a brick liaving spriokled sand on the stock-board, and dasbed the mould, after moistoning it, in the left saud heap, he places the mould on the stock-board, and dashes the clay into it, wath force, then pressing it with hes fingers so as to fill the angles. With the sirike (a short, smooth piece of wood) he strikes off the surpuas clay, then he turns the brick out of the mould on a thin board or pallet, rather larger than the brack, and slides it along the page to the tahing-of bor, who stands ready to put the bricks on a harrow of special construction, on this, after sprinkling with sand, they are convejed to the haek ground. The bricks are tach carefully removed from the harrow between two palles, ind built up in hacks, about eight bricks hich, and two in widh (placed edgerise, and in an angular dircetion,-tbe lracks being about 11 feet apart, from centre to centre. They are covered with stam or recds at night or in bad weather. When baif drve the bricks are separated somerbar (ssintled), to allow
free access of the air. The time taken in drying varies irom three to six weeks.

In the vieinity of London bricks are commonly burnt in clamps; the peculiarity of which process is that, as each briek contains in itself the fuel neeessary for its vitrification, the breeze merely serves to ignite the lower tiers, and the heat gradually spreads over the whole. The general atructure of a elamp is as follows :-A number of walls, or necks, three bricks thiek, about sisty long, and tweaty-four to thirty high, are built slantingly against a eeatral upright wall, whieb narrows upwards. The sides and top are cased with burnt bricks. Cinders (or breeze) are distribnted in layers between the courses of brick, the thickest etrata being at the bettem. A sipgle clamp will contain from 200,000 to 500,000 bricks. For firing the clamps, live holes or flues (9 inehes by 7) are left in the centre of the upright, acd at every seyenth neck or so, extending throughout the thiekness of the elamp. These are filled with faggots, and fired by a coal fire at the end of each *ant; and the fire ignites the adjacent breeze. Once the clamp is fairly lighted, the mouths of the live holes are atopped rith bricks and plastered over with clay, and the clacip burns till all the breeze is consumed, asually from three to six weoks. After cooling, the bricks are removed, sorted, perhaps, and staeked. - (For a fuller account of the most approved methods of building clamps, the reader is referred to Mr Dobson's excellent little treatise on brickmaising, to which we are indebted for many of the detzils given in this paper.)
In the Nottingham district a very hard marl is often used in brickmaking; and as ordinary weathering and tempering would net maie it safieiontly plastic, it is subjected to grindiag between rollers, the hard lumps and pieces of limestone being thus crusked to powder, all pebbles and bard stones having been previously picked out by the hand. The wash-mill is only used in making arch-bricks, and the pug-mill is dispensed with, the tempeaing of the clay, after grinding, beiog doae by treading and spade labour. Sometimes the clay is kept in damy cellara for a gear or more to ripen. Brase moulds (technically ealled copper moulds) are used, and the moulder, after filling the nould, works over the clar, first on one side then on the cthor;' with a fat implement called the plane. A boy takes the mould with its contents to the foor, where he turns out the brick, and then puts bacis the mould on the stool, the moulder meanwhile filligg azother mould. The bricks are aprinkfed with eand on tho floors, and turned twice at a few hours' interval, and are then takn by boys to the hovel or drying shed, then they are built in backs. They are burnt in kilns, which, nre mado with four upright walls and a sunken fioor. On the tro sides of the ki'la the:e are shallow pits with leau-to roofs to proteet the fuel and fireman. The deorways ere carrow olenings at the euds, a step above the ground, and the fire-holes are arcted opeaings opposite each other in the side of the kỉn, lijed with fire-brieks. Nairow openings or tiues are luft between the Uricks, connecting tho opposite fire-toles Wach brick has some fres space round it for passage of heat. The fuel employed is coa!

Ia the Stafurdshire Poteries it is a eommon prartice to pass the mail through several pairs of rollors, and then mis some threa or four marls tegether, with water, is spale labour. For erdinary lricks the cound marl is mixen with mar! that has been tempered but wist eround. The pug-mill is empliged for tiles and dust hrich,-the letter so callce from conl dust being used when they are moolded. The brictis are moulded by the shop-raveliting process, the anould being diaped in water only before usitg; the brich is emptied from the wicu!d on the flocr. (The other process is distinguished as that of ond-stack moulding.) The oven
used in burnng is oi circular form, with apherical top, and will eontain about 8300 bricis. Red, blue, and drab brichs are produced in the district, besides the dust brick just referred to, which is used for the paring of footways..

In Holland, the chief material used for brieks is the sline deposited in rivers and arms of the sea. It is collected in boats by men with long poles, haring a cntting circle of iron at the end, and a bag net with which they lug up the slime. Hard bricks are made of a mixture of this slime with sand from the banks of the River Mass. The ingredients are well kneaded together, and the misture is deposited in heaps. The mode of mouldiag and drying is similar to that used elsewhere. The kilns are square and will sometimes hold as many as $1,200,000$ bricks. Peat turf is used in firing.
For an aceount of brickmaking in India the reader is referred to a paper by Major Falconnet, R.E., in the Pro fessanal Papers on Indian Engineering, May 1874.

Thus far ouly brickmaking by hand has been spoken of, orickbut of recent years thero has been no little activity in making by the invention of brickmaking machines, with a view to raachitit economy, certainty, and rapidity of producticn, and improvemant in the quality and appearance of the bricks. It is only in briekmaking on a considerable scalc, of course, thet moulding by machinery cau present much adrantage over hand moulding, since the cost of moulding beara so small a proportion to the total cost. The various maehines that bave been offered to the pullic may be arranged in tian classes,--those which operate ou the elay (with moderats pressure) in a moist and plastic state, aud those in which the material used is pulrerized a:sd dry, or nearly so. A denser brick, and one less liablo to shrinking, is prodaced in the latter case; but much eare is needed in preparation of the elay, aud a much atronger compression is required, to ensure the proper tenacits. The differeat arrangements of rollers and yug-mills for preparation of the clay, whether plastic. or dry, we need not here describe at any lagth. Hollers and pug-mill are bometimes combined, forming: composite machine. Two or more pairs of rollers are sometimes arranged one set under another, the closest at the bottom; and opposing rollers aro driten at difitent speeds so as to produce a rub as well as a squeeze, t'os promoting disintegration. As to that elass of briekraeking machines proper in which plastic elay is used, wo fond, in some examples, a continuous length of elay forced cut fronn a verticai o: horizental pug mill through a suitable mouthpiece, and the culuza divided into bricks by wires or otherwise. Of muthtrinces, sume ars simple dies, or dies fitted wita cores to make hollow bricks; in others the mould is lubrieated by a constant streap of water; in othera, again, the mothpiece is male with two or four rollura ecvered with thick eloth, wimeh are parforated with gyonll holes, ond Alle. with oil to lubricate the isces of the brieks. In eutting, a frane of farallel wires may be moved acte s, either while the clay is st rest, or while it is in Dution, by the wires heing roved obliquely at an anglo to conpensate for the speed at which the clay travels. Or the clay may be cut by radial wires of a wheel, or again by metalic dises. Another variety of treatment of plastic ciay is that in thici the clay is pressed from the pug-mill into moulds of the form of briez requirel. In one sach machine, a mould-block, witiu two mould3, moves backward3 an 1 lormards under the pursnill, one wrould reeeiving ε cl rye while the Uther is having the brick preased out of is by a piston. In ansther, the moulds are arrarged raitilly round the border of a ciecular talle, which rorolved uther tien pretuill. There are piston rods in tho mould which ascend an incuized spizal plaze, and thu gratual! y lite the bricks out of the morlds, whence they are tuken hy a ouy and placed on an endess band, when cormas them
away. In another machine, also with revolving table, two moulds receive the charge of clay at once. While these are being filled the two that had just been filled are being subjected to considerable pressure, and the two bricks that had been pressed immediately before are ia process of delivery out of the moulds, and on to a flat belt which takes them away. (This machine is also suitable for dry clay.) Io yet another, a cylinder revolving under the
pug-mill presents to it successively four brick-mouras, eacl of which, on reaching the lowest point, is made to deposit its brick on an endless band. The annexed drawing represents onc of Mcssrs H. Clayton, Son, \& Howlett's single delivery machines for brickmaking with plastic clay. After what has been said little description will be necessary. A is the pair of rollers, B the pug-mill, C the stream of issuing clay, which a little further on is cut across by

Fio. 2-Brickmaking Machine for Plastic Clay.
means of the wire frame D. The briclis are then removed to the barrow E. These machines are often constructed for double delivery.

As an example of the second class ot machines,-those for working dry, or half-dry, and non-plastic material,-we may take another machine constructed by Messrs Clayton. It affords a good practical solution of the problem of making bricks from coal shale, bind, fire-clay, or the like. The arrangement is shown in figs. 3 and 4. In fig. 3, A

Fro. 3.-Section of Machine for Non-plastic Material.
is a pan roller mill, in which a pan containing the raw matenal is driven round under rollers; there are perforations in the bottom, through which the ground clay escapes, and is swept by arms into a general receiver, whence a band with buckets conveys it to the bopper of the mouldmy and pressing machines C, of which tig, 4 gives another vew. Here the moulds are contained in a box at B, bolted between the standards. There are two sets of pistons, one above and the other below the brick-moulds, and they simultaneously press the top and tho bottom of the
brick in the mould. The lower pistons are attached to a cross bar which slides in vertical guides in the standards, and has friction rollers C on the lower extremitics, in contact with which work two pressing cams D on the main shaft. The upper pistons E are attached as shown to a cross-head above, which is moved up and down in its guides by connecting rods and two cranks on the mair

Fio. 4.-Part of Macbine shown in section in fg. 3.
slinft. These pistons are hollow, and are heated by stean. to prevent the brick-earth adhering to them. The prepared materin is supplied to the tro moulds by a feed-bex which slides to and fro under the feeding hopper of the machina,
and thus passes alternately under it and over the moulds, convesing sufficieut each time to fill the latter. The bricks are delivered from the moulds by the lower pistons, which are forced upwards by the complete revolution of the cams, and the newly-made bricks are forthwith moved forwurd by the approach of the feed-box with a fresh charge of the material. In another dry-clay machine constructed ky Messrs Bradley and Craven of Wakefeld, two or tbree distinet pressures can be given to a brick, and by this mears the uir is gradually forced out from the interstices, and the briek cunsolidated to a greater extent than can be effected by a single pressure.

The varieties of brickmaking machinery are too numerous to be separately noticed, however brietly, but the foregoing way suffice to illustrate the general principles involred in their construction. With suitable modifications, perforated or bollow bricks are frequeutly produced, on which there is a saviog in cost of carriage, and also in mortar and labour.

Among the objects at the Interoational Exhibition of 1874 there were several varieties of brick prepared without burning, according to a process devised by Messrs Bodmer. They are made by intimately mixing certain materials of the nature of cements or mortars, and equeezing the mixture into the desired shape by hydraclic pressure in a specially-constructed machine. Sand and selenitic lime are the constituents of one kiod of brick; these substances, together with Portland cement, of another; and a very sersiceable kind of brick is prepared from blast-furnace slag, which, consisting chielly of silicates decomposable by lime, is just as suitable for the purpose as the volcanic products, trass and pozzuolano, which bave long been employed. The bricks give geod results on application of the usual tests.
Plosting , The old invention of floating bricks (known to Pliny) was bricks. completely lost till M. Fabreni discovered they could be made frem the earth known as fossil meal, which is abundant in Tuseany, and is found near Castel del Pipno in the territories of Siena.
Hofioann's For the drying and burning of bricks, the construction of kilns according to Hoffmann's method is a remarkable improvement of late years. These kilns are formed by a series of arched chambers conuected by passages to one main chimney flue, each passage or flue having suitable dampers to regulate the hest at any desired peint. Small coal, slack, or peat fuel may be used, which is fed in from the top of the kilns through small epenings. The waste gases from the buraing and cooling clambers are made to pass successively into other chambers and give ont their heat before escaping to the chimney, thus completing the drying, and effecting a partial burning, of newly-made bricks before the aetual fring of the chambers in which these latter are newly set. Such kilns are no doubt beyond the means of most briekmakers, but it is perhaps a question fer eonsideration whether bricks must necessarily be burnt in immediate prosimity to the spot where the clay is obtained.

In an instructive report on the manufacture of bricks, drawn up a few years ago by a committee of the Manchester Society of Architects, the fellowing points were specified as requiring attention, in order to improve the claracter of the common brick:-(α) Greater eare in cleaning the clay and in thoreughly tempering it; (b) variation in the size of moulds, so ns to produce uniform sized brieks from varieus clays; (c) meulding the brick with material of such eensistency that it may not become misshapen by the effects of its own gravity; (d) greater regularity of surface of the drying-ground ; (ϵ) protection from extreme variations of temperature and rain in drying ; (f) less frequent and more careful handling in the process of drying, so as to
preserve the edges; (g) a means of burnug whereby the amount of firing shall be under control. In experimenis on the abserption and retention of mosture, it was found that the bricks which parted most reedily with their moisture at first were the longest in dryng, and cuce versa.

Tiles, being a thinner ware than brieks, have to be made of purer and stronger clay, and require more care in treatment, but the process of manufacture is not essentially different. The numerous varitiles of tiles may be moghly arranged in three classes, viz., paving tales, roofing tiles (including the flat plann tiles, the curved fatules, hep, ridge, and ralley tiles), and dram tiles. In weathenng, the clay is spread in layers of about 2 mehes thickness during water, and each layer is allewed the bencfit of at least one night's frost before the succeeding layer is put upea it. Sometrmes the weathering is ettected by sunshine. The commonuted clay is next placed in pits and allowed to mellow or ripen under water. The:a it is passed through the pug-mil, and the teupered product, if necessary, slung (that is, cut in thin slices with a prece of wire fixed to two bandles, in order to detect any stones), and then passed through the pug-mill agan, after which it 18 generally ready for moulding. To take the case of pantiles (Landmoulded), the moulder turns the tile out of the gat meuld on to the zvashing-off frame, on the curved suriace of which, with very wet hands, he washes it into a curved shape. Then he strikes it with a semi-cylindrical implement calied the splayer, and conveys it on this to the dat bloc's where be deposits it, with the convex side uppernost, and, remoring the splayer, leares the tile to dry. The tile is afterwards beaten on the thuccking-frame, to correct any warping that may bare occurred, and tromed with the thrackinghnife. lo the kiln, which is constrneted with arehed furnaces at the base of a cenical erection called tho dome, the tiles are closely stacked in upright position, on a bottom of vitrificd bricks. The fucl used is coal, and the burning contiones usually about six days. In making pipe drain tiles, the clay is first mooulded to the proper length, width, and thichness, then mrapped reund a drum, the edges are closed together, and the tile is carefully shaped by the operator's hand, semetimes assisted by a woodeu tool. Tiles as well as bricks can be made by machincry; with suitable dies, alnost any form of tile may be thus bad, which is producible by the sdrance of a given section of clay parallel to itsclf. ln other machines pressure is exerted on the clay in a mould.

The manufacture of tesserce and encoustic tiles bas been Encausto brought to great perfection in recent times, through the tiles. enterprise especially of Mr Minten. It is a reviral and extension of a very old art, which originated, probably, with tie Gree:s. The tesselated pavements of the Remans, of which many specimens are still extant, were formed of small pieces of stone or marble of rarious colours, bedded one by one in a layer of cement. The principle on which tesserie aro now naade, is that dry and finely-powdered clay, compressed between sted dies, is changed into a very compact and hard solid body, a fact first obsersed by Mr Prosser in 1840. The solid pieces, which are thus produced in a serew-press, are enclosed in earthenware eases or pans, call saggers, and fired in a petter's kiln, after which they are ready for use, unless they are required to be glazed, in which ease they are drped in a glazing composstion and again fired. The mode of setting the pieces differs cssentially from the Reman methed. In manufacture of the tiles called encaustic, in which various designs are produced by addition of clays of different colour from that of the ground, the clays first undergo sundry washings and iurifications. A pertion of the kind which is to form the ground first receives an impression, in the plastic state, from a plaster in relief. The balk of the tile is made up
with coarser clay addea m a frame, and thas is solidified in 3 scren-press. Then comes the filling in of the design, which the maker does by spreading the coloured clay in a reamy or slip state on the indented surface. After a ier days' evaporation, the surface is scraped or planed, and the tile passes successively to the drying house and the oren. The colours desircd in cucaustic tiles are some"imes those given by the clay in urdinary treatment, some--imes they aro obtained liy staining with nanganese, cobalt, ec. The products of this branch of manufacture are much sdmired.
The fine ornamental brichs of various shape and colour snown as terra colle have of late been much used, especially a the facing of public bublings, and with the happiest offects.
(A. E. M.)

BRIDAINE, J Acques, a celebrated French preacher aad nome-missionary; was born in 3701 at Chustan in the department of Gard. Though a rigid Catholic in pinciple, he gained the groad-with of the Protestants of France by the boldness with which be adrueated their cause on many oceasions, and the personal kindncss whiel he displayed towards many of their number during the persecutions to which they were exposed under the liegent Ordans and Louis XV. He accomplished no fewer than 250 evangelizing journeys throngh various parts of France, in the course of which he made himself oniversally popula, being possessed of a powerful though rugged eloquence. Ile was the author of a collection of Cantiques Spiritut's, which bas been frequently reprinted, and of fire volumes of sermons, pristed at Avignon in 1825. In the neighbourhood of this town he died in 1767 .

BRIDGENORTH, a arliamentary and municipallorough and market town of England, is the county of Shropshice, on both stdes of the Severn, 18 miles S.E. by E. of Shrewsbury. The river, which is here crossed by a, landsome stone bridge of six arches, separates the upper from the lower town. The former is built on the acelivities and summit of a rock which rises abruptly from the river to
the height of 180 lect, and gives the town a very picturesyue appearance. The railway passes under by a long tunnel

On the summit is the tower of the old castle, leaning about 17 degrecs from the perpendicular; tro parish cburches, one of which, St Leonard's, was rcbuilt in 1862 ; and a large poblic rusersoir. There are in the town a mechanics' institute, a public library-founded by the Rev. Mr Stackhousc, an infirmary, a jail, a
 theatre (1824), a market hall (1855), and a considerable number of schools and charities. It Las manufactures of carpets, worsted, and tobacco-pipes, and some trade in agricultural produce. It retorns one menuber to parliament. The population of the parliamentary borough amounted in 1871 to 7317 ; that of the municipal borough to 5876 .

Bidgenoth, or Brigge, is said to have been founcied by Ethelfeda, the daughter of Alfred, and it was fortified with a castle and walls ly Robert de Belesme, earl of Shrewshury. On the earl's rebellion the town was besiegel and taken by Henry I. in 1102; aud in the trign of Heury II. He castle was dismantled. In 16 did the town, Leriug held by a Royal garrison, sustained a remarkable siege by the Pallamedtary forces, who at last oltained qossession.

BRIDGEPORT, a scaport town in the county of Farrfield, C'onnecticut, United States, is situated on an arm of Long Island Sound, 58 miles N.E. of New York, in 41° $10^{\prime} \mathrm{N}$. lat. and $73^{\circ} 11^{\prime} \mathrm{W}$. long. It has several ironfoundics and manufactures firearms, metallic cartridges. sewint-machines, carriages, harbess, locks, blinds, \&c The coasting trade and the fisheries are buth cxtensive. Ttie bar at the mouth of the harbour, which is formed by the I'equomnoch Creck, las 13 fect at high water. Eridgeport is the centre of aucatensive system of railways, and steamboats ply betweon it and New York. The township was scparated from Siratford in 1821, and the city, formerly called Newfield, was incorporated in 1836. Topulation in 1870, 19,835.

R R I D G E S

§ 1. D-finitons and bencrat Consuteratons. - Bridges are structures designed to carry roads across streams, gullics, or roals. A viaduct may be distinguished from a bridge, imasunch as the object of the formen is to carry a road at a consilerable elevation above the surrounding country, by means of structures, similar iudeed to brilges. but in which the olject of the open spans is to save expense rather thau to eross sume obstacle which could not be passed by a level road or embankment. The aqueduct is a structure similar to the viaduct, but employed to convey or surpurt water. A endert may be distinguishod from a longen as an opening, the primary ulject of wheb is to het vater flow past a ruad or other obstacle, the olject being sineilar to that of a large dram. A harge culvert might be called a small bidige, and a brige laving long appronches with many spans might be ralled a viaduct. The present article will treat only of loridges.

Every bridge may be divided into two parts, the substructure and tho smoerstrectere. The substructure of a bridge consists of fomiatoms, atutnents, and juers. The end supforts of the bridge are the abutments, and the intermediato supports are colled piers. liers and abutments rest on fundations in the ground. A brage of oue sean has no piers. The sumerstructure of a budge consists of the roathery and the hemm, aseh, or chain used to carry the condway from eupport to support.
 nature of the obstate io lat arned and on the trafic to
which the read orer the bridge is subject. The engmeer is usually bound to design the cheapest structure which will perform the required duties; be has, therefore, in cach case to consider whether a small number of large spans of a large mumher of small sums will be cheaper. Large sonas will be desirable where foundations caunot be casily obtaned, or where the height of the structure is great. The engineer bas also to detcmine whether, considering the proces of materials dature, and umsport, one or other form of superstructure is to be prefered. The trafic to be accommodated wall determine the width of the bridge and the load whech the superstructure must bear. In urany cases it will also be the duty of the denigner to cudeavour to combine beatity with utility. Fuauty dow not regure ornament or expense. hut homands, what may be more difficult to sufly, correct taste in the designer.

Fi Great Eritain law preseribes the following minimon: dimensious for the over and under bridges of railways (itu negr britge is one in which the ruad gocs over ti, ratway, an under bridye one in which the road gow under the railway.) Orer hridocs-Widu: tuenpike rond. 3 feet; ether public carbiage road. "a feet; private rond 12 fect. Span orer two lines (narrow gange), generally ahout 26 fect: head romb, II fect 6 inches ahowe buter
 pulle carriage road. 25 fect : privite road, 12 feet. IIead-
 Eut "homathont a weadth of 1 : foct in the midule; fus
public-road, 12 feet, 15 feet, and 10 teet in the same places; private road, 14 feet for 9 feet in the middle; for exceptions the Acts must be consulted. In designing a bridge to cross a atream care must be taken to insuro that the openings are suitable for the maximum floods.
The load which the superstructure of a bridge has to carry in addition to its own mass may be estimated as follows:-

1. For a public road; one bundredweight per square foet will represent the weight of a rery dense crowd. This is greater than any load which ordinary carts or vans will bring on the bridge, but of late years traction engines and road roLlers have been introduced, and a weight of perbaps 10 tons on each wheel on one line across the bridge ought in future designs to be provided for. The bridge must be strong enough to bear this maximum weight applied at any point, and alsie to bear all possible distributions of the crowd. A bridge might be fit to carry the crowd uniformly distributed over its surface, and yet fail when the crowd covered one-balif of its length or width.
2. For a railway ; the maximum passing load on each line of rails may be taken as the weight of a train composed exciusively of locometives. The bridge must be fit to bear this load distributed in all possible ways along the line. For spans above 60 feet on the usual 4 feet $8 \frac{1}{2}$ inches gauge this load may generally be taken as equivalent to 1 ton for each foot in length of each line of way, or in engineering language, "one tod per foot run." Where a very heary class of locomotives is in use $1 \frac{1}{1}$ tons per foot run must be provided for. For small spans the distribution of the load as a locomotive passes is sucli that the atove allowance is barely sufficient. For very small spans of 8 or 10 feet the maximum passiag load is a little more than the weight on the driving axle of the locomotive, or say 14 tons.
3. Classification.-Bridges are chassed, according to the design of their superstructure, as girders, arches, and susperision bridges. A beam of wood crossing a stream, a brick arch, and a platiorm hung to a fexible wire rope are common examples of the three types. The essential distinction between the three types may be said to be, that in all forms of the suspension bridge the supperting structure (i.e., the wire rope in the above example) is extended by the stress due to the load; in all forms of the arch the supporting structure (i.c., the ring of bricks in the ubeva exanple) is comprassed by the stress due to the load; and in all forms of the bean or girder the material is pattly cxtended and partly compressed by the flesure which it undergoes as it bends under the load,-thus when a bcam of wood carrying a load bends, the upper side of the beam is thereby shortened and tho fibres cornpressed, wliko the lower side of the beam is lengthencd and the fibres extended.

Beams or Girders may be of rarious materials,-wrought iron, cast-iron, and wood being chiefly cmployed.

Arches may be of masonry, or they may be of wrought or cast iron or ateel, in which case the compressed sector of a ring is usually a continuous and stiff structure.

Suspension bridges are made of wire ropes or of separate links of wrought iron or stecl pinned together so as to lorm a chain. The metal beam, arch, or suspension bridge may be a continuous structure or an open frame; we shall elso find that in some designis the several simple types are combined so as almost to defy classinication.

Whaterer design be adopted, the strengtb or efficiency to carry a given load depends on similar considerations. The designer selects that form of superstructure which the principles of statics show to be most desirable; le calculates the maximum stress which the load can produce on each part, and then so distributes bis material that the maximum intensity of stress on every part shall be a definite
fraction of the ultimate strength of the materiai. In metal structures, where the above principle can be very perfectly carried out, this fraction varies from one-sixth to onethird, according to the certainty with which the stresses and strength of the materials are known. In stone structures the engineer bas greater difficulty in calculating the stresses on each part, and relies noie on empirical rules based on long experience.

I. Strength asd other Properties of Materials employed in Bridges.

§ 3. Classes of Stress.-There are three kinds of stress, due to tension, compression, and sbearing. Tension tends to cause failure by the extension or lengthening of the part strained; compression tends to cause failure by the crushing of the part strained; and shearing stress tends to cause failure by the sliding of one part of the picce acress the other from which it is shorn off.
8 4. Tenacity, or Strength taresist Tension. - When tension is applied to a rod or link of any material so as to be resisted equally by each element of any imaginary section in a plane normal to the direction of the pull, this section, whiela is called a cross section, is said to be subject to a stress of unyform intensity. This intersity p is equal to the quotient of the whole pull P divided by the area S of the cross section. or

$$
\text { 1. } \mu=\frac{P}{S} \text {. }
$$

The ultimate strength of a rod subject to uniform stress is propertional to the section S, and the ultimate strength of the materinl is measured by the masimum intensity of stress which it can bear, or in ooher words, by the stress which the unit area of cross section can bear; for example, if tho unit of force employed be the weight of a ton, and the unit of area the square inch, the strength of materials will be measured in tons per square inch, or by the number of tons which will just tear usunder a rod one inch square, great care being taken that the load is so hung on the rod as to bear cqually on all parts of the cross section.

The following table gives in tors or lbs. per square inch the uttimate strength f, of some of the materials used in bridges:-

Same of Materlat	Tone per iq. 1ach
Wrought Iron Plates...	29 to 25
Bres and Bots	25 to 30
Sted'raso" W	33 to 45
Steel Plates.	30 to 40
Steel Rivets	41 to
Steel	50 to 10
Cast-iron...	6 to 8
Red Pine	5.3 to 6.3
Larch ...	
Oak	4.5 to 85
Teak.	8 to
Brick (specimens of)	
Basalt	
ndstone	
Cormmon Moitar.	10 to 50
Hydraulic Mortar	85 to 140
Roman Cement, 12 month old.	46
rtaud Cement, 7 day	
.. 12 wouth	50^{2-t}

The ultimate strength P_{1} of a bar with the cross section S to resist a stress uniformly distributed over that section is given in terms of f_{6} by the espression-
2. $P_{1}=S f_{t}$.

Table \mathbf{I}. gires some idea of the tensile strength of the materials, but for a full comprehension of the subject special treatises, or the sticle on the Stbengib of dateriale,
must be consulted. No two specimens of any material ever give exactly similar results. The various brands of iron differ mueh; different specimens of steel differ still more; the strength is greater when the stress is applied along than when it is applied across the fibres. Iron or steel forged or drawn down to a small cross section is strenger than when in large masses; the material in small castings is stronger than in large castings run from the same batch of metal; the skin is stronger than the rest of a casting. The variations to be expected in timber are still greater than those in metals, and the values for stones or bricks must in each case be speciaily determined by experiment on the special kind to bo used. These warnings are applicable to the subsequent tables, which give the strength of materials to resist other kinds of stress.
§5. Strength to resist Crushing. -The law given for tension applies to the compression of blocks, so that the streagth f_{c} of a material to resist crushng may also be measured in tens per square inch. Thus the nltimate strength P_{1} of a block of the cross section S, subject to a uniform stress, is given in terms of f, the strength of the material per unit of section by the expression-

1. $\mathrm{P}_{1}=S f_{c}$.

This equation is not applicable to blocks or struts of iron in which the ratio of the shortest side of the cress section to the length is less than about 1 to 5 , nor to struts of timber in which this ratio is less than about 1 to 10 . When this limit is passcd the strut bends before failing (vide §57), and whenever this occurs the essential condition that the stress shall be uniformly distributed no longer obtains. The flexure increases the stress on the inside of the curve assumed by the strut, or pillar, and diminishes it on the ontside; but the strut will fail as seon as any part of the cross scction is subject to a crushing stress of greater intensity than f_{c}.

: § 6. Strength to resist Shearing.-Let a bar AD of any inaterial is firmly supported on C , as shown in fig 1 , and let a strongs tool B, say of steel, descend upon it in the direction oi the arrow, with force sufficient to sever the part D from the part A, so that thasurface dividing the two parts is in the plane of the face of C. This tool is ssid to shear the bar, und the resistauce which th's bar opposes to this stress is called its strength to resist :hearing. The tools practically used to shear are not quite square at the cdge, and
therefore cut sligbtly, but for true shearing the lower face ought to be square, and the tool should come down close

Fig. 1.
to the support, so that the inner face of the tool slides on the outer face of the support.

Fig 2. represents two iron links joined by an iron pin If the links are pulled asunder the pin will be shorn

Fig. 2.
at two places, A and B, and the whole section shern will be twiee the eross section of the pin.
Fig 3 shows a joint where the pin would be shorn in four places-A, B, C, and D.

The strength of a piece of any material to resist shearing is usually assumed by engincers to be proportional to the cross section to be shorn through, and each material may consequently be said to have a certain shcaring strength per square incl; in other words, the ultimate sbeariug strength of the material is the intensity of stress required to shear it astander. If, therefore, P_{1} be the ultimate strength of a bar of cross section S te resist shearing in n places, and if f, be the ultimate strength of the matcrial, we havs the expression-

$$
1 P_{1}=\pi S i \%
$$

The assumption on whicl this equation is founded is not strictly correct; indeed, the actual shearing described does not correspond with ariy simple homogencous stress, and the form of the cross scction shorn threugh must exercise considerable influence on the streugth of the piece to resist shcaring. In a round pin the maximum intensity of shearing strcss is $\frac{1}{\mathbf{a}}$ of the mean intensity, and in a rect-
angular pin $\frac{3}{2}$ of the meau intensity. See Strexgitu of Materials.
The pins which join the links of suspension bridges, and the rivets which join the wronght iron plates of girder bridges, are subject to shearing stress, and the area to be shorn through must be made suffeient to bear the total shearing stress on that part of the structure. Wood is strong to resist teasion, and would be mach employed for ties kut for the diffeulty of taking hold of the ends of the tie in such a way that these ends shall not fail by beiog shorn.

Fig 4 shows the end of a balk of wood with a strap bolted to it. This strap would be torn off by the shearing

Fig. 4.
of the wood along the dotted lines $a b$ and $c d$, with a stress which mould be much less than that required to overeome the tenacity of the wool ; for if the dimensions of the balk of pine are 6 in. by 2 in. with an inch liole, its tensile strength will be 10×5 or 50 tons, while if tho bult be 1 inch diameter, and be placed 4 ioches from one cnd, it could be torn out by shearing 16 inches of the wood; now each inch will ooly resist a shearing stress of say 600 B , so that the bolt would be torn out with only 4.3 tons. Thus at least eleren such bolts, each 4 inches irom its neighbour, and secupying 3 feet 8 inches in length of this balk, with an iron strap of corresponding length, would be required to ret.der the full strength of the balk as a tie available. A sumilar diffeulty is met with when timber is joined, as in 5 g .5 , where shearing would take place along the dotted l.nes AB or CD.

Fig. 5.

> Table III. - Cltimate Strength to resist Shearing $=$. . Name of Matcrial. Tons fer sq. inch. Cast-iron.... 145 Wronght Iron 22 Steel Rirets......... .. 30 to 36 Red Pine .. .22 to 35 Larch.. .43 to 75 Oa'̇ (British) 1

The strengthe giveli ! !ere fos wood are those obtained by testing the resistance to shearing aloug the grain.

The strength of wrought iron to resist shearing may de taken as pracically equal to its strength to resist tensionan assumption whitis facilitates the design of rivetted and other joints.

The strength of steel to resist shearing is less than its strength to resist tearing in the ratio of tliree to four approximately. Rivetsemployed to joint steel plates require, therefore, to be larger or more numerous than those cm ployed for iron piates of equal dimensions.
§ 7. Elasticity. - When a piece of any material is under tension or compression, it is leagthened or shortened by the stress, and the amount of extension or compression for the same length and stress varies with different materials. Approximately correct results are obtained by, assuming
that the extension or compression oi a given piece of the material of uniiorm cross section, under a uaiformly distributed stress constant throughout its length, is proportional to the length of the piece and to the intensity of the stress.

Let p be the iarensty of the stress in tons per square inch, let l be the length of a specimen of a given material in any unit, and let e be the exteasion or compression observed in the same unit. Then the expression $\frac{p l}{\varepsilon}$ is, on the abore assumption, a constant quantity, and this ratio is experimeatally found for many materials to ke sensibly constant for stresses which do not approach the ultimate strength. This constant ratio E has receired the name of modulas of elasticity, and is senerally expressed in tons per square inch, this being the unit in rhich μ is measured. Thomson and Tait (Elements of Nat. Pkil.) call E the "measure of longitudinal rigidity," a better name than the modulus of clasticity. The actual extension or compression e of any yicec of a structure is given by the expression-

1.

$$
e=\frac{p_{l}}{\mathrm{E}},
$$

where p is in tons per square inch; e will be given in termb of the unit in which l is expressed.

$$
\text { Tacle IV.-Molulus of Elasticity }=\mathrm{E} \text {. }
$$

Name of Matcrial Ton	c of Material.	Tous peret inco
Wrounlit lron.. 10,000 to 13,000	Slate.	5500 to 7100
Iron Wire...... 11,500	Red Pir	650 :0 §50
Wire Ropes 0500	Larch	400 to 000
Stecl Bars.......13,000 to 19,000	Oak	535 to 730
Cast-iron..... 5250 to 10,000	Teak	1070

Tho modulus of elasticity is rery generally assmmed as equal for extension and compression, which is nearly true for wrought iron and stcel nuder any stress to which these materials can be safely subjected. The principlo of continuity shows that there can be no difference in the ralue of E for positive and nerative stresses so long as these are small. The law according to which E varies as p changes is not accurately known for any material. When the stress is small the value of \mathbf{E} appears to be more nearly constant in wrought iron than in east-icon, but the change in the value of E corresponding to a change from a small stress to the ultimate stress is greater in wronght iron than in cast-iron. The ralues in the table cannot be depended unon to give rery eact results, as the elasticity of different specituens of the same material varies considerably; the theory is wholly inapplicable when the breakiag strain is approached; the engineer, however, seldom requires to calchlate the extensions or compressions when the stress is even so great as one-third of the ultimate streagth. For the same reason the engineer need seldom take account of the permanent set cansed by stresses exceeding those within which the material may be considered perfectly elastic. B. D. Stoney, in his work on the theory of strains on girders, gives an excellent summary of what is known experimentally conceraing set and the modulus of clasticity.
§8. Strength to resist Tension or Crushing when the Stress is not Axial. - When the resultant of a stress passes through the ceutre of surface of the eross section of the piece of a structure, and is normal to the eross section, the stress is called axial, and it is usually assumed that this stress will be borae uniformly by all the elements into which the surface of the cross section may be conceired as divided. This is not necessarily true, but it is approsimately true fothe forms uswally employed by engineers. When the stress is not axial it cannot be considered, eren approximately, as uniformly distributed ; the greatest inteusity of stress rit occur towards that edge of the cross section which is wearen:
to the jome ware one resultant meets the plane of the cross section. The following considerations allow the maximum intensity of stress to be approximately calculated in most of the cases which are practically mot with. I. Let the cross section (fig. 6)
have an axis of symmetry XX_{1}, and let YY_{1} be an axis pass. ing through the centre of gravity of the surface at right angles to XX_{1}; the axis YY_{1} will be called the neutral axis. 2. Let the resultant stress pass through some point A in the axis $X X_{2}$, at 2 distance x_{0} from rie axis YY_{1}. 3. Let ihe material be such that its

Fig. 6. modulus of elasticity is constant under all the intensities of 51 ress woich resalt from the given total stress; then calling the whole force P, the area of the cross section S. the mean intencity of atress p_{0}, the maximum intensity of stress p_{1}, the maximum distance of any peint of the cross section from the axis x_{1}, and representing by I the moment of inertia (uide §9) of the surface of the cross section round the axis YY, we nbsere-first, that

$$
\rho_{0}=\frac{I}{S}
$$

and secondly, that the non-axial force may be assumed to produce a uniformly varying stres; the maximam intensity of which will cocur at the distance x_{1} from the neutral axis on the sarue side as r_{0} is taken. . This uniformly varying stress is equivalent to a uriformly distributed stress of the intensity p_{0} and a couple of the moment al, where a is the constant rate of increase of the stress. We also know by the principles of mechanics that the force P applied at a distances - from the centre might be replaced by an equal force P at the centre and a couple of the noment $P x_{0}$. Hence we have-

$$
1 .{ }^{1} \cdot x_{0}=a I \text {, or } a=\frac{\mathrm{P} x_{0}}{\mathrm{I}}
$$

But the maximum mensity of stress due to the courle will be $x_{1} a, i, e, \frac{P \cdot r_{0} x_{1}}{I}$, and the maximum stress P_{1} may be censidered as consisting of two parts, -first, the mean intensity of E:tess T_{3}, and secondly, the maximum stiess due to the couple. Hence we have-
2. $\because \quad . \quad p_{1}=p_{0}+\frac{\mathrm{P} x_{0} r_{1}}{\mathrm{I}}=r_{0}\left(\mathrm{I}+\frac{x_{0} x_{1} \mathrm{~S}}{\mathrm{I}}\right)$,

This equation shons that the maximum intensity of stress increases rery rapidly as x_{0} increases, and it must be borne in mind that the ultimate strength of any member of a etructure is determined, not by the mean stress, but by the maxitum stress on any part, for when the part hust strained yelds the structure is weakened thercby, ard this falure must contime to extend until the whole? idds.
§9. Note on the Fulue of 1 , the Moment of Imertia f the Cross Section.-Suppuse the crusa section divided into a very large number of rectangles, so smath that the distance x of tho contre of each from the neutral axis maty be taken as sensibly expreseing the distance of every fart of the rectangle; then I is the smo the prouncts of the arcas of all the clementary rectangles each multiplied into the equare of its distance from the neutral asis: or calling the area of the elementary rectangle $\Delta x \Delta y,-$

The subjoined table gives the values of I for some simple geometrical forms; the axis in all cases passes through the centre of gravity of the surface.

Table V.-Moment of Inertia $=\mathrm{I}$.

Surface.	Nientral Axis,	1.
Circle, radius r	Diameter	$1+r^{4}$
Square, side d	Paraliel to one sido	$5^{1}{ }^{1} \mathrm{~d}^{6}$
Square, side d	Diagonal	${ }^{2} \mathrm{c}^{4}$
Rectangle with sides d and 8	Parallel to 8	
Triangle, base b, height d	Parallel to 6	${ }^{1}$

Whenever a cross section can be conceived as obtained by the addition or subtraction of one surface to or from another, both surfaces having a common neutral axis, the ralue oi I for that cross scction is got by adding or subtracting the value of I for one surface to or from that for the other; thus for a ring surface, with external and intermal raniii r and r_{1}, the value of I is-

$$
\frac{1}{4} \pi\left(r^{4}-r_{1}^{4}\right) .
$$

The value I_{1} of the moment of inertia of any plane surface S round an axis in its orm plane parallel to the neutral axis, and at a distance x_{n} from that axis, is given by the equation-

$$
\text { 2. } 1_{1}=I+\mathrm{S}_{0}=
$$

where I is the moment of inertia of the surface round a nentral axis, i, ϵ, round a parallel axis passing through the centre of gravity of the section. We can thus obtain the value of tie woment of inertia I of complicated cross sections whenever we can divide these into rectangles, circles, or triangles; for then, calling s_{1}, s_{2}, s_{3}, dec., thec surfaccs of cach elcmentary part, x_{1}, x_{2}, x_{3} the distances of the centre of each part from the neutral axis of the whole cross section, and I_{i}, I_{u}, I_{u}, the moments of inertia of each element calculated round its own neutral axis, we have the moment of inertia of the whole cound its nentral axis-

$$
\text { 3. } I_{0}=\Sigma I+\Sigma s x^{2}
$$

§ 10. Specitic Grazity of Materials.-In order to cabed late the luad due 10 the superstructure of a bridge, and 2 2a stability due to the weight of the abutments and archorages of arches and snspension bridges, it is necessary to know the specific grarity of the materials employed-siecific gavity being for the purposes of the present article defned as tho weight of the material in lus. per cubir foot. Tho folliner. ing are the most useful nombers:-
Table VI. - Weiglt jer Cubic Foot of Difier:ne sfateruls.

Nama ci Material.	Weleht of cuibs foct in ithe
Water (pare) at $33^{\circ} 4$. Fahr.	... 60.425
Basalt	157.3
Prick	10010135
Brickwork (ordinary)	112
Chalk.	117 to 174
Clay	120
Granite..	164 to 172
Limestone and Marble.	169 to 173
Masonry.	115 to 144
Mortar.	st to 115
Mud	102
Sandstone	120 to 15.
Sand (damp)	118
Sand (dyy)	88.6
Aspralt:	156
Concrete (urdinary)	119
Coucrete in cemerit	187
Earth.	if to 125
Slate.	. 175 to 191
Trap.	170
Cast-iron (average)	444
Wrourht lron (arerage)	480
Fed line	30 to 44,
Larch.	31 to 35'
Oak (Euronean).	... 43 to 62

BRIDGES

§11. Change of Length due to Change of Temperature.The change in the dimensions of structures due to a change of temperature exercises a material inflnence on the darability and strength of structures, sad must not be lost sight of in the design of any bridge of more than common dimensions. The following ahort table gives the coefficient by which the length of a bar of each material measured in any unit must be multiplied to obtain the inerease in length (in the same unit) resulting from a rise of temperature of 1° centigrade.
Table VII.-Coefficient of Linear Exparsion per degree cent.

Cast-Iron.	Wronght Lron.	Stone (paring or granate.)	Sandstone (Craiglefth).
0.000011	-000012	000008 to 000009	-000012
Slate (Penryn).	Brick (best Stock).	Erick (Fire). Dry	Desl, in direction of grain.
-00001	$\cdot 0000055$. 000005	-0000043

II. Beams or Girders.

§ 12. External Forces - The beams or grders of bridges sre subject to vertical toads, and they are supported by vertical reactions at piers or abutments. The sum of the loads is, therefere, neeessarily equal to the sum of the reactions at the points of support; or calling P and P_{1} the weights borne by two abutnents (when the girder has ne other support), and w_{1}, w_{2}, w_{3}, dec., the loads on rarious parts of the girder, we have -

$$
1 . \quad \therefore \quad \mathrm{P}+\mathrm{P}_{1}=\mathbf{\Sigma}_{w} .
$$

Let L be the distance between the paints of support, ig. $\overline{7}$,

Fig 7.
and let x_{1}, x_{2}, x_{3} be the distances of the scveral loads r_{1}, w_{2}, w_{3} from the abntment bearng the weight ${ }^{\prime}$; then, taking moments reund the point of support at the abore abntment, we have the upward reaction at the pier $\times \mathrm{span}=$ the sum ef the products of each woight into its distance from the point of support, or
2. $\mathrm{P}_{1} \mathrm{~L}=\Sigma w x$, and aimilarly $\mathrm{PL}=\Sigma \Sigma(\mathrm{L}-x)$.

When the distribution of the leads is knewn, equation 2 gives the weight borne by each sbutment. Applied to the case of a single load W relling from end to end of a beam, calling x the distance of the load from the abotment supporting the weight P, equation 2 gircs

$$
\text { 3. . . } P_{1}=\frac{W x}{} \text { snd } P=\frac{W(L-x)}{L}
$$

Applied to the case of a uniform advancing load, such as a railway train gradually covering the whole beam (fig. 8),

Fig. 8.
calling x the distance covered by the train measured from
the pier bearing load P, and wo the weight of the losd per unit cf length, equation 2 gives

$$
\text { 4. . . } \mathrm{P}_{1}=\frac{w x^{2}}{2 \mathrm{~L}} \text { and } \mathrm{P}=w x \frac{2 \mathrm{~L}-x}{2 \mathrm{~L}} \text {. }
$$

Theso equations express the fact that the beam, as used in a bridge, is as a whole in equilibrium under a system of parallel vertical forces which may be called the external forces, and which are all determinate so soon as the distribution of load and the span are given.
§ 13. Internal Furces.-The external forces call into play certain internal forces. A beam of given design will be properly proportioned if each part has just those dimensions which are suitable to bear the maximum internal stress which sny distribution of load can bring to bear upon it ; and tho beam will be properly designed if its form is such as to enable it to bear the load with the least possible quantity of material. A complete snalysis of the internal forces in a loaded bearn weuld in any case be caccedingly difficult and with most designs impos. sible, but it is found by experiment that a beam will bear a given load if we provide strength enough to resist the horizontal components of those internal forces which tend to extend or compress the beam in the direction of its leagth, and if we also provide against the rertical components which ind to shear the beam across in planes perpendicular to the longitudinal axis of the beam. The naturc of the berizontal and vertical forces dne to the clastic reaction of the material will be understood by reference to figs. 9, 10, 11.

Let a model be made of four stiff light frames of wood A, A_{1}, A_{2}, A_{3}, each say 18 inches deep, 18 inches long, and ε iaches wide (fig. 9). Let these be connected with one

Fig. 9.
soother by smallcylinders of india-rubber, $a b c d, a_{1} b_{1} c_{1} d_{10}$, and $a_{2} b_{2} c_{2} d_{z}$ These cylinders must be so attached to the frames as to be capable of resisting both extension and compreseion. The whole structure will now have somewhat the appesrance of a beam, bnt if it is placed between two supports Q, N, it will be found unsuited to carry even its on a weight, because the middle frames will tend to slip down between the two others.
-This tendency will be still better eeen when a load is placed on the imperfect bcam. Wig. 10 shows tho tendency

Fig. 10.
to shear off the loaded from the unloaded part of the beam. The frame A_{2} is forced dowt below the frayae A_{3} by a shesring stress resisted bp the india-rutber in a very 4-12
imperfect mannor. To make the frame into a true beam, this tendency of the loaded frame to slip through between the others must be counteracted by tongues, T, T_{1}, T_{2}, projecting from one frame and working in a groove in the neighbouring frame (vide § 19). Each tongue should be made so that it does not abut against the bottom of the groore, and is thus incapable of resisting any horizontal force-it must neither prevent the whole beam nor any part of it from being extended or compressed longitudinally.
The structure will now be found capable of carrying weights as a beam. It deflects or bends as in fig. 11

Fig. 11.
onder the action of a load on A_{1}; all the pieces of india-rubber above the centre of the beam are then compressed ; all those below the centre are then extended; and at the aections between the frames the horizontal internal forces are wholly met by the elastic reaction due to these borizontal extensions and compressions.

At any one section, say at a distance x_{1} from the support Q, the pieces c_{1} and d_{1} are jast as much compressed as the pieces $b_{1} a_{1}$ are extended; the equal and opposite parallel resultants of these forces consequently constitute a couple, and the moment of this couple must be equal to the moment of the couple tending to bend the beam at this section, or to what is called the bending moment; now the bending moment in this eimple case is due to the upward vertical reaction P_{1} at N and the equal downward force with which the frame A_{1} bears on the tongue T_{1}; for it is clear that, neglecting the weight of the frame, if a weight W on frame A_{1} is borne by two forces P and P_{1} at the two piers, the tongue next N must also bear a vertical force P_{1} ard the tongue next Q a vertical force P. The atresses borne by the india-rubber picces are exactly the same as if the frame A_{1} were firmly held, and a vertical force P_{1} applied to pull up the right hand part of the beam, while the tongue T_{1} acted as a hinge; the moment tending to turn the right hand part round in a left-handed direction would be $\mathrm{P}_{1}\left(\mathrm{~L}-x_{1}\right)$. This moment is resisted by the elasticity of the india-rubber, which must exert an equal and opposite moment round the same point. Calling s_{1}, s_{2}, ε_{5} the sectional areas of the pieces of rubber, and y_{1}, y_{2}, y_{3} their distances from the axis where the section is neither extended nor compressed, and p_{1}, p_{2}, p_{3} the intensity with which each piece is strained, the moment due to the elasticity of the pieces of rubber tendiog to turn back the left band part of the beam in a right-handed direction wiil be Spsy. Now, if the modulus of elasticity of the rabber is constant, the stresses $p_{1}, p_{2}, p_{\mathrm{s}}$ will be proportional to their distance from the lustrained axis; thus if b_{1} is 18 inches from the axis and c_{1} only 9 inches, b_{1} being shortened twice as much as c_{1}, the stress on b_{1} will be twice that on c_{1}, and calling a the stress at unit distance from the axis we have $p_{1}=a y_{1}$ and $p_{2}=a y_{2}, p_{\mathrm{n}}=a y_{\mathrm{n}}$, so that we may write $\mathrm{E} p \mathrm{sy}=a \mathbf{\Sigma} y^{2}$ as the expression for the moment of the elastic forces. Hence equating the bending momeat and the moment of the elastic forces, we hare-

1. $P_{3}(\mathrm{~L}-x)=a \Sigma y y^{2}$.

From this equation when the load is given we roay determine a, and hence the intensity of the stress $p=a y$ at any distance y from the czis. If this intensity is less than the safe stress for the material, the beam is, at the section considered, strong enougb ts bear the losd so far as the horizontal extending and compressing forces are cuncerned.

Thus if the dimensions of the beam be those giren abore and it be supported so that L may be 6 feet and the distance $x_{1} 2$ ieet 3 inches, the distance y of the outermost piece of rubber from the urstrained axis 8 inches, the weight 50 ib , and the section of the rubber in each row 2 inches (two cylinders side by side, each with a section of 1 inch) we shall have as the numerical values in the above equation, neglecting the weight of the frame itsclf (P , being nearly $=18.7$), $18.7 \times 45 \mathrm{in}=a\left(\underline{1} \times 8^{2}\right.$ $+4 \times 4^{2}$) from which $a=2.64$; then the force supported by each inch of either of the rows of rubber a_{1} or d_{1} will be $p=8 \times 2 \cdot 64=21 \cdot 12$ th; the stress on each of the inner rows will be half this amount; the same equations give the load which (zo far as that particnlar section is concerned) can safely be placed on the frame A_{1} consistently with a given stress per square inch on the rubber: . The strength required in the tongue T_{1} is still more easily found, the stress tending to shear it of is P_{1}, and it must have a suffi. cient cross aection to bear that shearing stress. Similar reasoning would allow us to calculate the strength of our beam at either of the two other sections where the india. rubber pieces and tongues are placed. The general relation between the external and internal forces in any beam is similar to that illustrated by the model; at any section the moment dne to the elastic forces must balance the moment due to the external forces tending to , bend the beam at that section. The problem, therefore, of determining the strength of a beam at any section résnlves itself, so far as the corizontal forces are concerned, into finding expressions for these two moments and equating them. The equation thus stated will give the maximum horizontal stress thrown on the material of a given girder by a given load, or it will give the maximum load on a given girder consistent with a safe stress on the material, or if, as is generally the case in bridges, the load and maximum safe stress on the material are given, the equation will allow us to fis the dimensions reqtired for the cross section of the beam so far as the borizontal forces are concerned. The provision to be made for resisting the shearing stress for which the tongues are required in the model will be explained in $\$ 19$.

In any solid beam the stresses do not divide themselves into borizontal and vertical components. This division is made by the engineer to simplify his calculations. In the beam the actual stress at any point will be the resultant of the horizontal stress (borne by the india-rubber in the model) and the rertical stress (borne by the tongue in the model). The diagram, fig. 12, shows the direction of

Fig. 12. the resultant stress at each point of a beam of rectangular cross scction. The curves are callcd the lines of principal stress.
814. Bending Moment and Moment of Elastic Forces ar Moment of Stress,- -The beading menient for a given section of a given beam under a given distribution and magaitude of load is the sum of the moments, taken relatively to the scction, of all the external furces acting on one of the tro segments into which the section divides the beam. It in a matter of indifference which segment is considered, but the moment on one segment will he positive aud that on the otber negative. Let x beine distance of the secticn frorn the left hand abutment Q of any heam of epan L (fig. 13). Let F be the load horne ly abutment Q, and P, the load borna by
sbutment N. Let the load on the beam, including the weaght of the bearn, be divided into any number of equal or unequal yarts. Let those luads which lie to the left of the

Fig. 13.
section be called w_{1}, w_{2}, w_{9}, \&c., and let the distances of ther centres of gravity from the section be called $l_{2} l_{2}, l_{3}$. Let those loads which are to the right of the sectipo be called $u_{1} u_{2}, u_{9}$, and let their distances from the section be called r_{1}, r_{2}, r_{s} dec. Let the bendiag moment at the section bo called M , then by the above definition

$$
1 \quad \mathrm{M}=\mathrm{P} x-\Sigma w l=\Sigma u r-\mathrm{P}_{1}(\mathrm{~L}-x)
$$

This beoding moment is resisted at the section by the elastic forces in the beam called into play by compression at the top and extension at the bottom, or, in other words, called into action by the stresses on the material. Liminag our consideration to those cross sections which bave a vertical axis of symmetry, and to those materials which have a constant modulus of elasticty for tension and compression, it is easy to find a general expression for the moment of the elastic forces, which will herenfter be designated by the letter μ. Let the borizontal axis ZZ (fig 14) be a hue alung which the materal is unstraned, -

Eig. 14.
ell the portions above this line being compressed, and all the fortions below this line being extended. Conctive the section dinded into little elementary surfaces, the area of each being equal to the product of the little elementary length Δy into the hitile elementary length Δ_{3}, the force exerted by the elasticity of this element will be proportional to its aren $\Delta y \Delta z$ anc to its distance y from the axis $2 Z_{1}$, for the long!tudinal estension or compression is directly propor. tronal to thas \dot{c} sstance; then colling a, as before, the rate at which the struss increases with the increase of y, or in other words the intensity of the stress at the onit distance from Z_{1}, we shall have for the forec exerted by each slsment the expression ay y y Δ. Now, as the section is
not moved as a whole along the beam in eiiner di. action, we most have $\Sigma u y \Delta y \Delta x=0$, that is to say, the sum of the positive must be equal to the anm of the degntive forces. Let the constant quantity $a \Delta y \Delta x$ be conceived as the weight w of a thin llate of the area $\Delta y \Delta x$, the moment of thas weight relatively to the axis will be $w y$, but as we have the sum of the moments $\Sigma u y=\Sigma a y \Delta y \Delta x=0$, the axis $Z_{2} Z_{1}$ round which these moments are taken must pass through the centre of gravity of the section. This axis is called the neutral axis of the beam (vade§ 18). The expression for the force exerted by ench element being ay $\Delta y \Delta x$, the moment of this force, or, in other sords, for the inoment due to the stress, is given by the expression $a y^{2} \Delta y \Delta z$; then for the moment μ of all the furces round $Z Z_{1}$ we bave-

$$
2 . \quad . \quad . \quad \mu=a \Sigma y^{2} \Delta y \Delta z=a \mathrm{I}
$$

where I is the moment of iner:ia of the surface of the cross section. This expression μ is Rankine's moment of resistance to flexure; it may also be called the moment of the elastic forces, or, as suggested by Professor Keonedy; the moment of stress.

The greatest inteusity of stess P_{1} occurs at the greatest distance from $Z Z_{1}$, or at the distance $\frac{1}{2} d$ if the depin of the bearn be called d, and the $a \times 1 s 72_{1}$ be equidistant from top and bottom. In ihis case we have-

$$
p_{1}=\frac{a d}{2}, \text { or } a=\frac{2 p_{3}}{d}
$$

heace we may write for sections with two axes of symmetry, and for materials basing equal strengths and constaut moduli of elastieity under tension and compressiou-

$$
3 . \cdot, \cdot, \quad, \mu=2 \frac{p_{1} \mathrm{I}}{d}
$$

Now, the general condition of equilibrinm between the external forees and the elastic forces at the section is sumply $M=\mu$, hence when the beam does not break we have also-

$$
\text { 4. } M=\frac{2 p_{1} I}{d}
$$

Whenever the amount and distribution of load on a giren grader is known the bending moment M is to be calculated from equation 1, and then equation 4 allows us to calculate p_{3}; or if we know the value of f, the ultimate strength of the material to resist tension and compression, thas eqna ton enables us to find what moment M_{1} is requared to brea 2 the beam at that section, and thorefore what load disti buted in a given way the beam can bear; thus we bave-

$$
\text { 5. } \mathrm{M}_{1}=\frac{9 / \mathrm{l}}{l} \text {. }
$$

In a beam of uniform strength the value of $\frac{2 f 1}{d}$ will at erery section be equal to the value of M_{1}, the moment due to external forces at that section.

When the material as not equally strong to ressat tedolon and compression, let f, and f, be the two strengths ipes ont of cross section), but let the modulus of elasticity be assumed constant as before. Then, as above, the unstraned axis will be the axis passing through the centre of granty of the section, and the intensity of atress at any distance y above or below that axis will be ay; let y, be the distance of the uppermost element of the cross section from the horizontal ax is, and let y, be the distance of the lowermost element. Taen the greatest stress will occur at the top if y_{c}, be greater than y_{i}, but at the fottom of y, be greater than y_{c}; since, however, the material is not equally strong $t \varphi$ resist tension and compression, it dues nut follow that if will give way where the stress is greatest, and the beame will yleld first at that edge where the ratio $\frac{y}{8}$ is greateat ${ }^{\circ}$

We must, therefore, on a beam of this kind ascertain whether $\frac{y_{0}}{f_{0}}$ or $\frac{y_{0}}{f_{1}}$ is the greater, and replace $\frac{d}{2}$ in equations 3 and 4 by the value of y in the larger of the two cxpressons. Having selected y and f in this manner, we have-

$$
\text { 6. } \mathrm{M}_{1}=\frac{f \mathrm{I}}{y}
$$

§15. Modulus of Rupture.-If the above hypothesis of a constant modulus of elasticity in a given material under beth deseriptions of stress, and under stresses of all magnitudes, were accurate, we should rcquire no fresh experiments to determine the values of $f_{c}{ }^{\circ}$ and f_{1}; these would be aiready known from direct experiments on tension or compression. For both wrought and cast iron heams of the maximum strength, such as will be described hereafter, experiment gives results closely in accordance with strengths calculated by equation 6 ; and for wrought irer beams the hypothesis appears to be approximately true when tested by experiment with any form of beam. But it is usual, in calculating the strengths of beams or bars of simple rectangular or circular cross section, to assume that y is equal to $\frac{1}{2} d$ and to employ squation 5 instead of equation 6 . Tho imperfection of the theory is then to some extent corrected by determining f from direct experiments on solid rectangular bars. The value of $\mathrm{M}_{1}, \mathrm{I}$, and d being known, f is ealculated from equation 5, and the number thus detcrmined bas received the name of modnlus of rupture.

Table VIII.-Modulus of Rupture $=f$ (Rankine).	
Name of Material	Los. per sq. inch
Wrought Iron Plate Beams	42,000
Cast-iron Solid Bars	33,000 to 48,000
Fagersta Steel (Kirkaldy)	110,000 to 191,000
Red Pine	7100 to 9540
Larch	5000 to 10,000
Cals (Bitish and Russ	10,000 to 13,600
Indian Teak	14,770
	1100 to 2360

Experiments on the medulus of rupture have generally been marle, by hanging weights at the centre of a rectangular bar, supported at both ends, and inereasing the weigits till the bar breaks. Then let b and d and l be the hrealth, depth, and length of the bar in inches, and W the brenking weight. M is a maximum at the centre, and, neglecting the weight of the bar, is equal to $\frac{1}{4} \mathrm{~W} /$; substitutang the value of 1 for a rectangle in equation 3 , we get

$$
\mu=\frac{1}{6} f b d^{3}
$$

and equating Il and μ we have-

$$
1 . \cdot . \quad . \quad f=\frac{3 W l}{2 b l^{2}}
$$

or, if the span is measured in feet and called L_{1}, while b and d are measured in inches, we have-

$$
2 \quad f=18 \frac{W L_{1}}{b d^{2}}
$$

Hencs the medulus of rupture is stated by Rankine to be " eighteen times the load required to break a bar of 1 inch equre, supported at two points I foot apart, and loaded in the uiddle bet ween the points of support."

Tore use of a modulus of rupture determined by experiment on a special form of bearn is not based on any satisbetory principle. The employment of this modulns is an wumerfect means of correcting a defective theory. A differiat value is found lor f when bars of different sizes or cross bectious are tested. Even the same bar broken in different wass will give a sensibly different value for f. The use of this medulus is, however, eonvenient when great necuracy is not required.
§16. Expressians for the Bending Moment caused by Special Distributions of Load.-From equation 1, §1d it is casy to
deduce the following values for the bending moments in beams subject to various simple distributions of load:-

Case 1 . Let a single load W be placed at the centre of a beam; let M_{x} be the moment at any section taken at the distance x from the nearest pier; let M, be the moment at the centre of the span, we have-

$$
\begin{aligned}
& 1 \\
& 2 .
\end{aligned} \cdot \cdot . \quad . \quad M_{x}=\frac{1}{2} W x,
$$

M_{c} is the maximum moment at any section of the beam.
Case 2. Let a single load W be placed at the distance x_{1} from the nearest pier; let $M_{x_{1}}$ be the moment at the seo tion where the load is applied-

$$
3 . . \quad . \quad . \mathrm{M}_{\mathrm{x}_{1}}=\mathrm{W} \frac{l x_{1}-x_{1}^{2}}{l}
$$

$\mathrm{M}_{x_{1}}$ is the greatest moment which the load at that place produces at any part of the beam, and increases as the load rolls from the end to the centre in propertion to the product $\left(l-x_{1}\right) x_{1}$ of the parts into which the load divides the beam.

Case 3. Let the load be uniformly distributed along the beam so that each unit of length bears an equal load $w=\frac{\mathrm{W}}{l}$; when the unit of length adopted is the feot, the quantity w is called the load per foot run. Let $\mathrm{M}_{\text {, and }}$ M_{s} be as before the mements at the centre of span, and at any distance x from the nearest pier, we have-

$$
\begin{aligned}
& \text { 4. } M_{c}=\frac{1}{6} w t^{2} \text {, } \\
& \text { 5. } \mathrm{M}_{x}=\frac{1}{2} w x(l-x)
\end{aligned}
$$

When a uniform pasing load, such as is approximately represented by a trais of locomotives, of length at least equal to the span of the bridge, cemes on to a bridge at one end and passes over to the other, gradually covering the whole span, the bending moment reaches a maximum for all sections when the bridge is wholly covered. The bending moment at any section for a combination of loads is the sum of the moments at that section due to each load taken separately. When many different distributions of lead bave to be provided for engineers are in the habit of representing the bending moment for each load by a line, the ordinates of which are the bending moments at the sections, and the abscissa the distances of the sereral sections from one point of support. The lines haring been drawn for the several loads, it is easy by superposition to find the bending moment due to the combination, and thus to pick out for each section of the cirder the maximum bending moment which any eombination gives. Figs. 15, $15 a, 15 b$, and $15 c$ show diagrams giving the curve of bending moments for seme simple distributions.

Fig. 15 shows the line of bending moments when a single

Fig. 15.
load of 10 tons hangs at the centre of a span of 50 fect. The vertical ordinates measured on the rertical scale give the bending moments at cich seetion. Fig. 15a shows the curve of bending moments for a uniformby distributed load

Jf 1 ton per foot run on a span of 50 feet. The upper curre in fig. 156 shows the curve of bendiug muments

Fig. $15 a$
when the ioads of case 1 and 2 both oecur at onee. This curse is obtained by arlding the ordinates in case 1 to those in case 2. Fig. 150 shots the four separate lines of

Fig. 155.
hending moment for four separate weights, and the broken oper line is the line of bemanis muments for the case wher the four loads all rest at once on tie bean: ; it is got \because imply adding at each point of the span the four ruinates due to the four loads considered seperately. The urve in fig. $15 a$ and the curre ABCD in fig. 15 c are paravolas.
The bencing moment at any section is reckoned as posinive when the external forces on the beam tend to turn thic right hand side of the beam in a left handel dircetion (or in he direction opposite to that followed by the hands of a watch), in other wards, when the bending mament temels to berd the beam downmards hetween the supports. Wie shall hereafter see that in beams with more than two erriports the bending moment is at phaces mothe, tonding to bend the bam up; the curve of bending mements is
drawn below the datum line where the moments are nega. tive. Fig. $25 a$ gives an example of a curve of bending moments of this class.

Fig. $15 c$.
§ 17. Moment of Elastic Forces.-On the kypothesis above stated, viz., that for any one material the modulu: of elasticity may be taken as constant for all stresses, and assuming that our investigation is to be confined to thone cases in which the cross section of the beam has a vertica axis of symmetry, and in which the centre of grarity lies at a peint equidistant from the top and bottom of the bean. the general equation-

$$
\mu=a \mathrm{I}=2 \frac{p_{1} \mathrm{I}}{i t},
$$

(3, § 14), alhows simple expressions of the valne of μ to ty ubtained for all practical cascy by substituting for the ratio $\frac{21}{d}$ ita value in terms of the dinnensions of the eross secuon. Thus, for a rectangle of the depth d and breadth b,

$$
\frac{21}{d}=2 \frac{L l^{3}}{12 l}=\frac{4 i^{2}}{C}=\frac{\mathrm{S} l}{6},
$$

where S is the area of the cross section. The following are the ralues for the commoncst forms of cross sections.

Table IX.-I'alues of $\frac{2 \mathrm{I}}{d}$ fur marious Crass Sections.

Form of Cioses Section.	$\frac{21}{8}$	
	$\begin{aligned} & \text { In Teing of Lineas } \\ & \text { Ilmensinne of tac } \\ & \text { Crows Secion. } \end{aligned}$	
Square, side b	$\frac{i}{6}$	$\frac{56}{6}$
$\text { Rectutugie, breadth s } \begin{aligned} & \text { depth } d \end{aligned}$	$\frac{8 d^{2}}{6}$	$\frac{5}{6}$
Circle, radust	$\frac{\pi r^{2}}{4}$	$\frac{\mathrm{S} d}{8}$
$\left.\begin{array}{ccc} \text { Hollinw circte, extorr } \\ \text { nal radius } & r_{0} & \text { inc } \\ \text { tertal } r_{b} & & \end{array}\right\}$	$\frac{\pi\left(r^{4}-r^{4}\right)}{4 r}$	$\left\{\begin{array}{l} \frac{s i}{4} \text { mhen } r_{1} \text { difers it } \\ \text { the from } r . \end{array}\right.$
$\left.\begin{array}{c} \text { Hollow rectargle, in- } \\ \text { tozall deph } d_{i}, \\ \text { breadth } v_{\mathrm{a}} \end{array}\right\}$	$\frac{b a^{2}-b_{1} 2_{2}^{2}}{0.6}$	- Thien moment of Wel is rfalected, and S is taken as area of cross section of fian. gea only arl d_{1} difters littlo from d.

Substituting the modulus or rupture f (Table VIII.), for p_{1} in equation $3, \S 14$, we can from the above values of $\frac{2 I}{d}$ calculate the ultimate strength of any given cross section to resist any given bending moment. Thus, if we wish to know what breadth we ruust give a bar of wrought irsa 3 irches deep, supported at points 3 feet apart, so that it may break with 2000 lb at the centre, we find the maximum bending moment from equation 2, § 16 ; and we find the value of μ from equation $3, \S 14$, by the help of table IX. Then equating M a ad μ, we have-

$$
\text { 1. } \frac{1}{4} W L=\frac{2}{8} f b d^{2} \text {, }
$$

from which $b=\frac{6 \mathrm{WL}}{4 d^{2} f}=\frac{6 \times 2000 \times 36}{4 \times 9 \times 42000}=286$.
Since the strength of the beam is directly proportional to the ralues of $\frac{2 I}{d}$, table IX. shows us how to dispose of the material in the cross section so as to obtain the maximum strength. The expression for a reetangle shows that the strength is proportional to the breadth of a beam, but to the square of its depth ; and therefore, as appears in the second column, for the same quantity of material the strength of a rectangular beam increases simply as the depth, so that a deep narrow beam is preferable to a square or to a broad and flat one. The curcular cross seetion is weak conpared even with the square (the ratio for the same quantity of material is 846 to $1 /$. The hollow tube is stronger than the thun rectangular plate of the same depth and cross section, but clearly the material is mueh best applied when wbolly used in the form of two thin flat plates, separated from one auother by a web of the maximum depth d which can be practically ailowed. Thus the hallow rectangle is the form preferred for large girders, the material intended to resist the bending mornent being placed in the top and bottom members of the girder, and, lept apart by vertical mebs, whith add sonerewhat to the moment μ, but which are chiety employed to resist shearing stress, as will be presently shown.
The I section, fig 16 , is that emplueed for small girders; the monent of its clabtic furcea is exactly the same as that of a hollow rectangle, having the same valucs for $b . d$. and d_{1}, and having a value for b_{1} equal to $2 l_{2} \mathrm{~m}$ fig. 16 It is usual to neglect the atrength to resist bending moment given by the vertical wel, and to design the girder so that the top and bettom plates are alone

Fig. 16. sufficient to mect this etress. The model, fig. 10, slows at once that to obtain the inll resistance from the material employed to resist tension or compression consistently with a given depth, it must all be placed in tro horzontal plates at the extreme top and botton of the beam; mereover, if $\frac{1}{2} \mathrm{~S}$ is the sectional area of the top or buttom member, and f is the etress it will bear (assumed equal for tension and compression), the maximum moment which the elastic forces can excrt is the sum of the moments due to the top and bettom members about the axis or tongue, i.e., $2\left(\frac{1}{2} f \mathrm{~S} \times \frac{1}{2} d\right)$ or $\frac{1}{2} f \mathrm{~S} d$; or dismissing the ilea of an axis through the centre of gravity of the section, we may (to zefer agrin to the illustrative model) take the moment of
the elastic forces round the line running through the top raw of india-rnbber pieces looked uron as a fulcrum, and then the moment of the bottom row will be as before $\frac{1}{2} f, \mathrm{~S} d$, and will be the whole moment of the elastic forces. Similarly, by taking the bettom row as the fulcrum, we see that the moment due to the top row will be the same. This moment calculated in either way is the whole moment of the elastic forces. This latter mode of considering the wowent in the simple case of an I or hollow rect. angle, enables us to find the value of the moment of elastie forces for iose cases in which the ultimate strength may cot $b \in$, he same for tension and compression Thns, assume that the strength of wrought iron to resis: tension, or f_{0}, is 25 tons, and-its strength to resist compression, or f_{c}, is 20 tons, then calling $\mathrm{S}_{\text {t }}$ the area of the bottom member at the section considered, and S. the area of the top member, we have for μ the two values $25 \mathrm{~S}, d$ and $20 \mathrm{~S}, d$; whichever happens to be the smalle will represent the avaiuble value of the moment of che elasti. forces. Consequently we must, in order nut to waste material, design tho beam so that the ratio of the material in the upper member to that in the lower metaber shall be 5 to 4. That this ratio ought to be adopted is evident from the fact that the strength of the beam w.ll be limited by that of the weaker member. No strucrure is perfectly designed unless it will when overstraived give way simul. taneously in every part. The foregoing theory, the soundness of which is borne out by experment, tacilly assumes that, although the strength differs, the modulus of elasticity is constant for teusion and compression. For example, if the flanges are made with sections bearing to one another the propartion of 4 to 5 , the nentral axis (neglecting the web) will, assuming E constant, be at a distance from the top or larger flange equal to $\frac{4}{\frac{4}{t} \text { ths of the deptb; then the }}$ intensity of stress varying directly as the distance from the neutral axis will for the two flanges be in the desired ratio of 4 to 5 . Thus we see not only that the I, or hollow rectangle, has the adrantage of being the best form for a girder, but that it allows us easily to arrange the material to the best advantage, even when its atreagths to resis teasion and compression are dissimular. Values of th modulus of rupture given above are therefore not to be applied to this design of beam, but the values of f, and f. are to be taken from T_{t} hles I. and 1I. In the case of cast-iron the member ut der tension is made aittr ais times the cross section of the member under conipres. sion. the reason being the same as that for makiog the ratio of the upper and lower members of the wrought iron bean 5 to 4 . When a castaron beam is thus deagned the moment which any section can esert will for a giveo depth be proportional to the area S, of the lower flange. Professor Hodgkinson verified this theory experimentally, and found that the ultimate value of the moment due to elastic forces expressed in lbs and inches for beams thus designed was $\mu=16500 \mathrm{~S}, d$. The value of the constant agrees closely with the teasile strength of cast-iron. The erperiments by Professur Hodgkinson are there fore consistent mith the assumption, that al-

Fig. 17.
though the atrength of cast-iron is very different in resist ing tension and compression, nevertheless the modulus of
elasticity is equal under the two kinds of stress. Fig. 17 shows the cross seetion usually adopted for cast-iron girders.
§ 18. Neutral Axis.--The line ZZ ${ }_{1}$, fig. 14, perpendicular to the plane in whieh a beam is bent, and passing through the centre of gravity of any given cross section, is called the neutral axis of the beam at that point. The surface containing all the neutral axes is the neutral surface. Practical engineers sometimes apply the term neutral axis to the longitudinal line showing the neutral surface on a side elevation, but in this article, as in Rankine's works, the words will be used as defined above.

When the assumption is made that the modulus of elasticity is the same for any given material whether under tension or compression, notwithstanding any diference in the oltimate streagth to resist tension or compression, then it follows, as has been shown, that the neutral surface of a bent beam will separate it into two parts, one of which is compressed while the other is extended. The neutral axis in any cross section then contains the only part of the material which is neither extcuded nor compressed.

If, however, the a cerage value of E for stresses rarying between zero and the maximum intensity cf compression to which the beam is subjected be different from the average value between zero and the maximum intensity of tension, 'hen the neutral axis as above defined will not be the unstrained axis ; the neutral axis is determined as soon as the cross section of the beam is known, being independent of the material used; the unstrained axis may differ in beams of the same cross section but made of different naterials; for if the average of E be greater say for compression than for tension, this will raise the unstrained axis above the neutral asis. it is not improbable that the position of the unstrained axis may pary in the same beam with load3 similarly distributed, but of different magnitude, and also with different distributions of load. Until experiments shall have aecurately determined the relation of E to the intensity of atress wa bave no means of determining accurately the position of the unstrained axis. Even when E is constant the neutral axis, as above deficed, will not almass in practice correspond with the unstrained axis; for instnace, in a beam which was not only bent aeress, but also compressed endmays, the unstrained surface rould no longer contain the neutral axis as abore defined. The unstrained surface might be near one edge of the beam, or, indeed, if the general compression were largo and the bending swall, the whole beam might be under compression, so that no part was unstrained. By restricting the use of the words neutral axis to the abore defnition, and using the words unstrained axis, or unstrained surface, for the seeond idea all ambiguity will be evoided.

The aetual position of tho unstrained asis in any beam of any material subject to a bending moment depends on the relative ralues of the modulus of clastieity for the naterial under all stresses positive and negative, great and small ; but as the simple hypothesis of a constant modulus is borne out by experiment in the most important materials, it is unnecessary to pursue this subijeet furt her.
§ 19. Shearing Stress.-The theory hithorto given shows the relation between lorgitudiaal stresses (such as are resisted by the india-rubber in the model) and the load on the girder ; but in designing a girder we have also to provide for the shearing stress or transverse force tending at each inaginary cross section to make the more heavily loaded of tee trooparts into which it divides the bridge slide down past the other. This shearing stress was resisted by the tongues of the model. The total shearing stress at any section is the sum of all the vertieal forces acting on the beam on one side of the gection. The shearing stress at any section will be called positive if the sum of the external forces on the right hand part of the beam tends to lift that
portion up. Diagrams may be coureniently ared to show shearing stresses, and, as in the case of bending moments, the shearing stress at any seetion due to two or ruore loads is simply the algebraie sum of the shearing stresses dne to each load.

Esample l. Load W at centre between supports (fig. 18); weight of beam neglected. The shearing stress is

Fig. 18.
equal to $\frac{1}{2} \mathrm{~W}$ all along the beam, being the reaction at one pier; the stress is positive to the right of the load, nega tive to the left.

Example 2. Uniformly distributed load w per foot run (fig. 18a). The shearing stress is $\frac{1}{2} w \mathrm{~L}$ at the points of

Fis. 18π.
support, and zero at the centre of the span ; at any section distant c from the centre of the beam it is u c.

Example 3. A single load rolling from right to left of a beam of span L (fg. 18b). When the load is at the distauce x from the right hand suppiort the shearing stress to the right of the load is $\mathrm{W} \frac{\mathrm{L}-x}{\mathrm{~L}}$, and to the left it is $-\frac{\mathrm{W} x}{\mathrm{~L}}$. The maximum stress for each section occurs when the losd reaches that section; it is positive for the right half, and negative for the left balf of the beam.
Example 4. Uniformadvaneing load of u perunit of length
(fig. 18c). When the load covers a length x measured from the right hand pier, the shearing stress at all points beyond z towards the left is $-\frac{w x^{2}}{2 l}$; when x is greater than $\frac{1}{2} \mathrm{~L}$

Fig. 186
the above expression gives tie maximum stress which can oceur on that section with any distribution of the given uniform load. Thus the maximum shearing stress at the left end oceurs when the thole bridge is loaded, and is $-\frac{1}{2} w \mathrm{~L}$; the naximum stre is at the centre oceurs when the bridge is half loaded, and is equal to $-\frac{1}{8} u \mathrm{~L}$. The maximum shearing stresses on the other half of the beam occur when the load comes on from the left side, and covers more than half of the beam; these stresses are equal in amount to the stresses in tr c left half, but are positive in sign.

The seales in figires $18,18 a$, coriespond to the slearing stresses in examples 1 and 2 for a span of 50 fee t and loads of 10 tons and 1 ton per foot run respectively. Tho reale in fig. $18 b$ corresponds to the shearing stresses in ex-

Fig. 18 c.
ample 3 with a singie passing load of 14 tons. The seale In fig. 18e, cxample 4, gives the maximuna shearing streas whicl the advancing l ad of one ton por fout ran can produce at each scction. As a tran lenves a bridge it prothees Hen sume shearing stresse: as when it comes on th the bridge from the appusite nad, the same portions being similarly loaded. The masinman sbearing strese due to a pasemer load of this kind ehonges the sigh at the centre of the quan, in annears by diacram 18 c .

In I girders with solid vertical webs the shearing stress is practically all borne by the web unassisted by the top on bottom members, it being elear that these would fold dowo at the sides under a small fraction of the total stress. Sufficient material is therefore employed in the web or upright plates to reduce the intensity of the stress to the desired amount. The shearing stress may, bowever, aben the web is a thin irou plate, cause failure by crumpling the web, or *asing it to buckle, instead of by shearing it across. This tendency is prevented by stiffening the web with angle or T irons rivetied to the sides. Nathematieal analysis has not yet been very suecessfully applied to the determination of the amount of stiffeding required; experience has given a sufficient number of examples to guide the practical designer. In cast-iron girders the web is generally moch in excess of the strength required to resist shearing.
§ 20. Factor of Safety.--In designing a girder the losd which it will have to carry is multiplied by a number called the factor of safety, varying from 3 to 6 , and the girder is so desugued that it sball not yield at any point with less than the load thus multiplied. If, for instance, the girder is practically to carry l ton per fout run, it is designed so that at no place shall it break or yield injurionsly with less than say 5 tons per foot run. The multiplier is called the factor of safety. The factor of safety is required to allow for imperfections in the material as compred with picked specimens, for the wear and tear by which the strength of a structure is gradually reduced, for unforeseen loads, for jars and vibrations, for imperfectiou of theory, and for the sale of obtaining stifiness. This last property might be the sobject of calculation, and in some cases must be separately examined. The particular factor employed depends on the judgment of the engineer. A larger factor of safety is required for a passing or moring luad than for a permanedt load, there being a greater uncertainty as to the stress which may be caused by vibrations or impulses due to what is sometimes called a live load. Moreover, the were presence of a large pemmoneit load tends by its inertia to diminish thealangerous effect of the impulses or stresses due to the passing load, so that the factur of safety should be ehosen with reference to the ratio $\frac{\text { max. passing lond }}{\text { max. permanen: load }}$ being larger as this ratio increases. Pankide recommends that the factor of safety should for the moving juad be dunble that enoployed for the Iermanent load. Sometimes the factor is mure conveniently employed as a dirisur: deduce the safe stress f_{1} fro: the ultimate stergeth of the material, rather than as a multipler for the lowi. 'I'lus the same number of square inches will be obrained in the totion nember of a wrought irongirder to bear 1 ton g es fuct rum, whether we use in the ealeulations 55 tons as the value of f, the ultimate strength of the material, and a load w of it tons per fluot rud, or if we use 5 tons as i_{1}, the safe siress in the material, and a load w of lun per Sunt run; in short, if we call the factor of safety k, we may in equation 5 . § it. use $\mathrm{KM}=\frac{61}{d}$, or maling $f_{1}=\frac{f}{1}$, we may write
1.

$$
\mathrm{I}=\frac{2 f_{1} \mathrm{I}}{d^{2}} .
$$

The same remark applies, of course, to equation $6, \$ 14$
§ 21. Weighe of Girders and hoaduay,-Wben two ginders are emplozed fur each line of way on a railway, the wenght of the iron givders per foot run mill, whith the usual propertions, jrubally lie letween 0ulibi. tons and 00005 L wis, 1 . being the span in fut If follows from the thec: kiran abure, that for similar berais the guantity of matana in the whole girder w:H be arifurtus il :o the equate of the leneth, ind, therefure, tlor yuantity wer fut ab. will be proportional to tue
aimple length. The constants given above are derired from practice. The weight of girders for a common roed, if placed from 7 to 3 feet apart, will be nearly the same as for railway girders of the same span. The weight of a csstiron railway girder (two girders per way) will be about 0.005 L tons per foot ruv. The weight of the roadzay in a railway bridge will probably be from 0.14 to 0.22 tons per girder, or double this for each line. For a turnpike road with matalling the weight will much exceed this, and should in each case be computed.
§22. Design of a Girder.- (1.) From the span and load to be carried the ongineer will determive the material and form to be employed. Cast-iron may in some districts be he cheapest material for girders under 30 feet span. Wrought iron I girders are very generally employed for spans of from 30 feet to 100 feet; beyond that span ialtice or framed girders are more usually emplojed. For extreme spans exceeding, say, 300 feet, a hollow rectangle or tubular bridgo may be ued, carrying the roed on its top or ingide the tube. The depth of the cross section is limited by the concideration that the web must be sufficiently stiff not to buckle; but for this consideration the deeper a girder could be made the better. In practice the deptr is made from $\frac{1}{8}$ th to $\frac{1}{1}$ th of the span. The engineer will also determine whether bo will keep the depth of the girder constant thronghout or diminish the depth at the ends. It is impossible to graduate the matcrial so as to give absolutely uniform streagth at all sections, but by diminishing the depth towards the ends, eome material mas be saved witiont attennating the top and bottom members to such an extent as to bo inconventent. When the general character of the desiga b29 thus been aettled, the evgineer will compute the probable weight of tho girders and roadway or total permaneat load; he will nert detarmine the passing load for which ho iatends to proride.
(2.) The value of M, the bending noment, must next be computed for a sufficient number of cross sections of the beam, and for rarious distributions of loud. For a small castiron girder of uniform cross section a aingle ralue of M will be sufficient, computed for the section at the centre when the girder is wholly covered with the greatest aniform load and also supports the greatest single load at the centre of the span. When, as in larger girders, the design is intended to gire a structure of approximatels equal streagth throughout, the maximum value of M should be found for cight or ten sections; this maximum valne will be that obtained when the bridge is wholly loaded with its maximum uniform load and has the maximum single lord resting just over the scetion in question.
(3.) The inaximum shearing stress mast next be calculs'ed for each of the above sections. The desiguer will bear in mind that the maximan atress occurs at the points of pupport, and that at the centre it is grcatest when the otidge is half covered with the pessing load.
(4.) The engineer cas now cowyute the number of square inches S. and S, required at each section in the apper and lower members consistently with the factor of eafety he choosce to employ; this he obtains from the erpreceions-

$$
\begin{aligned}
& 1 . . \\
& \therefore \quad . \\
& S_{1}=\frac{M}{f_{1,1} d} \\
& S_{c}=\frac{M}{f_{c} d} d
\end{aligned}
$$

26 is here assumed that the best and strongeat form of girder is employed, but if a mere square or circular beam is to be used, the cross section will be obtained by eqnating the values of M and μ, using a safe modulne of rupture f_{1}.
(5.) The web will next be designed by giving it such: a thicknees as will, with the depth alreadr fixed, supply the
number of square inches required to reduce the stress pei square inch to the safe or proof shearing stress, say 4 or 5 tons on wrought iron When the web is a thin wrought iron plate it must be stiffened with \perp or angle irons. In a cast-iron girder the web must bare at least the number of square inches required by the ehearing stress, but the exigencies of the foundry generally require a design resulting in a great excess of strength in this part of the beam, except in beams which are tapered towards the ends, as in fig. 19. With these beams care must be taken that

Fig. 19
the taper is not carried to excess so as to leare insuffelent metal to rcsist the shearng stress at 1 I and N .
§ 23. Practical Details.-The designer must be practically accussinted with the forms un which his materials can be best procured. He must know the sizes in which iron or steel plates can ba prodnced, and the forms best adapted for eastings. Thus, in cart-iron beams the thicknees of the web is at the boitow made equal to the thickness of the lower flange, and at tre top tu the thickness of the apper flange, in order to avoid permanent internal atrains, which would result from uneqial rates of cooling aftar bcing cast, if audden changes of thickiness in the metal were olliored. The engineer must ulso bo familiar with the methods adopted of joining tic sereral parts, as with the rivetting of wrought iron, thi bolting together of large castings, the jointing of wood-work. He should also be acquainted with the varions methods in which rosdmays are constructod abd supported on existing bridges, and tho manner in which the girders are braced ous to another, so as to prevert ribration and lateral deffection dua to tho pressure of the wind. The examples of briuges desoribed hereafter will gire some iniormation on these points. In long girders provisiop must be made by rallers, sliding phates, or suspenion lints for the expansion and contraction due to changes of temperatare. The range in Great Britain may be taken as abou: $15^{\circ} \mathrm{C}$. If the ends of the girder could be firmly secured at a constant distance apart this chango of temperature would prodnce a atress of about 6 thas per square inch in wrought iron, aid 3 tons per square inch in cast-iron. The result in practice would be that any attempted fastening of stcue or irou wort wonld be torn loose.
§ 24. Defection. - When a bridge bas besn crected its defiection at the centre under a knowa passing load is gencrally observed with the object of ascertaining whether the work has been properly done, for it is assumed thst ayy defective material or bad jointing would increase the defection beyond that calcolated on the assumption of sound material and perfect workmanship. Sometirnes the practical test applied is a rough one, a certain fraction of an inch being allowed per foot of apan as a safe deflection. If an inspector of bridges, having authority, chooses tc Limit the defection to a constant fraction of the span, the ratio of the depth to the span must be made sufficiently great to give tie desired stifiness and maintained constant for a!l spans ; equation 5 below shows that when p_{1} is kept constant and d is a given fraction of L, the deflectiona v.will be proportional to the span. For the proof or maximum peasible load, Rankine gives as the result of practice a valne ior the deflection of from $2 \frac{1}{20}$ l, to $\frac{1}{60} \mathrm{~L}$; but one foot delaction in a spen of 9 fif feet would certainls be exoes
sive. A depth equal to or geater than $\frac{1}{12}$ th of the span is certain to gire sufficient etifferss, and the usual method is to assume the depth and then to observe whether experiment gives a deflection agreeing with that found by calculation. The calculation is made by finding the radius of curvature of the beam at a series of sections, and then determining the eurve assumed by the whole bean either by iutegration or by an approximate graphic method. When the curve is known the deflection or versed sine is found either from the equations of the eurve, or by aetual measurement on the diagran to be presently described. Let R be the radius of curvature of the neutral surface of a beam at a given section, under a load producing a maximum stress p_{1} at the outer elements of the section at a distance y_{1} from the neutral surface. Consider a short length x of the beam fig. 20. Before deflection the length of the

Fig 20.
outer element is equal to x, but after deflection (if ve consider the upper member) the length of the outer element will be shortened to x_{1}, while the length of the element in the neutral surface remains equal to a. By similar triangies we have $x: x_{1}=\mathrm{R} \cdot \mathrm{R}-y_{1}$, or $\mathrm{R}=\frac{y_{1} x}{x-x_{1}}$, but $x-x_{1}$ is the extent to which the most compressed element is 6hortened, and by the definition of the modulus of elasticity we have $\mathbf{E}=p_{1} \frac{x}{x-x_{1}}$, hence

$$
1 \mathrm{R}=\frac{\mathrm{E} y_{1}}{p_{1}}
$$

from which the radins of eurvature at any seetion can be obtained in terms of E, y_{1}, and p_{1}, all known quantities with a giveu eross section, material, and load. Anotber form of the same expressiun, which is sometimes more convenient, is obtaincd by remembering that $\mathrm{M}_{1}=\frac{p_{1} \mathrm{I}}{y_{1}}$, hence

$$
\because . \quad . \quad . \quad R=\frac{\mathrm{E} l}{\mathrm{M}_{1}} .
$$

where M is tho bending momeut which will produce p_{1}. If p_{1} is made equal to f_{1} the maximum safe stress on the material, equation 1 ar 2 sives the minimum safe radius of curvature.

We will first consider the special case in whach the beam under consideration is of equal defth and uniforme strength at all cross sections, and which we will call 3 beam of class 1 , these conditions can only be fulfilled by any one beam for a given constant distribution of load, the beam of unform strength for a load at the centre, for instance, will eleariy not bo the beam of unifor as strength for a ciniformly distributed load In beams of class 1 fur a given load, betb y_{1} and p_{1} are constant, and therefore P , by equation 1 , will also be constant throảghout the whole length of the beam, or, in other words, the beam will bend into a circular arc. The approximate expression for the versed sue of an arc baving a chord L and radius R will therefore give the deflection, and we have

$$
\text { 3. } \quad v=\frac{\mathrm{L}^{2}}{8 \mathrm{R}},
$$

and employing for R the value given by equation l, we havo

$$
\begin{aligned}
& \text { 4. } v=\frac{L^{\prime} p_{1}}{8 \mathrm{E} y_{1}} \\
& \text { and if } y_{1}=\frac{1}{2} d_{1} \text { we have } \\
& \text { 5. } v=\frac{L_{p}^{2} p_{1}}{4 \mathrm{E} d}
\end{aligned}
$$

If for p_{1} we substitute f_{1}, the maximum safe stress for the given materials, equation a or 5 will give the mazimuw safe deflection, whiol may be called z_{1}; we observe, then, that the safe defection for a beam of this class will be proportional to the square of the span; and inverecly proportional to the depth of the beam.

In beams of class 1, the deflections which different loed: produce will be smply proportional to the values of p_{1} pro duced by those loads; thus, for a given distribution of load. the deflection will le simply proportional to the lond; if we clange the distribution of the load, keeping the total load constant. the same rule will give the solution: for iustanee, siuce a load uniformly uistributed produces only half the stress p_{1} which would b : produced by the saume load at the centre of a beam of the same span and creve section, we see that the uniformly distributed load will produce only half the deflection that would be Iroduced by the same load at the centre of a beam of the same span and sarue section at the centre (both beams belonging to class 1). It would not be correct to say that a load uniformly distributed would produce lalf the detlection produced by the same load at the centre of the same beams beeause the same bean cannot be niformly strong throughout its length for two different distributions of load.
We may compare the deflections proluced $l y$ the same load on vaious beams of similar cruss section as follows : - By equation $4, \S 14$, we see that for a given moment M, p_{1} is proportional to $\frac{d}{1}$; moreover, for equal loads, the roment M at any cross section similarly placed mill be proportional to I: : benee we may brite

$$
r_{1} \propto \frac{\mathrm{~L} l}{\mathrm{I}} \propto \frac{1}{L_{i} l^{2}}
$$

Substituting this expressuon for m_{1} in equatica 5 , we ha o

$$
\text { i. } v \propto \frac{L^{3}}{b i^{3}},
$$

an equation which expresses the fact that, for beams of class 1, the deflection produced by a given total lowd similarly applied will be proportional to the culve of the length, and inversely proportional to the breadth and to the eabe of the depth. (In I girders the expression breadth must be unteratood as propurtional to S, the section of the tlange.) lasing from beams of chess 1 to lums in general, the
fundamental diffcrence to be observed will be that the curve assumed by the neutral surface will not be that of a circulsr arc, so that equation 1 is no longer true. Where, however, the law according to which R varies can be stated algebraically, integration will give the value of v.

Combining equations 2 and 3 for class 1, we have $v=\frac{1}{8} \frac{M_{1} L^{2}}{E I}$, and as $M_{1} \propto L W$, we have $v \propto \frac{W_{L}^{3}}{E I}$. Now this proportional equation can be shown to hold good for beams of uniform cross section and uniform depth, which may be ralled beams of class 2, also for beams of uniform cross eaction and uniform breadth, which may be called beams of class 3, bence for the three classes of beams we may write
7. $v=n \frac{W L^{3}}{\mathrm{IE}}$,
where n will have different values in the three classes and for each distribution of load.

Similarly it can be proved, that where beams are 80 designed that the loads produce the same maximum value p_{1} of the stress on the outer elements, we have the deflection proportionsl to $\frac{p_{1} L^{2}}{E y_{1}}$,-equation 4 being one case of the general law; we may therefore write

$$
\text { 8. } \cdot v=n_{1} \frac{p_{1} \mathrm{~L}^{2}}{\mathrm{E} y_{1}}
$$

where n_{1} is a constant differing for each class of beam and each distribution of load.

Table X. gives the values of n and n_{1} for the three classes of beam, and for two distributions of load. The value of p_{1} in the case of a beam of uniform cross section apples to the stress at the centre ; the atresses elsewhere in that beam will be less.

Table X.-Falues of n and n_{1}

Description of Besm.	W at Centre.		anlformly diseributed.	
	n	${ }_{1}$	п	n_{1}
Uniform strength and depth..	3			
Uniform strength and breadth	$\frac{1}{3}$	4	0.0178	C-1+27
Uniform cross section... . ..	${ }^{2}$	${ }^{2}$	डहै	8

In any actual bridge girder the deflection should lic between the value calculated for the beam of uniform strength and that calculated for the bean of uniform cross ection.
§25. Graphic Method of finding Deflection.-Diride the span into ans conrenient number n of equal parts of length l, so that $n l=L$; compute the radii of cursature R_{1}, R_{2}, R_{3} for the several sections. Let measurements along the beam be represented according to any couvenient scale, so that calling L_{1} and l_{1} the length to be drawn on paper, we have $\mathrm{L}=a \mathrm{~L}_{1}$; now let r_{1}, r_{2}, r_{3} be a series of radii such that $r_{1}=\frac{\mathrm{R}}{a b}, r_{2}=\frac{\mathrm{R}_{2}}{a b}$, \&c., where b is any convenient sonstant chosen of sucb magnitude as will allow arcs with the radii r_{1}, r_{2} \&c., to be drawn with the means at the draughtsman's disposal. Draw a curvo as shown in fig. 21 with sics of the length $l_{1}, l_{2}, l_{3}, \& c$., and with the radii $r_{3}, r_{2}, \& c$. (note, for a length $\frac{1}{2} l_{1}$ at each end the radius will be iafinite, and the curve must end with a straght line tangent to the last arc), then let v bo the measured deflection of this curve from the straight line, and V the actual deflection of the bridge; we have $\mathrm{V}=\frac{a v}{b}$, approximately. This method distorts the curve, so that vertical ordinates of the curve sre drawn to a scale b times greater than that of the horizontal ordinates. Thas if the horizontal acale be one-tenth of an inch to the Coot, $a=120$, and a beam 100 feet in length would be
dramn eqnal to 10 inches; then if une true radius al the centre were 10,000 feet, this radius, if the curve

Fig. 21.
were undistorted, would be on paper. 1000 inches, but making $b=50$ we can draw the curve with a radius of 20 inches If we now measure the versed sine of an arc drawn with a length 10 inches and a radius 20 inches, We shall approsimately find it equal to 0.64 inches, hence $V=\frac{120 \times 64}{50}=154$ inches. The rertical distortion of the curve must not be so great that there is any very senssble difference between the length of the arc and its chord. This can be regulated by altering the value of b. In fig. 21 distortion is carried much too far ; this figure is merely used as an illustration, and is not to be taken as an cxample.
§ 26 . When a girder has more than two supports it is called a conturuousgirder. The distribution of the stresses in a continuous girder differs very materially from that in a simple girder, as will be at once apparent by the inspec. tion of fig. 22, which shows the way in which a contimuous

Fig 22.
girder of two spans and tro simple girders bend when employed to carry equal weights across equal openings. The continuous girder when both spans are loaded is bent upwards at C over the cebtre pier; in other words, the bending moment at this and neighbouring points is negatire. The direction of the flexure changes at certain sections, as at A and A_{1}, i.e., the bending moment is positive on one side of these sections, begative on the other side; and at the section where the direction of flexure changes the bending moment is nil. Again, when only one of two simple girders 1 s loaded, the girder over the second span is not beut in either!direction, but with the continuous girder there may be a negative bending moment produced thrcughout the whole unlooded span as shown in fig 23. Con-
tinuous girders require less material for the ame depth， spau，and permaneut load than smple girders；but the differeuce is bardly worth consideration，exe apt in large

Fig 23.
spans where the weight of the structure is great as compared with the weight of the passing load．The necessity of al lowing the girder to expand and coutract freely with changes of tenuperatire lumats the geaeral use of large contiouous girders to two epans

Consider a conturous girder havigg on indefinite num ber of supports equally spaced；let the girder be of constant depth，unformly luaded，and so proportioned as to be of uniformstrength at all sections．The me－ thod of designing buci a girder has not yet．been shown，bat it may be ad－ mitted that the design is possible．Then，as we hare already been（ $\$ 24$ ），the curvature assumed by the girder will everywhere be constant，i．c．，the eurves will be circular arcs of conatant radias The points of，inversion of flexure．A and B（fig．24） must therefore in this case

Fig． 24. bo at in distance from C and C_{11} ，equal to one quarter of the span ；for $A A_{1}=A B=A_{1} B_{1}$ \＆c ，and C bisects $A A_{1}$ ． At B and B_{1} thers is mo moment of flexure．The sirder might here be ent through，and if the ends B and B_{1} were pruned on to the rest of tise girder by pins capable of bearing the shearing stress． nothing would le changed in the cur－ vature of the girder nor in the distri． bution of stuess． Qute amilarls，we may suppose the ends 13 and B ， of the prortion $B A C A_{1} B_{1}$ to rest dircetly on sup． ports or piers in． iroduced for the purpose，the rest of the ithaghary girder haing who！！y

Fig． 25. remored．We shall then have（fig．25）the eurve aestmed by a continuous girder of two epans of constant depth aud uniform strength The points AA，of inversion of flexuro will be at a distance CA from the niddle pier cqual to one－
third of the span．The top and bottom members at A and A_{1} might vanish（if only gne distribution of load were to be earricd），for at this point there is only a shearing stress and no bending moment．Tie girder is，as it were，made un of three girders：BA and $A_{1} B_{1}$ bang on to $A A_{1}$ ，which is supported in the middle；half the weinht of $A B$ is borne by the pier P ；balf the weight of $\mathrm{A}_{1} \mathrm{~B}_{1}$ is borne by the lier B_{1} ；the rest of the werght between B and B_{1} is borne by the middle pier．Thus let L be the length of one span in feet，w the load per foot rua，P the load borne by each of the end phers，and $P_{\text {e }}$ the load borne by the centre pier， then we Lave－

$$
\begin{aligned}
& 1 . \\
& 2 \cdot \\
& 2 \cdot \\
& 2
\end{aligned} \cdot . \quad . \quad . \quad P_{c}=\frac{1}{2} w \mathbf{L},
$$

The eurve of bending moments can now be caleulated for each girder preessely as for a smple girder；the moment at any section is equal to the sum of the inoments of all the external furces wo one side of the section；the beam between A and B will be subject to bendiog moments equel to those produced by a unform load on a simple girder of the span BA be similarly loaded．Between A and A_{1} the moments will be negative，i．e．，the left－handed moment produced by the dowuward action of all the weights to the left will sxeeed the right－handed moment produced by the upward reaction of the pier at B（or of the two piers B and C if the section considered lies to the right of C）The full black lue io fig． $25 a$ shows a curve of bendug moments for this case．

Fig 25a．
The maximum moment is negative and occurs over the centre pier；let it be ealled M．The masimum positive moment occurs at a distance from B equal to one－third of the span；let this moment be M_{d} ．Then we Lave－

$$
\begin{array}{llll}
3 . & M_{e}=-\frac{1}{3} M^{2}, \\
4 . & \cdot & M_{3}=\frac{1}{1} H^{2}
\end{array}
$$

The shearing atresses $\mathrm{F}_{8}, \mathrm{~F}_{4}, \mathrm{~F}_{\mathrm{a}}, \mathrm{F}_{6}$ at the poluts B D．A，and C．are

```
5 . . . . F Fb F F = 直:%L.
6 . . . . F
7 . . . F.=咅以L.
```

Fig． 26 gives a diagram of the shearing stresses for two

Fig． 26.
slans of 60 feet，with a uniform load of 1 ton per foot run． When the beam is of umform depth and uniform cross erction，the curves in which it detlects are no longer circular：the defect of stength over the centre pier buse
the effect of increasing the curvature orer it, and shortening the distance AA_{1}; analysis shows that in this case the point of inversion of flexure will be at a distance from the centre pier equal to 2683 L ; then the length of the part of the beam subject to a positive bending moment will be .731 L , instead of 66 L as when the beam was of uniform strength, the load on each of the end piers will be $\cdot 36585 w \mathrm{~L}$; the load on the centre pier $1 \cdot 2685 w \mathrm{~L}$; and *e have-

$$
\begin{aligned}
& \text { 8. } \mathbf{M}_{s}=1341 w \mathrm{~L}^{2} \text {, } \\
& \text { 9. . . . } \mathrm{M}_{\mathrm{d}}=0669 \mathrm{w}^{2} \text {, } \\
& \text { 10. . . . } \mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{a}}=36585 \omega \mathrm{~L} \text {, } \\
& \text { 11. . . . } \mathrm{F}_{\mathrm{d}}=0 \text {, } \\
& \text { 12. . . . } \mathrm{F}_{\mathrm{c}}=6341: \mathrm{L}
\end{aligned}
$$

In any actual bridge uniformly loaded the values of the moments and shearing stresses will be iutermediate between those given for a beam of uniform strength and those for a beam of uniform cross section. It must be observed that the above theory assumes that the girder is unstrained when being built as a whole; if, as is often the case, the separate spans are separately built and lifted into position, and then joined on the piers, special provision must be made to bring the desired bending moment over the piers into existence; it is obrious that merely joining the two independent beams in the upper part of fig. 22 will not make these into a continuons girder, such as is shown in the lower figure,-to do this, besides joiniug the upper and lower flanges, we must pull the top flanges together over the piers and put the lower \#anges under compression. This may be done practically by tilting one end, or both ends, before the junction at the centre is made, and afterwards allowing the ends to sink until the corve assumed by the girder shows that the required distribution of stress has been attained. The complete analysis of the problem of continuous girders of any number of spans equal or unequal with any number of loads has been given by Mr Heppel (Proc. R. S., 1879-71).
§ 27. Allowance for Theight of Beam. Limiting Span.When the weight of the beam is a considerable and uncertain part of the whole load, it can be allowed for 23 follows. Design a beam of the desired depth and span, fit to carry a total load equal to the external or passing load W_{1}; calculate the weight of this beam and call it B_{1}, the beam so designed will really be fit to carry an external load $W_{1}-B_{1}$. Let b_{1} be the area of any cross section of this beam; let b be the area of cross section required at the same point for the beam of weight B artually neceswary to carry a total load W. Then since the strength of the properly proportioned girder of constant deptb and span is simply proportional to the quantity o^{n} metal employed, and therefore to the area of cross section, we have the proportion $b: b_{1}=W_{1}: W_{1}-B_{1}$, or

$$
\text { 1. } b=\frac{W_{1} b_{1}}{W_{1}-B_{1}} \text {. }
$$

The weight B is given by the expression-

$$
\text { 2. } B=\frac{\mathrm{E}_{1} W_{1}}{W_{1}-E_{1}} \text {. }
$$

The whole load W is given by the expression-

$$
\text { 3. } W=\frac{W_{1}}{W_{1}-\bar{B}_{1}}
$$

For any given design of beam there is a limiting length which cannot be exceeded (the beams of different spans being assumed to be similar in the geometrical sense). Let L, be the limiting length of a beam of a given design which for the span L weighs B, and carres a gross load W, then the ratio of E to W can be shown to increase in direct proportion to the lengtb of the smen ratil this ratio reaches unity. Hence-

	$\frac{B}{W} \cdot \frac{B}{W}=I$
or when	$\frac{B_{i}}{W}=1$
4.	. $L_{1}=\frac{W L}{B}$

III. Suspension Bridges.

§2S Varieties of Suspension Bridges. - A very simple form of suspension bridge has long been used in Peru and Thibet. Two ropes are hung side by side across the gorge to be passed, a rude platform is laid on the ropes, and the dip of these is sufficiently small to allow the bridge to be crossed by men or beasts passing down from the one side to the centre aud up to the opposite bank. The modern suspension bridge cousists of two or more chans, from which a level platiorm is hung by suspension rods. The chains may in some cases be secured directly to the sides of the chasm to be crossed, but the configuration of the ground seldom allows this to be done. The chans, therefore, asually pass over piers, as in tig. 2 , Plate XiX., and are len donin on either side to an auchorage at a considerable distance from the piers. The ehains between the prers and the anchorage are generally used to support part of the platform. The chains where they pass over the piers rest on sadulles, which are made of two different types. One construction, shown in fig. 27, allows tho chain to slip backwards and

Fig. 27.
formards over it with comparatively little friction, so that the stress on the rope tay be taken as cipual on both sides of the saddle. In the second type, as shown in fig. 28.

Fig. 23.
the chain is secured to the saddle, which, bowever, 19 fres to move horizontally on the top of the pier. With the first form of saddle the resultant pressure on the pier will not be vertical unless the chain leases the pier with an egual inclination on each side, and even when the bridge is designed with an equal slope of chain on both sides of the pier, a change in the distribution of weight due to any passing load will canse some departure from the equal slope of the chains, and therefore from the truly vertical pressure on the piers. This departure is easily allowed for in the design of the pier. The friction on the saddle renders the
assumption of equal stresses on each side slightly incorrect, and with this type of saddle care must be taken to provide: agaiost the wear produced by the motion of the chain. With the second type the use of rollers under the sclid saddle leaves the motion of the saddle very free; the resultant pressure on the piet is always sensibly vertical, and the chains may leave the pier at any angle, equal or uuequal. The chain must in no case be rigidly attached to the pier unless the support itself is free to rock on its base, as in fig. 29, where

Fig. 29.
the place of the pier is taken by cast-iron struts, working on a horizontal axis.

Suspension bridges are chiefly used for very large spans, because, as we shall find, they can he constructed to carry the same load with a less weight of material than a bean or girder, subject, hawever, to the disadrantage of flexibilaty or deformation under a passing load, -a disadvantage which is very serious where, as in small bridges, the passing load is a large proportion of the whole load, but which is of less importauce where the chief load to be carried is the weight of the structure itself. We will first consider the usual or simple suspension bridge, as shown in fig. 2, Plate X1X., and will then pass to the varous modifications introduced to remedy its defects.
§ 39. Form of Chain with given Lond. - Let the platform be hung from the chain by equidistant vertical rods; then the load may be trealed as hanging from each joint where the rods are attached, and will consist at each joint of the woight of one subrivision of the chain and of one subdivision of the platform and its load. If the position of the vertical tie-rods be assumed as defioite relatively to the points of suspension, so that the assumed leads on the joints act at known distances from the points of support, a form of chain, which will reniain in equilibrium (or undisturbed) under these loads, can casily be found by the following graphic me-thod:-
let the rertical lime QN (fig. 3ib) represent the whole loal to be carried, and the subdivisions QA, AB, BC, CD, \&c., the loads referred to each joint of the chain (QA and Nir will he the portion of the lown referrid directly to the saddle or paist of Alpport, and wall be sumply half the weight of the puece of chain bet ween the sadule and the joint fin). Let $Q P$ and NP be the weights carnoid ty each pier. -

Fig. 0.
equal if the distribution of load is symmetrical, otherwise to be determined as fir a ginder. Lat a honzontal line. गO, ropresent the horiontal compnent of the rension to be allowed on ive
chain, or the whole tension on that part of the chain the tangent to which is horivontal; jein 0 with Q, with $A, B, 8 \mathrm{c}$; then the lines OA, OB, \&e., give the slopes of each successive link as shom in fig. 31 , where the line paralled to OA in 6 g . g 0 lies betweel the two amees, nontaining the letters 0 and A in fg .31 , similarly

Fig. 31.
the line parallel to $O B$ in fig. 30 is represented by the link betweell the two spaces lettered 0 and B in fig. 31, and so forth. The line in fig. 31 lymg between O and Q parallel to $O Q$ in fig. 30 . represents the direction of the foree on the point of support a, being equal and opposite to the resultant of the tension on the first link and the weight carried directly by the support. The triangle QOA (fig. 30) is the polygon of forces in equilibrium st the point of support a (fg. 31). The triangle OAB is the polygon of forces in equilibrium at the first joint, and similarly each component triangle of fig. 30 represents the equilibrated forces at one joint of the chain in fig. 31. This theorem is one example of the general theory of reeiprocal figures, which will be treated hereafter under the general head of "Frames," \& 53.

Fir. 32.
When the maximum dip is given instead of the horimontal com. ponent of the stress, it is easy to find the latter from the former by the nethod of moments when the point is known where the chain will ho horizontal; for then, let the link cd , fig. 3 ?, be horizontal ; let the dip he called y, and let the distanees of weights w_{1}, w_{1}, w_{3}, \&c. from the point of support a le called x_{1}, x_{3}, x_{3}, \&c., and let the horizontal tension represented by poin fig. 30 be called H. Thes taking moments round the point a, we bare-

$$
\text { 1. } \mathrm{H}_{y}=\mathbf{I} u x_{n}
$$

from which H can almays be found.
When the length is given of each link (or portion of the chait between the joints where the platform is suspended), and conse. quently the length of the whole chain, the problem of daterminus. the form sssumed uader any distribution of lond is dithenlt, for thi Froportion of the lmad carried by each pier and the position of eact load relatively to the piers sary when the form of the chnin raries The ponblem may he solved tentatively, but it is seldomatemuted. The converse problem of finding the load which wid keep a chain in equilhrinm when the dimensions and curve are given is per. fectly easy.

From a point 0 , fig. 30, draw a series of lines parallef to the given links. At any convenient distance, OF, draw a sertcal hine cutting the lines diverging from O at the points Q, A, B, C, D, de. The rertical loads required to keep the chain in equilibnur are groportional to the lengths $Q A, A B, B C$, sc.
§30. Relation between the Curve of Bending Moments and the Curve assumed by a Loaited Chain.-The vertscal ordinates at the joints of an equilibrated chain, measured from a horizontal axis passing through the two points of support (these being at the same level), are propertional to the bending moments for siuilarly chesen sections of a ätuer sim:!arly loaded.
1,ft us consider any joint, say that at wheb u_{3} is hanging in fig 3. I, et V be the vertimal compionent of the resultant oull on the left
hand pier, and H the horizoatal component. We know that the vertical component is equal to the whole reaction at the pier

Fig. 33.
thon the same load is carried by a girder; then, taking moments bout the joint in question, we have-
I.
I. .

$$
\cdot . \cdot \mathrm{H} y_{3}=\mathrm{V} l_{0}-w_{1} l_{2}-w_{2} l_{2}
$$

but the second member of the equation is the beading moment m_{3} for the section at a distance l_{0} from the pier in a girder of aimilar gpan and similarly loaded, therefore, whatever may be the value of $\mathrm{H}_{\text {, }}$, the values of n, y_{2}, y_{3}, \&c., are proportional to the bending mo. ments. If, then, a curve of beading momeats with the ordinates m_{1}, m_{2}, m_{3}, \&e., be drawn for a given distribution of load, we can, with a pair of proportional cornpasses, construct any number of equilibrated curves, by making the values of y in these curves aimply proportional to the values of m in the curve of beading moments, and by selection among these a curve of any required leagth may be found. If II be unity, the ordinates y_{1}, y_{3}, y_{3}, se., are equal to the beading moments.
§ 31. Chain Loaded uniformly aiong a Morizonlal Line.-If the lengths of the links be assumed indefnitely sbort. the chaia under given simple distributions of load will take the form of comparatively simple mathematical curves known as eatenaries. The true catonary is that assunned by s chaio of uniform weight per uait of length, but the form geaerally adopted for suspeasion bridges is that assumed by a chain under s weight uoiformly distributed relatively to a horizontal line. This curre is a parabola.
'From equation $1, \S 30$, remembering that $\Sigma w l$ in thia case will be equal to $\frac{w L^{2}}{8}$
for a spry L (the noints of by the expression -

$$
\text { 1. } \mathrm{H}=\frac{w \mathrm{~L}^{3}}{8 y} \text {. }
$$

or, calling x the distance from the verter to the point of support,

$$
\mathrm{H}=\frac{u^{2} \cdot}{2 y}
$$

The ralue of H is equal to the maximum teosion un the bottom Aange, or compression on the top Iange, of a girder of equal apan, equally and similarly loaded, and laving a depth equal to the dip of the suspension bridge.

Fig. 34.
Consider any other point F of the curve, fig. 34 , at a diatance x from the vertex, the horizoatalcomponent of the resultant (tangent to the curve) will be unaltered; the vertical component V will be simply the sum of the loads between O and F, or ux. la the triangle FDC, let FD be tangent to the eurve, FC vertical, and DC horizontal; these three sides will necessarily be proportional respectively to the resultant tension along the chaia sit F, the
vertical force V passing through the point D, and the horizontal tension at 0 ; henes

$$
\mathrm{H}: \mathrm{V}=\mathrm{DC}: \mathrm{FC}=\frac{u^{3}}{2 y}: w x=\frac{x}{2}: y
$$

henca DC is the balf of OC , proving the curve to be a parabola
The value of R, the tensivo at say point at a distance x from the rertex, is obtaiaed from the equation-

$$
\mathrm{R}^{3}=H^{3}+\mathrm{V}^{3}=\frac{w^{2} x^{4}}{4 y^{2}}+w^{2} x^{3}
$$

or,

$$
2 \cdot . \cdot . \quad \mathrm{H}=\mathrm{L} x \sqrt{\mathrm{~J}+\frac{x^{2}}{4 y^{2}}}
$$

Let i be the angla betwee the tangent at any point hariog the co-ordinates x and y measured from the vertex, then

$$
\text { 3. . . . } \quad, \quad \tan i=\frac{2 y}{x}
$$

Let the length of half the farabolic chain ba called s, then

$$
\text { 4. } \quad s=x+\frac{2 y^{2}}{3 x} \text {. }
$$

The following ia the approximate expression for the relation bos tween a cbange Δ s in the length of the half chain aud the correaponding change Δy in the dip:-
$s+\Delta s=x+\frac{2}{3 x}\left\{y^{3}+2 y \Delta y+(\Delta y)^{2}\right\}=x+\frac{2 y^{2}}{32 y}+\frac{4 y \Delta y}{3 x}+\frac{2 \Delta y^{3}}{3 x}$,
or, neglecting the last term,

$$
\begin{aligned}
& \text { 5. } \Delta s=\frac{4}{3} \frac{y \Delta y}{x} \\
& \text { and } \\
& =6 \Delta y=\frac{3}{4} \frac{x}{y} \Delta s .
\end{aligned}
$$

From these equations the deflection produced by any given stress on the chains or by a change of temperature can be calculated.

If the points of aupport are not at equal height (fig. 35) call the heights above the vertex y and y_{1}, and the horizontal distances of

Fig. 35.
the rettex from the points of support x and x_{2}; let y and y_{1} be given, aad x, x_{1} unkoown.
The horizontal stress at the verter will he tha same as if the bridge were composed of two symmetrical halves, each having " anan $2 x$ sid a dip y, or of two symmetrical halves, with a span $2 x$, and a dip y_{1}; in other words-

$$
\mathrm{H}=\frac{u x^{2}}{2 y}=\frac{u x_{1}^{3}}{2 y_{i}}
$$

hencs

$$
\frac{x^{y}}{y}=\frac{x_{1}^{2}}{y_{1}}
$$

or,

$$
x: x_{1}=\wedge^{\prime} \overline{y:} \downarrow^{\prime} \overline{y_{1}}
$$

thus, to fad the horizontal pusition of the verter, we have only to aubdivide the apan in the ratio $\sqrt{\prime} \bar{y}: \sqrt{y_{1}}$; we may then calculato the strains on one side of the vertex as for half a bridge with the apan $2 x$ sad the dip y, and on the other side of the vertex as for balf a bridge with the ajan $2 x_{1}$ a.ad the dip y_{1}. The device of piers of different heights may be used with adraatage when it is desired to throw a larger portion of the weight of the bridge on one pier than the other, because of a differedce in the souvdness of tho foundstions, or for other reasons. The stresses on the loaded and unlosded portion of the chains between the piers and the aachorage are easily determined by methods similar to those which have been given for the stresses on each part of the raain spau. The same methods also give the direction of each suceessire link, and of the final links lcading to the anchorage.
§ 32. Practical Details. - The chains of suspension bridges are either long wire ropes or true chains made of links pinned together. Wire ropes allow the strongest known material to be adopted, namely, steel wire, which
can be bought in large quantities of a quality whica does not break with less than a stress of from 55 to 60 tona per square inch of aection; charcoal iron wire of the sizes used will bear 40 tona per square inch; common-sizes of wire for the purpose are from $0 \cdot 16$ to $0 \cdot 14$ inches, or aay, No. 9 or 10 Birmingham wire gauge. Three or four thoussad wires are not anfrequently used in one cable, and it is very essential that each wire shall tako an equal part of the whole atress. It nsed to be thought necessary to onsure thia by atraining each wire separately either over the actual piers, or piers aimilarly placed, sad binding them together when hanging, strained by tbcir own weight with the dip proposed for the bridge. It was also thought Esgential that each rope ahould be an aggregate of parallel wires, not spun as in a hempen rope. Experiment has shown, however, that wire ropes spun with machines which do not put a twist into each wire, but lay it helically and notwisted, and with no atraight central wire, are as strong es wire ropes of equal weight made with straight wires. Thay are, bowever, much more easily made. A number of ropes of this kind-may, therefore, with more convenience and economy be bound together into one catla in the manner previously practised for single wires Care should be taken to fill eyery interstice of the ropes with a bitumincua compound.

When the chains are made of links of iron their nltimate strength cannot be taken as more than 30 tons per square inch, even if the very best material is secured. It is doubtful if this nltimate strength can at present be surpassed by ateel links, for although many steel links of greater strength could certainly be obtained, occasionally © comparatively weak link will be prodinced even by the

Fig. 36.
best menufacturers. In designing the links care must be isiden to provida sufficient cross section at the eye, $\mathrm{AB}+\mathrm{CD}$, fig. 36 , as well as at EF. The diameter of the gin BC mist be such as will allow it to resist tis shearing atress on it, and the surface of the pin end eyc from B to C must be gufficient to bear the crushing stress. Otherwise, althongh the pin may not be ehorn it may be aqueezed flat, and the bead of the link mey bulge out and be much distorted under the stress. To cbtain the necessary surface, without anduly increasing the ciameter of the pin, the link may be rolled with a head

Fig. 37.
breader than the body of the liok. The sectionat GH and IJ must elso be sufficient to resist sbearing. When two ot more parallel chaina are usod, care must be taken that the reds exapending the nhatform himas eowally on the
eeveral chains. Fig. 37 shows a plan of aecaring this. Chains of unequal dip should not be used to support one platform, for the strain cannot be equaily divided between them, inasmuch as they must deflect unequally with any passing load, or with any increase of temperature.
§33. Merits and Defects of Suspension Bridges.-The great merit of a suapension bridge is its cheapness, arising from the comparatively small quantity of material required to earry a given passing load aeross a giren span. This merit may be easily seen by considering an elementary example. A man might cross a chasm of 100 feet hanging to a steel wire 0.21 inches in diameter, dipping 10 feet; the weight of the wire rould be 12.75 m . A wrought iron beam of rectangular section, three times as deep os it is broad, would have to be about 27 inehes deep and 9 inches broad to carry him and its oun weight. It would weigh $87,500 \mathrm{Hb}$. An iron I beam of the best construction, in feet deep, rould weigh about 120 焐, mithout allowing anythiag for the atiffening of the centre web rhich mould in practice be required. In each case four feet in length have been allowed for bearings at the ends of the span. The enormous difference would not exist if the beam and wire had only to carry the man, although even then thero would be a great difference in favour of the wire; the main difference arises from the fact that the bridge bas to carry its oum veight. The chief merit of the suspension bridge does not, therefore, come into play until the weight of the rope or beam is considerable when compared with the platform and rolling load; for although the chain will for any given lead be lighter than a beam, the saving in this respect will for small spans be more than compensated by the expense of the anchorages. In large spans th: advantage of the suspension bridge is so great that we End bridges on this principle of 800 or 900 feet span censtructed at much less cost per font run than girder bridges of half the span. The disadraatages of the suspension bridge are, bowever, very great. A change in the distributiou of the load causes a very sensible leformation of the etructure; for the chain of the suspension bridge must adapt its form to the new position of the load, whereas in the beam the deformation ia hardly sensible, equilibrium being attained by a new distribution of the stresses through the material. This flexibility of the augpension bridge renders it nosritable for the passage of \& railway train at any considerable epeed. The platform rises up as a wave in front of any rapidly adrancing load, and the masses in motion produce stresses much greater than those which could result from the same weights when at rest; moreover, the kinetic effect of the oscillations produced by bodies of men marching, or even by impulses due to wind, may gire rise to strains which canoot he foressen, and which hare actually caused the failure of some suapenaion bridges. On the 16th of April 1850 a suspension bridge at Angers gave way when $4 S 7$ soldiers were passing, and of these 226 were killed by the accident. Another danger peculiar to suspension bridges is that the platform may be lifted by the wind, when its oscillation wiil produce most dangerous strains. This accident may be prevented by tying the platform down to the piers or abutments. Lateral oscillation produced by the wind is also dangerous, and even gathered ice and anow may be a serious increment. to the load on these bridges, forming a much more considerable fraction of the whole weight than where the supporting structuro is itself massire. Susnension bridges must be well cross-braced to resist the action of the wind. They can be much stiffened laterally by placing the chains in iuclined planes, conserging downwards to the platform.
§ 34. Modifications of the Simple Susfension BridgeManv aforts have been rosde to design a bridge which
stall combine the lightness of tive true suspension bridge vith the stiffness of the girder. Mr Dredge's design with aloping rods (G g. 38) gives a вomewhat stifer structure

Fig. 38.
than the bridge with vertical suspension ruds; the inclined cods lhrow a strain on the platform, which must be resisted either by ties aleng the central pertion, or hy struts abutting against the piers. The stresses on each part will be thown under the heading "Compound Structures" (§62).
The desige fig. 39 has been proposed by many, but is

Fig. 39.
worthless. The object if the proposers is to support each part of the platform by rods which are quite independent of other parts of the structure, and which, being origivally straight, do tiet alter their form under stress. The unequal stretching of the long and ehort rods uader a stress, or with a rise of temperature, is a radical defect. Mr Ordish has proposed a plan in which the road is supported by eloping tie rods, arranged like the struts in fig. 87 , inverted. Flexible chains, like that of an ordinary auspension bridge, carry the weight of these tie rods by vertical rods, which keep the sloping reds atraight. The chain in this form is not subjected to unequal leading. Verious ferms of bridge have Been proposed, in which, as in figs. 76 and 78, twe chaina are braced together. These may be made thoroughly atiff bridges, with a moderate increase in the amont of metal required for the flexible bridge. They will be described ander the head of "Frames." Stiffocss has also been obtained in some structures by using an auxiliary girder to stiffen the platform. This is best effected by the use for each chain of two girders, each hali the length of the platform. These girders are placed as in fig. 40, being hinged together by a stroug pio at B, and

Fig. 40.
held down by pins at A and A_{1}, whach should, however, be J.'t free to move borizontally. These girders are not sensibly.strained by the rise and fall of the chains due to a fall or rise of temparature ; they.can also deflect frecly as a whole when the chain is deflected under strain; neverthelcss, they serve to distribute the weight of a passing load over the chain, so that it cannot be sensibly distorted. Rankine has given the following rule for desigaing these stiffening girders. Let w_{1} be the greatest rolling load per foot run; let x be the half span of the chain; let M be the greatest bending moment which the auxiliary girders will have to resist (i.e., at the centre of each); let F be the greatest shearing force (at the ond and central pins), thea
i

$$
\mathrm{M}=\frac{3}{16} w_{1} x^{2},
$$

and

$$
\text { 2. . . . } \quad \mathbf{F}=\frac{1}{5} x_{1} x \text {. }
$$

Each auxiliary half girder is in fact to be designed as a beam of half the span of the bridge, and capable of carrying half the passing load per foot run (but not its own weight). This plan of stiffening $1 s$ quite effective, but adds considerably to the weight and cost of the whole structure ; for not only have we to proride these extra girders, but extra material in the chains to carry this extra dead load.
§ 35. Afaximum Span.-If we assume that wire can be obtained which will safely bear 15 tons per square inch, a rope (or aingle wire) with a dip of ${ }_{1}^{3}$ th of the spsa would safely bearits own weight over a span of about one mile, aud would not break till the span exceeded 4 miles. With a dip of $\frac{1}{7}$ th of the span a steel wire rope of the best quality would not break until the epan exceeded 7 miles. These lengths are not given ss indicating practical spans for bridges, but tc shew the limits which with our present materisls cannot' be exceeded, however light the passing load may be.

IV. Tre Arch.

§ 36. General Description.-An arcn may be of siuns, brick, wood, or metal. The oldest srches are of stone or brick. They differ from metal or wooden arches, inasmuch as the compresscd are of materials called the ring (fig. 41, London Bridge), is built of a number of separate picces

Fic. 41.- Half Elevation and Ealf Section of Arch of London Bridge.
having little or no cohesion. Each separate stene used in building the ring has recersed the name of voussoir, or archstone. The lower surface of the ring is called the soffit of the arch. The joints, or bed-joints, are the surfaces separating the voussoirs, and are normal to the selit. A brick arch is usually built in numerous rings, so that it cannot be conceived as built of roussoirs with plane jointe passing straight through the ring. The bed-joints of a trick arch may be considered as stepped and interlocked. This interlocking will affect the stability of the arch only in those cases where one voussoir teads to slip slong its neighbour. The ring springs from a course of stones in the abutments, called quoins. The plane of demarcation between the ring and the abutment is called the springing of the arch. The croun of the arch is the summit of the ring. The voussoirs at the crown are called keystones. The haunches of the arch are the parts midway between the springing and the crown. The upper surface of the ring is sumetimes improperly called the extrados, snd the lower surface is more properly called the intrados. These terms, when properly employed, have reference to a mathematical theory of the arch little used by engineers. The walls which rest upen the riug along the srch, and rise either to the parapet or roadway, are called spandrils. There are necessarily two outer span irils forming the faces of the bridge; there may be one or more inner spandrils. The backing of an arch is tac
masonry above the dounches of the ring; it is :arried back between the spandrils to the picr or abutment. If the backing is not carried up to the roadway, as is seldom the case, the rough material employed between the backing and the roadway is called the filling. The parapet rests on the outer spandrils. The abutments and piers have the same signification as in other bridges. The masonry arch differs from the superstructure of other bridges in the following respect: it depends for its 3tability on the presence of a permanent load specially arranged, and so considerable in amount that the changes produced in the direction and magnitude of the stresses by the passing load are insignificant. The theories of he masonry arch often neglect the passing load entirely, and simply teach the student how to distribute the permanent load, so that the voussoirs may be in equilibrum. The permaneut load consists of the ring, the backing, the illing, the spandrits, and the roadway. Inasmuch as the ing is that part of the structure which by its special itreagth and arrangement carries the suporstructure in the same sense as a beam or chain carries it, the arch in this article will be treated simply as a ring of voussoirs springing from two abutments and loaded with weights, 3ome permanent and some passing. Where the backing trengthens the arch; it becomes virtually part of the ring.
§ 37. Equilibrium of a Single Voussour.-A block, such is a voussoir, $A B C D$, fig. 42 , resting on one of its surfaces, such as the joint AB scparating it from the next voussoir, is in equilibrium when the resultant of all tho forces acting upon it (including its own weight) balls within the supporting surface, while the direction of this resultant makes iu angle ϕ with the normal to the surface less than the angle of repose;

Eig. 42. (the tangent of the angle of repose is the coefficient of friction). If the resultant, as R , falls without the surface, the block will heel over, pivoting on the edge A. If the resultant, as $R_{\mu \prime}$, although falling within the surface of which $A B$ is the trace, is yet much inclined to the normal, the block $A B C D$ will slide up on the joint $A B$ without heeling over. The block, if used as the voussoir of a bridge, must not only be in equilibrium under the forces applied to it, but maust also be of sufficient strength to resist these forces. The intensity of crushing stress due to the exteral forces must nowhere exceed the safe crushing strength of the material. This latter condition would in most arches be fulfilled by an extremely thin ring of stones or brick if the resultant passed through the geometrical centre of the joint $A B$ in a direction normal to it. In that case the atress on the joiut would be a uniformly distributed stress ; if, however, the resultant stress passes near one edge, the inteasity of stress at that edge will be much greater than elsewhere, and would iudeed be infinitc if the resultant passed exactly through the edge at A or B; while, therefore, the condation of equlibrium is satisfied if the resultant passes within either cdye of the voussoir at no great inclination, the condition of strength roquires that this resultant shall not cut the joint vcry near tho edgo, aud the common practical rule is that it shall nlrays fall within the middle third of the joint. This rulo is based on the condition that the pressure on a joint shall nowherc be negative ; in other words, that no tension shall occur at any part of any joint. The principles explained in $\S 8$ show that the minimum
stress on any joint $p_{1}=p_{0}-\frac{P_{x_{0}+1}}{I}$, or that the stress will tho zero, when $p_{0}=\frac{\mathrm{P} x_{0} x_{1}}{\mathrm{I}}$. Let d be the depth of the rect angular joint, and $\dot{\theta}$ the breadth; then

$$
\mathrm{I}=\frac{b d^{3}}{12}, \text { and } x_{1}=\frac{d}{2}, \text { and } p_{0}=\frac{\mathrm{P}}{b d},
$$

hence

$$
\frac{\mathrm{P}}{b d}=\frac{12 \mathrm{P} x_{0} d}{2 b l^{3}}, \text { or } \frac{d}{6}=x_{0},
$$

an equation expressing the condition that the centre o: pressure lies at the edge of the middle third ; any greater value of x_{0} will give a negative value to p_{1}. We shall see tha: the actual resultant is, according to the theory practically in use, indeterminate within certain limits, it is therefore useless to attempt to calculate the exact maximum stress on any one stone. In the rest of this article the ring is to be beld to mean the middle third of the actuad masonry, or brick ring, wherever the theory requires that the blocks are to resist practical loads. As bridges are subject to a sensibly equal load on all parts of their breadth between the parapets, it is usua! to consider a portion of the ring one foot in width, each other strip being under precisely similar conditions. Similarly the joint may be spoken of for convenience as the line which is its tracc, and the edge as the point which is its trace.

The external forces which act on any voussoir are-lst, the vertical force, being the resultant of its own weight and the load which is directly over it; 2d, the thrust from the voussoir above it; and 3d, the reaction from the voussoir on which it rests (fig. 43). It is sometiunes difficult to determine exactly what portion of the superincumbent load a voussoir may properly be soid to carry, but a sufficient approximation is obtained for practical purposes by assuming that the mass vertically above any voussoir is carried by the voussoir when the back of the voussoir is not much inclined. If the materials had littJe cohesion, the direction of the force produced by the load would not be vertical, but inclined at an angle depend. ing on the cocfficient of friction; in practice, the direction of the force is uneertain

Fig 4. and even variable with changes in the condition of the superincumbent filling. If, however, the stability of the arch is calculated with a reasouable margin or cocticient of safety, on the hypothesis that the force produced by the load is vertical, there is every probability that the arch will - be stable ander any actual stress which may arise in practice.
§ 38. Equilibrium of any three Voussorrs,-Equilibrated Polygon.-The simplest arch would be on arch of three voussoirs resting on two abutments, and any actual arch consisting of many voussoirs may be considered as composed of succossive triplets, the voussoirs on each side of which act as abutments. If, therefore, we can show the conditions of equilibrium for three voussors we shal! hava determined the conditions for the whule ring.

Let three voussoirs be caken from any part of the ring (ig. 44), and let the lines 1,2 , and 3 represent the position of the resultantis of the three known loads $w_{1}, w_{2 \text { e }}$ and w_{y} (including the weight of the vonssoirs) borne by each voussoir.

Let NA represent the position of the reaction (due to the abt ting roussoir on one side. Let A be the point where the prolotgs tien of the line Na cuts the line 1 : then if tbe magnitude of
forces l and x_{1} are krunu, these determine the magnitude and direction of the equilibrating force t_{2}, which must act at A to balance them. Let the directioo $A B$ and the mapmitude of the force t_{2} be

Fig. 44 .

Fig. 44.
found by the ordsary parallelogram of forces, as in fig. $44 a$, and let B be the poiot of intersection of the direction of this force with the line 2 ; then the direction and the magnitude of the equitibrating force t_{2} cian be inund as for t_{1}; similarly the direction of this fnrce gives the point C by its intersection with the line 3 , and Ganally we obtano, by the resolution of forees, the direction, magnitude, and position of the force t_{3}, by meaos of which the reaction of the second abutwent will keep the system in equilibrium. When the position and magnitule of l are known, the position and magnitude of alt the other foreeg are determinate; the conditions of equilibrium are that tho linas $N A, A B, B C$, and $C Q$, slaill not cut the joints above or below tne edges a or b, for in that case the blocks would bect over on the edge beyond which the resultant passed ; also, the direction of the lines NA, AB, sc., must be such as not to exceed the angle of repose with the normal to the joints, otherwise one itone will slip on the other. The abutment producing by its reac; bion the force t_{3} nust not yield with a less force than t_{3}, and must not be pushed forward so 29 to produce a greater force than t_{3}. The line NABCQ, if inveited, is ia form identicat with that which a cord would aysutne, loaded at the points A, B, and C , with the loads 1, 2, and 3, and haviog the direction of NA determined. This line. vill. in the rest of this article, be called an equilabrated polygon.

When the joints are supposed indefinitely ne ur, or the voussoirs thin sheets, the cquilibrated polygon hecomes a curve called a linear arch.

The reasoning applied to three blocks is c'early applicable to any number, and we may therefore say that any series of loaded voussoirs will be in equilibrium when a reaction of known magnitude and direction is applied at one abutınent, provided the equilibrated polygon required by this reaction and the given loads can he drawn so that its sideo rit all the joints within the ring (or within the

Fig. 45a.:
nadle third, where strength is an element of the question, at an angle greater than the complement of the angle of repose for the material used. An equibiurated polygor, ABC... ..Q, for a complete srch is shown in fig. 45 Fig. $\therefore 5 a$ is the diagram giving the slopes KJ, JI, S.c., as for the i oaded ciasiofig. 30 and 31 .
§ 39. It will be shown in nest parajraph that the arch will be in equilibrium if with any value of the horizontal thrust h an equilibrated polygon can be drawn fulfilling the conditions required. In most arches equilibrated polygons fulfilliug these conditions can be drawn with values of h varying between two limits differing by a considerable smount. In that case the sinallest value of h will be the true value, and give the true stresses; for the abutments being inert will not give back a greater thrust than is just required to balance the structure. This would render the thrust h determinate if the equilibrated polygon might actually approach the true edge of the ring, but as this would require infinitely strong materials, we are still left in uncertainty as to the true value of h, but may feel sure that it will be the smallest value consistent with a safe stress on the material. If we provide abutments capable of reacting with a force h sutticient to keep the equilibrated polygon (where it cuts the joints) within the middle third, our abutment will certainly be amply strong enough, and this is the value of h to be adopted in all practical calculations of the stability of an arch.

In the example with the three voussoirs it is clear that equilibrium would be obtained with very widely diferent reactions t at the one abutment. Aud this fact is also true for a bridge of many voussoirs. The vertical eomponent (which may be called v) of this total thrust t is indeed determinate if we suppose the point where t cuts the joint to be known, being the same as the vertical rear. tion from a beam carrying the same weights and supported at the pcints where l and v eut the abutments; but the horizontal componeat or horizontal thrust, which has been called h, cannot be determined by any considerations hitherto mentioned.
§40. Experimental Demonstration that the Equilitrium of a series of Voussoirs is stable if any Equilibratel Polygon can be drawn fulfilling the conditions stuced above.- - Let ua suppose an arch, fig. 48, to lie construcced, the bed.jonts of which are not plane but curved, so tha: ach stone touches its neighbour only along a horizontal line, the trace of which in a drawing may be called the point of contact. Such an arch will differ from an ordmary arch in this respect, that the centre of pressure at joints will be shown by the points of contact, while the stones will be able by rolling to alter the points of contact if not in equilibrium. In such an arch the voussoirs in the first place may be put together so as to touch at any desired series of points, but the forces called into play when external support in withdrawn will rearrange the voussoirs so as to bring them into equilibrium, if any equilibrated arch consstent with the loads can be drawn so that the lines forming it cut tho joints inside the ring, and a morlel will show the ponts of sontact, or, in other words, the places where thest hnes cot be joints (It is assumed that the obliquity of the sides of , Le polygon to the joints which they cut is insufticient to produce slipping.)
An actual model shows the action very prettily, imt the tollow. ing consideratious will rasly allow the student to se fow it is that the vollssciirs always arrange themselves so as to binild a true areh.

Suluose, first, that the areh consisted merely of threc stones, fig. 46, and that the weight on the ceotre one was so great that the lineat areh, or equilibrated jolygon, berame sensibly two inclined straght lines like rafters. As stom as the voussoirs are left to themsclves, the pressure at the surface $a_{3} b_{m}$ and the reaction at the surface $a_{3} b_{1}$, will lie in one straight line, which, meeting a similar straight line from the other abutinent, will give oue equilibrated polygon, satisfying the required conditions; but if the horizontal force required for this polygon is not supplicd by the abutments the two foress at joints 1 and 2 wilh, as shown by the small straight arrows, constitute a couple tending to thrn the stone A round, so that the point of contact at joint 1 will be lower, and the point of coatact in joint 2 will ke higher than before. The same action will ocenr in stone C, and the result will be that the weight ray be balanced witha omadler horizontal force. At tile
earne time the rotation of the stones A and \dot{C}, coupled with the descont of B, tends to push back the abutments N and Q, and therefore to increase their horizontal reaction supposing them to be stable. If the abatments N, Q continue to yield, the stones A

Fig. 46.
and B will coatlaue to turn until the points of contact reach a_{2} and a_{y}, or b_{1} and b_{4}. The horizoatal thrust which the abutments require to meet will therefore dimiaish as the stones turn, sad the little atruetare will ouly fail to support the weight in case the photments' N a ad Q are irsofficiently etrong or stable to supply the minimam thrust consiatent mith an equilibrated polygon

Fig. 47.
entting the jointa insido the ring (or in case the polygon cat the jointa at auch an eagle thet the atones slip). If, on the other hand, the abntments were eo made as to press in upon A and C with a greater horizontal force than is consistent with two lines of pressure passing throagh the actual points of contact, then, as in fig. 47, the direction of the conples on the atones A and B would be reversed, and they will roll round so as to bring the points of contact more nearly into the position required to meet an excessive horizontal thrust, and at the same time the changed position of the atones, by ailowing N and Q to come forward, will tend to relieve or diminish the origingl excessive horizontal thrust, where this is due to the elasticity of the stones N and Q , or of the stones supporting these abutments. The structure will not fail unless the points of contact reach a_{1} ead a_{4}, or b_{1} and b_{3}, whea the structure would fail by the sides being squeezed in, and the stone B beiag lifted up out of the arch. This could not bappea with stones of the proportions showa in fig. 47, as before the limiting position was reached, the points of contact would lie on a atraight line correspondiag to an infinite horizontal thrust. In conclusion we see that, whether the horicontal force supplied by the reaction of the abutting stones be too small or too great, the three voussoirs tend to move so as to adapt the centre of pressure aad the actual horizontal force to one another. The equilibrium produced is stable, that is to say, if hy some exteraal force the arrangement of the blocks is slightly disturbed, when the force is removed the blocks return to their original position. In the abovo demonstration it is assumed that the blocks when first put together touch at some point aot far from the centre of the bed, -a condition correeponding to reasoaably gocd fitting ia the case of the plane joints of a stone arch before the centring is removed.
If a model be prepared (fig. 48), having a number of voussoirs of wood with their bed-joints slightly curved and roughened, the result of the above theory will be very clearly and beautifully acen. Thisection explained in the case of three blocks holds good for any thrie, and therefore for the whole serics. If an additional weight is I laced at the crown, as in fig. 48, the crown is a hittle lowered, but the curve passiag through the liaes of contact rises at the erown and is lowered at the haunel by the rotation of the blocks, until the lines of contact at the joints arrange theniselves, so that the resultant pres ures forming the imaginary polygon pass though these lises of contact. If the extra load be placed at the haunches the crown riges, but the pointe or lines of contact betwecn the vonssoiss are lovered at the crown and raised at the hanmes, as in fig. $48 a$. If one hameh only is weighted, the curve passurg through the tines of contu" tises at that baunch and is buered at the other, as in
fig. $48 b$; if the model be distorted by the haud it oscillates up and down on each side of the position of equilibrium, as a string similarly loaded would do. Frgures 48, 48a, aad 485 are taken frota photographs of a model. (li should be remarked that the abut-

Fig. 48.
ments were screwed to the supporting board; it is obvious the otherwise they would not have been in equilibrinm.) The geaera charecter of the curve passing through the pointa of contact muy be easily conceived by thinking of a atring similerly losded and

Fig. 48 a .
inversed. The equilibrated areh will be one of those forms whichs a string night take when simlarly loaded, but when the load is chauged, the length of the curve will not be constant in the arch, whereas it must be constant fith any giren chain. The curve pass-

Fig. 486.
ing through the points of contact corresponds with what Moseleg called the liae of resistance. The direction of the pressure is not necessarily tangent to this curve, but in the ordinary form of bridge it is nearly so.
In the model each voussoir is free to roll, because the bed-jointare curved. In an actual bridge the ber joints are flane, nevertheless, the stones do turn round to adapt themselves so the pressure, but the result of this rotation is to render the corapressioa elong the upper and lower halves of the stone unequai. "One edge is more compressed than the other; the couple tending to turn the vonssoir. and actually allowed to do so in the model, is met by an equal and opposite couple, duc to the uacgual compression of the atone.
This couple is the neceseary result of a pressure which is not axial, vide § 8 ; an equilibrated polygon cutting the joints at sarions dis. tances from the centre is thercfore as correct an indication of tho aetual forces present in a practicai arch with flat joints as in the model with curved joints ; but we mnst temember that where the joints are flat, the pressure will be unequally distrabutel wherever the tine of the equitibrated jolygon does poot dut the ceatre of tise
joint. Greatar or lese obastic resiatance in the stone corresponds to greater or less curvature in the surface of the joint. A small distortion of the arch will restore equilibrium when the curvature is great, or when the stone has a ligh modulus of clasticity. 'The ring with plane bed-jonnts is in stable equilibrium, and adapts itself to new distributions of lead for precisely the same reasons as the model with curved joints, but in the one case the couple called into play to move the voussoir is actually cancelled by the new position which the points of contact assume; in the other case it is balanced by the equal and opposite couple resulting from the resistance to motion due to the bardness of the stone.
The preceding paragraph showed how to determine whether an arch was in equilibrium when a known reaction was applied at one abutment ; the experiment aud reasoning now given show that the incipient yielding of ao arch under loads will produce a reaction at the abutnients suited to kecp the whole ring in equalibrium, provided only an equilibrated polygon cian be drawn, cutting the joints within the ring at sustable angles.
§41. Practical Investigation of the Stability of a given Arch under a given Loall-Joint of Rupture.-This investigation resolves itself into fiudiog that equilibrated polygon or linear arch which can be drana within the (widdle third of the) ring from the crown to the lowest possible joint of the ring (or to the springing if this be pessiblc). This lowest possible joint must in any case be treated as the springing of the arch, and if the linear arch goes out of the (middle third of the) ring above the actual springing, as will be the case in all semicircular or elliptical rings, masonry must be provided in the backing eapable of takiug the actual thrust inte the abutment and constituting the real arch, whick often differs widely from the form indicated by the ring of stones in the face. The linear arch in a circular or segmental bridge loaded simply by its own weight generally has a smaller radius of currature than the ring at the crown, and a much larier radius towards the baunches. Consequently, the longest linear arch which can be drawn within the ring will approach the upper surface of the ring at the crown and the soffit towards the baunches.

Elg. 49.
Fig. 49 shows a series of linear a $\begin{gathered}\text { ches, all drawn for the same }\end{gathered}$ load, and all tangent to the apper aurface of the erom of the arch. differing only in being the result of different horizontal thrusts. The curve drawn with a thick black line. tangent to the soffit, 19 clearly the longest linear arch which can be drawn within the ring. Any emaller value of the horizodtal thrust h would give a linear arch like curve 3. ond any larger value of h would give a linear arch like curve l. end both these values of h are incempatitle with equilibrium for the whole arch down to joint C; in therefore, the arch fails by the yielding of the ebutment, or of the lower portion of the ring, the failure will first be apparent at the joints A and B. where this black line is tangent to the ning, and at joint C, where the linear arch cuts the back of the ring. Smaller values of h will keep the stomes in equilibrium abore and below joint 13, but unless the arch below the joint B , as well as the shutment, can ressist the tendency of the sreb to spread, or, in other words, supply at least the berizontal reaction h required for thas linear arch, the joint B will open at the top, the centre joint A will open at the bottom, the joint C will oped at the back, and the crown fall in as shown in fig. $49 a$ The joint B, where the lougcst linear arch is tangent to tha sofit, is called the joint of rupture. The ralue of h required to make a lioear arch teogent to the back of the ring at tee crom nass through the edge of the joint of rupture at the soflt, is burger
than the value of h required to give a linear arch passing through the edge of any other joint at the soffit; at the same time, it is thie smailest value of h consisteatly with wlich the erch can rensin in

Fig. $49 a$.
equilibrium dom to P and from B to C. In circular arches tha joint of rupture generally makes an angle of about 30° with the horizontal plave; in elliptical arehes the anglo is usually about 45°. lts position is easily found as follows :-Let y_{1}, y_{2}, y_{3}, \&c. (fig. 50), be the beights of the apper surface of the crow $\mathrm{S}_{\mathrm{a}} \mathrm{A}_{\text {abore any }}$ points

Fig. 60.
B_{1}, B_{2}, B_{3} at the lower cdgea of the sofft; let W_{1}, W_{4}, W_{5} be the Weights of the portions of the arch with its load caried by the ring from B_{1} to A, from B_{2} to A, from B_{3} to A, sc. (The losd is in the fig. assumed to hs aymmetrically disposed relatirely to the centro of the span.) Iet x_{1}, x_{2}, x_{3} be the honzontal distadces of tha centres of gravity of w_{1}, v_{2}, w_{3} from the points B_{1}, B_{3}, B_{3}, s.c. ; tben eaking momedts round B_{1}, B_{2}, B_{1} in succession, we heve, if the linesrarch be assumed to pass througb any point B -

$$
W x=h y ;
$$

laking the auccessive values of h for a series of joints B. we shall find that one joint grea a maximum ralue. This value corresponds With that of the linear arch tangent to the soffit (of tho middle third) st the joint of rupture; for this arch has the maximum thrust of sny passing through the points $B_{1}, B_{2}, \& c$. , as appears by simple inspection of fig. 49. The joidt of rupture can thus be tentatively found, and the ralue of h. or the thrust which the abutment muat resist, ,is obtained at the same tume. If the backing ia carried well up above C , o larger value of h than that obtaned by this method wonld be coneistent with the sabality of the arch, and might actually occur; but we need not frovide for this larger value; since tha yieding of the abutment under it aould diminisli the thrust till it fell to the value as above determmed. If the ahutnocata could resist this thrust, the bridge rould then reman in equili. hrium If the arch 19 flat there may be no joint of mpiture, and in that case the value of h is to be taken as that given by a linear areh passing through the bottom of the (middle thrd of the'spring. ing and tangent to the crown of the arch. t.e., to the summit of the middle third of the ring.

When the apparent springing lies much below the joint of rupture, we find that the linear arch leares the ring on the upper surface at a joint (C) lower duwn, where failure must result by the opening of the joint at the lower surface, unless the pressure is taken by masoncy outside the ring. It is for this purpose that the backing is requircd. Obviously the best mode of supplying backing is to thicke.
the ring itself, keepug the masonry joints radial. The portion of the arch below the joint of rupture B is often considered as part of the abutment.

If the load at the crown of an arch were very light, and the load at the haunches comparatively very heavy, the series of tentative eurves drawn with various values of h would assume the character shown in fig. 51 . The langest curve which can now be fitted into the ring (drawn with a thick black line in the figure) will probably approach the sofit at the crown and be tangest to the upper surface of the ring at the haunch. In fig. 51 the longest linear arch is shown as tangent to the soffit at C . This condition could seldom be sccured; with most loads the linear arch tangent to the back of the ring at B will cut the soffit at C. Nevertheless, the value of. h to be provided for will be that given by the linear arch tangent to the suffit. If this arch leaves the middle third at B, the ring must be thickened or cfficient backing provided at this point. If the abutment yield an arch thus loaded would fail, as in fig. $51 a$, but the case very seldom arises in practice. If the arch were not pointed at A, but curved so as to contain the linear arch near the crown, the piece BAB would be iifted up as a whole without breaking at A.

Fig. 51.
The juints of rupture can be found for unsymmetrical loads as well as for symmetrical loads, but these joints will then not be at equal distances from the crown.

Fig. 5la.
If the middle third of the ring be alone treated as effective, the designer, after finding the joint of rupture for a bridge of the usual form and with usual loads, need make no further calculation as to the areh above that joint. A linear arch which is tangent to the soffit at the ioist of
rupture, and to the upper surtace oi the ring at the crown, will probably lic within the rmg at intermediate joints, and will cut them at an angle not differing nuck from a right angle; but the linear arch must be earried on below the joint of rupture, through the backing and the abutments, to see that it is nowhere too much inclined to the bedring joints, and never comes too near the edge of the effective masonry. The horizontal thrust determined by finding the joint of rupture on the bypothesis that the middle third of the ring is the only effective part will be a safe valuc, but the actual value may be considerably less, since the actual lintar arch called into play may lie outside the middle third. Since we do not know the actual position of the resultant pressures on each voussoir, any refinement in calculating the maximum intensity of stress due to these resultants would be useless. If the actual horizontal thrust were known, it would be easy to determine the couple aeting on each joint and due to the distance between the resultant pressure and the contre of resistance of the joints; then knowing this couple and the total thrust it would be equally easy by the principles in § 8 to determine the maximum intensity of stress. Practically the thickness of the arch ring is determined by rules derived from experience, and the chief use of the above theory is to determine the dimensions of the abutments; if, however, with a given load the joint of rupture were found much nearer the crown than the positions indicated above, it would be well to rearrange the permanent loads or to alter the form of the ring.
§42. Professor George Fuller of Belfast has communicated the following novel and very neat method of finding the linear arch of maximum rise (and therefore of minimum thrust) which can be drawn within the middle third of a given ring.
In fig. 52 let the dotted curres G1 and HK bound the middle third of the ring. Let the span be divided inta any convenient

Fig. 52.
number of parts at $a, b, c \ldots$ \&e. Let ile load on the half areb be subdivided into a corresponding number of parts, and each partial load referred to the vertical line passing through $a, b, c \ldots$ \&c. Let the curve D $123 \ldots$. A be a curre of bending moments for these loads, drawn to any convenjent scale. This curve will atsu (§30) be a linear arch for the given loads. Draw the straight dinu $A B$ at any convenient inclination, cutting the horizontal line $1 l^{-}$ at B. Raise the verticals $a 1, b 2, c 3, \ldots$ \&e., from the points 1 , $2,3, \& c$. Where these cut the curve DA draw horizontal lines, cutting $A B$ at $1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots$ Se. Since the ordinates of all possible linear arcues are merely multiples or submultiples of the curve of bending moments, it follows that any otber straight line from I: to the vertical through A will have ordinates, which, if messured from D1s along the verticals passing through $1^{\prime \prime}, 2^{\prime}, 3^{\prime}$, \&u., will be the ordinates of a linear arch, set off on the corresponding verticais passing through 1 and $a, 2$ and $b, 3$ and c, s.c. AB might ho called the development of the linear arch DA. Now let tho curves Cl and 11 K be developed in a similar way, so that, for instance, the ordinates measured froma to these curres are equal to the ordinates measured on the vertical passung through 1^{\prime} frora DB to the developments $I_{1} G_{1}$ and $H_{1} K_{1}$; then it is elear that for the giren londs any linear arch which lies within the middle third of the ring must, when developed, he represented by a straight line lying within the area $l_{1} C_{1} I I_{1} l_{1}$, and consequently that the straight line BC , which starts from the lowest point B in this area, and is tangent to the curve $\mathrm{C}_{1} 1_{1}$, will be the development of the curse of
maximum rise and minimun thrust which can be drawn within the given middle third witl the given loods. The line BC determines the point C_{4} and the ordinates of BC give the ordinates of the curve DC, the ordinates being measured on corresponding verticals.
The example shown is the diagram for an arch of 52 feet span and 10 feet 4 inches rise, the depth of the ring at the crown being 2 feet 6 inches, and at the epringing 3 feet 8 inches. The loads per foot of breadth, beginning at a, are-23.04, $19 \cdot 45,16 \cdot 35,13 \cdot 94,12.01$, $10 \cdot 35,8 \cdot 93,7 \cdot 93,6.32,5 \cdot 79,5 \cdot 52,5.39$ cwts The rise of the linear arch found is $10^{\circ} 2$ feet, and h per foot of breadth of the arch $129 \mathrm{cwt} .=\frac{1315 \mathrm{ft} . \mathrm{cwt}}{102 \mathrm{ft} .}$
§43. Empirical Expression for the Thichness of the Ring.Tho ring when not of equal thickness is always made of least depth at the crown. The depth of the key stone is therefore the thickness of the ring at its smallest pert.

- Let D be this depth in feet, and r the radius of the arch in feet at the crown. Then we may take (Trantwioe)-

1. $\mathrm{D}=\mathrm{C} \sqrt{\boldsymbol{r}}$.

According to Rankine, C may be takeu as 346 for a single arch, and 413 for ene of a series of arches. The reason for making one of a series thicker than a single arch is, that the former has, when sot loaded itself, to bear part of the thrust from its neighbours when these are loaded; this thrust tends to throw the linear arch in the unloaded span low down in the keystoac. The following is saother serics of values of C ia practical use :-

$$
\begin{aligned}
& \text { For first elass stonework C = }=3 b^{\circ} \\
& \text { or } \\
& . C=36 \\
& \text { " second class atonework } \\
& \begin{array}{l}
C=4 \\
C=45
\end{array}
\end{aligned}
$$

Perronet gives the following rule :-Let L be the span in fect-
2. $\mathrm{D}=1+\frac{\mathrm{L}}{30}$.

Rankine, Civil Enginecring, p. 427, shows that Trautwine's rule is rational. Perronet's can only be so when tho usual proportion of rise to apan is cidopted.

Brickwork arches of 24 fect span and less are made 1 foot 6 inches deep at tho crown; 30 feet span, 1 foot 101 inclues; 40 feet span, 2 feet 8 inches. The usual flat arela of these dimensions has its ring increased by two rings of bricks towards tho haunches. Theso do not show on the face being concealed by the spandils. liubble arches aro made a little thicker.
§44. Practical Details.-The s!rongest and simplest form of arch is a flat circular arc, having a rise of about one quarter of the span. In these arches the springing is above the place where the joint of rupture would occur if tho ring were prolonged. Those parts of an elliptical or soncircular arch which lie below the joint C, fig. 49, are of use chicfly to improvo the appearance of tho arch. They are virtually part of the abutacnt, which is sometimes even considered as extending to tho joint D. In as very flat arch the lincar arch may be brought to coincide more truly with the axis of the ring by lightening tho haunch, with which object tho roadway is sometimes carried on small flat arches turned at right angles to the main arch, and having the spandrils of the main arch as abutnants.
The joints between the vonssoirs should be wery evenly worked, so that the pressure may be evenly distributed. In brick joints the layers of mortar should be thin. Gieat care should be taken to provide for the drainage of the roadway above the arch. With this object the masonry should be covered with a shect of asphalt sloping dowa to the piers or abutments, and suitahle drains must bo provided to collect the water and discharge it through the pier or abutinent.
Skew Arches have already been treated of under the gencral head Arcre (vol. ii. p. 330).
Considerablo atteation naust be given to the construction of the centres or wooden frames on which the voussoirs rest while the ring is in process of being built. Extreme rigidity is necessary, and this rigidity is hest etained by adopting one of the three folloring plans (Rankine):-1. Direct supports as in fig. 53 , illustrating

Hartley's centre for the bridge over the Dee at Chester (total span 200 feet) ; 2. Inclined struts in tairs as shown in fig. 54, being a diagram of the centre used in the erection of Waterloo Bridge ; 3. Trussed wooden girders, of which an example is afforded by the truss used in the erection of London Bridge, fig. 55.

Fig. 53.

Figure 55 shows the striking plates and vedges by which the ceatre is lowered after the completion of the arch. The upper and lower plates A and B aro strong

Fig. 54.
bcams suitably notched, and are separated by the compound wedge C ; this wedgo is kert in its place by cross wedges shown in section in the figure. When the centre

$\mathrm{Flg}_{g}{ }^{5} 5$.
is to be lowered thesc cuoss wedges are knocked out, aud the main wedge C driven back. Owing to defective centcring some large French arches sank much during construction, and owing partly to this cause, and pa: Uy, as it would appear, to defective mason-work, the totill deformation after the centres had been struck was most extraordinary. In Perronct's bridge at Nenilly (vide 'Table XV1I., § 84) tho sinking, while the centre was in its place, amounted to 13 inches, and after the centre was struck a further sinking took place of $9 \frac{1}{2}$ inches. The crown of the centering bad a radius of 150 feet, but the sinking of the arch was such that for 60 fect it assumcd the form of an are of a circle with a radus of 244 feet. It is remurkable that the bridge, built in 1774, of very bold design and so imperfectly exccuted, still stands. When the centres of Waterloo Jridge were removed no arch sank more than $1 \frac{1}{2}$ inches. Centres have occasionally been supported on strong sacks full of sand. To lower the centre the sand was allowed to escape through aperturcs in the sack. It is believed that this method was first employed by a French engincer, M. Deaudemoulin. The canvas sack has been advantageously replaced by wrought irum
bozes or troughs: the block supporting the centre acts as a lid restiug on the sand inside; when the sand is allowed to escape the black sinks slowly down inside the box.
§45. Comparison of Metal with Mcsonry Arches.-Metal arched ribs may be used instead of rings of masonry to support a platform and roadway. These arched ribs constitute 'true arches whenever, as is generally the case, all parts of the rib are compressed. The principles by which the stress on each part may be computed do not differ from those already explained for arches of masonry, but it is possible to calculate the stresses with unch greater exactitude for continuous metal ribs than for voussoirs. With voussairs we bave seen that the resultant thrust at the springing is indeterminate both in magnitude and position, but we shall see hereafter that the resultant thrust, which will be called $\boldsymbol{\varepsilon}$, at the springiog of a metal arch is easily rendered determinato. Supposing t and t_{1}, the thrusts due to a given load (fig. 56), to be known, then if the forn! of rib be made to

Fig. 56.
cerrespond with any linear arch for the given distribation the compression at any section of the rib will be axial and uniformly distributed; the arch will then be strained as a chain of the same length would be strained under the same distribution of loads, extension being substituted for compression and dip for rise. Fig. 56 shows a rib of this kind with the approximate liuear arch drawn as an equilibrated polygon by the method explained in § 38.

If the distribution of the load is altered the linear arch will also cbange, and the stress on each part of the rib will no longer be axial. Tho change iu.the form of the linear arch will generally be much greater for a metal than for a masonry arch, because most metal arches have light open spandrils and a light roadray, so that the passing load is considerable in conparison-with the permanent load. Not improbably the linear arch, when only one haunch of a metal rib is loaded, may pass quite outside the rib for a portion of its leogth if this rib is made, as is usually the case, of a form containing the linear arch for a symmetrically distributed load. On the other hand, it does nat follow, as with masonry, that because the linear arch passes ontside the rib the bridge will fail. The bending couple then produced can be resisted by the moment of the elastic forces of the cross scction of the rib if the rib is made sirong enough. In masonry the joints open so soon as the resultant pressure passes outside the middle third of the ring; the couple required to produce equilibrium would thon require a negative fore or tension at the opposite edge, and nasonry cannot supply this tension, but in a metal rib the couple or bending moment produced by the execntricity of the stress may bo resisted by the stiffuess oi the rib acting as a beam subject to a bending mument. Thus the strength of an arch to resist fexure is a more important element in the motal rib than in the masonry structuro. It would be false to say that the ring of voussoirs had no strength tr osist hesure, for … have on the contrary seen that the
moment of the elastic forces at any section of a stcue ring does resist any distorting action produced by the loed; but.11 masonry this moment should never exceed the comparatively small value consistent with the absence of teasion on any part of any joint. The metal rib may with safety be subjected to considerable tension in parts, and its strength to resist flexure can be easily increased and can be calculated with certainty. Moreaver, by binging the rib at one or both springings, as can be done with metal, the problem of determining the horizontal thrust (or total thru it) is simplified, the position of the thrust being thereby rendered certainly axial at this point, and then by taking into accoun the actual deformation of each part of the rib a completc solution of the problem of its strength can be obtained.
§46. Horizontal Thrust of a Metal Arch or litb hinged at the Abutments.-By supporting a rib on pins or in. cylindrical bearings (vide fig. 62) at the abutments we determine two points traversed by the thrust. The effect of allowing free rotation is necessarily to render the bending mement nil round the centre of rotation. Hence the resultant thrust must traverse the centre of the pin, or the ceatre of curvature of the bearing. Knowing the point of application of the thrust we have new to determine its magnitude. The vertical component v is the same as the load on the pier of a girder of the same span equally and simitarly loaded, so that the problem reduces itself to the detormination of h the horizurital component.

Fig. 57.
Let as first consider a semicircular rib (fig. 57), bearing a load oniformly distributed along the horizontal platform of the bridgo (neglecting the weight, of the rib). The livear arch will pass through the centre of the bearings N and Q, and will be a parabola. Moreover, it will be that parabola which requires the rib to exert no internal forces due to its own elasticity, and tending either to push ont or draw in the springings; in other words, the rib. being supposed in equilibrinm before the application of the weights, will not tend to act as a spring to increase or diminish the opening between N and Q. Neverthelese, as the scmicircle cannot coincide witn the parabole, most parts of the rib must be subject to bendinf: monenta, against which it will react as a lent spring. When the linear areh, as shown in fig. 57, passcs above the axis of the rib a° the cromn, and below it at the baunches, the upper portion of thr bent rib will act as a spring, tending by 1 ts reaction to diminish th. distance betwecn the ends N and \mathbb{Q}, while the portions near the spranging will be so bent as by their reaction to tend to increaso tha: distance; now, if, as is necesssrily the case, the whole rib is not L. act as a spring. teading eitber to close or oped the cnds N and $\dot{4}^{4}$ then the efiect of the bending near the bonnches must exactly neutralize the cffect of the bending near the crown. We hare buw to find what dirction of thrust at the springing will give a linear arch such that the above condition may be fulfulfed.
Let M be the beading momest acting at any given section, the centre or neutral axis of which is at a heaght y (fig. 53) above the horizontal line joising the springings ; let this moment be considered constant for a short length $\Delta \mathrm{L}$ of the rib measured axially along the rib; let Δs be the short distance measured honzontalfy by which the moment Na acting throughout the length ΔL would
increase or diminish the span of the rib at the springings, the rest of the rib being assumed fres from strain. Then calling I the moment of inertis of the cross section of the rib, and E the modalus of elasticity, we ehall have--
1.

$$
\Delta s=\frac{M y \cdot \Delta \mathrm{~L}}{\mathrm{IE}},
$$

as appears from the following considerations:-
Io 6ig. 58, let $\mathrm{O} o=\mathrm{Aa}=\mathrm{B} b=\Delta \mathrm{L}$; conceive the surface at $\Delta \mathrm{B}$ as fixad, and let the action of the couple if be such as to extend the

Fig. 5s.
top and cenpress the bottom of the rib, moving the point a to a_{1}, and the points b to b_{1} : then, cslling p the intensity of the streas at a, we have (equstion 4, § 14)-

$$
\mathrm{M}=\frac{2 p_{1} \mathrm{l}}{d}
$$

91so we have (\$ 24) -

$$
a a_{3}=\frac{p_{1} \Delta L}{E}:
$$

and therefore-

$$
2 a_{1}=\frac{3 \backslash \Delta L}{E T} \frac{a}{2} ;
$$

join o and Q and drair the line $a Q_{1}$, making the angle $Q 0 Q_{1}$ equal to aon $_{1}$; at Q draw $\overline{Q Q}$ perpendicular to $\overline{O Q}$. Then the effect of the conple M on the length ΔL of the rib, the rest being unstrsined, will be to move the poiot Q to Q_{1}, sod by similar triangles we bave-
sod therefore-

$$
\overline{a a_{1}}: \overline{Q Q_{1}}=\frac{a}{2} \cdot \overline{o Q}:
$$

$$
\overline{Q Q_{1}}=\frac{M \cdot \Delta L}{E \cdot 1} \cdot \overline{Q Q} .
$$

Then resolving the motion $\overline{Q Q}$ into harizontal and vertical compooents Δr and Δv, we havo by aimilar triangles, $\Delta s: Q_{1}=y: C Q$, or, as sbove-

$$
\Delta s=\frac{M y . \Delta L}{V E}
$$

Bot if, as obovo ataten, the rib does not act as a apring io pither direction, the span will remain constant, sad the aum of all the changes io apan produced by all the successive leogth ΔL will be nil, or $\Sigma \Delta s=0$. Heace, since E is constant, we hove
2.

$$
\geq \frac{M y \cdot \Delta L}{1}=0
$$

29 a necessary condition for the egailibrium of a leaded rib, binged at the abutuents when these do not yield. This condition must be satigfied whatever be the form or load of the rib, tho reasouing by which it was oltained beieg indepeodent of the form either of the rib or linear arch. When the cross section of the rib is constant, we have \rightarrow

$$
\text { 3. } \Sigma \mathrm{M} y . \Delta \mathrm{L}=0
$$

We shall now proceed to show how the lincar arch satisfying this condition can be found for the cese of a uniform rib.
Let the lide $\mathrm{OO}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{3}, 6 \mathrm{~g} .59$, be the geometrical exis of the rib, and let $\mathrm{OC}_{2} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{3}$ be the linear arch required; this arch will, as ehown above, cut the geometrical axis at sotne point, as et O_{3}.
Let $\overline{C_{4}} \mathbf{C}$ represent the resultant pressure on the rib at any point C_{1} in direction and magnitude, fig. 60 . If this pressure be resolved iutu its vertical and horizontal components, the latter $\overline{\mathrm{C}_{4} \mathrm{H}}$ will be
equal to the horizontal thrsist h (conalant thronghoit the linear arcl since the loads are vertical).

Fig. 69.
This force applied at C will be equiralent to an equal and parallel force, $\mathrm{O}_{4} \mathrm{H}_{\ldots,}$, applied at the point, O_{4} in the axis, added to a left handed couple, of which the moment is $h{\overline{\mathrm{O}} \mathrm{C}_{4}}$. This coupla

Fig. 60.
in, for the poiot O_{4}, the couple MH^{-}required for eguations 1,2 , and 3, the maguitude of which, h beiog constaot, is proportional to the vertieal distance $O C$ hetween the curves at any poiot. Equation 3 requires that the sum of wll the ralues of My shall be equal to zero, and we now sec that this condition resulte when the suan of all the products of OC into y is equal ω zerv, or when-
4. $\Sigma y, 0 C=0$;
when the cross section is not constant the value of $\frac{y . O C}{1}$ nust he substituted for the simple product $y .0 C$.

The problem of discorering the actual linear arch which will be called into play with a given rib is now reduced to thot of finding the linear arch fulfiling the condition in equation 4 . We might proceed tentatively, drawiog numerons linear archee, und selecting by trial that which most nearly fultila the coodition, as proposed by Mr Bell, Proc. I.C.E., vol. xxxii, hut l'rofessor Fuller of Lelfast Das showa, Proc. I.C.E., vol. xl., that the ordinates of the required liocarsarch can at once be calculated from the values of the bending moment at the several sections of a beatm of equal span and similarly loaded. Let og $g_{2} q_{3}$ (ig. 61), be the curve of beuding moments which, bs was shown in $\$ 30$, is onc form of linear arch correspooding to the given load, the lengths $\overline{0_{0}}, \overline{O_{2} O_{2}}, \overline{O_{0} 0_{3}} \& \mathrm{c}$., being equal and representiog ΔL; let y as before le any ordinate of the curve $00_{1} 0_{2} 0_{3}$, the exis of the rib; let $\overline{s y}$ be any ordinate of the given carre of heading moments; let sc be any ordinate of the required lidear arch. Then, since $\overline{o c}=\overline{s c}-y$, we have for the case of uniform cross section ond hinged abutments the equation-

$$
\text { 5. } \Sigma y(s c-y)=0 \text {, or } \Sigma y . \overline{s c}=\Sigma y^{2} \text {; }
$$

- This couple is sufficient to shift the force from C_{4} to O_{4}, but tha resultant of the force at C_{s} asd the couple would not he tangent to the geometrical axis of the rib. To alter the direction of the force in this teanner a vertical compooent must be addel, but this verifical component may be looked upon as a shearing force, which, being verticah, tends oeither te exterd nor to diminish the spab.
but the ratio $\overline{x c}: \overline{8 g}$ is conotant, snd may be deaignatcd by the letter k; so that wo.may write $k(\Sigma y . \bar{g} \bar{g})=\Sigma y^{2}$, from which equation we find the value of k -

$$
\text { 6. } k=\frac{\Sigma y^{3}}{\Sigma y \cdot \overline{g g}}
$$

If the cross eection is not constant we liave for k the more com. yloz expersion-.

puts $\bar{s}=\bar{z} \cdot \overrightarrow{s g}$, so that the required ordinate sc is at once obtained in torms of k and the knomn ordinate sy.

When the actual lisear arch $0 c_{1} c_{2} c_{3}$, \&c., has been thus ohtained, it is easy to calculate the horizontal thrust; for let $\overline{s_{5} c_{s}}$ be the naximum ordinste, the direction of the thrust will at this point of the curve be horizontal, and therefore calling W the weight on one tids of this ordinate, and x the distance of its centre of gravity from the epringing. we have-
8. $\quad . \quad x=k . s_{s} \varepsilon_{3}$,
from which h cen be found.
h and v being known give the position and direction of the result. ant thrust at the springing of the rib. The magnitade of the thrust at any other point is easuly computed graphically or by memente

Fig. 61.
round the springing ; then the resultant thrust at a given point being known, the intensity of the stress on any part of a section et that point is to be computed by first resolving the thrust into.two components, one normal to the section and one in the plane of the section; the latter gives rise to a shearing etress (analogous to the force which canses one stone to slip on another in the maconry arch), while the component normal to the eection will (if not axial) give rise to a aniformly varying stress, the magnitude of which at eech distance from the axis can be compnted by the formales given in § 8 .
The valus of h io diterminate is the direction of the rib be sapposed fixed st the springing, but this cannot be ensured in large structares, snd the theory need not therefore be developed. It simply requires $\Sigma \overline{c o}=0$.

- When the rib (as is generally the case in existing bridges) abuts againste flat springing the exact value of h is indeterminste. When tho rib is hinged the friction at the bearing renders the thrust indeterminate within limitg depending on the possible bending moment at the springing due to the friction.
§47. Process of Designing a Rib. - In future designs of ribbed arches it is to be hoped that the practice will be edopted of allowing the rib freedom to turn at the springing. This can be done by ending the rib in a bearing, curved as in fig. 62; the resultan, thrust will then be approximately axial, and the stress on erery part of the rib can be detormined with as much accuracy as on the soveral parts of a girder. When tho span is large a cast-iron metal arch can bo made lighter than a wrought iron girder for the same load, but the imperfection of the theory of the stresses on the ribs has hitberto led to great raste of metal in their construction. In what follows it is assumed that the resuliant at the springing passes through the goometrical centro of the cross section of the rib.

If the rib were to carry a load disiributed only in one why we ought clearly to mele the form of the axis of the rib coincide with a linear arch for that load. There would tben be no bending moment on any part of the rib. As
in practice we must provido for all the possiblo combinations of passing load, we need take little pains in designing the eurvature of the rib-a flat arc of a circle with s rise of say $\frac{1}{4}$ th will answer well. The semicircular or elliptical forms sire not good, for no linear arch with any practicel distribution of load can evon approximately coincide with a form in which the rib springs vertically from the abutments.

Tbe general character of the cross section should be similar to that for a girder, inasmuch as the rib will bave to resisb bending monents as well

'Fig. 62. as direct compression. The depth need not, honever, be nearly so great as the depth of a girder. Let a cross section be chosen in which the area is assumed as appreximately say 5 per cent. more than that which would be sufficient to sustain the thrust resulting from a linear: arch suitable for the maximum load and coinciding approximately with the axis of the rib. (If the load be nearly uniform 'per foot run of platform we may for this first approximation take $h=\frac{q l^{2}}{8 d}$, where d is the rise of the linear arch above the springings.) With the rib thus designed determine by the method given in § 46 the actual linear arches resulting from the following arrangements of passing load (combined with the permanent load):- (1), Bridge half covered from one end; (2), three-quarters covered from one end; (3), whelly covered : (4), corered by the passing load over the middle half of the bridge, the baunches being unloaded. Draw these linear arches on the rib by the method given'in $\$ 38$, and choosing at each one of some eight or ten selected sections the two curves which most Dearlyapproach the top and bottom flanges respectively, compute the maximum intensity of stress on the top and bottum flanges at each section from the two thrusts corresponding to these two linear arches; where the stress is excessive add metal; remove it where the maximum stress is less than the safe stress for the material. If no great change is made in the design this process will be sufficient, but if the cross section is seriously modified by the alterition we must make a second approximation by recalculating the linear arches for the new form of rib, and thus proceed by trial and error uatil the stresses corresponding to the actual linear arches are met by sufficient metal at all points. . The rib need not be of uniform deptb throughout, and may be increased in depth at the places where the strcss duc to bending moment bas been found excessive.

In large spans the effect of a changc of temperature must be taken into account. This can be done by finding the linear arch given by the expression-

$$
\text { 1. } \quad . \quad \leq \frac{M \Delta l}{I} y=\Delta s
$$

Where Δs is the alteration in span which moula result from the expansion or contraction of the span if free to expand or contract with the change of temperature.

In a series of arches abutting against comparatively slender piers, account must be taken of the thrust trans. mitted from the neighbouring arch. This thrust will only be due to the passing load, and a part may be considored as taken by the pier; the remainder which the
pier cannot counterbalance must be compounded with the reaction due to the linear arch calculated for the permarent load of the unloaded span. With the reaction thus computed the linear arch resulting in the unloaded span most be constructed, and the stresses examined on the top and botton flanges of the rab.
The theory now given for a stiff rib used as an arch is equally applicable to a stiff rib hang as a suspension bridge.
§ 48. Wooden Arches.-Arches have occasionally been built of wood with ribs elaborately censtructed of bent timber, searfed and bulted together; the strength of such a rib could be calculated in the way undisated for metal z:bs, but the mode of construction is not to be recommerded. When wood is employed it should be used in simple straight balks built into a framed arch.
§ 49. Practzcal Detarls of Metal Areles.-The common form of metal arch is a cast-iron rib of I section and of small depth. This rib is intended to be sufficient, unarded, to bear the whole weight of the superstructure. The spandrils, made of some kınd of lattice work (or occasionally a mere arcade), bear the roadway, and to seme extent stifen the rib beneath. The rib may with advantage be made much deeper than has been the practice, and may consist of tabes framed as in the St Louss Brdge, tig. 0., Plate XVIII., so as to form a single stiff rib. Where, to gain headway, a rib of amall depth at the cromn is destrable, the rib might with advantage be deepened at the haunehes. Wrought iren is a very suitable material for small arehes, where the permanent luad is insufficient to prevent tension from occurring in some parts of the rib. Cast-1ron and cast-steel are better materials for large spans; for moderate spans a goed form of metal arch nill be shown under the bead of "Frames" (fig. 77), bense that in which a lower meinber is braced to the upper member carryigg the roadway so as to form a true frame; for very large spans a single deep rib, or a frame with parallel members arranged as an arch, may be adopted. This design bas the advantage over that shown in fig. 77 of avoiding very long bracing at the abutments.

V. Frames.

§50. Preliminary.- - A frame 1 a rigid structure ccinppsed ol straight struts atd thes. The struts and hes are called the membera or pieces of the frame. The frame as a whole may be subject to a bending mement, but each bar, pilar, red, or cord in the atructure s thereby sumply extended or compressed so that the total stress on a given member is the eame at all its cross sectons, while the intensity of atress is uniform for all the parts of any one cross section. This result must follow in ary frame, the members of which are so connected that the joints offer little or no resistance to change in the relative angular position of the members Thus if the members are pinned together, the jont censisting of a single circular pin, the centre of which hes in the exis of the piece, it is clear that the direction of the only stress which can be transmitted from pin to pin will conncıde with this axis. The axis becomes, therefore, a line of resistance, and in reabening of the stresses on frames we may treat the frame as consisting of simple straight lines from jolnt to joint. When the members of a frame consist of iron rods as ties, combined with struts formed by angle iren or T iron of the usual sizes, or by pieces of timber of the ordinary dimensions, it is found by experiment that the stresses on the several members do not differ sensibly whether these merbers are pinned together with a eingle pin or rigidly joinied by several bolts or rivets. Framee are much used as girders, and they also give useful desigas for suspensior anल arched bridgee. A frame used
to sup jort a weight is often catled a truss; the stresses on the various meinbers of a truss can be corpunted for any given load with greater accuracy tban the intensity of stress on the various parts of a continnous structure sueh as a tubular girder, or the rib of an arch. Many assumptions are made in treating of the flexurc of a continuous structure which are not strictly true; no assumption is made in determining the stresses on a frame, except that the joints are flexible, and that the frame shall be so stifl as not sensibly to alter in form under the load. Doth assumptions are consistent with the facts in the case of any lindge truss.
§ 51. Classes of Frames used as Trusses.-Fianes used as bridge trusses should never be designed so that the elongation or compression of one meniber can elungate or compress any other member. An example will save to make the meaniog of this limutation clearer. Let a fiame consist of the five menibers $\mathrm{AB}, \mathrm{BD}, \mathrm{DC}, \mathrm{CA}, \mathrm{CB}$ (fig. 63), jointed at the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D, and all capable of resisting tension and compression. This frame will be rayd, i.e., it cannot be disterted without causing an alteration in the length of one or mere of the members; but if from a change of temperature or any other cause one or all of the men-

Fig. 63. bers change their length, this will not produce a streas on any member, bat will merely canse a change in the fom of the frame. Such a frame as this cannot be selfstrained. A workman, for instance, cannot produce a stress on one member by making sume other member of a wrong length. Any error of this bind will merely affect the form of the frame; if, however, another menber be intreduced between A and D, then if $B C$ be shortened $A D$ will be strained so as to extend it, and the four other members will be compressed; if CB is lengthened AD will thereby be compressed, and the four other members extended; if the workuan dees not make CB and AD of exactly the right length they and all the members will be permanently stramed. These stresses will be unknown quantuties, which the designer cannot take uto account, and such a combination ought therefore never to le adopted. A frame of this second type is said to have one redurdant member.

If the members AD) and CB were flexible curds there would be no redundant rembers, for the tighteming of one diagonal would throw no sensible stress on the other diagonal, sumee it si supposed incapable of resistung a thrust. Both daguals, if flexible, are required to prevent the quadrilateral from getturg out of shape. Nembers capable of bearing only one kind of stram might recenve the name of semz-menbers.
§ 52. External Forces on Frame - Frames used as bridge trusses are in equilibrium under the external forces apphed to them. These forces are-(1) the loads, (2) the reactions at the peints of support. The loads are to be referied to the jounts as follows - (I) find the resultant of the lcad carried by any two joints, (2) resolve that load into two vertical compenents actung throngh the two joints, (3) com. pound the several components acting at each joint into one resultant. This process gives a frame with external forces equavalent to the actual loads, but acung oply at the jonts. The frames are always supported at a joint, and the reactions of the supports are therefore also forces actung at joints. The load between any two jounts is directly sapported by the member of the frame joinng them, the stresses due to the direct actien of this partal load minst, where great accuracy $1 s$ wanted, be added to the atresses compnted on the assamption that the loads have been applied directly to the joints. Generally the atresses due to the direct action of the load betwan two joints may
be neglected except where a member of the frame 18 em ployed to carry the roadway.

Fig. 64 shows a common form of bridge truss known as

Fig 64.
3 Warren garder, with lines indicatıng external forces applied to the joints, half the load carried between tho two lower joints next the piers on either side s directly carried by the abutments The sum of the two upward vertical reactions must clearly be equal to the sum of the loads. The lines in the diagram represent the directions of a series of forces which must all be 10 equilibrnum ; these lines may, for an object te be explained to the next paragrapb, be conveniently named by the letters in the speces which they eeparate rastead of by the method usually employed 10 geometry. Thus we ehall call the first inchaed line on the left hand the line $A G$, the line representing the first force on the top left hand joint $A B$, the first horizontal member at the top left hand the line BH, \&c.; sumilarly each point requires at least three letters to denote it, the top first left hand joint may be called $A B H G$, being the point where these four spaces meet. Io this method of lettertog, every enclosed space must be designated by a letter ; all external forces mast be represented by lues outside the frame, and each space between any two forces must recelve a chistinctive letter; this method of lettering was first proposed by Mr R. H. Bow (Economics of Construction), and is convenient in applying the theory of reciprocal figures to the computation of stresses on frames.

When the weight of the truss is small it is usual to refer the weights of the parts of the truss itself to the same joints as carry the roadway, and to treat all other joints as unloaded.

The reactions at the points of supports of a framed arch or euspensioa bridge are anclined, as 10 fig. 65 ; the manner

Fre 65
of computing the stresses on these frames when the direction of these reactions is known will be first explained, and subsequently the manner of finding this diroction will be given.
§53. Recaprocal Figures,-Prof. Clerk Maxwell has given (Phil. Mag 1864), the followng definition of reciprocal Ggures:-"Two plave figures are reciprocal when they cunsist of on cqual numbar of lizes so that corresponding
lines in the two figures are parallel, and corresponding lines which cooverge to a point in one figure form a closed polygou in the other."

Let a frame (without redundant members), and the external forces which keep it in equilibrium, be represented by a diagram constituting one of these two plane fgores, then the lines in the other plane figure or the reciprucal will represeut in direction and magnitude the forces between the joints of the frame, and, consequently, the stress on each member as will now be explained.

Reciprocal figures are easily drawn by following definite rules, and affird therefore a simple method of computing the atreswes on members of a frame.
The esternal forces on θ frame or bridge in equilibrium ander those forces may, by a well-known proposition in statics, be repreaented by a closed polygon, each aide of which 19 parallel to one force, and represents the force in magnitude as well as in direction. The sides of the polygon may he arranged in ony order, provided care is taken so to draw them that in passing round the polygon in one direction this direction may for each side correspond to the direction of the force which it represents.

This polygon of forces may, by a slight extension of the above definition, be called the reciprocal figure of the external forces, if the sides are arranged in the same order as that of the jounts on which they act. so that if the joints and forces be numbered 1, 2, 3. 4, \&c., passing round the outside of the frame in one direction, and returning at last to joint 1 , theu in the polygon the aide represent. ing the force 2 will be next the aide representing the force 1 , and will be followed by the side representing the force 3 , and so forth. Thas polygon falls under the definition of a recuprocal figure given by Clerk Diaxwell. if we consider the frame as a point in equilibrium under the external forces.

Fig. 66.

$\mathrm{F}_{\mathrm{j} \mathrm{E}} .66 a$. $\mathrm{F}_{1 \mathrm{~g}}$. 66 .
Fig. 66 c .

Fig. 66d.

Fic. 66 shows a frame supported at the two cod joints, and loadod at each top joint. Tho losds and the aupporung forces are indicated by arrows. Fig. 6eia shows the reciprocal figure or polygon for the external forces on the assumption that the reactions are slightly moclined. The lines in fig 66a, lettored in the usual manner, correspond to the forces indicated by arrows in fig. 66, and lettered accerding to Mr Bow's methed. When all the fores are vertical, as will be the case 10 griders, the polygon of external forces will be reduced to two straight lines, 68. 668, superimposed and divided so that the length $A X$ represents the load $A X$. the longth $A B$ the load $A B$, the longth $V^{\prime} X$ the resation $Y X$, and ar forth. The line XZ consists of a kerice of jageths, as XA. $\Lambda B \ldots . . D Z$, representing tho Joads takon in their onder. In sut. sequent diagrams the two reaction lues will, for the aralie of clearncss, be drawn as if slightly unclined to the vertical (na practised by Mr Bow).
If there are no redundant mambers in the frame, there will be on'y two members ahutting at the point of support. for these two members will be sufficient to balance tho reaction, whatever its directien may be; wo can therefore draw two triagles. each haring as ono side tho reaction YX, and having the two other sides parallel to these two members; cach of these trangles will represent a poly. gon of forces in equilibrium at the point of support. Of these twe triangles, shown in fig. 66c, select that in which the letters X and Y are so placed that (naming the apex of the triangle E) the IF.... virand $Y E$ are tho lines varallel to the two members of the
angs sane is the frame (fig. 56). Then the triangle YXE is the reciprocal figare of the three lines YX, XE, EY in the frame, and represents the three forces in equiliorium st the point YXE of the frame. The direction of YX, being a thrust opwards, shows the direction in which we must go round the triangle YXE to find the direction of the two other forces; doing this. we find that tho force XE most act down towards the point YXE, and the force EY away from the same point. Potting arrows on the frame diagram to indicate the direction of the forces, we see that the member EY must pall and therefore act asa tie, and that the member XE must push end act as a strut. Passing to the point XEFA we find two known forces, the load XA acting downwards, and a push from the atrut XE, r hich, being in compression, must push at both ends, as indicated by the arrow, fig. 66. The directions and magnitudes of these two forces ere already drawn (fig. 68a) in a fitting position to represent part of the polygon of forces at XEFA ; be. ginning with the upward thrast EX, continuing down $\mathcal{X A}$, and drawing $A F$ parallel to $A F$ in the frame we complete the polygon by urawing EF parallel to EF in the frame. The point F is determined by the intersection of the two lines, one beginning at A, and the other at E . We then bave the polygon of forces EXAF, the reciprocal figure of the lines meeting at that point in the frame, zui representing tine forces at the print EXAF; the direction of the forces on EX and XA being known determines the direction us the forces due to the elastic reaction of the members $\triangle F$ and $E F$, showing AF to push as a atrut, while EF is a tie. We have been grided in the selection of the particular quadrilateral adopted by the role of arranging the order of the sides 50 that the same letters indicate corresponding sides in the diagram of the frame ond its reciprocal Continuing the construction of the diagram in the eame way, we arrive at fog. $66 d$ as the complete reciprocal figure of the frame and forces upon it, and we see that each line in the reciprocal figure measures the stress on the corresponding member in the frame, and that the polygon of forces acting at any point: as IJKY, in the frame is represented by a polygon of the same aeme in the reciprocal figure. The direction of the force in each member is easily ascertained by proceeding in the manner above deacribed. A single known force in a polygon determines the direc. tion of all the others, as these must all correspond with arrows pointing the same way round the polygon. Let the arrows be plened on the frame round each joiut, aud so as to indicate the drection of each force on that joint; then when two arrows point to one another on the same piece that piece is a tie; when they point from one another the piece is a etrut. It is hardly necessary to say that the forces exerted by the two ends of any one member must be equal and opposite. This method is universally applicable where there are a) redundont members. The reciprocal figure for any loaded frame is a complete fnrmula for the stress on every member of a frame of that particular class with loads on giver joints: Some examples of these figures will be given, and the reader will easily construct others for himself.
§ 54. Warren Girders-Reciprocal Figure and Method of Computing Stresses by Method of Sections.

Case 1. The Warren girder loaded at each top joint, 6gs. 67 and $67 a$. This diagram differs very slightly from

Fig. 67.
that ahown in fig. 66. The top and bottom membere are in atraight lines, and consequently the lines indicating the stresses on the bottom member are superimposed one on the other instead of radiating from Y; the loads $X A$ and FZ are shown as directly borne by the piers. It is clear that if the road is supported by a platform reaching from the end juints to the piers, half of the load on these parts of the platform will be directly supported on the piers. These end loads are shown also in the pubse-

Fig 67a quent diagrans. The truss is generally built of eanilateral
triangles, and the inclination of the bracing to the horizon should never be less than 45°.

Case 2. Warren girder loaded on top and lottom, fig. 68. $68 b$ shows the polygon of external forces, and 68

Fig. 68a

Fig. 68c.
x
shows half the reciprocal figure. These figures bare been added to facilitate the comprehension of the completo reciprocal shown by 68 a

Case 3. Warren girder with one load, not central, fig.

69. The polygon RXZ, fig. 69a, represents the external forces

Cass 4. Warren ginder; load on half the top jeints, fig. 70.
In designing a Warren girder it is necessary to provide for the adrancing load. With a uniformly distributed load the

Fig. 70.
diagonal bracing consists of alternate struts-and ties beginning, if supported at the bottom, with a strut at each end, or' with the tie at each end if the truss is hung from the top. At the centre there will be either two ties or two struts in juxtaposition; or, as in the case where there are an even number of loaded joints at the top, the central pair of diagonal members
 will be unstrained ; but an advancing load (neglecting the permanent load) will convert each diagonal member (except the end ones) alternately inte a strut and a tie. It is necessary to provide for the maximom extension and maximum compression on each, taking into account the combined effects of the permanent and passing lead; the latter has generally sufficient effect to reverse the direction of the stress on the bracing near the centre, but not (in large bridges) towards the ends. Each member of the bracing towards the centre must, therefore, be se designed as to be capable of acting alternately as a strut and as a tie. The maximum stress on the top and bottom members occurs when the bridge is fully loaded.

This stress is easily calculated by the method of sections; assuine the girdor cut by a vertical plane at the joint or pin opposite the member in question, or in other words, by a vertieal plane passing through the vertex of tho triangle of which the member in question ie the base; let d be the perpendicular distance between the member and tho pin, t the thrust or tension on the member, and M tha bending moment for tha section calenlated as for a girder loaded at tho points corresponding to tha joints. Then $\mathbb{M}=u l$. The atress on the diagonals corresponds to tho ohearing atress in the solid girder, and may consequently be calculated from the ohearing diagrams, exsmples of which were given in $\S 19$. The loads may be referred to the joints before drawing the diagram, and the continuous curves of fgures 18 to 18 c will be replaced by lines consieting of a aeries of steps such as are shown in fig. 18a. Wc may then proceed to cslculate the stress on any diagoual as fol-lows:-Take the ahearing stress for the section at the joint where the diagonal in question abuts; ;f there is a load on this joint, take the abearing stress for a section close to the joint, aud on that eide

Fig. 71.
of it which is next the diagonal in question : call the shearing force thus found F; let i he the slope of the diagonal or the sugle which it makes with' the horizon, than the tension or compression on tha diagonal is F eosec. i; thus let 6 g . 71 represent a Warren girder of six equal bays, in which $i=60^{\circ}$. Let the load on each top joint
be 5 tons, the compressions and tensions on the diagonald are se follows:-

Table XI.

Name of Brace.	$E \times$ cosec \mathbf{i}	Compreseson	Tension
$\because 1$	15×1.1547	17.32	
2	10×1.1547	$1 . .5$	11.65
3	10×1.1547	11.55	
4	5×1.1547	$\cdots .77$	
5	5×1.1547	5.77	\cdots
6	0×1.1547	\cdots	\cdots

These stresses, given simply as an example, apply to the one special load, and are not to be confounded with the maximum stresses whieh an advaneing load of the same intensity vould produce. The stresses on the two halves of the girder are aymmetrical.
The arithmetical mode of computation is the simpler where the top and bottom members are parallel and the inchination of the diagonals constant; where these conditions are not fulfilled the method by reciprocal figures is preferable.

Id the actual design of any girder to suit varions combination of loads, care must be taken to design eseh member to auit the maximum stress whieh can arise from any combination. The maximum shearing atress is most easily seleeted by means of the dis. grams § 19. Care must be taken to meet both the maximum twasion and maximum compression whenever the member is so placed that with some loads it is extended and with some compressed. We have just shown that this case arises in the diagonals near the centre of the girder. When frames are used as continuous girders, it is desirable to make the points of inflection coincide exaetly with a joint. This may be done by cutting through or omitting the mernbar opposite the joint. This allows the reactions on each pier to be easily determined by the elementary principles of statics with any load, and without taking into account the form which the beam assumes when deflected. lnatead of a long continuous girder, we then have a series of girders, supported at or near the middle of their length by the piers, while a second series hang from the first by pins at determinate points. This arrangement grestly simplities all the calculations without sensibly diminishing the adranting derived from the use of continaous girders.
§ 55. Various Forms of Girder. -The framed girder is sometimes made of the form in fig. 72, which has 1 be

Fig. 72.
advantage of reducing the length of the end diagonals where the stress is heaviest. The reciprocal figure for this truss uniformly leaded on the bottom joints is shown in fig. 72a. This girder is sometimes called a bowstring girder, though this name more preperly belengs to an obsolete form with to diagonals. Z and X are the spaces between the and loads and the reactions which, for clearness, are shown as pulling un; but the same reciprocal would result if the reaction were skown pushing up, and the letters X and Z were placed as dotted. This

Fig. 72a. form has the advantage of reducing the compression on the diagonal struts to a comparatively swall ameunt. A great part of the shearing stress is taken by the cursed upper boom; decper girders can be profitablyased of the bowstring than of the Warren tgpe. The long and expan sive struts in the latter form more than ceuntelizalan
the saring to be obtained by increasing the depth beyond abont $\frac{1}{12}$ th of the span.

The diagonal bracing in the Warren and bowstring girders is sometimes arranged as in 6g. 73; the girder is

then called s lattice girder. It is to be treated as a series of superposed Warren girders, each bearing its share of the load. This form has a slight advantage inasmuch as the diagonal struts are stiffened by being pinned to the ties where they cross.

Fig. 74 showe a very common and useful form of girder

Fig. 74.
where the upr ghts between the top and bottom members are oole to sustain both tension and compression, while the diagonals are only "semimembers," being flexible rods or bars. The reciprocal for this design is shown in fig. $74 a$ with two joints more beavily loaded than the oticers. The members in fig. 74 which bave no srrows on them are idle ot unused, with this partieular distribution of load. When the permanent load is coasiderable as compared with the passing load,the end or two end diagonals

Fig. $74 a$. eharn dotted will not come into action with any distribution of load, and may therefore be omitted. This form is much used when rood is employed for the compression mombers. It bas in every case the advantage that the struts in the bracing are shorter than iu the Warren girder. The lettering is arranged ao that only those spaces have letters which sre divided by members actually in use under this partier lar load.

Figs. 75 snd $75 a$ show 3 modification of this truss for small spans, and its reciprocal when loaded on one jount;

the lettering here also only suits the one distribution of loed, and the idle members have no arrows on them.
§ 56. Framed Suspension Bridges and Arches...These irames, like the girders, consist of top and bottom members, braced together by ties and struts. The bridge is a zuspension bridge, if the frame is supported by inclined forces pulling ontwards from the bridge as in fig. 76, and
sn arcr. is supported by forces pushing luwards' as in fig 77. The reciprocals of these two forms with the jointı at the platform uniformly loaded are annexed. These reciprocals are drawn on the hypothesis that the direction of the thrust or pull is known; and this has been chosen in this case so as to reduce the stress on NG to zero, es would necessarily be the case if NG were omitted or cut. When this is not the case the direction of the thrust or pull at the abutments must

Fig. $76 a$. be found in the manner explained below.

Fig. 76.
It is ezsy to design the bridge so that both the top and bottom members of the suspension bridge remain in tension, snd both those of the areh in compression under all distributions of load. Thia would allow wire rope to be nsed for both members of the euspension bridge, and cast-iron or steel for both members of the arch. The stresses on the bracing are very uniform and small as compared with those on the
 diagonals of a girder.

Fig. 78 shows a slight modification of the design for a

suspension bridge, very suitable for spans so large that the end struts in the preceding form would be in. eonveniently long. The reciprocal aunexed is drawn for the case in which a double load is placed on hals the bridge. The same design is suitable for an arch.

The resultant thrust or tension at the supports of framed auspension bridges or arehes can only be found by a method analogous to

Fig. $77 a$ that already explained for the scid metal rib. This method was first given by Prof. Clerk Maxwell.

Consider any member A, fig. 79, of length L and cross.section \approx, made of a material having the modulus of elasticity E ; nuder th: action of a stress F , the length. L will be altered by an mount--

$$
\Delta \mathrm{L}=\mathrm{P} \frac{\mathrm{~L}}{\mathrm{E} \cdot a}
$$

Appropriate signs must be given to the arithraetical values of the corce aod the alteratuno of laggth; thus thrust ad compression may

oe called negative, pull and extension positive If every other mem.

Fig. 79.
ber of the frams were sbsnlutely rigid, the spsn S of the bridge would undergo an altetation ΔS The ratio $\frac{\Delta S}{\Delta L}$ will depend merely on the geometrical form of the frame; let q be the value of this constant ratio, so that-

$$
1 . \quad . \quad \Delta \mathrm{S}=q \Delta \mathrm{~L}=q \mathrm{~F} \frac{\mathrm{~L}}{\mathrm{E} \cdot a}
$$

Let f be the force produced on the member A by s horizontal force h acting between the springiugs; then by the principle of virtual velocities we have-

$$
f \cdot h=\Delta S: \Delta \mathrm{L}
$$

for wo may consider the structure merely as a kind of lever, by which the force h exerts a force on A, the fulcrum being the joint opposite A; then the above proportion expresses the fact that the forces h and f are inversely proportional to the spaces which the ends of the laver would roove throngh when a small displacement occurs. Thus we may writa

$$
f=0 h .
$$

Gimilariy let f_{1} hos the atress which would be produced on A by a vertical force v, applied at one springing, while the other spriaging was held rigidly so that the whole frame could not tum : the ratio letween f_{1} and v is constant, depeading merely on the form of the rmme, ao that we msy write-

$$
f_{1}=p v_{1}
$$

where p is a constant, to be found in the same manner as $q: p$ may be defined as equal to tho whoie stress preduced on the giren mern. ber by a unit vertical force at the springing, and q os the whole atreas prodnced on the same member by a nuit horizontal force at the spriaging, the frame being held rigidly at the opposite abutment. Then any thrust ℓ at the springing luaviog the vertical aud hoil.
zontal components v and h will produce a stress F on A, equal to the sum of the stresses of f and f_{1}, or 一

$$
\mathrm{F}=q h+p v
$$

Substituting this value of F in equation 1 we have-
2.

$$
\Delta \mathrm{S}=\left(q^{9} h+p q v\right)\left(\frac{\mathrm{L}}{\mathrm{E} a}\right)=e q^{9} h+e p q v
$$

where $c=\frac{L}{E a}$, a constant for each member.
Now, let the values of q, p, and e be calculated for every menuer of the frame; then, calling the whole elongation $\Sigma \Delta S=\hbar$, we here-

$$
k=\Sigma\left(e q^{2} h+e p q v\right)
$$

If the abatments do not yield $k=0$, and for this case-
3.

$$
\hbar=\frac{\sum e p q v}{\Sigma e q^{3}}
$$

η is to be found as for a girder similarly loaded, and ℓ, the required thrust or tension, is the resultant of h and 0 . The calculation is best made as follows:-Construct tables of the values of d and q for each member of the frame; the method of sections or moments will saswer best for the top and bottom members, and that of reciprocal figures for the diagonals; assume a cross section for each member, based on a probsble assumed value of t; for the required laad make tables of $c p q$ and $e q^{2}$, or what is equivalent, when E is constant, make tables of the values of $\frac{p q^{2}}{a}$ and $\frac{q^{2} \mathrm{~L}}{a}$ The sum of $e q^{2}$ or $\frac{q^{2} L}{a}$ can then be made. If there be a load on one joint only, find the values of v and v_{1}, for the right and left abotments, then find Σ zpqu, using the value v for all members to the right of the load, and v_{1} for all memberg to the left of the load; equation 3 will now give the value of h for this single losd.

The process of finding Eepqu must be repeated for each joint which is loaded, and the whole horizontal thrust due to the load on any number of joints will be the sam of the separate values of h. When the borizontal thrust is known, the thrusts ℓ and t_{1} are obtained s^{\prime} the two abutments by compounding the horizontal thrust witb the verticsl weight borne at that abutment. When t and t_{i} ars known, the stresses on each member are to be computed by recipro. csl Ggures or any other convenient mathod. The process must he repeated for each combination of passing snd permanent load, so as to find the msximum stress to which sny member can be aubjected. If the assumed cross bections are not suitable for these stresses, fresh cross sections must be assumed and the whols calculation repeated. The change in cross section will cause some change in the valued of h, but this tentative orocess need seldom be gone through more than once.

Fig. 80 shows half the frame of a bridge ior athich the calculo. tions have been made The span is 120 fect, the rise $: 2$ feet, and the truss 5 fcet dcep at the crown. The load assumed is 10 tone

Fig. 81.
permanently on each top joint, and 10 tons of pessing ioad. On tig. 80 are marked the stresses when the bridge is wirolly corered with the passing load. On fig. Soa are marked the maximum etresses with sny distribution of load. Figs. 81 and 82 show graphi.
cally the amount of metal required in this bridge and in a girler of the same span and 12 feet deep; the breadth given in the diagmm to each member is proportional to the cross section required. The quantity of metal required for the girder exceeds that for the arch in the ratio of aboat 175 to 100; a sinilaz calculation for a bowstring

Fig. 82.
lattice girder 17 feet deep at the centre gives the ratio between the weights of metal required as 100 for the arch and 155 for the borstring. Even these ratios understate the great adrantage to be derived from the braced arch or auspengion bridge for large spans, since they assama that the loads to be carried are the same, whereas the permanent load is in large spans much less for the lighter can. gtruction of bridge. The following table shows the probable weigh in tons of several different types of trusscs, assuming that the maximum intensity of stress on the metal in girders and arches is every: where 4 tons per aquare inch, that the passing load to be carried is 1.4 tona per foot run, and that tha practical weight is 25 per cent. in excess of the minimum possibla weight if no metal were wasted, vids Trans. R.S.S.A., vol. viii. p. 135. It must be reuembered that the abutments for arches will in all cases be more expens:-e than thoae for girders; in small spans this expense will often ontweigh the saving which could be effected in the super3tracture by employing the arch.

Table XII.-Weights of Trusses of different types.

Span.	Weigbt it wrongbt íron alnder in toas.		```Weight of wrogght iron Bowatring, in toge.```		Weight of nTooghe iron Suapenation Bridge and Wroagbt Iroo or cast iron Arch in toon.		$\begin{aligned} & \text { Welght if } \\ & \text { wooden Arcb, } \end{aligned}$ in tons.		Weight of Sospension Bridge, in tong. Strain, 8 consper aquare inch.	
1.			4.			7.			10.	
Feet.	Total.	Per fth	Total.	Per 1005 rat.	Total.	Per ${ }^{\text {Peth }}$	Total.	Perft.	Total	ferft. run.
200	83	-415			11	-205	57.I	-285	19	0.095
300	222	$\cdot 74$	180	-60	100	. 33	142	-173	45	0.15
400	475	1.19	375	$\cdot 94$	194	$\cdot 485$	285	-712	83	$0 \cdot 207$
500	940	1.88	700	$1 \cdot 4$	330	. 65	510	1.02	134	0.268
600	2,220	3.7	1260	2-1	530	. 883	870	1.45	200	0.333
700	3,900	$5 \cdot 57$	2290	3.27	790	$1 \cdot 13$	1440	$2 \cdot 00$	280	0.400
800	12,800	16.	4450			$1 \cdot 475$			384	0.48
1000					2490.	$2 \cdot 49$			655	0.655
1200		,			5600	467			1060	0.885
1400									-1580	1.128
1600									2360	1.475
1800									3410	1.89
2000									4950	$2 \cdot 475$

The framed arch is a very suitable form for wooden bridges. The ties are few and subject to insignificant strains. In designing a series of arches supported on picrs care must be taken to provide for the thrust from loaded to unloaded arches across the pier at the springing.
§ 57. Strength of Struts.-When a strut or column is used as in framework to resist compression, it is usually so long in comparison with its cross section that it will bend and yield with a much less stress than would be required to crush the material. The strength of a strut of this kind can be approximately computed according to the following theory :-

Let a strat with a cross section S be pinned or binged at both ends, or let it
have ronad ends, ao that if it yields have round ends, so that if it yields Let the srose section bave two axes of cymmety, and let the section bee such
in the plane of one axis; let the depth of cross section measured in this direction be called d, and the breadth measured at right anglea to the depth d be called b. Let the maximum or breaking load be called P, and the maximum deflection of the longitadinal axis of the strut from its unbent position be cailed u, this quantity being analogous to the deflection in a bearm. The moment tending to produce flexure at the cross section where v is measured rill be Pu. This moment must, as in the case of a girder, be cqual to the moment of the elastic forces, which we already know to be-

$$
u=\frac{\frac{2 p}{}}{d} \mathrm{I}
$$

where p_{1} and I hare the same signification as for girders.
(I must be taken about the unstraincd axig, or in other words about the axis running in the direction which has been called that of the breadth.) Hence we have-

$$
\mathrm{P} v=\frac{2 p_{1} 1}{d}, \text { or } p_{1}=\frac{\mathrm{P}_{v d}}{21} ;
$$

Gut we also know that for beams of uniform cross section under similar internal stresses v is proportional to $\frac{l^{2}}{d}$; hence we have-

$$
\text { 1. } p_{1}=a \frac{\mathrm{P}^{2}}{\mathrm{I}}
$$

where a is a constant depending on the material only. Let $p_{0}=\frac{\mathrm{F}}{\mathrm{s}}$ be the mean intcasity of atress which moold be produced if the load compressed all parts of the cross section equally, and let f_{c} as before be the ultimate atrength of the material per unit of cross section, then, when the beam is on the point of yiclding, we must bave $f_{6}=p_{0}+p_{1}$, or-

$$
f_{\mathrm{t}}=\frac{\mathrm{P}}{\mathrm{~S}}+a \frac{\mathrm{P} C}{1}
$$

and calling r the radius of gyration-

$$
2, f_{\mathrm{t}}=\frac{\Gamma}{\mathrm{S}}\left(1+a \frac{r^{2}}{r^{2}}\right) \text {, or } \mathrm{P}=\frac{f \mathrm{~S}}{1+\frac{a l^{2}}{r^{2}}}
$$

from which f, can be computed in terms of P and a, or P in terms of f_{c} and a.
Tha value of a does not change with a change in the design of the cross section; the values for cast iron, wrought iron, and wood datermined by experiment are given in the followipg tabla, S being measured in square in ches, \mathcal{P} in lbs. The table also contaibs valucs of f.

Talle XIII.-Constants for the Strength of Struts and Pillars.

Cast-iron................ $80,000 \mathrm{lbs}$Wrooght iion 7600 lbDry timber 7,200 lbs	

When the direction of both endsof the column is fixed it must bend in tha manner shown in fig. 84; if the curretare be uniform this would bave the cffect of reduciag the deflection v to one-fourth of the amonot causcd by the same siregses when the ends are hinged, giving-
aud

$$
p_{i}=\frac{a P l^{2}}{41}
$$

$$
\text { 3. . . . } f_{c}=\frac{\mathrm{P}}{\mathrm{~S}}\left(1+\frac{a l^{2}}{4 r^{2}}\right) \text { or } \mathrm{P}=\frac{r \mathrm{~S}}{1+\frac{a \Gamma}{4 r^{2}}}
$$

When one end is fixed in direction and the other binged, the ultimate load which the strut can bear may betaken as a mean betreen the atrength of two pillars of the same lengtb and cross section, one having both ends fixed in dircetion and the other having botb eads hinged; for aimilar cross sectiong r^{2} is proportional to d^{2}, the aquare of the depth (measured in the direction of the shorter gide or axis), thus the ratio $\frac{l^{3}}{r^{2}} \propto \frac{d^{2}}{d^{7}}$.
Let $k=\frac{d^{2}}{12 r^{2}}$, and let $B=8 \frac{a l^{2}}{d^{2}}$. Then from equation 2 we lave for hinged ends-

$$
\text { 4. } \mathrm{P}=\frac{f \mathrm{~S}}{1+4 \mathrm{nB}} \text {, }
$$

and from equation 3 for fixed endg-
B. $P=\frac{f S}{1+n \mathrm{~B}}$
n has n constent value for all similar crose sections, and Be congtant
value for any given materials and any constant ratio of l to v. Table XIV. gives the values of B for a series of these ratios, and Table XV. gives the values of n for the most usual cross sections.

Taple XIV. - Value of B (lbs. and square inches), Strength of Struts and Pillars.

$\frac{1}{d}$	B for Cast lron	B for Wrougbt Iron.	B.for Strone Dry Timber.
10	187	0.033	25
15	.42	075	9
20	75	133	1.6
25	1.16	208	2.5
30	189	3	3.6
35	2.3	408	4.9
40	3.	533	6.4
50	4.68	833	10.

Table XV.—Values of n . Strength of Slruts and Pillars.
Syare of aide d, or rectangle
with smallest sade $d \ldots \ldots$

It is of great importance that the conneetiong between the several struts and ties forming a frame should be so designed that the stresses produced mey be axial. If this is not done the maximum intensity of strees on the strut or tic may greatly exceed those com. puted on the principles explained in the present peragraph (orde § 8).
Mr Unwin in his lectures gives the following empirical rales for the atrength of wrought iron struts:-

$$
\begin{align*}
& P_{1}=\frac{\mathcal{S}}{1+\frac{l^{2}}{c h^{2}}} \text { far fixed ends, } \tag{6.}\\
& P_{1}=\frac{f \mathrm{~S}}{1+\frac{4 l^{2}}{c h^{2}}} \text { for round eads. } \tag{7.}
\end{align*}
$$

The.e different values are given to f and c according to the different cross sections of the struts

$$
\begin{array}{ll}
\text { Rectangular bars } c=2500 & f=17 \text { tons. } \\
\text { Cylundrical hars } c=3500 & f=17.5 \text {," } \\
\text { and charcoal iron } c=900 & f=19 \quad \because
\end{array}
$$

Angle, T, cross, and charcoal iron $c=900$
The following are Mr Hodgkinson'a formule for the strength of castiron cylindrical pillars, the length of which is mot less than
ry times the diameter - Let P be the load which will produce failure, d the external diameter in anches, L the leogth in feet, and A a constant multiplier; then for solid pllars with eitter round or fat ends-

$$
\text { 8. } \quad P=A d^{3.6}-L^{1.7}
$$

The value of A for rounded ends is 149 toas, and for fat ends 4416 tona. Similarly for hollow pullars of internal diameter d we bave

$$
9 \quad \mathrm{P}=\Lambda\left(d^{3 \cdot 6}-d_{0}^{3 \cdot 6}\right) \div \mathrm{L}^{1.7}
$$

where for roanded ends A is taken as 13 tons, and for flat ends $44 \cdot 3$ tons.

Whes the length is less than thirty times the diameter, let P be the ultinate load calculated by equatione 8 and 9 , and let P, be the load which would crush a short block of the same sectionad area's;
i.e., let $P=49 S$; let P_{n} be the actual ultimate strength, then according to Professor Hodgkinson's experiments,

10

$$
P_{-}=\frac{4 P P_{1}}{4 P+3 P_{1}}
$$

For rectangular struts of oak and pine, the smallest side being denoted as before by d_{n} Hodgkinson gives the formula-

$$
\text { 11. } \mathbf{P}=\mathbf{A} \frac{d^{2}}{l^{2}} \mathrm{~S}
$$

where $A=3,000,000 \mathrm{lhs}$. The same unit must be employed for d and l, and S must be expressed in square inches. This formula can only give a rough approximation to the truth. In ahort beams the formula in $\S 5$ would give a emaller atrength than equation 11. This smaller value is, then, the true measure of the stiength.

VI. Compound Structures.

§ 58. Many bridges have been built with superstructures such that the stresses on the several parts or members cannot be computed by the rules bitherto given. These superstructures are generally constructed by superposing two or more types so as to form a compound structure capable of acting at once say as an arch and as a girder. These bridges may be called compound bridges. The designs are usually unworthy of imitation. Mr° Robert Stevenson's original design for the Britannia Bridgc, in which the great girder would have been partly supported by chains, 13 an example of this type of structure in which the two parts are clearly visible. Many wooden American bridges are trusses which almost defy analysis, the designs being, however, obviously suggested by an attempt to combine at least two of the three main types of bridges. No advantage whatever is gained by a combination of this kind; on the contrary great disadvantage is almost sure to follow its adoption, namely, that it will be impossible that each part of the structure should, under all circumstances, carry that portion of the load which the designer entrusted to it. For suppose a bridge constructed partly as a girder and partly as a suspension bridge, the girder being very stiff and deep and the chain perfectly flexible with considerable dip. Let the chain and girder be each fit to carry balf the passing load. It is perfectly conceivable that the deflections of the two should be so different that the girder would, under the actual load, break before the chain was sensibly strained or the difference in the relative dip of the chain and derite of the girder might be such as to cause the former to giv. way first. Even if the tro were so desigoed that at a giren temperature each should take the designed share of the load, a change of temperature would entirely alter the proportion borne by the two parts of the structure. A few forms are free from this defect, and these will now bs described.

Fig 85
§59. Fink Truss. - This truss (fig. 85) has been much employed in Awerica. The upright struts, numbered 1 to 7. divide the span into cight equal parts. If a weight w rests on the top of each strut the whole truss may be looked upon as made up of seven distinct and independeft trusses superposed on one another; strut 4 is used serem times, and is compressed with a total force of $4 w$. Struts 2 and 6 are used three times, and cacb compressed with a total force of 2w. Struts 1, 3, 5, and 7 are used once, and each compresséd witb a force w. The stresses on the ioclined tics are at once got from the compression of the strut by the resolution of forces; and the stress on the upper member or boom is the sum of all the pulls on the ties resolved berizentally;
the boom is uniformly strained over its whole length. This truss would not be so light as a Warren girder if both were made of the same depth, and if the ead struts in the Warreo girder did not require to be much stiffened in consequence of their great length. The Fink truss is, however, generally made in practice more chesply than the Warren girder, because the depth of a girder practically depends on the grestest length of strut which is admissible, and for equal lengths of strut the Fink truss gives a deeper beam than the Warren girder.

Fig. 80.
\$60. Bollman Truss (fig. 86). -This truss is the result of superposing seven simple frames consisting of a top member, a strut, and two ties. The stresses are easily computed. It is one form of the old falso suspension bridge already alluded to (§ 34), with the difference that the top member replaces the horizontal resistance at the points of support. The defect of this truss is that two ties supporting any strat oxcept the ceatral one are of unequal length; expatision or extension, consequently, affects these unequally: It is inferior to the Fink truss.

Fig. 87.
§ 61. Schafflausen Truss.-The famous wooden bridge of Schaffhausen (fig. 87, see also § 76) is in its main parts a compound bridge, composed by superposiag a series of simple frames of the type shown in $1,2,3$, and 4. Nos. 1 and 2 are imperfect frames, i.e., if the joints were lexible they would collapse in consequence of the want of the diagonals across the centre parallelogram. The stiffuess of the joints supplies this want.
§62. Dredge's Suspension Bridge.-This bridge difers from the ususl suspension bridge in having the suspending rods inclined. snd in the use of a lower nember, which may
be a compression member ciansmitting a thrust to the piers, as in $88 a$, or a tension member, as in $88 b$, with e

Fig. 88 .

Fig. $88 b$.

Fig. 88.

Fig. 88d.
maximum teasion at the centre. Fig. 88 c and fig. 88α show the reciprocal figures corresponding to those two cases. This bridge is somewhat stiffer than the ordinsry suspension bridge, but is far inferior to the complete framed bridge.
§ 63. Arch or Suspension Bridge, hinged at Abutments and Centre.-Figs. 89 and 90 show two desigus of con-

Fig. 89a.
siderable merit, consisting of two frames (the shape of which might vary considerably) binged together at A, and

Fig. 90.
supported on hinges at B and C. The direction of the sustaining forces at A and B is to be determined as for a simple pair of beams hinged at A, B, and C. Find w_{1} and $w_{1}{ }^{\prime}$, the proportions of the load on $A C$ borne by C and A ro
spectively; and w_{2} and w_{2} the proportions of the load on $A B$ borne by B and A respectively. Then draw the line of loads DEFGH as sketched (fig. 89a). From E and G draw lines parallel to $A C$ and $A B$ respectively, meeting in O. Join OD and OH. OD and OH represent in magnitude and direction the thrust on C and on B . OF is the stress on the pin at A. These thrusts being known, the stress on each member of each frame can be easily computed by a reciprocal figure or otherwise. This form is only inferior to the true framed arch or suspension bridge inasmuch as it is incapable of balancing the tbrust due to the passing load on neighbouring spans. It is superior to the framed arch and suspension bridge inasmuch as it cannot be strained by any change of temperature.

VII Substructcre.

§ 64 Preliminaiy.-The substructure of a bridge comprises the piers, abutments, and foundations. These portions of the bridge usually consist of masonry in some form, including under that general head stone masonrÿ, brickwork, and concrete. Occasionally metal work or woodwork is used for intermediate piers.

When girders form the superstructure, the resultant pressure on the piers or abutments is vertical, and the dimensions of these are simply regulated by the sufficiency to bear this vertical load.

When arches form the superstructure, the abutment must be so designed as to transmit the resultant thrust to the foundation in a safe direction, and so distributed that no part may be unduly compressed. The intermediate piers should also have considerable stability, so as to counterbalance the thrust arising when one arch is loaded while the other is frce from load.

For suspension bridges the abutment forming the anchorage must be so designed as to be thorougbly stable under the greatest pull which the chains can exert. The piers require to be carried above the platform, and their desigo must be modified according to the type of suspension bridge adopted. When the resultant pressure is not vertical on the piers these must be constructed to meet the inclined pressure. In ariy stiffened suspension bridge the action of the pier will be analogous to that of a pier between two arches.
§ 65. Stability.-When the magnitude and direction of the thrust borne by a pier or abutment at the springing are known, the stability of any series of masonry blocks forming the pier or abutment may be studied by drawing lines showing the direction and magnitude of the resultant force on cach joint. This may be done as for the voussoirs of an arch. The thrust on the upper block may be conpounded with the weight of that block, the resultant compounded with the weight of the next, and oo forth, until the direction and magnitude of the thrust on the rock or carth foundation is determined.

A hetter method of making the drawiag is shown in fig. 91 ; find the centre of gravity C , of block 1 , the centre of gravity C , of ?.locks 1 and 2 treated as a single masg, similarly $\mathrm{C}_{\text {, for }}$ forcks 1 , 2 , and 3 Lot AT be the direction of the thrust on "the top block', and C, B, a vertical line though C . cutting AT in B ; let B, D, be the direction of the resultant of t, the thrist acting in the line AT, and w, the weight of the first block acting in the line $\mathrm{C}_{1} \mathrm{~B}_{8}$; and let D , be the porat where the direction of this resultant cuts the first joint; similarly let $\mathrm{B}_{4} \mathrm{D}_{\text {., }}$ be the direction of the resultant of t
 of the resultant of t "compeunded with the weight $20_{0}+10_{\text {", }}+2 w_{1, \prime}$ of the three frst blocks, \&c., sc. This method of proeeeding gives the direction and miagnitude of each force and centre of pres gure D independently of the values obtained for the preceding joints For stability the line BD must not make a greater angle with the normate the loint than the angle of repose : and the point D muct nowhere fall beyond the edge of the joint: for strength and safety the piat D imght be required to fall withia
the middle two-thirds of the joint, or within the middle threeqnarters. The theory by which the joints iurthest from the centre of pressure would apen when the centre of pressure leaves the

Fig. 91.
middle third cannot apply to such a structure as a masonry abut ment, all parts of which are honded together. Professor G. Fuller calculates the thickness of abatments by the followiug empirical rule, deduced from many practical examples:-Let $c=$ halr the span in feet ; $d=$ versed sine in feet ; $t=$ thickDess of abutment at springing ; then, for flat arches, io which the span does not exceed 150 feet, and the ratio of the rise to the span is not less than 116, we may write $t=17\left(\frac{c^{2}}{d}+d\right)$. From the springing to the base the abutment may have a batter of 1 in 4 . This gives au abutment the cubic capacity of which will be sufficient, but it may with ad. vantage be divided into abutment proper and counterforts; in semicircular arches t should be taken as the thickness of the abutment at a height above the springing equal to two-thirds of the radius. The maximum intensity of stress on the stone at the edge F migbt be approximately found by the theory explained in $\$ 8$. Thi theory finds a useful application in calculating the maximum inter. sity of stress which a given foundation might produce on the eark

Fig. 92.
or rock supporting it. Thus, let the section of the foundation under consideration be 1 foot in breadth, 8 feet in length from F to G, as shown in plan, fig. 92; let the centre of pressure D be 2 feet from FF, and let the total resultant thrust be abuut 16.5 tons, inciined so that the herizontal component is 4 tons and the vertical component 16 tons, then the mean vertical intensity of pressuro per square foot is $\frac{1}{8}=2$, and the maximum intensity along the line $F F$, is by equation $2,88-$

$$
2\left\{1+(4 \times 2 \times 8) \frac{12}{512}\right\}=5
$$

this maximumintensity being $2 f$ times asgreat as the musuintensity. Obviously, although for the sake of appearance ths courses of masonry in the abutment of an arch may be left horizontal in the face, the stability is increased by incliaing them at a proper angle, so that they lic mormal to the thrust.

The stability of abutments may be tested bs taking moments round points in the joints selected as the points begond which the thrust wust not come. The same methods apply to the auchorages of suspension bridges, and to intermediate piers, which are intended to take a given horizontal thrust. When metal or wooden piers are adopted their weight will generally be insignificant, and such as may be neglected in calcukating their stability. Metal-work piera or wooden piers usually consist of wrought or cast-iron frame work, and the stress on each part of the frame, as well as the resultant stress on ths foundations where each upright member reaches it. is
easily calculated by the method of reciprocal figures or otherwise.

Occasionally metal piers are continuous metal structures, sach as cast-iron cylinders. The maximum intensity of stress can then be calculated by resolving the thrust on the upper part of the pier into a horizontal and a vertical component, calculating the bending moment produced on each horizontal cross section by the homzontal component, and adding the intensity of stress caused by this bending moment to the mean intensity caused by direct compression. The manner in which any metal-work pier is held by its foundation against a bending moment will require special consideration; the resultant pressure should always fall well within the base.
§66. Practuce. - In the design of the usual masonry bridge the thickness of the pier is generally determined by practical considerations. In small arches the pier is made thick enough to ailow the two rings of the two abutting arches to spring from the pier without interfering with one another, a clearance of about half a brick being often allowed between the two rings. In larger arches the piers will generally be found to vary in thickness from $\frac{1}{8}$ th to $\frac{1}{10}$ th of the span, with a slight batter (i.e., with walls spreading outward towards the base) In very old bridges piers are sometimes found equal in width to the opening of the arch. In large bridges, or with very ligh piers, care must be taken that the pressure per square foot on the masonry or foundetion does not exceed a safe value. The brickwork in the piers of Charing Cross bridge ws subject to a compression of 9 tons per square foot four or five tons is a much more nsual load. Eigut toos per square foot may be considered a maximum for rubble stone-work, and perbaps 20 tons for the best dressed ashlar. Strong concrete may be trusted with 3 tons, firm rock foundations with 9 tons, soft sandstone with 2 tons, and firm earth with from 1 to $1 \frac{1}{2}$ tons. The depth of the first course below the surface (on dry land) should not be bess than 3 feet in sand and 4 feet in clay.

When framework, either of wood or aron, is uscd as a pier, care must be taken by cross-bracing to provide aganst the effect of wind and vibration.
§67. Site.-The site proposed for a per must be carefully examined by borings; the ground should be uniform, for if a pier rests partly on one formation and partly on another, nnequal settlement will certainly oceur, even if the weaker formation be such as would have been amply strong enough to bear the pressure had the fier been wholly founded pon it. Solid rock may be considered the best foundation, but where rock is broken up by cracks or other mequalities it is inferior to such formations as uniform gravel, chalk, and some kinds of sand and clay. These foundations may be described as incompressible. The worst foundations are afforded by those formations which can be compressed or squeezed out sideways by the imposition of weight. Muddy earth, certan clays, and certain sands are of this nature. Alternate beds of stone and slippery clay are very reacherous. The foundation should be dressed level so that the masonry may everywhere start from the same height, and thercfore sottle equally. Unavoidable inequalities are better filled up by concrete than by masonry.

For foundations in water it is very mportant that the ground should not be such es can be scoured away by the current or wash of the water ; many bridges have failed by the undermining of the piers dne to this cause. Specal precautions, to be presently described, must be taken against the effects of the scour if the soil itself is not of a sufficiently resisting nature. The piers must be so placed and formed that the obstruction to tbe flow of water may be as small as possible and the effect which the piers will have to altering the level oi the stream above and below the bridge
must be considered. Data as to the maximum fiood waters to be provided for must be examined; and provision must in some climates be made agamst ice by suitable cut-waters or fenders, an example of which is given in fig. 93, showing a pier of the Victoria Bridge, Montroal.

Fio 93. -Side Elevation and Plan of Per.
§ 68. Mode of Founding in N'ater.-The chief difficultr met with by an engineer about to ercct a large bridge over a deep stream is to sccure a sound foundation for the piers. The following are some of the principal methods of building piers in or under water:-

Cufferdams. - Cofferdams are embankments or dams which surround the site so as to caclude the water from it They are formed in general by drwing two rows of piles round the site so as to enclose betwcen them a water-tught wall of clay puddle, in depths of less than 3 or 4 feet, where there is little current, a simple clay dam may be used. In greater depths, the timber walls consist of guide piles at intervals, with some form of shect piling between them, 10 extrome depths the tumber walls may be composed of stont piles driven in side by side all round. The dam must be sufficiently strong to bear the pressure of the water against the outside when the space en-losed has been pumped dry. Rankine states that the common rule for the thickness of a cofferdam is to make it equal to the beight abuve ground if the height does not cxeced 10 fect, and for greater heights, to add to 10 feet one-thurd of the excess of the height jabore 10 feet. The "Cours de Ponts" at the school of the Ponts ct Chausseses, states that a cofferdam need never be made of greater thickness than from 4 to 6 feet, as the interior can always be sufficiently stayed inside. This method of founding is now seldom praciised, it is costly and causes great obstruction in the stream.

Causons.- Some foundations have been constructed as follows:-A level or nearly level bed was prepared in the stream by digging or by driving piles and sawing off the heads at a uniform depth. a huge timber box, calied a casson, was then filled with masonry, and suck on the foundation thus roughly prepared. This method $2 s$ now abandoned It was peculiarly liable to danger from the scour of the stream. The nanie calsson is also sometimes
applied to a mere frame with wooderi walis which is floated to the site of the pici, and there sunk so as to form an enclosure, inside which coucrete can be shot and can set undisturbed by the wash of the water.

Conerete in a shell is a name which might be applied to all the methods of founding a pier which depend on the very valuable property which strong hydraulic concrete poss ssses of setting into a solid mass under water. The required space is enclosed by a wooden or iron shell; the eoil inside the shell is removed by dredging, or some form of mechanical excavator, until the formation is reached which is to support the pier; the concrete is then shot into the enclosed space from a height of about. 10 feet, and rammed down in layers about 1 foot thick; it soon consolidates into a permanen, itificial stone. The shell,

Fig. 94a.
concrete foundation was finished after removal of the temporary external wall shown in fig. 94.
Figs. 95 and $95 a$ show a longitudiual elevation and cross section of a wooden shell, or caisson without a bottom, intended to be sunk to receive concrete. Cast-iron guide piles snd sheet piling are also used for this class of
foundation.

Cast-iron tubular. shells are now frequently employed; the tube forms a large hollow pile, which may descend into' the ground by its own weight, or by added weight while the soil inside is removed by some kind of dredge or excavator, such as Milroy's, worked from the surface. When the lower edge of the shell has penetrated the formation to be used as a foundation, the water inside may be pumped out if the soil forms a water-tight joint, or the shell may simply be filled up with cencrete shot into the enclosed water. The piers of Charing Cross bridge (fig. 96) were constructed in this way; the excavation inside the tube (14 feet diameter), was carried on by divers with helmets until the shell had entered a few feet into the London clay. The water was then pumped out and excaratio:: continued; the cylinders were loade with about 150 tons to sink them to the final depth.
Compressed air is now very gene. rally employed inside a metal she!! for those foundations in which the excaration requires the presence of workmen at the bottom of the shell. The metal shell is open at' the bottom, but air-tight and water-tight at all other points ; there is a chamber called an air-lock at the upper part. This "air-lock" serves for the exit and entrance of the workmen and materiala; the air in this comparatively small space: is lowered to the pressure of the atmosphere before the chamber is opened for the passage of men or materials to the open air; the air is again compressed in the air-lock before it is opened for communication with the body of the shell in which the air is permanently kept at such a pressure as will -keep the wster domn to the required level. The shell thus acts as a diving bell acts. It is found that men cannat in general be safely employed under a greater pressure than two atmospheres above the ordinary atmosphcric pressure, cor. responding to a depth in water of about $6 \overline{0}$ feet. The centro pier of Saltash Bridge was, however, in 1855 by this plan carried down to a dcpth of 87 fcet 6 inches below high water. Recently the foundations of St Louis bridge over the Mississip ${ }^{1}$ have by the same method been establishcd at a ciepth of

Fia. 90.-Cylinder, Charing Cross Bridge

Loncrete used for this purpose is often called béton, to distinguish it from inferior mistures used for foundations on land. It may consist
the outside, part of the loose earth baring been remered by digging. Fig. 94 a shows the manner in which the shell is protected against scour by large stones heaped round

Fig. 95a. Pf angular stones $1 \frac{1}{2}$ to 2 inches dismcter, imised with atrong hydraulic mortar in tho proportion of from one to troo volumes of stones with one of mortar; the final volume may be from $\frac{5}{9}$ to $\frac{5}{6}$ of the unmixed materials. Béton used at Biarritz consisted of one part Portland cement, two parts sand, and three parts broken stones; at Genoa one part rich lime, two parts pozzuठlana, three parts broken stones.
Fig. 94 , shows a section of foundations constructed by filling a casing of piles with concrete in this manner ; the

110 feet from the surface of the water. Figs. 97 and 97 a show the pier of the bridge of Argenteuil Excavation was carried on in the lower chamber, the roof of which was very stroogly built of metal, and served as the foundation for masonry and concrete built up round an fnner tube, serving as a passige for men and materials oo the upper chamber and air lock." This lock is iormed of two concentric ylinders of 3.9 feet and 10.8 ieet diameter respectively (fig. 97a). The andular space was divided by two vertical partitions; the doors of communication (which were air-light) were 1.8 feet wide and 2.14 feet high A small engine worked the hoist by a stuffing-box passing through the shell. A safetys vaive is of course required. The upward pressure of the air requires to be counterbalanced by weights. In the Argenteuil bridge this necessary weight was afforded by the masonry built in the lube as the tube sank. This plan seems preferable to the method of loading the shell esternally with pig or railway iron. Frequently, owing to

Fio. 97.-Fonndations, Bridge of Argenteuil. soil, the water cannot be driven out below the tube, and in that case a syphon must be provided passing out at the top. The Argenteuil tube was sunk at a meau rate of about 18 inebes per diem. This method is not con fined to eylindrical tubes. Fig. 98 shows the method employed in building the piers of the bridge at Kebl over the Rhine. In this case iour rectangular working chambers were sunk side by side and bolted together;

Fig. $97 a$. eazb chamber communiceted with the surtace by two air-passages, and one central elliptical passage which remained full of water. This central passage served for the exit of the exeavated material. A mass of conerete was built resting on the working chambers, and contained by wooden framework. The concrete was added at the top above water as the foundations gradually sank. At Mantes and Chalons wrought iron caissons, slaped like the usual masonry piers, have been sunk by analoguus methods.

The method of sinking cylioders by compressed air was invented by Mr Triger in 1841, and was frst used on a large seale by Mr Hughes at Rochester. The tubes at this bridge were designed to be sunk by having the air exhausted inside the tube, a system invented by Dr Potis.
§69. Piles are used either to enclose a space or to bear part of the weight of a structure; for the former purpose a wooden pile may be a round or square pointed piece of timber, 6 or 9 inches in diameter and 8 or 12 feet long. Learing piles may be of auy dimensions which eav practically be procured, and several lengths of timber are often iorited so as to form one long strut. The point is armed whit metal, and the bead proteeted by a metal ring, wheh
prevents it from spreading when struck by the rammer which drives the pile. Bearing piles are usually placed at a distance from centre to centre not less than 2 feet 6

Fio. 98.-Foundations, Bridge of Kehl on the Rhine.
inches or more than 4 feet; 3 feet is a common distance The diameter of bearing piles varies from 9 inches to 20 inches; a pile may be considered to be driven lome when, with thirty blows of a ram weighing 800 h and falling 5 'feet, it does not move $\frac{1}{5}$ th of an inch (Rankine). A French rule gives as a limit $\frac{1}{6}$ inch motion with twenty-five blows from a ram weighing 6 cwt . and falling 4 feet 3 inches. A pile which does not move more than this will bear from 600 to 1000 Dib per square inch. This would give a load of 50 tons for a 13 -inch pile; if, as is more usual, the load be only 8 or 10 tons for a 13 -inch pile, the ultimate rate of descent may be three, four, or five times as nueb as the above.
Files are used os foundations in those grounds which are compressible, or which would be squeezed out from "jeneath masonry under the weight to be borne. The wooden bearing piles are usually samn off so that all the heads may be level, and a wooden grating or platform rests on the beads, over which the concrete or masonry pier may be built ; in other eases the piles come up for some distance into the concrete. An external row of wooden piles is not unfrequently employed as a precaution against scour, but these should always be further frotected by a stone bank, which will continue to mrotect the rier if the piles decay. A
more thorough protection against scour is provided by covering the centre bed of the river with a concrete or atone

Fio 99.-Aqueduct of Guetin over the Allier.
floor, as in fig. 99, representing a pier of the aqueduct crossing the Allier at Guétin.

Cast-iron guide piles (usually hollow tubes) are used for the same purpose as wooden guide piles. They may be cast with grooves down one edge in which sheet piling is held. Cast-iron and wooden piles are frequently used as part of the open-work metal or wooden framing of piers. In eituations where these piles are not liable to injury by ice, Hoating timber, or barges, this construction is very economical. Fig. 4, Plate XIX. showa the Crumlin riaduct, with piers- of this character, the construction of which will be more fully described in paragraph 79

Fig. 100 showa the Portage bridge (234 feet high) epan-

Fia. 100. - Portago Brilge.
ning the Genesce River, in the State of New York. The piers are largo wooden frames.
§ 70. Serez piles are cast-1ron piles nhich are serewed into the soil instead of being diriven m. At their end is fized a blade of enst-iron from tro to cight times the Niamzer of the shaft of the pile, the pitch of the serem
varies from one-half to one-fourth of the external diameter of the blade. The pile is turned by lesers radiating from its head. In one example of their use (Rankine) the pils was screwed in by four levers, each 40 feet in length, with eight bullocks hainessed to it. The serews were 4 feet 6 inches in diameter, and the working load borne by thew was 100 tb per square inch. The piles were acrewed from 20 to 45 feet deep in earth.

Disc piles have been used in-sand. These piles had a flat flange at the bottom, and water was pumped in at the top of the pile, which was weighted to prevent it from rising. Sand was thus blown or pumped from below the piles, which were thus easily lowered in ground whieh had bafled all attempts to drive in piles by blows. In ground which is of the nature of quicksand, piles will often slowly rise to their original position after each blow.
§ 71. Weils.-In some soils foundations may be obtained by the device of building a masonry easing like that of a well and excarating the aoil inside; the casing gradually sinka and the masonry is continued at the surface. This method is applicable in running sands. The interior of the well is generally filled up with concrete or brick when the required depth has been reached, but in sume cases a mere floor or inverted arch would be preferable.

VIII. Examples.

§ 72. The task of selecting a limited number of bridges

Fici 101. - Pons Sublicias.
which shall represeut the gradual progress in the art of construction and illustrate our present practice is one of much difficulty. Miany very adivirable and interesting structures must necessarily be passed over in silence, and space will not admit of full details being given even of those bridges whieh arenoticed.
§ 73. Bridges built before the year 1000 A.D. -Herodotus mentions a oridge erected by Nitocrs over the Euphrates at Babylon. It appears to have consisted of stone plers connected by plauking, whicb was removed at night. The river ras diverted to allow tho piers

Fig. 101a
to be built Diodorus Siculus ascribes the wort ic Semiramis.

Tho first bridge construeted at Rome was called the Pors Sublicius, or wooden bridge (subliar meaning a stako or Sojiltas pile). It is asid to have been built by Ancus Martius, son Bridge. rebuil: by the chief priests, "who from this circumstance were called "Pontifices." Fig. 103 shows the design of this bridge as restorid by Colonel Emy (Traité de lars
de Ia.charpenteris) from the descriptions given in the historians. This was the bridge defended by Horatius Cocles.

Plan at Pier.
Fio. 102.-Bridge thrown ecross the Rhine by Julins Casar.
Fig. 102, slso taken from the work of Colonel Emy, is intended to represent the design of the bridge thrown across
the Rhine in ten days by Julius Cæsar (De Bell. Gall.iv. 17).

Fio. 103:-Pons Milvius.
The Pons Mfilvius (fig. 103), now Ponte Molle, was built Pons a mile and a half from Rome by the Censor Elius Scaurus, Mitriun sbout. 100 b.c. Some part of the first bridge is supposed to remain, although it has been altered from time to time. The arches vary in their opening from 51 feet to 79 feet 9 anches; tho waterway between the piers is 413 feet 3 inches; the breadth of the bridge, 28 feet 9 inches; these dimensions are givan on the authority of Cresy (Encyclo. padia of Cinil Engineering). The following bridges alsu Othe: crossed the Tiber at Rome:-The Pons Palatinus, which Rorom stood on the site of the present Ponte Rotto; the Pons brid; ${ }_{3}$ Fabricius and Pons Cestius, which still remain; the Pons Janiculanut, which occupied the site of the modern Poate Sisto; the Pons Vaticanus, which has disappeared; snd the Pons Elius, built by Hadrian (13 A.D.), now the bridge of St Angelo. This bridge (fig. 104) was repaired by Popes Nicholas III. snd Clement IX. The largest arch has a span of 62 feet 4 inches, and the width of the bridge is 50 feet 9 inches.

The bridge erected by Trajad (104 A.D.) across the Trajan's

Cross Section

Elcration.

Fio. 104.-Bridge of 8. Angalo.

Danube, just below the rapids of the Irod Gate, has been the subject of much controversy. The drawing (6g. 105) was originally taken from a bas-relief on the Trajan column at Rome. A description of the bridge is given by the ancient historian Dion Cassiue, who states that the bridge had twenty piers of hewn stone, 150 feet high and 60 feet wide, with openings between them of 170 feet, spanned by arches. Doubt bas been thrown on the accuracy of this description, becadse the design shown in fig. 105 is obriously unsuited to a span of 170 fect; nevertheless thirteen piers are still visible out of the twenty, according

Fla. 105.-Trajan's Bridge
to Murray's Handbook. The wrilar has not been able to find any accorate measurement of the ridth between these piers, but as the Eandbook speaks of tha length of the
bridge as perhaps 3900 feet, and as the Conte Marsigli, writing from personal observation, in a letter to Montfaucon, gives the total length as probably 3010 feet, there can be no doubt that the spans mere very considerable, and that the representation of the design in the bas-relief is almost Wholly conventional. The one point as to which it gives clear information, not supplied elsewhere, is that the superstructore was of wood. The piers seem to bave been founded by sinking caissons. Murray's Handbooz gives the depth of the river as 18 feet. Apollodurus of Damascus was the architect of this remarkable bridge. The bridge at Rimind. Rimixi, built during the reign of Augustus, was especially. admired by Palladio (Rondelet, L'Art de bátir). The bridge at Narni, on the road from Loretto to Rome, also Nanui. built by Augustus (Montfaucon), and the bridge of Alcantara over the Tagus, built in the reign of the Emperor Alesntara
Trajan, are often cited as remarkable works.
The Romans frequently adorned their bridges with a triumphal arch. A small example of this kind of bridge at St Chamas, in France, is shown in fig. 106 (Cresy's En. St Cbar. cyclopadia of Civil Engineering). - The span of the arch is 12 feet, and the voussoirs are 3 fect 5 inches deep. Fig. 107 shows the bridge of Narses, built in the 6th century, Ponn and which carried the Via Salaria gaross the Anio or Stiart

Teverone. This bridge was blown up during the panic caused by the approach of Garibaldi to Rome in 1867.

Fio. 106.-Brige at St Charas.
We see here, perhaps, one of the earliest examples of the castle built to protect the bridge against an enemy or to enforce payment of a toll,--the bridge and castle of medixval romance.
§ 74. 1000 to 1300 A.D.-A very bold arch over the Serchio near lucca is shown in plate 58 of Hann and Hosking's treatise, with the approximate date of 1000 a.d., but the authority for this date is not giveu. The span of the arch is 120 feet, and the roadway, which stands at a height of more than 60 feet above the water level, is only 9 feet wide ; in fact the arch is little more than a broad
wall. Owing chiefly to the excellence of the mortar employed, this arch withstood a flood which rose nearly 30 feet above the springing of the areh. TLjo structure is one of the many "Devil's Bridges."

In the year 1178 a famous bridge was begun over the Arignom

Fra. 107.-Fonte Sslaro.
Rhone at Avignon by Saint Benezet, the head of one of certain religious confraternities, which undertook the building or repair of bridges during the Middle Ages, and were called Fratres Pontis or Hospitalarii Pontifices. The bridge was finished in 1188. Four arches still-remain, and are remarkable in having an elliptical outline with the radius of curvature smaller at the crown than at the baunch, a form which accords more truly with the linear equilibrated arch than the modern flat ellipse with the largest radius at the crown. A description and drawing of this remarkable bridge will be found in the Dictionnaire raisonnée d'Architecture of M. Viollet-le-Due.

A religious confraternity, founded in the frst instance by a certain Mary, the maiden daughter of a ferryman, is said to have built a timber bridge near the site of the

Fig. 108.-01d London Bridge, a d. 1700.
present London Bridge, but it seems quite uncertain when che first bridge over the Thames was built. There is little doubt, however, that it was of timber, and had frequently to be reconstructed. Stow, in his Survey of the Cities of London and Westminster, gives a description of the building of the frst stone structure, commonly called Old Londou Bridge, Plate XVlII. fig. 1. ${ }^{1}$

Heavy repairs were frequently necessary, and the timber houses built on the bridge were often burnt down; yet the main structure appears to bave remained unaltered until

[^14]the beginning of this century. It does not seem improb-, able that Peter of Colechurch and Saint Fenezet may bave been in communication with one auother, both being heads of religious bodies engaged in similar works at the same time. Their letters to one another would interst engineers. A French brother Isembert, frow Saintes, su: ceeded Peter as engineer for London Lridge.
Stow describes the partial rebuilding of the timly. houscs in 1645 :-
"The buildiag was of tinber, very substantial and leasutiful, for

[^15]the notuses were rureb stones lugh, tesiaes the cellads, which were within and between the peers, and over the houses were stately platforms leaded with rails and ballasters about them, very commodious and pleasant for walking and enjoving so fne a prospect up and down the river. and sonfe bad pretty little gardeas with
The passage betwern the houses was made 20 feet; previously it had boju but 14 feet, and in some parts 12 feet. These beaut:ful houses were burned in 1666 , when they were replaced by a still finer pile of buildings, with a uniform roadway of 20 feet in width. Fig. 108 shows the bridge as it appeared is 1700 .
The piers varied in thickness from 25 to 34 feet, and were raised oo strong elm piles, covered with thick planks bolted together. The opeoings in the arches varied from \therefore ieet to 32 feet 9 inches. The whole waterway was 336 feet 9 inches. two-tbirds of the stream bemg occupied by
pies.

110. 1ut.-Croyland Brigge
§75. 1300 to livu a.D. - The strange trangular bridge at Croyland (fig. 109) is a oother example of a bridge probably built for or by a religious body. This structure stands at the confluence of the Wellaod, the Nyne, and the Catwater drain; three pointed arches, having their abutments at the angles of an equiateral triangle, meet in the middle, giving three watercourses and three roadways. Each arch has three stone ribs, and the nine meet in the centre Croyland "triangular bridge" is alluded to in a charter of the year 943 ; from the character of the masonry the present structure is supposed to have been built in the beginaing of the l4th century. A bridge over the Trent at Burton, 1534 feet in length, and consisting of 34 srches, was also huilt by a religious community under Abbot Bernard.

Fig 110 shows the old bridge at Saintes as M. Viollet-:e-Duc considers that it appeared tossards the end of the 14th century. The following description is abridged from his Dictıonnaire raisonnée d'Architecture:-
-"The first gate appeared on the right shore of the river, on the side of the Faubourg des Dames; pext came the Roman arch, the upper part of which was crenelated during the Biddle A ges: next on the side of the town etood a tower of oral plan, through which the noad lay; the town gates with flankiog towers closed the end of the bridge. From the first gate to the Romso arch the bridge was of wood, as was also the case between the great tower and the town gates, so that by the removal of this part of the roadway all com.
munication could be cut off betwion munication could be cut of between the town and the tower as well as between the bridge and the Fauboung; moreover, the parapots were crenelated, so that the garrison of the town could at nill atop
all navigation." llacigation.
Clearly it was quite as important in those days to be able to arrest as to facilitato communication between the two
sides of the river.

The architects of the Renaissance showed great boldness and originality in their designs. The largest arch known to have been built spanned the Adda at Trezzo, constructed by order of Bernabd Yisrodti, duke of Milan (latter balj of

14ch centuty This bridge is described in Hana and
Hosking's Bridges as having consisted " Hosking's Bridges as having consisted of "a single arch of

Fio. 110.-Saintes Bridge.
granile, very well constructed of stones in two counses, the inoermost $3 \frac{1}{4}$ fect thick in the direction of the radius, the outermost 9 inches, the span at low watcr 251 feet ; the river rises sonetimes 13 feet." The radius of the arch was 133 feet. This noble bridge was destroyed by Carmagnola.

Flo. 111. - Bridge over tha Ticino at Pavia
The covered bridge over the Ticino at Pavia (tig. 111) J.ava. was erected, under Gian Galeazzo Viscooti, about the end of the 14th century. This bridge, which still exists, bae seven pointed brick arches, each 70 feet in span and 64 feet in beight; the depth of the arch ring at the crown is 5 feet 6 inches. The tympanun is pierced; the bricks ustd ill
the arches are normed to suit tuer yosition, and are hollow

Fig. 112.-Bridge of Brioude,
In the iniddle to diminish the weight. The roof of the roadway is carried by 100 rough granite columns.

Fig. 112 taken from Montfaucon's Antiquité expliquéé, Brosda shows the old bridge of Brioude across the Allier in France. Montfaucon and Seegun speak of this as a Roman work, but Gauthey gires the date 1454 for its construction, and names Gremer and Estone as builders without giving his anthority. The design of the bridge appears to favour the date given by Gauthey. The span was 183.73 Englisk feet (Rennte, Proc. I.C.E.), the aroh was a segment of a circle and the height 60 feet, while the width of the bridge was only 16 fect. 'This bridge fell in 1822.

The bridge of the Rialto at Venice (fig. 113) was Rielto, begun in 1588 , Antonio da Ponte being the architect. Vearal The span of the arch is 91 feet, the height above the water level 24 feet 6 inches, and the width of the footway 72 feet. Erroneous statements are often met with that this bridge was built from a design by Michel Angelo; the mistake has arisen from the misinterpretation of a passage in the works of Vasari. Rondelet, in his Essai Historique sur le Pont du Rialto, gives a full account of the rival-

Fig. 113. - Bridge of the Rialto, Venice.
designs submitted to the senate by Antomo da Poute and Palisdio.

Floreace

Ponte deila
Trimita.

Fig. 114 shows the singularly teautitn " Youte della Trinita," erected at Florence (1566) from the designs of
observe with interest the amended design for this bridge, given in Hasking's Architectural Treatise on Bridge Build. ing, p. 241, which serves to show how easily a noble design may be spollt by an alteration in the proportions of its parts.

Fig. 114.-Ponte della Trinith, Florence.

A fine bridge over the Ouse nt York, erected in the reign ni Queen Elizabeth, was taken down some years ago ; it is shown in fig. 115 . The span of the largest areb was 81 feet (Allen), and the rase 26 feet 3 mehes
Pont Xeuf, The well-known Pont Neuf at Parts was built In 1604 Pans, The design has no feature callang for spectal remark. Fio. 116 shows the bridge over the Conway at Llanewst in
Hasprest Wales, the design for which was furnished by Inigo Jones in 1634 . The middle arch has a ${ }^{6}$ pan of 58 feet. The beructure se casily set in gbrateon, ned is known as the
"shaking bridge." Further particulars concerning this and many other old English bridges rill be found is Smiles's Lives of the Engeneers, chap. iii. vol. ii., edition 1874.

A bridge over the Senderud at Ispahan is described Irmehoo as follows in Fieck's Iconographic Encyclopadia, with illustrations:-"It (the hridge) is 2250 feet long, ${ }^{120}$ foct high, and 156 feet broad; the middle may is 60 feet broad, and the sideways are paved with marble, and the \because - +er lead throngh arcades, to which the ascent is by saira
in the four towers of the bridge. The bridge has $29 \mid$ on each face. The roadway is 11 feet wide over the centre

Pcot-y-tu

 Pryid

Fio. 115.-Old Bridge at York.
arches of 50 feet span, and the pillars are 25 feet thick.' In the illustration the arches are Moorish, and the covered sideways lofty, with 3 srches of small span over each msin arch of the bridge. The design is remarkably fine. Heck calls it the bridge of Barbaruh, and states that it is named from its builder, but it is of unknown sntiquity. All the bridges of Ispahan are said, in the 7th edition of the present work, to have been built under Shah Abbas I. (1585 t -1628).
Heek mentions a bridge st Loyang in China, said to have a length of 26,800 reet, and aiother at Focheu 22,000 feet long, both from 30 to 70 feet wide.
§ 76. 1700 to 1817.-Old Westminster Bridge (Labelye) and Old Blackfriars Bridge (Mylne), beth of which bave now been remored, were built in the middle of the 18th century. Their failure siter so short a period was due to a defective system of foundation and to the increased scour cansed by the remoral of old Lendon Bridge.
The Pont-y-tu-Prydd over the River Taff near Newbridge is showa in fig. 117. The arch measures 140 feet between the abutments, and has a rise or versed sine of 35 feet. The width of the soffit is 15 feet 10 inches at the springing, diminishing to 14 feet 5 inches at the crown by six offsets

Fio. 116.-Llanrwst Bridge, Wales.
of the srch. The arch stones on the face are 2 feet 6 inches

Fia. 117.-Pudt-ytu-Fryds.
deep, the rest of the ring being rubble masonry. This

Fig. 118.-Half Truss of Wittinged Bridge.
bridge was buirt by William Edwards, a self-educated country mason. It was completed in 1750 after the iailure

Fro. 119.-First Arch of Scbafthausen Bridgo of a similar structure. in which the reight of the haunebes
was excessive and forced up the cromn, be depth of which was very small. Thes failure led to the adoption of the pierced spandrils.

Fig. 118 shows half of the truss for the bridge of Wittingen, built in 1758 by the brothers Grubenmann, probably the finest speeimen of a wooden bridge that has ever been constructed ; the design might be analyzed as corsisting of a series of superposed trusses, as in fig. 87 , which represents the bridge at Schaff hausen built by the same Schnfr. engineers oi village carpenters. The Schaff hausen bridge Schavezs. (fig. 119), destroyed by French troops in 1799, had two openings, one of 172 feet and the other 193 feet. The Wittigeen bridge, burat shertly ofterwards, had s speo
of 390 feet, being the largest opening ever spanned by wood.
Mr Smiles states that the first attempt to build a cast-iron bridge was made in 1755 at Lyons, and that one of

Fin 1:0.-Coalbrookdale Bridge.
the arches was put tugcther 20 a builder's yard, but that the project mas athudoncd as too costly. Mr Abraham

Darby, the owner of iron-works of Coalbrookdale, was Ccalltroos the first person who actually erected a castiron arch. dale This bridge (fig. 120) crosses the Severn by a span of 100 feet, Dear the town of Ironbridge, which has sprung up in the neigbbourbood. Each of the ribs consisted of two pieces. The design is a beld and originsl one, and has been practically successful. Wearmouth Bridge, completed in 1796, is an arch built of open cast-iron panele, acting as rousseirs ; the span is 236 feet, with a rise of 34 feet; the springings begin 95 fect above the bed of the river; and the width of the bridge was 32 feet. It contained 214 tons of cast-Iron and 46 tens of wrought iron. The dame of Thomas Pance, the well-knewn auth r, bas been associated with the design of this bri 」ge, but Mr L. D. B. Gordon (first Prefessor of Engineering in Glasgow) assures the writer that after careful investigation he fuds that Rowland Burdon, member for the county, was engineer, architect, and paymaster for this remarkable bridge. It was repaired and widened by Robert Stephenson in 1858. The bridge erected by

Fio. 121.-Cast-Iron Bridge at Craigellachie.

Telford at Uraigellachie (fig. 121), over the Spey, in the beginuing of this century, shows a great advance in the conception of what was the safest ferm in which to apply cast-iron to an arch.
§ 77. 1817 to 1845.-London Bridge and Waterloo Bridge.-London new bridge (fig. 40, supra, and Plate XVIII. fig. 2), is as fine an example of the modern stone arch bridge as can be found. The shape of the arches, the variation in their span, the slight curvature of the roadway, and the simple yet bold architectural details, are combined so as to produce a singularly beantiful structure. It is now insufficiently wide for the traffic it has to convey, but all who value beauty must earnestly desire that it may nut be disfigured by having overbanging foetpaths fitted to it as has been frequently proposcd. Londen can well afford to pay for new bridges, but can by no means afford to part with a single object of real beauty.
The design was made by Mr George Rennie, and the acting engineer was his brother, Sir Jobn Renme The centre arch has a span of 152 feet, and rises 29 feet 6 inches above Trinity high water mark; the arehes on each side of the cestre have a span of 140 fect, and the abutment arches 130 feet. The total length of the bridge is 1005 fect, its width from outside to outside 56 fcet, and height above low water 60 fech The two centre piers are 24 feet thick, the osterior stoncs are granite, the interior, half Bramley Fall and half from Painshaw, Derbyshire.
The voussoirs of the centre arch (eil of granite) are 4 feet 9 inches deep at the crown, and iucrease to not less than 9 feet at the springing. The general depth at which the foundations are laid is about 29 fect 6 inches below low water. Seven years and a quarter were spent in the construction of Lendon bridge, which was opened in 1831. The total cest was $£ 1,458,311$, but the contracter's tender for the bridge alone was $£ 425,081$.
Waterino Brude.

Waterloo Bridge, Plate XVIII. fig. 3, is another ine structure of the same character (1817).
Int, oduction of Suspernsion Bridges.-It will be ob-- rved that from the carlicet ages in which wa have records
of the construction of permanent bridges until very lately, the stone or brick arch has been the structure principally relied. on. Timber bridges more or less permanent have also been empleyed for great spans, as in the noble bridges erected by the brothers Grubenmann (1757); and after the construction of the bridge at Coalbrools dale (177i) cast-iron was not unfrequently employed in Engiand. The theory of the metal arch was, however, very imperfectly understood, and the great metal arch of Southwark bridge (completed 1819), Plate XVIII. fig. 4 Soathuart (largest span 240 feet), is little more than a beavy and Britge wasteful imitation of a stone ring. By the use of timber or cast-iron instead of stone, the openiug which a bridge could span was, howevcr, semewhat increased. An immense stride in this direction was made when suspension bridges were introduced. A bridge of this kind over the Tees, 70 Fees feet in length, was built in 1741 for the use of miners, Mridge Similar bridges are also said to have been used by Mr Finley in America, but the introduction of the modern suspension bridge practically datcs from about 1820. (Gala- Galashie shiels bridge, 112 feet in length, was constructed in 1816, also a bridge oi similar dimensiens at Peebles over the Peetice, Tweed). In 1819 Telford began the construction of the Menal suspension bridge (Plate XIX. 6g. 2), i. which the stea" span of the catenary is 570 feet and the dip 43 feet. Rise friene success of this structure led to the construction of many other large suspension bridges, as at Fribourg (span 870 feet), Hammersmitt ((span 422 feet), Pesth (span 666 feet). This form of bridge was not, however, fonnd suitable for railway traffic ; and on the introduction of railways engineers wcre for many years dependent on stene, brick, or cast-iron arehcs.
§78. Brtannza Brdge, 1815. - The desigy by Robert Eritapho Stephenson of a bridge to carry the Chester and Huly- Ericise head Railway across the Mcnai Stralts led to a complete revolution in engincering practice. Mr Stepbensor'first conception was that of a tube partly car ،ed b; chains. This would have practically been a su pension bridse stiffened by a girder. Under Mr Stepheasoo'o direc
tions, experiments and calcalations on the strength and best form of tubes were made by Mr. William Fairbairn (Sir William Fairbairn) and Mr Eaton Hodgkinson. In the course of the experiments it was found that the tube could be made self-supporting over the desired span of 460 feet; and in consequence of this discovery the Conway and Menai tubular bridges were built, being the first great examples of properly destgned girders. Some disputes arose as to the real inventor of these bridges. Sir William Fairbairn justly claimed the great merit of first perceiving that the girder might be self-supporting. Mr Hodgkinson had, perhaps, the smallest part in the design, but the shares of Fairbairn and Stephenson respectively cannot be very rigorously apportioned; nor is this now of much conse-

f10. 122.-Britannis Bridge (Cross Section of Tubular Girderl
quence. Both engineers were men of extraordinary merit, and co-operated in producing the great revolution in practice which has led to the adoption of the wrought iron girder as the most common type of bridge. The first train passed through the Britannia Bridge in 1850 The following description of the structure appeared in the 8th edition of the present work. It will be seen that this description is to some extent a defence of the deagn aganst criticisms asserting that the structure was unnecessarily heavy and costly. It is true that a considerabiy lighter bridge could now be built, but some prudence in introduring ao great a novelty was certainly commendable.
"The Britannis Bridge which carries the Chester and H M lghead Railway over the Menai Straits (figg. 122 and 123 , *us i Plate XIX. fig. 1) consists of two independent continuou?
wrought iron tubular beams, 1511 feet in leugth, and weigit ing 4680 tons each, independent of the cast-iron frames inserted at their bearings on the towers. They are 15 feet wide, and vary in depth from 23 feet at the ends to 30 feet at the centre. They rest on two abutments and three towers of masonry at a height of 100 feet above high water. The roadray is laid along the bottom, viz., one line of rails in each tube. The centre or Britannia tower, which is altogether 230 feet high, is built on a rock in the middle of the Straits. The bridge has thus four spans, viz., two spans of 460 feet over the water, and two spans of 230 feet over the land. On each side the weight of a single span of 470 feet is 1587 tons, and of a span of 242 feet 630 tons. These tubes repose solidly on the centre tower, but repose on roller beds on the land towers and abutments. Now, these gigantic dimensions are by no means the only remarkable features in this work. The opponents of the Holyhead Road had imposed conditions on the Chester and Holyhead Railway which were thought msurmountable with respect to this bridge. The navigation was not to bo interrupted-no scaffolding could thus be used-and the clear height of 100 feet was to be retained throughout,-

Fio. 123.--Britannia Bridge (Part Elevation of Tabalar Girder).
arches being objected to unless the springing and not the centre was at this elevation. The tides set through this portion of the Strait with a velocity of 9 miles per hour, and the quict water at each turn of the tide lasts but for a very short space of time. The tubes were designed to meet all these requirements; they were so constructed at a considerable distance from their permanent site on the shores of the Straits; they were floated upon pontoons npon these rapid tides to the base of the towers; and they were then drawn up by bydraulic presses to their required height. They were here united through the towt. by the insertion of shorter lengths, and ultimatcly bronght into the condition of continuous beams as regards strain, by the means employed for their junction. It is cvident such structures would be designed specially for such varied circumstances, for example:-
"As soon as they were completed on temporary piationms, these platforms were remored, and they became isolated beams; the ends were accordingly strengthened with cast and wrought iron framung for this special object, and had they always remanned there the sides might have been throughout considerably lighter than they are, they now weigh nearly 40 per cent. of the whole weight. Bat in the neat operation, that of floating, the tubes were liable to be eupported at any point of their length, besides being subjecterd in chances of considerable distortion, and to disastera
whick on more than one occasion did actually threaten their entire destruction. The stiffening frames and gussets, which in an ordinary girder would have ooly been necessary at the ends, became therefore necessary throughout the whole length, and even the top and bottom were considerably modified, as it 13 evident that while overhanging the pontoons on each end to the extent of 70 feet, the top, instead of being in compression was thrown into extension; the weight of the tubes was consequently much increased by these arrangements. Again, they had to be raised by being suspended freely from four chains. Pronsion for thes suspension from such limited attachment had also to be made of a totally opposite character from that made for their vertical support when on their bed, and, ultimately, when rased to their place, they remained no longer independent beams, but were converted anto continuous beams, parts bciore in tension being now thrown anto compression, and vace versa, while the ends which were before subject to no horizontal strain were now exposed to greater stram than even the centre of the span. Acd, last of all, during the act:of rasing one of these enormous masses, the press
from which it was saspenaed burst, and one end oi the beam fell through a space of no less than 9 inches on to a loose uneven heap of planks jeneath it, bulging in the bottom plates, breaking all the castings, distorting seriously the sides and stiffening frames; while the broken press itself, which descended from a height of about 100 feet above, broke through the top plates and completed the crippling of the whole section of support. It may surely be doubted whether anything but a tube could have stood euch unexampled violence ; and in proportioning the parts of a structure destided for such usage, the mere considerntion of the stran to which as an ordinary beam it would be subjected, formed but a part of the problem; no direct comparison can therefore be made between the weight of thus bridge and an ordinary beam. If this were the cass with the large spans, it is still more 80 with the smell spans of 230 feet, which as simple beams would weigh only 230 tons each, whereas theur actual weight is 650 tons. But it must be horne in mind that as regards the bridge itself these small spans were not requred at all, and that they were merely designed and used as counterposes for

Fio. 124.-Elevation of Bowstring Arch, High-Level Bridge, Newcestle

Fic. 125. -Plan of High-Level Brdge, Nerpcastie.
the large tubes, for the umportant purpose of converting them into continuous beams by therr overhanging weight. By examining their detal, it whl be found they are designed solely for this special purpose, their use as beams being made eotirely subsidıary.
"Some misapprehension ezists on the object and importance of the cells of which the top and bottom of these tubes is composed. . These cells are rectengular, there being eight of them in the top and six of them in the bottom, and they run throughout the bridge. With respect to their importance, it must be observed that the whole section of the top of the Britanala tube at the ceatre 19648.25 square unches, and of the bottom 585.43 square inches, and that the tube is 15 feet wide, the thickness of a single plate to ensure thes section would thercfore have been 2.7 uches for the top, and 2.3 inches for the bottom, and had sach a plate been procurable, nothing better could have been desired, and the cells would be unnecessary. Such a thrag, however, is evidently impossible, and the ongineer io this, as in numberless other details. had to edopt what be could ohtam,
now the arrangoment of the plates in cells 13 almoss the only concervable arrangement possible for obtaining the required scction, allowing access, at the same time, to every part for construction end future maratenance. This alone led to ther use in the bottom of the tube, where their form was totally ummportant. With respect to the top, however, it was of great importance, slace thack plates could not be had, to ascertain the best form of cell for resistanco to compression that could be devised with tinu plates. I scries of valuable expenmenta by Mr Eaton Hodgkasos led to the use of the rectangular cells as actually used, not because. such form presented any peculiar edvantage over any other form, as some have maynod, but because these experiments demonstrated that cclls of that maguitude and thickncss were independent of form, and are crushed only by the actual crushing of the ron itself; under thess circumstances, the square cells were used as the best practucs 1 method of obtaiming the sectional area required
"Similar misapprchension also exists as to the considcra. tions wluch led to the rectangular form of the tubes
zhemselves. Now, the result of direct experiments made with round, oval, and rectangular tubes-there being precisely the same section and weight in all three, and, consequently, different depths-was, that the circular tube was the weakest, and the oval tube the strongest, the rectangular form being intermediate. The oval tube was, indeed, first studied with a view to its use. Its form, however, was not farourable - neither for its actual construction, bor for its connection with the suspension chains which were

Fla. 126. - Newark Dyke Bridge.
originally intended torbe used in the erection; and practical ronsiderations, in thia case, also compelled the use of the

Fic. 127.-Section of Newark Dyke Bridge.
rectangular tube. It must also be remarked, that the result of experiments made on round, aval, and rectangular wrought iron tubes, when reduced to the same depth and compared, was in favour of the rectangular form, although witbin ordioary limits the form was not proved to be a matter of very great importance. It may be added, that this bridge has now been in use six years, that the deflection has been carefully tested, from time to time, with the rtmost precision, and that not the slightest perceptible acrease has taken place during that period. The care with
which the painting has been attended, and the protection afforded by the roof, have also entirely preserved it from the slightest damage by:oxidation; and it is difficult ω conceive that even the lapse of centuries can in any way affect such a structure, or to doubt that it will remain one of the most durable, as it certainly is one of the nost remarkable monuments of the enterprise of the present century."
§ 79. Newcastle Bigh-Level Bridge. Newark Dyke Bridge Crumlin Viaduct.-The High-Level Bridge. at Newcastle (figs. 124 and 125, also Plate XIX. fig. 3) is arfne example of the true bowstring arch, in which there is no cross bracing. This bridge is also described at great length in the Sth edition; but the type cannot be recommended for imitation, being essentially more expensive and heavier than a true girder. The bridge was opened by the Queen in 1849. The design was therefore made alnost at the same time as that for the Britannia Bridge, and is chietly inter. esting as showing a transitional form intermediate between the arch and beam. The bridge has six spans, cach of 125 feet, and the superstructure is supported on stone piers and abutments, the height to the soffit above high water being 83 feet. The arched ribs are cast-iron, and the tiee wrought iron. 4728 tons of cast-iron and 321 tous of wrought iron were employed in the superstructure. Therc are two roadways, the earriage roadway passing under the railway. The bridge cost $£ 243,000$.

The solid or continuous plate girder soon led to the introduction of open frames, designcd on similar principles.

Newark Dyke Bridge (the earliest example of a Warren Newart girder bridge) carnes the Great Northern line over a Dyke branch of the Trent near Newark. It was crected (1851- Bridge. 53) under the direction of Mr Joseph Cubitt from the designs of Mr Charles Wild.

This bridge (figs. 126 and 127) consists of four independent girders, viz, two for each linc of railway. The roadway is bencath the garder. The top flange of cach girder consists of a series of cast-iron pipes butting end to end ; the

Fio. 128. - Part of Crumlin Viaduct.

Newcastie IIgh-Leve Bridge.
iron, to which arast be adrled 50 tons for the platform, making the total weight of each bridge 294 tors 10 cot . The cost, exclusive of the masonry of the abutments, and of the permanent rails, but inclusive of the staging for fixing and the expense of testing, was $\mathfrak{L} 11,003$.

The Crumlin Viaduct, begun in 1853 , and completed in 1857 (fig 4, Plate XIX.), is a fine example of the Warreo
girder; it was crected on the Taff Vale Extension Railway under Messrs Liddell and Gordon as engıneers, by Mir T. W. Kennard as contractor. The following description is compiled from that given in Mr Humber's work:-The length of the bridge is 1800 feet, divided into two parts, one consisting of seven spans of 100 feet, and the other of three similar spans. The greatest beight of the road-was

Fio 129. - Common type of Wrought Iron Girder
above the surface of the trater 19 not less than 200 feet. The piers are formed of cast-iron hollow columns, each 17 feet long sad l foot in diameter; the thickness of the metal varies from l ach to $\frac{7}{8}$ th luch ; these columos are arranged in thers, each contanng fourteen columas, the distance
between which at the base of the pher measures 13 feet 6 inches, excepting between the centre rotrs, where it measures 6 feet thronghont the helght The arought iron girders are 150 feet io length and it [eet G inches decp. Some detalla of the construction are shown in tig. 125.

Fig 130.-Common trpe of Cast-Iron Girder.

Fig 129 shows a pian and elevation aud cross section for balf a wrought iron girder of a ueusl type for smal epans Coverng plates are used to connect the main plates of the top and bottom webs. and stiffeung angle :rons are shown at the sedes

Sumlarly, fig. 130 shows a plan and slevation of a castiron girder of a usual type
\$80 . Fiagara Suspenson Brulse.-Fig. 5. Plate NIX... shows Niagara Suspeusun Bridge, a structure descrabed bs follows in the Rin edition:-
"It crosses the Nisgara River at a berght of 245 feet above the wator by a single span of 821 fect 4 anches and forms the connecting link betweed the American States and Cinada.
"The superstructure may be best described as a hollow rectangular box, 18 feet deep and 24 feet wide, on the top of whech the radway is lad. while the bottom, which is 25 feet wide. forms the roadway for public tratio-both these floors are constracted of tumber heams; and each connect. ong side consists of a row of double posts or uprights of umber, each pur being 5 leet apart, between them wrought iron diagonal bars are made to pass, extending each way to the fourth parr of posts at an angle of 45 degrees. The upper or malway fioor is suspended from - wo wire cables at antervals of 5 feet, and the lower floor ss anspended at sumilar mtersals from two other wire cables which have a deflection of 10 feet wore than the
upper ones; these cables, four in mumber, are each 10 inches in diameter, and composed of seven strands, each contanung 520 rires, making a total of 3640 wires One strand forms the axis round whach the other sis sre tmonted. Sixty mires are equal to 1 square inch of soldd section; therefore the to:al arca of each cable ts 604 square inches, or the total sectional area of aron surfortagg the structure $182+16$ square inches
"Each cable rests upion a separate saddle, there being two on the top of each of the four towers The saddles are phared on ten cast-iron rollers, 5 nehes diameter and 2.5t inches long, which bear upon castion phates 8 feet square and $2 \frac{1}{2}$ mohes thick, strencthened by three parallel Hangew which form two compartments for the recention of the saddles.
"The ends of the cables sre attarhed to cast-1ron shees, , "1 each of which is usarted a wrought aron pin which forms the connction with the anchor chains These anchor chans are each cmbedded in a solid shaft of masonry ; feet by 3 leet, enlarged at the bottom to form a chamber 8 feet square cut in the rock. The abafts sre sunk to 2 depth of 25 feet on the New York side, and 35 feet on tho Canada side.
" Each anchor cham is composed of mine links, the eight lower links being 7 feet long. and the anth or uplormost 10 feet long. The lowest link conssists of seven wrought iron bars. 7 inches by 1.4 inches each, and amounting
sullectively to an area of 69 square inches. They are secured to a castiron anchor plate, by a pin $3 \frac{1}{2}$ inches diameter. From the fourth link the chain curves, and the section is gradually increased to an area of 93 square inches. There are two towers at each end of the bridge, based upon a mass of masonry 60 feet by 20 feet, which is pierced by an arch 19 feet wide, forming the entrance to the lower roadway. The towers are 60 feet high, 15 feet equare at the base, and 8 feet square at the top.
"Above the floors are 64 diagonal stays, extending from the saddles to the suspenders, amongst which they are equally distributed; they are formed of wire-rope $1 \frac{1}{5}$ th inches diameter. There are also 56 stays attached at their upper extremities to the soffit of the bridge, and at their other ends well anchored to the rocks below. The superstructure is thus tied down as well as suspended, and all. undulations directly resisted.
"The bridge was commenced in September 1852, and opened for traffic in March 1855. The total cost was £ 80,000 ."

The use of two chains of different versed sines is certainly a defect in this design.

There are several other suspension bridges in the United States of great span, e.g., Cincinnati, 1057 feet; Brooklyn 1600 feet.
§81. Saltash, Victora, and Coblentz Bridyes. Fink Truss. Saltush.'
-Fig. 131 shows one span of Saltash Bridge erected by

Fio. 131.-Span of Saltash Bridge.
Brunel. The span is 455 feet. The pier is a column or circular pillar of solid masonry, 35 feet diameter and 96 feet high from the rock foundation to abeve high-

Fio. 132.-Fink Truss.
water mark. Upon this are placed four octagonal columrs of cast-iron, 10 fect diameter, carried up to the level of the roadmay, which is 100 feet above high-water mark.

Victoris

 Bridge BridgeSontreal

The Victoria Bridge over the St Lawrence at Montreal is a tubular bridge of great length (7000 fect), chiefly remarkable for its ice breakers, shown in fig. 93.

Fig. 132 shows some details of a Fink truss as used in

America. The mode of computing the stresses on this truss has already been explained in § 59 . All the struts are cast-iren tubes.
Fig. 133 shows one of the wrought iron arches of a Coblants bridge over the Rhine at Coblentz. The bridge censists of three spans of about 315 feet each.
§ 82. St Louis and Illinois Bridge.-The St Louis and St Lozis

Fio. 139.-Arch of Bridge st Coblentz.

Mlinois bridge over the Mississippi (fig. 5, Plate XVIII.) is the finest example of a metal arch yet erected. It is described as follows by Sir Charles A. Hartley who visited it in 1873 :-
"The Mississippl at St Louis is confined to a ongle channel 1800 feet wide and 8 feet deep at extreme low water by an emhask: ment or levee on the 1llinois side, whict is carried up to the level of extreme high water, at which time the width is augmented to 2200 feet. Both ahoree are ravetted below the low water, some with rubble stones, and protected by the wharf pavements sbove that line. The extreme fange betweed high and low water is 41 feet. Owing to the narrow gorge through which the whole volume of the Mississippi flows the variations in the bed of the river are very great. Ceptain James B. End, M. Inst. C.E., the ditinguished engineer
who designed the bridge and superintended its construction, informed the author that a rise of 13 feet less than high-water mary cansed a scour of 18 feet, and that in the freshet of 1870 the scour reached a depth of 51 feet below lew-water mark alongyide the east pier. These facts induced hitu to believe it possible that the scour, at times of extraordinary high flood, might extenc even to the rock itself. He therefore determined to eatabish the piers and abut. ments on the rock; and this was done by means of caissons provided with air chambers and locke at depths for the east pier aud east abutment renching 136 feet below high-water mark, or 1110 feet from the surfaue of the water where the foundation work was actually performed. This feat, which was aatisiactorily executed in 1870-71, is quite unprecedented in the annals of engineering.
The piers and abptments are composed of coursed rubb? masory np to lov- witer mark. A hove this level they are faced
with grey granite from the State of Manne, which cost 210 per conic yard in situ. The atenor of the work is of magnesian lime. stone. The rassive appearance of the granite rock facing is very striking.

The contract prices, and the total quantities of the steel and irou work required for the bridge, are as follows :-

500 tons of steel, at $£ 60$ per ton			\}of 2000 lbs
500		wrought ron, at $£ \mathbf{4} 0$	
1,000		olled uron, at exs pur ton	
200		cast-ron at dild μ er tou	

The bridge bas three spans, parh formed with ribbed arches made of cast sieel, a wovelty in bridge tumding. The centre span is 520 feet and the side ones 502 feet in the clear

The rise of tho centro arch is 4it foet. that of the side ones 46 foet each. These are by fir the latgest arched spansin the world, and under the able durection of Colonel Liead, Captain Eads's chef assistant, they aro now hemp raplly erected gradually from each pier and abutneut without the and of centering Each span is composed of four double ribs of stel (well braced together at thear relative distances from eath other), and the tubes formong them are jointed butt to butt. 'lhey are clasped tugether by wrought iron couplings (which proved to tie muth hetter than steel), furnished with parallel grooves corresponding with sumilar grooves in the tubes. Steel pins, varyug from 4$\}$ inches to 7 inches in dwacter, pass through the centre of the couphings and the ends of the tubes at everyjoint. The vertical braing between the upper and the lower tubular ribs, which are 12 feet apart from centre to centre, convert the two members into a single arch.

At the tamo of the nuthor's visit two of the openings were already spanned by the steel tubes, which are all 18 inches 10 diameter, and 12 feet to 13 feet long, but of thicknesses varying from $1 \frac{1}{k}$ inches to 2 b anches.

The arches are to carry a double railroad track, and above the track a roadway 54 feet wide for camages and foot lassengers."

The bridge was opened, subsequently to Sir C. Hartley's Gisit, on the 4th July 1874.
§53. Projected Bridyes. - The Tay Bridge is a railway bridge in course of coustruction (1876), to form a connection between the town of Dundee and the North British Fatifray system in Fife, and crosses the Furth of Tay about a mile and a half to the west of Dundee. The length of the bridge exceeds two miles. It will therefore be the longest iron bridge in the world. The following description has been furnished by Mr A. D Stewart, who assisted the chief enganeer, Mr T Bouch, in the design of the bridee:-

Curves. - Commencing at the south shore, the luidge for the first five spana is on a curve of a quarter of a mile radius. lt is then straight for a distance of a mile and a half. At the north shore, tetween high and low water mark, it describes a curve of a quarter of a mile radius, forming nearly u quarter of a circle towards the wown of Dunden
(dadients. - The level of the rails at the sonth end of the bridze ic 73 fuet ahove high water. The oratient des.ends I io 100 for the first three mans: it is level for the best two spads; it then asernds I to 353 towards the centre of tha hridge. Aver the navigable part of the inver it is level, and the rails are ge feet above high erator, leaving 88 feet for the passage of shrping adove high wateof spring tides From this the grament falls 1 in 33 to the end of the kiridge

Spans.-The partion of the hring at present being execisted extends to 3420 yards $1 t$ is intended to add an opening of 120 feet and a mumiter of 27 beat spans at the noth end. The magnitude of the seseral spaus in arder, commencing at the Fife shore, is as follows:-3 spans of 6 foret, 2 of 80 fect. 10 of 120 feet, 12 of 136 feet. 13 of 230 fect. 1 of 150 fuet, 1$\}$ of 120 feet. 25 of 60 feet. 1 of 155 feet. nud 6 of 27 feet-the total nomber of spans heing thus 84.
Fiers and Foundations. - The first fourtexn piers are fonaded npon sock, which was generally covered to the dejth of a few fees with clay or other soft material These piers consigt of double solid cylinders of brickwork, buile with stronge l'ortland cement mortar, conuected by a wall of brekwork from low watur to the superstructiore. Foundation for these pure were oltasued by placing caissons or hollove cylmders on thens sute. excavatng wothin them, adat sinkitg them wy forcumg ont the water by arr fressure. Thes caiseons were built on the foreshore un a properly prepured foundation, and lmed internally wath limkwotk to such a hetght that when fully sumk the briekwork extcuded above low water. When carrad out and placed in posation. this brackwork fornoed part of the permanent pler, and gave weight and stability to the unsoun what the water was displaced from the iugres. When the

Whole material above the rock was thus excesated, the woikiog chamher and shaft of the caisson were filled with concrete, pul in in a liqud state, and when this solidified the building upward of the pier was continued. A dificulty arose 10 keepug the cylin ders vertical durang the siakngy This was overcome by combrame them into a single caisson Between the fourteenth aud ifteenth pier the rock disajpurs At the sites of the next six piers the beck consists of a layer of hard materal resting on sile. In is proposect to pile these plers from an outside staging within an oval-sbajec wrought ron casson. After the piles are driven, tlsem heads art to be surcounded with concrete, the water is then to be lumped ous of the casson, and trockwork to be luit up to the level of abous 5 feet above high water The upper fortions of these, and of all the prers to the oorth of them, are to consist of cast-irou columine braced together.

From the twrity-sccond yer aorthwards the bed of the niwer consists of sand, wath oprasional lagers of cnarse grasel and boulders It was, however, neressary to modify the designs for the puers, and the method of founding and bulding them, according to the loud each lad to carry

For the 120 and $\mathbf{J} 36$ feet spans there are eightean fuers. Pot eagh pler two wronght iron chassons are grepared, fratly cyln drical and prartly comeal in shape, amd having a base of 15 feet These are butt on the fore-chore, and lined with brickwork. the are then flonted ont by means of rontoons havime hydramh machinery for lowerng: when they baye been sunk an then proper Filace until they take a bearang in the sand, the pontoous are removed, and by means of sand-pomps the material from the intemor is removid and they sank by their ow weight. Durning the operation of siriking, ruigs of wrought iron and buskwork are added to the top of the calsson, and stones are laid round the outside to fill the void cunsed by the scour and pumpung. When a suffrent depth bas been obtained the pumps are removed. and the interwr 13 filled with hquid conerete: and when thas has solidified, the brickwork is contunumal to above high water.

For the 230 feet spans, large wrought ron cassons of a cylindrical form, 31 feet in diameter, are erected on the fore-shore, one for each pher, and lined with bnckwork to the height which it is mitended to sink them in the sand. The opper and temporary portion of tlie caisson, of the same thameter as the under, bot with no lamg of brickwork, is placed on the top of the lower part and bolted securely to it. The compond casssun is thoated out and sumk, as abose described, by means of sand-pumys, and the permanent portion of the caisson is filled with concrete. The temporary portion is then anbolted by divers, and removed for further use. From the surface of the ground to above low water, the pier consists of a brick oval. shaped hollow cylumer. Which is built on the fore-spore on groder and when it has thoroughly set, it is also floated ont and lowered ou the concrett fonadation. The interior of this brick yer is then filled with concrete, and the building of the brackwork is continued to ahove high watei as tidal work

For the 60 feet spans towards the north end of the bridge, the ples consist of threc braced cast-iron columus placed in a row across the bridge, the western colunm having a rake or hatter of 1 in 3 Every fourth pier is double. Some of these were sunk as screw piles, others were founded in 6 feet cylinders, previously sunk by sand-purmps, and filled with concrete.

Superstructure. - The superstructure consists whally of wrought ron garders. With the exception of two spans whoch ha: e gurders of the bowstring form, they Jave the tof and hortom members straight and parallel. Tbe bracing is of the double lattace form, crossing nearly at right angles, and from the pont of intersection a vertical support is carried to the monher on which the cross-ginder or bean rests. The girders for the 230 feet spaus. and the low. stmog girders, have wrought iron cross girders restang on, and rivetted to, the lower member on which the ruadray is flaced Al the others have timber cross-beams risting on and nutited to the top flame, and the roadway is above these graders They are sent to the Tay built in convenient preces for shapmeot, and ruetted tegether on jetties prepared near the shore They are then floated ont and raised to ther places by machinery fuated to them respec. tive weights. 'lhey are generally coumbous an groups of four consecutive spars. In order to arike contanaty pertect. ibe furthed ϵ bul of each girder is rased through a certaio calculated heisbi befure rivetting it to the next.

Montreal papers state that a bradge 15,500 feet \boldsymbol{r} length is about to be ennstructed over the St Lawrence at Montreal, from the desirns of Mr Legge. It will havo one span of between 500 and fion feet. and 60 smalter spans, with a height of lat feet above the water at high idde. The estmated cost is 土's $^{2} 00,000$
§ 84. Statistics-Takle XVI, from the Sth edition, gives some statistical information as to the weight, cost, and dimersions of some of the prine:pal cast-iron bridgey

Tables XVII．and XVIII．give various details regarding some important bridges of various construction and dimen－ sions．

Table XVI．－Cast－Iron Bridges．

Naye of Brioas．	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Open. } \\ \text { ings. } \end{gathered}$	Span．	Rise．	$\begin{gathered} \text { Total } \\ \text { weighe } \\ \text { of } 1 \text { ron } \\ \text { work } \end{gathered}$	Cost	［rase of Com： pletion
Coalbrookdale	1	Ft． In	$\begin{array}{cc} \mathrm{Ft} . \mathrm{In} \\ 50 & 0 \end{array}$	$\begin{array}{r\|} \text { rons } \\ 37 \end{array}$	．．	1779
Buildwas	1	300	$\left\{\begin{array}{l}30 \\ 14 \\ 1\end{array} 0\right.$	1 174	$£ 6.113+$	1796
Sunderland Brage	1	2360	340	260	27，000	1796
Laason Brulge ．．．．	1	430		．．．		1754
Staines Bridge	1	1800	160			1802
Pont du Louvie	a	570	108	263		： $8{ }^{\circ}{ }^{\circ}$
Pont d＇Auster！itz	5	1060	108	．		15 bri
St Denls		395	33			1808
Bristol Bridge	1	1000	150	1：10	4,000	
Craigellachte Brilge	1	1500	200		8，200	
Witham Brilge．．．．		80	50			
Vauxhall Bridge ．．	9	780	290	，－	300，00	1816
Southwark Bridge	3 $\begin{aligned} & 1 \\ & 2\end{aligned}$	240 210 10	$\begin{array}{ll}24 & 0 \\ 210\end{array}$	， 3780	\＄00．000	1819
Towkesbury Bridge	1	1700				
Calton Bridge ．．．．．．	1	1800	180			

Table XV＇II．—Dimensions of Large Masonry Bridyes．

Fist Arches．	Span in lcet．	Versine is feet	Saximum Radus in fret．	Theteness	
				$\begin{aligned} & \text { of } \\ & \text { Ciown } \\ & \text { in feep } \end{aligned}$	$\begin{gathered} \text { of } \\ \text { Abutmene } \\ \text { at base. } \end{gathered}$
Trezzo over Adda．．．．	251		134＇		
Doriaston，Segmental	86.51	$13 \cdot 48$	$7 \mathrm{c} \cdot 1$	$3 \cdot 510$	3080
Trilport，Elliptical ．．．	80：38	$27 \cdot 69$		4 462	14.
Nantes \quad ，	$115 \cdot 16$	$34 \cdot 41$	895	6－397	23
Neuilly ．${ }^{\text {，}}$ ，．．．	127.50	31.95	160	5315	35°
Waterloo ．＂．．．	120	32.	1125	45	＋0．
London Bridge ，．．	152.	29.6	．．．	175	
Atma（Béton）．．．．	141．4	24.2	．	4.42	$*$
$\begin{gathered} \text { Grosvenor Bridge, } \\ \text { Chester } \end{gathered}$	200.	42．	143	4.	

Table XYIII．－Dimensions and Coat of Large Erudges．

Name of Bridge．	Maxımum．			Reputed Cost		Nature of Prisg：
	$\left\|\begin{array}{c} \text { Ap. } \\ \text { pros } \\ \text { Hght. } \end{array}\right\|$			$\begin{array}{\|c\|} \text { Total } \\ \text { Aroouat. } \end{array}$	Per Fnot inn	
Britannia ．．．	Ft．	Ft．	Ft．	（001，865	ε	$\left\{\begin{array}{l}\text { Twn lines Railway } \\ \text {－tubuliar．}\end{array}\right.$
	125	480	1，511		398	
Charing cross	50	154	1，365	180，000	131	$\left\{\begin{array}{l}\text { four lines Railway } \\ \text {－dable Warnn．}\end{array}\right.$
Boyne	90	264	550	140，000	254	$\left\{\begin{array}{l} \text { Four hues Railwey } \\ \text {-lateice. } \end{array}\right.$(Two live: R:tilway
Boyne						
Crumlin ．．．．．．	200	150	1，800	39，000	21	－Lattice on operi－ fiwork prers． \｛One line Pailway －lattice，sad
	20	200	413	12．200	29.5	
Grand river ${ }^{\text {c }}$	130	12	620	30，000	50	）Otue line Railway 1 －plate girder． Two lines Kidmay
（Mauritius）						
Deepdale	150？	60	740	20，266	27	$\left\{\begin{array}{l}\text {－lattace on cren．} \\ \text { work piers．}\end{array}\right.$
Westminster	20	120	1，160	235，000	202	
Westminster						
	167					$\left\{\begin{array}{l}\text { Wire－rope Suspun－} \\ \text { son Budge－roail } \\ \text { only．}\end{array}\right.$
Pribourg			808	24，000	29	
						$\left\{\begin{array}{l} \text { Wire-Tope Suspeal } \\ \text { sion BriGge-road } \\ \text { and railmay. } \\ \text { Woodeo Trusees. } \end{array}\right.$
Niagars	245	808	800	80，000	100	
Landore	75	110	1，760	23，720	16.3	

Indes of Prixcipal Subjects．

utment，definition of，	
234；stabtity of，3：4．	bridge， $3 \geq 3$
$\text { blulges. } 301 \text {. }$	$\begin{array}{r} 215 \\ -24 \\ \hline \end{array}$
ch．riex ible model， 3	Equilibiated poly goa in
near．306，hanged a	the
cutmenw． 3 3\％．	Exes：a
Arches，penelal descrip－	32
tion ot，305：stability	Frctor
or，309：emjural roi－	Fiuk
raute for，311：stone	Founding in watel，3：5
practical detalls of． 311．comparison of	Framed suapenyon
stone und metal，312：	319.
wouten．315：mesil，	Fimines，defintion
Axal and noc－avial stiess compared， 258	316：n2m，315． Fincaces Puntis， 330
Backing of atuh，Ueini－	Guders，：88s；dealgn of，
ton of， 305.	297：contınuous，299：
	pobable weight of，
stemal and mee	
forces on． 239.	Gordon＇s theory of
iendinz mounent	staeneth of strate 8：1．
keams， 240.	Hauncter of arch，detabl－
Bullman truss，393．	tion of， 305.
How＇s method of leftering	fudigiman＇y tormuxa
reciprocal diagians，	for serengit of plifarg，
Bowstring grdel． 315	Horezuatal harust of metal
Caissons，3：5．	ach．312，of
Cast－iron leams，shape	а．¢ ${ }^{\text {a }}$
of cruss－s	Inetias moment of． 28
294	Jomm of numue，\％iv．
Cast－rion bridges．cost of，	Jonted ardh，3：3．
341 ；first mirvalucturn	durnes in finmes
Centres used in buliding	
arches，311．	315.
Chwn，orm	Kers
Clasaticition of	
285.	bilmee． 304
Cofferdams， 325	Lend，estraution of， $2 * 5$
Cormpound struc：ures，	Maxwell＇s Mroly
322.	fiamed atch，319
Compressed alr vised in	Metal ub for
sinking lcundations	312
327.	Model arcis whe carved
Concrete foanding．3：6．	juntts， 30
Continuous gidels 293	Maxdel beam． 297
Cost of large bridges．311．	Mosulus of eissticl
Cross－sernons，vilues of	or raptur
moment ufelastic forces	sument of elastic
fur sarnuls，29\％	In beeran，241， 293
Crushing，strength of	Moment of inerta， 2
materials to resst， 2965	Noutral axia，293，
Carce of bendint mo－	Piels，detineton of， 234
215，292：tes relation	Plies，case－bon，ty\％dia
to the conce arsumed	329：screw，32t ；wood－
br a lowded chan．	－n，327．
307 ：	Prillars，strength of， 321
Defititiona ${ }^{\text {a }}$ ，	Qunins detattion of
Detteetno of hamm，99\％．	305.
19：graphie methua	Rec＇， $\mathrm{rro}^{\text {a }}$
tot，	fiedundant members in
Dimenslom mescribes by law， $2 \mathrm{~s} \psi$	（rxines， 316. Ribs，ulesign of

Rupture，joint of，309： modulus of， 292
autles of suspension bulges， 301.
Safety，fuctor of，29\％．
semi－members in fa acues． ${ }_{3} 815$
sleaung stress，defint－ won of ：335：calcula ton of in beymy，sus： strength of 10 uteriuls Site of piels and abint－ ments， $3 \div 5$ ．
Slew arcis 3il
Sultit，Ucinition of 305. Spaldils，uetiatuon of， 305.

Spectic gravity，talle oi．
Sparizing deffition of ：305；cumed for meta rib， 314.

Statisties of actual

 bridges．3tStrentht of materlais to lesist crushang，286： to resiat sheat ng，287； 10 revise tens on，2s5； to lesist a nog－inal stiain， 287.
Stteas，three clagses ol，
Eses．fature of by berus．
Struts， ing．Lots：bltength of． 321.

Substructure， 324 ；prac－ tieal detalls of， 325.
Susporvins bradges， 301 ： nodaticallons of． 304. Watelal detsils of ：iv3： mexita and defecia ut 204
Tempersture，effect of change of in zbange of length． 249.

Tenmite stren

Trikel s method of sum ling c）ladess for fous． dat10ッ5．327．
Tiuss，weight of various tyjes of， 321

Tubular gilder，Bultanma

Voussolls，defnitaun of． 305：equidibrium uf， 306.

Wallen clrders， 317
Welght of besin，nitthoul of allowing for， 301. Wetgit of paterials Weige uf，－8B．and rall． wey ginderas 297 Wise rupes for auspeonioa b1 dses． 308

Index of References to Bridges．

Acantara， 29
Arkenteall． 327
Aviemon（Rhone）．Dan．
babylon（Eaphia：＂s），3： 8 ．
［b山＂れisar3（Thumes，
BMa．
Brinude（A！Her）．332
Brísnola 334 ．
Cebar＇s（Rhimet， 329.
Chatiog Cruss（Tianica），
32 fan
Costbroctdale（Sceerm），
Cublentz（ R thtue）： 533
Cisigellachie（Squey）．30t
Csoyland．trangular．
Crumilia：viaduct，5os，
3us．
Florenee．Trinta． 332
Forhéu，Ching 383
Fnboink，3int
Galashtels（ 5 ala）， 304
Goetin（Allur），i2s．
Hammeismith（Thames），
334

Irpahan（Senderid）． 532. Keht（Rthlue）， 327.
Lonitun，oli，（Tharites）．
330 ．
330.
334.

Loyang，China 338
Lneca（surtba， 328. 3 H （nad，234
Muntical，victorts，3ns， 339.

Naml，383．
Navere（Alito），3：9，
Newark 10yke 333 ．
Neweatele， 33
NJagsia． 33 ．
Paris（l＇ont Neun． 332.
Pavis（ncinos sul．
Pesth（Danuht）， 331.
Pesth（Danube）， 334
Pons Subliclus（Tiber），
Pontce Miviua Priaplnus．
Fabricias，Cestlus，Us：
niculanus，Vaticanus，
Elus（Tiver） 3 ing
List or．Tables
1．Tenalle strencth of matcrials，2EA－II，III．Cainnste strength to resist crushogg and shearme，＂86，287，－IV．Modulus of wast，casy，287．－V．Momeut nf
 expasion，289．－VIII．Modulus of nupture，2y：－IX．Visuo of $\frac{21}{2}$ for various

 Xr．Conatants and ralues of P and n for the stiength of struts and pifirt
（F，J．）

BRIDGET, ST , one of the patron samts of Ireland, who lived during the 6th century, was a daughter of one of the princes of Ulster, and took the monastic vow at a very early age. Her eell, the first in Ireland, was erected under a large oak tree, whence the place was called Kil-dara, the cell of the oak. The eity of Kildaro is supposed to dernve ita name from St Bridget's cell. A whole collection of miraculous stories have clustered round her name, and her reputation was not coufined to Ireland, for St Bride was a favourite saint in England and in Scotland.

BRIDGET, ST, of Sweden, was born about the year 1302. She-was deseended from a family of royal blood, and at the age of sixteen was married to Alpho, prince of Nerieia. The husband and wife were equally devoted to works of picty, and undertook together a pilgrimage to the shrine of St Jago de Compostcha. On their return bath embraced the monastic life, and after the death of Alpho, his wife founded a new kind of monastery for monks and nuns. She then went on a pilgrimage to Rome, where she founded a house for Swedish pilgrims and students, and composed her Revelaliones. After another pilgrimage to Jerusalem, she died at Rome in 1373. She was canonized in 139I. The order of St Bridget flourished for some time; they had one house in Britain.

Bridgetown. See Barbados, vol. iii. p. 359.
BKIDGEWATER, a munieipal (and formerly a parliamentary) borough and seaport in Somersetshire, on the Great Western Railway, 29 mfles S.S.W. of Bristol. It is pleasantly situated in a level and well-wooded country, having on the east the Mendip range and on the west the Quantock hills. The town, which is well built, lies along both sides of the River Parret, here crossed by a handsome iron bridge. It has an ancient Gothic church 'with a spire $17 \pm$ feet in height, a town-hall, court-rooms, a jail, a warket-place, an infirm-

Arms of Bridgewater. ary, a free grammar schoel, and some alms-houses. The river, which is subject to a bore, often two fathoms deep at the mouth, is navignble for vessels of 700 tons up to the town. The customs duties in 1874 were $£ 7227$. The chicf imports are grain, ceals, wine, hemp, tallow, and timber ; the exports, agricultural produce, carthenware, cement, plaster of Paris, and bathbricks, which last constitute the staple trade of the town. The value of the inperts in 1874 was $£ 118,509$, and of the experts $£ 5011$. The town returaed two members to parliament till 1870, when the borough was disfranchised. Population in 1871, 10,259. Bridgewater is said to derise its name, which appears in earlier times as Brugge Walter, from a certain Walter de Dousy, to whem the manor was presented at the Conquest. In the reign of Heury II. a splendid castlo was built and a harbour constructed by Willinm de Briwere; and in I230 a Grey-Friars' monastery was founded by his son. The castle was taken by the Royalists in 1643 , and was almost compictely demolished after its eapture by the Parliamentary forces in 1645. Admiral Blake was a native of Bridgewnter.

BRIDGEWATEL, Francis Egerton, third duke of, who has sometimes been styled "the Father of British Inland Navigation," was horn in 1736 . The navigable canal which he projectul for the transport of the coal obtained on his estates, was (with the cxeeption of the Sankey canal) the first great undurtaking of the kind executed in Great Britain in modern thace. The construetion of this remarkable work was carried out 1 grindley, the celebrated ergineer. (Seo Brindley and Casal.) The untiring perefverance disployed lyy the duke in surmountiag the rarious
difficulties that rctarded the accomplishment of his project, together with the pecuniary restrictions he imposed or himself in order to supply the necessary capital, afords an instructive examplo of that energy and self-denial on which the success of great undertakings so much depenis. Though a steady supperter of Mr Pitt's administratios, he never took any prominent part in polities. Ou his death, Blarch 8,1803 , the ducal title became extinct.

Bridgewater, the Pev. Francis Henry, eighth EARL OF, was born in 1758 and died on the 11th February 1829. He is best known as the originator of the Bridgewater Treatises. By his will he devised the surn of $£ 3000$, at the disposal of the president of the Royal Soeiety, to be paid to the author or authors selected by the president to write and publish 1000 copies of a treatise "On the Power, Wisdom, and Goodness of God, as manifested in the Creation." Mr Davies Gilbert, who then filled the office, selected eight persons, each to undertake a branch of this subject, and each to reccire $£ 1000$ as his reward, together with any benefit that might acerue from the sale of his work, accoraing to the will of the testator.

Tbe treatises were published as follows:-1. The Adaptation of External Nature to the Moral and Intellectual Condition of Man, by the Rev. Thomas Chalmers, D.D. 2. The Adaptation of External Nature to the Physical Condition of Mant, by John Eidu, M.D. 3. Astronomy and General Physics consudereit with riforence to N"atural Theolog!, by the Rev. William WheweU, D.D. 4. The Mand, its Mechanism and lrital Endowments as evincing Design, by Sir Charles Bell. 5. Animal and Vegetable I'hysiologys considercd with reference to Notural Theology, by Peter Mark Roget. 6. Geology and Mineralogy considered writh reference to Vatura? Theology, by the Rev. William Euckland, D.D. 7. The Habils atd Instincts of Animuls with refercuce to Natural Theoiogy, by the Rev. William Kirby. 8. Chimistry, Meteorology, and the Fuactiome of Digcstion, consudered with referene ta Nistural Theology, i.g William Prout, H.D. The woiks are of unequal werit ; serera. of them took a high rank in apologetic literature.

BRIDLINGTON, Brellygton, or Burlington, a market-town ot England, in the East Riding of Forkshire, on the North-Eastern Railway, 23 miles from Searborough. It lies about a mile from the coast on a gentle acclivity. The streets are narrow and the houses irregularly bailt. A large chamber over the old priory gateway (of the time of Richard If.) is used as a town-hall. The town has also a corn exehange, a temperauce hall, a mechanics' institute, and two subscription libraries. The parish ehureh of St Slary's preserves a considerable part of the Augustinian priory which was erected in the 12th ceatury, by Walier de Gaunt, a relative of the Conqueror, and contimued to flourish till 1537, when its last prior was executed for taking part in the "Pilgrimage of Grace." On the coast is situated the pleasant watering-place of Rridlingtun Quaç, which has recently increased in reputation. The harbour is enclosed by two stone piers, and there is goud anchorage in the bay. The beach consists of a fline firm sand, and is bordered by a parade with ornamental gardens. Besides hot and cold baths, there is a chalybeate spring esteemed for its medicinal preperties; and the town is supplied with drinking-water from au intermittent fountain discovered beluw high water mark in 1811. The most important public building is the Vietoria Rooms, whieh comprise a ball-room, a reading-room, a news-room, \&c. The united population of Bridlington and Bridlington Quay, which in 185 I was 2432 , amounted in 1871 to 6203. Bridlington was plaed ly Benry I. under the civil jurisdiction of the priors, and by John was allowed to hold a market and an anmuad fair. In 1643 the town was cannosated ly Admiral Datten, on accomit of the presence of Queen Henrietta, who had landed with a suphly of arms Sir George lipley aud Juhn de Bridlingten were connected with the priory; Kent the londscape-gardener was a native of the town; and his patron P Bitit ro..he, hore the titie
of earì of Burlington, from which the name of Burlington House in Loadon is derived.

BRIDPORT, a parliamentary and municipal borough and market-town of England, in the county of Dorset, 18 wilas by ratl N.W. from Dorchester between two branches of the River Brit, from which it takes its name. The mand part of the town is about a mule from the sea, with which it is connected by a single mading street, terminating in a quay surrounded by a fishing village. The principal buildings comprise a townhall, a market-house, a jail, a customhouse, a mechanics' institute mith reading and lecture rooms; there are also a scheol of art, alms-bouses, and several charities. The parish church of St Mary, a cruciform edifice is the Perpendicalar atyle,
 was restored in 1865 . The harbour, which had become choked with saod, was reodered avalable and secure for vessels of 250 tons by extensive improvements undertaken in 1742 and 1823 . The total value of the imports, which cousst manaly of timber, coal, and flas, was un $187 t$ $£ 89,616$, and the exports amounted to $£ 18,021$. Jts procopal artucles of manufacture have long been saulcloth. cordage, linea, and fishingnets. Bridport formerly returned two tnembers to parliament, but sunce ISG8 it returas ooly ode. The population was 7670 in 1871. Though a place of considerable antiquity, it has very little historical importance. Its mint is mentioned in Domesday Book. In the reagn of Henry VIIL. the town and district bad a monopoly of the supply of cordage for the Royal Navy.

BRIEG, the capital of a circle 10 the Prussian province of Silcsia and government of Breslan, is situated on the left bank of the Oder, and on the Breslau and Oppeln Railway, 27 miles S.E. of the former town. It as well built, and has a castle (the readence of the old Plastre counts of Brieg), a lunatic asylum, a gymnasium with a good !ibrary, sad several churches and hosputals Its fortifications were destroyed by the Freach in 1807, and are now replaced by beautiful promenades. Brieg carries on a conaiderable trade, its chief manufactures beng linea, cotton, and woollen goode, porcelann and machinery, bats, pastehoard, and eigars. Imprortant cattle-markets are behl there Brieg, or, as it is called sin early documents, Civitus Altce Ripre, obtained muncipal rights in 1250 from Dute Heary III. of Breslan, and waa fortifed in 1297, its nanue is derived from the Polish Brseg (ahore). In the lith century it became the seat of a line of counts, by one of whom the castle was built in 1341. Burned by the Huseites in 1428 , the town was soon afterwards rebinh, and in 1595 it was agaio fortified by Duke Joachum Frederick. In the Thirty Years' War it suffered greatly, in that of the Austman auccession it was heavly bombarded by the Prussian forces, and in 1806 it was captured by the Fredch. Population in 1871, 15,372.

BRIEL, Brielle, or Bril, a fortified seaport town of Holland, in the proniace of South Holland, zod capital of en arrondiasement, atands on the north side of the raland of Voorne, near the mouth of the Maese, 14 malea west of Hotterdam, in $51^{\circ} 54^{\prime} 11^{\prime \prime}$ N. lat. and $4^{\circ} 9^{\prime} 51^{\prime \prime}$ E. long. The town ta well built and strongly fortifed, and has an arsenal, military magazines, barracks, and a good harbour. The tomer of St Catharioe's church serves es a lighthouse. Briel is remarkable in history as having beed the first place captured in the struggle that resulted in the independence of the Netherlands-a fact which is commemorated in the popalar rhyme, Den eerste van April verloor duc d'Albe syne Bril, punning on the meaning of Bril, which is the

Dutch for " spectacies." Aamiral Van Tromp was born in the town. The iahabitants, who are principally engaged as fishermen and pilots, numbered 4058 in 1869.

ERIGADE, a tactical body, composed of two or more regiments of cavalry or 10 fantry, under the command of a general officer of the lowest grade. The terin bragade is also applied to from four to eight batterses of artillery working together, and to the small detachments (enght or mine men) of engmeers employed in excavating saps in arege operations. Two or more brigades constitute a division, two or more divisions a corps d'armée, two or more corps d'armée an army.

BRIGADE-MAJOR, a third-class staff officer, apponted by the brigadier to assist bim in the management of has brigade.

BRIGADIER, a general officer of the lowest grade, next in rank above a colocel, who is utrusted wath the command of a brigade.

BRIGGS, Hexry, one of the greatest machematicians of the 16 th century, was born in 1556 at Warley Wood dear Halifax, in Yorkshare. He studied at St John's Collego, Cambridge, graduated in 1581, and obtaned a fellowship in 1558. In 1592 he was made reader of the physical lecture fonnded by Dr Linacre, and in 1596 frst protessor of geometry in Gresham Ilouse (afterwards College), Loddon. In has lectures at Greshan Huase be proposed the alteration of the scale of logarithuns from the byperbelic form whels Napier bad given them, to that in which natity is assumed as the logatithm of the ratio of ten to one; sud soon afterwards he wrote to the inventor on the subject. In 1616 be patil a visit to Napuer at Edinburgh in order to discuss the suggested change, and next year he repeated his misit for a simular purpose. During these cunferences the alteration proposed by Brigga was agreed upon, and on his return from his second visit to Edinburgh in 1617 be accordiagly published the first chulad of has logarithms. In 1619 he was appointed Snvilan professor of reometry at Oxford, and resigned his professorship of Gresham College on the 25th of July 1620. Son after has settlement at Oxfurd he was morporated master of arts in that unversity, where he continued a lahonous and stadious life, cmployed partly in discharging the duties of his office, and partly in the computation of logarithas and in other uscful works. In 1622 he published a small tract on the North-West Tessage on the Sauth Seas, through the Continent of Firgmon and Mudson's Bay; and in 1624 he printed at London the Arathmetuca Logarethmeca, in folso, a work contaming the loganthims of chirty theusand natural numbers to forrtees flaces of figures besudes the index. IIe also completed a tabla of logarithmic sanes and tangents for the hundredth part of every degree to fontcen places of figures besides the index, with a table of natural smes to filteen places, and the tangents and secants for the same to ted places; all of which were pninted at Gonda in 1631 and published in 1633 under the titla of Trgonometra Brtannica. Briggs died on the 26th of January 1630 in the 74 th gear of bis age. Dr Smith, in his Leves of the Gresham Pro. fessors, characterizes him as a man of great probity, a contemner of riches, and contented with his own station, preferring a studious returement to all the splendid crrcumatances of life.

His works are-1. A Table to find the Height of the Pole, the Magnctical Declination berng given, London, 1602, 4to. 2. "Tablea for the Improvement of Navgation," pmated in the second edition of Edward 'Wnght's treatuse entitled Certain Eirrors in Navigation detected and corrected. London. 1610, 4to. 3. A Description of a" Instramental Table to find the part proportional, derised by Bir Eduard 15right, London, 1616 and $1618,12 \mathrm{mo}$. 4. Logarthmorum. Chilias prima, London, 1617, 856 5 hucubrationes et Annotatimis in opeza postiuma J Nepe. I, Edn.. 1619, 4to. 6. Eucludws Ele-

B R I - B R I

mentorum VI. libri priores, London, 1620, tollo. 7. A Treatise on the North. West Passage to the South Sea, London, 1622, 4to, reprinted in Purchas's Pilgrims, vol. iii. p. 852. 8. Arithmetica Logarithmica, Londoo, 1624, folio. 9. Trigonometria Bricannica, Goudx, 1663, folio. 10. Two Letters to Arihbishop Usher. 11. Mathematica, ab Antinus minus cognita. Some other works, as his Commentaries on the Gemnetry of Peter Ramus, and Remarks on the Treatise of Longomontanus respecting the Quddrature of the Circle, have not been published.

BRIGITTON, a parliamentary borough, and one of the most fashionable watering-places of Eagland, is situated on the coast of Sussex between Beachy Bead and Selsea Bill, in $50^{\circ} 50^{\circ} \mathrm{N}$. lat. and $0^{\circ} 8^{\prime} \mathrm{W}$. long. By railway it is 50 miles from London and 28 from Chichester. Its seafrontage of handsome mansions and hotels exteuds upwards of three miles from Kemp Town 1 a the east to what was formerly the suburbau village of Cliftonville in the parisk of Hore; while its depth imland at the centre is rather
more than a mile. In general appearance the style of the town atrikingly resembles that of London; and many of its streets and squares seem as if they had been transportec as they stand from the "West End." As far, indeed, as its character is not affected by its natural situation, it is nothing more or less than a vigorous offshoot supported by the sap of the greater city, a fact which is popularly recognized by the designation of London-super-Mare. During the present ccntury its growth has been rapid and continuous, about four hundred new houses being often built in the space of a year. Its streets and squares already amount to four hundred; but in comparison with this extent the number of its really remarkable buldings is rather small, and nearly all of them are of modern date. A mong its twenty Episcopalian and between thirty and forty Nouconformist churches two only need be specially mentioned, -the parish church of St Nicholas, which was built

Plan of Brightoa.
in the reign of Henry VII. and is prolably one of the oldest buildings io the town, and Trinity chapel, in Ship Street, memorable as the scene of the labours of Frederick William Robertson. The most important of the secular edifices are the town-lall, the market, the pavilion, the aquarium, the theatre, the proprietary college. the Sussex connty hospital. the new workhonse, the infirmary, the blind asylurn, and the femate orphan asylum. The pravilion, with its strange assembiage of domes and minarets, was built in 1784-7 as a residence for the lrince of Wales (afterwards (George IV.), and about 1818 it was refachioned by Nash into a grotesque

Arms of Brightou. mitation of Chinesearchitecture. It has a froatage to the east of 300 feet, and occupies, with its gardens, about $11 \frac{1}{2}$ acres. $\ln 1850$ it was purchased by the town for $£ 53,000$, aod its spacious rooms, greatly altered from time to time, are now appropriated to a variety of uses,-one serving as a museam, another as an assembly-room, others as picturegalleries. The pavilion dome, formetly the roysl stables, is now converted into a magnificent hall for bigh-class musical nerformances; it is lighted by a glazed dome, with
a diameter only 20 feet less than that of the dome of St Paul's of London. The county hospital was built in 1828 by Sir Charles Barry, at a cost of $£ 10,000$, and has since been largely extended. It is "open to the sick and lame poor of every country and uation." There are a large number of minor benevolent establishments in the town. and so various are its cducational institutions that it has been called the eity of schools. Aarong the bathing establishments the nost remarbable are Brill's and the New Turkish Baths; the former meludes extensive swimming baths for both sexes.

The teudeacy of the currents in the channel opposite Brighton is to drive the shingle eastward, and within the memory of man large portions of the coast have thus been destroyed. To prevent this erosion the whole sea-frontage of the tewn at the cast ead is protected by a grest sea wall, which was built hetween 1827 and 1838 . It is a milo long, 60 feet high, and 23 feet thick at the base, and cost $£ 100,000$. The beach is further ribbed from north to south by various "grognes," or jetties, one of which, constructed of conerete in 1867, at a cost of $£ 5000$, etretches about 250 feet iuto the sea. There are two piers which serve as promenades. The first, an elegant chain fabric commencen by Sir S. Brown, R.N., in 1822, was
openeu vo ue public in the following year. It is 1130 feet in length and 15 feet in width, the four cast-iron columns on which it is suspended being supported by stone buttresses based on oaken piles driven into the solid chalk. The cost was $£ 30,000$, and in 1836 an additional expenditure was necessary to reparr the damage inflicted by a great storm in November of that year, whieh was within a little of destroying the structure altogether. A new pier furcher to the west was opened in 1866 . Its total length is 1115 feet, and it affordsaccommodation for 2000 people. The town is well supplied with water by the corporation waterworks, and by an artesian well, 1285 feet deep, at Warren Farm, the boring of whieh lasted from 1858 to 1862. The scwage is effectively removed by an intereepting sewer 5 miles in length, which discharges into the sea 2 miles east of the parish boundary. Since the opening of the Brighton railway in 1841 the town bas developed wonderfully; but, with the exception of the railway works, no manufacturing establisbment exists, and no tall chimneys are seen. Orving to the absence of a natural harbour the commerce of the place is insignificant, but the mackerel and herringfisheres are carried on by about 120 boats. The races, which are held in Angust to the north and north-east of the town, and the great volunteer revicws, which of late years have drawn many thousands to the neighbourmig downs, add considerably to the loen trade. The town is governed by a mayor, thirteen aldermen, and a council. It returns two members to parhament.
Brighton, onginally Brighthelrastone, phainly derives its name from some Saxon Brighthehm, but who or what he was there scems no means of discovering. 'l'he present coatracted form of the word came into general use only in the cad of the lsth century, but it is sometimes found in the documents of the time of Chatles 11 . At the time of the Conquest Brighton was a small fishing village, and the londshep of the manor was beatowed by the Conqueror on his nephew William de Warrenne, who received as rent from the Gishermeo 4000 herrings. In 1513 it was burnt by the French under Messure Pregen:, whom the English chronicles call l'rior John; and in I 545 it was agan greatly damaged by Claude d'Annebalte, the almaral of Franerg I At that ume it is represented is a quadrangular town of four or five strects. There aere then no defences, but in 1558 a small carcular fort wis3 erected by Elizabeth. The town seems to have rapidly recdverel its prosperity. for in 1579 it poseresed 80 fiching-bonts, wath 400 fishermen and 10,000 nets. The whole Ehazabehan town, however, has been destroyed by the sea, which in 1699 swent away 160 houses, and in 1703 and 1706 did almost as mush damage. The modern reputation of Brighton is due to Dr Richard Russell, a native of Lewes, who resided there in 1750, and wrote a book on the adrantages of sea-bathing, which led a number of people of high rank-among others the dukes of Cumberland and Marlboroughto place themselves under his direction. The l'rnce Regeat folluwed, and the fortunes of Brighton were made. Bedford Square was commenced in 1810, and the building of liemp Town took place between 1821 and 1830. A charter of incorporation was granted in 1854. In 1761 the population wis only ahout 2000 ; in 1801 it had risen to 7339 , by 1811 to 48,567 , and by 1851 to 69,673 . In 1861 there were 77,693 inhabitants in the manicipal borough, and 87.317 within the parliamentary limits, the number of houses being respecturely 12.727 aad 13,983, while in 1 S7l the municipal borough had a population of 90,011 , inhabiting 24,438 houses, and the parliamentary borough 103,758, with 16,254 . See Lower's History of Sussex, 1870, anil papers in the Sussex Archocological Collections.

BRIGHT'S DISEASE, a term in medicine applied to a class of diseases of the kidneys which have as their most prominent symptom the presence of albunien in the urine, and frequently also the coersistence of dropsy. These associated symptoms in conmection with kidney discase were first described in 1827 by Dt Riehard Bright. Since that period the subject has been investigated by many able physecians, and it is now well established that the symptoms above nemed, instead of being as was formerly supposed the result of one form of disease of the kidncys, may be denendent on parious morbid conditions of those organs. Hence the term Bright's disease. theich is retained ga mediral
nomenclature in honour of Dr Bright, must be uaderstood as having a generic application.

Two varieties of Bright's disease are described, the acute and the chronic, -the former representing the inflammatory and the latter the degenerative form of kidney disease.

Acute Bright's Disease (synonyms-acute desquanative nephritis, acute albuminuria, \&c.) commonly arises frum exposure to cold, from intemperance, or as a complication of certain acute diseases, such as erysipelas, diphtheria, and especially searlet fever, of which it is one of the rnost frequent and serious consequences. In this form of the disease the kidneys heome congested, their blood-vessels being gorged with blond, while the tubules are distended and obstructed by accumulated epithelium, as also by effused blood and the products of millammation, all which are shed off and appear in the urine on microscopic examination as casts of the uriuiferous tubes.

The symptoms to which the condition gives rise are usually of a severe character. Pain in the back, vomiting, and febrile disturbance commonly usher in the attack. Dropsy, rarying in degree from slight puffiness of the face to an aceumulation of fluid sufficient to distend the whole body, and to occasiou serious embarrassment to respiration, is a very common aceompaniment. The urine is reduced io quantity, is of dark, smoky, or bloody celour, and exhibits to chemical reaction the presence of a large ameunt of albumen, white, under the macroscope, blood corpuseles and easts, as above mentioned, arc found m abundance.

This state of acute whllamation may by its reverity destroy life, or, short of this, may by contmuance result in the establishment of one of the chronic forms of Bright's disense. On the other hand an arrest of the inflammatery action frequently occurs, and this 13 marked by the increased amount of the urine, and the gradual distappearance of its albumen and other abnormal constituents; as also by the subsidence of the dropsy and the rapid recovery of strength.

Of chronic Bright's Disease there are several forms, named according to the structural changes undergne ly the kidneys. The most frequent of these is the large uhite kidney, which is the chronic form of the desquamative nephritis above mentioned.

Another form of ehronie Bright's disease is the raxy or amylnid kidney, duc to the degenerative chauge which affects first the blood-vessels and subsequently alsu the tubutar structures of the organ. This condition is usually found associated with some chronic alluent of an exhausting eharacter, such as disease of bones and other serofulous affections, or with a generally enteebled state of health. It is marked by the passage of large quantities of albuminous urine, and is frequently aecorr. panied with general dropsy, as also with diarrhoea and conseguent loss of strength. A third form of chronic Bright's discase is the contracted killney, depending on the condition known as cirrhosis, in which the kidneys become reduced in bulk, but dense in texture, from an abnormal development of their conncetive tissuc and relative atroply of their true structure. "'This form of the disease, which is commonly, though not exelusively connected with a gouty constitution, is apt to eseape detection in its earlier stages from the more obseure character of the symptons, there being less albuminuria and less dropsy than in the other varieties. Its later progress, however, enables it to be readily recognized. Dimness of vision, due to a morbid ecr. dition of the retina, and also hypertrophy of the heart leading to fatal apoplexy, are frequeut accompaniments of this form of the discase.

A fourth variety of chronie Bright's disease is deseribed by authors on the subject, viz., fatt!! degeneration of the kidneys, occasionally oceurring in old age and in commert:-.. with a similar degeneration of other organs.

The kidncys being among the moat inportant ercetory organs of the body, it follows that when their function is interrupted, as it is'alike in acute and chronic Brigh's disease, serious results are apt to arise from the retention in the economy of those effete matters which it is the offie of the kidneys to eliminate. The blood being thus contaminated, and at the same time impoverished by the draining away of its albumen from the kidneys, is rendered unfit to carry on the processes of healthy nutrition; and, a3 a consequence, various secondary diseases are liable to be induced. Inflammatory affections within the chest are of frequent accurrence, but the most dangerous of all the complications of Bright's disease are the nervous symp. toms which may arise at any stage, and which are ascribed tu the effecta of urxmic poisoning.

In the treatment of acute Bright's disease, good resulta are often obtained from local depletion, from warm baths; and from the careful cmployment of diuretics and purgatives. Chronic Fright's disease is much less amenable to treatment, but by efforts to maintain the strength and improve the quality of the blood by strong nourishment, and at the asme time by guarding againat the risks of complications, life may often be prolonged in comparative comfort, aud even a certain measure of improvement be experienced.

See Report on Medical Cases, by Richard Bright, London, 1827 ; On Granzlar Degencralion of the Kidneys, by Robert Chistison, M.D. Edinburgh, 1839; Diseases of the Kiducy, by Dr G. Johnson, London, 1866; Pracical Traative on Urinary and Renal Diseases, by Wra. Roberts, M.D., Iondon, 1865 ; On the Pathology and Treatment of Albumimuria, by W. H. Dickinson, M D., London, 1888; Practical Treatise on Bright's Diseases of the Kirineys, by T Grainger Stewart, M.D., Edio. 1871.
'. O. A.)
BRIGNOLES, the capital of an arrondissement in the department of Var, in France, is situated in a fertile and pleasant valley on the right bank of the Calami, 22 milea N.N.E. of Toulon. It is neat and well built, and has a magnificent fountain, a public library, a normal school, manufactures of silk thread and leather, and an active trade in wines, brandy, liqueurs, and excellent prunesthe last distinctively known as prunes de Bragnoles. The prefecture bas its offices in the palace of the connts of Provence, and the old bouse of the Teraplars is occupied by the theological seminary. Brignoles is a town of great antiquity. In 1291 it gave its name to a treaty between Alphonso III. of Aragon and the king of France. In ancient documents it is often mentioned as V'illa Puerorum, from the fact that the chiklren of the counts of Provence were generally born and brought up, in the eastle. In 1524 the town was taken and phlaged by Charles V., and in 1588 it met a similar fate at the lamds of the Leaguers. Population of town in 1872, 4843

BRIL, Paul, a Flemish lamiter, bom at Antwerp in 1554. The success of his tlder brother Matthew in the Vatican induced him to repair to Rome, On the deth of Matthew, Paul, who far surpassed bito as an artist, succe-led to his pensiors and employments. Fe paintud landsmes with a depth of chiaroseure then little practised in lta!g, and introduced ioto them figures well drawn and finely oloured. Many of his pictures are extant in laty. One of his liest compositions is the martyrdom of st Clement, in tho Gaid Clementina of the Vatican He died at Rume in 1626. (hee Lanzi, History of Printing.)
likiNDISI, a fortifed city and seaport of Italy, in the prowince of Otranto, is situated at the head of a lay of the idriatic in $40^{\circ} 39^{\prime} 27^{\prime \prime} \mathrm{N}$. lat. and $17^{\circ} 28^{\prime} 44^{\prime \prime} \mathrm{E}$ long. The atreets are for the most part narrow and crooked, and the town in general is in a somewhat ruinous condition. Sinice the restoration of its maritime importance, which is mainly due to the fact that it forms the great transit atation in the overland ronte to Asin by the Bont Cenis Railwa and the Sury Catal, some improvemeu
has taken place, and it bids faur to become one of the most Hourishing cities in the country. The progress, however, has hitherto been comparatively slow, and the only extensive addition which has been effected is a new street leading from the railway station to the harbour. A cathedral in rather a dilapidated state, a citadel with huge round towers (founded by Frederick II. and completed by Charlea V.), and a seminary (containing a library bequeathed to the town by archbishop Leo), are the only رublic buildings worthy of notice. The ruins of the circular church of St Giovanni, which was destroyed by earthquake, are not without interest ; an ancient building of uncertain date is popularly regarded as the bouse where Virgil died; and there is a remarkable column supposed by some to have marked the termination of the Appian Way, but more probably belonging to an ancient temple. There are ten public schools in the tomn. The trade was reje sented in 1873 by imports to the value of $£ 344,000$, and exports to $£ 325,000$. The former consist mainly of raw silk, wheat and flour, coals, manufactured cottons, and petroleum; and the latter of manufactured coral, corn, dried fruits, and ohve oil. The number of vessels that arrived at the port in 1873 was 709 , of which 422 were steans. ships. The harbour consists of an outer and an inner fortion, and the inner is divided into tiwe basins, extendiry right and left. The outer port is about 6400 feet loug by 3200 wide, the western arm of the inner portion 4800 hy 800 , and the eastern arm 3520 by 640 . An extensive system of dredging has been in operation since 1866, and long lines of quays are being gradually constructed. (irav-ing-docks are also in course of construction ; and a lageon, called Fiume Piccolo, close to the outer harbour, which has been a constant source of malaria, is being filled up. The population of the town, which was only 8000 in I861, had increased to 13,755 in 1871.
Brindisi, Arundisium, or Boestionov, was eriginally; it would appear, a city of the Sallentines, from whon it was captured by the Rorasns in 267 b.c. Colmized by its conquerors in 244 B.C., it snon rose into importance, and became their chief naral atation in the Adriatic. Hannibal vainly attemptwl to surfise the city, which remained faithful to Rome through the darkes: days of the Punic staggle. Iluring the war between Juluus casar and Pompey the fonuer endearoured to shut up his rival's theet in the imper harbour, by closing the entrance with wooden phes, which are frequently but ertcneously supposed to have been the cause of the destruction of that part of the port. On the fall of the Westenl Empire Brandisium seers to have been outstripped by the neighbounng city of Hydrun. tum(Otranto). In the 10th century it was destroyed by the Saracens, sut was rebuilt by Spathalupns the Byzantine goremor, whose name still stands graven on the marble column above mentioned After prssing through various ricissitudes in common with the rest 0° Soothern Italy, it fell into the hands of the Normans, and in th 11th rentury it was the scene of the chivalrous pageantry of Tan cred's court. It was plundered in 1343 by Louns, king of Itungary, and in 1458 suffered severely from an earthquake. Some time be. fore this last disaster a more seriaus injury had been infiisted by Prince Giovanni Antomo Orsini, who completely choked thee atrane to the imer port by sinking a number of ychsels laden with stone. The commercial importance of the city rapidly declined, and it was of wo interest sase to the classical scholar as the birthplace of bacurius, and from jts association with the mirthful journey of Horace and the death of Virgil.

BRINDLEY, James, a celehrated engineer, was born ot Thornsett, Derbyshise, in IF16. Ihisparents were in rery humble circumstances, and he recervel liztle or no education At the age of seventeen lic was apreaticed to a millwright near Macclesfield, and while in the employment manifestod remarkable mechanial talent. Sumafter compheting his apprenticeship be set up in musiness for himself os a wheelwright, and quickly became famous for his ingenuity and skill in repairing all kinds of machigery. in 1752 bo designed and set up an engine for draining aome coal-pits at Clifton in Lancashire. Thrce years later he extended his reputation by completing the machinery for a silk-rill Congleton. About ?T54 lriadey heorme açatinted
with the duke of Bridge water, and an arrangemens was eoon cnme to whereby he undertook to carry out that nobleman's scheme of inland narigation. The duke's primary object was the carriage of coal from his eatate at Worales to Manchester. The difficulties in the way were great, but all were surmounted by the genius of Briodley, whose crowning triumph was the carrying the new canal over the River Irwell at Barton, by means of an aqueduct elevated 39 feet above the water. The great success of this canal, the first of its kind in Great Britain, eacouraged similar projects, and Brindley was sonn engaged extending bis frat werk to the Blersey. He theu desigaed and nearly eompleted what he called the Grand Truak Caoal, connecting the Trent and Humber with the Mersey. The Stafferdshire and Worcestershire Canal, the Oxferd Canal, the Stockwith and Chesterfield Canal, were all planned and carried out by him His excessive toil broke down his strength, and he died in 1772 at the early aga ef fifty-six. Brindley was a man of no education; be retained to the last a peculiar ruughness of character and demezneur ; but his ingate power of thought more thau compensated for his lack of training. It is told of ham that when in any. difficults be used to retire to bed, and there reman intersels pondering his problem until the solution became cles: to him. His mechanical ingenuity and fertility of resources were very remarkable; be uadoubtedly possessed in the very highest degree the engineeriag faculty, though the kind of works to which he devoted bimself has been cast into the sbade by the later develepments of stean traffic. Brindley was an entbusiast in his buainess and possessed with the idea of canals. His reported answer to the committee who ask him what was the use of navigablo rivers,-"To feed canals," is oharacteristic, if not altogether authentic.
See Smiles, Lives of the Enginecrs, vol. 1. ; Biayraphia Eritannica.
BRIOUDE, a town of France, in the department of Haite Loire, capital of an arrondisscment, is situated un the left benk of the dllier, 39 miles N.W. of Puy. The wwa is ill-built, but has a fine old Gothic church (St Julien, oi the 12 th century, with curieus mossic ecnamentation), a college, a public library, and beautiful fountains, which date from the 13th century. At Old Brioude, about three miles S.S.E., are the remains of a-bridge over the Allier, which consisted of a single arch 60 feet high and 206 feet in span. (See article Bridoes, p. 332.) This iell in 1822 ; and a new bridge of one arch, 182 feet in span, was built in 1845. Population in 1872, 4524.
Briovde, the ancient brivas, was formerly a pinco of considerable importance. It was in turn besieged and eaptured by he Goths (535), tho Burgundiang, tho Saracena (733), and thie Normans. In 1151 the riscount of Polignac, who had caeked tie torna two years precriously, made public apology in froot of the charch, and established n body of twenty fire knights to defend the relics of $S t$ Julisa. For some time after 1361 the tomn was tho head zuarters of the lord of Castelasu, who was at the head of one of those binds if malitary adventurers which then derastated France. Tee Enights for canong, as they aftervards became) of $S t$ Julian boro the titio of counts of Brioude, and for a long timo opposed themselves to tho civic libertics of the inhabitants

BRISBANE, a town of Australia, capitat of the colony of Quecnsland, is situated in Stanley county, on both banks of the River Brisbane, about 25 miles from its entrance into Moreton Bay. It consists of four parts,-North and South Brisbane, Kangaroo Peint, and Fortitude Valley. Among its public buildings are coprts of juetice, bouses of parliment, a gavcrnor's residence, a literary institute, a concert-reom, a school of arts and from twenty to thirty churches. It has also en excellent botanical garden. Tho river, which is about a quarter of a raile broad cpposite the town, is navigable for vessels of consicicable burden, and bas been maide more accesibla by the rartial vony, ․․
the bar at its mouth Regular steam communication is kept up with Sydney and otiner Australian ports, and a very flourishing trade is carried oa in the export of weol, cotton, tallow, and hides, and the import of European wanufactures. The town is the centre of a considerable railway and telegraphic system Brisbane mas founded as a penal settlement in 1825, and was named in honour uf Sir Thivens M. Brisbane. Iu 1842 the establishment was abolished. and geaeral colonization set in The town was politically a part of New South Wales till 1859, when it was made the capital of Queensland. It is the seat of an Anglican and alse of a Roman Catbolic bishop. Its population "as ouly 5225 by the censua of 1861 ; but in 1871 it anounted to 15,029 , of whom 7201 were males and 7825 females. The number of inhabited houses at the latter date was 2931.
brisbane, Sir Teomas Mardougall, a dist.igu!seed soldier and astronomer, wis burn in 1733 at Brisbane :a $_{1}$ Ayrshire. He entered the army in 1789, and served: :a Flanders, the West Indies, and the Peninsula In $181 t$ he was sent to Nerth America; on the return of Napoleun from Elba he was recalled, but did not arrise in tine to take part at the battle of Waterloo. From 1818 to 1821 his was military commander in the South of Ireland. He caas then appointed governer of New South Wales, an offic: which he held for four years. During that time he devoted bimself most earnestly to tho colony under his charge, he introduced new plants and breeds of animals, encouraged the reclaiming of waste lands, and even rased the status of the convicts by bis wise measure of granting tackets-ot leave fer good conduct. While in Australia he occupled hamself in astronomical researches. erected a large observatorg, and catalogued 7385 stars scarcely before known The Royal Society awarded bim their Cepley medal fur this work, The Brisbane Catalogue of Stars. After his return he resided chefly at Makersteun in Roxburghshre. whers he had a large and admirably equupped observatury Three volumes of bis obscrvations were printed in the Transactions of the Royal Soitety of Edinburgh. In 183; he was mede a barenet and K.C.B.; and in 1841 bo becatue general. . He received the degree of D.C.L. from Oxford, and was elected president of the Royal Society of Ediaburgh after the dcath of Sir Walter Scott. Sir Thoma, died on the 3lst January 1860. He founded two gol. 1 medals for the encouragcmeut of scientific researcis une in the amard of the Royal Society, the ether in that of if Society of Arts.
BRISSON, Mathurin Jacqueg, a Frencia zoulogis: and natural philosophcr, was born at Fontenay-le-Conite, 3 l April 1723. He studied for the church, but did not take oricrs, as bis inclination led hum wrards the stuly of natural science. He becanse assistant to the celetratcd Reaumur, and in 1756 published the first volume of bis work on the animal kingdow, containing an account of the quadrupeds and cetacea. Of his viuer works on natural history the most mportant was the Oraithologre, 6 vols, 1760. After the death oi Ficaumur and the amalgamation of his musum with the royal cabinet, Brisson. gave up the study of natural bistory and devoted bimself to physical science. He obtained an appointraent as professor in the college of Navarre, and was mads instructor of the royal family in natural philosophy Several text-books on plysics were publisbed by ham, and sere in cossiderable repute for a time, but. hls mosi impotant piece of mort was the Tables of Specafic Gra. rities, bublistad in 1787 Eriszon died in 1806.
beissot, seas Pienon, who assumed the name De Warville, a celebrated Girondiyt, was born of humble Farents at Chartres in Jenanry 175%. Ho received a reod cduction, and entered the ofles of a laryer et Paris पisliso ñurks. Theorie des Lois criminallo (17\&1) and Bit-
liotheque philosophique du Légistateur (1782) were on the philosophy of law, and showed how thoroughly Brissut was imbucd with the ethical precepts of Rousseau. The first work was dedicated to Voltaire, and was received by the old philosophe with mueb favour. Brissot became known as a facile and able writer, 'and was engaged on the Mercure, on the Courrier de l'Europe, and on other payers, a connection with which was not creditable to him. He seems, indeed, to have sold his pen readily, and to have degraded himself by being assuciated with such nien as De Morande. Ardently devoted, however, to the service of humanity, he projected a scheme for a general concourse of all the savants in Europe, and started in London a parim, . Tournal du Lycie de Londres, which was to be the organ of their views. The plan ras unsuccessfu), and soon after Lis return to Paris Brissit was ludged in the Bastille on an uofounded charge. He oitamed his release after four months, and again devoted himself to pamphleteering, bui
had speedily to retire for a time te Loudon. On this second visit he became acquainted with some of the leading Abolitionistr, and attempted to set up in Paris a Society of the Friends of the Blacks. As an agent of thas society be paid a visit to the United States, and returned just at the outbreak of the Revolution. Into this great talvement Erissot threw lumself beart and soul: He edied the Patriote Frausais, and being a well-informed, capable uan, soon began to take a promuent part in afiairs. In the National Assembly be leagued himself with the party, well known tu history as the Girondists, but then frequently calied the Bressotins. Of this party he was in many respects the ruling spirit. Vergniand certainly was fat superior to hinu in oratory, but Brissot was quick, eager, impetnous, and a man of wide knowledge. But he was at the same time timid and vacillatiog, and not qualifed to struggle against the fieree energies roused by the events of the Ievolation. His party fell before the "Moun-

Play of Bristol.
tain," sentence of arrest was pmassed acranst the leading members of it on the 2d June 1793 Brissot, persnaded by bis friends, ettempted to escape in disguise, but was arrested at Monling. His demeanour at the trial was quiet and dignified, and on the 31 st October 1793 he died bravely with hus comrades. His works are numerons, but their interest was merely temporary
See :Tignet. Revolual Franc:; Carlyle, French Revolution; and the numerons histories of the period, partichanly Lamartine's Hitare ces Girmuiins.

BRISTOL, a seaport town in the west of Eugland, is situateo in $2^{\circ} 35^{\prime} 28^{\prime \prime} 6 \mathrm{~W}$ long., $51^{\circ} 27^{\prime} 6^{\prime \prime} 3 \mathrm{~N}$. lat., 108 miles fam London by roud. 118 hy Great Westera Railway, 12 miles N.W of Bath, end 8 males inland from Bristol Channel, with which the port comerericatus' y the Avon. That river, as woll as the Frome which unites with it at
the quay, runs through the city and forms the topographical division between Gloucestershire and Somersetshire, out of which previnees Bristol was constituted a distinet count? in itself by a ehatter of Edward III. Its geological pusi tion is on the New Red Sandstone, which rises above the alluvial deposit of the rivers, white decp beneath these layers would to found the coal measures that suceeed the millstone grit beds of the adjacent hills (250 feet in height) of Brandon and Kingsdown. The oriein of the name is doubtful. Mr Seyer, the bistorian oi Eristol, gives forty-twe variations in the spelling of the word, and after showing attempted derivations from Brennos, the legendary foundes of the town, Brictrie, its Saxon lord, \&c., fnally deciòs for Brigstow, or Bridge-place, an etymology accepted b: the author of IVords and Maces. "In fact, Bristow," sing the Rev. John Earle, "is a whlaceu sumpound for 2 'ra
gectus ad Abrman, "I the place of the bridge at which the $1 \cdots$ no was crussed. The vestiges of Roman occupation, L. wwever. on the site of the ancient-city are acanty, and consist almost solely in the discovery at different spots of some coins of Severus and other emperars. Caer Brito, one of the thirty three early cities of Britain mentioned by Nennius, is interpreted by Henry of Huntingdon (1154 A.D.) to mean Bristol. If (as now municipally) the name include the outlying heights of Clifton this interpretation may be adopted with less hesitation. 300 feet above the surface of the Avon, on both sides of the river, are Belgic British camps, with traces of superadded Roman work, one of which is comparatively perfect, a second of well-marked outline, while a third has been wantonly destroyed within the last two or three years. The existence of coins of Canute, of Harold I., of Hardicanute, of Edward the Confessor and of Harold II., of Bristol mintage, shows that the place was a centre of population under the Danes and Anglo-Saxons, but there is no positive mention of a Danish invasion except by Polydore Vergil, a 16 tb century bistorian.

The history of the town bardly begias till the subjugation of Gloucestershire by the Conqueror, in 1068. Bristol is not specially named, but there is no reason to bolieve that it offered any futile resistance to the sweeping tide of conquest. Early in the following year, three sons of Harold, -Godwin, Edmond, and Magnus,--resolving to reconquer the kingdom their sire had lost with his life, came at the head of fifty-two ships from Ireland up the Bristol Channel, and laying waste the coast on their way, sailed up the Avon to Bnstol. Here they were sharply repulsed by the townsmen, and afterwards more thoroughly routed by Geoffry Mowbray, bishop of Contance, nephew to the famous Tancred the crusader (Biog. Univers.) Though Bristol is mentioned in Domesday, Bristol Castle is not,

obverse.

Reverse

Corforation Seal (Notto: Virtute el Industria).
but appears first in history in connection with the constableship of the martial prelate just named, who beld the fortresa for Robert duke of Normandy against William Rufus. When the king bad crushed the insurrection and driven the rebel churchman oot of the realm, he granted the royalty, or Honour of Gluucester, which included Bristol, to his kinsman Robert Fitzhamon, who thus became feudal chicf of the territory Fitzhamon's daughter, Mabel, marrying Robert earl of Gloucester, natural son of Henry I., that noble, upon the death of his father-in-law, became lord of the tower and town of Bristol. He rebuilt the castle, which soon received as captive within its walls liobert duke of Normandy, who was afterwards removed to Gloucester's stronghold at Cardiff. The red earl of Gloucester, as he was called, was the most powerful baron of his age; and aniong his auccesses in war, was the capture of king Stephen at the battle of Lincola, who was brought to Bristol, and, like Corthose, ithprisoned in the castle, where be remained in chains till exchanged for Gloucester himself, who in his turn was defeated and captured by Stephen'a quern at Winchester. Earl Robert died in 1147
aud was succeeded by William his sun, whose daughter. Avisa, marrying John earl of Moreton, afterwards king John, the town and castle of Bristol became an apanage to the crown, and as such it contiuned to the time of Charle I. John was as many as nineteen times at Bristol, the neighbouring forest of Kingswood, which stretched 14 miles square to the east of the city, no doubt resounding frequently to the cry of his hunt.
Henry 1II., upon the death of John, came for security to Bristol Castle, when be permitted the town to choose a mayor after the manuer of London; and in like usage that the mayor of London was sworn before the constable of the Tower, so bere be was directed to be sworn before the constable of the castle of Bristol, each fortress being distinct from its respective city. This feudal custom was continued here until Edward III. conceded, among other chartered benefits, that the new mayor should take oath of office before the retiring mayor in the Guildhall of Bristol in the presence of the commonalty. Other privileges from the same monarch were the establishment here of the woolstaple, and the empowering of the mayor and sheriff to elect from time to time forty of the "better and muore honest" men of the town, as a council to rate and lery taxes, \&c., which common council, in nearly the same form as instituted, is yet maintained.

Richard II. confirmed all the grants of his predecessors, and directed that the steward and marshal and clerk of the royal household should not sit in the iown of Bristol, as before had been granted to the city of Londoo. In 1387 the king was at Bristol castle " with," ssys Froissart, "the queen and all the ladies and damsels of her court," having accompanied thus far bis favourite, De Vere, towards Ireland. T'wo years later Henry Bolingbroke, with his vast northern army, surrounded the walls of this iuportant western city which immediately surrendered. After four days' siege the castle also capitulated, one of the terms of the treaty with the duke of York, agreed to by its governor, Sir William Courtuay, being that Lord Scrope, earl of Wilts, Sir Henry Green, and Sir John Busbie, who were within its walls, should be delivered into the hands of the duke of Lancaster. In Shakespeare's Richard II. is a scene wherein Bolingbroke denounces these minions of the falling canse, and orders Lord Northumberland to see them despatched. They were beheaded in the centre of the town, where then stood the high cross. Only a few yeara ance an unsuccessful attempt was made in the IIouse of Lords to revive the peerage of Wilts, which included the right to wear a kingly crown in the Isle of Man, that pecerage having been dormant from the time Sir William Scrope here lost his head. In 1408 Lord Spencer, another adherent of the ruined dynasty, was also csecuted at the same spot.

By a charter of Henry Vl. the town of Bristol, with its gates, ditches, walls, and markets, was farmed to the mayor and burgesses for sixty years at the annual rent of $£ 102$, 15 s . 6 d . to the king's houschold, and $£ 57$, 4s. 6d. to the abbot of Tewkesbury and to the castlo. This yearly fine of $£ 160$ was granted by Edward IV. to Elizabeth his queen cunsort Richard III. released $£ 60$ of this rent, and the remainder was redeemed in the reign of Charles L

The doctrines of the Reformation were preached bere by Tyndale, Cranmer, and Latimer. The issue of the dissolution of religious houses, of which thirtcen encircled the outer walls of the city, was the erection here of a bishopric (1542) by the conversion of the abbey church of Auatin canons into a cathedral. It has singularly escaped the notice of every writer that the episcopate was refounded in 1551, by power of letters apostolic directed by Pope Paul IV. to Cardinal Pole ; a MS. copy of the original Bull is in the Bristol Museum. The transitional epoch from The Papal to the Protestant faith was atained here by the
blood of five martyrs; to which number we may add a sixth, James Duke, who belonged to Bristol, but suffered in Kent. About the beginning of antumn 1559 "the charch wardens of all the churches of Bristow," says an unpubushed chronicle noticed below, " and some of the ministers, brought forth their roods and other images, which were in their churches, to the High Cross where they were burnt."

Tho detachment of the castle from the county of Gloucester, and its grant to and incorporation with the town of Bristol by Charles I. (1629) at the request of Hennetta Maria, was another important surrender from the Crown, but the charter cost the city $£ 949$, and the castle was to be holden at a fine of $\mathfrak{£ 4 0}$ yearly. As Lundon was called the King's Royal Chamber, so Bristol was called the Queen's Royal Chamber; but courtly favours were all practically cancelled by the inflaction of the stu-money tax. By the King's writ (of October 20, 1631), £6500 was charged an Bristol for this impost, and there were further taxations in successive years. The payment of these assessments became at length so dilatory as to draw down (1638) a sharp reprimand from Government upon the mayor, with the threat, -" if you give not his majesty better satisfaction we shall take a ceurse to make you sensible of your duty" (Cal. State Papers).

The hurtful interference with the tade of the place (such as the limitation in the manuffecture of soap to 600 tons yeariy, which article bad been from the 12 ti century, and ts even now, one of the chief of Bristol productions) prepared the way for the easy adwission of Col. Essex and his troops, when in 1643 he presented himself before the gates of the city: The Parliament held the place from 5th December 1642 to 26 th July in the following year, when Prince Rupert, with his cavaliers, surrounded the watls, and stormaug at all points frightened the guvernor, Col. Fiennes, who had succeeded Lissex, into capitulation. In August 1645 the city was assaulted by Fairiax and Cromwell, and on the 20th day of the siege, it having been beard that tho king was in full march upon the west, a storm was decided upon, and after a sharp assault on the 1lth of September, Rupert surrendered. "We had not killed of curs in the storm," says Cromwell, "nor in all thes siege, two hundred men. He who runs may read that sill this is node other than the work of God. He must be a very atheist that doth not acknowledge it." Ten years later the castle was demolished by order of the Protector. The history doring the next century and a half is unmarked by any very striking events. The rise of Nonconformaty ; the persecution of the Quakers, of whom 103 were in Bristol prisons at the accession of Charles II.; the vant of the sangunary Jefferies on his famons western assizes, when six persons were condemned and executed on Realchff hill, are some of the chicf phases and incidents during this period. In 1681 was given the charter granting that "the citizens and inbabitants of Bristol and their successors hereafter for ever may and shall be a body corporate in deed, fact, and mame, by the name of the Mayor, Burgesses, and Commonalty of the Cuty of Bristol, with a common seal." In 1685 James II. stopped here on has way to Sedgemoor; aud he again visited Bristol in the followng yenr, and was handsomely entertaned. The bishop of Pristol at the time was Lake, one of the historical seven, who was succeded by Trelamy, another of the seven. The greatest merchant in Pristol at this period was Edward Colston, whose profuse benevolence has marle bis name splendid among the citizens In the foumbation of schools and almehonses. rejars of churches, de., he gave 270,695 , t vat sum io these days. He ded an 1-al. Three inthencuat soneties instituted to his nomory yearly assemble at puble danoers, where they collect almu for lsineso women, for apprenticing boys.d.c. Up to the chal if isit the amombte
collected from their commencemeat by these-the Dolphin, Anchor, and Grateful soceeties-bave attained an aggrestes of $£ 118,013$. At the election of 1774 Bristol was represented in the person of the famous Edmund Burkc, but hl. policy did not please all his constatuents, and he consequently lost his seat here for the next Parliament His defensive speech on the hastings of Brstol " is one of the most conmincing pieces of popular oratory on record." The Bridge Riots of 1793 and the Reform Riots of 1831 are dark spots on the history of Bright-stow, or Bright-place, as old Fuller interpreted the name. The former were the result of opposition to the prolonged impost of toll which it was prevalently understoed was to cease by a certain day. About forty persons lost their hwes by a charge of the military on this occasion. The Reform Riots have been called "The Bristol Revolution," bat were simply a revolt of the lowest stratom of society, in whom mania for pluoder superseded all political pronerple. Forty-five houses, the bishop's palace, and the prisons were burnt to the ground ; twelve of the rioters were killed by the soldiers, several perished in their own fires, four were hanged, thery were imprisoned; the colonel of the troops commithed sucide, and the city was mulcted in $£ 68,20 \pm$ damages. The next year the cholera rasited the people, when 626 died of the malady.

The nautical enterprise of Bristol has been wortisy of a place that "seems to swm on the waters" and struck the eye of Pope the poct as having its strects full of ships Some remarkable voyages from the port are recorded, bu: perhaps none more memorable than that of Sebastan Cabor in J497, who was the first Lenglishman (for he was born ir Eristol) who landed in Amersca, and the earliest to discoves that portion of the continent now called the United States, and thereby to secure its English culonization. The notice in a hitherto unuublished lucal chronicte is as follows:"This year (1497), on St Jobn the Baptist's day, the land of America was fonnd by the merchants of Bristowe ma ship of Bristol called the 'Matthew;' the which said ship departed from the port of Bristowe the 2d of May, and cane bome agam 6th August following." A Bristol privateer brought home from Juan Fernandez the real Robinson Crusoe. The saucy"Arethnsa" frigate, celebrated for naval daring by Dibdin in song and by Capt. Chamica in romance, was built at and belonged to Bristol. The first steamboat built and fitted at the same port was the "Wye," in 1827. Brastol was the first city in the kingdom that estabhshed regular steam communcation mith the United States, the first voyage having been made by the "Great Western" in 1838. Thus vesse! was built at Bristol at a cost of $£ 60,000$. The "Great Britan" and the illfated "Demerara" were also built here, the former costing £1:0,000.

The creation of Bristol a free port in 1545 has resulted in great increase of trade. The tonnage of foreign vessels (exclusive of Jreland) with cargees entenng the town, was in $1846,100.722$; in 3 $573.411,014 ;$ in 1874, 432.940 . The quantity of gran of all kinds imported betreen April 1874 and April $187^{\circ} 5$ was $1,062,007$ quarters; of sine, 759 prpes; of thmber, 34,740 tons; of sugat, 83,558 tons. With respeet to the shoe manufacture, in January 1657 , leave was giveu by Govemment to Mr Ellas of Bristol, to send 1000 dozen of shoes to Barhadoes, and another 1000 dozen in Deeember. The combined shoe trale now employs 5000 bands, one firm, Derham's, alone payne in waces ${ }^{2} 50,000$ per annum. Fryos chacolate and cocoa trorks occupy betwee 500 and 600 hands. The soap trade enatages about to0 hands. In the Great Western Cotton Wo ks atout 1500 are employed : in the stay trade 2000 people.

Bristol stands fourth of ail the seaport Eughish towns in the amount of customs revente received. The gross amonnt in 186:

[^16]wat al, IUS, Ocu; then naa rucreased in 1866 to $£ 1,174,181$, anu decreased in 187$\}$ so $£ 941,679$. The inland revenne received in the year 1874-5 was £467,091.

The boundaries of the city within its ancient limits comprised 755 acres, and the districts added by the Municipal Act (5 and 6 Wm. IV.) contsined 4124 acres, making i total of 4878 acres. The population of the ancient city and of these districts according to the cansns returns of the present century has been as follows :-

Year.	Adclent City.	Added Distrets.	Total.
1801	40,814	20,339	61,153
1811	46,592	24,891	71,483
1821	52,889	32,219	85,108
1831	59,074	55,334	104,408
1841	64,266	60,880	125,146
1851	65,716	71,612	137,328
1861	66,027	88,066	154,093
1871	62,662	119,890	182,552

Tha entire ratcabla value in 1861 was $£ 508,988$; 10 1871, 2719,983 . The culcut of the municipal boundaries is 15 miles. The town is divided in'o 10 pards, returning 48 members to the tom council, selected by the burgessea, with 16 aldermen, cbosen by the council, -64 members in all. There are 30 acting justices of tha peace, sppointed by whe lord chancellor, the mayor being chief ungzistrate. Bristol retarns two members to Parliament.

The amount of the poor-rate levied from nouse to house by the chrehwardens in 1696 (the year before the Incorporation- Act) was £2145. At the present tirne it is $£ 36,000$, in addition to the other rates. The rateable value for poor-rate in 1874 was $£ 759,441$. at abcut 1s. 9d. in the pound, or $£ 66,451,1 \mathrm{~s}$. 9 d The local taxation in 1874 was an average total of $5 s .44 \mathrm{~d}$. in the pound. The amount pard in 1874, not including shipping dues, was 187,573 .

Architecture and Public Buildings.-T'o \& few great baronial families-the earls of Gloucester, the Berkeleya, a d the Gaunts-in its early history, and to a few great merchants-the Canyogs, tho Shipwards, and Framptons -nn its later career, the architecture, principally ecclesiastisal, fur which Bristol is famous, has been due. Though m ich of this has been destroyed, much remains. Robert F tabamon's Norman tower of St Peter, the oldest charch tower in Bristol, still presents ats massive aquare to the eye. Uf the castle of Robert carl of Gloucester, the walls of w lich were 25 feet thick at the base, nothing remans, but there etill exist some walls and vaults of the later strong. bo!d, including a fine Early English cell. The grand nave of St James's church, which the same noble also erected, and wherein he was buried, yet stands. Of Fitz Harding's abbey of Austin canons, founded in 1142, the stately entrance gateway, with its sculptured mouldings, has hardly been injured by seven centuries' exposure to rudeness of weather and greater rudeness of men. The abbot's gateway, the vestibule to the chapter room, and the chapter-room itself, which is carved with Byzantine exubersace of decoration, and acknowledged to be one of the grandest Norman rooms in Europe, are also perfect. The Early English lady chapel, the geometrical east window, and the side aisles in their singular design and benuty are other apecific featra es of the abbey church, now the cathedral. The nave justadded to the 14 th century structure has cost to the preszat time $£ 40,000$. Besides the canopied tombs of the Berk lleys with their effigies in chain mail, and similarly uniqus tounbs of the crosiered abbots, there are memorials to Bishop Butler, to Sterne's Eliza, and to Lady Hesketh the friend of Conper, who are all here interted. Also there is here Mason's touching epitaph: "Take holy earth, \&c.," and monuments by Baily and Cbantrey. All Hallow's church has a modern Italian cempanile, but is in the main 15th centory, with the retection of four Norman piers in the nave; and is interesting from its connection with the ancient guild of calendara, whose office it was "to convert Jewe, instiuct yonths," and keep the archives of the town. Theirs was the first free library in the city, possibly in England. The
records of the charch coutain a singularty picturesque representation of the ancient customs of the fraternity The chapel of the Gaunts is 13 th and 14 th century, and presents with its rich panelled root, pictured windows, carved tabernacles and tombs, a concentration of mediaval Gothic art. Of St Michael's, St Thomas's, and Werburgh's. only the towers (15th century) ara preserved of the old structures. St Nicholas church is modera, on a crypu of the date 1503 and earlier Temple ch arch, with its leanng tower, 5 feet off the perpeadicular reteins nothing of the Templars' period, but is a the building of the Decorated and following style. The tower and spire of St John's (15th century) stand on one of the gareways (same date) of the city. This church as a parallelo rram, withuut east or west wiadows q a asles, but 19 buit upon a gromed crypt. St Mary le Port ind St Augustine the Less are churches of the Perpendicular era, and not the nchest specimens of their kund. St Philip's ha, an Early English tower, but its external walls and windows are tor the nost part debased Perpendicular. St Stephens church bails between 1450 and 1490 , is a digabijed structure, bul to chiefly interesting for it fan-tracened purch und stately tower, the latter being hardly surpassed by any parish tuwer in England it was built entrely by the muaticence of John Sbipward, a wealthy merchant. The crown of Bristol architecture is, however, the church of St Mlary Redeluf, which for grandeur of proportion, and elaburation of design and finish, 18 entutled to stand so the selectest rank of English parish churctiey, and might be compared with a lasser cathedral. It was built for the must part in the latter part of the 14 th century by William Canyng. but the scalptured north porch, which has cost ± 2535 to restore, is externally Decorated, and anternally Early English. The fine tower 19 also Decorated. The spure just ndded bas cost $£ 5500$. The restoration of the church has extended over thirty years, at an expense of $£ 40,000$

Among conventual remanos, of the Dominican priory there exst the Early Englash refectory and dormitory, the latter comurising a row of fifteen ongiasl aindows and an oak roof of the came date, and of St Bartholomew's hospital there is a double arch, with intervening arcades, alsn Fiarly English. The small chapel of the Three Kıngs of Cologne, and Holy Trinity Hospital, both Perpendicular, comprise, with the remains of the Austin canonry attached to the cathedral, nearly the whole of the monastic relics.

There are many good specimeds of ancient domestic architecture,-notably some arches of a grand Norman hall and some Tudor mindows of Colston'e house Small Street, Canyng's house, with good Perpendicular ouk roof, and is Pater's Hospital, Jacobean and earlier.

In all there are 42 Eplscopal churches, and 81 dissenters ${ }^{*}$ chepels,-the latter comprising 10 Bapust, 19 Congregationalust, 11 Wesleyan, and 5 Roman Catbolic (besides 6 convents). The Exchange is a quadraugular colonnade, with a noble frontage by Wood of Bath. The Guildhall is modern Tudor Gothic. The Bristol Museumand Likrary is a fusion of the two leading philosoptical and Itterary societies of the district, a spacious bulding io the Venetian Gothic atyle,. having been built for their joint purposes. The geological collection is among the kest provincis: collections, the hibrary (40,000 vols.) is the largest in the west of England. There is also a free library, under the Act.
Among the endowed public achools are (1). the Cathedral achoot founded 1542, and Cathedral college (1876); (2), the Grammar achool, which has secured a high position, and has nght of presentation to two university scholarships i (3), Queet Elizabeth's Hospital for 200 boys, who are edacated and clothed free, (4). Colaton a achool ; (5), Baptist college for educating young men for the Baptist ministry ; (6), Reclmaida' school for 120 girls, free. A Girls' Reformstory school, the first eatablished under the Act, owea its ongis to Miss Mary Catpenter. who is stilt lady superintendent. "p tos

BRI-BRI

the end of 1874 there have oeen 14 suls school 417 girls , of whom 66 were still there. During the last 4 years 97 have left, of whom 64 were earning a creditable living. The Royal Infirmary administered in 1874 to 2792 in and 23,163 out patients; the General Hospital to 1404 in and 13,512 out patients. Muller's Orphan House comprises five building , which have cost $£ 115,000$. The average number of inmates is 2000 children and 120 offials. The average cost of each child, exclusive of salaries, is $£ 13$ a year. Nearly $£ 600,000$ has been given for the furtherance of the work since it was begun in 1836. There is a school-board in Bristol, with 20 attached schools, and 113 achools under inspection.
See Barrett's /Istory of Bristol, 1789 ; Seyer's Memorrs of Bristol, 1821: Dallaway's Antiquities of Bristonc, 1834 ; Evans's Chronological History of Bristol, 1824 ; Bristol vol. of Brut. Arshalog. Inst.; Taylor, Book about Bristol, 1872 ; Brustol and its Envrrons, 1875.

BRISTOL, a town of the United States, the capital of a cớunty in Rhode Island, is sitnated on a peninsula between Narraganset Bay and Mouvt Hope Bay, 16 miles S.E. of Providence by rail. "Ifs trade and manufactures zre considerable, bat it is chiefly important as a summer ratering-place. There is direct steambóat communication with Providence and New York. During the War of Iodependeace the town was nearly destroyed by the Euglish. Population in $1870,5302$.

BRITANNIA. The history of Britain begios with the invasion of Julius Cæsar, 55 b.c.- Cæsar is the first Ruman writer who mentions Britana; before him we bave ooly a few short aotices in Greek writers, who appear to have known but little about the coustry. The earliest notice of Eritain is in Herodotus (450 в.c.), who meations the Tin Islands, only to confess his ignorance about them. By the Tin Islands are probably to be understood only the Scilly Lales and Cornwall, which are said to bave been known to Phœenician traders some centuries before the Cbristian era.

More important is a passage in Aristotle, who, writing a cestury later than Herodotus, is the earliest writer who mentions the British Isles by dame. The passage is in the De M/undo, c. 3.-" Beyond the pillars of Hercules (Straits of Gibraltar) the ocead flows round the earth, and in it are
 Albion and Ierne, lying beyond the Keltoi." The application of the name Britanaia, to deaote the larger island, is firet found in Cesar.

The etymology of the name Britannis is uncertain. Of the numerous derivationa which bave been proposed the most geaerally adopted is that which connects the word with a root brith (variegatus), in supposed allusion to the British practice of staining the body with woad; but this is not to be considered as perfectly satisfactory.

The earliest inhabitants of Britain conceraing whom we hava any certain knowledgo are the Celts, who formed the vanguard in the great westward migration of the IndoEuropean or Aryan natiods; but it seems certain, from the evidence of remains found in the country, that the Celts were preceded in their occupation of it by a non-Aryad race.

The Celtic family is divided into two branches-the Gaelic and the Cymric. To the former belong the Irish and the Higblanders of Scotland, to the latter the Welsh and theinhabitants of Britanny, and to these may beadded the ancient Gauls, the remains of whose language seem to prove withnut doubt that they belonged to the Cymric and oot to the Gaolic branch.

Of the Celtic inhabitants of Britain nothing is knows before the time of Cæsar, whose account of them is the earliest which we possess. Somewhat abridged it is as follows:-
"The iaterior of Britain is inhabited by a race said to bo aboriginal, the coast by invaders from Belgium, who traving come over for the sake of spoil have settled in the country. For money they use either copper or pieces of iron of a certain weight. Tin is found in the interior of the country; iron on the consta, but the quantity is small ; copper is imported. The timber is of the same kinds as
in Gaul, except the beech and tae ur. Luc climste is more temperate than in Gaul, the cold being less severe."

After a sbort geographical description of the islavd, Cæsar proceeds to speak of the inhabitants-
"By far the most civilized are the inhabitants of Cantium (Kent); they do not differ much in their cnstoms from the Gauls. The inhabitants of the interior do not for the most part fow com, bul live on milk and flesh, and clothe thernselves with skins. All the Britons stain themselves with woad, which produces a blue colour, and gives them a more formidable appearance in battle. They wear their hair long, and shave every part of the body except the head and the upper lip. Ten or twelve have aires in common. (Сæеs., B. G. v. 12-14).

Notbing is bere said as to the religion of the Britoms, and we are obliged to turn for information on this head to Casar's account of Druidism in Gaul. We are justified us so doing by Cæsar's statement that the religious system of the Gauls was devised io Britain, and that it was still the custom for those who wished to become thoroughly versed in it to go thither for the sake of instruction. Hasing said that besides the common people, who are of no account and are little better than slaves, there are in Gaul two orders, the Druids and the Kaights,-Cæsar goes on to give an account of the former-
"The Draids are engaged in matters of religion, and have the cara of public and private sacrifices. They are the arbiters in almost all dispotes, pablic and private, and assign rewards and punishments Whoever refuses to abide by their decision is excluded from the sacrifices, and thercby put outside the pale of the law.
"The Druids are exempt from military serrice, and from the pay. ment of taxes. Their chief doctrine is that souls do not perish with their bodies, bnt are transferred after death to other bodies." (B. G., vi. 13-14.)

Thess are the leading points of Cæsar's short account of the Druids, which is the earliest we possess, and is the main foundation on which bas been raised the elaborate Druidic system of later writers.

Politically, Britain cousisted of a number of independent tribes united in a federation of the loosest kind, in which the lead was taked by the tribe which happened at any time to be the most powerful.

The Britons appear to have kept up a tolerably close intercourse with the Continent;' They are first mentioned by Casar as sending aid to the Vecetj (a Gaulish tribe whose name is preserved in tbat of the present town of Vannes), in their revolt against the Roman power. This was in 56 b.C. ; and in the following year Casar resolved on an invasion of Britain, partly infiuenced, no doubt, by the desire of taking vengeance for the help afforded by the Britons to his enemies the Veneti. C. Volusenus baviag been previously sen to examine the British coast. Casar himself set sail from Portus Itius (probably Wissant, between Boulogne and Calais) on the night of the 26 th of August 55 b.c., taking with him tro legions. The opposite coast was reached early on the morning of the following day, and after a sharptetruggle a landing was effected apparently somewhere-near Deal. Slight resistance was now offered by the Britons, to whom peace was granted on easy terms, and the Romans hastened back to Gaul.

Early is the following summer Cæsar again started from Portus Itius, this time with a force of five legions and a corresponding body of 2000 caralry, and landed on the coast of Britain at the amme place as in the previous year. Leaving a.small force to protect the ships he advanced trelve miles jeland to the River Stour before mecting with the eacmy. Cassivellaunus, chief of the country to the north of the Thames, had beed chosen by the Britons as their geacral-in-chief,- and under his commad they for a time presented a fierce resistance to the invaders, but they were anable to withstand the staady onset of the Romans, pad Cesar soon reached and took by storm Cassivellaunus's capital. The site of this city is now unbuow, but it has beea
conjectured with some probability to have been Verulamium (S Albans). Cassivellaunus now sued for peace, and after receiving hostages and fixing the amount of the tribute Cessar left the country before the end of the summer. No garrison was left behind to secure the lioman conquests, which were thus practically relinquished. For nearly a hundred ycars after this date the history of Britain is alinost a blank. The Emperor Claudius, on his accession to the empire in 41 A.D., determined to carry out Augustus's intention of exucting the British tribute; accordingly (43 a.d.) Aulus Plautius was sent to Britain with a force of four legions, and having landed without opposition, bo advanced to the northern side of the Thanes, and there awaited the emperor's arrival. l'lautius was soon juiaed by Chaudius, who at once led his army against the Britons, over whom he gained a completo victory, inmediately after which he returned to Rome, leaving Plautius to secure his conquests.

The war was now.carried on in the west between the Roman general Vespasian, who afterwards became emperor, and the Silurian chicf Caractacus (Caradoc). After a struggle of ninu years Caractacus at length, in 51 A.D., met with a decisivo defeat at the hands of P. Ostorius Scapula. Maving flad for refuge to Cartismandua, queen of the Irigantes (a tribe uccupying the district between the Tyne f.: d the Humber), de was betrayed by her to the Romans, b_{y} whom ho was taken to be led in triumple through the stiacts of Rome.

Ten years after this Boadicea, queen of the Iceni, a tribe cceupying the present counties of Norfolk and Suffolk, trok advantage of the absence in Mona (Auglesey) of the Roman prefect, Suctonius Paullinus, to excite her people to revolt. Tho Roman colony of Camulodunum (Colchester) was taken and sacked, and the rebellion soon scemed seriously to threaten the Roman power. Suctonius, however, hastened up from the west, and in a single bittle, fought near London, iaflieted a decisive defeat on the Britons, following up his victory by a massacre in which 80,000 Britons are ssid to have perished. Boadices poisoned herself to nvoid falling into the luands of the Romans. The spirit of insurrection was now cempletely erushed; a milder poliey was adopted by the successors of Suctonius, and Remar civilization began rapidly to spread over the country.

The next event of importance is the arrival of Agrienla as governor of Britain in yea: 78. Agricula's first task was to complete tho subjection of the Ordovices (North Wales), and this having been speedily aecomplished, he adopted, with great suecess, a policy of conciliation. He cacouraged eduention and building, and succeeded in intreducing loimas dress and manners among the Britons. This, asys Theitus, they in their igoorance called civilization, though it was but a part of 'their slavery. In 79 Agricola attacked the Brigantes, and reduced the country betwen the Humber and the Tyne. During five gears he centinued te sdrance further north, and in 84 he defested a Calodonian chicftain, named Galgacus, in n great battre, the site of which it is impossible to fix, but it was probably not far from the eastern coast of Scotland at some place north of the Tay. Agricola was now recalled to Rome, and no attempt was made to maintain the conquests north of the line of forts which he had built between the Forth and the Clyde.

The remainder of the period of the Roman occupation is for the most part uneventful. In 120 the Emperor Hadrian visited the country, and built n rampart between the Tyne and the Solway Frith, in order to check the inroads of the northern tribes. In 139 a wall, called the wall of Antonine, in honour of the emperor Antoninus Pius, was built by the prefect Lollius Urbicus slong the
line of Agricols's forts Eetween the Forth aud the Clyde. In 207 the Emperor Severus came to Britain in oider to lead in person an expedition against the Caledoaisn tribes. He advanced far into Caledonia, driving the enemy before him but never meeting them ia a pitched battle. No substantial advantage was gained in this desultory war, which cost the lives of 50,000 Reman soldiers. Severus built a new wall along the line ef Hadrian's rampart, and died at York in 211.

The Roman empire was now is a state of decay, and its weakness offered great temptations to distant officials te seize the supreme power for themselves. About 287 the title of emperor was assumed by a man of low birth naroed Carausius, a native of Mcnapia (the district between the Scheldt and the Mcuse), who had been appointed to the command of the fleet stationed in the English Channel for the purpose of protecting the coasts of Britain and Gaul from the Frisian pirates, and whose conduct in that position had been such as to draw from the emperor Maximiau au order for his death. After a successful reign of seven years, in the course ef which his independence was acknowledged by Maximian, Carausius was assassinsted by bis chief officer Allectus, who in his turn usurped the imperial title during three years, at the end of which Britain mas regained for Fome by Constantius Chlorus (296). Constantius afterwards led an expedition ioto Caledonia, and died at York in 306.

Soon after this date tho Piets and Seets begin to be heard of as invading the Roman province from the north. The Scols, who oecupied the western part of Caledonia, belenged to the Gaclic branch of the Celtic family, and had crossed uver from Ireland, brioging with them the name which was afterwards bestowed on their new heme. The question as to the origin and the language of ths Picts is one which has been long under discussion, and still seems far from a definitive settlemeat. The Picts are now, bowever, generally admitted to Lave been a Celtic race, and the evidence of language, as far as can be judged from the very few Pietish words, chicfly proper names, which have been preserved to us, seems to indicate the Cymric rather than the Gaelie as the branch to which they belonged. (For further information on this peiat see Garnett, I'hilological Essays, and Skenc, The Four Ancient Books of Wales. Garnett hulds the view that the Picts were a Cymric race; Skene believes them to have belonged to the Gaelic branch of the Celtic family.)

In 367 the Picts and Sents overran the whols country as far south as London. Theedosius, father of the emperor of that name, was sent agninst them, and in two eampaigns he succeeded in driving them buck beyond the wall of Antonine. The district thus regained between the walls of Hadrian and of Antonine was named Valentia, ia honour of the reigning emperer Valentinian. This, however, was only a momentary check, and the new province was soon lost,

In 383 the title of emperor was assumed by Maximus, θ native of Spain, whe had served under Theodusius in the Pictish ware. Maximus took a large army of Romans and Britons into Gaul and, was recognized by Theodosius and Valentinian as sole emperor over Britain, Gaul, and Spaia. Five years later he invaded Italy, but was taken and beheaded at Aquileia in 388 . The brmy never returned to Britain, which was thus Jeft weaker than ever. In 396 a single legion was sent by Stilicho, and the Picts were once more driven back. In 407 three snccegaive emperors-Marcus, Gratian, and Constantine-were set up in Eritain, the last of whom followed the example eet by Maximus, and carried the army into Gaul, leaving Britain again helpless against the northern invaders. In 410 the Roman occupation of Britain was formally terminated by a letter addressed by the emperor Honorius to the cities
of Britarn, in whici u told them that they must henceforth be their own defenders.

Britain first became a Poman province in the reign of the emperor Claudius, 43 A.D. It was governed by a single prefect until the reign of Severus, who divided the province into two parts, called Britannia Superior and Britamia Inferior, each governed by a prefect. In the division of the empire into four prefectures in the reign of Diocletian, Britain formed part of the prefecture of Gaul, and was governed by an officer called the vicarius, residing it York. The country was subdivided into four proviaces, sach governed by a prefect:-

1. Britannia Prima, the district south of the Thames.
2. Britanua Sccumba, the district south of the Dee and sest of whe Severn.
3. Flavera Cacuricuris, east of the Severn.
4. Aluxuma Casaricusis, the district between the Humber and the ryne.
To these was added as a fifth province the district of Valentia, conquered by Theodosius in 368, but it appears to bave remained but a short time in the possession of the Romans.

Our knowledge of the events of the two centaries succecding the close of the Roman occupation of Britain is rendered most uncertain by the absence of contemporary records. The accounts given by later writers, British and Saxon, cannot be relied upon for more than the barest ontline, which may be accepted in so $3 r$ as it is found to be consistent with the visible results of the events of this period.
The paternal character of the Roman rule had left the Britons at its withdrawal enervated and belpless, and utterly unable to cope with the Picts, who now began to press heavily on them. Having in vain appenled for help to the Romans, the Britons applied to the Teutonic rovers who had since the later years of the Romas period been in the habit of plundering the eastern coast. Accordingly, the three tribes of Angles, Jutes, and Saxore came over, and with their assistance the Picts were drives back into their own territories. The Saxons, however, s ill continued to arrive in large numbers, and soon finding the occasion of a quarrel, they combined with the Picts aganst the Britons, and proceeded to overrun the country. driving the Britons before them into the west. Tho first Teutonic kingdom in Britain was that of Kent, founded in 449 ind at the end of two centuries we find the Saxons in firm possession of the greater part of the country, and the Celtic tribes accupying only the extreme west. Of Aıthur, the bero of the Welsh account of this period, it is ir possible to speak with any certainty Although he is unknown to the Saxon chronicle, it secmas unnecessary to deny his existence, and it is certain that no part of the south-western district of England, which is genemlly supposed to have been the scene of his exploits, was conquered by the saxons unti] after the time of his alliged victories. An attempt has lately been made (see Anthur) to show that the seenc of Arthur's victories is to be laid in the south of Scotland, and not in the west of England. The question is one which bardly seems capable of a satisfoctory settlement. For the subsequent history see England.

See Menumenta Mistoriaz Riritannica, 184!; Camden's Bra. Cannin; W B. Jones, Vestiges of the Gael in Giomedd: Merivale, Ihstory of the Comnans under the Emplre; Burton, Mistory of Seotland, vol. 1 .
(A. w. k. M.)

LRITANNICUS, gon of the emperor Claudius, and of bis thurd wife Messalina, was born probably 42.A.D., though the exact dato cannot of determined. Ife was originally called Claudius Tiberius Germanicus, and received the name Britannicus on account of the couquests made in Britain about the time of his birth. Till 48 A.D., the date of bis mother's execution. he was lonked upon as the teeir
to the imperial dignity, but Agrippina, the nerp wife of Claudius, soon persuaded the feeble emperor to pass hiri over and adopt her son by a previous marriage, Luciu: Domitius, knomu later as Nero After the accession of Nero, Agrippipa, whose lover, Pallas, had been banished. threatened to stir up revolt against the new emperor, and excited his fears against Britannicus. Poison was administered to the young prince, at first without effect, but a stronger dose given at the banquet table was instantaneously fatal. The murdered boy, for he had barely cumpleted bisfourtcenth year, was buried on the evenagg of the day in which be died. The pile was erected on the Campue Martius amidst a deluge of ran, which washed the plaster and paint from the livid and distorted face of the corpse.

PliITISH COLUMBIA. See Columbia, Bfitish.
BRITTANY, or Britanny (Fredeh, Eretagn•), an ancient province and ducby of France, consisting of the north west peninsula, and nearly corresponding to the departmente of Finistère, Cötes-du-Nord, Morbihan, Ille et Vilaine, and Lower Loire. It is popnlarly divided into Upper or Western, and Lower or Eastern Brittany. While it is not a mountainous country, nane of the eleva jons much exceeding 1200 feet, it is remarkable for the extreme ruggedness of its physical features, especially along the coast and towards its seaward extremity. There are vast tracts of desolate moorland broken only by the melancholy monuments of a forgotten time, and gloomy water-courses worn deep into the stony strata. Elsewhere, bowever, beautiful valleys and romantic glens are traversed by full. flowing rivers. Agriculture is in general in a rather backward condition, though here and there there are signs of enterprise. Flax and hemp are largely grown; and in the more fertile districts excellent crops of the cereals are obtaiued. Bees are almost unversally kept, and are oiten objects of a kind of affection. Pasture is abundant throughout the country, and the dairy produce forms a very important item in the food of the people. Industrial pursuits, except in a few seaport towns, which are ratherFrench than Breton, have hitberto recelved but little atten. tion. The Bretons are by nature conservative. They cling with almost equal attachment to their local customs and their religious superstitiona It was not till the 17 th century that paganism was even nominally abolished in some parts, and there is probably no district in Europ where the popular Christianity has assimilated more fron carlier creeds. Witcheraft and the influence of faires an. gencrally believed in, and charms and antidotes are trast fully resorted to. Part of this superstitious tendenep may, no doubt, be attributed to the infuence cxerted of the minds of the people, not only by the strangeness o: their natural euvironment, but also by the frequency ot megalithic monuments, whose origin they cannot explain. for nowhere are these monuments so numerous and raried. The costume of both sexes is very peculiar both in cut and colour, but varies considerably in different districts. Bright red, violet, and blue are much used, not only by the women, but in the coats and waistcoats of the men. The reader will find full illustrations of the different styles in Bcuet: Breiz-izel ou Vie des Brctons de l'Armorique, 3 vols., 1844 The Celtic language is still generally spoken, especially in lower Brittany, and a considerable body of traditional story and song is current among the people. Four dialects are pretty clearly marked. The whole duchy was formerly divided into nine bishoprics,-Kennes, Dol, Nantes, S: Malo, and St Bricuc, in Upper Eritany; and Tréguier, Vaunes, Quimper, and St Pol de Léon in Lower; and several of the larger towns were the seats of scparate counts.

At the time of Casar's conquest of Gaul the north-resterm peninsuha was inkabited by the Celtic tribes of the Veneth, tha Curwosolitue and 山e Osisma: but mar uformation :- -agard to then

Frof the scanticst aescription. On the condition of this distinct, indead, history ie aimoat silent tiit the 5tr century, when the nvasion of Britaio by the Sa:uas was followed by the migration seross the chanuel of large ournbers of the defeated islanders. Thu isreton chronicles contain an acrount of about a score of dukes from that period to tho end of the 8th ceatury; but how far the names ond the narrative are merely mythical it would be hard to deternaine. The one great fact that is clearly evident is, that a violent coatest for independence was raaiotained against the Frankisin inrouds. Uader the earls Carloviogiana the country was ior a time in rather more than nominal subjection; but it soca reasorted its
independence. Ti.e 9th and lum centarier are wainly remarkade for the wars that wcre contioually breaking out between Brittang and the rising duchy of Normandy. Though Alan V. of Brittaoy had been intrustel with the guardianship of the youthful William of Normandy, and had fulfilled his trust to the full, yct uader his successors Conan II., Hocl Y., and Alan Fergeat, the old comity between the two countries broke out again snd again. Ou the death in 1148 of Conan III., who had beea defeated in a cootest with his rebellious nobles, the succession was disputed by hoel VI. and hu brotber-in-law, the count of Porhoet. The partizans of the former on their defeat subuntted to Heury 1I. of England, aho beatoxed the

Map of Brittany.
duchy on his brother Geoffrey. Geoffrey'g death two yazrs after left the way open to the eaterprise of Conan IV., grandson of Conan III., who had anade his step-father prisoner, and was gradually obtaining possesslon of the whole duchy. The new duke, however, was forced not only to gire his deughter Constance to Henry's son Geofrey, but also in tho long run to abdicate in his favour. On Geoffrey's death in 1186 tha duchy became an object of disputc between the English and Freach kings, the latter being supported hy the native nobility. To this rivalry the young duke Arthur fell a victim, mandered, as is usually gupposed, by his uncle John of Eagland. His ssater Alice succeeded, under the protection of Erance, and was married to Pierre de Dreux, who thus became the first of a new line of dukes which lasted till the death of Francis II. in 1439. Io 1491 the heiress Anna was forced to marry Charlcs Vilt., and thus the duchy was held by the Freach crown. In 1532 it was formally united to France, but it retained a separato parliarnent till the Hevolution.
Among the historians of Brit!any may be mentioced Dom Iobineau, Dora Taillaadier, Don Morice, Dart, and De Courson. Sea also Trollope's Summer in Britcany, 1840; Dtrs Bury Palliser, Brillany and its Byeways, 1869 ; Du Chatellier, L'Agricullure a les elasses agricoles de la Brelayne, :86?.

BRITTON, the title of the earliest summary of the law of England in the French tongue, which purports to have been written by commind of King Edward I. The origin and authorship of the work bave been much disputed. It ohas been nttributed to John le Breton, bishop of Hereford, on the authority of a passage found in some MSS. of the history of Matthew of Westminster ; there are difficultics, however, involved in this theory, imasmuch as the bishop ac Hereford died in 1275 (3 Edward I.), whereas allusions are made in Britton to several statutes passed after that time, and more particularly to the wellknown stetute "Quia emptores terrarum," which was passed in 18 Edward I. It was the opinion of Selded that tho book derived its title from Heriry de Bractou, the last of the chief justiciaries, whose name is sometimes spelled in the Fine Rolls Bratton and Bretton, and that it was a
royal abridsment of Bracton's great work on the customs and laws of England, with the addition of certain subse quent statutes. The arrangement, however, of the two works is different, nind but a small propurtion of Bracton's work is incorporated in Britton. The work is entitled in an early MS. of the lith century, whict was once in the possession of Seklen, and is now in the Cambridge University Library, "Summa de legibus Anglie que vocatur Bretone;" and it is described as "a book callod Erctoun" in the will of Andrew Horn, the lcarned chambalain of the city of London, who bequeathed it to the clamber of the Guildhall in 3 Edward II., together with another book called the Mirroir des Juslices. Britton was first printed in London by Robert Redman, without a date, probably about the year 1530. Another edition of it was printed in 1640, corrected by Edround Wingate A third edition of it, with an English translation, has been lately published at the University Press, Oxford, 1865, by F. M. Nicholls, M.A. An English translation of the work without the Latin text bad been previously published by R. Kelham in 1762.

BRITCON, John, a topographical and antiquarian writer, was born at Kingston-St-Michael, near Chipponham, Jul? 7, 1771. His birthplace, an old-world village of the dullest and sleepiest kind, had also the distinction of being the home of the antiq̧uary John Aubrey. His parents were in humble circumstances, and be was left an orphan at an early age. He grew up with oo better education than was to be had in the poor schools of his vative Wiltshine village and neigabouring phaces, the last to which he was sent being at Chippenharm. At the age of fourteen he became possessed of a small lot of books, and anong them were Rodinsan Crusoe, the Pilgrim's Progress, and The Iife of Peter, Caar of Muscovy. At sixteen Le weut to Londoz.
and through the Influence of a relature $\sqrt{-1}$ apprentied to a wine merchant. Preveated by failing health from serving his full siz years, be found himself adrift in the wrorld, without money, without frieads, and without education. In his hand-to-band fight with poverty he was put to atrange shifts, becoming cellarman at a tarern and clerk to a lawyer, reciting arid singing at a small theatre, and compiling a collection of common songs. During his apprenticeship be had read much in a loose, amless manner; and gradually by successive small ventures be found his way into the broad paths of literature. A Salisbury publisher laving projected a work on Wiltshare, iovited Britton to undertake its preparation. The proposal was accepted; and in conjuuction wath his friead Edarard Wedlake Brayley, Britton set himself to the task. Such was the small leginaing of the voluminous work entitled The Beauties of England and Hales. The Beauties of Wiltshare appeared in two volumes in 1801, a third volume being added in 1325. The authors proceeded with other countles, and nine volumes of the entire series were their work. In the course of these early labours Brition's attention was especially drawn to antiquarian subjects, and thenceforts his proper feld was before him, and in it he worked bunourably. Io 1805 appeared the first portion of bis Archatectural Antiquities of Great Britain, which extended to five volumes quarto, and was nine years in publication. On its completion Britton commenced bis great wark on the Cathedral Antiquities of England, the section on Saliabury Cathedral being the first published. It was rompleted in 1835, having beea more than twenty years in progress, and forming altogether fourteen folio volumes. It is profusely illustrated by copperplate engravings."

As aole or joint anthor or editor Britton's name is attached to a targe number of wotks of a like character. Among these may be mentioned the Histomcal.Account of Rediliffe Church, Bristol (1sil3): Illustrations of Fonthill Abbey (1823) ; Architectural Antrquaties of Normandy, with illustrations by Pugin, published in 1825-1827; Picturesque Antiquities of English Cilies (1830); and the splendid History of the Palace and Houses of Parliamentat "15 cetminster, the joint work of Britton and Brayley, published in 1834-36. Mr Brit. inn was a frequent cootributor to the Gentleman's Magnzine and oiher periodicals; he wrote the article "Shakespeare" for Rees's Cyclo. padia, and the articles "Stonehenge." "Arfbury," and "Tumu. lus" for the Penny Cuclopodia. la his later years he began to write his Autobiograpby, but did not carry the personal narrative far. The portion pullisbed is rich io literary anecdote of the tuases. Brittondied in London, January 1,1857, and his remainewere interred iu Norwood Cemetery. A Deseriptive Account of hws Literary Works wis published by his assiatant T. E. Jonea. Pritton was the originator of a new class of literary works. "Before his time," says Mr Tighy Wyatt, "popalar tojography was unknown." He first conoivned antiquarian with topastaphisal descrption. He effected a great improvernent in the style and character of the illustrations of ancient monuments; and the geneml admiration excited by the engravings in hiq workg gave rise to a novel interest in hia subyect, and recame one of the incitements to deeper studies and investigations.

BRIVES-LA-GAIJLARDE, a town of France, capital of an arrondissement in the department of Corrize, situated in a beautiful and fertile plain twenty miles from Tulle. It is surrounded with elm-planted boulerards, and possesses a number of well-preserved houses of on carly date. None of its public buildings (which comprise several churches, a theolagical seminary, and a college) are of much impartance, except the church of St Martin, dating from the 13 th century. The towa carries on an active trade in cattle, wool, wine, onl, and grain, manufactures wax candles, copperwares, and cutton thread, end has millstone and slate quarries. Brives is of ancient origin, and for a long time disputed the title of capital of the Lawer Limousin with the city of Tulle. It was the birthplace of the Cardinal Dubois. Population in 1872, 8417.

BliLXEN, a town of Austria in Tyrol, situnted in the Pusterthal at the confluence of the Eisack and Rientz, in $40^{\circ} 40^{\prime} \mathrm{N}$. lat. and $11^{\circ} 37^{\prime} \mathrm{E}$. long., 104 miles from

Vienna by rail. It is the seat of a bishop, and has a calt. dral built in the 18 th century, a theological semnary. a gymnesium, and several monasteries. There are urod and steel factories in the neighbourhood, and the taths of Maria-Lovisa are supplied with water from a chalybeate spring. About nine wiles from the town is the grtat fort of Franzensfeste, built in 1838, at the juaction of the roads from Botzen, Inasbruck, and Pusterthal. Brixen (in Italian Bressanome) is mentioned at least bs early as 901 In 1025 it became the seat of a bishcp, and in 1038 was surrounded with walls. In 1174, 1234, and 1445 it was destroyed by fire; in 1519 it was stomed by the French uuder Gaston de Foix, and in 1525 it suffered from th rehellion of the peasants. Population in 1869, 4349.

ERIXHAM, a seaport tuwn of England, in the count; of Devon, about : C 0 miles from London, with a station about two miles distant on the South Devon Railway The town is aregularly built on the cliffs to the south at Torbay, and its barlour is defended by a modern breakwater. It carmes on a very extensive fishing and corasting trade, and is a place of resort for sea-lathing. In the early part of the present century it was the seat o^{\prime} a considerable military cstablishment, with fortified barracks at Bury Head, and it is celebrated in bistory as the spot where Kiog William landed in 1688 . Population of the parish in 1871,6542

BROACH, or Bharuch, a district of British Iudia uader the jurisdiction of the governor of Bumbay, extending fion: $21^{\circ} 22^{\prime}$ to $22^{\circ} 11^{\prime} \mathrm{N}$. lat. and from $72^{\circ} 30^{\prime}$ to $73^{\circ} 10^{\prime} \mathrm{E}$ loag. It is bouoded on the N. by tire River Mahi, on the E . and S. by the territory of the Gaikwar, and on the W. Ly the Gulf of Cambay. Consisting chiefly of the alluvial plain at the mouth of the River Neibudda, the land is rich and bigbly cultivated, and though it is without forests it is not wanting in trecs. The district is mell supplied with rivers, baviug in addition to the Nerbudda, the Mahi ia the north and the Klai in the south. The area is 1320 square miles; the population 350,322 , of whom 248,343 are Hindus, 69,023 Nahcmetans, 3986 Buddhista, 3116 5arsis, and 24,703 belong to the aboriginal tribes The population comprises several distiact races or castes, aho, while speaking a common dialect, Gujarath, iababit scparate villages. Thus there are Koli Émbi or Voro (Borah) villages, and others whose laads are almost entirely held and cultivated by bigh castea, such as Rajputa, Brah. mans, or Parsis.

Except in the city of Broach, \mathbf{n} bich bas two steam gianir. factoriea and a considerable general trade, agriculture is almost the sole induatry of the district. The ezport of cotton, the principal agr? cultural product, amounted in 1872 to 88,471 bales. The most important cereal and finlse cong are-for the rajas, jawdri (Holcu Soryhum) rice, bágri (Pencillara spicala), túr (Cojaņs indicus), anc múg (Phaseolus Afungr) ; sad for the cold weather, wheat, tii, (Scsamum indicum), pea, gram (Cicer arictinum), wal (Lablab vulgaris), castor oil, and tobacco. The total revenue of the distric. amounted in 1872 to $£ 318,972$, of which $£ 266,936 \mathrm{was}$ imperial lana revenue; $£ 20,568$ on account of the local land cess; stamps yiclded £22.714; excise, $£ 6523$; and assessed taxcs, 5193 . The imperiad expeoditure in the distict amounted during the sfme tine to £ 72.025 . Of the n liole aria of the district, viz., 1320 square miles, 72 jer cent. are returned as cultivated, 3 per cent. cultivable but not actually under tillage, and 25 per cent., inciudiag the sites of villages, river-beds, sc., as uncultivable. There are five towns with a population of over 6000 inhabitanta, - Broach, 36,982 ; Jambusar, 14,924; Ankleswar, 9414 ; Amod, 6125 ; and Gajera, 6239 . In the first twe of these touns municipalities hare been established. The district contains 191 schools, with an attendance of 6525 scholars. The total number of persona receiviag or whe bave rcceived some education amounts to $9 \cdot 5$ per cent. of the cnitre population. The atrength of the district police force is 415, giving to each man tba charge of three square miles and 844 inhabitants. The principal criminal class is the Dhils, munbering olsout 24,000 . The difficulty of arrestang offenders of thas race is increased by the fuct that they aru in league with members of their tribe in the native states of Barod. and Rajpipla, and can therefore rith ease cacape into foreign territory.

Licusc:a, me principal place of the district of the same nima, situated on an elevated mound, supposed to be artificial, on the northern bank of the Nerbudda, about 30 nules ahove its mouth, in $21^{\circ} 42^{\prime} \mathrm{N}$. lat. and $73^{\circ} 2^{\prime} \mathrm{E}$. long. The river is bere a noble sheet of water, two miles wide at ebb tide, but shallow for the most part even at flond tide, though there is then a deep but intricate chaunel admitting vessels of considerable burdea. In 1872 the population of the town and municipality was returned at 30,932 . As in the generality of eastern towns, the streets are narrow aod the houses lofty. It has a considerable trade, and annuaily exports largc quantities of ruw cutton to Bombay. Broach is thought with some appearance of probability to have been the Barygaza of litolemy and Arimin. Upon the conquest of Gizerat by tho Mahometans, aod the formation of the state of that nams, Broch formed part of the new kingdom. On its overthror by Akbar in 1572, it was amiexed to the Mughul empire and governed by a Nawib. The Marhattís became its masters in 1685, fronn which period it was held in suburdination to the Peshwo until 1752, when it was eaptured by a force under General Wedderburn (bruther 80 Lord Loughboroagh), who was killed in the assault. In 1783 it was ceded by the British to Sindhis in acknowkedgment of certain servicesy It was stormed in 1803 by a detachment commanded by Colovel Woudington, and was finally ceded to the East India Company by Sindhii ander the treaty of Serji Anjangion. Distance nurth from Bombay 190 miles.

BROADSTAIRS, a town of England, in the cuancy of Kent, about a mile and a half to the south of the North Foreland, and three miles from Margate, on the London, Chatham, and Dover Railway. It has a small pier fur fishing-boats - built in the reign of Henry VItI., a modern Gothic church, hotels, lioraries, and bathingestablishments; and in the summer season it attracts a considerable number of risitors. Thete is an archsay leading dow: to the shore. which bears that it was erectel by George Culmer in 1540, and not far off is the site of a chapel of the Virgin, to which ships were accustomed to veil their tnp-siils as they pascel. Population in 1871, 19:6.

BROCCHI, Giovasmi Bitrista, a celcbrated Italian mincralogist and geologist, was born at Kasano, in Febramy 1732. He studied at the univeriity of Pisa, where his attention was especially turned to mineralogy and botany. In 1802 he was appointed professor of botany in the now Lyceum of Drescia; but ho mare particularly devoted himself to geological researches in the numerous ercursiuns he made into tho adjacent districts. The fruits of these labours appeared in difereat publications, particularly in his Trcatise on the Iron Mines in the deparemnnt of Mella; and lis Essay on the Physical Constitution of the Metalliferous Mountains of the Falley of Trompia, which appeared in 1807. His, valuable ressarches procured him, in the following year, the office of inspector of miacs in the recently established kingdom cf Italy, which enabled him to extend his investigations over a great part of Central and Southern Italy, as well ns ts northern districts. In 1811 ho produced a valuable memoir On the Mineralogy of the Valley of Fassa and the Tyrol, but bis most important work is the great Geologie Fossile Subapennina con Osservazioni Gcologiche sulle Apennini, e sul Suolo Adjacente, 2 vols. 4to, Milan, 1814, containing most accurate details of the structure of the Apennine range, and an account of the fossils of their strata. These subjects were further illustrated by his valuable geognostic map and his Catalogo ragionato di uka Raccolt ,di Rocche, disposto con ordine Geagrafico, per servire d'lllustra-ione della Carta Geognos:ica aell' Italia, Nilaa, 1817. Hise tork, Dello Stato Fisico del Suilo di

Roma. with its accompanying map, is admirable for accuracy and judyment. In it he has corrected the erroueons views of Breislak, who concelved that the Eternal City occupies the site of a voleano, to which be ascribed the tufa and other volcanic materials that cover the seven hills. Brucchi, on the other hand, has satisfactorily shown that they are derived either from Mont Albano, an extinct volcano, 12 niles from Rome, or from Munt Cimini, stiil further to the north of the city. Indeed be las shown that the streans or beds of tuta may be traced almost uninterruptedly from that mountain to Rome Several minor papers by bim, on other mineralogical subjects, appeared in the Bibioteca Italiana from is16 to 1823. In the latter year Brocchi sailai for Esypt, and engaged with his usual ardour n exploring the geology of that country and its mineral resources, every facility being granted by Mebemet Ali, who in 1825 a!pointed Broccli oue of is commission to esaraine and organize bis conquest of Sennazr, but the matural:st, unfortuaztely fo* science, fell a victim to the climate, at Khartum, in September 1820.
BrockhdUS, Frifduch Arvold, an emivent German publisher, was born in Dormmul, oa the 4th May 1ais. He was educated at the gymiasium of his native place, and from $1: 88$ to 1793 served an apyrenticeship in a mercantile honse at Duisseldorf. He then devoted two years at Leipsic to the study of modern languses and literature, after which he set up at Dortand an emporiuan for English goods. In 1810 he transferred this busiuess to Arnheim, and in the following year to Austerdam. la 180J, having given ap bis frist lune of trade, he, in conjunction with a friend, began business as a pubisher. Two journals projected by him were not suffered by the Goverament to survive for any legeth of time, and in 1810 tho complications in the affairs of Holland indaced him to returs homewards. In 1811 be settled at Atenburg. About three years previonsly he had parchased the copyright of the C'onversations-Lexicon, which bal beea begun in 1796, and in 1810-11 ho conpleted the ferst edition of this celebrated work. A second edition under his own editorship sas begun in 1812, and was received with universal favour. His business expanded rapidly, and in 1817 ho removal to Leipsic, where he established a large priatinghouse. Among the more extensise of his many literary undertakings were the critical periodicils-Mermes, the Literarische Conversationslatt (isterwards the Blatter fuir Literarische Unterhalturg), and the Zeityenossen, and sume large historical and bibliographical works, such as Vica Rinumer's Geschichte der Hohenstaufen, and Ebert's Ally.m. Bibliographis. Lexicon. The work distinctively :associated with his name, and with the publishing house whicl: has been carricd on by his sons, is the Conversations-Lexitons in many ways the completest and best encyclopxdia of its kind, which has now reached its twelfth editiou. Brock. haus died in 1823 .
bROCKLESEY, Richard, a plysician of comiderablo reputation, was born in Somersetshire, 11 th August 1722. He was educated at Ballytore, in Ircland, studied medicino at Edinburgh, and finally graduated at Leyden in 1745. In 1751 he was admicted a licentiate of the Royal College of Physicians at London, of which he afterwards became a fellow. In 1758 he was appointed physician to the army, is which capacity he served in Germany during the greater part of the Seven Years' War, and in the conrse of it was chosen physician to the hospitals for British forces. The results of his observations during this period were published in 1764, under the title of Economical and Medical Observations from 1735 to 1763 , tending to the Impravement of Medical Hospitals. He had already given many proofs of his industry and his attainuents by papers published in the Traasuctions of the Royal Suciety. His Diwntation on the

Musc of the Anczento .rppeared in 1749, and his Orato $\|$:rvetana in 1760 Shortly after this be was appointed by the duke of Rachbond physician-general to the royal regiment of artillery and corps of engineers. 30 apporatment that gave bin constant access to the laboratory of Woolwich, and it was by has advice that a professorship of chemistry was added to the establishment of the college. In his latter years he withdrew altogether into private hif. The circle of Lis friends meluded some of the most distinguashed literary men of the age. His intimacy with Burbe had commenced at school, and soon ripened anto the warmest friendship. He ras alse warmly attached to Dr Johnson, to whom he offered art annaty of $£ 100$ during the remander of his life to enable hira to visit the Continent for the recovery of his health, and when this offer was declined, be pressed him to reside in has hoose, as more soited to bs health than that in whish he then lived. He attended the great moratist on his deathbed. The same generons disposition was manifested in his conduct to Burke, to whom he presented $£ 1000$, a sum he had intended to leave hio by will Dr Brocklesby died suddenly 11th Deceaber 1797. He left his enture fortuae, with the exception of a few legacies, to his two nephers, Dr Thomas Young and Mr Leeby

BRODERiP, William John, a distingurshed writer on natural history, was born io Bristol, probably in 1787 He was educated at the school conducted by the Rev. Samuel Seyer, and proceeded to Oriel College, Oxford, where be began the study of law. He was called tol the bar 1.1 1817, and took part for several years in editing the law reports. In 182% he nas appointed by Sir Robert Peel one of the metropolitan police magistrates, a post which be occupied for thinty-four years. All bis leisure time was devoted to the favounte study of bis earher daysnatural history. He was a member of most of the sclentific someties, contributed numerous papers to their Transactions, and did much to further the study of zoology in England He acted for many years as vicc-president of the Zoologicat Socicty. The zonlogical artucles in the Perny C'yclopadia were written by bim, and made him widely known as an original investugator and able expositor A series of articles contributed to Fraser's Magazine were repmoted in 1848 as Zoological Recreations, and were followed in 1852 by Leoves from the Note-Book of a D'aturalust. Erodenp died on the 27th February 1859

Brodie, Sir Benjamin Coltins, Bert a distinguisbed physiologist add surgeon, was born in 1783 at Wipterslors, county of Wilts, ond died at Broome Park. 21 st October 1862, in the $79 t h$ year of has age His paternal grandfather, connected with the family of Brodie of Brodie, was born in Banffshire ahout the year 1710, and came as an adventorer to London, where be acquired considerable wealth as an army clother One of bus sons, the father of the sulyect of thas notuce, was cducated at the Charter Housc, end afterwards at Worcester College, Oxford, abete be took holy orders Here he probably acqured the friend. samp of the first Lond Holland, whe whom he afterwards invet at Holland llouse. The second Lord Holland hawng purchased the estate of Winterslow, Mr Brodie rented a cottage near the same place. The aecond Lord Holland died in 1774, and directed in his will that Mr Brodie should havo offered to hom the presentation of the first of three livings which he had in bis gift when a vacancy oceurred. Thas event took place in conseguence of the death of the incambent of Winterslow, and Mr Brodie became rector of the parish. In 1775 he marned one of the daughters of M1 Collina of Milford, a badker of Salasury. They bad s1a children,-four sons and two dougiters, -and the subject of thas sketch was their fourth child.

He recused his anrly education from his father, who
appeors to have been a man of energy, ability, and method and at an early age he had acquired a considerable know. ledge of the cliassics. When the time for choosing a profersion arrived, lis father intimated to him that he was intended for that of medicine, aod accordingly, in the autumn of 1801, be began to attend the avatomical lecturea of the celebrated Abernethy in Loodon. As lus family was connected by marriage with several of the leading members of the profession, such as Dr Denman (the father of the first Lord Denman), Dr Ballhe, and Sir Rachard Croft, the young student enjoyed many advantages of distingusbed professional society, but it does not apperr that at thes period of his life be had any predilection for medical studies or any aptitude for surgical work. The great eminence as an operator to which he aiterwards attaned mas gaided, as be bunself sand, by persistent application and perseverance.

He devoted great attention to the clinical study of disease, and began to make an elaborate series of notes of cases whick cama under bis observation. This habit he continued throughout life, and thus graduslly amassed that edormous amount of practucal espenedce which afterward gave his advice as a consulting surgeon sucb weight.

Like most young adventurers in the fields of sctence of that dey, he early began to teach. He gave many courses of lectures upon antoms, not only as it bore on surgical practice, but as a scieace having important physiological and teleological relations. In 1808 be became aspistantsurgeon to St Geerge's Hospital, and be continued on the staff of that institution for over thirty gears. This gave hun the opportunity of waching choically, nod te soon aequired a reputation as an able and fioent extenporo speaker. In 1810 he was elected a fellow of the Ruyal Society, and in the following year communicated a series of papers "On the Influence of the Brain on the Action of the Heart, and on the Generation of Animal Heat." In 1812 ha also communicated a paper "On the Mode in which Death is produced by certan Poisons." These papers were founded upon a senes of careful phys:ologeal experiments, having for therr object to determane. first, the relation of the nervous system to the carcalatory and butritive systeras in higher ammals, and, second, to ascertam, if possible, how poisonsprodoco death. The most mportant fact ascertaned by the first series of experiments was that the stoppage of the beart's action at the moment of death does not depend on the remord of the infloence of the bram, but on the arrest of respítation. He also pornted out some imprortant farts which cquald only be sccounted for by supposing that the nervous system has an influence on the production and diffusion of ammal heat, an idea not then generally accepted. For these researches he recenved the Copley modal of the Royal Society is 1811. In 1813 he dehvered the Ciomian lecture, "On the Effect of the Nerses on the Heart and on the Involuntary Muscles," and in 1514 the contributed another paper "On the Influence of the Nerves of the Eighth Par on the Secrevous of the Stomach." In 1810 he performed many experments on amimals, to ascertan the iolloence of bile on the food durng its passage through the bowels. These papers compreheod what Erodio accomphished in physiology. They are all characterized by lucidity, concasedess, sound judgment, and a modest interpretation of resulta. They are valuable at the present time not so much for the facts they contam, wost of which are now meorporated in the general mass of scmeatif knowledge, bat as admirable illustratiens of the application of the expermental method of research to physiological questions.

At this penud oi has carecr Prodje rapidy geided into a large and lucrative practice, and more especiallo he quickly gave evideuce of superior powery as an oparator. haviag
koowledge, coolness, and readiness of resotirec. Frum :Ine to timg he wrote upon surgical questions, contributing umerous papers to the I'ransactions of the Royal Mredical tuel Chirurgical Saciety, and to the medical journals. Probably his most important work is that entitled-Pathological and Surgical Observations on the Diserses of the Joints, in which he attempts to trace the commencenents of disease in the different tissues which form a joint, and to give an exact valua to the symptorn of pain as evidence of organic disesse. The thoughts suggested by this volume led to the aloption by surgeons of measures of a conservative nature in the treatment of diseases of the joints, by which the nuanber of amputations has been reduced, and many limbs and lives have been saved. He also wrote on disessea of tho urinary organs, and on local nervous affections of a surgical character. Brodie was a man of restless activity; to use hasuwn words, he felt "his happiness to be in a dife of exertion." When released from professtoual cares he had recourse to literary and scientific pursuits, and especially to the study of psychulogical questions. Ile was fond of reading, colleating facts, and speculating on all matters connected with montal phenomena; and in 185 t he published anonymously a work entitled Psychologicol Iuquiries \rightarrow the First Part. A secoud edition of this wurls appeared in 1855, a third in 1856, a fourtb in 1862, aud in the same year the Seconl Part was also published. This work enjoyed well-merited popularity, as it was written in elear untechaical language, and revealed tho speculations of the writer coneerning the mind of man. When the name of the author became known, the greatest interest was excited in the work, although it contains nothing new to professed paychologists. He wroto also occasionally for the quarterly resiews.

Brodie received many honours during his career. He was tho medical adviser of three succeasive sovereigus, and in 1834 he was elevated to the rank of a barunct. It is generally believed that he might have been created a peer had be desired the honour. He became a curresponding member of the French Institute in 1844, D.C.L. of Oxlord in 1855, and president of the Royal Society in 1855 ; and he was the first president of the Medical Council under the let for the Elucation and Registration of the Nedical Profersion.

A complete edition of his wotks, with an autobinarap!yy, in three volumes, appeared in 1865 , collected and arranged by Charles Hawkins, fellow of the Koyal College of Surgeons of England : and a geneross and discriminative biographical sketch, liy Professor Henty W. Acland of Oxford, appeared in the obituary aetices in the Proccedings of the Royal Soicty for 1363.
(J.G. M.)

BRODY, a tuwn of Austria, in the eirele of Zloczow, in Galicia, near the Russian frontier. It contains three mree Aynagogıes, a Jervish hospital, and a Jewish college, and srom its prevailing Jewisn character has been ealled the Jerman Jerusalera. Thore are also one Roman Catholic sid three Greek churches and an industrial school. Its eastle is the residence of the Cuunts Potocki. It is the sest of an exteosive trado carried on with Russia and Curkez, and bas two large annual fairs, the priacipal articles of sale being wool, cottou, silt, aud peltry. Iu I869 the population, of waich about two-thirds are Jews, umounted to 18,800 . Brody was founded in 1679 under the name of Lubicz, and was raised to the rank of a freo commercial city in 1779.

Broglie, Azmille Léonce Victor Ciarles, Duc de, peer of France, was born in Paris 2Sth Novernber 1785, and died 05 th January 1s70. The family from which this eminent statesmad descended was of Pielmontese nrigin, but it won its honour in the service of France. The first Marsbal de Broglie (1639-1727) served with distiactiva uader Louis XIS.' his son, known as the

Chevalier de Broglie (1671-1745), was raised to the highest grade in the Freach peerage for his gallant militiry service at Guastalla and at Prague in 1742, but he refused the rank of amrikal of France, which was offered to him by the regent, on the groad that his father, who was still alive, deserved it more than be did. The nest in descent was tue second marshal (1718-180t), who commanded the French armies in the Seven Years' War, for which be was ereated a prince of the empire, and though subsequently disgraced and exiled by the iutrigues of the Conders, the was recalled in 1789 by Lous XVI. to the office oi com-mauler-1n-chief. To stem the tide of the Revulution was impossible. The marsbal speedily fell from puwer, emıgrated to Gerinany, refused the solicitation of Napoleon to return to France, and died at Münster in 1804.

The sou of this veteran followed all opposite course and met with a more uatimely end He adepted the liberal opinions of the titie. He followed Lafayette and Rocham beau to America. He sat in the Constituent Assembly constantly votiug on the Liberal side. He served as chiel of the staff to tho Republican army on the Rhine; but, like many other chanpions of the Revolution, be was denounced arrested, dragged to Paris, and executed on the 27 tb June 1794. The parting injunction he left to his son, Vietur de Broghe, the sulject of this notice, then a boy nide years old, was ever to reman fauthful to the canse of liberty, even though it were ungrateful and unjust. Ilts father murdered, his mother muprisoned, bis property confiscated and pluadered, the young de Eroglie first appeara in life in wooden shoes and a red cap of liberty, begging an assignat from the younger Robespucre liet be adbered to the cause for wibich his father had died, he maintained through life the principles of 1789 He seemed to have forgoten his own rank, until be was remiaded of it at the Restoration ly a writ of summonas to the Chamber of Peers, and an early lice he served, not uncillug! y, as one of the officers of the council of state if the eniperur Napolemin.

In 1815, before lie had completed his 30 th year, the Duc de Broglie was summoned by Louis XVIIII. to the Ctamber of Peers. He combued, in a manner rare in Erance, the qualities we are wont to respect in the most eminent members of the British aristocracy,-high rank, independent fortune, unblemished integrity, uoflinehing patrotism, and a sincere and consistent attacbment to liberal opmions. The tirst incident in his parliamentary life was the trial oi Jarshal Ney, and on this occasion he had the courage to speak and vote alono for the acquittal of the prisoner, on the ground that he was not guilty nf deliberate treason; no other peer of Fraace supported bis protest on that occasion. During tha Restoration he contiaued to take au active part in tho defence of liberal oprnions and measures. Ile refused to take office in the cabinet of M. de Serre. He opposed the reactionary policy of the court. Hesupnorted the short lived administration oi M. de. Martignae, and be acted with the party known as the doctrinaires, of which M. Royer Collard was the founder, and M. Guizot the ablest representative. Meanwhile, in 1816 , he Lad married the daugbter of Madame de Stael, a union of unbroken domestic bappiness; and be had pledged bimself to that sacred cause of Negro cmaocipa. tion, in which he was tho worthy rival and ally of Clark son, Buxton, Wilberforee, and Brougham. The revolution of July 1830 imposed fresh duties on the Duc de Broglie Though reluctant to take office from his cold, retiring and unambitious temperament, be consented te hold thi ministry of public worship in the first cabinet of Loun: Philippe's reign, and in 1832 , after the death of Casims Périer, he was prevailed upon to take the more impor tant department of foreign affairs. In this fuaction he
strangthened the alliance of France with Eigland; be Legotiated the Quadruple alliance; be contributed to the settlemeat of the Belgian and Greek questions; and be laboured with success to preserve the peace of Europe. He was ont of office from March 1834 to March 1835, but be returned to power at the latter date, and this time as the head of the cabinet. He was riding by the side of the king when Fieschi's "infernal machine" nas fired on the royal cortege, and a bullet passed through the collar of his coat. In 1836 the Government was beaten on the questiun of the reduction of the five per cents., and M. de Broglie retired permanently from official dife. The king, it must be said, had never found in him a congcnial minister. His manner was dry and somewhat harsh, his character unbeuding, and for the remainder of the reiga of Louis P'hilippe, M. de Broglie, thongh not in cpposition, was the censor rather than the scrvant of the crown. With M. Guizot, though not in office, he preserved through life the relations of the closest personal friendship and political union. The overthrow of the constitutional mooarchy in i848 was a heavy blow to this parhamentary vetcran, for he felt that the form and system of government to which he was most attached were at on end for ever. He consented, however, from patriotic motives to sit in the republican assemblies of 1848 , and as a member oi the section known as the "Burgraves" he laboured to counteract some of the cvils of universal suffrage, and to avert the catastrophe which he saw to be impending over lirance. He shared with his colleagnes the indignity of the coup d'etct of December 2, 1851, and remained for the remainder of his life oue of the bitterest cnemics of the imperial régime, although he has been beard to remerk with that caustie wit for which he was famous, that the empire was " the government which the poorer classes in France desired and the rich descred." The last twenty ycars of his life were deroted chicfly to philosophical and literary pursuits. Ilaviag becn brought up by his stepfather, M. d'Argenson, in the sceptical opinions of the tume, he gradually arived, by study and reflection, at a full and sincere belicf in the truth of the Christian religion. "I shall die," said he, a "penitent Cbristian and an impenitent Liberal." Ilis litcrary works, though few of them have been published, were rewarded by a seat in the French Academy, and be was also a member of onother branch of the French Institutc, the Academy of Moral and Folitical Scicnce. In the labours of those learned bodies he tuok an active and assiduous part ; and on his death, which took place at the advanced age of 85 , just beiore the lamentalle events of 1870 , he was followed to the grave by repreoentatives of all that is most illustrious in the pohtical and hterary socicty of France, revered as one of the wisest and most upright men of his age. He was succceded in the honours of his house by Albert de Broglic, his eldest son, also distinguisbed by his literary works, nnd who has sioce 1871 playcd no inconsiderable part in the political effairs of bis country as a leading member of the Notional Assembly, and for sometimo head of the cabinct of Marshal Macmabon.
(III R.)
BROKER, a word derived varionsly frora the French broier, to grind, and brocarder, to cavil or higgie and the Saxon broc, misfortune.

A broker is an agent or intermediate person appointed for transactiag epecial busiacss on account of another, but differing somewhat from nu ordinary factor in functions and responsibility. Of this class there are various descriptions, exercising cmployment without the smallest analogy, 1liough all are brought wader the general name of brokers: of theso the principal are-exchenga brokers, whose province is tu ascertain the rates and rclation ci - -ihance

tions in the public funds; insurance orokers, who effect insurances on lives or property; and pawnbrokers, who advance money on goods, on the condition of being allowed to sell the goods if the snm advanced is not repaid with interest within a limited time. See Agent and Insulance.

Separating pavinbrokers, and those dealers in old warce who are called brokers, as both distinct from the class to whom the term in its broader acceptation applies, the broker is an agent for both partics, the buyer and the seller; and for the general prociples of jurisprudence applicable to bis position, refercuce may be mado to the article Agent. It is a marked peculiarity, however, of the broker as an agent, that his quality of agency-is not only y^{n} ipable in the face of the transactions, but bo is agent for both partics. The function of the broker ia indeed a very simple one, and casily separates itsclf from the usual jotricacies of the law of sale and of agency. It is his proper fuaction to fod buyers and sellers, and to bring them together that they may transact with each other. Heace the rise of such a class in any dejartment of business is an indication of its great increase. In small towns, and in narrow and feculiar departments of business, the buyers and the scllers know cacin other, and need not be at the expense of cmploying in thisd party. But where both bodics are numerons, and the individual mombers of each find enough to occupy their attertion in the production of their commodity, or its purcbase and distribution, there is economy in the establishment of a distinct class who bring the buycr and the scller together. The bioker usually gives what are called bought and sold notes to his clicuts, and some nice questions bare ariecn as to the cffect of these when they do not correspond with each other or with the entry it the bruker's hooks. The anount of braker's commission is in some fow cases fixed by statute, e.g., under 10 Anne c. $19, \$ 120$, a fine of $£ .0$ is impescd oa brokers charging more than 2s. 9d. per ecnt. for buying or selling tallies, exchequer tichets, bank bills, \& \& Geucrally it is sctted by agrecnent with the principals or by the custom of trade. The brokers for the [michase and sale of goods within the city of Londen are a hody with pdeculiar privileges, and acting under special licensing regulations, some of which date back to the remen of 11 cmy VIII. The London lirekers' Relief Act (18ĩo) has considerably altercd their position, but they must sull ke admitted by the court of mayor and aldemmen, and the genalty of $£ 100$ for acting as a broker without qualification may still be imposed. A list of London brekers is kipt ly the mayor and aldermen; and if a broker has Icen comvicted of feluny or fraud, or certified ly a superior judge to have been guilty of fraud, he may lie absolutely or fur a time disqualitict. There has been seme doubt as to the clas3 of persons falling under these regulations; shipbrokers and auctioncers, it would appear, do not.

BROMBERG, a town of Prussia, capital of a government in the province of Posen, is sitnated 70 miles north of the city of that name on the River Brahe, which is there crossed by a tine new railway bridge. Its public buildinge com prise two Roman Catholic churches, a Protestant clurch. and a Jowish syoagogue, a bymasium, a sominary, z workhouse and penitentiary, a bospual, and a military storchouse. It has large mills, manufactures linen and woollen stuffs, leather, tobacco, lrussian blue, sugar, chicory, vinegar, beer, brandy, and oil, and carrics on ar active transit trade. The Bromberg Canal, constructed in 1773-4 by command of Frederick 11., at a cost of 700,000 dollars, connects the Bmace whth the Netz, and thus estab. lishes commnnication between the Vistula, the Oder, and the Elbe. Dromberg is mentioned as early as 1252. From 13.5 to 1343 it was in the bands of the Teutonic Ordet

Destroyed in war is was restured by Casimir of Poland in 1340, and down to the close of the 16 th century 1 tontunued to be a flourishing commercial city. It afterwards suffered so mucb from war and pestilence that about 1772, when the Prussians took possession, it coutained only from five to six hundred inbabitants. By the treaty of Tilsit it was transferred to the duehy of Warsaw, in 1813 it was occupied by the Russtans, and in 1815 it was restored to Prussia. Population in 1871, 27,740.
brome. alexander, a mmor Euglish pget, was born in 1620, and died in 1666 He was an attorney in the lord mayor's court, and was the author of many of the songs and epigrams that were publisbed iu favour of the Royalists tod against the Rump. These, together with bis epistles and eprgrams, translated from different authors, were all printed in one volume, octavo, after the Restoration. He publisbed a trabslation of Horace by himself and others, and was the author of a coluedy entitied The Cunning Lovers He also edited two volumes of Richard Brome's plays.
brome, Ricgard, a dramatic writer in the reigo of Cbarles [., and a conteraporary of Dekker, Ford, Shirley, and ochers. He was originally a servant of Ben Jonson; tut be soon acquired a bigh literary reputation, and was addressed in some lines by bis quondan master on account of bis comedy enticled The Northern Lass. Brome's genius fay entirely in comedy. His plots are original and well managed, and his characters, which for the most part are atrongly marked, were drawn from bis own experience. He has left fifteen comedies. See Ward's English Dramatic Literature, 1875, vol. ii., for a good notice of Brome.
BROMINE, one of the balogen group of non matallic chemical elements, which comprises three other members,Tulorine, iodine, and fluorine. The whole group has many properties in common, the most marked being their bebaviour towarda hydrogen, uniting with it'aton for atom, forming gaseous condensible acid corupounds, which are all produced by similar reactions, and which yield in combination with metals crystals of uniform structure Bromine w_{18} discovered in 1826 by Balard, who extraeted it from the wster of the Mediterrnean during bis researches in connection with the sea-water. At ordinary temperatures it is a deep brownish-red liquid, emitting a stroug disagreeabla odour (wheuce its name, from β р $\overline{\text { unos, }}$ a stink), baring a apecific gravity of $2 \cdot 96$, freezing into a red-bruwn erystalline mass at $-245^{\circ} \mathrm{C}$., and boiling at $63^{\circ} \mathrm{C}$. Its corubining equivalent or atomic weight is 80 . Bromine is an elemeot of great chemucal activity, and of the highest anterest in scientific chemistry on aecount of its combinations, and aspecially on account of the products of its substitution for hydrogen in organic compounds.

Although very widely disseminated, since $t \mathrm{t}$ is found in oeean water, bromine is nowhere ao abundant element. It is a constituent of some silver ores from Mexico and South America ; it is very generally found in strong saline springs, as well as assoeiated with deposits of salt ; and it is present in many marine plants. The waters of the Atlantie, aceording to Vor Bibra, contain 24 graius per gallon; while IJerepath's analysis gives Dead Sea water a strength of 121.5 grains per gallon. It is only from the waters of certain ${ }_{3}$ aline springs in America that bromine is prepared as a direct product. At several places in western Pennsylvania and West Virginia the manufacture is carried on extensively, 125,000 th having been extracted in 1870. In Earope bromine is only obtained as a secondery product of the preparation of potash and other alkaline salts, its chief source being the mother-liquors of the kelp manufacture, Griae aprings, and especially the Stassfurth saline deposits, near Magdeburg. irussia The produce at Stassfurth in

1873 amounted to about $1 \mathrm{l}, 000 \mathrm{ID}$; and it is estimated that the yseld of English and French noriss was, taken together, about the same.

On the commercial scale bromiue is prepared at Stassturth from the liquids whieh, have been exhausted of all wirir erystallizable soda and potash salts, and from which also a deposit of chloride of magnesium has been obtaided. This final roother-liquor is found to contain from 0.3 to 0.5 pel cent. of bromiue, in the form of bromade of potassium. Ii separate the bromine the hquor is introduced into a sandstone apparatus simitar to that used for the evolution uf chlorine from common salt,-the process and reaction beng similar in both eases In this it is mixed with blaek oxide of manganese and sulphuric acid in defiute propurtions, and heated by a current of steam. The red vapour of bromine is given off and led by a pipe mito a condensing worm of earthenware, and received into a scres of three Woulfe's bottles, the first of which contans water, and the uthers alkaline ley and ron filings. The reaction which takea place ta thus represented-

$$
\begin{gathered}
2 \mathrm{KBr}+. \mathrm{MnO}_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \\
=2 \mathrm{KHSO}_{4}+2 \mathrm{MSO}+2 \mathrm{M}_{4} \mathrm{O}+2 \mathrm{Br}
\end{gathered}
$$

-sulphates of potash and manganese, water, and fres* bromine being produced from bromide of putassium, nanganese dioside, and sulphuric acid. Pure bromine vapuur distils over at first, but as the distillation proceeds chlorine is gradually evolved, and from this the bromine may be freed by shaking up with a solution of bromide of putassium, whieh yields up its bromine to combine with chlurine. On account of its peculiarly irritating aetion on the urgaus of respiration, very great precautions bave to be taktD to protect workmen from the fumes of bromine, and it is indispensable that those engaged in the iudustry should abstan from all alcobolic liquors.

The ehief industrial applieation of bromitue and its compounds is in medicine, for which it 19 used in the form of bromide of putassium, bromide of am:nonium, and brounide of sodium, besides in various combinations with alkaloids and organic substances It is, bowever, most largely employed as bromide of potassium, a salt prepared on the large scale by the decomposition of potassium carbouate by the bromide of iron. It is also prepared by passing the vapour of bromine into a solution of caustic potash, when a mixture of bromide and bromate of potassinm is produced. The unxed salts are reduced to a uniform bromide by burmang with coal dust. Bromide of silver is employed to some extent in photography, and, according to the experiments of Vogel, it pussesses a peculiar sensitiveness for the red, green, and yellow colours, which are not acted on by other photographic agents. During the Amcrican Civil War (1861-5) bromine eame into use as a disinfectant in military hospitals, a purpose to which it was also applied in the Franco-Qcrman War in 1870-1. For such purposes it was found to possess several advantages over chlorine, which, however, has the recommendation of cheapness and abundance. It has long been hoped that bromine might be substituted for iodine in the preparation of the several coaltar colours. but hitherto the attempts in that direction have not been suceessful Eosine, a tetrabromated potassium salt, is the onlydye into which bromine at present enters. The use of bromine has been suggested by Dr Rudolf Wagncr in several metallurgical operations, in whid he anticipates it might be of great service. He proposes, in place of the present wasteful method of reducing mercury from cinnabar, to digest the cre in an aqueous solution of bronine, whereby a bromide of mercury wuald be formed. He also suggests that bromine might be advantageously aphied to the extraction of gold from poor auriferous ore, in a manner analogous to Plattner's chlorination prowis riurther, it is recom-
IV. -46
mended for the retinng of gou by the formation of a bromide; and it is thought that bromise rapons might be used with advantage for toughenang brittle gold.

BROMLEY, a market-town of England, in the county of Kent, 10 miles S.E. of London. It is situated on high ground te the north of the river Rasenshourne, and suce the opening of the railsay has become a favounte residence for men of business from Loudon. It bas a town-hall-built in 1864, an old market-house, a literary institution, and a college, originally foueded in $166 t$ by Bishop 1 larner for the residence and support of clergymen's widuws. The cburch is a fine Gothic boulding, containing some bandsome monuments; and in the vicinty is a palace, erected in 1777 is room of an older structure, for the brabops of Rocbester, to whom the manor has belonged since the tume of Ethelbert. In the gardens attacted is a mineral spriog known as St Blaze's Well, which was in great reputc before the Reformation. The population of the parish, which in 1861 was only 5505 , amounted at the census of 1871 to 10,674. The parish includes the rillages of Plaiston, Sundrıdge, Bickley, Widmore, Elmsiead, Southboro', and Bromley Common.

BROMSGROVE, a market-town of England, in the county of Worcester, 13 miles S . by W . of Birningham, with a station on the Birmingham and Worcester Railway, at the distance of a mile and a half. The chorch of St John is a Gine old building, restured in 1858, with a tower and spire 189 feet in height. The free grammar school. founded by Edrard VI., bas been recently enlarged; and a literary institute apd a scbool of art bave been established. The principal maenfactures of the town are nails, buttons, needles, and coarse limen stuffs; and there are also waggonworks and malt kilns. The population of the Improvement Distric in 1871 was 6967.

BRONCHTTIS, utammation of the mucous membrane of the bronchial tubes. Wall known as che of the wost common diseases of the climate of Great Britam, bronchitis exists in either an acute or a chronuc form.

Acute bronchitis, like other inflammatory aflections of the chest, generally arises as the result of exposure to cold, particularly if accompanied with damp, or of sudden change from a beated to a cool atmosplere. The symptous vary according to the sererity of the attack, and more especially accordng to the extent to which the inflammatory action spreads in the brupchial tubes. The disease usually manifests itself at first in the form of a catarrb, or common cold ; but the accompanying feverishness and general constitutlonal disturbance proclaim the attack to be something mere severe, and synutoms denoting the onset of bronchiths soon present themselves. A short, pajnful, dry cough, accompanied with rapid and wheezing respration, a feeling of rawness and pain in the throat and behind the breast bone, and of oppression or tightness throughont the chest, mark the carly stages of the disease. In some cases, from the first, symp. toma of the form of asthma known as the broncheti are superadded, and greatly aggravate the fatient's suffering. See Astinma.

After a few days expectoration begins to come with the cough, at first scanty and viscid or frothy, but soon becoming copions and of purulent character. In general, after free orpecteration has been established the more trgent and painful symptoms abate ; and while the congb may persist for a length of time, often extending to three or four weeks, in thómajority of instances coavalescence adrances, and the patient is ultunately restored to health, although there is not unfrequently left a tendency to a recurrence of the disease on exposure to its exciting causes.

When the ear or the stcthoscope is applied to the ebost of a person suffering from such an attack as that now descrited, there are beard in tho earher stages suoring or coulrg
 quality, accompanying respiratiun. Theseare denomaialts dry sounds, and they are occasionally so abundant and distinct as to convey their vibrations to the band applied to the chest, as well as to be andible to a bystander at come distance. As the disease progresses these sounds become to a large extent replaced by otbers of crackliag or bubtling character, which are termed morst sounds or riles. Both these kinds of abnotaal sonnds are readily expluned by a reference to the patbolugical cundition of the parts. Une of the first effects of infamamation ofon the bromehial mucuns membranc is 10 canse sume degree of ε wellng, which, togetber nuth the presence of a lough sectetion chosely adhering to at, tends iv diminst the calibre of the tubes. The respired air as it passes over this surface gives rise to the dry or sonoroustreath sounds, the coarser being generated in the large, and the finer or wheezing sounds in the small duvisions of the broncti Before long, bowever, the discbarge from the troncbial mucous membrane becomes more abundant and less glatinoos, and accumplates in the tobes till dislodged by cuughing. The respired air, as it passes through this fluid, causes the moist ràles above described. In most instances both most and dry sounds are beard abundantly in the same case, since different portions of the broncbial tubes are affected at diferent tumes in the course of the disease.

Sucb are brieft the main cbaracieristics, fresented ly an ordinary attack of acute brosctatis romning a favourable course.

Tbe case is, howerer, rery different when the inflammation spreads into, or when it prmarily affects the minute ramifications of the bronchial tubes which are in immediare relation to the air-cells of the langs, giving rise to that form of the disease bnown as capillary tronchutis. When this takes place all the symptoms already detaled become: greafly intensified, and the fatient's life is placed in immiceat peril in consequence of the mierruption to the entrance of air into the longs, and thus to the doe acration of the blood. The feremsbness and restlessness increase, the cough becomes incessant, the respration extremely rapid and laboured, the nostrils dilating with each effort, and eridence of impending suffocation appears. The surface of the body is pale or dusky, the his are livin, while breatbing becomes increasiogly differy, and is attended with solfocative paroxysms which render the recumbent posture impossitle. Unless speedy relief is ottained by successful efforts to clear the chest by coughing and exjectoration, the pathent's strengtb gires way. eomnolence and delirion: set in, and deatb ensues. All this may be brought about in the space of a fer dars, and such cases, particularly among the rery roung, cometimes frove fatal within fortyeight hours.

During life, in addition to the auscultatory signs present in ordinary bronchitis, there generally exist in this forn of the discase abundant fine moist rales at the bascs of both lungs; and the appearance of these organs after death shows the minnte bronchi and many of the aircells to be filled with matter similar to that which bad been expectorated, and which has thus acted as a mechanical bindrance to the entrance of the respired air and caused death by asphyxia.

Acute bronchitis must at all times he looked upon as a sircre and even serious ailment, but there are certain circumstances under which its occurrence is a matter of special ansicty to the physician. It is freeminently dangerous at the extremes of life, and mortality statistics show it to le one of the mest fatal of the diseases of those periods. This is to te explained not ully ty the well recogoized fact that all accte diseases pell nith great severity on the $f_{1}=$ ic frames alike of intasts and egea people, but mosi
fartucularly by the cendencs which bronchitis undonbtedly bas in attacking them to assume the capulary form, and when it does so to prove quickly fatal. The importance. therefore, of early attention to the slightest evidence of brunchits amoug the very young or the aged can scarcely bo overrated.

Brouchitis 18 also apt to be very severe when it oecurs in persons who are addicted to intemperance. Again, in those who suffer from any disease affecting directly or indirectly the respiratory functions, such as consumption or beart disease. the supervention of an attack of acute bronchitis is on alarping complicatiun, increasing, as it necessarily does, the embarrassinent of breathing The same remark is applicable to those numerous instances of its occurrence in children who are or bave been suffering from sucb diseases as bave always assuctated with them a certan degree of bronchial irritation, sucb as measles and hooping-cough.
One other source of danger of a special character in bronchitis remaios to be mentioned, viz., collapse of the lung. Occasionally a bradch of a bronchial tutic becomes plugged up with secretion, so that the area of the lung to which this branch conducts ceases to be indated on mspuration The small quantity of ar imprisoneit in the fortion of lung gradually escapes, but no fresh arr euters. and the part collapses and becumes of solid consstente Increased difficulty of breathing is the result, and where a large portion of lung is affected by the plugging uf of a large bronchus, a fatal result may rapidly follow. the danger being specially great in the case of children. Fortunately; the obstruction may sometiores be remored by vgorous cougbing, and relicf is then obtaned.

With respect to the treatment of acute bronchitis, in those mild cases which are more of the nature of a smple catarrh, little else will be found necessary than conbinement in a warm room, or in bed. for a few days, and the use of light diet, together with warm diluent drmbs. Additional measures are, however, called for when the discasa as more markedly developed Medicines to allay fever and promote perspration, such as the well-known Mindererts spirit. combined with antimonial or precacuan wine, are usfhly oerviceable in the earlier stages. Later on, with the view of suothing the pain of the congh, and favouring expectora tion, mastures contaning squill or tolu, with the addition of some opiate, such as the ordinary paregories, may be advantageously employed. The use of opium, however, in any form should not be resorted to in the case of young children without medical adrice, siaco ats action on them is much more potent and less under control than it is in adults. Not a few of the so-called " soothing mastores," bave been fonad to contan opiam in quantity sufficient to prove dangerous whed administered to children, and, indeed, it is to be feared that fatal results not unfrequently folluw their incautious use in this way

From the outsct of the attack the employment of warm applications to the chest th the form of fomentations or puoltices affords great relief Few remedial measures are of greater value than the frequent mbalation of steam. This is accomplished readily enough in the case of adults by the use of an mbaler or sumply by breathing over an open-mouthed vessel contaming boiling water In children in whom thas plan cannot be carried out io the same manner, there is in general no difficulty in surrounding them with an atmosphere of steam by placing around thern vessels contaning hot water, the vapour from which envelopes them The relief to the congh and breathing and the and to expectoration afforded by this simple plan, are often surprising, and the cases are rare where it cannot be borne

Should the cougb persist for a length of time, and the disense threater to become chrome, counter-irritant aprlia.
thons to the chest in frons and bebind, tu the form of stimulating liniments, or even of blasters, will be rendered necessary.

When the bronchitns is of the capnllary form, the grat object is to maniman the patient's strcugth, and to endeavenir It secure the expulsion of the morbid secretion from the tine broncti. In addition to the remedics already alluded to, stamulants are called for from the first; and should the cough be raeffectual ni reheving the bropchal tubes, the administration of an emetic douse of sulphate ot zllic or squill may produce a yood effect.

Durmg the whole course ot any autack of broncbitis attenuon must be pad to the due nourisbment of tue patient; and during the subsequent convalescence, which, particularly in elderiy persuns, is aut to be slow, tonics and stanulants may have to be prescribed.

Chonne trunchuss may arise as the result of repeated attacks of the arute form, or it may exist altogether independently. It ociurs more frequently among persons ideanced in life than among the young, although no age is exempt from it.

The osual history of this form of bronchitis is that of a cough recurring during the colder seasons of the year, and in its earlier stages, departing eutirely in summer, so that it is frequently called "winter congh." In miany persons subject to $1 t$, bowever, attacks are apt to be excited at any tume by sery sligbt canses, sucb as changes in the weather, and in advanced cases of the discase the cough is seldoma altogether absent

The symptums and auscultatory signs of chrome bronchitis are on the whole samilar to those pertanang to the acute form, except that the febrile disturbance and pan are much less marked. The cough is usually more troublesume in the mornog than during the day. There is usoally free and copious expectoration, and occasionally this is. so abundant as to constitute what is termed brouchorrhaa

Cbrome bronchatis leads to alterations of structure in the atiected bronchial tobes, thear mucous mombrane becomus thickened or even ulcerated. while occastonally permanent dilatation of the bronchi takes place, often accompanied with profuse fortid expectoration In long standing cases of chronac bruachatis, the nutration of the lungs becomes imparcd, and dilatation of the ar-tubes (emp,hysema) and other couplications result, giving rise to mure or less constant breathlessness. Cbronic bronchus is liable in oome mstances, particularly wben accompanied with loss of flest and strength, to be mastaken for consumption but the physician who carefully regards the bistory of the case and observes the physical signs and sympionts, will in githeral be able to distinguisb the one disease from the othei

Chronic brouchitis may anse secondarily ou sume other alment. This is especially the case in Bright's discase of the kidneys, and in beart disense, of both of which maladics. it often proves a serious compheation

Chronic bronchitis ducs not often prove directly fatal. nor is it necessarily inconsistent with long life. Its ches: dianger lies in the tendency to intercurrent acute attacks, particularly in the aged, and in this manner it very fra quently causes death.

The treatment to be adopted in chronic bronchitis ao pends upon the severity of the easc. the age of the patient. and the presence or absence of complications. Attentionto the gencral bealth is a :.ratter of pron:c unpurtance in all cascs of the diseasc, more particularly among nersous whose avocations entail exposurc, and tonics wath cod-live onl will be found lighly advaitagcous The use on a respirator in very cold or damp weathe, 18 a valuable ineans of protection In those aggravated forms of cbronic broncbitis, where the slightest exposure to cold air brings, on fresh attacks, it may become necessary, where circum.
stances permit, to enjoin cousucuer: to a warm room or removal to a' more genial climate during the winter months.

When expectoration 19 attended with difficulty, such remedies as squill in combination with ammonia may prove useful. Whea, on the other hand, bronchorrhca exists, astringeatsare called for. The intalation of vapour containang iodine or turpentine is often followed with marked benefit in this way. Where breathlessness aecompanies the disease, besides the use of ethereal preparations, marked rolief is often derived from large doses of iodide of potassium. Counter-irritation to the chest with turpentine, mustard, or croton onl is geaerally atteaded with good results. In aged and woak persons stimulants are an indispeosable part of the treatment. Acute exacerbations of the disease, which are so apt to arise in the chroanc form, must be dealt with on the principles already indicated in treating of acute bronchitis.
(J. O. A.)

BRONDSTED, Peter Oluf, archæologist, was the son of a Danısh clergyman, and was born at Horsens in Jntland on 17 th November 1781 . He received his aeademical educa. tion at the university of Copentagen; and in 1802 be visit ad Paris in company with his friend Koes. After remaining there two years, they sent together to Italy. Hoth mere zealously attached to the study of antiquities; and c mgeniality of tastes and pursuits inducod them both, in 1810, to joiu Barou Stackelherg, Von Haller, and Linckh of stutterd, in an expedition to Greece, where they examined with attention the interestung remains of ancient art, and engaged with ardour in excavations among the rmms, which wero carried on, especially by Bröndsted and Stackelberg, with very interesting results. The discoveries Bröndsted made were made public in several works, which show learning and sagacity sneh as have seldom been applied to the elueidation of antiquity with bappler results. After three years of active researehes in Creece, Brondsted returned to Copenhagen, where, as a reward for his labours, he was appointed professor of Greek in the university. He now bagan to arrange and prepare for publication the vast materials bs bad collected during his travels; but finding that Coponhagen did not afford him the desired facilities, he exchanged bis prufessorship for the office of Danish envoy at the papal court in 1818, and took up his abode at Rome. He also, in 1820 and 1821, went to Sicily and the Ionian Isles to collect additional materials for his great σ rk ; and when the artistic illustrations were completed, te obtained leave to visit Paris to superintend the publication. In 1826, be came over to London, chiefly wath a view to study the Elgin marbles and other remans of anti quity in the British Mluseum, and became aequanted with the principal archeologists of England.

He returned to Copenhagen in 1832, when he mmediately received the appointment of director of the royal museum of antiquities, and the professorship of archaology sind philology. His merits wereten years afterwards further rewarded with the bonourable office of rector of the unversity; but an molncky fall from his horse caused the dath of this eminent man on the 26th June 1842. Il is prineipal work was the Tratels and Archooloqical Mesearches in Greece, published in German and French, 1820-30. His dissertations on points of ancsent art are very numerous.

BRONCNIAKT, Alexandre, a distinguished French mineralogist, was the son of tho emment srehitect who designed the Bourse and other public huildings of Paris, and was born in that city in 1770. At an early age he jomed the army of the I'yrenees; but baving committed somo slisht political offence, be was thrown into prison, and detained there for some time. On las releaso he was appointeal nrofessor of natural history in the College des Quatre Niations, and soon after eucceeded llaüy as professor to the school of miaes. la 1800 ha was made director of
the Sévres porcelain factory, in which he revivea taш ...nost forgotten art of painting on glass. He did not confine himself eatirely to mineralogy, for it is to him that we ows the division of Reptiles iato the four orders of Sauriaus, Batrachians, Chelonians, and Ophidians. In 1816 he was elected into the Academy; and in the following year lwo visited the Alps of Switzerland and Italy, and afterwards Sweden and Norway. The result of bis researches he published from time to time 10 the Journal des Mines and Dictionnaire des Sciences Naturelles. He died at Paris, October 7, 1847.

His principal works are-Traite elementaire de mintralogie ap. pliqué auz Arts; the Tableau des lerrains gui compasent l'ecoree du globe, ou Essai sur la structure de la partie connue de la terre; and the Traite des Arts ceramiques 1845 . Brongniart was also the co adjutor of Cuvier in the admirable Essai sur la geographze mineralo gique des environs de-Paris.

BRONTE, a city of Sicily in the iatendeacy of Catania. It stands in a bealthy situation at the western foot of Mount Etna, on the river Giaretta, near a celebrated waterfall. It has considerable manufactures of linen and woollea cloths, and some paper-mills. Good rine is produced in the neigbbourbood. Bronte is of comparatively modern origin, having all been built since the 16 th century. It gave the title of duke to Lord Nelson. Population, 14,5S9.

BRONTE, Charlotte, modery English novelist, was born on the 2lst April I816. Her father, the Rev. Patrick Bronte, was a native of county Down, Ireland; ber mother, Maria Branuell, was of Cornish family. At the date of his marriage, in 1812, Mr Broate held the living of Hartshead in Yorkshire, and there his two eldest danghters, Maria and Elizabeth, were born. In 1815 be removed to Thornton, in the parish of Bradford, where Charlutte, her brotber Patrick Branwell, and her younger sisters, Emily aad Anne, were bora. In 1820 he was presented to the living of Haworth, and removed in that year to the parsoaage, a bleak and solitary house, standing elose by the churchyard and backed by a wide expanse of moorland. Mrs Bronte died aoon after their removal, and the little family of youag childrea were left to educate and train theaselves, They saw little of their father, whose health was bad, and who seems to have been eccentric in bis modes of thinking and acting. The charge of the little flock devolved upon the eldest daughter, a girl of between seren and eight when lier mother died; and, wader the peculiar circumstances of their life, the children's iatellectual powers and sympathies developed with rapidity. Utterly deprivea ol all companions of their own age, with none of the irrual outlets for their pent-up energics, they lired in a littie world of their own. The harsh realities around them, tho bleak scenery, the coarse and rugged natures of the few inhabitants with whom they came in contact, only umpelled them to construct for themselves an idenl woild, modelled after their unn strange and untrained imaginations, in which they found satisfaction and reality. By the tume Charlotte Bronte was thirteen years of age, it had become her constant labit, and one of her few pleasures, to weave imaginary tales, idealizing her farourite historical beroe and bodying forth in narrative form her own thoughts ar feelings. Nor was she alone in this eurious occupation all the family took part in the composition of jureail. stories and magazinc articles It was a strange training for a child, boding little good for her future bappisess when thrown into the ordinary routine of life.

An event which made a deep impression on this strauge family circle was the cnternig of the two eldest girls, in 1824, st a school recently opened at Cowan's Bridge, near Haworth, and intended for daugliters of clergymea. A vivid picture of this school, snd one which Miss Bronto always maintsined was not over-coloured, is presented in Jane Eyre, for the Lomond of that atory is Cowan's Bridge

Of ail papile the Brontes were the least likely to fsll in rell with the requirements of their new mode of life. Everything was novel and repulsive to them ; their peculiar oatures were repressed and stunted; their intellectual sympathies fond no food. Charlotte snd Emily became pupils fater in the same year, but it was soon found necessary to remove Maria. Her health had given way completely, and she died \& few days after her return to Hawnrth in the spring of 1825. But a few menths later and Elizabeth followed her sister to the grave. The younger girls were removed in the autumn of 1825 ; and Charlotte, as. the eldest of the housebold, took npon hersclf the duties that Maria bad formerly discharged. For sis years she remained at home leading the usual quiet, isolated life, and indulging to the full her rare facnlty of cemposition. She then spent one of her happiest years in a school at Roe Head, and some of the acquaintances made there became lifelong friends. To this school she returned in 1835 in the capacity of teacher, and for a time her sisters were with ber as pupils. After three years her health, always delicate, gave way alarmingly, and she had to be withdrawn to Haworth. Twe short experiences as governess in a family having shown her how little such a life was suited to her, she turned her thoughts towards taking a achool, a plan which would have had the special adrantage of keeping together the three devoted sisters. Some money was advanced for this scheme by their aunt, and it was resolved that, as a preliminary step, Cbarlette and Emily should study French upon the Continent. In 1842, accordingly, they found themselves in Brussels, and a new world, a new experience, was opened up to Miss Bronte's vigerous and imaginative mind, a world to be afterwards reproduced in living characters. She studied hard, and before her return to England in January 1844 had acquired a very thorough knewledge of French.
She came back to a home into which a fresh clement of unhappiness had been introduced. Her brother Patrick, a youth of fine talents, had fallen into habits of dissipation, which rapidly rendered him a hopeless drunkard. For some years the sisters had the misery of secing daily befure them the spectacle of a wasted life, of powers thrown away, snd of opportunities despised. The details of his unfortunate stery may well rest in obscurity. He lingered on till September 1848.
Meanwhile, amid their distress, the sisters, who found :efuge in their habits of composition, had uade thcir first literary venture. During their separation, while Charlotte was in Brussels; and Anne in a situation as geverncss, they had been quietly pureuing their favourite occupation; and in 1845 they made the discovery of each other's poetical efforts. After some correspondence with publishers they ceselved to print a emall volume of poens, assuming the noms de plume of Currer, Ellis, and Acton Bell. The book appeared in the spring of 1846, was barely noticed by the reviews, snd sttracted no public attention. The suthors, however, were encouraged to make a further trial, and each began to prepare a prose tale. Charlotte's was The Professor ; Emily's, IFuthering Heights; Anne's, Agnes Grey. The Professor was refused on all hands; the other two were sccepted, but their publication was delayed for some time. Nothing daunted by her want of saccess, Cbarlotte devoted berself heart and soul to a new tale, Jane Eyre, which she completed in August 1847. The MS. was accepted by Messrs Smith and Elder ; the book appeared with the name of Currer Bell on the tittle page in October 1847, and at once achieved a decided success.
Few works of an unknown author have been received with such sudden and general acclamation. The utter and even paradoxical disregard for the conventional which the boek displayed, the mascoline vigour and glowing p.n...r
with which the msin characters were drawn, and its intense realism, at once seized and secured the popular favour, and showed the literary world that 8 new and powerful competitor for its honours was in the field its success was net so much the result of the fsvourable verdicts of trained judges, for these came but alowly, as of its own intrinsic force. The delineation of the harsh and rugged but powerful northern character was the revelation of a new world, and the intensest interest was excited as to the true name and abode of the unknown auther. Numerous were the conjectures as to Currer Bell, but the secret was well bept. Even the publishers were unaware of the truth, till the disclosure had to be mads to them in constquence of the poblication of Wuthering IFeights and Agnes Grey, und of the announcement of The Tenant of Wildfell Hall. The public, however, remained in the dark till sfter the appearance of the second work by the unknown, when a ebrewd Yorkshireman, who knew Haworth, divined the secret and pablished his discovery.

Shirley, this second work, fully sustained the suthor's bigh reputation. Yet it was written under melancholy circumstances. The death of Patrick Bronte, in September 1848, was followed ty the deaths of Emily and Anne in quick succession. Enily died on the 19th Dccember 1848; Anne on the 28th May 1849. Shirley was published in October 1849. The disclosure of Miss Bronte's name as the writer at once introduced ber to the great literary society of London. She met all the most prominent men of letters of the time; yet, though she was in the world, she was not of it. Her previous life and ber pcculiarly seasitive and retiring disposition raade notoricty nnd attention painful to ber, and she gladly escaped to the quiet of Haworth parsocage. Slowly, and with long internuptions from failing health. her last work proceeded to completion. Villette was published in 1853, and was hailed with universal delight. It is in some respects the most pleasing of her works, while it at the same time exbibits aome of her gravest faults. The description of the life at the fereigh persion, and the whole delinestion of the principal characters, are reflexes of her own experience, and impress on with their vivid reality and truth. The plot, however, is unskilfully constructed, and the interest seems to abift from one set of characters to anetber in the progress of the story.

In June 1854 Miss Brente was marricd to her father's curate, the Rev. Mr Nicholls, and for a brief period she tasted the strange new happiness of domestic life. But the seeds of decay were in her constitution; the same malady that had carried off her sistcrs, worked its way with fatal facility in lier enfeebled frame. She died on the 31st March 1855. After her death The Prufessor, ber first luckless tale, was published from her MSS.
A comparison has sometimics been made hetween Miss Bronte and Miss Austen. The pointe of contrist are certainly more apparent than the points of similarity; and it is a fact not without significance that Miss Bronte could never thoroughly appreciate the merits of ber great predecessor. Both were consummate masters of literary expression, and both finished their work with the utmost care and precision. Miss Austen is distinctly superior in skilful evolution of plot and in the nice adjustment of character and incident. But her figures are tame and lifcless when compared with those of Miss Bronte, and what ehe chiefly lacked, the ferce glow and fire of imagination, and the pcrieption of depths in human nature only revealed through suffering experienco, the other possessed to an almost unrivaled extent. Diss Bronte's experience was, indeed, narrow, but it was of s rare kind, such as was peculiarly adapted to her atrong and yet sensitive apirit. She had toe what Goethe calle the true secret of poet: $\mathrm{j}^{\text {evius }}$,
penetration to the individual ind reil, what she had hergelf known and felt, the deepimpressions made on ber mind by wild acenery, and by rugged yet genuue buman natures, that obe mirrured forth with liviog trutb and fiery vehemence. Doubtless her strength at tumes approaches too near to coarseness, the situations becouc almost melodramatic, and the result may be charged with sensationalism, but the pervading sense of intense reality is more than oufficient to carry off these defects.

Of her three great works Jane Eyre will always be the one which occurs most realily a connection with ber name; it has all the vigour and individuality of a tirst-born work of georus. Shirley, one of the sweetest love-stonies in the range of Eaglisb hiction, abounds in rach humour, but wants the perfection of artistic unity. Villette contains, perbaps, more of the author's personality than cither of the others. The character of the herono is in truth that of Miss Pronte berself, and the analysis of it is at tumes morbidly acute. The Professor has never ganed much popularity, though the moin conception is oue of great beauty and is skilfully randled.

Of Euily Bronte's works it is somewhat difficult to speak. Flers was a strange nature, not easily understood; and it Lad but little time to develop. Sume of her poems are angularly powerful, and show oncommon abilitics. Wuthersug Heights is a literary cunosity. Uumistakably the work of a strong roind, into which the wild scenery of the north tad sunk deeply, it shows absolutely no comprebension of buman character We are transplanted to a dreamland, enveloped in a lurid thunderous atmosphere, through which stalk fantastic gant beings, gloomy and devilish in their utter wirkedness. It is the production of a powerful imagination, but of an unagination unrestraned by any experience of the real, and regulated by no consuderations of artistic beauty and proportion.

Anne Brqute's was a mind of weaker calibre Agnes Grey is a gentle, gracefully written tale, founded on the writers own experiences of a governess's life, but it mamfested little pawer or promse The Tenant of Wildfell Hall has much greater force and vigour; but the mani conception is an unpleasant ode over which the writer bad brooded until she had been eeszed with a morbid craving to give it shape and substance It as a panful story, martistically told
Charlotte Bronte's freend, Mrs Gaskell, has narrated her life. as only a woman of kindred genus could Of Emily and Aooe. socomparably the best notice is that prefixed by Charlotte Bronte to the second edition of Wuthermg Heights and A mus Grey A new and uniform edition of the whole warks of the threp sisters, with Mrs Gaskeli's Lefe (which first appeared io iō̄5), illustrated by engravings of the principal places mentioned, is at preseat (1876° in course of publication.

BRONZE is an alloy formed wholly or chiefly of copper and tin, in variable proportions it has been used from a very early period. Arcbeologists distinguish a bronse age in prehistoric times in Western Europe (intermediate between those of stone and aron), claracterized by a geoeral use of the nlloy for cutting instrumenta and ot ber objects The "brass" of the Bible was probably of the nature of bronze The use of bronze an carly times is noticed more particularly below

The nddition of tin to copper gives rise to a product more fusible than copper, and thus lugter suited for casting. The alloy is also harder nad less malleable. The proportions in which copper and tin are combued to make bronze vary eccordug to the object for which the alluy is designerl. With abont 7 parta copper to 1 part tin, bronze is very hard, brittle, and sonorous Soft bronze, ngain, which bears drifting, rolling and drawitg is generally composed of 16 copper to 1 tha, while a flexthle tumamus alloy, good for nails and bolts, 18 made of 20 copper to 1 tin. In preparing bronze for statues, bas-reliefs, de, the qualities chietly looked
at are fusibility and hardness, alsu readiness to acuuire a fine patina on exposure, though it appears this niay be acquired by bronzes differing widely in composition A comroon statue bronze is formed of copper 80, tin 20 Bell metal, for large bells, ss generally made with about 3 parts copper to 1 part tin; for bouse bells, 4 copper to 1 tin The bronze of bells (as of various other objects) sowetames contans a little zinc, lead, sc., in addition to the primary ingredients. The Chinese tam tams or gangs, are made of bronze forged by the hammer; they contan about 20 per cent. tin, the rest copper only The secret of therr manulacture seems to have been revealed by MMS Julien and Champron, who find that a bronze of this nature, though at the cummon temperature brittle as glass, may, at a dull red beat, be forged and beaten out as easily as soft tin The speculum metal employed in telescopes is of 2 copper to 1 tin; and on the other haud, whth larger proportions of copper, we have an alloy suitable for macbmery bearings. and also for medals, 8 copper to 1 tun; another for brass ordoance or bronze cannon, 9 copper to 1 t in, another for mathematical instruments, 12 copper to 1 tin . de Thi bardoess and resistance to osidation of bronze fit it admu ably for coins, and many ancient bronze cons have come to us but hittle detcriorated, though buried for ages in damp soil, or ammersed in water. The composition of the present bronze British comage is (in 100 parts) 95 copper, tha, 1 zinc

A few years ago some very beautiful Chinese and Japadese bronzes were exhibited in Paris, remarkable chiely for the dead black colour of therr patioa From analyses by M Morin it appeared that they contaitied a large proportion of lead, the average composition being copper 80 parts, lead 10 , tin 4 , zinc 2 , and the remanang four parte consisting of jron, aickel, arsenic, silver, and gold. According to M. Christofle, lead is not essential for production of a fine black patina; and it renders the alloy brittle. Bronze can be covered with a black, red, brown, or grees patina, as desired. by suitable oxidation or suiphurization.

Some mportant researcbes on bronze for field-guns have lately been Diade by Colouel Uchatins of Vienna; and ths steel bronze he produces is said to be quite equal to ateel in hardness, homogeneousness, ressstance, and other qualities while it is less affected by atmospheric agency, and less costly He casts the bronze (which contains 8 per cent. tin, the rest copper) in a cast-iron ingot mould, with a core of wrought-copper 50 mm . in diameter. Then after boring out the hollow ingot to a diameter of 80 mom he forces through it a series of six conical pistons of hardeaed steel. slightly larger in diamcter than the bore. The interior i then excessively hard and ready for rifing. The hardness clasticity, and solidity dimunish from witho outwards These new bronze guns have been lound to bear several hundred discharges successwely without the slightest apparent deformation or other injury.

It is only of late years that the changes produced in bronze by addition of phosphorus have been secentifically investigated; and from experments by Messrs Montefure. Kiinzel, Kirkaldy, and others, \rangle hosphan bronze is proved te have great superoority to ordinary bsonze in tenacity, elasticity, and tensile strength (being to it much what. Steed is to wrought iron). The presence of oxides in ordinary bronze accounts for its posscssing these qualities in less degree, and phosphoras increases them by reduction of the metal. P!osphor bronze is further greatly improved in tensile strength by beng drawn into wire or rolled inte shects; and it resista the action of sea-water much better thon copper. Such a substance cannot fail to find many mportant applientions, military, industrial, and domestic In virtuc of its reducing properties, we may add, phosphor bronze can be platinized better than any other metal

The allug $k n j \pi \perp$ as ala, ninius m br nzee ss one endowed with great strength, malleability, and ductility. It is formed of 10 parts alumivium and 90 of copper.
In the melting of ordinary bronze, reverberatory furnaces have long been used, as rapid fusion is desirable in order to prevent loss of tin, zinc, or lead by oxidation. Bellfounders often use dome-topped furnaces, as therr alloy does not require so intense a heat for fusion, but there is some waste of material with these. The copper is melted first, and covered with small ciarcoal or coke ; and the tín 19 rapidly thrust down to the bottom of the melted mass. After stirnng, the alloy 19 poured into the moulds, in which the cooling ehould be as rapid as possible. Sometimes pressure is applied during cooling, in order to make the cast free from pores.
In the old method of bronze-casting. known as the cire perdue, was is first used for the thickness of the statue (between core and mould, whicb are of baked clay), and is melted aod run off before the metal is poured in,-the core and mould being held apart by stays of iron wire. In the present day large wor'ss are never cast in one plece, but in eeveral, which are afterwards umted by heating nad applieation of fused metal. A model is tuade in plaster, aud a prece mould of Caen sand, slout $1 \frac{1}{2}$ or 2 inches thick, mande round it, the sizes of the pieces being deternained by the shape and ckaracter of the portions they occupy. These pieces are backed with plaster of Daris to about s foot in thickness, with iodentations cut in their horizonital thicknes, into which the succeediog portion of the mould fits. The mould is then taken to picces, dried, sud rebuilt in the casting-pit. It is then filled with core-composition in a liquid state, and when this is sufficiently hardened; again tsken to piecea. The core thus obtained is thoroughly dried, and reduced in size by scraping away as much of the material as would represent the thickness of the metal to be cast. This done, the mould is again built up over the corc, and the pit filled, sc., as in the other process. The atatue is completed after its removal from the mould by cutting off the jets, remoring roughnessea where they occur, and giving greater sharpuess to the details when necessary

Statues nad varions orameatal objects may also be manuiactured by the process of electro-deposition from a metallic solution; and some cxcellent results have been obtained in this way by Oudry, Christoffe, Elkington, and others. While the method offers some advantages in regard to cheapness, lightness, \&c., oi the producta, the bronzes thus produced are not so hard and durable as those got by casting, and are thas less suited for exposure.

Bronzing is the process by which a bronze-like surfaco is produced on objeots made of metal, plaster, wood, or other material. It may be done variously. The green brouze colour is sometimes produced on metal with vinegar -alone, or dilute nitric aeid, or sal-ammoniac. To give an antique appearance to newly made articles of brooze or brass, it is recormmended to dissolve three-quarters of an ounce uf anl-ammoniac and a drachmand a hali of binosalate of potash (salt of sorrel) in a quart of vinegar, moisten a soit rag or brush with the solution, and rub cier the clean bright metal till its surface becomes quite dry through the iriction. This process should be repeated several times, and the object should be kept a little warm. With a solution of chloride of platinum (which is, howevcr, an expensive liquid) almost any colur can be imparted to copper, brass, iron, or new bronze, according to the degree of dilution and number of applications. The following solution is suitable for bronziug coins and medals:-Two parts of verdigris and one part of sal-ammoniac are dissolved in vinegar, the solution is boiled, skiomed, and dideted with water till it has ooly a weak metallic taste,
and on further dilut.on lets fali no precipitate. This soluthon 19 made to boil briskly and poured on the objects. These are well washed witb clean water and then lacquered.

Objecta of cast-iron may be made to assume a ine bronze appearance by being coated with a very thin layer of vegotable oil, and then placed in a drying oven, the tempesa ture being anch that oxidation of the iron and decomposition of the oil take place simultaneously. Another mode of bronziug irun (lately recommended by Weiskopf) is with a solution of one part sylvate of eilver in twenty parts of oil of lavender. The ohject is lightly costed with this, and warmed rapidly up to $302^{\circ} \mathrm{C}$. For bronzing tin or white metal a solution may be used consisting of 1 oz . sal. ammoniar, $\frac{1}{2}$ oz alum, and $\frac{1}{2}$ oz. arsenic, dissolved in 1 pint of strong rinegar.

A good method of bronzing wood, porcelain, stoneware, composition picture and looking-glass frames, \&c., is first io coat the article with a thin solution of water glass, using a soit brush. Bronze powder is then dusted on, and any excess not adberent is knocked of by a few gentle tape. The article ia next heated to dry the silicate, and thr bronze becomes firmly attached. Bronze powders are dre pared of many different shades. In Messrs Brandeis's process the alloy used (gcuerally copper-zine) is lamiated into very fine leaves, which are then ground The powder is mashed out and dried, and by revolving in a box, which contsins some mineral varnish, the particles. receive a coating of the varnish. Bronze powders are also prepared from leaf gold ground with honey on a etone, mosaic gold ground with bone astes, compounds of tungster and goda, and in other trays.
As regards cleansing of hronze statues that have become coated with dirt in large towns, it has been found that a dilute solution of caustic alkalies removes the overlying dirt and allows the green patina to become visible. Where the metal was not originally oxidized, the alkali aimply cleanaes it and does not promote 'any formation of green rust. An occasional rubbing with oil (all excess being carefully remored) is also found to prescrve a fine bronze surface. The shining brown colour of gua barrels or otber aruns, is sometimes imparted by first producing a very thin uniform film of oxide or ruat on the iron, e.g, with vapour of muriatic acid, and giving a glose to the surface by rubbing was over it, or coating it with a shellac varnigh. But the wost common material for browning is the batter or chloride of antimony, sometimes called bronsingvalt. It is mued with olive oil and rubbed on the iron, which is sly ghtly hested. A little aquafortis is then rubbed on to quicken the operation; the barrel is then cleaned, washed with water, dried and polished, either with a steel burnisher, or by rubbing with white wax, or is varnished with a very weak solution of shollac and spirit of wine. (See Ure's Dictionary of Arts, sc.)

Greek and Roman Bronze.

The bronze (Greek, $\chi^{\text {adxoss ; Latin, xs) of classical antin }}$ quity consisted chiefly of copper, with an alloy of one or more of the following metals, zinc, tin, lead, and silver, the quantity and the character of the plloy changing as times changed, or as was required for different purposes. Among existing bronze remaina the copper is found to vary from 67 to 95 per cent. At present thẹ only valuable results which we possess are derived from the unalysis of coins (Voo Bibra, Die Bronzen und Kupferlegirungen der alten und ältesten Völker. Erlangen, 1869), from which it appears that for their bronze coins the Grecks adhered to an alloy of copper and tin till 400 в.c., after which time they used also lead with incresming frequency. Silver is rare in their bronze coms. The P.cmars also ased lead as an alloy in their tronze coius, but geadually reanced the
quantity, and auder Caligula, Nero, Vespasian, and Domitian, coiued pure copper cuins; afterwards they reverted to the mixture of lead. So far the words $\chi^{u \lambda n o s ~ a o d ~ e e s ~ m a y ~ b e ~}$ translated as brouze. Origmally, no duabt, xaג^ós was the narne for pore copper. It is so employed by Humer, who calls it ipvepos (red), aitww (glittering), patwos (shin. tag), terms whicb apply only to copper. But msted of the fullowing from this that the prucess of alloying copper with other metals was not practised then, or was unknown to the poet, the contrary would stem to he the case from the passage (Ihead, xvill 474) where be describes Hephestus as throwing into his furnace. cupper tio, silver, and guld, to make the shield of dchilles, so that it is nut always russible to kouw whether when be ases the word xa入kós he means copper pare or alloyed Still more difficult is it to make this distinction when we resd of the mythical Dactyls of Ida in Crete or the Telchanes or Cyclopes beng acyuanted with the smelting of xaAxus It is nut, however, likely that later Greek writers, who knew bronze 10 1t: true sense, and called it xadкós, would have employed this word without qualification to objects which they had seen unless they bad meant it to be taken as bronze. Whed Pausantas (m 17,6) speaks of a statae, one of the oldest figures he had seen of this material, made of separate pieces fustened together with nails, we onderstand bin to mean hierally brooze, the more readily since there exist very early figares and utensils of bronze so made. The earliest employment of bronze for artistic purposes was to hammer It out in thin pates and fasten them together with mals. This process was ealled sphyrelaton The next stage was castung, in cunnecuod with which the earliest Greek artists of fame are Theudurus and Rbacus of Samos (Pausanias, vin 14,8 , and $x .38,5$). It has been supposed that them merit conststed in introducing the process of castug statues hulluw, that 1s, with an mner core of some maternal which could afterwards be removed asd leave the figure light, less costly, and no less durable. There are remans of Assyrian bronze, probably older than the tune of Theoduras and Rhocos, cast with an moer eore of iron, and there is also 10 the British Moseum an early Etrosean statoette frow Scssa un the Voltorno, with a core of thes metal, * Hach from its beng split down the side, awing to the expansion of the ron, shows how anserviceable the ron ans for thas purpose. Obviously the power of astiog in bronee, whether colid or bollow, was a very great gain to sculptors, whose models worked in the clay with the rapidity of therr insplation conld thors be accurately and at onse reprodticed The dificulty and expense of the procesa most have been agairst it as compared with mathe; yet It was frequently employed, and Pn the case of colossal statues it had rio rival. Of these the Colossas of libudes -a figure of the sungod Helios, sad to have been 79 cubits hurl-was an example of the ptmost that art coold do with bronae It was thown down by an earthonake after standang fifty-six years. A statue of Zeus at Tarcatum by Lysuppas was 40 culuts high, and though it conld be moved with a toneh of the hand, yet it resisted the force of stoma by means of a support at the ponnt of the greatest. stress The oldest seat of bonze-founting, at least to any extent. was the sland of Delos, and next to that the island of Egha, and yet copper does not appear to have been found in ether. Between the two there existed a rivalry in the tume of the sculptors 1 yron and Iolycletus, of whom the former ased the bronze of Delus, the latter that of Agras More celebrated than euther was the bronze of Curnth, which some believed to have been first obtained by the melting together of statues of ordinary bronze, gold, and silver at the burning of that town. Pliny says that it consisted of goid, silver, and copper, and was considered muse urecous than silver aud little leas valuable than or ! !
'There were three kinds of it-one white, baving almost th appearance of silver, in which silver predominated; aoother yellow, because of the great quantity of gald in it, antl : third iu which all three metals were equaliy represente? Bot the Corinthian bronze was used rather for drinkit! caps and atensils than for statues. The process of castugg atatues as given by Pliny was to bring the mass of copper to a liquid state, and then to throw sutu it a third part of old bronze and $12 \frac{1}{2}$ per cent. of plumbum argentarium, t e., tun and lead in equal parts.

Of the vast number of bronze statues by ancient scalptors nuthing beyund a few fragments remain; but if the colussal bronze head of Venus in the British Museambe taken as a typreal example, it will shor: with what fineness and thinness those figures were cast; or, again, as an instance of tho quality of Greek bronze we may take the bronzes of Sirt. also in the Eritish Museum, on which a very thin plate uf bronze wall be seen in sume parts of the figures beaten ut: Dearly balf an ach till it reaches the thinness of note-paper Works in relief ($\tau \dot{j} \boldsymbol{p} \boldsymbol{v} \mu \mathrm{a}$), whether beaten vut or chasect, like thuse just mentioned, or cast, are eumparatuvely rare thongh this branch of art was largely practised even by the greatest sculptors. On the otner haud, it does not appear to have been carried ont by them to the extent in which it is found in Germany and Italy after the beginning of the llth centory, -for instance, io the reliefs on cattredrai gates The temple of Athene Chalkioikos in Sparta, whal its walls covered with bronze reliefs, stands out as an exceptron. By the time of the Byzantine empire, when the power of modelling had declined, and a taste for glittering appearance took its place, the process of ornamenting bronze with reliefs was soperseded by inlaying it with silver and otber materials. As to the coluur of the ancient bronzes little can now be said, because from lying so long in the earth they have become covered with what is techuically called a patusa, which is generally some shade of green, though sometimes also nearly blue, and at other tinies drab. This blae colour is very brilliant in bronze: from Hereulaneum and Pompeii A difference of suil vers probably nakes a different patina, tot something may also be due to varieties in the alloy. Perbaps the fivest examples of patina are to be found among the bronze mirrors, in which there seems to bave been generally a considerable quantity of silver for the sake of obtaining 0 bighly reflecting surface. It does not appcar that the prucess of gilding bronze was carried to any extent in classical trmes, onless, perbaps, in the production of finger-rings, of which a considerable number remain. Bot if larger works in bronze fail, there is an abondance of statuettes, candelabra, mirrors, ciste, and vessels of all kinds-Greck, Roman, and Etrus:at. One fact to be noticed is that the great nomber of bronze morrors which exist are nearly all Etrusem. A few may be Roman from the Latin inscriptuons which they bear, and a few also cume from Greece. But the general rale of thear being Fitruscan reminds us of the reputation which the Etruscans enjoged for the production of works in bronze, not of high aut, but of what might be called inchastrial art. They wero culebrated also fors modelling in clay; and that, as l'liny states, was the stage of art which immediately preceded easting in bronze, and went hand in land with it.

The art of bronze casting, which bad sunk with the Byzantine empire, was again revived with great vigour in Germany in the Ilth century, from which period are the bronze gate of the cathedral at Hudesheim (1015) and the column decorated with reliefs on the matel of the colomn of Trajan in Come (102?). In the 1 Qth century the art spead sopthward to Italy, and at first was taken up Ebercetic:lly in'Lower Italy. But though many intereating Fun o this bind oxist olso from the 13 ih and lith
centuries, it was not till the 15th that the art obtained its cumplete mastery under the Florentine artists. In the following century, again, it is found carried with extra. ordinary skill in Germany at Nuremberg, Augsburg, Munich, and Coburg. Since then, however, the bigher order of sculpture in bronze may be said to have reverted to nearly its ancient limits, that is, the production of statues and groups in the round. (See Dr C. Bischoff, Das Küpfer in der vorichristlichen Zeit, Berlin, 1865 ; and L. R. v. Fellenberg, Analysen von antiken Bronsen, 1865.)
brooch, or Broacb, (from the French broche), an iwl or bodkin. A spit is sometimes called a broach, and hence the pbrase "to broach a barrel." The term is now used to denote a clasp or fastener for the dress provided with a pin, having a binge or spring at ono end, and a catch and loop at the otber. Brooches were universaly used among the urore civilized nations of antiquity. They were made of many materials, and in innumerable varietics of ornamental design, the forms varying according to the period of their manufacture, or the taste and culture of the people usirg them. They are unknawn in the Swiss Lake settlements of the Bronze Age, thuugh pins and bracelets are abundant. Erooches of the Bromze Age are cxtremely rare in Britaiu, although they occur in considerable numbers and of clegant forms in Storts Germany and Scandinavia. The simplest is similer to that which has been reproduced in modern times as the "patent safetypin," hut baving the eads prolonged into flat spirals and the clasp fattened and engraved with ornamental designs. Another characteristic form was produced by winding a long wire into a fat double-spral, of which one end formed the pio and the other the catch. A third form consisted of two round ornamented plates connected by a bow shaped centre piece. In the early Iron Age the brooches of Central Europe exlibit an immense varicty of forms, which are for the most part bow-shaped or harp-shaped, with spring-pins, akin to the types fuund in the Etruscan cemeteriea of Certosa and Villanova recently explored. The Frankish group exhibits three well-dctined t ypes, viz., an imitation of animal forms, a simple disc, and a cruciform type, of which there are innumerable varieties of form. The Merovingian brooches were made in gold, silver, or bronze, adorned with precions stones, filagree-work, or enamel; but whatever the richness of the brooch, the pin was always of iron. Tho Scandinavian or Northern group exhibits a similar eraciform. variety more massive io form and richly chased, the terminating knobs fashioned into the similitndo of ani.nals' beads. This form occurs also in Anglo-Saxon graves'in England. The Anglo-Saxon broches were exquisite works of art, ingeniously and tastefully constructed. In Kent the circular form predominates. They are often of gold, with a central boss exquisitely decorated, the flat part of the brooch being a mosaic of turquolses, garnets on gollfoil, mother of pearl, sc., arranged in geometric patterns, and the gold work enriched with filagree or decorated with dragonesque engravings. Sonetines the brooch was cruciform and ornamented with chased work and settiags of paste or precious stones. The Scandmawan brooches of the Viking time were oval and bowl-shaped, formed of an under shell of impure brnaze gilt on the convex side, and covered by ari upper shell of open chased. work ornaniented with bosses, or open crown-like ornaments, or animals poads. The geographical distribution of these peculiar brooches indicates the extent of the conquests of the Northmen. They occur in northern Scotland, England, Ireland, Iceland, Normandy, and Livonia. The Celtie group is characterized by the penannular form of thic ring of the brooch and the greater length of the pin.

They are usually of bronze or silver, chased or engraved witli intricate designs of interlaced or dragonesque work in the style of the illuminated Celtic manuscripts of the 7at, Sth, and 9th centuries. The Hunterston brooch, which was found at Hawking Craig in Ayrshire, is a welfknowu example of this style. Silver brooches of immense size, some baving pins 15 inches in length, and the penannular ring of the brooch terminating in large kuols reseobbling thist!a heads, are occasionally found in Viking hoards of this period, consisting of bullion, brooches, and Cufic and Anglo-Saxon coins buried un Scotlish soil. In medixval tiaes the form of the brooch mas usually a simple, flat circular dise, with open ceritre, the pin being cqual in length to the dianneter of the brooch. They were often inkeribel with religious and talismanic formule. The Highland brooches were commonly of this form, but the disc was broader, and the rentral opening snaller in proportion to the size of the brooch. They were ornamented in the style so cummon on llighland jowder-horns, with engraved patterns of interlacing work and foilage, arranged in geometrical spaces, and sumetumes mingled with fagures of animals.

BROOKE, Frances a elever wovelist and dramatic writer, whose maiden nane was Moore, was born in the earlier part of the 18th century. Oi her novels, sone of which enjosed consideratle popularity in their day, the most important wore The Mastory of Lady Julia Mande-- wille, Emily Montague, and The E.rcursion. Her dramatic pieces and trauslations from the French are now whelly forgoten. She died in Jannary 1789, two days after her husband.

BROOKE, Henry, huvelist and puet, was born at Rantavan, county Cavan, in 1708. His father was rector of killinkere; Lis mother was a daughter of the bishop of Elphid. At an early age he entered Dublin University, where he was noticed by Swift, whn predicted great things of him. About 17et ho proceeded to London, where be managed to gain the affection and esteem of Pope. He studied law in the Temple, and in 1728 married his ward and cousin, Catherne Meares, a girl of Gfteen. His first literary venture appears to have been the poem Unizersal Beauly (1730), in which there is esceedingly little that fan be adinited or even tolerated. A much more successful venture was tho drama Gustavus basa. The prohibition of this play induced the autlor to :ublish it, and the sale of the printed copies was enornows. Brooke is said to have cleared 1000 ginneas by it. Io 1740 his health gare way; be retired to Rantavan, and never returned to his life in Loudou. In 1745 he was made barrack moster at Mullingar, and his well-meant pramphlet. Secrel Hestory and Bemovs of the Burractis of Ireland, exeted much ilifecling aganst him. He spent the remanning years of bis life in literary work Ihs dramas were numerons, and some of them kept the stage for a considerable length on time. The work' by which he is best known, The Fual ng Quality, began to appear $m 1768$. It is the product of the matured experichice of the author, and though deficient in many of the qualities that go to form the excellenec of a work of fiction, it is forcibly and clearly written, and contans much somid and advanced thinking on social problems. Brooke died in 1783. An edition of the Fool of Quality was published in 1859 by the Iiev. Cbarles Kinrsley, in whose extravagantly eulegistic preface will be found all the offormation we have with regard to the auther's life and character

BROOKE, SIR Jases, Rajah of Sarawah, in the island of Bornco, and Gevernor of Labuao, was burn at Coombe Grove near Bath, April 29. 1803. It is sometimes erreneously stated that he was born in Bengal, a mistake arising from the fact that his father a member of the Civil Service 4-1.
of the Easu india Company, had loog liver there. His mother was a woman of superior understanding, and to her care he owed his careful early traming. He received the ordinary school education, entered the service of the East Iadia Company, and was sent out to lndia ahout 1825. On the outbreak of the Burmese war, he was despatehed with his regiment to the valley of ihe Brahmaputra. and, being dangerously wounded 11 an engagement near Rungpore, was compclled in return howe (1826). After his recovery be travelled on the Continent before going to India, and circumstances led him soon after to leave the service of the Company In 1830 he made a voyage to China, and durng his passage among the islands of the Indian Archuplago, so rich in natoral beauty, magnifience, and fertility, but occupred by a population of savage tribes, continually at war with each cther, and carrymg on a system of pracy on a vist scale and with relentless ferocity, he conceived tho great design of rescuing them from barbarism and bangug them within the pale of civilization. His parpose was confirmed by observations made doring a second visit to China, and on his return to England he applied himself in earnest to making the necessary preparations. Having succeeded on the death of his father to a large property, he bought and equipped a yacht, the "Royalist," of 140 tons burden, and for three years tested its capacitics and trained his crew of twenty men, chiefly in the Mediterranean At teagth. on Octaber 27. 1838, he sailed from the Thames on his great adventure. On reachmg Borneo, after varıous delays, be found the Rajah Muda Hassim, uncle of the reigming sultan, engaged mo war in the province of Sarawak with several of the Dyat tribes, who had revolted agamst the sultan He offered his and to the rajah, and with hos crew and some Javanese who bad joined them, he took part in a battle with the insur. gents, and they were defeated. For hus services the title of Rajah of Sarawak xas conferred on him by Muda Hassim, the former rajah beng deprived in his favour. It was, however, some time before the sultan could be induced to eonfirm his title (September 1841). During the next five years Rajah Brooke was engaged in establishng his power, in making just reforms in adiministration, prejaring a code of lows, and introducing just and homane inodes of dealing with the degraded subyects of his rule. But this was not all. He looked forward to the development oi commerce as' the most effective means of putting an end to the worst evils that aflocted the archifelago, and in order to make thas possibie, the way must first be cleared by the suppression, or a considerable diminution, of the prevaling piracy, which was not only a curse to the savage tribes engaged mit, but a standing danger to Earquean and American traders in those seas. Vanous expeditions wero therefore arganized and sent out aganst the marauders, Dyaks and Malays, and sometımes even Arabs. Captan Keppel, and other commanders of Britishships of war, received permission to co-plerate with Rajah Brooke in these expeditions. The pirates were attacked in therr strongholds, they fought desperately, and the slaughter was mmense. Negotiations with the chicfs had been tried, and tried in van. The capital of the sultan of Bornco was bombarded and stormed, and the sultan with his army routed. He was, however, soon after restored to his dominion. So large was tho momber of natues, pirates and others, slain in these expeditions, that the "head-money" awarded by the British Government to those who had taken part in them amounted to no less than $£ 20,000$. In October 1847 liajah Brooke returncd to England, where he was well received by the Government; and the Corporation of London conferred on him the freedom of the city. The Island of Iabuan, with its dependencies, having been aequired ly purchase from the sultan of Bornea. was crected into a British colony,
and Rajai Brooke ras appointea Governor aud commander-in-chief. Ho was also named consul-general in Borneo These appointments had been made before his arrival in Eigland. The university of Oxford conferred on bum the Lonorary degree of D.C.L., and in 1848 he was created K.C.B. He soon after returned to Sarawak, and was carred thitiner by a Bratish man-of-war. In the summer of 184 y be led au expedition against the Seribas and Sakuran Dyaks, who still persisted in their piratical practices and refused to subnit to British authority. Their defeat and whulesale slaughter was matter of course. At the time of this engagemient Sir James Brooke was lying ill with dysentery. He visited twice the capital of the sultan of Sala, and concluded a treaty with him which had for sne of its objects the expulsion of the sea-gypsies and ather tribes from his dommions. In 1851 grave charges with respect to the operations in Borneo were brought against Sir James Brooke in the House of Commons by Joseph Hume and other members, especially as to the "bead-money" recesved. To meet these accusations, and to vindicate bis proceedinga, he came to England. The evidence adduced was so conflicting that the matter was at length referred to a Royal Comme sion, to sit at Singapore. As the result of its investigation the charges were declared to be " not proven" Sir James, however, was soon after deprived of the governorship of Labuan, and the head-money was abolished. In 1867 his house in Sarawak was attacked and burat by Chinese pirates, and he had to fly from the capital, Kuching. With a small force he attacked the Chinese, recovered the town, made a great slaughter of them, and drove away the rest. In the following year he came to England, and remained there for three years. During this time he was smitten with paralysis, a public subscription was rased, and an estate in Devonshire uras bought and presented to bim. He made two more visits to Sarawak, and on each occasion had a rebellion to suppress. He spent lus last days on his estato at Eurrator in Devonshire, and died there, June 11, 1868, Notwithstanding differences of opinion with regard to some of Sir Tames Erooke's proccedings, it is not to be denied that he was a man of the highest personal character. In his public conduct he was undoubtedly actuated by a noble ambition, and he displayed rare courage both in his contlieta in the East and under the charges advanced against him in England His Private Letters (1838 to 1853) were published in 1853 . Portions of his Journal Lhave also been cdited by Captains Mundy and Keppel.

BROOKES, JosuUa, English anatomist, was born m 1761 At a very early age he devoted bumself to medical science, and attended the lectures of the most eminent surgeons in London and Paris. After he had completed has studies, he began to teach anatony and physiology, and contmued to do so during forty years of his life, traiung no fewer than 5000 students, many of whom afterwards became famons in different parts of the world. Ilis muscam, which contained specimens not only of humas and comparative anatomy, but also of natural history in all its branches, was arranged on a system combined from the various methods of Cuvier, Bhamenbach, Linnaus, and other naturalists, and enst its proprietor about $£ 30,000$. Many of his treatises are printed in the Transactions of the various scientifie societies of which he was a member. Ho died suddenly af London, January 10. 1833.

BROOKLYN, a city of the United States of Nortb America, capital of King's Comnty, New York, is situated on the western and of Long Island, immediately opposite the city of New lock, from which it 19 separated by the East liver, an arm of the sen, about threc-quarters of a mile in breadth. Lat. $40^{\circ} 41^{\prime} \mathrm{N}$., long. $73^{\circ} 59^{\prime} \mathrm{W}$. The city now includes not onlv Brooklyn proper, but also, by a
rocent act oi cie legislature, all the county towns of the mestern part of the island, so that it now covers a larger area than :ny other city in the United States. From Hunter's

Pian of Erooklya.
Point to Bay Ridge it has a river frontage of nearlynine miles. The ground on which the city is bult cxbibits considerable inequalities of surface, and thus increases the picturesqueness of its appearance, while the practical disalrantages of such a site bave been overcome by skilfal enguneering. The strects, with the exception of Fultoo Street, the principal thoroughfare, are generally straight, bare a width of frem 60 to 100 feet, and cross each other at right angles. Chief among the public buildings are the city-hall (an edifice of white marble dating from 1845-6), the conaty court. bouse (erected in 1862), the county jail (1837), the pent tentiary, the state arsenal, and the city hospitaf. Besides the last-mentioned institution the benevolent estallishments of Brooklyn include the Long Island College IIospital, St Mary's and St Peter's hospual, the female orphao asylum, the marine hospital, the Graham mstitution for the relief of aged women, and numerous other charities. The churches number between 200 and 300 , many of then are beautiful buildings, but none claim spectal motice except the new Roman Catholic Cathedral, which is only rivalled by the corresponding building m New York. Of literary and artistic institutions the most remarkable are the Mercantile Library (datiug from 1857), the Brooklign Institute (founded by Augustus Gratam), the Long Island Historical Society, the Art Association, the Academy of Design, the Academy of Music, and the Philharmonic Society. There are three theatres, and an oprora house, which dates from 1862. The educational establishments comprise the Packer Collegiate Institute (founded in 1853) for fenale education, the Polytechnic Institute for boys (started in 1854), the Adelphi Acaderny for both sexcs (founded in I863), the Roman Catholic College of St John, upwards of fifty public grammar and primary schoots, and nemerous private institutions Though Brooklyn in some measure serves as a suburb of residence to New York, and many of its inlabitants carry on their busincss in the larger city, its own industrial and commercial activity is very great. It bas flour-mills, sugar-refineries, lager-beer brewerics, distilleries, tobacco factories, and chemical works ; and manufactures steel, brass, and copper waves, engines, machinery, and printing-presses. The grain trade is of enormous extent, the warehouses being capable of boldiog aboit 12.000 .000 hwshels: and sng2r, cofee, oll. hides and
wool are also largely imperted. Shost of the river front age is lined with basins, wharves and docks, the most inportaut being the Atlantic dock (coostructed about 1846) with an area of 40 acres, the Erie basin of 60 acres, the Brooklyn basin of 40 acres, the ITallabout basin, and the United States navy yard. This last occuples a total area of 144 acres, and has extensive wharfage, and a dry dock. built of granite, at a cost upwards of $\$ 2,113,000$. The city is supplied with water by an elaborate system of reservorrs, of which the most distant is 19 miles away in the vicinity of Hempstead. Its principal pleasure ground ${ }_{13}$ Prospect Park, which embraces more than 600 acres, partly covered with forest trees. A lake of 50 acres is being excavated, and there is a large well. 60 feet in dameter, which will furnish the necessary water to keep it fresh. Washungton Park, on the site of ancient fortifica. tious, is also a pleasant spot, and there are various other open grounds throughout the city. At the west end is situated the well bnown Greeuwood cemetery, which coultains about 520 acres of finely-raried ground, a good part of which is still adorned with natural wood

The traffio of the city is fucilitated by tranway lines ; and its conection with New York, which has hatherto been dependent on steam-boat ferries, is to be rendered mors conveaicut by a large bridge in course of construction. This bridge, which crosses the East River vear its western extremity, is 85 fect wide, and has a river span of 1596 and a total length of 5959 fect. The total cost is estimated to exceed $\$ 13,000,000$.
The Grat settlement of Brooklyn, or as it was formerly ealled Breuckelen, dates from 1636 . Then a few Whlloon colonists took up thear residence on the spot that still bears the name of Wall. abont (Waalbogt or Wallonas' Bay). Englishand Dutch sctilers followed : and in lesis, e patent or charter was granted to the town by Governor Richard Nicolls. The first chareh had been erected the prevous year In i698 the population only amounted to 509 persons, of whom sixty-five reere slares. in 1775 the site of the present town was the scene of the battle between the Americans ard British, which is comally known as the battle of long lsland in 1810 l3rookly was incomorated as a village, and in 1834 it becann a chartered eity. Williamshurg ors foumded by Richard W Woodhull, in the early part of the present century; it attaned tho rant: of a willage in 1827, and was recognized as a city in 1851 The population of Brooklyn was in 1800, 32298 ; in 1820, 7175; in $1830,15,292$; in $1540,30,233$; and in $1850,96,850$ in 1555 the number of inhabitants nuthin the new boundarics was 205,250 , of whom $48,35^{-7}$ belonged to Williamshurg; in isne this had
 estimated at 500,000 . (See Stile's If story of the C'ity of Eronklyn, 3 vols., 1867-70.)

Brooks, Cuaples Smarey, an English novelist, and dramatic and miscellaneons sriter, was born in 1815. ILe was the son of an eminent Londma a ronitcet, and reccived his education at a public sclionl in the city. Applying himself to the study of law, he passed the usual examination for admission; but mstead of pursuing further the professional path, he turned astud and began to fect his way tomards the broader fieh of literature. SHe wrote, sumetimes alone, sometimes in conjunction with others, slight dramatic pieces of the burlesjue kiod, and became is nemspaper reporter In this capacity be was for many yars engaged on the droming Cironcte. For the sam" paper he afterwards undertook to write tl:e parliament. ary summary, and was appointed special connmisyione: to carry out incestigations on the subject of labour and the poor. For this purpose he travelled in Southern Russie, Egypt, and Syria; the results of his inquiris appearing first ia the form of letters to the editor, and afterwards in a eeparate velume, under the title of The Russians of the South (1856). Brooks was for taany years on the staff of the Illustrated London Necus, contributiog the weekly article on the politics of the day, and the two scries entitled "Nothing in the Papers" and "ly the Way," besides other occasional nieces. In 1854 be joined the siati of

Puach, anu noteworthy among nis numerous romtubutions were the weekly satirical summaries of the parliamentary debates, entitled "The Essence of Parliament." His long service as newspaper reporter gave bim special aptitude for this playfnl parody. In 1870, on the death of Mark Lemon, "dear old Shirley," as his frieuds used to call him, was chosen to succeed to the editorial chair He colded to bis reputation by several good novels, the first of which, Aspen Courr, was published in 1855. It was followed by The Gordian Inot (1860). The Silver Cord (1861), and Sooner or Later (1868). Brooks was a great letterwriter, deliberately cultivating the practice as an art, and imitating the style in vogue before uewspapers and telegraphs suppressed privato letters. He had an astonishing nemory, was brilliant as an epigrnmmatist, and was a great reader, and a most genial and admirable cumpanion. Though he nearly reached his sixtieth year, be retained all the charm of youthful freshness and brightness. Ile was in bis element with a group of children, readiog to them, shariog their fuv, and always remembering the birthlays. He died in London, Fetruary 23, 1874. His remains were interred, near those of his friends Leeeh and Thackeray, in. Kema! Green cemetery. As a novelist Shirley Brouks holds a high rank, but not the highest. His novels prob. ably suffered in some respeets from the manner of their production, the slow piece-meal writing for periodical literature. But they possess qualities of an order which will save then from the swift oblivion that overtakes so many books of their class. He sbows in them a large knowledge of mea, especially of Londoners, a fair acquaintance with the world of books and the world of art, a fertile imagination, and mach critica! acumed. And these qmilities are set off to the best adyantage by the charm of an admirally vigorous and polished stgle. In this respect, and in the force of his refined satire, he bears some likeness to bis greater friend, the author of lauity Fair.

BROOME, Wrlinam, the coadjuter of Pope in translat. ing the Odyssey, was born at Haslngton in Cheshire, in 1689. He vas edueated upon the foundation at Eton, and was captain of the school a whole year, without any vaeancy oecurring by which be might bave obtained a scholarship at King's College. Being by this delay superanmuated, be was sent to St John's College by the contributions of his friends, and obtained a small exlilitition there. Ilis fondness for metrical composition was then such that his companions familiarly callod hiru "Poet." He appeared early in the world as a translator of the Ilicul into prose, in conjunction with Ozell and Oldisworth, the translation being superior, in Tolad's opinion, to that of Pope. Broome was introduced to Pope, who was then visitiog Sir John Cotton at Madingley, near Cambridge, and gained so much of his esteem that he was employed to make extracts from Eustathius for the notes to the translation of the lliad, and in the volumes of poetry purlisbed by Lintot, ecmmonly called Pope's Jiscellomies, toany of his carly pieees were inserted.

When the success of the lliut gave encouragement 10 a version of the Odysscy. l'ope, weary of the toil, ealled Fenton and broono to his assistance ; and taking on'y half the work upun himself, divided the other half between his partners, giving four books to Fentoll and eight to Broome. To the lot of Eroome foll the serund, sixth, eighth, eleventh, twelfth, sixteenth, cighteeuth, and twenty-third, together with the burden of writing all the wotes. The Irice at which l'ope purchased this assistance was $£ 300$ paid to Fenton and $\mathcal{E 5 0 0}$ to Broome, with as many copies as he wanted for his friends, which anounted to filoo more. The payment made to fentun is known only by hearsay; Broouse's is very distinctly tod ly l'ope in the notes to the Dancial It is erident that accurding to Pope's own esti-
mate, Broome was mufarly treated. If four buoks could merit $£ 300$, eight, and all the notes, equivalent at least to four more, bad certainly a right to more than $\mathfrak{f} 600$. Broome prubably considered himself as injured, for he always spoke of Pope as too much a lover of money, and Pope pursued lim with avowed hastility. He not only named liroom. disrespectfully in the Dunciad, but quoted him more thic. once in the Bathos, as a proficient in the art of sinking. It has been said that they were afterwards recanciled, bus their peace was probably withont friendship. Broome aftur. wards published a AHiscelluny of l'ocms. He never rose to very high digaty an the chureh; he becane rectur of Sturston in Soffolk, where he married a wealthy widow. and afterwards, when the king visited Canbridge, in 1728 , be was made doctor of laws. In the same jear he nas presented to the rectory of Pullian. Towards the cluse of his life he amused himself with translating sume of the Odes of Anacreon, which be published ia the Geztlemun's Magazane, under the name of Cbester. He died at Bath in 1745. (See T. W. Burlow, Memoir of Hilliam Broome, 1855.)

EROSELEY, formerly Buwardesley, a market-fonn on the Scwern, in the couaty of Shropshire, $1+6$ miles from London. It is a place of considerable trade in iron, having near it pruductive mines of that mineral, as well as of coal. There are also manufactories of tobaeco-pipes, bricks, and tiles. Population of parish in 1871, 1639.

BrosSes, Charles de, first president of the parliament of Burgundy, was born at Dijon in 1709. He studied law with a view to the magistracy, but the bent ol his mind nas towards literature and the sciences. He travelied throush Italy in 1739 in company with his friend M. de SaintePalaye; and on has return to France published his Lettrea sur C'Etat Actuel de la Ville Souterraine d'Herculaneum, Dijon, 1750,8 vo, which was the first work upon that interesting subject. A collection of letters, written during bis Italian tour, entitled Lellres Historiques el Critiques, in three vols. 8vo, was published at Paris after bis death. In 1760 be published a dissertation, Sur le Culte des Dieur Fictiches, 12 mo , which was afterwards inserted in the Encychopectie Méthodique. At the solicitation of his fricma Bufun, De Brosses undertook his Mistoire des Nitivgations aux Terres Australes, which was pablished in 1750. in two vols. 4 to, with mars. It was in this work that AI ?e Brosses first land down the geographical divinio:ts of Australasia and Polynesia, which were afterwards adopted by Pinkerton ard succeeding geographers. In 1765 appeared his Traiti de la Formation Méconique des Langues, a work distinguisbed by much rescarch, and cuntaming an admiralle exposition of the purely enpirical theory of the onigin of language. Full recognition of its merits will be foand in Dr Tylons work, Pimitice C'ulture. M. de Brossts had been occupied, during a great part of his life, on a translation of Sallust, and in attempting to sapply the lost chapters in that celcbrated historian. At length in 1737, be pulushed LDllistoire du Seqtieme Siede de le République Romaine, 3 vols. fto, to which is prefixed a larned life of Sallust, reprinted at the commencement of the transtation of that bistorian by De Lamalle These literary vecupations did not prevent the author from discharging with ability his official duties, nor from carrying on a constant and exten. sive correspontence whit the most distinguished litcrary characters of his time. In 1758 he succeeded the Marquis de Caumout in the Acalemie de Belles Lettres; but he was never admitted a member of the French Academy, in coasequence, it is said, of the oppusition of Voltaire.

Besides the works already mentioned, he wroie screral memoirs aud dissertations in the collections of the Academy of Inseriptions, and in those of the Academy of Dijon. He also contributed various articles to the Dictionnare Encyclopidique, on the subjects of grammar, ctymology,
masic, te., and he left behind him several MSS., which were unfortuately lost doring the revolution. He died in 1737.
brougham, Brnay, first Lord Brougham and Vaux, man of letters, man of science, adrocate, orator, statesman, aud Lord High Chancellorof Eagland, was born at Edinburgh on the 19th September 1778, and died at Cannes in France on the 7th May 1868 . During a great portion of a life extended to the un wonted term of ninety years, but especially in the third and fourth decades of the present century, from 1820 to 1840 , no Englishman in any civil career played so conspicuous a part in public affairs or enjoyed so wide a fame as Henry Brougham. His indomitable energy, his vebement eloquence, bis enthusiastic attachment to the cusse of freedom, progress; aud bumanity, to which be rendered so many signal services, caused bim to bo justly regarded as one of the most extraordinary and illustrious zeen of his age and of his country. He brought to all be undertook a vigour and variety of intellect almost unparalleled; for bis ambition was to excel in sll things, and he seemed to aspire to universsl fame. "There go," said Mr Rogers, as he drove off one morning from \cdot Panshanger, "Solon, Lycurgus, Demosthenes, Archimedes, Sir Isase Nemton, Lord Ciesterield, and a great many more in one post-chsise." No man ever commanded with more effect the spplause of listening senates, or could better rouse the depths of popular enthusiasm. His boundless command of Isnguage, his audacity, his memory stored with every sort of knowledge, his animal spirits and social jowers, gave him the lead everywhere, and be was nut Jow to take advantage of his aplendid talents and acquirements in overy mode of life. His atriking and almost grotesque personal appesrance added to the effect of bis voice and manner; a tall disjointed frame, with strong bony limbs ond hands, that seemed to interpret the power of bis address ; strange angular motions of his arms; the incessant jerk of his barsh but expressive features ; the exquisite modulations of his voice, now thundering in the loudest tones of indignation, and now subdued to a whisper which penetrated to the very walls of the House of Commons and riveted the attention of the audience; a power of mingling tenderness and scorn, argument and iuvective, in sentences which rose in accumulated involutions, but righted themselves at last, all contributed to give bin the magieal influence which a great aetor exerts over a crowded theatre. Yet in the midst of all his triumphs, the companious of his early life und those who were best acquainted with his character, knew that his extraordioary gifts and powers did not include all the elements of true greatness. He wanted that moral elevation which inspires confidence and respect, and which is even more cesseutial than genius to the highest achievements and the most. lasting fame. At times his eccentricity rose to the verge of insauity, as if the reins by which hea guided bis fiery temper had slipped from his hand. At the bar there were greater and better advocates; on the bench there were more sure and learned judges; in science he made no real discoveries; in letters, notwithstanding the prodigious activity of his pen, he bas left no work of lasting celebrity; and although as an orator he was in bis best days uvequalled, he himself outlised the evaneseent glories of his eloquence. Hence it has come to pass, that within fifty years of his most brillint period, and within ten gears of his death, the figure of Lord Brougham has alrcady become somewhat indistinct. The generation which was fascinated by bis eloquense and amused by the endless coruscations and evolutions of his character is passing sway, and it has become a task of diffenlty to preserve a faithful record of so strange and wonderful a phenomenon. That, however, which remains, and must ever remain as the noblest
memorial of his life, is his unvarying devotion to the progress of liberal opinions, to the reform of the law, to popular education, to the emaneipation of the negro race from alavery, and to the maintenance of peace. In this sense, he was, as be was once portrayed by an accomplished caricaturist of the day, a citizen of the world. Of every buman right, Bruugham was a champion; of every humsn wrong, an avenger.

We shall not sttempt in this notiee of his life ta folluw the innumerable incidents of bis long and varied career, or to enumerate the speeches and writings which the threw off like sparks ou every imaginable occasion. Our object is rather to convey to the reader a just impression of the man, as he appeared to those who knew hina as he was, and who still recall the transcendent effects of his energy. Lord Brougham bas been unfortunate in his biographers. The memoir of him prepared by Lord Campbell; and published after the death of the suthor and of the subject of it, is written in a carping and derisive tone, unworthy of a distioguished rival. Lord Brougham's autobiography, whieb also appeared after his death, was begun when he had passed his eightieth year ; his faculties were impaired, his memory Fras faifing, and the work is full of inaecuracies, which bis successors were not authorized to correct. let we are indebted to it for some interestiug particulars of his early life, which no one but himseli-eould bave preserved.

In his later years, after Lord Brougham bad taken his seat Ancesiry. in the House of Peers, he was wont to trace his paternal descent to Udardus de Broham, in the reign of Henry II., and some memorials of that doughty crusuder still decorate the baronial hall at Brougham. IIe claimed, besides, an infusion of pure Norman blood from Harold, Lord of Vaux in Normandy, whose title he added to his own. Bat these were the delusions of an enthusiastic mind. No real counection has been established between the aveient lords of Brougham Castle, whose inhcritance passed by marriage from the Viponts into the family of the De Cliffords, and the Broughams of Sealcs Ilall, from whom the chancellor was really descended. Brougham Hall was purchased from one Janies Bird by Brougham's great-granduacle, who. left it to his grandfather, an active attorney and agent to the duke of Nurfilk for his grace's Cumberland property. His father, Henry Broughan, was seut to Eton, and afterwards travelled on the Cantivent. The sudden death of a young lady to ${ }^{\circ}$ whom this gentlemsa was about to be married, deeply affected him: he started in 1777 for a ahort tour in Scotland, but na fate would have it he never recrossed the border or revisited Bronglam. In Edinburgh he took lodgings at the house of Mrs Syme, tho widow of a clergyman, and a sister of Principal Robertson, the historian. This lady bad a daughter of singular beauty and merit. Mr Brougham fell in love with her and agreed to settle in Edinburgh as a condition of obtaining her liand. They were married by Dr Robertsou, and in the following year the eldest aon, the illustrious sulbject of this notice, was born at No. 21 St Andrew Square. No feeling in life was more deeply rooted in the beart of Lord brougham than his intense affection and veneration for his aduiriule mother. He repaid her early care and judicious gutiance by the most ardent and unvarying decotion. 1le will. ingly laid all the triumphe of his career at her feet ; and she lived to see him attaiu the proudest heights of fame and power. Nor was be less attached to the memory of his great uocle, the principal. To his dying day he would retrace with affectionate emotion the influcnce that ascomplished scholar and excellent man bad upon his onn education. He well remembered his person and his precepts, fur Dr Robertson only died in 1793, and nearly seventy years afterwards Lord Brougbam, presiding over the Sucial Science meeting at Glasgow. was touched by
heariog a "parapirase," by his great kinsman, sung in Olasgow cathedral, the authorship of which was probably kuown only to humelf. His farentage on his mother's sade berng Scotch, and Scotland the flace of his birth and education-and, indeed, of his entry into life-he naturally retained many Scottish peculiarities of mamer and intona\therefore :on ; yet Brougham was not a Scotchmian, he was somewhat eager to throw off his Scottish character, and he sand in atter life that there was no place be should visit so unwilliagly as Edinburgh.
Frem his earlicst ago broughan showed signs of estraordinary talents and euergy. His mother averred that he apoke distinctly several words when he was elght months and two weeks old. In his eradle he was the terror of his nurses, and as he grew older his grandmother compared him to the admirable Crichton from his excelling in everythiog ho undertook. Whee barely seven he wis sect to the High School of Edinburgb, where he ganed a a cimph over Luke Fraser, his tutor, by successinlly justifyng tho use of sorme Latin words which Fraser Lad condemned in an exercise, and in August 1791, when he was not yet thirtecn, he left the schuol as dux, of head of the fifth form, taught by the beadmaster, Dr Adam. He entered the university of Edinburgh in the winter of 1792 , aud in addition to the study of Greek under Professor Dalzell, he applied himself to the natural soiences under Professor Playfair, and especially to matheratics. At twelve one of his cousins met hum with a huge quarto under bis arm, which turned out to be Laplace's Mécanque Céleste, in French. In the mathematical class he liit upon the binomial theoren before he had been taught it ; and he was soon conversant with the Princepa of Neriton. It was characteristic of hisastonishng memery that he carried with him through life all he had learned in boyhood. We have scen him in later years vary the monotony of a legal argument by working a problem in algebra, or exchanging a Greck epigran with Lord Wellesley, in the midst of grave debates of politics or of laws. In 1794 he set to work to master the fusional calculus; and in the following year he sent a paper to the Royal Society on some now phenomenon of light and colours, which was printed in the Transactions of that learned body. A paper on porisms was published in the same manner in 1798, and in 1803 his scientific reputation was so far established that he was elected a fellow of the society. But these efforts were more remarkable for their precocity than for their novelty. In spite of his taste for mathematical reasening Droughan's mind was not an accurate or exact one; and his pursuit of the physical sciences was rather a favnuite recreation than a golid alvantace to inim. He continued his experinents i: oftics throush hife, however, and would sometimes impart observations, which he took fer discoverics, to the French Academy of Science. An enthusiastic discourse on Newton and the Newtonian philosophy was written by him in bis eighty-fiftly yar, when a statue of the great philosopher was erected at Grantham, and at that age he was still fond of commenting upon the Princizia. 1 But whilst IJenry bronghan was following Iectures in every branch of knowledge at the university, his inherent animal spirits and sociable nature made lime the ringleader of the gayest and wildest youths of the time. Practical jokes, wrenching knockers, braving the watch, and wasting the small hours of the night, were pastimes as faniiliar to him as the gravest discussions. "Looking back," says he, in his Memoirs, "to these pranks reminds me of the inexinustible fund of spirits one pussessed, and how that capital foundation of nevertiring energy and endless restlessuess crabled some of us to work on with unfailing st: ingth to the end of life: and wen wow, writing at nearly ninety sear of age, I cal: "ecall the:a-a, hat bose'
but young men's freaks-with pleasure ana evell exultation: yet I agree with the cld Legegar Ochiltree, in the best of all Scott's works, sayu:g-'Aye, aye! they were daft days thae, but they were a' vanity and waur.'" The ef nit of these "daft days," these mad-cap bours, clurg to Brougham through life; and long after he had beill his great seal of England, perhaps while he held it, be was just as ready to play his past in scenes of the wildest merrment as he had been at the university.

As early as 1792 he founded a debating saciety of a very jurenile character, to which several persons afterwards distinguished in life belonged. This society, hewever subsequently merged in the "Speculative Society," which Lace a ball and library of its own in the college. Here Brougham, Horner, Jefrty, Cockburn, Murray, and Moncreifi tried thenr early powers. and gave the promise of that eloquence which erentually placed then all in Parliament or on the bench of justice. Brougham surpassed them all, nut, indeed. wh depth of knowledge or sumndness of reasoning, but in the astunishing flow of his language, his readmess is :eph, the grace of his elocution, and his withormg gift of sarcusm and ridicale. Of all the remarkable porers he posscized Oraterio that of oratory was unquestionahly the first. Conscions of muer his natural strength and of the adrantages to be derisul from this faculty in a country which is largely governce and swayed by rhetoric. he applied himself with peculiar zeal to the art of public speaking. He made himself perfectly conversant with the great masterpieces of encient eloquence, which he knew to a great extent by heart; fie ever maintained that the highest effects of the orator ceuld only be acheved by dihigent preparation and constant study; he bestowed extrenc care upon the modulation of his voiee, which was one of extraordinary compass and strength; even his gestures and attutudics were the result of thenght, and it was.remarked that in concluding the elaborate peroration of his speech on the queen's trial, he assumed the majestic bearing with which a minister of the Scottish Church involes the blessing of God in dismissing his congregation. Both by study and by practice. then, oratory was his chief art, and he continued through life to cultivate it with the enthusiasm of an actor, who never cutirely attains to the fulfiment of his own idcal. No doubt, in the resistless torrent of has invective, in appeals to the passions of his audience, in the rapid and lueid exposition of facts, in the stilful arrangement of his discourse, which was highly artificial, and in the power of wielding enormous and intricate sentences. Brougham was unrimalled. . He entered the House of Commons, as we shall presently see. soon after the voices of Fitt and Fox had been hurhed for ever. Except Canning, there was no one in Parliancont who could be compared to Brougham, and he rapidly rose to a height of distinction which became at one moment supremacy. Yet on tooking back, even to the most celebrated and successful of his efforts, subsequently revised and published by himseli, little remans which can lay any claim to the dignity of classic eloquence. Notwithstanding Lord Bronghanis study and enthusiastic admiration of Demosthenes, nothing was morc unlike the stern simplisity and grandeur of the great Athenian-"Densus, et Lrevis, et semper instanssibi" -than the declamation of Lerd Brougham. The forec ef the current mas wasted in a tlood which overleapt its banks and broke its barricrs. The effect was mere intense than permanent. Eren in the judgment of his own centemporaries, Canning surpassel him in wit; Munket in felicity of diction; Lemdhmet in terseness, policy, and cogency of argument : Ellonhrough in dignity: but one of them possessed hic mirelluns versatility, and it suc: ed

tion than himself. Of ail the branehes of human knowledge to which Broughani directed his atteution, and in which he attained to more or less proficiency, the study of the law was the least cougenial to him. He speaks of it in early life as "the cursedest of all eursed professions," and even 11 1808, when he had come to England and acquired a certam degree of fame, he writes to Lard Grey. "Odious as that profession is (as God knows there are few things so hateful), I an guite clear that it would be folly in me to negleet su certain a prospect" He added that he was settug out on the Northern Circuit with too slender a provision of law, -his stock If practice being so small that ha had never yet seca : nest prous trial,-but thought he might push through the thing wath a little presence of mind and quaciness. fortunately for bis future career, he had followed for two years the lectures of the professor of civil law wh the umversity of Edinburgh, and, as Lord Campbell admits, so far legalized his mind that he had gained a considerable asight into both Roman aud feudal jurisprudence. These seeds of law, amplanted in a powerful intellece, give hm a breadth of view not ahrays combmed with the techaicalites of the English bar.

On the $23 d$ May 1800 he was admitted to the I'aculty of Adroeates. It does not appear that he ever held a orief in the Court of Sesstan, but he went a circuit ur two, where he defeaded or prosecuted a few prisoners, and played a series of tricks on the presiding judge, Lord Eskgrove, which almost drove that learned person to chitraction. The Scottish bar, however, as he sonn perceived, offered no field sufficiently ample fur his taleuts and his ambition. Ife resolved to transfer hmself to Lomtum. He had already appeared as juntor counsel in a sicotel appeal to the House of Lords In 1803 be was cntered at Lincoln's Inn, and on the 22d November 1808 he was ealled to the English bar by that learned socicty. It is a curious indication of the importance already athelad to him as a party man, that the 'lory attorme yonercral and the solicitor-general of the day thought it worth white to come down to Lincoln's Inn to endearour to oppose his special eall, which had been asked for, but was defeated by a single vote. He was ealled in the ordinary comse in the ensuing term.

In this interval of time, however, he had struck a fresh vein which ensured to him power, popularity, celebrity, and for the tume a subsistence. Tho Edirburgh Feriew was founded in the autumn of 1802, under carcurnstances whieh. have often been related, hy the young and aspiring lights of the northern metropolis. The polished style and judgment of Jeffrey, the wit of Sydney Saith, the wisdom of Horner, were sudden! ${ }^{\prime}$ brought to bear on the literature and politics of the day, and amongst them all Broughnu was the most ready, the most versatile, the most satirical, and eager to tly at any game which might bo on foot. To the first four numbers of the Review Brougham coutributed twenty-one articles; to the first twenty numbers eighty artieles, waudering through every imaginable subject-science, polities, eolouial joticy, literature, poetry, surgery, mathematics, and the fine aris. The articte on Lord Byron's Hours of Idlleness, which stung the poet into a satirist, and gave the world Eurlish Bards and Scotch Reviewers, was attributed to his pen; and Lord Cockburn used to relate that on one oceasion Brougham wrote off an entire number, including one article on the operation of lithotomy and another on the masic of the Chinese. Wfat, however, was of more importance to the youthful anthor and to the work, was that Brougham stood thenceforth iutissolubly pledged to the canse of the Liberal party, and to those prineiples of progress and reform to which he was diatined to reader bo meny sigual services.

The Ellinburgh Reqnetu is the standard ot tuat canse, and Brougham nercr rested until he had jlanted it on the loftiest battlements of the fortress. The 1 rodigious success of the Revew, and the power he was knors to wield in it, made him a man of mark from his first arriva! in London. Renoval to He was welcomed at Holland House. He obtimed the Lundon friendship of Lord Grey and the Leadnes the ploticians. His wit and ganety made ham an orwament of suciety, sed he sought to extend his literary reputation by the publicution of an elaborate work on the culonial polsey of the empire. But his hopes of obtainng a seat in Paliameut were not yet realized. He was stall eating his commons at Lineoln's lun He was still in search of a career. Thus st fell cut that, in 1806, Hr Fos being then Secretary of State, be was appomted secretary to a mission of Lord Rosslynamb Lord St bineent to the cuart of Lisbon, with a view to comateract the antic!pated Freuch myasion of Fortagel. The massion lastel two or three montles, it led to no results. Drougham came home out of hamour and cont of procket; aud meantins the death of Mr Fox put an end to the hopes of the Whags and to the broad-bottered admanistration. The party to when brougham had attached binself remancel out of ulticu for thee andewenty years.

Broughan was disappomed ty the abrupt fall of the ministry, aud piqued that has Whig fuends bad not provirled him with a seat in liarhament, the more so as some of his early friends and mats wore alteady launched on their political, career. Xevertheless, he exerted Lis pen with prodigious activity during the dection of 1809; and Lord llollan! dechach that he had tiltel the buwsellers' shows with atticles aul paudhets. The reant was suall. No seat wasplaced at his own dismen. Ite was two bene to coatest a borough; and I'ercoval am Eldun Ghaned a majority greater than the majorities of Addington wi Int. Fortunately fer brongham two questions at thas the aroze, which gave bim a strong bold on the feclings and commercial interests of the country, and he was not sluw to the adrantage of them and bend then ant the suppot of his energy and gemus. When be entered fublie life the abli- Save thon of the slavetrate was bellhigh carried by the trade. untining exertions of Vilbenforce, 'I'horntan, Clashsun, Macanlay, ant others. An immense orgmizatinn had been formed, more espectially by the ruakers and other nom conformists, to bing the whole force of publice opinion. awakened by the call of lumanity and justice, to ber mon the horrors of a system winch was still defended by the West India interest and the Govermment. Brougham allied himself to the leaders of this mownent, and he remained through tife not only fathful, but irasionately attached to the canse. Ife combated, in and out of Parliament, every attempt to elude the restrictions on the trade in mau. One of the first measures he carried in the House of Commons was a bill to make the staverendo felony: He taboured incesmatly to induce foreian countries to abotish the ahhorred tratlic, and he had as leugth the happiness, as Chancellor of England, to take a part in the final measure of negro emarcipation thronghout the British colonies. These services endeared him io it elass of highly couscientions and influential persons, vith whomhemight nototherwise havebeen closely connected, and their support was of no small effect on the greatest triun: b of his life, his election for the county of York in 1830.

Althongh till 1808 Prougham had no practice at itec English bar, he bad arguel some Scotch appeals in :he House of Lords and some prize cases at the "Cock-pit." He had aequired some knowledge of international taw, and some experience of the prize courts. This circumstance probably led to his being retained as counsel for the Liverpool merchants who had petitioned buth Ilouees of Ordars in Parbment against the Orders is: Cuuncil, frawed in retaliz. Comsin.
tion for the Berin and Milan decrees. Brougham condueted the lengthened inquiry which took place at the bar of the House, and he displayed en this occasion a mastery over the true priociples of political economy and international law which at that the no one else possessed. It 8 eoms incredible (though even now the delusion is not coturely dissipated) that the Government of a great commereial nation should ever have thought that one of the most effectual and essential modes of carrying on war and destroying an enemy is to shut out the trade of neutrals, not perceiving that such measures reast with at least equal farce against outrselves, and destroy the very sinews by which the buricn of war can be sustaned. The trade of the country was in truth suffering more from theso fatal restrictions than from the war itself; and nothing in the whole collection of Lord Brougham's harangues is more forcible or more ably reasoned than the speeches in which he described those sufferings, ar.d denounced the cause of them.

Nevertheless, in 1809 , he was mosuccessful. Neither tho evidence taken luring a six months' inquiry nor thio eloquence of tho inprassioncd advocate prevailed. It was not until 1812, when Brougham was himself in Parliament, that he resunsed lis attack on the Orders in Council with increased authority and vigour, aided by Mr Baring, and still more, perhaps, by the peril and disgrace of the quarrel with America, and he ultimately conquered. No answer was marle to bis great speech on that occasion, except an intimation from the Treasury bench that the Orders in Council would be revoken. Of this great triumph Brougham afterwards said: "It was second to none of the efforts made by me, and not altugether without success, to ameliorate the courlition of my fellow-men. In these I had the sympathy and aid of otlers, but in the battle against the Orders in Cumeil I fought alone."
Parlamentary lise.
but, on the contrary, when in later years fifferences arose betweed himself and the Whigs, he leaned rather to the Conservative aide, and ha was unifornly oprosed to any measure which might over. throw the balance of the constitution.

But in the yeara he spent out of Parliament occurrences trok place which gave ample employment to his bustling activity. and led the way to one of the most important passages in his life. Ile had been mitroduced in 1809 by Lord Dudley and Sir Willian Drummond to the society of the Princess of Wales, whose house at Kensington, and afterwards at Blackheath, was the resort of the most agreeable society in London. Canning, Granville Leveson, Dudley, Fogers, and Luttrell were constantly there. But it was not till 1812 that the princess consulted him on ber private affairs, after the rupture between the Prince and the Whigs had become more decided. From that time Brougham, in conjunction ritb Mr Whitbread, became one of the princess's chief advisers, he was attached'to her service, not so much from any great likrog of respect for herself, as from an indignant aense of the wrongs aud insults inflicted upoo her by 'ler husband. We shall not attempt to follow the details of these deplorable transactions, which aro fully related elsewhere, but one memorable scenc, as related by Lord Brougham, cannot be passed over in silence. The l'rincess Charlotie, irritated and alarmed by her father'a threats to break up her houaehold and to marry her to the Prince of Orange, escaped in July 1814 from Warwick House, flung herself into a lackney coach in Cockspur Street, and drove to her mother'a residence in Conuaught Place. Mr Brougham, who was dioing with a friend, was imme. diately sent for, and on his ortival, half asleep foom fatigue, found with extreme surprise what had occurred. The duke of Sussex, the duke of York, Lord Chnncellor Eldon, the lisbop of Salisbury, and others subsequeatly arrived, but except the royal dukes, none of these persouages were admitted to an audience. Broughann, a ynurs banister of thirty-six, became and remained the chief adviser of this young princess of cighteen, the heiress to the crown. His advice to her was, -"Return at once to Warwick House or Carlton House, and on no account pass a night elsewhere." The debate was long and painful; the grievsnces of the princess were mumerous. At length, as day hegan to dawn, Brougham took her fo the window, and pointing to the empty street and park, said, "1n a few hours these thoroughfares will be crowded. I have only to show you from this window to these multitudes, they will rise in your behalf; Cariton House will be atacked; troops will be called out; blood will be shed; and whatever lie the result, it will be known that your ruming a way was the cause of this mischief. You would never get over it." This remonstrance prevailed, and the princess returned to Carlion llouso with her uncle the duke of York at five in the moming. This ancellote is so graphically told by 1.0 d Brougham in several places that we preserve it. But it has not been corroborated by any of the other persons present ; and in a letter written by Brougham himself to Earl Grey on the following day, he said nothing of this touching appeal, but relates that the princess weot back be. cause the duke of York came, almed with full powers from the Hegent to fetch her avay. it is not improbable that the scene thus described is apocryphal, or at least embellished by Lord Brougham's imagination, for in liss later years he was apt to uns. take for actual occurrences the creations of lis omn fancy-

In 1814, the Princess of Wales, having been prohibited by Quecn Chalotie from attending the drawiag-rooms given to the allied sovereigos on their visit to EnglanI, resolved to go abroad. This unfortunate scheme was strongly opposed by the Princess Charlotte, ad not less so by Mr Whitiread and Mi Brougham Thi lattes addressed a letter to the Princess of Wales on the eve of her departure, in which he 1 ronted out with gleat sagacity and good sense the fatal consequences of her withdrawal from England "As long as you remain in this comerr:" he said, "I will answer for it that no plot can succeed against you. But if you are living abroad, surrounded by the base syices and tools who will always le planted about yon, ready to invent and swear as they may bo directed, who can pretond to say what may happen? I declate. 1 do not see how a proposition hostile to your hoyal Highness's marriage conld be resisted if you continned living nbroad." How completely these predictions were fulfilled is sufficiently known. Broughan appears to bave had but little correspondence with the prineess during her residence in lialy. - But in 1820, when she resolved to return to England on the necession of Genrge 1 V., he was sent by the Goverumeut conjointly with Lord Hutchinaon, to disguade her from that step aod-to offer her terms. Bougham certainly disap; roved of her return; hut for some mysterious reason he withheld the proposed terms of compromise until it was too late, and when they were laid hefore the queen at S Omer sho rejected them with scon. The drath of Mr Whitbread and of the Prineess Cherlotte, which had occurred in the interral, had remored two important checka on the inshress of the queen ; end brougham, who had failed to prevent her from going axay, was squally unablo to prevent her return. It has even bereo surmised that, from a lovo of mischief and of gower, he desired it.
blenuwhile Brongham had at length, in ISI6, been agan eeiumos
to l'armament for Winchelsea, a borough of the earl of Darlington, and he ingtantly resumed a commanding position in tre Hotise of Conmons. He succeeded in defeating the continuance of the income tex; he distinguished hirnself as an adrocate for the educetion of the people; and on the death of Romilly be took up with ardour the great work of the reform of the law. It has taken hall a century to work out the plans of these carly law reformers, and the last jear or two lare given us a national system of education and a yew judicature with an entirely new form of prnecdure. But not the less glorious and valuable were the services of th e who first engaged in thesc great tasks. Nothing exasperated the Tory party more than the select commitiee which sat, with Mr Brougham in the chair, in 1816 and the three following years, to investigate the state of education of the foor in the metropolis. The inquiry Fras extended so far as to include the great collegiate foundations of Eton, Winchester, and the Charter House; and the report of the committce was attacked with great viruknce by Bishop Monk io the Quarlerly Review and by Sir liobert Peel in the House of Commons. In time, however, the cxposure of abuses bore finit, and we owe to it some of the most important improvements of the age. Broughars, however, was is far is ever from obtaining the leadership of the party to which he aspired. Indeed, as was judiciously pointed out by Lord Lansdowne in 1817, the opposition had no recognised eflicient lcaders; their wafare was carried on in separate courses, indulging their own tastes and tempera, without combined action. Nor ais Brougham much more suecessful at the bar. The death of George 111 . suddenly changed this state of things Queen Caroline at once, in Auil 1820 , appointed Mr Brongliam to be ller Majesty's sttorney-general, sad Mr Lenman her solicitor. general. 'l'ley immelliately took their rank in court accordingly; and, indeed, this was the sole act of royal authority which marked the queen's brief and unhappy reign. In July Her Majesty came from St Ompr \because England; miaisters sent down to lroth Housts of Parliament the secret evidence uhich they had long been collecting against her; and a lill was brought into the House of Lords for the deposition of the queen and the dissolution of the king's marriage. The long repressed spirit of opposition in the nation ogainst a bigoted and tyranoical Government was inflamed to a conflagration by the sense of the quecn'a wrongs. Cuilty or inoocent (and no bne could dispute the excessive Icrity of her conduct), she was regarded by the people of lingland is a persecuted woman, n descrted wife, an outraged mother ; and these cbarges were brought against her by those who ware guilty of far greater offences. "My mother would not have been so bad," the Prineess Charlotto is reported to have said, "if my father had not been much worse." Themes such as these, worked upon by the eloquence of Brougham and the activity of the queen's friends, produced a popular conmolion, which in any other country would have csused Gloodahed, and perhaps revelution.

The defence of the quecn was conduc:ed by Broughan, assisted by Denman, Lushington, and Wilde, with cqual courage and ability. He lurled back detiance on the prosecutors, and threatened, if driven to the last extrenity, to retaliate on the person of the avvereign: though if he had set up the marriage of the Priace with Mrs Fitzherbert as a valid marriage (which it certainly weas not), lie would thereby have annulled the snbisequent marriage of bis royal client. Ite demolished piece by jicee with merciless severity the whole fahmic ond tissuc of Italian evidence, raked together and paid for by the Milan commission; and he wound up the proceediags by a spect of extriordinary power snd cffort. The peroration was said to have been watten and rewritten by him eerenteen times. At moments of great excitement auch declanation may be of value, and in 1820 it was both heard and read with enthusiasm. But to the calmer judgment of another generation this relebrated oration secins turgid and overstraincd. The truth is, that there were mnments in the course of the trial when the evideoce pressed so liardly op the queen that her counsel wero on the point of throwing up the casc. But a gencrous feeling, impelled by ad iommense popular symjathy, prevailed. It was certain the bill could never pass the House of Commons, where the same appeala might be made to a less judicial assembly. The fival majority in the Lords dwindled to nine; and Lord Liverpool onnounced that he should not poceed with the bill.

This victory over the court and the ninistry raised Henry Froughan at once to the pinnacle of fame. He shared the triumpli of the queen. His portrait was in every shop window. A piece of plate was presented to him, paid for by a jenny subscription of peasants and mechanics. With his wonted disinterestedness in inoney matters, he refused to accept a gum of $£ 4000$ whicli the queen herself placed at his disposal. Ile took no more than the usual fees of counsel, while his salary as Her Majesty's attorney-gencral remained unpaid, and was discharged by the 'Treasury after her death. But from that noment his fortune was made at the bar. llis practice on the noithern circuit instantly quintupled. One of his finest speeclics was a defence of a Durham nenspaper uhich had attacked the clergy for refusing to allow the bells of the churches 'p Durham to be toller on the queen's death; ind by tit admio-
sion of Lord Campbelt, a rivei advocate and aw woinendly critic, he rose suddeniy to a position which yo man has before or since attained to in the profession. The neeanness of George IV. and Lord Eldon refused him the silk gown to which bis position at the bar entitled him, and for some years he led the circait as an outer barrister, to the great loss of the s-nior members of the circuit, who could only be employed against him. His practiue rose to about fic000 a year, but it was again falling of before he became Chancellor.
The death of Lord Castlereagh in 1852, and the advancement of Canaing to the office of Foreign Secretary, materially changed the ebaracter of Lord Liverpool's Government. Canning and Brougham sat ou opposite beuchesthe one a follower of Pitt, the other of Fox; and they were constantly pitted against each other. Sometimes their rhetorical corficts assumed an intense violence, as when Brongham accused the minister of "the most monstrous truckling fur the purpose of obtaining office that the whole history of political tergiversation could furnish." Canning indignantly exclaimed, "It is false ;" and the quarrel was with some difficulty appeased, though Brougham was nut supposed to be very ready to employ any weapon slarper than his tongue. But Cauning and Brougham were in truth rwals rather than antagonists; and the more liberal infuence of the former in the ministry had alwost brought thenı into union npon the leading questions of the day, always exeepting that of parliamentary reform. Had Canmug l:ved and maintaned himself in power, it might hare fallen to his lut to earry Catholic Emancipation and a more muderate measure of parliamentary reform. But if, as as believed, Earl Grey was excluded from Mr Canmug's Goveroment by an express stipulation of the king, it follows a fortior that the attorney-gencral of Qucen Caroline conld ncrer be a minister of George IV. That sovereign bad showa on several occasions that the attacks made on him by Brougham werc never forgotten or forgiven; and Canu:ng, whose onn position at court was diflienlt enough, Lad certainly not the power to overeome the king's resemturent. Brougham, however, promised and gave his shortived administration an independent support-unlike Lord Gres, who fercely and ungenerously attacked it.
To this period of his life belong two occurrences which Universty cannot be passed over in silcuce. In 1825 the first steps of London. were taken, under the auspices of Proughan, for the establishment of a university in London, absolutely free from all religions or sectarian distinetions, a scheme which has grown and ripened in half a century tuto no unworthy rival of the other unisersitics of northern and sonthern Briain. In 1827 Brougham contributed to found the "Saciely for the Dilfusion of Usefnl Knowledge,"-an S. D U K association which gave an immense impulsion to sound popular literature. Its first publication was an essay on the "Plessures and Advantages of Science," written by himself. Oue can hardly imagine at the present time with what avidity this paper was read, fur it bad no nuvelty of substance and no great merit of style. But a thirst for knowledge seemed suddenly to bave seized the nation. It broke forth in mechaniss' inslitutes and every fonn of instruction. To use his own language on a evebrated oceasion-" the schoolmaster was abroad ;" and the excitcment he had contrived to kindle on thesc subjects tended to hasten a great crisis in our political life. In the following year (1828) he delivered his greal speech on "Law Reform," which lasted six bours in the delivery in a thin and cshausted House,-a marvellons effort,-whizh embraced every part of the existing system of judicalure, and concluded with one of bis noblest peroralions. "It was the boast of Augustus," he said, "and it formed part if the glury in which his early pcrfidies were lost, that Le found Rome of briek and left it of martle,-a praise not unworlly of a great prinee, and to which the present reigu
also has its uaims. But bow much nobler will be the sovereign'a boast, when be shall have it to say that be found law dear and left it cheap; found it a sealed book, left it a living letter: found it the patrmony of the rich left it the anberitance of the jonor, found it the two edged sword of craft and oppression, left it the staff of bonesty and the shield of anocence "

The death of Canning, the fallure of Lord Gorlench, and the accession of the duke of Wellington to power, agan chagged the aspect of affairs; but the resolution of nam. sters to carry Catholic Emancıpation disamed the Opposithoa, whilst it spht the Tory party. Graver events were impending. The French Revolution of 1830, followne close upon the deatio of George IV.. awakened a passionate excitement througbout Europe, and especially an thas country. The days of Tory government were numbered. The cry of "Feform" was raised; and the leader to "ride the whirlwind and direct the storm" was Henry Brouglam. Then it was that the united county of York spontaneously returned ham to the new House of Commons as their representative. It was the proudest moment of his life, for he was literally not only the representatice of the county of York, but of the people of England A stranger by birth to that great province, and without an acte of laad in it, be, by bis taleats, eloquence, pubhe aerrices, and love of freedom alone, triumphed over the proud lorkshire families, and took his seat in the House of Commons with a power no Englishman of thas age has possessed. The Parliament met in November. Brougham's first act was to move for leave to bring in a bill to amend the represeutation of the people; but befors the debate came on the Goverament was defeated on another question; the duke resigned, and Earl Grey was commanded by William IV. to form an admmstration

Amongst the difficulties the new premmer and the Whid party had to encounter and to surmount, none was greater than that arising from the position, the attitude. and the taleuts of Mr Brougham. He was not the leader of any party; he had no personal followigg a the House of Commons; be was distrusted by the Whigs, who looked up to Lord Althorp as ther chief, be was dreaded alike by friends and foes; but tbere stood, in solitary might. the formidable member for the county of lork, armed with invancible eloquence, and backed hy the suffrages of the people. He himself had repeatedly declared that nothing would induce bun to excbange his position as an independent member of Parlament for any office, however great ; and, no doubt, as an independent member of Parlia. ment he exercised at that moment a porer greater than any office could gave. On the day following the resugnation of the Gasernment, he reluctantly consented, in low and angry tones, to postpone for one week has motion on parlamentary reform. The attorney-generalship was offered to han by Lord Grey; it was indignantly rejected. Brougham hiaself affirms that he desired to be master of the rolls, which would have secured him a large income for hife, and left hmm free to sst in the House of Commons. But this was posulively mendicted by the king, and objected to by Lord Althorp, who declared that le could not undertake to lead the Jouse with so msubordnate a follower beland him. Neanwhile Prougham had discovered, at a meeting of several leading members of has party at Holland House, that be was not taken freely uto them counsels; he came bome exasperated and vowing vengeance agarast them. Lord Grey, personally, would bave preferred to retan Lord Lyndhurst as bis chancellor, bue at wid mapossble to leave Brougham out, and he was only to be brought into the munstry by the offer of the great aeal. When the questron was considered at the first neeting of the mehoate manstry at Lanadowne IInuse. Lord

Holland said to his colleagues, "I sjppoic it Nuot be 80, lut this 18 the last time ae slall meet in peace within these walls." Broughan: bimself besitated, or affected to hesitate. He was undoubted!y reluctant to quit the House of Commons and bis seat for Yorkshire. His mother, with great wisdom, dissuaded him from accepting these treacherous gifts and honours. He alleged that, as the ministry might be of short duration, be was making a large sacrifice in giving op his professional income for a pension of fitu00 a year and a jeenage which he had no other means (1) surport. But he yelded to the representations of Lord (irey and Lord AJthorp, that withont him as Chancellor the Goremment could not le formed. On the 22d November 1830 the great seal was delivered to bun by the king, and he took has seat on the Woolsack that evening as speaker of the House of Lords, being still a commoner. Un the following day, after he had sat to hear a Scotch appeal, the patent of his peerage as Baron Brougham and Yaux was brought down. The Lord cbancellor then quitted the woolsack, robed, and was metroduced as a baron by the Marquis Wellesley and Lord Durbam.

The mind of man can concelve nothing more rivid and more various than the chancellorsba; of Lord Erovgham. It lasted in all exactly four years - no more, but the times were burning with excitement, and the chancellor emboded and expreased the ferrour of the tumes. To rival Lord bacon in the philosophy of the closet and I ord Hardwreke in the courts of equity, to declam like Chatham in the House of Lords, and jest like Sheridan at Lord Sefton's dinners, seemed alike easy tasks to Brougham. He never doubted of his own capacity to play every part in turn, judge, statesman, orator, fihlosopher, butioon, and be did play them all with as much success as an imitation can hear to a reality. Cnbeppily the verdict of tume has proved that there was nothiag of permanence, and little of orıginality. in the prodigious efforts of his genius. He affected at first to treat the business of the Court of Clancery as a light affarr, thongh in truth be had to work bard 10 master the pronciples of equity, of which he had no experr. ence. His manaer in court was desultory and dictatorial Sometimes he would cronch in bis char, muffled in has wig and robes. like a man asleep; at other tumes be would burst into restless activity, writing letters, working problems. interrupting counsel Mortal offence be gave to Sugden, then the leader of the Equity bar, who detested bis person and despised bis law But upon the whole Brougham was a just and able judge : and if few of his decistons are cited as landmarks of the jaw. still fewer of them hare been overruled. His wonderfol powers of despatch enabled lam to work off the arrears of the court in ten mouths, a thing wheh had never before occurred in human memory, and in September 1831 he boasted that not a cause remaned for bearmg before the Lord Chancellor. Yet towards the close of bis tenure of office in the spning of 1834. he complained to his colleagnes of the tremendous drudgery he had undergoae; be had sat up all the mights of winter, he said, to write seventy elaborate judgmeats, and he coucerved that be was ill requited forthesacnfices be bad made.

His dutjes as a judge, however, ranked sccond in his eyes to bis duties as a politician and a legislator; and be took a most active and prominent part in the defence of all the great measures of Lord Grey's Govermment. We say in the defeace of them, for he lad less hand in the preparation of them than he wished it to be velieved His own statement that be bad called his frends together and submitted to them a complete scheme of parhamentary reform is entirely unsupported, and, indeed, formally contradicted. The draft of the Reform Bill was jrepared by a committee of four other metubers of the Cabuet, and accepted with aomed besitation by Broughaw. But once launched in the contest
erpecially tu che Rouse of Peers, it owed a great deal to Lu: nigour with which he defended it. The king, Willian IV., appears at first to have been amused and fiattered ly the attentious of his chancellor, who made infinite exertions to ingratiate himself with the court. But his manner, which was at first obsequious, became dictatorial ; his restlesa ecceutricity and bis passion for interfering with every department of state, alarmed and irritated the king, and at last the former liking was turned into bitter aversion.

It would be superfluous in this place to follow the fortunes of the Reform Bill of 1832, and we shall confine ourselves to a brief notice of the part which Lord Brougham touk in promoting it The first grand crisis in the contest occurred in April 1831, when General Gascoyne's amendment was carried against the Government. A cabinet was held, and ministers agreed to advise the king to dissolve Parliament. The kiug not only assented, but expressed his readiness to go down to Westmiuster in a hackney coach if necessary. The claborate narrative com. municated by Lord Erougham to Mr Foebuck, and adopted by Mr Molesworth in his History of the Reform Bill,-by which it would appear that Lord Grey and the Lord Chancellor resorted to manayement and a species of mild compulsion in making this proposal to William IV., Lord Brougham haring taken upon himself to order out the royal carriages and the guards,-is found on more exact inquiry to bo unfounded. Unquestionably it was the duty of the prime minister to take the king's pleasure on such an occasion, though the chancellor, contrary to the usual practice, did accompany him, but the whole correspondence of the king on the sulject of reform is addressed to Earl Grey alone. The sceond great crisis in the passage of the bill was in May 1832, when it became necessary to obtain from the king his consent to make peers in sufficient number to carry the bill, if the majority in the Upper llouse persevered in the attempt to defeat it. It has been statad, apparently on Lord Brougham's authority, that in the course of an audience granted to Lord Grey and himself, he succecded in extorting from the king, in writing, the following paper:-
"The king grants permission to Earl Grey, and to his chancellor Lord Brougbam, to create such a number of peers as will be sufficient to ensure the passing of the Reform Bill,-first calling up eldest sons.

> (Signed) Willaas R.
"W1spsor, May 17, 1832."
It is enough to say that this extraordinary document has never been seen by any one, and is not known to exist, therefore its exact tenor untst be a mystery. The king was not at Windsor on the 17th May, but at St James's ; and the Cabinet asked for an assurance of His Majesty's intentions on the following day (the 18th), which they would not have done if a written promise bad been given the day before. This story, therefore, is incredible, and in Lord Brougham's nutobiography nothing is said of this written paper Lord Grey and Lord Broughan were both of them strongly a acrse to the ereation of peers, which was fiereely urged on then by some of their colleagues, such ns Lord Durham and Sir John Hobhouse. Lord Brougham has even intimated a doubt whether at the last extrenity they should have used the power the king had at one time most reluctantly giveu them. But they both knew that their honour, and possibly their lives, were staked on carrying the bill; and, fortunately, they were relieved from the dire necessity of swamping the House of Lords by the influence of the king and the duke of Wellington over the Tory majority.
It is surprising that Lord Grey's administration, which had achicved so great a work in passing the Reform Bill, and was supported by an immenso majority in the reformed Parliament, should ao soon have come to an end. But

Lord Grey was perpetually threatening to resign office; Lord Althorp Jonged for retirement, the question of the Irish Church led to the secession of four important members of the Cabinet; the queen was hostile; and the king was alarmed and dissatisfied with the Whig ministers. In July 1834 the crisis arrived, and baving carricd os the gorern. ment for three years and $\{31$ days, Lord Grey resigned. Lord Brougham had contrived to monopolize the anthority and popularity of the Goverument, and uo doult his insatiable activity contributed to this result ; and there were those who acensed him of having intrigued to bring it about, with a view to superseding Lord Grey himself. But this mputation is unjust. Brongham, however, had caused Mr Litteton, the Irish secretary, to suggest to Lord Wellesley, the lord-lienterant, that some of the clauses in the Irish Cuereion Bill might be withdrawn on its renewal, with a viery to conciliate OComell. Lord Althorp was of the same opinion; but Lord Grey refused to entertain the proposal, and on this rock the ship struck. Brougham declared with great velemence that it was madness to resign, and that for his owa part he had not tendered hus resiguation. Very much by his exertions the Cabinet was reeonstracted under Lord Mellourne, and without Lord Grey, and he appeared to think that his uwn influence in it would be increased. He laboured at the time under extreme mental escitement, ${ }^{\text {' }}$ and in this state he unfortunately pro. ceeded to taake a journey or frogress to Scotland, where his behaviour was so estravarant that it gave the firal stroke to the cunfidence of the king. At Lancaster he joined the bar-mess, and spent the night in an orgy In a country house he lost the great seal, and fomed it agan in a game of bludman's-but Ao Edinhurgh, in spite of the coldness which had sprong up between himself and the Grey family, he was present at a banguet given to the late premier, and delvered a larangue on his own services and his public virtue. All this time he continued to correspond with the king in a strain which created the ntmost irritation and amazement at Windsor. He seemed totally unconscious of the alyss which was opening at his feet. He was not the Lacon but the Wolsey of the 19th century.

The term opened in Nevember with the usual formalt- Fathe tics. But on the 16 th of that month the king dismissed Whig his ministers. The chancellor, who had dined at llolland miuist House, called on Lord Melbourne in his way home, and learned the intelligence. Melbourne made him promise that he would keep it a secret till the morrow; but the moment he quitted the ex-premier, he sent a paragraph to the Times relating the oceurrence, and adding that "the queen bad done it all." That statement, which was totally unfounded, was the last act of his ollicial life. The Peel ministry, prematurcly and rashly summoned to power, was of no long duration, and Broughan naturally took an aetive part in overthrowing it. Lord Melbourne was called upon in $\mathrm{A}_{\mathrm{p}} \mathrm{ril} 1835$ to reconstruet tho Whig Govern. ment with his former colleagues. But, formidable as he might be as an opponent, the Whigs had learned by experience that Drougham was even more dangerous to them as an ally, and with one accord they resolved that he should not hold the great seal or any other office. The great seal was put in comomission, to divert for a time his resentment, and leave him, if he chose, to entertain hopes of recovering it. These hopes, however, were soon dissipated, and Later although the late chancelior assumed an independent hame.. position in the House of Lords, and eren affected to protect tabours the Governwent, his resentment against his "noble friends"

[^17]aoon broke out rith uncontrolled rebemence. Throughout the session of 1835 bis activity was undiminished. Bills for every imaginable purposc were thrown by him on the table of the House, and it stands recorded in Hansard that he made on leas than 221 reported speeches in Parliament in that year. But in the course of the vacation a heavier blow was struck. Lord Cottenham was made Lord Chancellor. The breach bad manifestly become irreparable. Even Lord Brougham's buoyant and daring sprit ounk for a time under the shock. A dreadful period of depression succeeded to the wild frenzy of the preceding years, and during the year 1836 the voice of Lord Brougham was unheard. He passed the spring add summer in Westmoreland, and avoided all political conversation and correspondeoce. Fifty-six years of bis life were spent, and not much more than twenty of them had been spent in Parliament, where he bad earned the most prodigious reputation and influeace of modern tumes. "What is the House of Lords without Brougbam ?"-we have heard Lord Lyadhurst say - "Brougham is the House of Lords." For more than thirty years after his fall he continued to take an active part in its judicial business and in its debates. There was atill a power in the tone of that voice, raised as it always was in the cause of peace, humanity, and freedom; but it would have been better for bis fame if he had died in the midst of his glory His reappearance in Parliament on the accession of Queen Victoria was marked by sueers at the Court, and viofent attacks on the Whigs for their loyal and enthusiastic attachment to their young sovereign; and upen the outbreak of the insurrection in Canada, and the miscarriage of Lord Durhan's mission, he overwhelmed his former colleagues, and especially Lord Glenelg, with a torrent of invective and sarcasm, equal io point of oratory to the greatest of his earlicr speeches. But why pursue the painful narrative of thesc writhings of a wounded spirit and a broken ambition? Without avoredly relinquishing his political principles, Brougham had cstragged himaelf from the whole party by which those priaciples were defended. Flattered, and not unvilling to be flattered, by the Tories, he fought side by side with Lyndhurst, and paid the most fulsome court to the duke of Wellington and a long train of women of quality and men of fashion.

Amongst the humorous expedients resorted to in order to keep his name before the public, a false report of his death was sent up from Westmorelaud in 1839, which obtained credeuce from the persoos to whom it was addressed. The (newspapers published articles on the melancholy event, and in the Morning Chronicle Mr Sheil exclaimed -

> The extravagant and erring spirit hies
> To his confine,"

Whilst he paid a just tribute to the splendid talents and services of the deceased.

It, is more agreeable to dwell on the judicial services he continued assiduously to render in the Privy Council and the House of Lords. The Privy Council, especially when bearing appeals from the Colonies, India, aud the courts meritime and ecelesiastical, was his favourite tribunal. He had practised a good deal before it (or, as he always salled 1t, "the Cock-pit," so named because the cock-pit of Heary VIII. was the site of the present council chamber) when a goung man, before he was called to the English bar , its vast range of jurisdiction, varied by questions of foreign and international law, suited his discursive genius. He had remodelled the judicial committec in 1833, aud it still remains one of the most uscful of his creations; and ho at one time aimed at making himself the president of this committee. To this board Lerd Brougham devoted for about sixteco years a very considerable amount of time and labour, and many of his most able and elaborate judgments are recorded in the Privy Council reports which have contributed to build up
and perfect the modern jursprudence of India, and to main. tain principles of toleration in the Church of Eagland. ${ }^{3}$ He ceased to attend the Privy Conncil in 1850. But he continued to the close of his life to hear appeals in the House of Lords, where hiq carly knowledge of Scitrb law was of peculiar value

In the year 1860, a second patent was conierred upon him by Her Majesty Queea Victoria, with a reversion of his peerage to his youngest brother William Brougham. The preamble of this patent stated that this unusual mark of honour was conferred upon bin by the Crown as an acknowledgment of the great services he had rendered, more especially in promoting the abolition of slavery and the emancipation of the negro race. The peerage is thus perpetuated in a junior branch of his family. Lord Brougham's marriage with Mrs Spalding had given him no male heirs, and his only daughter died in earlylife unmarried

Upon the portal of one of those delightiful villas which Reurr. nestle amongst the olive trecs aod the carob trees at ment a. Canoes, along the shores of the Mediterraaean, are inscribe 1 the lines-

- Inveni portuma: spes et fortuna valete.

Sat me lusistis; ludete wunc alios."
Such was the haven, such the abode, in which Lord Brougham found repose from the triumphs and the disappointarents of his agitated existence. The pure and gemal air of the South calmed his nerres and perhaps prolonged his life. There he returaed with andmanished pleasure to the head springs of science, philosophy, and literature. His spirits were more equable; his mad more calm; bis society charming. There, then, he spent a considerable part of the later years of his life; and there, when the hour of departure came, his remains mingled with the dust. An accident had attracted bis atteation to the spot about the year 1838 . He bought a tract of land; he built on it ; and the Villa Louise Elconore recalled by its name the adored menory of bis lost and only child. Cannes. when be first risited it, was little more than a fishing village on a picturesque coast. His choice and his example made it the sanatorium of Europe.

The fame of Lord Brougham had long extended far beyond Las: the frontiers of his native land. The generous and lufty reara sentiments which be ciotiod in forcible language touched the heart of mankind. But there was something peculiarly congenial to his own mercurial temperament in the life and genius of France. In 1833 the Academy of Moral and Political Science had conferred upon him the high rank of an associate of the lnstitutc. The Academy of Science did not disdain to listen to his demonstrations. The French. with their lirely sympathy for brilliant intellectual power, forgave him all his eccentricitics. He bas been knowa to tutoyer M. Guizot. He once asked the French Gevernment to give him an island with a state prison on it. He rould drop in to tea at the Tuileries in his checquered trousers, and sometimes bring a friend with him, utterly regardless of social usages and etiquette. His French, though fuent enough, was as barbarous and dissonant a brogue as erer tortured the cars of a Parisian. Nobody knew what he would do next. After the revolution of 1848 he asked 3. Cremieux (in utter forgetfulness of French law) to have him made a French citizen. But iriendship in France is warm and tenacious. Lord Brougham had cuatributed as much as any man to efface cld hatreds and to establish a lasting alliance between France and Great Britaia. He judged ceven her faults in a kindly and indulgent spirit; and of all the tributes to his memory which have issued from the press, none is at once more truthful and mera

[^18]tenaer taan the discourse prononnced by M. Mignet in the Institute of France in honour of their great associate. Upon that southern coast the last days of this veteran combatant in the fields of law and politics were spent. There at Cannes, upon the 7th May 1868 , in the motieth year of his age, he expired; and if Westminster profered no sepulture to the greatest orator of our times, he rests, at least, in the spot which had his latest affections
To what precedes we have little to add, for who can attempt to portras: so multifarious, enconsistent, and variable a being? The irritability of his temper and the egotisin of his character made him not only formidable as an antagonist but dangerous as a frend. Yet at bottom be had genuiae warmth of beart and good aature. He was a devoted son, an affectionate pareat and bruther, covetnus to a degree of power and patronage, but prodigal in the use of it; disdaining modey, yet happy to bestow it on others; foad of courting the great, yet not unsensible to the sufferings and the sympathy of the bumble and the poor. With unhounded self-confidence, be wanted self-control, and at times under the influence of grief, of resentmeut, of ambition, of disappoiatment, or of suecess, he was scarcely accouutable for his actions, still less for his language. His inagination conjured up occurrences which bad never taken place; aod be changed as rapidly as a chameleon, unconscious of the transformation. Hence it came to pass that rekilst men marvelled at his astonishog gifts, they ceased to trust his character, and the splendid promase of the morning of his life was overcast before its close.

The activity of Lord Brougham's pen was only second wo the colubility of his tongue. He carned on a vast and ancessant correspondence of locredible extent. Fur thirty years be contributed largely to the Edinburgh Review, and he continued to write in that-journal even after he held the great seal. The best of his writings, entitled "Sketrhes of the Statesmed of the time of George 1II.," first appeared in the keview. These were follored by the "Laves of Men of Letters and Science " of the same period. Later in life he edited Paley's Natural Theology, and he published a work on political philosophy, besides innumerable pamphlets and letters to public men on the events of the day. He published an incorrect iranslation of Demosthenes's Oratzon for the Crown. A novel ètitled Allert Lurnt was attributed to him. A fragment of the Ihstory of England wxder the House of Lancaster employed has retirement. but we thank it was published without his nane. and certanly without success. In 1838 Nessrs Blark of Edinburgh published an edition of his speeches in four volumes. 8vo, elaborately corrected by hirr self The last of his works was his posthumous Avtobegrapl! Yet ambinous as he was of literary fame, and jealous of the success of other authors be failed to obtain any fastong place in Enghsh literature His style was slouching, involved, and ineorrect Like his baddwritiog, which was preapitate and almost allegiblr. except to the mutuated, bus composition tore marbs of baste and carelessness, and nowhere shows any genume onginality of thought. The collected edition of his norks and speeches published by Griffin in 1857, and reissued by Black, of Edinburgh, 1872, is the best and it was sarefully revised by himself, with introductions to the difierent pieees. His autobiography is of sone value from the original letters with which it is interspersed. But Lord Brougham's memory was so much ampared when he began to write his recollections, that no reliance can be placed on his statements, asd the work abounds in mani-

fest errors.

(B R.)
BROUGHTON, Hoge, a learned acholar and divine, was born at Oldbury in Shropshire in 1549 After recelv. ing the rudiments of his education at a providecal school, be went to Cambridge, where in due time be was chosen a
fellow of Christ's College, and took orders in the church. During his career at the unversity he laid the foundation of the Hebrew seholarship for which he was afterwards eo distinguashed. From Cambndge be neut to London, where bis eloquence ganed him many and porverful friends. In 1588 be published his first work, "a hittle book of great paus," ebtitled the Consent of Scriptures. Thus work was strongly opposed at both the great universities, and the author was obliged to defend it, which he did in a semes of lectures. Io 1589 he went to Germany, where be frequently engaged in discussions both with Romamsts and Wath the learned Jews whom he met at Frankfort and elsewhere. In 159] be returned to England, and published an Explicataun of the article of Cherst's descent wito Hell. whinh, like his former treatise, elicited a volent opposition ln 1592 be once more weat abroad and cultivated the acquantance of the priocipal scholars of the different countries through which he passed. Such was the esteem in which be was held, even by his opponents, that he was offered a cardinal's hat if he would renounce the Protestant falth, which, however, he declined to do. On the accession of James he returued to Engladd but not being engaged io co-operate in the new translation of the Bible then begun. be retired to Middlebirg in Holland, where he preached to the English congregation In 1611 be returned te Eogland. where he died the folluwing year. Some of his works were collected and published in a large foho volume in 1662, with a sketch of his life by Dr Lightfoun hut many of his theological MSS. remans still unedited an the British Museum

BROLGHTON, Tmomas. a learned divne, and one of the original writers in the Beographea Dirtamica. was born at London. July 5, 1704 At an early age he was sent to Eton, where he soon distiagustied hanself by has acuteness and studious disposition. Deing superanouated on this fouudation, he removed about 1722 to the unversity of Cambridge. and, for the sake of a scholarshp, eotered bimself of Cains College Ilere two of the princial otyects of bis attention were the acquistion of the modern languages, and the study of mathematies, under the famous Profesaor Sinderson. In May 1727 Broughton, alter graduating as B. A. was admitted to deacon's orders and in the succeeding year was ordaned priest. and tonh the degree of M a IIe then removed from the umversty to the curacy of Ofley in Ilertfordshire. In 1:39 he was instituted to the rectory of Siepiggton, or Stibington. It the county of Huntingdon. He was soon after eliosen reader to the Temple, by wheh means be became known to Bishop Sherlock, then Master. Who concenved so high an opinion of Broughton's merit, that in 1741 he preseated him to the valuable viearage of Bedinmster inear Bristol, with the chapels of St Mary Fiedeliff. St Thomas, and Abbor's lagh annexed lie was afterwards collated by the same patrou to the prebend of Bedmunster and liedeliff, in the cathedral of Salishury Epon receiving this preferment be removed from Londow to Brastol where be married the daughter of Thomas llarris, elerk of that city, by whom he had seven children He died December 21. 1734
broughton. John Cam Honnotse, lord an Eng. lish statesman, was the eldest son of Sir Lenjanin Hob house. first baronet, and was born at Redlands, Bristol. Juoe 27. 1786 IIe was educated at Viestmastry School and Trimty College. Cambridge. Where be icok has degree of BA. in 1808 Durngh his resnlence at Cambridge be became the inumate friend of lurd Byron and in the summer of 1809 the two friends set out together on a tour so the South of Europe They vasted Sram then the theatre of the great war with Napoleon), Portngal, Greece. Albanta and Turker The winter was spent at

Athens, and in 1810 Hobhouse returacd home. In the campargns of 1813 and 1814 he accompanied the allied armies, and was present at the great battle of Dresden. In the water of 1816-17 he rejoined Byron in Italy, and they visted Vence and Ronie together. Hobhouse had been tramed in the Liberal school of politics, and had written pamphlets and review articles in defence of liberal doctriaes. He had by this time become what was then contemptuously called a "doworight radical." In 1816 he publisled anonymously a work in two volumes entitled, The Substance of some Letters uritten by an Enghsh Gentleman Resident at Parss durung the last Revyn of the Emperor Napoleon. His aim in it was to coriect certain misrepresentations which were current of the events of the Huadred Days. The tone of the book gave great offence to the Egglish Goverrament; and being translated into French was equally offeasive to the Governinent of the Restoration. The Freach translator and printer were both prosecuted in 1819 for" "atrocious libel" on the Government, and were sentenced to fine and imprisonment, the former for twelve months, the latter fur six. On 13th December of the same "year the speaker's warrant was lssued for the artest of Hobhouse, and he was committed to Newgate He riade an unsuceessful apphcation to Chief-Justice Ablutt (Lord Teaterden) for discharge by habeas corpus, and he was not liberated till about the end of February. The ireatment whicb he had suffered gave him the prestige of a martyr to the domiuant Toryism, and in the cyes of the multitude this was his glory. At the close of $\mathbf{1 8 1 8}$ he hat contested the borough of Westmunster, Sir Francis Burdett desiring him as a colleague, and giving $£ 1000$ towards the neccssary expenses of his candidature. But he was beaten by his rival, George Laub, the brother of Lord Melbourae. He now came forward again, and was returned by a large majority (1820). In the first session of parliament he produced a powerful impression, first by his severe specch on the suppression of a Liberal meeting at Oldham, and soon after by the vigorous support be gave to the bill for disfranchising the borough of Grampound. During the next twelve years ho was the ardeut and conrageous advocate of all Liberal rueasures,-among them, of the repeal of the Test and Corporation Acts, and of Catholic Emancipation. In August 1831 he succeeded to the baronetcy, and six months liter was called to office as Secretary for War under the mioistry of Earl Grey. In April 1833 he mas named ChiefSecretary for Ireland, but lost his seat af the new election. In the following year he was returned M.F. for Nottingham, aud received the appointment of Chief-Commissioner of Woods and Forests uader Lord Melbourve. Retiring with the Liberal party in the autumu, be resumed offiee in April 1835 as President of the Board of Control, a post for which he was well qlialifed, and which he held till September 1841. Ho was recalled to the same office under the Russell Administration in 18:16, and held it till 1852. Meanwhile he had lost his seat for Nottinghan and had been returned fur Ilarwich. In 1851 he was raised to the peerage, and frow that time showed limself disposed to "rest and be thanlfal." He gradually ceased to take part in public affairs, and returned to the studics and literary eujoyments of his youth. Lord Broughton published a rolune of Imitations and Translations from the Clussics; an account of his Journey through Albania and other Provinces of Turkey with Lord Byron; and Mistorical Illusirutions of the Fourth Canto of "Childe Harold." He was also a contributor to periodical hiterature. In 1828 he mariocd Lady Julia Hay, youngest daughter of the Marquis of Twecddale, by whom he had three daughters, but no son. His wife died many years before him. Lord Broughton died in London, June 3, 1863. As be left no male issue bis pecrage became extiuct.
bROUKHUSIUS, or Broestuizen, Jas, a dishinguished scholar, born in 1649 at Amsterdam, where his father was a clerb in the Admiralty. His father dying wher: he was very young, he was taken from literary pursuits, in which he had made great progress, and placed with an apechecary at Amsterdam, with whom he lived several years. Not liking this employment, he entered the army, and in 1674 was sent witb his regiment to America, in the feet under Admiral de Ruyter, but returaed to Holland tho same year. In 1678 he was seat to the garrison at Utrecht, where he contracted a friendship with the celebrated Grevius; and here he had the misfortune to be so deeply umplicated in a duel, that, according to the laws of Holland. Lus life was forfeited. Grevius, bowever, wrote immediately to Nicholas Hemsius, who obtained his pardon. Not long aiterwards he became a captain of one of the companea then at Amsterdam; and was thus enabled to pursue his studies at his lessure. His company being disbanded in 1697 , he received a peosion, upon which he retired to a country-house near Amsterdam. He died in 1707, aged fifty-eight.
As a clissical scholar, he is distinguished by his ϵ ditions of Pro. pertius and Tibullus, the former published in 1702, the latter in 1708. His Carmina were published at Utrecht. 1684. in 12mo ; and in a more handsome form by $\mathrm{V}_{\text {an }}$ Hoogstratterh A msterdim, 1711, 4to. His Dutch poems were also published at Amstenluri, 1712, 800, by the same house, with a life prefixed.
broussa, Brussa, or Brusa, in Turkish Bursa, a city of Asiatic Turkey, in the province of Anatolia, and capital of the sanjak of Kbodavendkiar, is situated in a fertile valley, at the northern foat of Mount Olympus or Keshish Dagh, 57 milec S.S.E. of Constantinople. Its streets are narrow and dark, and its bouses are for the most part built of wood; but its namerous minarets give it a magnificent appearance from a distance, and the rich varicty of colouring that everywhere meets the eye has a very striking effect. It is abundaatly supplied with water, which flows down the middle of many of the streets, and rises every here and there in beautiful fountains. On the top of a rock in the beart of the town stands the ancient citadel, the walls of which date from the 13 th ceatury, and are of Greek construction; and on the west side is the Byzaatine church of Elijah, which is now Enown as the Daud Monasteri mosque, and contaias the tomb of Orkban. The most important of the other mosques, thic number of which is said to be upwards of 600, are Oghí Jami, or the mosque of the three sultans ; the Yeshil Jami, or the green mosque ; and Ghaz Unkiar Jami, or the mosque of the conqueror. There are also in the towa three Greek churches, one Armenian, and several syoagogues. Many of its colleges, bazars, and caravanserais arc buildings of considerable importance, and bear comparison with those of Coustantinoule. Broussa is the seat of a provincial governor, of a mollah or judge, who ranks as third in the kingdom, aud of a mufti or spiritual chief. The Greeks and Armenians have each an arch hishop in the toru. As a comacrcial city Broussa ranks with the most flourishing in the empire. The towa of Ciemlis at the head of Mudani Bay, from which it is about 20 miles distant, serves as its port. It manufactures carpets, tapestry, and various kinds of silk goods, the material for the latter being obtained from the mulberryplantations of the ineighbourbood. In 1862 there were ne fewer than sixty silk factories belonging to Italians, French. men, and Gernans. About a mile and a half from the town are the famous baths of Broussa, which are fod ly screral mincral springs varying in temperature up to 184^{3}, and from a bill in the vicivity is obtained a good supfly of meerschaum clay. The population of Broussa is variously cstimated,-by Mostrás (Dict. Gíog. de l'Empire Or'oman, 1873) in 1863 at 70,000 , by Dr C. Sandrersti in 1844 at 60.000 and by Consul Sax at 40.000 .

Broussa, the i'rusu of the classical mriters, founded, it is said, at the suggestion of Hannibal, was for a long time the seat of the Bithynian kings. It continued to flourish under the Romaniand Byzantine emperors till the 10 th century, when it was captured and destroyed by Seif-ed-daulet of Aleppo. Restored by the Byzantines, it was again taken in 1327 by the Ollomansafter a siege of ten years, and continued to be their capital till Amurath 1 . removed to Adrianople. In 1402 it was pillaged by the Tatars; in 1413 it resisted an attack of the Karamanians; in 3512 it fell into the power of Ala Fddin; and in 1607 it was burnt by the rebellious kialenderogli In 1833 it was selzed by Jbrahim Pasha, and from 1852-55 afforded an asylum to Abd-el-Kader. In modern times it las suffered several times from earthquake and conflagration, especially in 1855.

BROUSSAIS, Franços Josepa Victor, a celebrated Fieuch physician, was born at St Malo in 1772. From his father, who was also a physician, he received his first instructions in medicine, and he studied for some years at the college of Dinan. At the age of seventeen be entered one of the newly-formed republican regiments, but ill health compelled him to withdraw after about two years. He resumed his medical studies, and after passing some time in the hospitals of. St Malo and Eryt, obtained an appoint ment as surgeon in the nary. In 1799 he procecded to Paris, where in 1803 be gradnated as' N.D. . In 1805 be again joined the army in a professional capacity, and served io Germany, Holland, Italy, and Spain. In 1S14 he returned to Paris, and was apponted assistant-professor to the Military Hospital of the Yol-de-Grace, where he first promulgated his peculiar doctrines. Ilis thoory, which strongly resembles that of John Brown, points to excitation or irritation as the fundamental fact in life. Je found the principal cause of discase in over-irritation, which, primarily local, extends itself through synipathy to the other argans of the body, as in fever. His lectures nece attender by great numbers of students, who recoived nith, the utmost entbusiasm the new theorics which he propounded. In 1816 be published his Examon cle la doctrine médicale génćralement adoplic, which drew down upon its author the batred of the whole medical faculty of Paris. By degrees bis doctrioes triumplued; and wore adoptad in the writings and practice of the best physicians, and oven an the medical sehnol itself, long before their propounder beld office in that institution. In 1831 le was appointed professor of general pathology in the academy of medicine, and taught with great applause till his death in 1838 . The recent development of [Hysiological scienoc has shown that his theorics are but partially true, and are of little value as a general explanation of disease. Of his woths, which are very numerous, the most important are the Examen and De lírritation et de la Folic.

Broussonet, Pierre Marie Auguste, a distinguisbed French naturglist, was lle snn of a scboolmaster, and was born at Montpellior in 1761 He was elucated for the medical profession, and at the age of eighteen was appointed to fill a professor's chair. Potany secms to have been the science to which be was at first cbiefly deroted; and he laboured with much zeal to establish the system of Linnæus in France. With this view, as well as for bis own improvement, be went to Paris, and risited the varions muscums and colleciions. He nost came to England, and was adnitted in 1782 an honorary member of the lioyal Society. He published at London the first part of his work on fisbes, Ichthyologice Decas J. On his return to Paris he was appointed perpetual secretary to the Society of Agriculture, an office which the intendant Berlbicr de Sanvigny resigned in bis farour. In 1789 be was nomi"nated a momber of the Electoral College of Paris, and for some time had the charge of superintending the supply of yorisions for the capital. Under the Conrention he had to leave Paris and after some dangers be made his way to Madria? The evmity of the Frencb emigranits, horecier. drore him from Siain, and afterwards from Jisbon, nher-i
he bad sought an asylum. At last he went urtas phyşcian to an cmbassy which the Unted States seut to the emperar of Maracco ; and on this occasion bis friead Sir Joschl) Fanks, informed of bis aistresses, remitted him $£ 1000$ After residing for some time at Marocco, he obtained fro. 3 the Frevel Directary permission to retum to France, and was appointed by them consul at Teneuffe, where ls resuded for two years. On bis returin in 1797 he $n a$, ebosen member of the Institute, and was remstated in 1 . botanical profossorship at Montpellier, "ith the direction of the botanical garden. He was afterwards elected a nember of the legislative body, but died of apoplexy on the 27 th July 1807 . France is indebted to him tor the monduction of the Merino shecp and the Angora goat. None of his works are now of importance.

BROUWER, ADrian, a Dutch painter, was born at Haarlem in 1608 , of very humble parents, n ho bound him apprentice to the painter Frank Hals Brouwer bad an admirable cye for colour, and much spirit in design; and these grts his master appears to have toned to his own profit, while bis pupil was half staved. As the result al this ungenerous treatment, Bromer was frequently brouglit into low company and dissipated scencs, which be delincatd ${ }^{\circ}$ with great spirit and vivid columing in his pictures. The unfortunate atist died in a hospital at Antwerp in 1640 , at the early age of thirty froo, conscquently bis works are fow and rarely met with. The larges collection of bis mas. terpieces is in the picture gallery at Munich.

BROWN, Compres Drochues, the fist Amencan novelist who acquited an European 14 utation, and the Eist American who made literature a jufession, was bern ot Quaker farents in Phinodelpha, daruary 17, lãl. A youth of delicate constitmion and retuing halits, he early devoted himself to study; his frincijal anusament was the invention of ideal arehitectural designs, devied on the most estensive and chatorate scale. This characteriotic taleut for construction sulsequently assumed the shape of utopian projects for perfect commonwealtus, and at a Jater peried of a scries of novels distinguishod by the ingonuty and consistent evolution of the plat. The transition belwern these intellectual phases is maked by a juvonile remance entitied Carsol, not jublishod untilafter the anthor's death, which professes to derict an imaginary comnunity, amd shows how thorughly the young American was inspired ly Codwin and Mary Wollstonecraft, whose princip al writines had recently made their appearance. Fiam lise latter le derived the idea of his neat nork, flum, an cmhesiaste but inesperienced essay on the grestion of weman's rights and liberties. From Godam be loanded has torse eljle, condensed to a fault, hut tro laconic for elegucnice or mide lation, and the art of developing a plot frem a single 1syohological problom or inysterious circumatance jl., novels which he now rapidly produced offer the strangest aflinity to Culeb IVilliams, andi if inforiot to hiat remathalde nurk in the enblety of montal amaly: gis, gatly furpars. in aftuence of invention and intensity of reetical lecring. All are wild and neid in conception, with incidents borde: ing on the preternatural, yet the limit of possibility is neve: transgressed. In Widand, the first and most striking, is scemingly inexplicuble mystery is resolsed into a case rentriloguism. Arthur Meregn istemarkable for the descrip tion of the epidemic of yellow fever in New York in 1790° Which had prored fatal to the author's most intimate friend. Folgar Huntly, a romence rich in local coluring, is remarkable for the effective use made of somnambulism, and anticipates Cooper's introduction of the Jiod Indian into ficion. Ormond is less porserful, but contains one character, Constantia Dudley, which excited the enthusiastic admiration of Shelley, who was aisn deeply entranced by Bromn's other romances "Nothing." asserts Dlrs Peacock. " $=$ " 1ronded.
itself with the stifucture of his intenormiad as the creations of Brown." The tro had, indeed, nearly every leading tait in common, although Brown's weak health and narrow circamstances reatraned hirn from carrying his enthusiastic aspirations into practice. Two subsequent novels, designed as representations of ordinary life, proved failares, and Brown betook himself to less ambitions literary nursuits, compiling a general system of geography, editing a periodieal, and an annual register, and writing political pamplatets which attracted considerable attention at the time. He died of eonsumptioo, February 22, 1810. He is depicted by his biographer as tha purest and most amisble of men, and in spite of a eertain formality due, parhaps, to his Quaker education, the statement is borne ont by his correspondence. As a novelist he ranks very high; he is the precursor of Hawthorne, and hitherto his only American rival. Greatly inferior to Hawthorne in truth of natural deseription and insight into human character, be surpasses him in narrative and constructive ability. Wieland and Edgar Huntly cspecially are thrilling and exciting in the highest degree, while preserved by the constant presence of a psychulogical problem-from degenerating into mere sensationalism. Most of Brown's novels have been reprinted in England, but none recently. His life by his friend Donlop (Philadelphia, 1815) is a grievous piece of bookmaking, but is interesting from the subject. An edition of his works in 6 vols. was published at Philadelphia in 1857.
(B, a.)
BROWN, Joan, D.D., an Fuglish divine sud author, was born at Rothbury, Northumberland, in November 1715. He was the son of John Brown, a descendant of the Browns of Coalstown near Haddington, who at the time of his son'e birth was eurate of Rothbury. He was edueated at St John's, Cambridge ; and after gradaating as B.A. with great distinetion, he returned to his father's house t : Wigton, reeeived deacon's and priest's orders from Sir George Fleming, bishop of Carlisle, and in 1739 went to Cambridge to take his M.A. degree. In 1745 he distinguished himself as a volunteer, and was soon afterwards appointed ove of his ehaplains by Dr Osbaldeston, on his admission to the bishopric of Carlisle. It was probably during bis residence at Carlisle that Brown wrote his poern eatitled Monour, inseribed to Lord Lonsdale. His neat poetical production was his Essay on Satire, addressed to Dr Warburton, to whom it was so acceptable, that he touls Brown into his frieadship. He also introduced him to Ralph Allen, of Prior Parts, near Bath, to whom in 1751 Brown dedicated his Essay on the Characterwstics of Lord Shaflestury. In 1754 ho was promoted by the earl of Hardwicke to the living of Great Horkesley in Essex, and in the following year be took the degree of doetor of divinity at Carabridge. In this year also he published lus tragedy of Barbarossa, which, under the management of Garrick, was aeted with considerable applanse, though it was sharply censured when published. This tragedy was followed by a second, entitled Athelstane, which was represented at Drury Lane theatre. This was also well received by the publie, but did not beenne so popular as Barbarossa. Among the most remarkable of lis ather productions are tho Estimate of tiee Manners and Principles of the Times, a bitter satire; the Aullitunal Dialogue of the Dead, which was a vindication of Cbathan's poliey; and the Dissertation on the Rise. Uuion, and Power, dic., of Poetry and Music. Dr Brown, who had an bereditary tendency to insanity, and from early life had been subject at times tu fits of useessive melancholy, committted suicide on tho 93 rd of Seruember 1766
BROWN, Joms, author of the Self-fnterpreting Bible, was born at Carpow, in Perthshire, in 1722 . He was elmost eatirely self-educated, having acquired a knowledee
of Latin, Greek, and Hebrew while employed as s sheplerd. He was, for a great part of his life, minister of the Eurgher branch of the Secession Chureh in Hadding. ton, and also discharged the duties of prufessor of divinity. Though be had not enjoyed the advantages of a regular education, he mastered the classical tongues, as well as several modern and Oriental languages, and ganed a just reputation for learning and piety. He died in 1787. The best of his works, which are very punerous, are his Self. Interpreting Bible and Ductionary of the Bible, works that were long very popular in Scotland. He also wrote a valuable Body of Divinity.

BROWN, John, the founder of the Brunonian theory of physic, was born in 1735° at Lintlaws or at: Preston, Berwiekshire. He was originally destaned for the employ. ment of a weaver, but the boy's talenta attracted the attention of his sehoolmaster, through whose endearours his parents were encouraged to allow him to begin stady for the ehurch. At the age of twenty be came to Edinburgi and entered the elasses at the university, supporting himself by private tuition. In 1759 be seems to have discontinued his theological studies, znd to have begun the study of medicine He soon attracted the notice of Dr Cullen, who engaged him as private cutor to his family, and treated him in some respeets is an assistant professor. Brown, however, thought that Cullen did not adrance his candidsture for a vacant ehair, and the friendship between the two was soon completely broken. In 1780 appeared the Elementa Mfedicince, expounding the new, or as it was then ealled the Brunonian, theory of medicine. The fundamental iden of this theory was the division of diseases into two classes, sthenie and asthenie, the one caused by excess, the other by deficiency of excitement, and the consequent method of treatment by debilitating or stimulat ing medicines. That Erown's ideas should have exeited the discussion they did seems now ineredible. Shortly after the publication be obtained the degree of MI.D. ut St Andrems, and in 1786 he set out for London in the hope of bettering his fortunes. He died of apoplexy in Oetober 1788. A Life of Brown by Beddoes was published in 1801. An edition of his works, with notice of his life by his son, W C. Brown, appeared in 1804.

BROWN, Joen, D.D, an eminent Scottish divine, son of the Rev. John Brown of Whitburn, and grandson of the Rev. John Brown of Haddington, was born at Whitburn, Linlithgowshire, on the 12th July 1784. He studied a: Glasgor university, and afterwards at the divinity hallo the "Burgher" branch of the "Secession" Chureh at Sil kirk, under the celebrated Lawson. In 1806 he wa ordained minister of the Burgher congregation at Biggar. Lauarkshire, where he continued to labour for sixteen yeare with growing popolarity. Transierred in 1822 to thr charge of Rose Street church, Edinburgh. he at onee tonk a high rank as a preacher. Deficient in imagination ann in spontaneity of ntterance, he had nearly all the other qualities of a pulpit orator, - a powerful and tlexible voter. a presence at once wiuning and eommanding, clear and persuasive reasoning, and a habitual earnestaess, rising not unfrequently into fervour. In 1829 he succeeded Dr Hall in the pastoral charge of Bronghton Place chureh, Edin burgh, where bis congregation speedily became one of thlargest in the eity. In 1835 he was appointed one of the professors in the theological hall of the Secession Church, and, great as was his ability as a preacher and pastor, it was probably in this sphere that he rendered bis most valuable service to his own denomination and the ebureb at large. He had been the first in Seotland to introduce in his pulpit ministrations what is known as the exegetical methed of exposition of Scripture, and be fully availed himself of his pasition as a professor to illustrate the
method and extend its use. To him probably more than to any other man is due the abandonment of the radically vicious principle of interpretation according to the "analogy of faith," which practically subordinated the Bible to the Creed. To his favourite task of exegasis, which he himself described as the mo:a object of his public life, Dr Brown brought a rare criucul sagacity, exact and extensive schularship, unswerving honesty, and a clear, logical style. His expository works, noted below, have accordingly a permanent value. Dr Brown was naturally of a retiring disposition, but the strength of his convictions forced him to take a prominent part in the chief religious and political discussions of his time. He had a considerable sbare in the Apocrypha controversy, and he was throughout life a vigorous and consistent upholder of anti-state-church or "voluntary" views. His two sermons on The Law of Chrst'respecting civil obedience, especially in the payment of tribute, called forth by a local grievance from which be bad personally suffcred, were afterwards published with extensive additions and notes, and are still regarded as an admirable statement and defence of the voluntary principle. In a discussion which agitated his denomuation for several years in regard to the nature and extent of the atonement, Dr Brown took a part which led to a formal charge of heresy beng preferred aganst bam In 1845, after the to him peculiarly painful ordeal of a 8omewhat protracted trial, he was acquitted by the Synod From that time he enjoyed the thorough confidence of has denomination (after 1847 "the United Presbyterian Church"), of which in his later years he was generally regarded as the leading representative Dr Brown died on the 13th October 1858.
Dr Brown's chicf works were-Expository Discourses on First Peter 1848) ; Exposition of the Discourses anl Sayings of our Lord (1850). Erpusition of ouer Lord's Intercessory Prayer (1850). The Resurrectuin of Life (1851); Erphosition of the Episite to the Galatrans (1853): and Aualytical Exposition of the Epistle to the Romans (1857) See Efemorr of John Broum. D. D. by John Carns (1860).

BROWN, Jorin, an American abolitionist, celebrated as the originator of the Harper's Ferry insurrection, was born in Torrington, Connecticut, on the 2th May 1800. Originally intended for the ciurch, be was compolled to give up study for this purposo on account of inflammation in the eyes. He then took up the busness of a tanner, which he carried on for twenty years. Not being very successful in trade, he started business as a wool-dealer in Ohio m 1840. Failing also in this he removed to Essex county. New York, in 1849, and began to reclaim a large tract of land whieb had been granted to him. After two years he returned to Ohiv and resumed his busmess as a wool-dealer In 1855, with his four sons, he mugrated to Kansas, and at once took a prominent position as an anti-slavery man. He became renowned in the fierce border warfare which was carried on for some years in Kansas and Missouri, and gained particular celebrity by his victory at Ossowattomic. About this time he seems to have formed the idea of effecting slave liberation by arming the slaves and inciting them to rise in revolt against their oppressors. As the first step in this scheme, ho designed to seize the arsenal of Harper's . Ferry, where an immense stock of arms was kept. On the night of the 16th October 1859, be, with a handful of well-armed and resolute companions, overpowered the small guard and gained possession of the arsenal. During the next morning he made prisoners of some of the chief men of the town, but there was no rising of slases as had been expected. The townsmen, too, recovered from their astonishment at the audacity of the act, and a bold attack was made on the arsenal. Fresh assailants poured in from tha country round, and on the mosning of the 18th the
arsenal was recaptured, and Brown, seruety wounded, was taken prisoner. On the 27 th October be was tried at Charlestown for treason and murder, and was found guilty. The aentence passed upon him, death by tranging, was carried into execution on the 2d December. H1s fate made an extraordinary impression on the excited feelings of the Americans, and his name has become a household word among the Abolitionists.

BROWN, Robert, the founder of the Brownists, a numerons sect of dissenters in the reign of Queen Elizabeth, was born in 1550. He was the son of Anthong Brown of Tolthorp in Rutlandshire, whose father ustained, by a charter of Henry VIII., the singular privilego of wearing his cap in the king's presence. Robe:t was educated at Cambridge, and was afterwards a schoolmaster in Southwark. About the year 1580 . be began to promulgate his principles of dissent from the Established Church; and the following year he preached at Norwich. where he soon attracted a numerous congregation. His unmeasured assaults upon the Church of England form of government gamed for him many followers. His sect daily increasing, Dr Freake, bishop of Norwich, with other ecclesiastical commissioners, called him before them. Being msolent to the court, he was committed to the custody of the sheriff's officer, but was released at the intercession of his relative the Lord Treasurer Burghley. Brown now left the kingdom, and with permission of the States, settled at Middlejurg in Zealand, where be formed a church after his own plan, and preached without molesta. tion. The removal of porsecution, howevcr, broke up the unity of the party; numerous sects appuared, and Brown soon returned to England. He fixed his res:dence at Northamptun, where, for his indiscrect attenpts to gain proselytes, he was cited by the bishop of Peterborough, and, refusing io appear, was fivally excommunicated for contempt The solemnity of this censure, we are told, inmediately effected his reformation. He mored for absolution, which he oltained, and from that timo became a dutiful member of the Church of Fingland. This happened about the year 1590 , and, in a short time afterwards, Brown was preferred to a rectory in Northamptonshire, where he kejt a curate, and where he might probably have died in peace, but having some dispute with the constable of his parish relative to the payment of rates, he proceeded to blows, and was afterwards so insoleut to the justice, that he was committed to Northampton jail, where he died in 1630, aged eighty. Brown boasted on his death-bed that he had been confined in thirtytwo different prisons. He wrote a Treatise of Reformation without tariyng for any. and two other pieces, making together a thin quartu, publishod at Niddleburg in 1582. See Brownists.

BROWN, Robert, a celebrated botanist, who may bo said to be the founder of the modera science of vegetable physiology, and to bave placed the natural system of the classification of plants, onginally introdaced by Jussicu, upon that sure and ever-widening basis on which it has ever since remained. With the exception of the carly years of his lifa his career was uneventul Itis private life is littlo known; and though his researches were faniliar to the learned members of nearly all the European and American academies, which numbered him among their members, his very exstence, until the journals of the day procaimed his decease, was almost unsuspected by the fashionable world of the great city in which he lad 1 nassed upwards of half a sentury. His liography may te lest read in his works, -a very few words sufficing tu record the salient points of his life. Robert Brown was the second and only surviving son of the Rev. Jas, Brown, Episcopalian ministor of Montrose, Ly Helen, àaughter of the Rev. Robert

Taylor, and was born on the 21st December 1773. He was educated at the grammar school of his native town, wiere he had as contemporaries, among others less known to fame, Joseph Hume aod James Mill. In 1787 be entered Marischal College, Aberdeen, where he soon distinguished nimself. Two years afterwards, his father quitting Montrose ior Edinburgh, Brown remored to the unirersity of that city, and there continued his studies for several years, but without taking a degree, though destined for the medical poofession. In 179$]$ his father died, and in 1816 his mother; both are interred in the Cauongate churehyard, in the burying ground belonging to Bishop Keith. It was about 1790 that young Brown's taste for botany attracted the attention of Dr Walker, then professor of natural bistory in the university. His first contribution to the science of which be mas destined to be so eminent a cultivator was made on the 26 th June 1792 , in the shape of a paper on the plants of Forfarshire, read before the Natural History Socicty; the MS. is still contained in the archives of the Royal Physical Socity (Journal of Botany, 1871, p. 321). Pering his student days be also discovered many plants new to Scotland, which were commonicated to Withering for his Arranyenent of British Plants.

In 1795 be obtained a commission iu the Forfarshire regiment of Fencible Infantry as "ensign and assistant surgeon," and whileserving in the North of Ireland steadily pursued his botanical studus, and hat the advautage of the companionship of Capt. Dugald Carmichael of Appin, afterwards well known as an investigator of the lower orders of plants Having oceasion to pass several montus of 1798 and of subsequent years in London, he studied in the library and museum of Sir Joseph Banks, P.R.S., whose acquaintauce be had been fortunate enough to make by the discovery of a rare moss, Glyphomitrion Daviesii. The result of this friendly intercourse was that he was recalled from Ireland, and in the summer of 1801 quitted his not altogether congenial medico-military pursuits, to take the more agrecable post of naturalist to the expedition fitted out undor Capt. Flinders for the sursey of the then almost unkuown coasts of New Holland. Ferdinand Bauer, afterwards familiarly associated with Brown in bis botanical discoveries, was draughtsman; Wm. Westall was landscape painter; and awong the midshipmen was one afterwards destined to rise into fame as Sir Johu Franklin. The narratice of that expedition is part of the biography of its botanist. In 1805 the expedition returned to England, having obtained, among other acquisiticns, nearly 4000 species of dried plants, many of which were new. Brown was almost immediately appointed librarian of the Linnean Socicty, of which learned body he had been an associate since 1793. and to the presideney of which be afterwards attamed In this position, thougb one of no great enolument, be bad abundant opportunitics of pursuing his studics; but it was not until 18 ! 0 that the first volume of his great work, in Latin, the Prodromus slora Nova Mollendiar et Insulic lien Diencen, appeared. It at once rovolutionized systematic botany, not only by the great. number of new species it deseribed, but aho by the novel views of the general affinties of phats which were promulgated in its pages. Almost immediately it took the ronk it has ever since maintaind as one of the canons of butanical science Humboldt soon after its publicution dedicated bis well-known work on the plants of The New World to Brown (Roberto Broumio, Britanniarum gloric atyue orramento, totam Botaneces Siemtianc ingenio mirikioo complecturi) and long after, in his hosmos, styied him pucale princeps botanicorum. The Prohlronus is now rare in its original editiou, the author having suppressed it, hurt at the Edindurgh Review having fallen ion! of its Latinity; it is chatly kwown throtah a Cerman reprint.

With the exception of a supplement publisnal in i 830 , no more of the work appeared. In 1810 Brown became librarian to Sir Joseph Banks, who on his death in 1820 bequeathed to bim the use and enjoyment of his library and collections for life. In 1827 an arrangement was made by which these were transferred to the British Museum, with Brown's consent and in accordance with Sir Joseph's will. Brown now became seeper of this new botanical department. an office which he beld until his death thirty years afterwards. Soon after Bauks's decease he resigned the librarianship of the Linnean Soctety, and in 1849 became president, in which office he continued until 1853. His subsequent life was occupied with numerous brilliant discoveries and researches in vegetable anatomy, physiology, and classification; these are familiar to every student, and may be read in any botanical text-book. Long before bis death they secured bis fame as the first botauist of the day. Honours flowed thickly in upon him. In addition to being a fellow of the Royal Society be received its Copley Medal in 1839. In 1833 be was elected one of the five foreign associates of the Institute of Franco,- the other competitors, nearly all of whom afterwards attained the same honour, heing Bessell, Von Buch, Faraday, Herschel, Jacobi, Meckel, Mitscherlich, Ersted, and Plana. He was also a mentber of nearly all the learned societies and academies of this and other countries, D.C.L. of Osford, LL.D. of Edinburgh, and kuight of numerous orders, araong others of the Order "pour le Mérite" of Prussia. In tise "Academia Cesarea Naturx Curiosorum" he sat under the cognomen of Ray.

On the 10 th June 1858 he died in the 85 th year of his age, in his house in Soho Square, Lequeathed to him by Sir Jos Banks His place in botanical science has long been fised; it is not necessary now to discuss it. His works are all standards, being distiuguished by. their thoroughness and conscientious accuracy, and displaying powers at once of minute detail and of broad generalization -qualities rarely combined. Indeed, su careful was he in preparing bis discoreries for the press that be directed in his will that, should any of his writings be repurtished, they should be printed verlation at literation. In private lifo he was exceedingly modes:, and be shrank from votoriety of overy kind. Scusationalism and self-secking be despised, fame came to him unsought. His reserved manner to those not intimately acquainted with him cond never make bim universally popular; but few will deny his warmheartedness to bis friends, the singleness of bis purpose, and the purity of his life. Those who brew bim in his most iutimate relations bear witness that in mond loe was simple, truthful, and upright, and rhat he oas wise and faithful in council

In 1825-34 Dr Bown's wolks up to that date were oceitected nid published in four divisions thy Nees ron Esentheck, in German. water the title of V'ermisehte bothnishe Sohrifton (Leipsic and Nurenbers). In 1866 the lay Society reptinted, under the editorship of his friend and successor in the kepership of the Botanical Do. patruent of the British Musum, Mr J. J. Bennet, his complete writiags, the Frodromins ahme excepted. In these Mischllancons Worts (a vols, with athas of phatw), the history of his discoverie: can to hest followed No speral bograph of him is ever likety to aphen, as his careur comamed fuw of the clements cessential to a con. thuous narrative of generah interest. In the verrologies of the socsoties and academics which mamheral him among their memters, there will, however, be found sketches of his life more or less complete

BROWN, Samoel. chemist, noet, and essayist. was born at Hudington on the 23. Febrwary 1817, and died 20th Semember 1856 He was the son of Dr Samuel Prora, the founder of itinerating hararies and grandson of tho author of the Silf-luterguretary, bible. In 1832 he entered the university of Elinturgh, and almost irom the first. cievoted himself with lascimate enthusiasm to the study of chemistry. The ultumate frublems of the science sjo
cially at'racted his atteation, and he came to be persuaded that elements usually regarded as cuecoically simple and mimary were transmutable into ench other Believiug that ae could demonstrate this on the case of carbon and silicon, he becante a candudate for the chair of chemistry in Edinburgh unversity in 1843; but he withdrew his application on findiag his proof inconclusive. In 1849 be delivered in Edinburgh a series of lectures of great value on the history of chemstry from the earliest times to Lavoisier. In 1850 he published the tragedy of Galileo, which bad considerable merit. He was also an occasional contributor of articles on general titerature as well as on subjects connected with his favourite scrence to the leading reviews. His time, however, was chiefly spent in his laboratory; and at the date of his death in 1856 be believed that he was within a very little of demonstratiog the great tundanental theory in which his own faith had never wavered. Though bis work was thus left incomplete, be did enough to entitle him to a place in the foremost rank of those who have cultirated the higher chemistry. An interesting collection of his tessays and papers, which display general Literary power of a very high order, was published in twe volumes in 1858.
BROWN, Thomas, of facetious memory, as Addison designates him, was the son of a farmer at Shiffnal in Shropshire, and was born in 1663 . He was entered at Christ Church College, Oxferd, whence he was soon obliged to abscond on account of the irregularities of his life. He was for some time schoolmaster at Kiagston-on-Thames, and afterwards went to London, where he had recourse to the usual refuge of balf-starved wits-scribbling for bread. He published a great variety of poems, letters, dialogues, sc., full of bumour and erudition, but coarse and indelieate. Though a good-natured man, he had the unhappy quality of proferring rather to lose his friend than bis joke. He died in 1704, and was interred in the cloister of Westruinster Abbey. An inconplet? adision of his works was published in 1707, in 4 vols. 12 noo.

BROWN, Dr Thomas, one of the most original and subtle of Scotish psychologists, was born on the 9th Jaunary 1778, at Kirkmabreck, Kirbeudbright, of wheh parish bis father was the clergyman. In 1780 the fanily iemoved to Edinburgh, but he was not placed at any of the schools in that city. At the age of seven be was sent to London, and began his regular education at a scbool in Camberwell, from which he was soon afterwards removed to Chiswick. At Chiswick he was thoroughly grounded in classics, and began to give promise of great ability, partieularly in th department of verse composition, one of his school proems being deemed worthy of insertion in a magazne. He was a boy of a refincd, gentle nature. intensely studious, a devourer of literature of all Linds, and much loved by his companions. After attending two other ochools at Brimley and Kensington, be returned to Edin. burgh, and in 1792 began Lis conrse at the universtity by poining the logic class, then conducted by Professor Finlayzon. During the summer of 1793 be made acquamtnee with Dugald Stewart's Phidosophy of the Iluman Wizt, and found himself irresstibly attracted towards metaphysical speculation. He joined Stewart's elass, that of moral philosonhy, in the following session, and quic'ly introduced himself to the professor's notice by reading to him a paper of oljections to one of bis theories, marked by great acuten ss and ability. His attendance on the classus at the university seems to have been somewhat desultory; it does no: nncir that he ever passed through the regular curriculuta of at?s studies. But he carried on his reading with great vigour, and while still a student made bis first appearance in the arena of philosophical disputations ilis stention bad been dmom tuwards Darwin's Zoonomice,
which was then exciturg a lively sensation athe literary world. His remarks on this book were published in 1790°, and were received with great approval as one of the best and most mature examinations of the theory. His nexs contribution to literature was an article in the second number of the Edinburgh Revraw on the philosophy of Kant. It is acute, like all that Brown ever wrote, but is shows ueither sufficient knorledge nor adequate appreciation of the plilosopher it bandled. Meantime he bad been devoting liunself to the stedy of medicine, having relinquished that of law, to which for a while be had applied. His graduation thes1s, De Somno, which was ihought wortly of beng publisbed, is a fine plece of psychologico medical analysis. A few months dater appeared two volumes of his poems, which were not received with much favour. Nor did his later poetical efforts attain much popularity, with the partial exception of the Paradse of Coquetes. They all show refined feeling and sweetness of diction, but they are wanting in the elements of true poetry. They are faint echoes of Akenside and Beabre, neither of whom ean stand much dilution. Brown's real strength lay altogether in metaphysical analysis, and a farourable opportunty for calling it forth soon presented itself. Some captious objections bad been rased against the appointment of the celebrated Leslic to the professorship of matbematics, on the ground that he had approved of llume's doctrine of causality. The Humian theory was beliered to lead inevit. ably to scepticisa and infidelity, and these consequences were, of course, charged upon Leslic. Brown undertaok the defence not of Leslie but of Hume, and in his examination of IIume's doctrine showed that in reality the theory was in no way inimical to the interests of true religion or theology. This examination, at first but a panphlet, swelled out in its third edition (1818) into a bulky treatise, inguiry into the Relation of Couse and Effect, containing not merely a criticism of Lume, but an elaborate theory of the causal relation. This relation Brown regards as nothing but constancy of antecedence and sequence, white at the same time be admits an intuitive belief in the permanency or universality of tha causal conncetion. The work is a fine specimen of Brown's faculty of analysis, which it exhibits in its very best aspect.

As early as 1806 Dr Brown bad engaged in practice ng a physician, having been reccived into partaership with D. Gregory, but though very successful in his profession, lic was by mature more strungly aturacted towards a literary life. He had twice failed in lis application for a professorshap in the university of Edinburgh, when in the session 1808-5 he was called upon to deliver a few lectures to the class of moral philosophy, in conscquence of the temporary illness of Dugald Stewart. In the following year, Stewart's bealth still incapacitating him from active exestion, Dr Brom delivered the lectures fur the greater part of the session. Itis success in conducting the class wes unequivocal, the enthusiasm of the students was such as one reflects on with a little wonder. They were fascinated not more ly the splendid rhetenc of the lecturer than by the novalty and ingenuity of the views presented In the summer $\%$ 1810 it was resolved to uppoint Brown as colleague io Dugald Stewart, and in the ensuing session he began has course as prefessor of moral thilosophy During the few renaining years of his life be published only bis peens but he was busily engaged in preparing an abstract of bis lectures to serve as a handbook ici the class. flis health never strong, gave way completely mider the pressure A his work. A voyage to London, whech had been reccinmended, proved of no avall, and be died on the 2d April 1820, at the early age of fosty-two After his death were published the first part of his proposed test bonk, Physolugy of the Human . Uind. and the Lectures on the Philaspphy
of the Human Airnd, 4 vols., of whicu the Physiology is an abstract. The fame achieved by the Lectures when published surpassed even what they had attained when delivered. It is no exaggeration to say that never before or since has a work of metaphysics been so popular. In 1851 the book bad reached its 19th edition in Eogland, and in Ameriea its euccess was perhaps greater. Since that time, however, its popularity bas deelined with almost equal rapidity; judgments on its merits are now as severe as they were formerly favourable, and the name of Brown may be said to be a dead letter is the annals of philosopby. It is interesting to inquire bow far this extravagant laudation and neglect are justifiable; and it is of importance to know exactly what were Brown's contributions to mental science, and how far his system is consistent and true.
Some part of Brown's popularity is no douht to be accousted for from the fact that he was the leader of a revolt aganst the estah. lished system of philosophical thought in Scotland It had come to bo looked upoo as established that in the common eense plilosophy of Reid alone were metaphysical truth and soundness to be found. Rrown not only showed that in many points of detail the earlier Scottish psychology was in fault, above all in their crucral doctrine of perception, but changed the whole aspect of the scieace hy trcating it. from a thoroughly new and original stand point. Still more of his fame was due to the lively impression made by his brilliant rhetorical powers. It was a novelty to find the most eubtle analysis expounded in the most richly poetical language. Philosophical diction bad beeo dry enough in Reid, and though Dugald Stewart was a master of literary exposition, his eloquence was of a chaste and elegant kiad Brown's, on the other hand, is flotid and ornamental to excess, and one 800 n wearies of the copious quotations from poets like Akenside, Beattie, or Yoang. Yet the etrle bad, and still has, a certain fascination. But in addition to these extraneous causes, one cannot help acknowledging as the main resson for Brown's quick accession to fame, his undeniable acuteness and originality. His miud was extraordiuarily quick and active; there is not oae of his lectures which does not contain either some addition to the older doctrine, or some uesw and striking applica. tion of it. What a mind of such fertility and anbtility might have achieved had the thinker been epared a bittle longer, it wonld be hard to say. But it must not be forgetten in estimating his merits, that wo possess only part of his aystem, and that he had not brought bis paychology to bear upon the deeper problems of metaphysics.

Of positive contributions made by him to mental seience, the following are perhaps the most important:-(1.) General fon ception of the object and method of psychalagy. According to him meatal phenomens are to be treated by the recognized methods of physical scieace. Conaplex mental facts are to be resolved into their eimple elements; and sequences of such facts are to be analyzed so as to bring out the geaeral laws of their connection. Analysis is thus the one instrument to be employed. (2.) View of mental processes ani rejection of the ordimary doctrine of faculties. Just as physical science has to analyze and trace the connections of the various phenomena or modes of appearance of matter, without cyer reaching the essence which lies behind them, so psychology treats all mental facts as states or modes or modifications of the mind. Perceptions, abstractions, emotions, or desires are simply the ruid in the several states of perceiving. abstractiog. feeling, or desiring. The so-called faculties are nothing but the various modes in which mental activity manifests itself Consciousness is not to be distinguished from the several mental states. Mental modifications may be classified according to what gives rise to them ; they spring up either after aorue interual cause, or after sorac other m-ntal mode. In the first case they may be called exteroal states, ju the accond, internal. The internal may be again divided 10 to intellectual and emotional. (3.) Amalysis of touch into touch proper and the muscular eease. This is perhaps the most valuable of Browa's contributions. There are no doubt anticipations of the division, particularly in De Trayy, whom Brown had studied, but his originality is, wo think, beyond question. The analysis has since been carried out much more perfectly than by Brown. (4.) Theory of extcosion. Brorn was one of the first to attempt the resolution of our knowledge of extension into a series of muscular foelings, successive in time His andysis is excedingly acute, thougn in many points it must now be loakel upan as crromeous. (5.) Dactrine of perception According to him, all that we know of the external worh consists of the feelings of resistance, ontuess, and extersion, which are combinel into one complex state ; but our intaitive belief in the causal principle compels us to postulate a real oxistence as rfing behind and giviag rise to these feelings. (6.) Prominence given to the dectriae of suggestion or association. All internal iatellectual state may be reduced to simple suguestions,
i.e., where one state arises in consequence of another, and to relativo suggestion, where the relation bermeen tro states gives rise to a thind state. Brown analyzes with great skill the powers of suggestion or association, and illustrates very fully the primary and secondary states. Under the head of relative suggestion, he discussee at great length the perception of resemblance or similarity, and draws ont an elaborate theory of generalization, iatended to supple. ment the defective view of the Nominalist and to reduce to its proper sphere the supposed abstract idea of the Conceptualist. The analygs was highly popular in its time, but has little of real novelty in it (7.) Ethical doctrine. To this Brown added little; indeed, the weakest part of his psychology is that bearing upod the will, which he ideatifies with desire. With regard to conscience, be postulates the existence of a primitive susceptibility to moral emotion, i.e., a certain cthical feeling is infallibly excited by those uctuons of ageots which are right or wrong.
On the whole, it will he seed from this bnet statement of whar was new io Brown's philosophy, that it occupies an antermediate place between the earlier Scottish ochool and the later amalytical or associational psychology. To the latter Brown really belonged, but he had preserved certan doctrines of the older school which were out of hartnony with his fundamental view He still retaned a small quantum of motuitive behefs, and did not appear to see that the very existence of these could not be explaned by his theory of macatal action. This natermediate or wavering position accounts for the comparative neglect into which has works lave now fallen. They-did much to excite thinking, and advanced many problema by more than one step, but they did not furnish a coherent bystem, and the doctrines which were then new have sumee-been worked out with greater consistency and clearness
For a severe criticism of Brown, see Sir W. Hamilton's Discussions and Lectures on Metaphystcs; and for a bigh estimate of his nierits, see J. S. Dill's Examination of Hamilton. The only German writer who seems to have known anything of Brown is Beaeke, who found in him anticipations of some of his owa doctrines. See Die Neue Psychologre, pp. 320-330.
(R. AD.)

BROWN, Ulysses Maximilias; a celebrated general in the imperial armies, son of Ulysses, Baron Brorna and Camus, a colonel of currassiers, was descended of an ancient Irish family, and was born at Basel in 1705. © After study. ing at Limerick, Rome, aud Prague he eatered the army, becoming in 1723 captain in the regiment of his uncle, Count George Brown, and in 1725 lieutenant-colonel. He served with great distunction in Corsica and Italy, and in 1739 was made field-marshal-heutenant, and counsellor in the aulic council of war After the death. of the Emperor Charles VI. he became one of the formost generals in the army of the Empress-Queen Maria Theresa, and gained a high reputation fur milatary skill. On the outbreak of the Seven Years' War, Count Brown, with the rank of fieldmarsbal, assembled his army in Bohemia, and repulsed the Prussians at the battle of Lowositz. He was mortally wounded at the great battle of Prague, and was carried into the town, where he expred on the 20th. Iune 1757.

BROWN, Willam Lateexce, born at Ütrecht, January 7. 1755 , was the son of the Rev. William Brown, minister of the English church in that city The father, baving been appomted professor of ecclesiastical bistory at St Andrews, returned to Scotland in 1757, and his son $\pi / 2$ in due time sent to the grammar school of that city. At the ago of twelve he entered the unitersity, and after passing through the classes of dirinity, removed in 1774 to the umversity of Utrecht, where lie combined with the study of theology that of the civil law. - In 1777 he was appointed to the charge of the English church in Utrecht, which had been previously held by his father and unele. About 1788 he was appointed to the professorship of mors! philosophy and ecclesiastical history in the university of Utrecht, to which was soon added the professorship of the law of naturo. The war which followed the French Revolution finally drove Dr Brown from the place of his nativity. ln January 1795 he made his escape to England. It London he experienced such a reception as was due to his literary talents and moral worth ; and in 1795 the magis. trates of Aberdecu appointcd him to the chair of divinity on the rotirement of Dr George Campbell, and soon after he
was made principal of Marischal College. In the year 1800 he was appointed chaplain in ordinary to the king, and in 1804 dean of the chapel royal, and of the Order of the Thistle. He died on the llth of May 1830, in the seventy-sixth year of bis age.
His most widely known works were an Essay on the Natural Equality of Men, 1793, which ganed the Teyler Society's prize ; a treatise On the Existence of the Supreme Creator, 1816, to which was awarded the first Burnet prize of $£ 1250$; and A Comparatice Diew of Christianity, and of the other Forms of Religion which hare existers and still exist in the Wortd, particularly with regard to their Moral Tendency, 1826.
BROWNE, Charles Farrar, an American bumorous writer, best known under his nom de plume of Artemus Ward, was born at Waterford, Maine, in 1834. He begau life as a compositor and occasional contributor to the daily and weebly journals. In 1858 he published in the Cleveland Plaindealer the first of the "Artemus Ward" series, which in a collected form attained great popularity both in i.merica and Eugland. In 1860 be became editor of Vanity Fair, a humorons New York weekly, which proved - failure. About the same time he began to appear as a lecturer, and by his droll and eccentric humour attracted large audiences. In 1866 he visited England, where he becaure exceedingly pepular both as a lecturer and as a contributor to Punch. In the spring of the following year his bealth gave way, and he died of consumption at Soutbampton on the 6th March 1867. For a critical estimato of his works see the article American Literature, vel. i. p. 728.
browne, Isaac Hawfins, an English poet, was bora in 1705 at Burton-upon-Trent, of which place his father was minister. He roceived his grammatical instruction Grst at Lichfield, and then at Westminster, whence, at sisteen years of age, he was removed to Trinity College, Cambridge, of which his father had been fellow. After taking his master's degree be removed to Lincoln's Inn, where he applied closely to the study of the law. Not long after the commencement of his professional studies, he wrote a poem on Design and Beauty, which he addressed to his friend Highmore the painter. Here also he wrote his most popular poem, entitled The Pipe of Tobacco, in which be gave initations of Cibber, Ambrose Philips, Thomson, Young, Pope, and Swift, who were then all living. In 1744 he married the daughter of Dr Trimmell, archdeacon of Leicester. He was elected in $17+4$ and again in 1748 to serve in parliament for the borough of Wenlock in Sbrepshire, near which place be possessed a considerable estate, left to him by his maternal grandfather. In 1754 he published bis poem De Anime Immortalitate: in which, besides a judicious choice of matter and arrangement, there is thought to ba a hapy imitation of Lucretius and Virgil. The wide popularity of this poem produced several English translations of it, the best of which is given by Soame Jenyns, in his Miscellanies. The author intended to have added a third book, but of this be had left only a fragment. He died, after a lingering illness, in 1760 . In 1768 his son published an elegant edition of his peems, in large octavo.
BROWNE, James, LL.D., man of letters, for a number of pears sub-editor of the seventh edition of the Encycloprodia Britannica, was born at Coupar-Angus in 1793. He was educated at Edinburgh and afterwards removed to St Andrews, where he studied for the church. He wrote The History of Edinburgh for Ewbank's Picturesque Viers of that city, 2 vols.,1823-25. In 1826 be became a member of the Faculty of Advecates, and obtained the degree of LL.D. frem King's College, Aberdeen; and in this same year be published a Critical Examination of Macculloch's Work on the Highlands and Islands of Scotland. In 1827
he published at Paris his Apergu sur les Hieroglyphes d^{2} Eyypte, and in the following year there appoared his Findication of the Scottish Bar from the Attacks of $1 / r$ Brougham. He was now appeinted editor of the Calcdonian Afercury; and two years later he became sub-editor of the Encyclopredia Britannica, to which be contributed a large number of valuable articies. He also published in 1838 a History of the Highlainds and Highland Clans, 4 vels. 8 ro, of which various editions have since appeared. His mental activity was renarkable, and frequently urged him to exertions beyond his strength. He died in 1841, from a stroke of apoplexy, brought on by bis unremitting labours.
browne, Peter, bishop of Cork and Ross, an ahle writer on theclogy, was born in Ireland some time after the Restoration. He entered Trinity College, Dublin, in 1C89, and after ten years' residence obtained a fellowship. In 1699 be was made provost of the Cellege, and in the same year published his Letter in ansuer to a book entitlect "Christianity not Mysterious," which was recognized as the ablest reply yct written to Toland. It expounds in germ the thole of his later theory of aunlogy. In 1710 he was made bishop of Cork and lioss, which pest he held till his death in 1735. In 1713 he had becone somewbat notorious. from his volent onslaught of the fashion of drinking healths, a polemic which he carried ou in several pamphlets. His two most important works are the Procedure and Limits of the Human L'nderstanding, 1728, an able though sometimes captions critique of Locke's essay, and Things Divine and Supernatural conceived by Analogy with Things . Fatural and Human, more briefy referred to as the Divine Analogy, 1733. The doctrine of analogr'was intended as a relly to the destical conclusions that had been drawn from Locke's theory of knowledge. Browne holds that not only God's esence, but his attributes are inexpressible by our ideas, aud can only be conceived analegically. This vicw was vigerously assailed by Berkeley in his Alcophron (Dialogue IV.), and great part of the Divine Anculory is occulpied with a defeuce against that criticism. The bishop emphasizes the distinction betreen metaphor and analogy: though the conceived attributes are not thought as they are in themselves, yet there is a reality corresponding insome way to our ideas of them. The doctrine of analogy is interesting, and bas an interesting bistory in Englisb theology. Its mest logical expression may he found in the Bampton Lectures of the late Dean Mansel.
BROWNE, Sir Thonas, a distinguished English writer, was born in Lendon on the 19th Octuber, 1605. Ho was educated at Winchester Sehool, and aiterwards at Broadgate Hall (Pernbroke College), Osford, where he graduated B.A. in January 1626. He toek the further degree of M.A. in 1629, studied medicine, and practised for some time in Oxfordshire. Between 1630 and 1633 he left England, travelled through Ireland, France, and Italy, and on his way home received the degrece of M.D. at the university of Leyden. He returned to London in 1634, and twe years later, after a short residience in Yorkshire, settled in practice at Norwich. In 1612 a copy of his Religio Medici was printed frem one of his MSS. without his knewledge, and be was cempelled to put forth a correct edition of the work, which appears to have been composed as early a; 1634 . Its success was very great, and the author at once became celebrated as a man of letters. In 1646 appeared his Pseudodoxia Eridemica, or Enquiries into Fulgar and Common Errors, which added to his fame. In 1658 , on the occasion of the discovery of seme ancient urns in Norfolk, he wrote his Itydhitrtaplia or Urnburial, to which was appended The Giarden of Cyrus. These four works were all that he published, thougk several tracto,
notably the Cinriowen Morals and Antiquities of Norzich, were prepared for pablication, and appeared aftcr his death. In 1671 be received the honour of knighthood from Charles II. on his visit to Norwich; and in 1682 he died on his seventy-seventh birthday.

Browne is in every way a remarkable and peculiar writer. His writings are ameng the few epecimens of purely literary werk preduced during a period of great political excitement and discord. England was passing through its greatest convulsion; events of mighty moment were being transscted round him, and be remained placidiy indifferent. While the grandest minds of his country were busied with the important affairs of state, he was revising his Religio Medicl, and his book was published in the very year in which the civil war broke ont. While England was torn with civil discord, and the liberty of her children was being bought with their blood, Browne serenely pursued bis studies at Norwich, to sll appearance as indifferent to contemporary events as if he had belonged to another planet. Just when there came a loll in the confict, when the reyal power was broken, and the ar wss filled with doubts, ansieties, and negotiations, Browne published his Pseudodoxir Epidemica. The death of the king, the expulsion of the parliament, the establishment of the protectorate, passed by him like a breath which he heeded not. But the unearthing of some sepulchral urns at once roused his attention, and furnished occasion for a train of most magnificent and majestic reflections on the short space of human life, on the eigns and symbols of mertality. A mind like this is a psychological curiosity, and its peculiarities are faithfully reflected in the form and matter of his.works. In some respects, of course, he resembles his contemporaries; in his, as in all other writings of the 17th century, there is a plentiful display of erudition, copioua citation of autherities, and lavish quotation from older writers. Some part also of the peculiarity of his style may be sscribed to the general tendency of the langnage at that period. It was a time of unosual richness of diction; great writers did not hesitate to coin words and phrases as occasion required them, and ample raw material was supplied by the great mass of literature, which bad been but recently opesed up, and which was then being assimilated. But Browne stands apart from his contemporaries by reason of the peculiar and unique cast of his mind. Deeply speculative, imbued with the Plstonic mysticism which tanght.him to look upon this world as only the image, the shadow of an invisible system, he regarded the whole of expericnce but as food for contemplation. Nothing is too great or toe small, too fsr removed or too acar at hand for him; all finds a place in the unverse of being, which he seems to regard almost from the position of an outsider. His general moed may be charactenzed as the metaphysical; not that he speculated systematically on the problems of existence, but because he dwells repeatedly, snd with evident delight, upon what transcends the little sphere of our life, and, like Shakespeare, is fond of meditating on the outward and visible signs of mertality, and on what lies beyend the grave.

Of Browne, however, as of our greatest writers, it is true that the style is the man. The form of his thought is as peculiar and remarkable as the matter; the two, medeed, react upon one another. It is a style altogether unique,rich, with a lavish use of metaphor and anslogy-majestic and swelling, snd with a fine sntique flavour about it. Much of its quaintness, no doubt, depends on the cxcessive employment of Latinized words, great part of which have ruever succeeded in making their way into the standard language; but the peculiarities of the vocsbulary do not antirely exhaust these of the style. Of his four mastervieces the Reciono Medece ts that in which we are most in
contact with the writer himself. The book was a puzzle to contemporaries, and is still hard to understand. It is the confession of faith of a mind been and sceptical in some aspects, but on the whole deeply imbued with the sense of the myateriousness of true religion, and willing to yield itself $u p$ without reserve to the requirements of faith. "I love," he says, "to lose myself in a mystery, to pursue my reason to an O, Altitudol" The Vulgar Errors is? wonderful storehouse of out-of-the-way facts and scrapF of erudition, exhibiting a singular mixture of credulity and shrewdness. The style is more direct and simple than ir the other works. The Garden of Cyrus is a continued illustration of one quaint conceit. The whole universe is ransacked for examples of the Quincunx, and he discovers, as Coleridge says, "quincumxs in heaven above, quincunxes in earth below, quincunzes in the mind of man, quincunses in tones, in optic nerves, in roots of trees, in leaves, in everythiug!" But the whole strength of his genius and the wonderful charm of his style are to be sought in the Uraburial, the concludiug chspter of which, for richness of imagery and majestic pomp of diction, can hardly be paralleled in the English language. For anything at all resembling it we must turn to the finest passages of Jeremy Taylor or of Milion's prose writings.

The best edition of Sir T. Browne is that by Simon Wilkin, 4 vols., 1836, -3 vols. (Bohn), 1851, where foll biographicsl and bibliographical information will be found. Prefixed to it is John. son's celebrated Life.

BROWNE, William, an English poet, descended of a good family, was bern at Taristock in Devonshire, in 1590. Havng passed through the grammar school of his native place, he was sent to Exeter College, Oxford, and became tutor to Robert Dormer, afterwards earl of Carnarvon. After having received in 1624 the honorary degree of M.A., he was taken into the family of Williant, esrl of Pembroke, and improved his fortune so much that he is gaid to have purchased an estate. Nothing seems to be known of his after life, and no date has ever been given for his death. All his work was done in his yonth, the first part of Britannia's Pastorals having been published in 1613, The Shepherd's Pipe in 1614, and the second part of the Pastorals in 1616. He belongs to the echool of Spenser, and his merits may be summed up brietly as extreme sweetness of verse, idyllic nature painting, and richness of descriptive faculty: The Pastorals are about the finest specimens we have in earlicr literature of luxmriant sensuous description of ordinary country life. They were bighly popular in their time. (Sce Wood, Athen. O.ron.)

BROWNE, Willam George, an cminent traveller, was born at Grcat-Tower-Hill, London, July 25, 1768. At seventeen he was sent to Oricl College, Oxford. Haring had a moderate competcnce left him by his father, on learing the university he applied himself entirely to literary pursuits. But the fame of Bruce's travels, and of the first discoveries made by the African Asseciation, dctermined him to become an explorer of Central Africa. Accordingly, he left England at the close of 1791 and arrived at Alexandria in January 1792. He spent a few months in visiting Siwah, the supposed site of the temple of Jupiter Ammon, and employed the remainder of the year in examining the whole of Egypt. In the spring of 1793 he visited Sucz and Sinai, and in May set out for Darfor. This was his most important jourucy, in which he acquired a great variety of original information. He endured nuch hardship, and was nuable to effect his purpose of returning by Abyssinia He did not reach Egypt till 1796; after this he spent a year in Syria, and did not arrive in London till September 1798. In 1800 be publisbed his travels in Africa, Egypt, and Syria, from the year 1792 to 1798 , in one velume 4 to. The wnrk was bighly csteemed, and is classed by Major Rennell
among the istst perfomance: of the kind; but, from the abruptness and dryness of the atyle, it never became very popular. In 1800 Browna again left England, and spent three years in visiting Greece, some parts of Asia Minor, and Sicily. In 1812 he set out on a more extensive journey, proposing to penetrate to Samarksnd, and survey the most interesting regions of Central Asia. He spent the winter in Smyrna, sad in the spring of 1813 proceeded through Asia Minor and Armenia, made a short stay at Erzeroum, and arrived on the lst of June at Tabriz, where he met Sir Gore Ouseley. Abont the end of the summer of 1813 he left Tabriz for Tcheran, intending to proceed thence into Tartary ; but unhappily he never reached that cestination. Near the banks of the Kizil-Ouzen his party wers attacked by banditti, and, according to the report of the survivors, Browne was plundered and murdered. Suspicion attached to his companious, and even to the Persian Government, but nothing occurred to confirm these surmises. Some bones, believed to be his, were afterwards found and interred near the grave of Thevenot, the celebrated French traveller. His volume of travels in Africa has already been mentioned. Robert Walpole published in the second volume of his Mersuirs relating to European and Asiatic Turkey (4to, 1820): from papers left by Browne, the account of his jourr ey in 1852 through Asia Minor to Antioch and Cyprus; also 'Rerarks written at Constantinople."

BRUWNING, Ellzabeth Barratt, the cüst distinguished poet of her sex that England has produced, was born in London in the year 1809. She was inc danghter of Mr Barrett, an English conntry gentleman. From a very early age, almost before the years of childhood had passed, she exhibited a remarksble preference for the arts, but especially that of the poetic. Previous to attaining her fifteenth year she had written verse apon which was the stamp of true genius-poems eminently worthy of preservation Whatever ahe wrote, however, was sacred to all cyes save thase of her father, to whom she refers in the first collected edition of her poems as "my public and my critic." Her physical constitution was nost fragile and delicate, but nature seemed to have supplemented her deficiency in this respect by bestowing upon her an unususily sensitive mental and spiritual organization. One who knew her intimately, Miss Mitford, has described her as a "slight delicate figure, with a shower of dark curls falling on each aide of a most expressive face, large tender ejes, richly frioged by dark eye-lashes, aud a smile like a sunbeam." All descriptions of Miss Barrett concur in this, that she possessed a grace and a delicacy which defied representation by the artist. Her studies were early directed to the poets of antiquity, and, under the guidance of her blind tutor, Boyd, whose name she always warmly cherished, she mastered the rich treasures of Eschylus The sublime Grecian possessed for her a charm which was only equalled by the fascination held over her wondering spirit by our own Shakespeare. Her knowledge of Greek literature was most profound; she was intimately familise with all the Attic writers in tragedy and comedy. Yet this did not prerent her from drinking at the wells of English undefled. Her correspondence with eminent contemporaries of both aexes proves her to have been thoroughly acquainted. with English literature in its progress from Chaucer downwards. The circumstances of her own life, aud her lack of rooust health, conspired to make her scek, even more than she might have otherwise done, the communion of the great denarted in arts and letters. Not being able to pass from place to place without fatigue and danger, the solitude -he was compelled to maintain probably threw her still wore ardently into those pursuits which, while dear to the mind, ware probably injuriuas to the body. Most frail from lier birth, a3 we have already seen, it was her misfor-
tune further to have her existence endaugcred in 1837 by the bursting of a blood-vessel in the jungs. By the exercise of extreme care her life was preserved, but the incident was succeeded by a long period of weakness and suffering. Some two Jears after this first severe shock to her system, and before she had quite recovered from its effects, she was again assailed by misfortunc, experiencing the keenest anguish on witnessing the death of her favourite brother, who was drowned $=$ at Torquay. As might have been expected from onc of her clinging and affectionate disposition, a long period of danger followed this catastrophe, and when at length she was able to be removed to her father's house, it was only to become an invalid, with the prospect of a life couch-ridden to its close. This perlod of seclusion lasted for seven long years; and the interval was employed by Miss Barrett in eagerly devouring all the books which could be brought within her reach. At this time also she was sedulously cultivating the art that was aftermards to ensure for her immortality. When she was in her thirty-seventh year, that is, in 1846, she was married to Mr Browning, and the union was singularly felicitous. More cannot be said, as the author of The Ring and the Book atill lives. Mr Browning bore his wife to Italy, and for some years the sunay skies of the south were instrumental in giving to Mrs Barrett Browning that health which had so long forsaken her in her native land. The villa of the Brownings in Florence was the resort of many noble spirits, eminent either for patriotism or in the arts. Mrs Browning died at Florence in the year 1861, after testifying in many ways her singular devetion to the country of her adoption.

The peetry of this writer is distinguished for its emotional apirit; had her imagination equalled her capacity for fecling she might have taken rauk with the highest of our poets. Sensibility and intuition, those endomments of supreme importance to writers of genius, whose greatness is to grow in proportion to their understanding and interpretation of human life, were in her united in a degree seldom wituessed. The aspirations she indulged, and the character she donbtless wished to be impressed upon her own worke, were well set forth when she observed on one occasion, "we want the touch of Christ'a hand upon our literature as it touched otber dead things; we want the sense of the saturation of Christ's blood upon the aouls of our paets, that it may cry through them in answer to the ceaseless wail of the sphiux of our bumanity, expounding agony into renovation. Something of this has been perceived in art when its glory was at the fullest. Something of a yearning after this may be seen among the Greek Christisn poets, something which would have been much with a stronger faculty." linbued fully with this idea of the sacredness of poetry, Mrs Browning went to the deepest fount of all inspiration-the human heart-and endeavoured to read clearly its intimate relations with God. A peculiar tenderness breathes through her writings, whether of the huablest or the most ambitious description. Almost her first work bore upon it the traces of ber Greek studies, being an excellent translation of the Prometheus. Another very early production, The Drama of Exile, is unquestionably marked by great sublimity of thought, though the conception may lack the mighty outlines of the majestic Milton. Eloquent and sustained, however, the poem made manifest a pure and original writer. Mrs Browning's genius had two sides-the lyric and the dramatic Her lyrical capabilities were of the highest order; she was greater probably in this particular than cither Campbell or Tennyson, though on several occasions Campbell tonched the loftiest point such a writer cin attain. The heart, which has 3]ways given our lyric poets their greatest power, was the strength of Mra Browning ; her song was a living
vaice, eloauw". with passion. In ove of her lyrics she uttered her conelusion upon the human mystery, "know. ledge by suffering entereth, and life is perfected by death." The spirituality of her "Vision of Poets" is a noticeable quality, and it is in a loftier strain than that of "The Two Voices," though east in the same monid. Wandering amongst the minor poems of Mrs Browuing, such for instance as "The Romaunt of Margret," "Isobel's Child," "Bertha in the Lane," and "the Swan's Nest among the Reeds," is like standing in the forest alone, with the wailing wind and the flying rain as the only assurances of an existence sublimer than our own. Yet she has thereby reached the profoundest depths of the human heart. But even when most depresscu she does not lose faith-confidence in the triumph of the good and the right. To ber it was not always necessary to understand the wrong which she beheld; she saw it and hated it, and she bas helped men by ber writings to do something towards making an end of it. "The Cry of the Children" is a striking illustration of her keen feeling and eloquent power as a philanthropist. She felt for all who are in any way crushed or bruised by the pressure of society, and of social distinetions, or of social misfortunes. Her poetry bears the impress of tender and profound sympathy with human suffering in every form.

The range of this author's powers was wide, as may be gathered by a comparison between such poens as "A Child's Thought of God" and "Casa Guidi Windows." In the latter she attained ber ripest growth and greatest intellectual strength. The poem is as sustained as anything which she ever wrote, and more perfect than the remaining lengthy poems. The "Casa Guidi Windows" had the advantage of a direct and porerful inspiration. From her windows at Florence Mrs Browning looked out upon the Italian people strugging for freedom, and her enthusiasm was enkindled. Her utterances were therefore in accordance with the fulness of her beart, lavish and unrestrained. The extraordinary wealth and strength of imagery whieh the poem contains must have been noticed by every reader, and it ineludes doubtless much of her finest writing. In the ioditing of the sonnet, always conceded to be a most diffeult task, Mrs Browning was very successful. She is the equal of Wordsworth in this respect, and ber "Sonnets from the Portuguese" (but thinly disguised, and giving really the bistory of her own feelings) are a compact and remarkable series of verses. They present us with a complete study of a human heart as it is affected by the passion of love. First, there is the soul expecting death, when suddenly life is revivified by love; then the grave, which bad seemell inevitable, is put behind the soul; and fnally comes the sequel, the marriage of those whose history has been traced in the Somnets. The unity and psychological interest of this series of poems are their most prominent features.

Mrs Browning's fane chiefy restè upon Aurara Leigh, except with diligent and reverent students of her other works. The longest porm, nevertheless, which came from her hand is the one, to quote her own w srds, into which her " bighest convictions upon life and - have entered," Yet it has had the result of eausing a wide diversity of opinion upon its merits. Extravagant eneomiums or unjust aspersions are generally awarded to it. For a poem of such magnitude unity is essential, and this we find to be lacking. It has not the one purpose-never ignored and never for-gotter-which runs through $I n$ Memoriam. One of its great eharms, however, viz., its intense sutbjectivity, will prevent Aurora Leigh from falling into desuetude. The writer unfolds with great beauty of expression the truth that that if real art which assists in any degree to lead back the soul to contemplate God ${ }^{2}$ the supreme artist of the universe. Be: notwilusturding its philoso thy, as a enlution for many
of the problems of our soctal existence, the , wal wust be pronounced a failure. It is charged with passages of lofty poetry, though oeeasionally it falls into mediocrity. It is to be regarded rather as an autobiography (which indeed is claims to be) than as a poem characterized by tine conception or perfeet execution. The position of Mrs Browning as a poet is now yielded. Her genius was perbaps as great as that of any poet of our generation, but circumstances retarded its highest possible development. Io certain intellectual qualities she was inferior to Tennyson and the author of Sordello, but in others she was theil superior. Be her exact niehe, however, what it may, she occupies a favoured place in English literature, and is undoubtedly one of the few leading poets of the 19th eentury. Her poetry is that which refines, chastens, and elerates. Much of it is imperishable, and although she did not reach the height of the few mighty singers of all time, she bas shown us the possibility of the highest forms of the poetie art being within the scope of woman's genius.
(G. B. s.)

BROWNISTS, a religious sect, whieh sprang up tomards the close of the 16 th century, and which received its name from the first promulgator of the doctrines, Robert Brown. Their numbers inereased rapidly, and Sir Walter Raleigh, in a speech in 1592, estimated them at no less than twenty thousand. The harsh measures that were taken against them, and the disgust generalls excited by the tone of their attacks upon the Established church, for a time stamped out the sect in England. But the remnant found a refuge in Holland, and the chureh established there between 1593 and 1608 ineluded many eminent men, such as Ainsworth, Johnson, Smyth, Jacob, Cliftoa, and Tobinson, and gradually increasd in numbers. Suon, bowever, differences of opinion began to arise; some, with Smyth, carried out the principles of Brownism to their full extent, and became absolute Separatists ; others, with Robinson, adopted a milder form of opposition to the chureh, which ultimately resulted in Independency. The stronger stream of tendency set in towards this latter form of doetrine, and the Brownists soon faded out of riew and gave place to the Independents. The oceasion of the Brownists' separation was not any fault they found with the laith, but only with the discipline and form of government of the other churches in England. They charged corruption equally on the Episcopal form and on that of the Fresbyterians by consistories, classes, aud synods; nor would they join with any other Reformed church, beeause they were not asured of the sanctity and regeneration of the members who compesed it, on account of the toleration of sinners, with whom they maintained it an .mpiety to communicate. They condemned the solemn celebration of marriages in the church, maintaining that, as matrimony was a political contract, the confirmation of it ought to come from the civil magistrate. They would not administer baptism to the children of such as were not nuembers of the chureh, ol of such as did not take sufficient care of their childres already baptized. They iejected all forms of prayer, and held that the Lord's Prayer was not to be recited as a prayer, having been given only for a rule or model whereon all our prayers are to be formed. The form of chureh goveroment which they established was demoeratical; When a chureh was to be gathered, sueb as desired to be members of it made a confession and signed a covenant, by which they obliged themselves to walk together in the order of the gospel. The whole power of admitting and exeluding members, with the decision of all controversies, mas lodged in the brotherhood. The chureh ofticers were chosen from among themselves, for preaching the word and taking care of the poor, and were separated to their several offees by fasting, prayer, and impositiou of bands by some of the bethreil But they did sut sect the priestbood into a
distinet order. As the vote of the brotherhood made a man a minister, and gave him authority to preach the word and administer the sacraments among them, so the same power could discharge him from his office, and reduce him to the condition of a mere layman again. And as they maintained that the bounds of a church were defined by the number of those who coald meet together in one place, and join in one communion, eo the power of these officers was confined within the same limits. The minister or paster of one church could not administer the Lord's Supper to another, nor baptize the children of any but those of his own society. Any lay brother was allowed the liberty of prophesying, or of giving a word of exhortation to the people ; and it was usual for some of them, after sermon, to ask questions, and reason apon the doctrines which bad beea preached. In a word, every church on the Brownists' model is a body corporate, having full power to do everythiog which the goed of the society requires, without being accountable to any preshytery, synod, assembly, conrocation, or other jurisdictiou whatever. (See Fuller, Neal, Fletcher, Hanbury, and Masson, Life of Mílton, vol. ii. pp. 534, seq.)

BRUCE, James, a celebrated African traveller, was born at Kinnaird House, Stirlingshire, on the 14th December 1730. He was educated at Harrow, and at first turned bis attention to the bar. After bis marriage, however, he entered into busiaess as a mine-merchant, but soon gave up any active shade in the concern. His wife had died within a year of their marriage, aad Bruce, after acquiring a knowledge of the Spanish and Portuguese languagea, travelled on the Continent for some time, returniag to England in 1758 . He then made a proposal to the English Government that they should make a descent upon Spain at Ferrol, assuriog them from his own observation that the coast was without defence at that place. His euggestions were not adopted; but Lord Halifax, to whom he had been introduced, and who had consulted him about the exploration of the Nile, appointed him soon afterwards to the consulship at Algiers. He arrived at that place in March 1762, and after spending a year in the study of Arabic and other Orjental languages, set out through Tuais, Tripoli, and the North of Africa. He then visited Rhodes and Cyprus, and explored great part of Syria and Palestive, making very careful drawings of Palmyra and Baalbec. These drawings were afterwards presented to the king and placed in the royal library at Kew. 'It was not till June 1768 that Bruce arrived at Alexandris, and prepared to start on his great exploring expedition. From Cairo be sailed up the river as far as Syene; be thed struck across the descrt to Kosseir, and reached Jidda in May 1769. He remained for some time in Arabia, set sail from Loheis on the 3d September, and on the 19 th arrived at Massowah. There he was detained for some time; but at last, on the l5th February 1770, he made bis way to Gondar, the capital of Abyssioia. He gained great favour with the Abyssinian king, and remained with him till October, when be set aff up the Babr-elAzrek, which he looked upon as the main branch of the Nile. On the 14 th November he reached the sources of the Bahrel-Azrek, and proudly imagined himself to have colved the great geographical problem. Slowly and with great difficulty be made his way back through the deserts of Nubia. On the 29th November 1772 be reached Assouan on the Nile. Thence he returned into the heart of the desert to recover his baggage, which bad been abondoned in consequence of the death of all his camels. In January 1773 he arrived at Cairo. On his way home to England he spent some time at Paris, where be was warmly received by Buffon and other emident men of science The celebrated Travels did not appear till 1790, when they were published in five large quart vlumes,
profusely illustrated. The work was received with favoun on account of its freshoess and interest, but with almost universal incredulity. The Travels were looked upon as veritable travellers' tales, not entitled to any respect as authentic narrativc. Succeeding investigations, however, have thoroughly dispelled these suspicions, and reinstated the book in popular estimation. Bruce died in 1794, in consequence of a fall down the staircase of his own bouse. A gecond edition of his work, on which he was engaged at the time of his death, was published in 1804.

BRUCE, Michael, a minor Scottish poet, was born at Kinnesswood, Kiaross-shire, 27th March 1746, and was the son of a weaver. He was early sent to school, but his attendance was often interrupted. He had frequently to herd cattle on the hills in summer, and this early companionship with nature greatly influeaced his mind aad awoke the latent poetry of his genius. Delicate from birth he grew up contemplative, devotional, and huinorous, the pet of his family and his friends. His parents gave him an education superior to their position; at fifteen, when his school education was completed, his father was enabled to sead Michael to Edinburgh University, which he attended duriog the four wiater sessions $1762-5$. In 1765 he got employ. meut as a teacher during the summer months at Gairney Bridge, receiving about $\mathfrak{£ l l}$ a year in fees. He became a divinity stadent of a dissenting Scattish sect known as the Burghers, and in the first sumaer of his divinity course accopted the charge of a new school at Forrest Mill, where " he lead a melancholy kind of life." Poverty, disease, and want of compasions depressed bis spirits, but in that solitariuess he wrote "Lochleven," a poem inspired by the memories of his childhood. In consequence of adraced consumption he had to give up the school, and returned to his father's house, where he wrote his last and finest poem, "Elegy written in Spring," and died on 5th July 1767. aged twenty-one years and three months. As a poet his reputation has been increased, first, through aympathy for his early death, and secoadly, from the alleged theft by Logan of sereral of his poems. The Rev. John Logan, minister of Leith, a fellow-student of Bruce, edited in 1770 the Poems on several occasions, by Michael Bruce, in which the "Ode to the Cuckoo" appeared. In the preface he stated, "To make up a miscellany, sume poems written by differcnt authors are inserted." In a collection of his own poems in 1781, Logan printed the "Ode to the Cuckoe" as bis own; of this the friends of Bruce were aware, but did not challeage it. Dr M'Kelvie, in his Life and Works of Eruce (1837), was the first to claim for him the authorship of the Ode, and of other verses of which Logan bad hitherto been the reputed author. This claim rests on the oral tradition of his birthplace and the evidence of a few of his friends; it was made nearly fifty years after Logan'e death, asd no explanation can be given of this great lapse of time. Of direct testimony there is none, and irrelevant matter is brought in affecting Logan's cbaracter, while Logan's authorship rests on such ground as publication under his own name, and his reputation as author during his lifetime. By reiteration of Bruce's claims in many forms popular opinion bas been gained for him, though Isaac D'Israeli, Thomas Campbell, Robert Chambers, and David Laing have strenuously supported Logan. The dispute cannet now, perhaps, be satisfactorily settled, owing to the conflict of evideace and lapge of time; but on the whele it may be doubted whether M'Kelvie has proved hig case. All Bruce's poems breathe the thoughts of a shepherd lad, as Bloomfield's retained the fresh observations of a farmer's boy. With two exceptions they are immature and lack strength; his imagery is in great measure borrowed; his rhymes evince a paucity of poetical skill. His early attempts are weak imitations of Milton, Thomson, and Young, his
favourite poets. His " Lochlever" aud "Elegy written in Spring" are alone worthy of prescration, and both were composed in his last year. The former abounds in happy word-painting and moral reflections. The tale of Levina, which forms about the half of the poem, and is by far the prettiest flower in the bouquet, bears distinct marks of the same hand that wrote "Runnimede." The "Elegy" is most affecting, when read in the knowledge of the circumstarce of its having been written by a dying youth of tweaty-one:-

> "Led by pale ghosts I enter death's dark gate. And bid the realms of light and life adieu.

It is a death song, remarkable for exquisite beaut, and chaste aimplicity. Bruce is not to be compared with another young Scottish poet, Robert Nicoll. His life wanted the fulness and strength, his poems the wide and vivid synapathies of his later compeer.

BRUCE, Robert, king of Scotland. See Scotlayd.
BRUCHSAL, a town of the Grand Duchy of Baden; in the curcle of Carlsruhe, 14 miles from the city of that name, on the Salzbach. From 1056 to 1801 it was the seat of the bishop of Spires, whose magnificent palace is still extant; and it has an old castle of the I2th century (now used as a prison), a town-house, a gymnasium, a hospital, barracks, and a considerable trade in wine. Population in 1872, 9762 . The town was originally the seat of an imperial palace, and its name is said to be derived from bruch a marsh, and sala, royal possession. The Peassnts' War first broke out at Bruchsal, which has been sereral times reduced to ashes in subsequent conflicts. In 18 ± 9 it was the scene of an engagement between the Prussan troops and Baden insurgents.

BRUCK, the name of two towns of Austria-
(I.) Bruck on the Mur, the chief town of a circle in the province of Steyermark, situated at the junction of the rivers Mur and Murz, with a station on the rallway from Vienna to Trueste, 25 miles N.W. of Gratz. It contans about 2900 mhabitants, and has a considerable transit trade. The principal building is the palace of the ancient princes of Bruck, which dates from the 14th ceutury.
2. Brece on tae leytha, the chief town of a circle in Lower Austria, with the castle of the counts of Harrach. It lies on the Vienna and Buda railway, 20 miles S.E of Vienna. Population 4203.

BRU'CKENAU, a town and fashoonable watering-place of Bavara, in the carcle of Lower Francona, on the Sinn, 16 miles N. W. of Kissingen. The mineral springs, which are five in number, situated in the pleasant valley of the Sinn, 2 mules from the town, were a favourite resort of Louis I of Bararia. Population in 1871, 2825.

BRUCKER, James, theologian, histarian, philologer, and blographer, was born at Augsburg on the 2 ed of January 1696. His father, who was a respectable burgher, destuned him for the church; and has own melinations according with his father's wishes, he was sent at the usual age to pursue has studies in the unversity of Jena. Here be took the degree of master of arts in 1718; and in the following year he puhlishel his Tentamen Introductionis in Historiam Doctrinie de Idels, in 4to, -a work which he afterwards amplified and completed, and republished under the atle of Historaa Phelosophuca Doctrince de Ideis, at Augsburg in 1723. He returned to his native city in 1720 ; but here his merit having attracted envy rather than recompense, he was induced to accept of the office of parsh mimater of Kaufbevern in 1723 . In the same year be published a memorr De Fita et Scriptas Cl. Etringeri, Augs. 8 vo His reputation having been at length cstabhished by these learned works, io 1731 he. was. electeta a member of the Academy of Sciences at Lerlin, and soon afterwards he was uvited to Aussburg to fill the honour-
able aituation of 1 astor and semior minister of the charch of St Ulric. He published in the same year three disserta. tions relating to the history of philosophy, under the title of Otium Vindelicum save Meletematum Historico-philosophicorum Trnga, Augsburg, 173I, 8vo. Besides several smaller dissertations on biography and literary bistory, printed at different times, and which be afterwards collected in his Muscellanea, he published at Ulm, in 1737, Jeue Zusatze verschiedener Vermehrungen, \&c., zu den kurtzens Fragen aus der phalosophischen Historee, 7 vols. 1 2mo. This work being a bistory of philosophy in question and answer, contaios many details, especially in the department of literary bistory, which be has chosen to omit in his greater work on the same subject. He was forced by the booksellers, in opposition to his own opinion, to adopt tte erotematic method, which at that tume bad been rendered popular by the writings of Hubner and Rambach.

In 1741, at Leipsic, appeared the first volume of his great work, Historia Critual Philosophice, a mundi incunabulis ad nostram usque atatem deducta. Four other ponderous quartos, completing the first edition of this elaborate bistory, followed in 1744. Such was the success of this publication, that the first impression, consisting of four thousand copies, was exhausted in twenty-three years, when a new and more perfect edition, the consummation of the labours of half a century devoted to the history of philosophy, was in 1767 given to the world in sts volumes quarto. The suxth volume, consisting eutirely of supplement and corrections, is applicable to the first as well as to the second edition. Of the merits of this work we shall speak in the sequel.

His atteation, however, was not wholly occupied by this stupendous undertaking. The following books would of themselves have been sufficient to exheust the industry of any ordinary author:-Pinacotheca Scriptorum nostra atate hterts illustrium, \&c., Ausgburg, 1741-55, folio, in fire decades. Ehrentempel der Deutschon Gelehrsamhat in welchem die Bildnisse gelehrte, Männer unter den Deutschen. aus dem XV., XVI., und XVII. Jahrhundert aufgestellet, und ihre Géschichte, dec., entworfen sind, Augsburg, 1747-49, 4 to, ive dccads. Institutiones Bistorice Philosophicox, Leipac, 1747. 8vo, second edition, ibid, 1756 ; a thard has been published since Brucker's death, with a continnation by Profeasor Born of Leipsic, in 1790. Miscellanea Historice Philosophicae Literariae Critica olim sparsim edita, nunc uno fasce collecta, Augeburg, 1748, 8ro. Erste Anfangsgrunde der philosophischen Geschichte, als ein Auszug seiner grossern Werke, zoeyte Ausgabe, Ulm, 1751, 8vo. He bkewise superintended and corrected an edition of Luther's translation of the Old and New Testment, with a Commentary extracted from the wratings of the English theologians, Leipsic, 1758-70, folio, six parts. His deatb ensued before the completion of this work, which has sunce been accomplished by Teller. Ho died at Augsburg in 1770; and he may be added to the catalogue of Huetius. to prove that literary labour is not incompatible with sound health and longevity. (Sco Sawi Onomasticon; Biographie Universelle; Gesner's Isagoge.)

It is only by his writings on the history of philosophy that Brucker is now known in the literature of Europe. In this etudy his great work forms an important era, and even at the present day it is the most extensive and elaborate upon the subject. It is, however, a work of which the defecta are great, and its crrors have been impgrtant in thear consequences, in proportion to the authority it has acquired. We ahall, therefore, hazard a few general observa. tions on the defects which chiefly detract from the perfection and utility of the Critical History. of Philosophy. .

If Brucker bad carried into this atudy a penetration equal to bis diligence, and had has gexaral conprebension of the scope and
nature of the subject corresponded trith the elaborate minuteness of his details, he would hare left us a work which might liave had some pretensions to be considered as a rational history of luman opiaion. He lived, however, at a period when these different qualities were only beginning to be conjoined, and when as yet the history of philosophy had been rritten merely as a chronicle of thu passing theories of individuals and sects. To give to the science of history a regular and connected form, and to arrange the narrative of successive events, and still more of successice opinions, according to the relation they bear to principles of established influence, was an attempt of which fers in that age bad any conception, and of which Bracker certainly had none. In civil history it was then believed that the historian had fulflled all the duties of his office of he strung together the events which were known or believed to hare occurred, in good language, and garnished them eccusionally by a few general rellections on the absolute motires of l:uinan action. A very different notion is now held of the functions of the historian. He who at present attempts to write the history of any country must reflect, before he begins, what were the chief occurreaces in that history, and what were the revelutions which tha manners and constitution of that particular nation have undergoae. Ho must bear with bim, from the commeucement to the sonclusion of his labours, a constant impression that every occurrence should be more or less considered, not only as it took place, aod as it bore an influence on contemporary affils, but as it may have remotely coatributed to the events, and the opinions, and the character of succeeding times. But if this be true in regard to the histories of particular wutions, it is evident that, by how much the traces of opiuions are more ligint and eranescent than those of avents, by how much the speculations of philosophers whose writings have either perished or come down to us mutilated and obscure are more difficult to be apmeciated in their causes, and sonnections, and consequences, than the actions of warroors and atatesmen, - by so much the more is it necessary in philosophical than in civil history to combine reasoning with erudition, and to substitute the researches of the flatosopher for the details of the chronicler. History and philosophy are two different things ; and be who would nrite the history of philosophy must excel in both. Bacon had loner aso required this union, and had pointed out the manaer in which tha historian of literature should endeavour to establish those priaciples of connection which constitnte the soul and cham of such a history; how, by detecting the union of effects and causes, be might be ellabled to determine the circumstances favourable or adrerse to the sciences; and how, in short, by a species of enchantment, he might evoke the literary geuius of each different ege. The fulfilment of this plan was, however, far begond tha capacity of Brucker, and was an undertaking of which he harl even no conccption. Better qualified by uature and education for arnas. sing than arranging materials, ho devoted his priacipal attention to a confused complation of facts, learing to others their application, the discovery of their mutual connections, and the formation of the acattered fracments into a whole.

The merit of his great work consists entircly in the ample collection of materials. The reader who would cxtract any rational view of the progress of opinion must peruse it with a perputual commentary of his own thoughts. Ho will find no assistance from his autlior in forming any general views, or in tracing tho mutual dependencies of the different parts of the suliect. Brucker has dis. covered the fountains of hisfory; but he has made us drink of them without purifying the dranght. Even in this respect his merit has been greatly overrated. Past as is the body of materials which he has collected, we are always missing those very things which we might reasonably hare expected mould have been the first objects of a rations! inquirer, and we are continually disappointed of tho information we are bost anxious to acquire. The flle and slavish attention which he has bestowed on pevions complers has frequently civerted him from the study of the original authors themselves. Quoting the passages of the ancients frim others, or trusting perhats to the refereaco of an index, he has frequently overlooked those very testimonies which could have given us the most authentic knowledge of tice opinions or characters of apes and individuals. He has often prescnied the authorities he has adduced, mutilated or misapplied; and this either from not lating eufficiently studied these passagea in theirgeneral connection with the system they illustrate, or from having been umabe to withdraw them from the obscurity in which thay ware involved. Ne has shown no critical sagacity in distinguishing the spurious from the anthentic, or in balancing the comparative weight of his authorities. He has frequently transcribed where he ought to have explained the words of the original authors; and, without taking into account the different value of the same term io different mations and ages: he has left us to apply: a doubtful or erroneons meaning to words whish might have leen easily rendered by other expressions, and to suppose a distiaction in the sense where there only existed $=$ difference in the language. The plaring errors, even, which oce?sonally ocenr in bis expositions of the Grecian philosoplsy, while thev are inconsistont with any critical knowlelle of the tomut,
would make us suspect that he was in the habit of relying on the treacherous aid of translations. In short, if we kiew nothing necro of the ancient philosophers than what we acquire from Brucker, we should be often obliged to attribute to them oprions so obscure, or so absurd, that we must either beliere ourselves wrong in the interpretation, or be unable to comprehend the cause of all the admiration and reverence they hare received.

He has discovered little skill in lis analysis of the different systems of philosophy ; and the confusion of what is essential and principal with mhat is accidental aud subordinate cleally eriaces that these abridgments were thrown together while arquiring, in detail, a knowledge expressly for the pripose, instead of being the consummation of a long and familiar meditation on the subjects in all their modifications and dependencies. Ile has dwelt with the most irksome minuteness on every nuituportant and doubtur circumstance in the lives of the philosuphers; but he Las too often oserlooked the particular and general canses that producel an inflacace on the destinies of their philosorly. The aphoristic method which he has adopted preveuts him from following a conse. cutive argament throughont its sarious mindings. The most convinci 8 reasoning in his hands loses much of its demonstration and beauty; and every ingenious parador conses forth from his alembic a mere caput mortukm, - a residue from which every finer principle lans ben expelled. Where the genius of the philosopher is discorered more in the exposition and delence than in the original selection and intrinsic stability oi his tenets, Brocker has not found the art of doing jusice both io the philosopher and to his opinions, or of convering to the remkr athy conception of tho general ralue of the otignal. This lust defect, it must, however, be acknowledged, is more or less mascramble from crery abstract of opinions, where it is always necessary to separate in some degree what is essential to the suhject from what is peculiar to the man. He has :eliered the sterility of his analysis ho none of the elegancies of which the sulject was susceritille. Without any 1 fetension to purity, his diction is alefectwe even in precision; an! his sentences, at all times void of harmony and grace, are abrint, and often intricate in their structure.
(W. Il.)

BRUGES (in llomish Bregge), a city of Belgimm, the capital of West Flanders, is situated in the midet of a fertile plain, intersected by the camals of Cilent, Ostend, and Sluys, in $51^{\circ} 12$ N. lat. and $3^{\circ} 13^{\prime}$ E. long. $1 t$ is, in a direct line, about 7 miles from the sca, 12 miles E . oi Ostend, $2 \pm$ N.W. of Ghent, and 60 mites in the same direction from Brussels. The histury of Bruges dates from about the 34 century of the Christian cra. In the 7th it Lad emerged into inportance; and its corporation of wearers, which afterwards in its lest days numbered 50,000 men, was alroady highly renowned in the time of Charlemagne. In the 9th century Bruges became subject to the counts of Flanders, who resided there, amd made the caty one of the mont populous and wealthy in Europe by the great adrantages and immunities which they offered to merehants and manufacturers. The inhabitants guarded with the most jealous care the privileges which they sonetimes receired and sometimes exacted from their rulers, and not unfrequently rose in arms for their de fence. Though Bruges, and Cbent, and other Flemish towns owned a common lord, their intersts were never identified, and they seldom let an opportunity pass of doing each other as much injury as possiuie. In the millice of the lath century Broges passed by marriage into the hatas of the dukes of Burgundy, under whom it rached the highest point of its prosperity. The magnilicence of the Flemish court was such that no European monarch conld equal ar approach it. When the wife of I'hilip the Fair of France visited Brages at the beginaing of the 14th century, "There are hundreds here,"she exchamed," n ho have more the air of queens than myself;" and to such an extent was this extravagance ultimately carried that Charles V. was obliged, in the 16 th century, to repress it ly severe sumptuary laws. In 1430 Philip the Good, duke of Eurgondy, instituted at Bruges the chivalric order of the Golden Fleece, a compliment to the torn, no small portion of whose prosperity arose from its woollen trade. In the l4th and 15 th centurics, Bruges was the chin emporium of the cities of the Hanseatic league; and muldants from every auater of the world found there a realy market for theis-

BRU-BRU

gouds. The argosies of Venice and Genoa came laden with the produce of the East; ships of every nation took in and discharged their cargocs at the quays; the warehouses were filled with bales of wool from England, and with silk from Persia. Not the least famous of the manufactures was that of tapestry, in which the people of Bruges acquired great skill a century before the looms of Beaurais or the Gobelins were set up. The prosperity of Bruges was undiminished till it passed under the dominion of the house of Hapsburg. Fur a violation of some of their prerogatives, the inlabitants imprisoned the Archduke Maximilian in 1488, and a terrible vengeance was inflicted upon the town for this outrage. Its trade was transferred to Antwerp, and its ruin was ultimately completed by the religious persecutions of the bloody duke of Alva at the end of the 16 th century. Such of the inhabitants as escaped with their lives fled to England and introduced into that country many of the arts and manufactures whieb they and their forefathers bad eultivated with success for many generations. In more modern times the town has frequently suffered from the effects of war. In 1704 it was besieged by the Dutch, and in 1708 and 1745 it was captured by the French. The eontrast between the Bruges of the 15 th century and the Bruges of recent times is as striking as it is painful. As Wordsworth says -

> "In Bruges town is many a street Whence busy life fiath fled,
> Where, without hury, noiseless feet The grasj-grown pavement tread."

The great circumforence of the city, its numerous squares and streets, and the number and magnificence of its public buildings, all attest its former importance; while the comparative absence of commercial activity, and the general air of desolation, bear witness to its present insignificance. Its trade has, however, considerably revived during the present century, and its great advantares in canal and railway communication, its spacious docks and excellent quays, and the great fertility of the surrounding country, are once more restoring it to its high place among cities. Of the public buildings of Bruges the most remarbable are the Church of Nôtre Dame, containing a sculpture of the Virgin and Child, said to be by Michel Angelo, effigies in copper of Charles the Bold and Mary of Burgundy, who aro buried in the ehurch; the eathedral of St Satueur, built of brick, but internally the hand. somest church in Bruges, with some fine pictures by Hemling (or, more correctly, Memling,-see Athenœum, No. 2513) and Peter Porbus; the hospital of St John, a charitable institution, where sick persons are attended by the sisters of charity; the exchange, which is the oldest in Europe; the courthouse, a finc building, partly on the site of the old palace of the counts of Flanders; and the Hötel de Ville, a small but handsome edifice, dating from 1377 and restored in the present century, in the niches of which there were formerly statues of the old eounts of Fianders, which were destroyed by the Freneh revolutionists iin 1792. The belfry-tewer in the great square, of which Lengfellow sings so fincly, is the most beantiful structure of the kind in Europe, and its chimes are the best in Belgium. It was erected at the end of the 14 th century, and is still used for communicating the alarm of fire by a fluy or a light to all parts of the city. In this same square is 2 house in which Charles 1I. resided during his exile from Eugland. Among the conventual establishments tho most important are the Béguinage and the English munnery. The town is likewise well provided with the means of education. There is a medical sehool, to which is attached a museum of natural history and a butanical parden. For thic higher departments of schnol training there is an excellent freneum, annally subsidized by Goverament besides a
theoiugitul seminary, a school of navigation, and an insti tution for the deaf and dumb and blind. The academy of painting is in a very flourisbing condition, and offers many advantages to the student, as instruction is given gratis in drawing and architecture. The public library in the townball contains upwards of 15,000 volumes.. The charitable institutions of Bruges are both numerous and well organized. They are all the more necessary, that the number of persons in the city requiring support is unusually great. In the poorhouse alone there is accomodation for nearly 606 individuals, and it is almost always completely filled. The most important manufacture in Bruges is that of lace. The other manufactures cousist of linens, woollen and cotto. goods, soap, leather, tobacco, starch, pottery, and bells. There are also some small breweries and distilleries, and dyeing and bleaching establishments; and sbip-building is also carried on. The exports from Bruges comprise the products of the rich agricultural district that surrounde the town; the imports include metals, dyewoods, wines, fruits, oil, cutton, and wool. Despite the number of canals, the inhabitants of Bruges are very ill supplied with water for domestic purposes; every house is accordingly provided with a tank or butt to receive rain-water. The quantity collected in the public tanks is distributed through the rity in pipes. Of the canals the largest is that to Ostend, wiue and decp enough to allow vesscls of 500 tons to pass up from the sea. The ramifications of these canals interseci the city in all dircctions, and are crossed by upwards on fifty bridges, whence the name of the town is derived. Population in 1838, 44,374 ; in 1846, 49,308; in 1851, 50,698 ; in 1866, 49,819.

See Weale's Bruges et ses cnvirons, 1865 ; Gilliodts van Severen, L'Inventaire des archiecs de la ville de Bruycs, 3 vols.
brumatil, or Brumpt, a town of Lower Alsace, in the circle of Strasburg, on the River Zorn. It has a castle and mineral wells, and occupies the site of the ancient Erucomagus. Fopulation in 1871, 5619.

BRUNCK, Richard Firangois Philippe (1729-1803), a French scholar, was born at Strasburg, 20th December 1729. Hc was educated at the Jesuits' eollege at Paris, but haviog early entered the public service, he soon forgot his Latin and Greck. At the age of thirty lie returned to his native tomn and resumed his studies, paying special attention to Greek. The nature of the office which he held put considerable sums of moncy at his disposal, which he expended in publishing cditions of the Greek elassics. The frst work which he edited was the Anthologice Greecu, in which his innorations on the established mode of criticism startled European scholars; for wherever it seemed to him that an obscure or diffeult passage might be made intel. ligible and easy by a ehange of text, he did not scruple to make the necessary alterations, whether the new reading were supported by manuscript authority or not. With the assistance of Schweighanser, then an unknown youth, bo nest brought out cditions of the Greek dramatists, eharacterized by the same peculiarities as the Anthologia, and ultimately the Gnomici Potte Greci. In 1781 he published an edition of Virgil, for which be was pelisioned by the Frencli king. At the outbreak of the French Revolution, in which he took an active part, he lost his pension, and was reduced to sueh extremities that he was obliged to sell a pertion of his library. In 1502 his pension was restored to him, but too late to prevent the sale of the remainder of his books. He had brought out an edition of Plautus in 1788, and was in the net of republishing it when he died, June 12, 1803.
brundusium, or Bruveiales. See Brispis!.
BRUNEL, Isamaro Kingdoy (1506-1859), one oi ibe most distinguisled civil engineers of the age, was born nt Portsmouth, April 9, 1806. ITe was the only sme of Sir

Marc Isambard Branel, from whom he inherited some rare intellectual gifts, and to whom be owed his first education. From his earliest years he took an eager and intelligent interest in all the plans and undertakings of his father, who bad then just completed the construction of the remarkable block naachinery at Portsmouth. He displayed in childhood singular powers of mental calculation, great skill and rapidity as a draughtsman, and a true feeling for art. After attending aome private sebools, he was sent at the age of fourteen to Paris, to study mathematics, and to :ecozer his knowledge of French. From November 1820 to August 1822 he studied at the Collége Henri Quatre ; and in Loliday intervala he used to visit the engineering works going on in Paris, and send his father drawings and descriptions of them. In 1823 be entered his father's office as assistant-engineer, just at the time when the project of the Thames Tunnel began to occupy the attention of Sir Isambard; and from 1825, when the work was begun, till 1828, when it was atopped by an irruption of the river, he displayed a singular energy, inventiveness, and power of application in that struggle of science against natural obstacles on a vast scale. He bad even then the power, which distinguished bim in later years, of doing almost without sleep for many nights when work was pressing. During the later part of the contest which ended by a second irruption in January 1828, be was both nominal and actual resident engineer of the Thames Tunnel. Left for nearly.two years without regular professional occupation, Brunel employed himself in scientific researches, enjoying intercourse with Babbage, Faraday, and other friends. In November 1829 he aent in designs and plans for the projected Suspension Bridge over the Avon at Clifton. in consequence of objections raised by Tellord, the referee of the bridge committee, Brunel's plans were rejected. But on a second competition, early in 1831, be sent in a new design, and this was accepted. Brunel was appointed engineer to the trustees, and the works were begun in 1836. Delay had been caused by want of funds, and from the same cause the works were afterwards suspended for some years, and were not completed during Brunel's lifetinie. In March 1833, Bruncl, at the age of t wenty-seven, attained onse of the highest professional positions by his appointment as engineer of the newly-projected Great Western Railway. For several years his energies were tased to the utmost by the conflict with obstructive landowners and short-sighted crities; but he showed himself equal to the occasion, not only as a professional man, but as a persuasive negotiator. Fur solidity of construction and for skill and beauty of design the Great Western Railway, though one of the first made in England, Lolds a very high place. Among the triumphs of the engineer are the Hanwell Viaduct, the Maidenhead Bridge, and the Box Tunnel, at the time the longest in the world; and, on extensions of the line, the great bridges at Chepstow and Saltash. The now notorious "battle of the gauges" took its rise from Brunel's introduction of the broad gauge on this line. In 1846 he resigned his office as engineer of the Great Western Tailway. In 1844 he had recommended the adoption of the Atmospleric System on the South Devon Railway, but after a year's trial this system was abandoned. The lastand greatest of Brunel's railway works was the Royal Albert Bridge of the Cornwall Railway, crossing the River Tamar at Saltash. This work, sanctioned by parliantent in 1845 , was constructed between 1853 and 1859. In addition to the arduous labours of railway engineering, Mr Brunel bad taken a leading part in the systematic development of ocean stcam navigation. . As early as October 1835 be bad suggested, to the amusement of the directory of the Great Western Railway, that they should "make it longer, and have a steamboat to ga from Bristol to New York, and call it the

Great Western." 'Ine project mas taken up, and the "Great Western" steamship was designed by Brunel, and 'built at Bristol under his superintendence. It was muck longer than any steamer of the day, and was the frot steamship built to make regular voyages across the Atlantic. While the ressel mas building a controversy mas raised about the practicability of Bruncl's scheme, Ds Lardner asserting dogmatically that the royage could no: be made, and backing his assertion with an array of figures His view was widely accepted, but the work went on, and the voyage was accomplished in 1838. A greater rork was at once undertaken, and the "Great Britain" was built. This was the first large iron steamship, the largest ship afloat at that time, and the first large ship in which the screw-propelier was used. She made her frst voyage fron Liverpool to New York in August and September 1845; but in the following year was carelessly run upon the rocks in Dundrum Bay on the coast of Ireland. After lying there nearly a year without material damage she was got off and was employed in the Australian trade. Brunel soen after began to meditate a vaster project still, the construction of a vessel large enough to carry all the coal required for a long voyage out, and if coal could not be had at the out port, then to carry enough also for the return voyage. It seemed to him, further, that a great increase of size would give many advantages for navigation. During bis connection as engineer with the Australian Mail Company be worked out into a practical shape bis conception of a "great ship ;" and in 1852 his scheme was laid before the Directors of the Eastern Steam Navigation Company. It was adopted, the projector was appointed their engineer, and after much time oceupied about contracts and specifications, the work was begun in December 1853. Immense difficulties in the progress of construction caused"delays from time to time. The operations of launching was several times attempted in vain; but at length the gigantic vessel, the now familiar "Great fastern," was got afloet (31st January 1858). Nuch remained to be done to complete the ship; and ber engincer, overworked and worn out with the worry of the launching processes, broke down and did rot live to see her sail en her first voyage. In addition to the great works already desoribed, Brunel was employed in the construction of many dncks and piers. The first of these was the Monkwearmouth Docks, for which he miade the designs in 1831. The construction, after a new design, was begun in 1834. He was afterwards engaged in works of the sane kind at Bristol, Plynouth, Briton Ferry, and Erentford, and on a pier at Milford llaven. He was a zealo:s promoter of the Great Exhibition of 1851, and was a member of the committce on the section of machinery and of the building committee. He paid much attention to the subject of improvement of large guns, and designed a floating gun-carriage for the attack on Cronstadt in the Russian war (1854); be also designed and superintend ci the construction of the hospital buildings at Reukioj, on the Dardanelles (1855). The genius, energy, and industiy of Brunel in bis profession were not more remarkalice than the high moral tone which characterized his whele life. and the fascinating qualities which gave him immense personal influence, and made him the delight of the social circle. With siogle-bearted truthtulness he devoted bimself to bis chosen work; he was singularly free from professional jealousy, and was always ready to commend and belp others. With robust health, which be enjoyed through many years, he had the two invaluable qualities of good spirits and good temper. In his relations with bis subordinates be was considerate aidd kindly, at the same time that he demauded faithful service acco.t. ing to a high standard. He cared nothing for pepularity. He enjoyed
the beautes er a tinc landscape, and was an cothusiastic lurer of the fure arts. In the course of his busy life he several times went to Italy and Switzerland, and in $18 t 5$ he bought a srmall estate in Deronshire, to make bis home there. The pressure of business, however, did not allow him to spend much of his time in the country. In 1830 Brumel was electel F.R.S., and he was afterwards a momber of many other scientific societies. In 1557 the homorary degree of D.C.L. was conferred on him by the university of Oxford. la July 18.36 he married; he left two sons and a daughter survivist him. For the sake of bis health he spent the wnta of 1058-59 in Egypt, returning to England in Miry. He was on board his "great ship" on the 5th Seprimber 1859, and the same day was attacked with p^{n} aly-non The ship sailed on her first voyage on the 7 th, and her great prajector passed amay on the 15 th of the mouth. $111 s$ remans were interred in Kensal Green Cemetery. In 1070 appeared The Life of 1 . K. Branel, C.E., by his son Isambard Brunel, of Lincoin's Inn, chancellor of the diocese of Ely.
(w. L. R. c.)

Brunel, Sir Marc Isambard (1769-1849), was born at IIaqueville, in Normandy. His family hod for several centuries held a respectable station in the prorince, living as farmers and small landowners on the estate on which he was born, and numbering among its members Nicholas Poussin. He was educated at the seminary of St Nicaise at Rouen, with the intention of his entering boly orders; but bis predilection for the physical sciences was so strong, and his genius for mathematies and inechanics so decided, that, on the advice of the superior of the establishment, he was removed to follow a more congenial career. His father then destined him for the naral service, which he entered on the appointment of the Darshal de Castries, the minister of marins, and made several voyages to tho West Indies. In this position, although only in his seventeenth sear, his mechanical talents developed themselves activcly on many occasions, and he surprised his captain by the production of a sextant of his manufacture with which he took his observations. On his return to France in 1792, he found the Revolution at its beight, and like all who entertained royalist principles, he was compelled to seetr safety in emigration. He effected his flight with considerable difficulty, and found refuge in the United States of America, where, driven by neccssity to the exercise of his talents as a means of support, he followed the bent of bis iuclination and became a civil eugineer and architect. His first engarement was on the survey of a tract of land near Lake Eric ; he then became eugaged in cutting canals, and was employed to erect an arsenal and cannon foundry at New Yurk, where he applied sereral new and ingenious machines hlis lighly ormamental design for the lIouse of Assembly at Wasbington was rejected, as being inconsistent with the simplicity of a republic; he was, huwever, engaged to design and superintend the construction of Bowery Theatre, New Tork, since destroyed by fire, the roof of which was pecukar and original.
The idea of substituting machinery for mannal labour in the making of ships' Hock harl lon: occupied his mind; and, in 1790, havine matured his plans, he determined to visit Enghand. Earl St Vincent was at that time at the heal of the Admiralty, and after the uanal delays and dificultics, which were altimately overcome chietly through the powerful infuence of Lis stealy friend and patron Uarl Spencer, aided by the rcommendation of PrigadierGeneral Sir Smuel Bentham, who at once jerceived and appreciated the merit of the machines and the talent of the inventor, the system was adonted, and the machinery erested. The construction of the machine was entrusted is Mr ileury Maudalay, whom lirum! hul sejected with
true discrimination, and by whom he was ably assisted. The beautiful simplicity of these machines, their perfect adaptation to their various purposes, and, notwitbstanding the recent advances in mechanics, their continuing for nearly balf a century in active work, without any improvements having ever been suggested, most rank them as among the most complete and ingenious pieces of mechanism ever invented.

The block machinery was completed in 1806, and it mas estimated that the economy produced by it in the frst year. was about $£ 24,000$, two-thirds of which sum was awarded to the ingenious inventor, who was soon after engaged by the Government to erect estensive saw-mills, on improved principles, at Chatham and Woolwich. He there suggested modifications of the systems of stacking and seasoning timber, which were afterwards carried into effect. Some time previously, he had invented the ingenious little machine for winding cotton-thread into balls, which, simple as it may at first sight appear, has exercised great influence on the cxtension of the cotton trade.

He found time also to invent an instrument for combining the use of several pens, so as to produce simultancously a number of copies of a manuscripts, a simple and portable copying-machine; and a contrivance for making the smali boxes used by druggists, which had been previously imported in large quantities from Holland. A nail-making machine also occupied his attention; and he discovered the system of giving the eflorescent appearance to tinfoid, by which it was fitted for ornamental purposes. Among other more important improrements may be mentioned that of cutting vencers by circular saws of large diameter, to which is mainly due the present eatensive application of veneers of wood to ornamental furniture. About the year 1812 he had devised a scheme for making shoes by machinery; and, under the countenance of the duke of York, the shoes so manufactured, in consequence of their strength, cheapness, and durability, were introduced for the use of the aray ; but at the peace in 1815 , manual labour becoming cheaper, and the demaud for military equipments having ceased, the machines were laid aside.

Steam navigation also attracted his attention, and he became deeply interested in establishing the liamsgate steam vessels, which were among the first that plicd successfully on the River Tbames; and on board of them it is believed that the double engines mere first-uscd. About this period, after much tabour and perseverance, be inducal the Admiralty to permit the application of stcam for towing vessels to sea, the practicability of which he had stremuonsly urged. The experiments were tried chicty at bis own expense; a small sum in aid had been promised, lut it was crentually withdrawn before the completion of the trials, the Admiralty considering the attempt "too chimeriea! to be seriously entertained." He introduced various improvenents in the steam-engine, and for nearly ten years lerseverd in the attempt to use liquefod gases as the source of motive power, in which ho was ably assisted by his son. The necessary experiments were most laborious, and needed all the perserering energy and resources of a mind deternined not to be foiled; in spite, bowever, of his efforts, after a great sacrifice of time and money. the plan was abandoned.

The whole power of his mind, however, was for mang years concentrated on one great olject, the construction of the tunnel for commanication from shore to shore bencats the bed of the River Thames. It is said that the originsl idea occurred to him, as applied to the Nova at St I'etersburg, in order to aroil the inconvenience arising from the tloating ice,-a plan which he oftered to the Emperor Alex. ander, on the accasion of his visit to England in list. Undismaved by restous si-mal failotes in the athempt
to construct a tunnel beneath the Thames, Brunel, confident in his own powers, persevered, and in 1824, under the auspices of the duke of Wellington, who always entertained a favourable view of the practicability of the scheme, a company was formed for its execution; and after numerous accidents and suspensions of the works, this great and novel undertaking was successfully accomplished, and the tunnel opened to the public in the year 1843.
In the prosecution of the work he received great assistance from his son, Isambard Kingdom Brunel, and in a scientific point. of view the construction of the tunnel will be regarded as displaying, at the same time, the highest professional ability, an anount of energy and skill rarely exceeded, and a fertility of invention and resources, under what were deemed insurmountable difficulties, which will secure to the memory of Sir Isambard Brunel a high posstion among the engineers of England.

He received the order of the Letgion dHomeur in 1820, and the honour of knighthood in 1841. He was a correspouding mennber of the French Institute, and a fellow of the Royal Society. He joined the Institution of Civil Engincers in the year 1823, and constantly attended the meetings, took part in the discussions, and promoted the seciety's interests by evcry means in his power.

He was unaffected and simple in his habits, and possessed indomitable courage, perseverance, and industry; whilst his benevolence constantly prompted him to lindly and considerate actions. His labours had so seriously impaired his health, tha. for some years after the completion of the tumnel he was unable to mix iu active life. He died on the 12 th of December 1849 , in his 81 st year. (See Richard Beamish, Memoirs of Sir Marc Isumbard Drunel, 1862.)
BRUNELLESCHI, Finirpo, (1377-146), one of tho greatest Italian architects, the reviver in Italy of the lioman or Classic style, was born at Florence in 1377 . His father, a notary, had destined him for his own profession, but observing the boy's talent for all sorts of mechanism, placed him in the guild of goldsmiths. Filippo quickly became a skilled workman, and, cagerly desirous to excel, perfected himself in the knowledge of sculpture, perspective, and geometry, -whatever, in short, was useful for the architectural art, to which he foumd himself attracted. We designed some portions of houses in Florence, and in 1401 he was one of the competitors for the design of the gates of the baptistery of San Ciovami. He was unsuccessful, though his work obtained praise, and lic soon afterwards set out for Rome. He studied hard, anch resolval to do what he could to revive the oiler chassical style, which had died out in Italy. In 1407 he returned to Florence, just at the time which it was resolved to attempt tho completion of the cathedial church of Santa Maria del Fiore. Brunelleschiis $\mathrm{p}^{\text {dan }}$ for effecting this by a cupola was approsed, but it was not till 1419, and after imnumerable disputes, that the work was finally entrusted to him. At first he was hampered by lis colleague Ghilierti, of whom le skilfully got rid. He did wot live to see the completion of bis great work, and the 'antern on the summit was put up not altogether in accordance with the instructions and plans left by him. The great cupola, one of the triumphs of architecture, exceeds in some measurements that of St Peter's at Rome, and has a more massive and striking appearance. Desides the masterpiece Brunclleschi executed numerous other works, among the most remarkable of which are the Iitti Palace at Florence, and the churches of San Lorenzo and Spirito Santo, and the still more clegant Capella dei Pazza. He died in 1446, and was buried in the great church of Santa Maria. See Archetecture, vol. ii. p. 436.
brunet, Jacques Charles, the eninent bibliographer, was boru at Paris in 1780, and died in 186.. He was the
son of a bookseller, and at an early age began the study which occupied the whole of his after life. In 1802 he printed a supplement to the Dictionnaire Bibliographique of Duclos and Cailleau, and in 1810 there appeared the first edition of his chef-d'euvre, the Manuel du Libraire. With the exception of a few pamphlets and minor disserta. tions, Brunet published nothing beyond successive editious of his great bibliographical dictionary, which had come to be recognized as the first book of its class in European literature. The last (fifth) edition in six volumes was completed in 1865.

BRUNI, Leonardo (1369-1444), author of the History of Florence, was an eminent scholar of the 15 th century. He was born at Arezzo, and is generally known as L . Aretino. He was secretary to the papal chancery under Innocent VII. and John XXII. From 1427 to his death in 1444 he was chancellor to the republic of Florence. Ite was buried at the expense of the state in Sta. Croce, where lis laurelled statue is still to be seen. His History of Flarence comes down to 1404.

BRƯNN, the capital of the Austrian margraviate of Moravia, is situated for the most fart between tro hills at the confluence of the Schwarzawa and the Zwittawa, 69 miles N. of Vienna and $115 \mathrm{~W} . \mathrm{S} . \mathrm{W}$. of Prague, with both of which it is connected by railway. Lat. $49^{\circ} 11^{\prime} 39^{\prime \prime} \mathrm{N}$. , long. $16^{\circ} 39^{\prime} 35^{\prime \prime} \mathrm{E}$. On one of the hills known as the Spielberg stands the castle of the same name, which las long been used as a prison, and is famous for its connection with the patriotic Silvio Pellico, who was confined within its walls for about eight years. The old town, which is comparatively small, still retains some of its fortifications, but most of them have given place to promenades. Its streets are narrow and crooked but well-payed, and it contains many of the most inportant buildings in the city. Extensive suburbs have grown up around it, and since 1849 form portions of the same commune. There are fine publie garclers and a large park knoms as the Augarten, presented to the town by the Emperor Joseph II. The Rathhaus, which dates from 1511, has a fine Gothic portal, and contains sevcral interesting antiquitics. The ecclesiastical buildings comprise the cathedral of St Peter's, situated on the lower hill; the fine Guthic church of St James, built in the 15 th century, with its iron tower added in 1845 , and a remarkable collection of carly typograply ; the church of the Augustine friars, dating from the 1f th century ; that of the Minorites with its frescoes, its holy stair, and its Lorstto-house; the bishop's palace; a splendil Jewish synaqogue; and several monastic establishments. As the capital of the province Brüun is the scat of the chief legal and military courts, and thus possesses various official edifices, the old Jesuit convent having been turned into barracks. It is also the seat of a Romau Catholic iishop and of a Protestant consistory. Its educational and benevolent institutions comprise a theological seminary, a gymnasium, several academies and schools, an agricultural society, a botanic garden, an infirmary, an orphanage, a blind asylum, a deaf-mute institution, a lunatic asylum, and several hospitals, of Which the most important is the great hospital of St Anna. The national museum for Moraria and Silesia, though conparatively poor, must also be mentioned. Brimn is one of the chief seats of the woollen manufacture in the Austrian dominions, and the centre of a large miscellaveous trade. Considcrable quantities of silk and cotton goods are manufazturci, as also leather, paper, tobacco, oil, and sugar. There are also steam-flour-mills, engincering works, and breweries. There is a remarkable viaduct in the immediate neighbourhood of the town. Brunn probably dates frora the 9 th century. In the 11th it was bestowed by Duke Wratislas II. on his sem Otto. Drium is a place of great
strength, and held out successfully against "eges-in 1428 by the Hussites, in 1467 by King George of Bohomia, in 1645 by the Swedish general Torstenson, and in 1742 by the Prussians. In 1805 it was the headquarters of Napoleon before the battle of Austerlitz. Its population in 1869 was 73,771.

BRUNO, St, the founder of the Carthusian order of monks, was born at Cologne about the year 1030. He was educated at Cologne, and afterwards at Rheims, where he was appointed to superintend the studiea in all the chief achools of the diocese. Many of his pupils afterwards became distinguished, and in the number was Pope Urban II. In 1084, after some disputes with Manasses, the archbishop of Rheims, he retired with six companions into the desert of Chartrouse, where he built an oratory, with cells at a little distance from each other. 'Six years afterwards he went to Rome, where Urban II. pressed him to accept the archbishopric of Reggio. He declined the honour, and withdrew into the solitudes of Calabra, where he died October 6, 1101 . He wrote treatises on the Psalms and on some of the Epistles, but none of his works are extant. His canonization took place in 1514. (See Mrs Jameson's Legends of the Monastic Orders, 124-134; Butler's Lives of the Saints, vol. ii. 592.) This saint is not to be confounded with others of the same name,-the bishop and apostle of the Prussians (970-1008), and the great archbishop of Cologne (925-968).
BRUNO, Giordano, the most genial and interesting of the Italian philosophers of the Renaissance, was born at Nols about the year 1548. Little is known of the life of this knight-errant of philosophy; the very date of his birth rests in obscurity. What we do know is attractive enough to render it matter of regret that the materials ahould be so scanty. In his fifteenth year he entered the order of the Dominicans at Naples, and is said to have composed a treatise on the ark of Noah. Why he should have submitted to the bonds of a discipline palpably unsuited to his fiery and vehement spirit, we cannot tell. He soon found the restraints intolerable, and became an outcast from his church and a wanderer on the face of the earth. His opinions with regard to some of the Romish myateries seem to have been too liberal to find toleration with 80 strict an order as that of St Dominic. He was accused of impiety, and after enduring persecution for some years, he fled from Rome about 1576, and wandered through various cities, reaching Geneva in 1577. The home of Calvinism was no resting-place for him, and be travelled on through Lyons, Toulouse, aud Montpellier, arriving at Paris in 1579. Everywhere he bent his irrepressible encrgies to the exposition of the new thoughts which were beginaing to effect a revolution in the thinking world. He haul drunk deeply of the very spirit of the Renaissance, the determination to open his eyes and see for himself this noble universe, unclouded by the mists of authoritative philosophy and church tradition The liscoveries of Copernicus, which were unhinging men's minds and taaching them to look upon their little world in 3 Lew light, were cagerly accepted by him, and he used them as the lever by which to push aside the antiquated syatem that had come down from Aristotle, and which was losded with the weight of that great thinker's name. F'or Aristotlo, indeod, he had a perfect hatred. Like Bacon and Telcsius he infinitely preferred the older Greek philosophers, who had looked at nature for themselves, and whose spccula. tions had more of reality in them. He had read widely and deeply, and in his own writings we come across many expressions familiar to us in earlier systems. Yet hisphilosuphy is no eclecticis? Le owed something to Lucretius, soinething to tho Store nature-pantheism, sumething to Anaxegoras, to Heraclitus, to the Pythaforeans, and to tho Neo-
platonists, who were partially known to him; above all, he \}.ad studied deeply and profoundly the great Germau thinker Nicolas of Cusa, who was indeed a speculative Copernicus. But his own system has a distinct unity and originality; it breathes throughout the nery spirit of Bruno himself.

Bruwo had been well received at Toulouse, where he had lectured on astronomy; even better fortune a waited him at Paris. He was offered a chair of philosophy, provided he would receive the Mass. He at once refused, but was permitted to deliver lectures. These seem to have been altogether deroted to expositions of a certain logical system which Bruno had taken up with great eagerness, the Ars Magna of Raymond Lully. With the exception of a comedy, Il Candelajo, all the works of this period are devoted to this logic. The most important of them is the treatise De Umbris Idearum. It has seemed to many a curious freak of Bruno's that he should have so eagerly adopted a view of thought like that of Lully, but in reality it is in strict accordance with the principles of his philosophy. Like the Arabian logicians, and some of the scholastics, who held that ideas existed in a threefold form,-ante res, in rebus, and part res, - he laid down the principle that the archetypal ideas existed metaphysically in the ultimate unity or intelligence, physically in the world of things, and logically in signs, symbols, or notions. These notions were the shadows of the ideas, and the Ars Mfagna furnished him with a general acheme, according to which their rela. tions and correspondences should be exhibited. It supplied not only a memoria technica, but an organon, or method by which the genesis of all ideas from unity might be represented intelligibly and easily. It provided also a substitute for either the Aristotelian or the Ramist logic, which was an additional element in its farour.

In the train and under the protection of the French ambas. sador, Michel de Castelnau, Bruno passed over in 1583 to England, where he resided for about two years. He ras mach disgusted with the brutality of the English manners, which he paints in no flattering colours, and he found in Oxford pedantry and superstition as rampant as at Geneva But he indulges in extravagant eulogies of Elizabeth, and he formed the acquaintance at London of Sir Philip Sidney; Fulke Grovile, and other eminent Englishmen. At Oxfori he was allowed to hold a disputation with some learnec doctors on the rival merits of the Copernican and so-callec Aristotelian systems of the unirerse, snd, according to his own report, had an easy victory. The best of his work were written in the freedom of English social life. The Cena de le Ceneri, or Ash Wednesday conversation, devoted to an exposition of the Copernican theory, was printed in 1584. In the same year appeared his two great metaphy. sical works, De la Causa, Principio, ed Uno, and D, IInfinito, Universo, e Mondi; in the year following the Eroici Furori and Cabala del Cavallo Pegaseo. Ir 1584 also appeared the strango dialogue, Spaccio delle Bestia Trionfante, or Expulsion of the Triumphan Beast, an allegory treating chiefly of moral philosophy but giving at the same time the rery essence and spirit of Brano's philosophy: The gods are represented as resolving to banish from the beavens the constellations, which sorved to remind them of their evil deeds. In theis places are put the moral virtues. The first of the three dialogues contains the substance of the allegory, which, under the disguise of an assun't on hesthen mythology, is a direct attack on all forms of anthropomorphic religion. But in a philosophical point of view the first part of th: second dialogre is the most important. Among the morad virtues which take the place of the beasts are Truth, Pru* dence, Wisdom, Law, and Univerasl Judgment, and in the explanation of what these mean Bruno unfolds the rery inner essence of bis system. Truth is the unity and,
substance which underlies all things; Prudence or providence is the regulating power of truth, and comprenends both liberty and nesessity ; Wisdom is providence itself in its supersensible aspect -in man it is reason which grasps the truth of things; Law results from wisdom, for no good law is irrational, and its sole end and aim is the good of mankind; Universal Judgment is the principle whereby men are judged according to their deeds, and not according to their belief in this or that catechism. Mingled with his allegorical philosophy are the most vehement attacks upon the established religion. The monks are stigmatized as pedants who would destroy the joy of life on earth, who are avaricious, dissolute, and the breeders of eternal dissensions and squabbles. The mysteries of faith are scoffed at. The Jewish records are put on a level with the Greek myths, and miracles are laughed at as magical tricks. Through all this runs the train of thought resulting naturally from Bruno's fnndamental principles, and familiar in modern philosophy as Spinozism, the denial of particular providence, the doctrine of the uselessness of prayer, the identification in a sense of liberty and necessity, and the peculiar definition of good and evil. Altogether the Spaccoo, as it is the most popular, is the most characteristic of Bruno's works.

In 1586 be returned to Paris with Castelnau, but was soon driven from his refuge, and we next find him at Marburg and Wittenberg, the headquarters of Lutheranism. There is a tradition that here or in Eugland he embraced the Protestant faith; nothing in his writings would lead one to suppose so. Several works, chieffy logical, appared during his stay at Wittenberg. In 1588 he went to Prague, then to Helmstadt. In 1591 be was at Frankfort, and published thrce important metaphysical works, De Triplici Minimo et Mensura; De Monade, Nuntero, et Figura; De Immenso et Innumerabilibus. He did not stay long at Prague, and wo find him next at Zurich, whence he accepted an invitation to Venice. It was a rash step. The emissaries of the Inquisition were on his track; be was thrown into prison, and in 1593 was brought to Rome. Seven years were spent in confinement. On the 9th February 1600 he was escommunicated, and on the l7th was burned at the stake.
As has been said, for an estimation of Bruno's philosophy, the most important works are the two Italian dialognes and the three last-mentioned Lastin troatises. It is not an easy matter to put his opinions into small compass, for the general form of exposition adopted'by bim, the dislugue, imposes a certaiu looseness on his own mode of thinking.

To Bruno as to all other great thinkers, the cod of philosophy is the search for unity. Anid all the varying and contradictory phenomena of the universe there is something which gives coherence and intelligibility to them. Nor can this unity be something apart from the things; it must contain in itsclf the universe, which develops from it; it must be at once all and one. This unity is God, the universal substance,-the one and only principle, or causa immanens,-that which is in things and get is distinct from them as the universal is distinct from the particular. He is the efficient and finsl cause of all, the beginning, middle, and end, eternal and infnite. By his sction the world is produced, and his action is the law of his nature, his uecessity is true freedom. He is living, active intelligence, the principle of motion and creation, realizing himself in the infinitely various forms of activity that constitute individual things. To the infiniteiy actual there is necessary the possible; that which determines involves somewhat in which its determinations can have existence. This other of God, which is in truth one with him, is matter. The universe, then, is a living cosmos, an inánitely animated system, whose end is the perfect realization of the variously graduated forms.

The unity which sunders itself into the multiplicity of things may be called the monas monadun, each thing being a monas or self-existent, living being, a universe in itself. Of these monads the number-is infinite. The soul of man is a thinking monad, and stands mid-way between the divine intelligence and the world of external things. As a portion of the divine life, the sonl is inmortal. Its higbest function is the contemplation of the divine unity. discoverable under the manifold of objects.
Such is a brief summary of the principal positions of Brnoo's philosophy. It seems quite clear that in the earlier works, particularly the two Italian dialogues, be approached more nearly to the pantheistic view of things than in his later Latin treatises. The unity expounded at first is simply an anima mundi, a living universe, but not intelligent. There is a distinct development tracesble towards the later and final form of his doctrine, in which the universe appears as the realization of the divine nind.
The ltalian works of Brano, formerly exceedingly rare, have been collected snd publisbed in ino volumes, by A. Wagner, 1830, An edition of the Latin works was begun by Gforer in 1834 , but las not been completed. The most completo nonograph on him is that by C. Bartholmess, 2 vols. $1846-47$; the most recent life is that by Domenico Berti, 1868. The best systemetic account of his philosophy is that by Carriere, Philosophische Wellanschauung dis Reformationszeit, 1847, pp. 411-494. Tlue relations between his philosophy and that of Cusanusare treated in Clemens, G. Brino und Aicolaus ion Cusa, 1847. An English translation by Morehead (not. as is generally supposed, by Toland) of the Spaceio is dated 1713. It was probably printed before that time, and it is now excessively rare. Toland iranslated the preface to De l'Infanto; it is fomad in his Posthumous Works. There is a French translation of Iart of the Spaccio, Le Cuel Reforme, 1750. Lasson has Iranslated De la Causa into German, 1872, with introduction and notes.

The earlier literature with legard to Bruno is copions; it will be found in Baylo, Buhle, and Tennemann.
(R. AD.)

BRUNSWICK (Genuan Braunschwelg), a dachy and state of Nortbern Germany, forming part of the new German Enpire, and included in the Prusso-German Zollverein. It consists of three larger and five smaller portions of territory lying mainly between $51^{\circ} 3 S^{\prime}$ and $52^{\circ} 28^{\prime}$ N. lat., and between $9^{\circ} 20^{\prime}$ and $11^{\circ} 30^{\circ}$ E. long. The principal part, containing the cities of Brunswick, Wolfenbuittel, and Helmstedt, is situated between Hanover and Prussia, to the S.E. of the former, and has its surface diversificd by hill and plain. The part containing Holzminden and Gandersheim extends eastward from the Weser to Goslar, and is intersected by branches of the Hartz Monntains. The Blankenburg portion lies to the S.E. of the two former, between Prussia, Anhalt, and Hanover, and is traversed by the Hartz. Of the smaller portions some form enclaves in Hanover and others in Prussia
Brunswick has an area of 1424 English square miles, and is divided into sir circles, comprebending thirteen cities, and between four and five hundred smaller towns and villages. Besides the cities already mentioned the most important are Scböningen, Secsen, and Schöppenstedt. The population was in 1812, 309,527; in 1852, 271,208; in 1861. 281,708; and in 1871, 311,175. Of the last number 302,989 were Protestants, 7030 Roman Catholics, and 1171 Jews. The proportions in the political divisions. were as follows :-

Cliclea	Extentin square miles	Inhabitanta.		
		183.	1867	1871.
Brunswick	209	61,232	82,828	90,845
Wolfenbuttel	294	50,423	59,454	60,739
Helmstedt	304	41,155	5,2,023	53,705
Molzminden	221	41,290	42,129	41,581
Gandersheim.	212	39,277	43,430	42,322
Blankenburg..............	184	19,855	22,923	22.523
	1424	253,232	302,792	811,715

Brunswick also possesses in Prussian Silesia the principality of Ools, which from 1647 to 1792 belonged to Würtemberg. A portion of the Hartz Mountains is common to Brunswick and Hanover, and is conseguently known as the Communion-Hartz. Various minor arrangeunents have beeu made with Prussia for the more convenient organization of this district since the formation of the new German empire. The highest point of the mountains in the Brunswick territory is the Wormberg. 3230 feet in height. 'the princirai rivers by which the duchy is watered are the Ocker, the Weser, tac Aller, and the laine. The lower parts of the comatry are generally fertile and well cuhivated; the higher are mostly covered with forests of fir, oak, and beech. A, very extensive improvemath has been effected in the circle of Helmstedt by the drainug of the Driming swamp, and the rectification of the collses of the Aller and the Olire. Of the whole duchy 32.7 jer cent. is arable, 27.3 consists of meadow and jeisture, ard $31 \cdot \mathrm{~s}$ is under wood. Agricultural and pastoral pmrsuits constifute the principal employment of the inhabitants; and the peasant class are usually well to do. The principal articles of cultivation are grain, potatocs, beetruet, thax, hops, and fruits: The growing of tobacco, which was furmerly of great importance, is now very limited. In 1870 there were in the duchy 25,344 horses, 83,258 lead of cattle, 386,757 sheep, 75,616 swine, 39,167 guats, 55,829 geese, and 8385 bee stocks. The mineral wealth of the country, which is chiefly derived from the Martz Mountains, consists of copper, lead, iom, goll, silver. sulphur, coal, salt, and alum. In 1867 the total yiel? of coal was 219,400 tons, of irma ore 58,400 , of pigsiren 143,000, of cast-iron 1584; the emper amounted to 383 tons; the lead to 710, and the vitriol to 1339. The manufactures, which are conparatively small, comprise (besides the preparation of the orrs) syimning, weaving, and brewing. The princijal iron-works are at liuldand, Wieda, Deiligsen, and Oker; and the chisef conires of general industry are lirunswick and Schäningen. An active trade is carried on ly means of the extensive railway communication with the rest of Germany.

The cducational institutions comprise two ecclesiastical seminarics, an anatemical and surgical college, an architectural school at Holzmiuden, an agricultural schoel at Schïppenstedt, 5 gymmasiums, 25 Lurgher scluons, and upwarts of 400 village schools, besides several important establishments in the capital (see bolow). Ther is in extensive lunatic asytum at kinigsluter, opened in 1 ctis.

According to the constitution of 1832 , which has been frequently modifica, the Govemment is an hereditary momprely, with a legislative assombly of representatives. These are chusen, by the law of $\mathbf{1 8 5 1}$, twenty-one by those citizens who fay the largest amount of taxes, ten ly the towns, three by the clergy, and a certan number by the communcs. They liode otbec fur sis years, oue-half going out triennially; and when they are not in session, they are represented hy a standing committee of seven members. In the federal council the ducher has two votes, and it sends three deputies to the imperial diet. The ducal ventinucht, which still wears its famous black unifurm, furns part of the loth federal arny corps. The state is the proprictor not only of a large proportion of the mines and forests in the duchy, but also of its railways From these sources it derives a considerable part of its revenue, which in recent years has been augmented by the farming out of lotterics. By the budget for the period 1873-5, the annual receipts were fixed at $7,429,400$ marks, or $£ 371,470$. The total debt, which had been mainly incurred for the formution of the railways, amounted to $65,400,000$ marks, or £3,270,000.

The prople of Brunatrick are, with comparatively few
exceptions, of Saxon race. The country people spak' dialects of Low German, while IIgh German is employed by the educated classes in the cities.

The mure immediate ancestor of the house of Brunswick was Henry the Lion, who, in the 12th century, held the umited duchies of Eavaria and Saxony; but having refused to aid the Emperor Frederick Barbarossa in his wars with the Pope, he was, by decree of the diet in 1180 , depriveri of hoth duchies, and only left the possession of this alhodial domains of Brunswick and I, üneburg. His grandson, Otho, was invested in 1235 with these domains as a fief of the empire, and thus became the first dube of Brunswick. The two frimejpalities, which had been severed were united by Ernest the Confessor, but on his death in 1546, tlay were again divided between his two sons; the elder (or rather his son Augustus) receiving Prunswick-Wolfenbüttel, or Brunswick, and the younger Frunswick-Ianeburg. or Hanover. The ducal residence, which hat before been at Wolfonbuittel, was in 1754 removed to Drunswick by Duke Charles. Ilis successur, Duke Charles William Ferdinand, married Augusta, daughter of George 11I. of England He commanded the Prussian tronps at Auerstadt in 1806, and soon after died of the wounds be hard received in the battle. His possessions were immediately seized by Napoleon. and fumed part of the kingdom of Westphalia till after the battle of Leipsic, when the ducby was restored to its rightfn] possessor, Frederack Willian, youngest son of the preceding duke This prince foll at the head of bis troops at Quatre Bras, and was succeeted ly Charles Frederick, the elder of his two suns, who, being at that time a minor, was placed under the totelage of George IV. of England, then prince-regent. The duke cotered on the exercise of his anthority in October 1823, but in conserfuence of a revolution an 1830 was obliged to abdicate in 1631 in favour of his brother William, the present duke. During the long reign of duke William many important changes have taken phace in the internal organization of the duchy, and most of them have been in the direction of grater civil hiberty. Of great moment was the establishment of a new criminal code in 1840 ; and jublicity of farliamentary discussion, the frectom of the press, the introduction of jury-trials in criminal cases, and the leqitimation of Cluristian Jewish marriages were secured in 1819. In 1851 military service was recognized as binding on all, and the clection of members of parliament was flaced more directly in the hands of the people. In 1864 the Stolythithete or taxes paid to the cetablished elergy on the occasion of a haptism, is marriage, or a burial, were made no lunger leviable on Jews, lioman Catholis, or other disscnters. The introduction of the German cormercial ente was effected in 1064, and freedom of trate was introducel? in the same year Treaties of mutual inheritance exist between the houses of llanover and Branswick; and shouh the present duke, who is" still ummarried, die without issue, the duchy will pass to the house of llanover. The ex-duke, to whose sons the right would first have desended, died cliddess at Geneva in August 1873. We had spent his life in pitiable devotion to certain hohbies, the most remarkable of which was the collection of valuable diamonds. His various treasures were bequeathed to the city of Geneva, but the will is disputed by the present duke.

Brunswick, the capital of the above duchy, is situated on the Ocker, 37 miles E.S.E. of Hanover by rail, and $\overline{5} 2 \mathrm{~W} . \mathrm{N} . \mathrm{W}$. of Magdeburg, in $52^{\circ} 16^{\prime}$ N. lat. and $10^{\circ} 32^{\prime} \mathrm{E}$. long. In sp,ite of the mumerous alterations effected during the present century, the city is still of an antiguated appearance, and is for the mest jart contained within the limits of its old fortifications. These, which were dismantled in 1797, have giren place to a regular circle of gardena and promenates, which rank among the faest in Germany.,

The ducal palace is a bandsume modern structure, erecred since 1865, when the most of the previous building, which only dated from 1831, was destroyed by fire. The famous Quadriga of Rietschel, which perished at the same ume, has been replaced by a copy by Howald. Among tne tea or twelve churches in the tomn the most important are the cathedral of St Blaise, built by Heary the Lion 10 1173; St Magnus's, which is the oldest, dating from 1031 ; St Andreas, with a spire 318 feet high; and St Catherine's, a building of the 13 th century. The educational and charitable institutions of Brunswick are numerous and importati. Of the former may be mentioned the Collegium Carolinum, founded in 1745 , the great United Gymnasiums (which iuelude the former commarcial gymnasium, the Martineum, and the Catherineum), the MedieoChirurgical College, and the Academy of Forestry; while among the later are a deaf and dumb institution, a blind asylum, an orphanage, and various hospitals and infirmaries. There are also two public libraries, a museum, a theatre, and several scientific societies. A monument, 60 feet high, to Duke Frederick William, who was slain at Quatre Bras, gives its name to Monuments-Platz, and another to the S.E. of the tomn perpetuates the memory of Schill and his companions. The trade of Brunswick, formerly restricted by obsolete legislatioo, is gradually mereasing. The prucipal articles of manuiacture are coarse cloth and leather; and, to a smaller extent, gloves, papier-machê, and paper wares. The zown has long been famous for a special bind of beer, called Mumme, from the name of the Brunswick brewer who inrented it in 1492. In 1867 the population amounted to 50,369 , inhabiting 3157 houses, and divided into 10,850 familics. In 1871 it bad increased to 57,883 .
Brunswick is said to have been fourded alout Esis ty Bruae, duke of Saxong, from whota it was named Emenomes t'icus. Aferwards anlarged and forthied by Henry the Ljon, it tecante ofe of the cuost :umportant cities of Northern Germany. Por a long time uta constru. tion was rather peeuliar, as it consisted of five segarate townlets, each with its own walls and gates, its own council and litilbus, -a condition of which eraces are still eviluent. In the 1 the cenury it ranked among the frst cities of the IJanseatic leasme, tut ir wut if succeeded in obtaiuing imperial freciom. Atter this, bowerer, it huctined, in consequene of the many divisions of territory arong, the tranches of the reigning house, the jealongy of the neightouring states, the Thirty $\mathrm{Y}^{\text {Earas }}$ ' War, and more recently tho French oceupatuo. In \$830 it was the scene of a violent revolution, which led to the rumoval qf the reigning duke.

BRUNSWICK, a tomn of tho United States of America, in Cumberland County, Jaine, 27 miles N. N.E. of P'ortland, on the right bank of the Androscoggin River, which, with a fall of about 50 feet in half-a-mile, supplies a large amount of water-power. Numerous industral establishnents have been erected, the most iniportant bcing a cotton factory, flour-mills, and bleach-works. The lumber-trade, which was tormerly of great extent, bas been in great measure replaced by the buildug and owning of ships. Besides possessing an excellent system of graduated schools, Brunswick is the seat of Bowdoin College, founded in 1802, and of the Maine Medical School, which dates from 1820. The river is crossed by two bridges, one of wlich unites the town with Topsham, and the other belongs to the Kellnebee and Portland railway. Poputation in 1850, 4927; in 1870,4687 , or including the neighhouring village, 6136 .
brunton, Mrs Mary (1778-1818), a novelist of the -early 'part of the 19 th ceutury, was bera on the 1st November 1778, in the island of Barra, Orkney. Her father, Colonel Balfour, was a man of importance in the island, and she received a very careful and excelleat education. At the age of twenty she married the Rev. Mr Brunton, minister of Boiton in Haddingtonshire, who in 1803 received a call to a church in Edinburgh. In 1811 Mrs Brunton published anonymously ber first novel, Self. S'ontral: It at once becante very pupular ; the first edition
was sold off in a month, añ" a second and third quackly followed. The bouk was especsally recominended by its high moral and religious tone; it was a novel with a purpose. As a work of art, it cannot take a high place; the plot 19 extravagant and mprobable, and the characters have none of the charns of reality about thein. The story is constructed after the model of Clarassa, and contains the usual virtious herone and vacious hero, with an unusual nomber of abductions and mysteries. Her second novel, Discupline, was published in 1814, and was reeeired with eqnal favour. Mrs Brunton ded on the 19th December 1818. An unfinsbed tale, Emmeline, was published after ber death by her husband, with a notice of ber life.

BRUSHES and BROOMS are implements composed of a solid basts 1 nh wheh a cuft or tufts of hair or of vegetable or other fibres are secured. They are mentioned by various ancient writers, as Homer, Sophocles, and Euripides. Perhaps the earlest notice is the figuratuve "besom of destructino" (Isa xir. 23). Brushes are of two knds, simple and compound The former consist of but one tuft, רs harr pencils and panters' tools. The latter have nores than one tuft. Brushes with the tufts placed side by side on flat boards, as plasterers' brushee, are called stock. brushes. The single tuft brushes, or peucils for artists, are made of the harr of the camel, badger, goat, and other anmals for the smaller kind, and pig's bristies for the larger. The hars for fencils are carefully arranged so as to form a point in the centre, and, when tied together, are passed into the ride end of the quill or netal tube and dramin out at the ohier end to the extent required. The small ends of the quills baving betn previously moistened, undrying contract and bind tho harr. A similar effect 19 produced with metal tubes by conpression. Compound brushes are-first, set or pan-work; second, drawa-work. Of the former, an example is the common bonse-broom, into the stock of which holes are drilled of the size wanted. The necessary quantity of bristles, har, or fibre, to fill each hole is collected together, struck on the vorking beneh at the thick ends, dipped tato molten cement chielly composed of piteh, hound round with thread, dipped again, and then set into a bolo of the stock with a pecnliar iwisting motion only to be acquired by practice. In drawn-brushes, of which those for shoes, teetb, nails, and clothes are examples, the holes are more neatly bored, and have smaller ones at the top communicating with the back of the brush, through which a bight or loop of wire passes from the back of the stock. Half the number of Lairs or fibres needed for the tufts to fill the holes nre passed into the bight of the wire, which 18 then pulled smartly so as to double the hars and force them into the loeptiole as far as possible. With all'brushes, when the boles have been properly filled, the ends of the fibres ontaido are cut with shears, either to an even length or such form as may be desired. The lacks are then covered with veneer or other material to conceal the wire and other crndities of the work. A process called trepanning is adopted with some small brushes. The drawholes eeme out at some inconspicuous frart of the stock, and the hairs or fibres having been properly secured, the holes are plugged up in order to conceal theni as much as possible.
The bristles used in this manufacture are imported chiefly from Russia and Poland, and are sorted into black, grey, yellow, white, and lilies. They vary in length. and are separated by the workman striking a quautity held in the hand smartly on a beneb, the thick ends downwards. He thon applies them to a gauge to ascertain the lengths of those that projeet, and, seizing thera between bis fager and thumb, draws them out of the bundle and places them with those of corresponding dimensions. They are sorted according to thicknebs by a process called "dragging,"
which consists in passing them through a kind of comb, which retains those that are too stout to go between the teth. By repeating this with figer combs the bristles can be assorted to any number of sizes required. Various other substances are now used in place of bristles, and this was greatly stimulated by the scarcity of these during the Russian war. In 1808 whalebone fibres were patented in Eagland for the purpose, and in 1810 twigs of broom, mallow, rushes, and other shrubsand plants. In 1842 the stafts of quills prepared and spht up, and in 1872 horn and similar eubstances were used in the aame way. The latter are softened by steeping them in an infusion of sage leazes or plats of that class, then flattened, rolled out, and extecded and moulded so as to disintegrate them anto threads. In 1844 a brush was patented made of stiff fibre and bastles, bard in oue part and soft in another, so that the eofter parts should follow the harder, and take up what the latter icit. The same inventor also made tooth-brushes on the same pranciple. The hars of the squirrel, borse, bedger, bear, and other anmals aro also used for brashes, 3 ad those from the ears of cows and from the ichneumon, al corcil others, for artis!s' pencils. When necessary the luisthcy are bleached by sulphur or other chemical agents. 1. the United States a kind of aorghum or broom-corn is exturavely cultivated for the manufacture of brooms, and especially by tho Skakers of New York State. Tio seed of the crop alone, it is stated, often pays the expense of cultivation, being, when mized with other corn, good food for "atcle and horses.
One of the most important purposes to which brushes kave been applied is that of sweepiug chmneys. So far back as 1789 John Elin patented an arrangeneat of brushes vitio this parpose in view. He was followed at intervals by whers, and the use of these machines having been found practicable, the Aets 3 and 4 Vict c. 85 , and 27 and 28 Fict. c. 37 , pat an end to the cruelties previously practiee?, prohibiting the employment of childrea in sweepiug ch:najeys.
revulving brushes for cleaning rooms were patented in 1811, aud others hars followed. In 1825 they were constructed to take the place of teazles for raising the wool or pilo of wonllen and other cloths, and they are now used for pow itur and other purposes in various manufactures. The fira: patont in which they were applied to hair-dressing autania in 1362 . The patented ravention for sweeping and cir.nisy roads by means of revolving brushes and other c,nomances are very numerous. The first appears in 10.3 It is that of Edmund Henmog for "a rew engine formeng the streets of London, or any city or town." No = icentor was enrolled, but the invention included the !of: 1 and removal of the refuse " with great ease and ancon A lung moterval elapsed before anything was dune 1 la this direction, the next patent being hit if W.W. Rayyard, ou lat November 1825, which consisizu uf u umber of brushes mounted upod two rims or pi.c uiun an axis, which was ralsed on a rebicle or i. "M Suase end Smith's followed in 1828, inchuding : 1 ins. aweoping, and watering. From 1836 a succession inwe tors follow each other rapidly, amongst whom "urutiy appears "Joseph Whitworth." Some of the ricent patents aro Greenwood's, 17 th February 1873; unon's, 4th April 1874 ; Sinclair and Clayton's, 20th usry 1875; Kitson= 21st April 1875. Many of mentions include the renoval of the refuse, as well inng. Some propose watering in addition; but aflest and most casily managed is that most comused, which scrapes or sweeps the mud and rubbish withes of the road. A particular point in Mr Kitson's
un:ion seems to be to clear out the dust and mud from \because tern the joints of the paving stones,

An improvement in brushmaking was patented in 1830 by Timothy Mason, which consisted in cutting grooves io the stocks or bases of brushes instead of boring holes, the grooves increasing in width from the outer sarface. The hairs or bristles are tied up into tufts or knots, dipped in cement, placed in the grooves, and wedged tightly by the use of a blunt tool, which operation causes the tufts to expand and hold firmly in the eularged recess. Various contrivances have been patented by which brushes might be self-supplied with water, soap, paste pant, and the like, when in use, by means of receptacles or plpes being attached to them for the purpose.

Ole of the greatest advances in the brushmaking of the present day is the Woodbury machine, an American invene tion for bonchung, wiring, and inserting bristles in the stock In this machine a metal comb of uniform thickness is filled with bristles, bolding them by the middle, ao that one-half of the bristles appear above the surface of the comb, the other noderneath. The comb thus charged woves in gurdeways, and discharges the bristles from each divesion successively into a channel in which, by an ingemous contrivance, they are brought gradually into a horizontal position and a proper quantity taken up to form a tuft, which is moved along an incline. At the bottom of this is a hollow cylinder that does not enter, but is placed firmly against the tuft hole in the brush stock. A plunger now acts upon the bristles. The end of the plunger is, slotted crossways; one slot recerves the bristles, the other a piece of wire. The plunger is made to descend and double the bristles into a loop at the middle. Other mechanism unwinds the binding wire from a reel, straightene the wire, and passes the proper quantity through the enlarged upper portion of the slot, and at the same time cuts off the leugth required. The plunger now descends further, recerving a rotatory motion on its vertical axis, winds the wire by forcing it into the thread of a nut at the lower portion of the cylinder, and fastens it ronnd the double end of the bunch. The end of the wire now acts as a tap, cutting a female screw in the end of the block, whilst the upper end of the wire thread, by expanding, acts as a pawl, and prevents the unscrewing of the tuft. This machine is described in the Sizentefic American, 1872 , p. 31, with illustrations.

For further information on the aubject of brushes, tha reader will find the abridgement of specifications relating to brushing and sweeping, published at the Patent Office, a most useful manual.
(J. J. L.) ;

BRUSSELS (Freuch, Bruxelles; Flemish, Brussel; Ger* man, Bricsel), capital of Belgium and of the pronince of South Brabant, is situated on the small River Senne, about 50 miles from the sea, in $50^{\circ} 51^{\prime} \mathrm{N}$. lat., $4^{\circ} 22^{\prime} \mathrm{E}$ long. It hes in the midst of a beautiful and fertile country, and is picturesquely built on the top and sades of a hill, which slopes down to the Seune. The gederal contour of the old town of Brussels is peatagonal, and is well defined by the boulevards, which occupy the site of the old fortifications ; but extensive additions bave beed made, especially to the east and south, and preseut a very irregular outhoe

Brussels may be considered to censist of tro parts, each presenting characterstics peculiar to itsclif. The New Town or upper part of the caty is dry and healthy, and contains a very large number of handsome buildings, both public and private. The lower part is the more ancient and interesting of the two, but is damp, and in summer undealthy, from the exhalations of the river and the numerous canals. In the former are situated nearly all the public offices, the royal palace, the chamber of deputies, the resideuce of the forchgn representatives, and the proncipal hatels. The latter contans the Hôtel de Ville, and
sume of the best remains of the old Gothic architecture, and is the seat of nearly all the trade and commerce of the town. The facilities for commerce are very considerable. Though the Senne is not navigable itself, and is in fact now (1876) in process of being arched over to afford room for a new boulevard, it supplies water to some of the canals that intersect the lower portion of the city. By these canals Brussels communicates with the great Belgian cities, Mecklin, Ghent, Bruges, and Antwerp on the porth, aud Charleroi on the south. It further enjoys the advantage of railway communication with Erance and Germany, and the chief towns of the Belgian dominions. The strcets are for the most part well paved, well lighted, and abundantly supplied with excellont water. There are
in tue town innumerable fountains, some of which are handsomely ornamented rith seulptures in stone and bronze. Of these the best are Les Fontaines rles Fleures in the Hûtel de Ville, La Fontaine de Mincrue in one of the great squares, and the Mannekin-prs buhind the Hôtel del Ville. Some of the strects are macadamized, but the majority of them are causerwayed, while the trottors are eitber fiaged or pared with flint-stomes. Iu the new town some of the streets are remarkably baudsome; they contan a considerable number of shops and cafés smmlar to thoso of Paris, and form the chicf promenades of the inhabitants. In the old town they are for the most part narrow and sombre. Therc are fourtcen squares in Brussels, mayy of which are used as market-places. Of those the

Flan of Drussels.

Jargest are the Place du Grand Sablon, the Place Foyalc, and the Grande Place before the Flutel de Villc. In the lastnamed square, surrounded for the most part with houses that date from the time of the Spanish possession, the Counts Egmont and Horn were behcaded in 1568, by order of the duke of Alva, who surveycd the scene from the windows of the Brood-Huys (otherwise Maison du Fici), a remarkable specimen of Gothic architecture still extant. In the Place de la Monnaie are the mint, the cxchange, and the great theatre. In the Place des Martyrs, the heroes who fell in the Revolution of 1830 are interred. In front of the palace is the Public Park, a fashionable summer promenade, which covers an area of about 14 acres. It is beautifully laid out with walks, adorned at moderate dissances with groups of sculpture; and as it is planted with trecs which sliade it from the sun, the grass is
always fresh and green. In the lower town is the Alles Vcrte, an equally fashionable promenade, which runs parallel with the Mecblin canal, having a triple row of linden trees on each side, and leads towards the villace of Incken, where, since 1815 , the king has had a suburban castle.

Of the public buildings of Brussels the nost remarkable are the cathedral church of St Michel et Stc Gudule, the Hotel de Ville, and the Palace of Justice. a modern erection. The cathedral was built in 1010, and in it was held the first ehapter of the order of the Golden Fleece in 1535. It contains a remarkable pulpit, and some splendid specimens of stained glass. From its towers a fine view of the surrounding country may te obtained. The Hotel de Ville, built in 1400 , is profusely ornamented; it has a tower 360 feet in height. Thather public buildings of Brussels are for the most part handsome, but are quita
anintersting The prineipal huspitals are these of St l'eter and St John, which are both admirably managed, and contain tugether about 1000 beds. The patients are waited upon by the sisters of charity. As in all the large Belgian towns, there is, besides two other numneries, a convent of heguins, which formerly numbered 1000 auns. The mass of the native population are Catholics; but as the English residents are very numerous, there are several Protestant churehes. The Jews have a synagogue at Brussels, and hold their grand consistory there.

The number of charities in Brussels is very great; of these the most important are the Foundling Hospital, the Orplan Asylum; and the Société Philanthropique, whose object is to present mendicity. There are besides numerous alms-houses, which anmally give relief to about 35,000 persons. Some of these establishments are supported entirely by subscription; others of them are subsidized by Government. Great attention is paid to the education of poor children. The communal expense for public instruction amounted in 1873 to 858,150 francs. Among the educational establishments are the gymnasium. the polytechnics school, the Royal Athenxum, a Lancasterian schuol, and many public and private academies, besides the Free University, which was founded in 1834 by a company belonging to the liberal party. The number of students at the university amounted in 1874 to nearly 580 ; while at the Royal Athenæum the number in the same year was 772. There is also a well-conducted veterinary and ogricultural school.

Some of the societies of Brnssels are very celebrated. The Reyal Censervatorium of Music had 529 pupils on its roll m 1874. The Royal Society was founded in 1769. The geographical establishment of Vandermaelen, instituted in 1830, is in a flourishing condition. The botanical garden is one of the best in Europe, and there is also a large zoological garden. The Palais de l'Industrie contains an admirable couseum of natural history, and an extensive and valuable collection of books and manuscripts, which is accessible to the public. The number of books is 234,000 , of which 2000 belong to the l5th contury, while the manuscript department, known as the Bibliotheque de Bourgogne, contains about 22,000 MSS., many of which are beantifully illuminated. From sixty to sixty-five thousand franes are anoually voted for the inaintenance of the library. Eminent literary men and others are sometimes allowed to take books home, but the number to whom this privilege is conceded never exceeds 100 annually. There are nomerous priuting and lithographic presses in constant operation in Brossels, a large number of the former being engaged in the republication of standard works that appear in France.

The principal manufactures of Drussels are those of lace and tulle, carpets, woollen, linen, and cotton fabrics, jewellery, and articles of vertu. Tho most remarkable of these is that of lace. The finer sorts of llax used in the manufacture cost from $£ 12$ to $\mathscr{E} 16$ sterbing per $\mathrm{H}_{\text {. }}$. An Euglish yard of this lace costs $£ 8$. The persons who spin the thread work in rooms almost completely darkened, and are thus compelled to concentrate their attention; and the thread spun in this way is said to be finer and more delicato than any that bas hitherto been produced by other means. Execlient carriages are made in Brussels two-thirds cienaper than those of Eugland, but iuferior to them in quality.

In 1837, the population of Brussels was 104,265; in 1846, 123,874; in 1849, 138,189; iu 1850, 142,289; and in $1273,180,172$. At the last date there were 305,404 in the nine contiguous communes. In 1846 . the honses in tho town numbered 13,563, and in $18060,18,543$.

Thae histury of Brussels, though it loes not date from so
remote a period as that of other Flemish cities, can still be clearly traced back to the 7th century. At that time St Gery, bishop of Cambray, built a chapel on one of the. small islands in the river, and by his eloquence and piety soon attracted a large congregation. The site being well adaptel for building, a hamlet soon sprung up, and speediiy became a town, which in the 11th century was walled in and fortnied. Thrugh in commercial importance Erussele did not at this time equal Ghent or Bruges, its tratic int cloth was rery considerable, and its workers in iron and steed were not surpassed by any in Europe. In the 14tb century the varions trades were incorporated into guilds. who reculated tuc taxes and othe: financial matters of the city, and drew up a code of municipal laws, in which the principle of trial by jury ras admitted. These arrangeinents had scarcely been completed, when a dreadful tire visited the city and nearly burnt it to the ground. At tive end of this century a general persecution of the Jews in Europe took place. In brussels, many of them were put to death, and the value of the confiscated property amounted to upwards of half a million sterling. At the beginning. of the 15 th century, Brussels was again visited by a destructive fire, from the effects of which it speedily recovered by the patriotic exertions of its rulers, and soon became more distinguished than ever as a scat of learning, art, and science. In 1489, and again in 1587, it was visited by the plague, which, on the former of these occasions, carried off many thousands of the inhabitants. Its horrors were. enhanced by the ensuing famine, which lasted for four years.

Brussels was highly favoured by Charles V., who often resided in the city, and raised it to the rank of capital of the Netherlands. Under his son Philip II. it became the centre of the great revolutionary morement, which resulted in the independence of the-United Province. In 1598 Brussels passed inte the dominion of the Austrians, and soon began once more to prosper. In 1695, the French under Marshal Villeroy besieged Brussels, but were obliged to retire after doing much damage to the town; and in 1706 the city opened its gates to Marlboreugh. In 1746 it was again besieged by the French under Marshal Saxe, and after a siege of three weeks was obliged to surrender. In 1792 it fell into the hands of General Dumourisz, who being soou after defeated at Louvain, evacuated Brussels for a while, but again entered it in 1794. From that year tal 1814, it remained in the possession of the French, as capital of the department of the Dyle. On the fall of Napolcon, Belgium and Holland were uaited into one kingdom under William of Nassau, and Brussels was the seat of govermment alternately with the Khague. In 1830 , Lowever, after a sanguinary conflict of four days in the streets of the city, the Belgians declared their independence; and erceting their state into a separate kingdom, offeré the crown to Lcopold of Saxe-Coburg, whose long. and peaceful reign ($1831-1865$) contributed greatly to the development of the resources of the country.

BRUTON, a matket-town of Eingland, in the connty of Somerset, pleasantly situated in the valley of the Lirue, about 10 miles S.S.W of Frome by rail. It has a town* hall, a hexagonal market-cross, il grammar school, and same manufactures of hair cluth, woollens, and hosiery. Population of hambred in 1871, 3:01.

BRUTUS. The mano di a uistingusned plebeian family at Iome. The first who lore it was Lucites Juyus Breveus, one of the first two cunsuls, 509 b.c. According to the legends, his mutier was the sister of Tarquinius "Superbus," the last of tho Joman kings and at his father's death, his elder veother had been put te death by the reigning family iu order to get possession of his wealth. Juhins, the sounger, ored his safety to his reputed
dulness of intellect (r henee his surname of Brutus), which character, however, he had assumed with a view both to his present security and future revenge. The opportunity came when Lucretia, wife of Collatinus, was ontraged by Sextua Tarquinius; and he took a leading part, together with her husband and father, in expelling the family of the Tarquinii from Pome. He and Collatinus were therefore elected consuls,-or rather protors, which was the original title. In a conspiracy formed afterwards for the restoration of the banished dynasty, the two sons of Brutus were found to be deeply implicated, and were executed by sentence of their father, and in bis sight. The Etruscans of the cities of Veii and Tarquinii making an attempi to restore Tarquinius to the throne, a battle took place between them and the Romans, in which Junius Brutus engaged Aruns, son of the deposed king, in single combat on horseback, and buth fell by each other's hands. The Roman matrons are said to have mourned a year for hint, as "the arenger of woman's honour," and a statue was erected to him on the Capitol.

Many members of the family rose. to emiuence in the Republic, and are found, as plebeians, ranged on the pepular aide. The most distinguished of these was Decius Junius Brutus, consul, 325 b.c.

In later times came Marcus Junuus Erutus, a jurist of bigh authority, considered as one of the founders of Roman civil law, to whom Cicero dedicates his treatise called Orator. His son, of the same name, made a erteat reputation at the Reman bar, chiefly by undertaking pronsecutions, and from the vehemence and bitterness of his speeches became known as "the Aceuser."

Decius Junius Brutus first served under Julius Cresar in Gaul, and afterwards commauded his fleet, and was held by him in great honour and estecu. Nevertheless, whether frem patriotism or from lower motives, he joined in the conspiracy against his patron, and, like his relative Marcus Junius Brutus, was one of his assassins. He afterwards resisted the attempt of Antouy to obrain absolute power; and after heading the republican armies against him for some time with suecess, was deserted by his seldiers in Gaul, betrayed by one of the native chiefs, and put to death by order of Antony, 43 b.c.

Best known of all is Marcus Juvius Brutus, son of a father of the same name (treacherously put to death by order of Pompey during the civil wars), and of Servilia, sister of Cato of Utica Young Mareus was only eight years old at bis father's death, and was educated with great care by his mother and uncles. He at first practised as an advocate. In spite of his father's fate, he at first supported the cause of Pompey against Cresar, but was pardoned by the latter efter the victory of Pharsalia, and subsequently appointed by him to the government of Cisalpine Gaul. His justice and moderation won him great honour from the provincials under his rule. Influenced probably by his friend Cains Cassius, be afterwards joined in the conspiracy against the great dictator, and waa one of the formost in his assassination. He maintained the cause of the republic by seizing and holding against Antony's forces the province of Macedonia, where he was joined by Cassius. But at Philippi they were defeated by Autony and Octavianus Cæsar, and rather than be taken prisoner, he fell on his 8 word, 42 e.c. He was an earnest student through all bis active Jife, and is said to have been employed in his tent, on the night before the battle of Pharsalia, in making an abridgment of Pausanias. ${ }^{2}$ IIe wrote several philosophical treatises and some poetry, but nothing bas survived. He combined with these tastes the incongruous occupation

[^19]of a money-lender, Cicero and King Ariotarzanes being amongst his clients. His seeond wiue mas his cousin Portia, daughter of Cato.

BluUTUS, or Brute, is asserted in the fabulons history of Geofirey of Monmouth to have been the grandson of Eneas, and to have destroyed the race of giants in Pritain. to which he gave his name, founding there the eity of Now Troy, afterwards London.

BRUXX, a city in the cirele of Satz, in the Austrian king. dom of Bohemia, on the River Bila. It consists of an old town, surrounded with walls, and three suburbs, and con. tains, besides the courts and public offices of the carcle, nine churches, three monasteries, a gymmasimm, barracks, a military college, and an educational establishment of Piarists. lts inhabitants are partly engaged in the coalwines, and in the preparation of salts from the Scillitz waters in the vicinity. A battle was fought here in 1421° between the Hussites and Saxons; and in 1646 the Swedes captured the fort of Landswert, now dismantled. Population in 1869 (ineluding Taschenberg), 610:.

BRUYERE, Jean de la. See La Bruyere.
BRYANT, Jacob (1715-1804), a writer on theologacn! and mythologieal subjects, was born at Plymouth in 1715. His father had a place in the customs there, and was after wards stationed in lient, where bis sun was tirst sent to a provincial school, whence he was remosed to Eton. Here he appears to have remained till 1736 , the date of his election to King's College, Cambridge, where he took his degrees of bachelor and master of arts in 1740 and 1744. Ite returned to Eton in the capneity of private tutor to the duke of Marlborough, then marquis of Blandiord; and the good taste which his pupil showed through life, in the protection of the fine arts, and in the pursuit of science, sufliciently demonstrated the beneficial intluence of his instructor's example. In 1756 he went to the Continent as private secretary to the duke of Marlborougb, then master-general of the ordnance and commander-in-chief of the forces in Germany ; and be was rewarded after bis return, for his various ser. vices to the family, by a luerative appointment in the ordnance, which allowed him ample leisure to indulge his literary tastes. Bryant died iu his eighty-ninth year, on the 14th November 1804, in censequence of a fall from bis chair while reaching up for a book in his library. He left his library to King's College, having, however, previously made some valuable presents out of it to the king and to the duke of Marlberougin. He bequeathed $£ 2000$ to the Seciety for the Propagation of the Gospel, and $£ 1000$ for the use of the superanuuated collegers of Eton Schooi.

Iis principal works are the New system or Analysse of Ancient Mythology, wherein an altempt is made to divest tradutions of faul:, and to ridice truth to tits original purity, 3 vols. 4to, 17i4-i6, which is fantastic and now wholly valueless; An Address to Dr Iriesticy on the Doctrine of Philosophical Necessity, $8 \mathrm{vo}, 17 \mathrm{So}$; Vindictae Flaviane; Observations on the Poems of Thumas Fowlen, in schic' the authenticity of these pooms is asecrtained, 2 vols, $12 m 0,1781$; Treat:se on the Alvthenticity of the Scriptures, and the Irveh of tha Christian Religion, 1792 ; Obseruations upon the Jllagucs inflicted upen the Egyptians, 800,$1794 ;$ Observations on a Treatis", mbtled Desirption of the Plain of Troy, by Mr aie Chetrdier, 4to, 1795. A Dissertation concerning the I'ar of Troy, and the erperition of th: Grecks, as described by Homer, shmuing that no such expedifon was ever undertaken, and that no such city in Phrmgice cristod. 4 to. 1798; Observations on the vindiration of Honer, "rriten lit J. 15 s . Morrilt, Esp., 4to, 1799 ; The Sentiments of Plido Judous cortern. ing the W'ord of God, 8ro, 1797 ; Disscrtations ov: •trious S'ubjcets inthe Old Testament.

BLYAXIS, a Greek seuiptor, the contemporary of Scopas and Iraxiteles, with whom he took part in the seulptures of the mausulenm at Haliearnassus, ahont 345 .r.c. Of his Cher woiks the following are mentionel :--five celossal iigures of gods at Rhodes, Bacchus (Liber I'ater) at Cnidus, a group of Eseulapius and Hygeia at Megara, Apollo io the grove of Joptne at Antiock, a statue of Pasiphaë, and
a portrait oi Seleucus (it is not said whieh). On doubifut authority he is also said to hare been the sculptor of a group of Jupiter and Apollo with a lion at Patara, and of a statue of Serapis. Before his time there is no mention of statues of Esculapius or Serapis, and it is supposed that the types which we now hase of these deities were introduced by Bryaxis. The statue of Apollo at Daphne represented the god in his character of Musagetes, with long flowing drapery girt at the waist. The Bacchus at Caidus must have been sımilarly draped; and altogether Bryaxis seems to hare showneas much preference for draped and mature forms as Praxiteles displayed for nude and youthful figures.

Brybges, Sir Samuel Egertun (1762-1837), a miscellaneous writer, was born 30th November 1762. He studied at Queen's Cullcge, Cambridge, and adopted the profession of law. In 1790 he persuaded his elder brother that their family were the beirs to the barony of Chandos, being descended from a younger branch of the Brydges who first beld the title. The case was tried and lost, but Brydges never gave up his clam, and used to sign himself Perlegem terrex B. C. of S. (i.e. Barou Chandos of Sucleley). It has bean said that ho underwent the labour of re-editing Collins's Peeraje, for the sole purpose of inserting a statement about his supposed right In 1814 he was made a baronet, and in 5818 he left Eugland. He died at Geneva in 1837. Sir Egerton was a most prolific author; he is said to have written 2000 sonnets in one year. His first volume of puoms tras published in 1785 ; of lis other mumerous works, including novels, political pamphlets, and bibliographics, perhaps the most important are Censura Literaria, 10 vols., 1805-9, and Autobiography, Times, Opinions, and Contemporaries of Sir S. E. Brydges, 1834.

BRZEZANY, a town of Austria, in Galicia, S.E. from Lembergo a the River Zlota-Lipa, in $49^{\circ} 30^{\prime} 25^{\prime \prime}$ N. lat. and $24^{\circ} 41^{\prime} 39^{\prime \prime}$ long. It possesses a. Roman Catholic, a Greek, and an Armenian church, is castle, a convent, and a gymuasium ; and it carries on a considerable manufacture of linen and leather. The population in 1869, including 'eowe contiguous villages, amounted to 9290 .

BUDASTLS, the sreat name of the Esyptian goddess Bast, supposed to hold the same plare in the Egyptian Pantheou as Artemis or Diana. The triad of Memphis consisted of three gods-Ptah or Vulcan, the Greek Hephaistos; Bast, the wife of Ptah and mother by hirn of Nefer-Atum, or "the grod Tum;" and Sexet, formerly called Pasht, the sister or antuthesis of Bast. This last goddess was also called Merientah, or "the beloved of Ptah.". Although the names of Bast, Sexet, and Merienptah aro written with different hieroglyphs, their types are exactly nlike, being that of a lion-headed goddess having on her bead the sun's disk cutwined by an urxus. Scxet and Bast appear both to have personified fire aeted upon by Ptah, the cosnuic demiurgos, and Vulcan. Owing to the pantheistic idcas prevalent in Esypt, Bast was identified at times with Neith, the Egyptian Athene or Minerva, and rathor, the Aphrodite orVonus. Her type and attributes were also those of 'Tefnu or Daphnc, the pupil or daughter of the sun ; and it was probably from her relation to this goddess, who, with her twin brother Su or Sos, represented the Apollo and Artemis of the religious, and the Gemini, or Twins, of the zodiacal system, that Bast was identified with Diana. Bast was supposed to be the bencficent portion of the element fire and the bringer of good fortune; her sister and rival Sexct to represent the malevolent deity of the element and the bringer of ill-fortunc. At a later period Bast has the head of a cat substituted for that of a lion, and holds in her hands a vase or situlus. About the time of the 26 th dynasty, figures of her, made of porcelain, abound, representing the goddess seated and eometimes holding a
sistrum. Her local worship was principally carried on at Bubastis, the modern Tel Basta. The Speos Artemidos, or Sheik Hassan, Anstata supposed to be Letopolis near Memphis. The cat was sacred to this goddess, and mummics of this animal are found at Bubastis, the Speos Artemidos, and Thebes, sometimes in bronze or wooden figures in shape of the cat seated on a pedestal, carved in form of the rasc which was the hieroglyphic name of the goddess. Connected with Bubastis rere the Bubasteia of fcstival of the goddess, celebrated with great pomp at the city of Dubastus, and the largest and most important in Egypt. The Egrptians flocked to it b_{j}; water, accompanied by music; and as many as 700,000 are said to have been present on the occasion. A nome was also pamed after this goddess, and the capital city called Eubastus or Bubastis was on the site of the present Tel Bista on the Bubastite branch of the Nile. In later times the canal of Necho started from it to the Red Sea, and the adjoining lands were given by Psammetichus to the Greek mercenaries. It. is, however, mentioned in inscriptions of the earlier periods of history, and was ao important city. Taken by the Persians under Memnon, its walls were razed, and it sunk gradual!y in importance. The zorme struck some bronze coins of small size in the eleventh year of the Empe:or Hadrian, 127 A.D., with a goddess hoiding in her hands a small animal, possibly a cat. Nany antiquities and remains are found in the ruins of the city.
Brugsch, Geogr. Inschrift, i. 138-236:Jablonski, Parth. Egypt., iii. P. 68; Diodorus, i. 27 ; Herodot. ji. 67. 137-156; Fer. Arch. 1863 , 185; Wilkinson, Mann. and Cust., iv. 277, v. 203.

BUCCANEERS, a band of piratical adrenturers of different nationalitics united in their opposition to $\mathrm{S}_{\text {quin, }}$ who maintained themselves chiely in the Caribbean Sew during the 17 th century.

The island of St Domingo was one of screral in the West Indies which had early in the 16 th century been almost depopulated by the oppressive colonial policy of Spain. Along its coast there mere several isolated establishments presided ofer by Spaniards, who were deprived of a free and convenient market for the proluce of the soil by means of the monopolics imposed by the mother country. Accordingly English, Dutch, and French vessels were welcomed with eagerness, and their cargoes readily bought. The island, thinned of its former inhabitants, had become the home of immense herds of wild cattle, which multiplied with great rapidity; and it became the habit of the hardy smuggler to provision bis ship at St Domingo. The natiecs still left upon the island were skilled in preserving flesh by means of fre and smoke at their little establishments called Boucans. The adventurers learned "boucanoing" from the natives; and gradually Hispaniola became the seene of an extensive and illicit buteher trade. A sailor in those days when piracy abounded was expert with his reapons, and was almost a fighting man by trade. Spanish monopolies were the pest of every port from Mexico to Cape Horn; and tho seamen who had sailed the Caribbean were filled with a natural hate of everything Spanish. The pleasures of a roving life gained upon them, while the monotony of it rontine was broken by oceasional skimishes with the forces organized and led by Spanish officials. Ont of suel conditious arose the Buccaneer, alternatcly sailor and hunter, even oceasionally a planter,--roving, bold, not overscrupulous, not unfrequently savage, with an intense detestation of the power and the represcntatives of Spain.

In the year 1625 indirect assistance and encouragement previously given culminated in a combined venture on behalf of the Buccaneers ly the Govermments of Eugland and France. Each nation contributed a band of colonists, and selected the island of St Christopher, in the Weot

Indies, where the settless of both natioas were simultaneously planted. The English and French were, however, not over-friendly; and in 1629, after the retirement of several of the former to an adjoining island, the remaining colonists were surprised and partly dispersed by the arrival of a Spanish fleet of thirty-nine sail. Many were carried of, and threats were freely used as to the future settlement of the island. But on the departore of the fleet the seattered bands returned, aud encouragement was given to their countrymen in St Domingo. For buccaneering lind now become a most profitable employment, operations were extended, and a storebouse secure from the attacks of the Spaniards was required. The small island of Tortuga lying to the N.W. of Hispsniola was seized for this purpose in 1630, converted into a magazine for the goods of the rivals, and made their headquarters, St Domingo itself still continuing their luerative hunting ground.

Spain was not indifferent to this proceeding, though she could not prudently take immediate action. Eight years, hewever, had not gone, ere, watching ber opportunity when many Buccaneers were absent in the larger island on their ordinary pursuit, she attacked Tortuga, and massacred every settler she could seize. But the hunters to the number of 300 returned; and the Buccaneers, now distinctly seen to be in open hostility to the Spanish arms, began to receive recruits from overy European trading nation, and for three-quarters of a century became the acknowledged seourge of the Spanish American trade and dominions.

France, throughout all this, had not been idle in watching over her own interests. She had asmed the Governor of St Christopher "Governor-General for the French West India Islands," and in 1641 he took posses. sion of Tortuga for the Crown of France, expelled all English from the island, and attempted the same with less success in St Domingo. England had at bome something vastly more important to attend to, and the Buccaneers had to maintain themselves as best they could,-now mainly on the sea.

In 1654 the Spaniards regained Tortugz from the French, into whose hands it again, -however, fell after a period of six years. Bat this state of matters was, as may be readily conceived, too insecure even for these rovers, and they would speedily have euccumbed to the perils of their mode of life, had not a refuge been found for them by the fortunate conquest of Jamaica in 1655 by the nary of Cromwell, on behalf of the English Commonwealth. These conquests were not made without the aid of tbe Buccaneers themselves. The tahing and retaking of Tortuga by the French was always with the assistance of the roving community; and at the conquest of Jamaiea the English navy had the same influence in its favour. The Buccaneers, in fact, by this time constituted a mercenary nary, ready for employment agaust the power of Spain by any other nation, on coudition of sharing the plunder to be obtained; and they were noted'for their daring, their cruelty, and their extradrdinary skill in seamauship.

Their history now conveniently divides itself into three distinci epochs. The first of these extends from the period of their rise to the capture of Panama by Morgan in 167i, during which time their characteristic peculiarity as robbers was that they were hampered neither by Government aid nor, till near its close, by Gorernment restriction. The second, from 1671 to the time of their greatest union and power, 1685 , when the scene of their operatious was no longer merely the Caribbean, but prineipally the whole range of the Pacific, from California to Chili. The third and last period extends from that year onwarda; it was a time of disunion and disintegration, when the inde.
pendence and rude honour of the previous periods had degenerated into unmitigated vice and brutality.

It is clielly during the first period that those leaders flourished whose names and doings bave been associated with all that was really induential io the exploits of tho Buccaneers,-the most prominent heing Mansrelt and Norgan. The commerce of Spain, which had been gradu. ally dmindling since the wreck of the Incincible Armada and the death of Philip II., bad by the middle of the 17th century become utterly insignificant. The Buccaneers were thus deprived of the plunder of the Spanish mereantile warine. But Spanish settlements remained; and in 1654 the first great expedition on land, attended by considerable dificulties, was completed by the capture and sack of New Segoria in Honduras, on the mainland of Americs. The Gulf of Venezuela, with its towns of Marscaibo and Gibraltar, were attacked and plundered under the commsnd of a Frenchwan named L'Ollonow, who performed, it is said, the office of executioner for the whole crew of a Spanish ressel manned with ninety seamen. Such successes removed the Buccaneers further and fiurther from the pale of ordinary civilized society, fed then revenge, and inspired them with an avarice almost equal to that of the original settlere from Spain. Mansrelt, indeed, in 1664 , popular among all the Buccaccers, conceived the idea of their permanently settling as a body of regulat colonists upon a small island of the Batatoas, named Providence, and Henry Morgan, a Welshman, intrepid and unscrupulous, joned him in some preliminary eruises. Brt the untimely death of Mansvelt nipped in the bud the only rational scheme of permanent settlement which seems at any time to have animated the members of this wild community; and Morgan, now elected commander, swept the whole Caribbean, and from his headquarters in Jamaica led triumphant expeditions to Cuba and the mainland He was leader of the expedition wherein Porto Bello, one of the chief and best fortified ports in the West Indies, was surprised, taken, and plundered.

But this was too much for even the adverse European powers ; and in 1670 a treaty was concluded between England and Spain, proclaiming unjvcrsal peace and friendship among the subjects of the two sovereigns in the New World, formally remouncing hostilities of every kind, withdrawing commissions granted to privateers, and agreeing to forget the past and for the future to punish all offenders. Great Britain was to hold all her passessions in the New World as ber own property (a remarkable concession ou the part of Spain), and consented, on bebalf of her subjects, to forbear trading with any. Spanish port without licence obtained. On the proclamation of the treaty in Jamaica, the Buccaneers rose to a man, ready for the most daring exploit which it had yet been in their power to achieve; they resolved to carry the terror of ther name to the shores of the Pacific.

Accordingेiy, in 1671 Morgan embarked 2000 men on board a fleet of thirty-nine ships, sailed for a consenient port in the Caribbean, and crossed the Isthmus to lay siege to Pamama. After a difficult journcy, on foot and in canoes, they found themselves nearing the shores of the South Sea and in vicw of the turrets of the fatel eity. On the morning of the tenth day they commenced an engagement which, ere the close of the evening, ended in the rout of the defenders of the town. It was taken, and, accidentally or not, it was burnt. Neither sex nor condition was spared in the barbarities which ensued; and the conguerors returned laden with spoil. Morgan was not even true to bis own men in the division of the booty he returned to Jamaica, became respectable under Government, was afier a little made depuiy governor of the island, and took advantage of kis position to punish kis
former associates. $\quad \mathrm{He}$ died, by the favour of Charles IL.. tho "gallant" Sir Henry Murgan.

From J67t to 1685 is the tine of the greatest dorag, prosperity, and maritime puwer of the Buccanters. But the arowlition against Panama had not been withont its influowce. Notwithstandingtic vigour with which they executed their piratical projects in the Carittern, and the many anecesses which they oltaitud on limd, inclading a second plurader of the unfortumate city of forto Bello, their thoughts ran frequently ou the great cepedition across the lsthmut, and they pirtured to hemselves the shores of the South Sea as 2 firs wider and more lucrative field for the display of their mited power.

In 1680 thuse lomgings tools formidable shape. A Hody of maraudere over 300 strong, well armed and provisioacd, landed on the shore of Darien and struck across fee country; and tho civelty and mismanagement displayed ma the policy of the Spaniards towards the fudians were now in small part revenged by the assistance which the matires eaterly rendered to the adventurers. They acted as guides during a lifficult journey of nine days, kept the invaters woll supplied with food, provided them with skilfully constructed canoes, and only lefi them after the onking of the fort of Santa Maria, when the Buccaneers were furly embarked on a broad and safe river which euptied itself into the South Sea. With Joln Coxon as commander they entered the Bay of Panama, where rumour had been before them, and where the Spaniards had hastily prepared a small fleet to quell this dangerous attempt to vary insecurity and terror into the l'acific. But the valour of the Buccaneers won for them another victory, suld within a week they escaped from the continement of ennes, and took possession of a small flect of jour Spanish 'uips; and now snccesses lowed upon them. The lacifie, formerly free from thus intrusion, showed many sail of merchant rossels, while wa land opposition sonth of the Piy of l'mama was of little avail, since few were acquainted with the usp of litu-urms, am defence as an art was utterly unktown Coxum aml soventy of his men returned as they had gons, hut the oblers under Sawkins, Sharp, and Watling, ronand buth :and subth, on iblands and mainland, and remaincll for luns faraging the coast of l'orn. Never seant of silver and grold, the often in want of the necessurius of lite, they continuted their patatices for a little hager; then. evininus the rish of recrossing the Isthuns, Wey boldty clearel Cipu Hurn, and arrived in the ludies, in the mot very tenter hands of tho representatives of the ditierent Cowemments there Again in $16 \leftrightarrow 3$, however. musabers of them under John Cook aparted for the South Nien by way of Cape Horn. Near which they hailed a "Ilnamis built ship fitted ont apinemely as a trader, lut in raslity for the jurposes of privateerate. 'Ilans atraight from England the Buccuncers wero now recciving it reat aceession to their numbers aml their strength; and Eiton, the rummander of the new Vessel, tulal Cook of a certain Maptain Swan who woud jrobably be met with soun, proacontine the same dagrerons tusiness They sailed surthward, and on the death of Cook, Edward Devis, madoubtally the greatest and most prudent commander who ever lod the forces of the Buccmeers at sea, took *ummand of his ahip. Dhvis parted with Eaton, who left for the least ludics, lut Swan arriwed, and the two captains Bugar a cruise which was disustious to the Spanish trade it the lasific.

In 1685 they were joined in the Bay of Janama by lapen mumbers of Buccimeers who liad crossed the Istlmus wadrer 'fownley and uthers. Thas mereased boty of men required an endarged measure of mbenture, and this in a fow monthe was supplied hy the Vicuroy of Peru. That *hicer, sule remesentative of the Spanis! sovereign is the
vas? kinglon, saw that, the trade of the colony was cut off, that supplies were stopped, that towns were burned and cleared of the precious metals, and that settled life was hrotin in upon by the harassing and reptaied atiocke of the unsparing marabisers, aisd lat resolred by vigorou* means to pul an end to this state of matters. But this was not ciasily acomplishod. Tn this same year, indeed, a fleet of fourten sail Love in sight of the united furces of the Luccancers in the Diay of Panama. The ten shaps of the phat: were miserably deficient in cannon, and hung oft. Thu Spaniards evidently were not aware of their advantilge, and the two fleets, after remaining in proximity for turee days, separated without testing their strength except in the way of a small and distaut camonade.

At this jeriod the fower of the Buccanecrs was at its beight. But the combination was nuw too extensive for its work, and the diflerent mathonality of those who composed it was a source of growiser diseurd. Nor was the dream of equality ever realized for any length of time. The immense spoil obtained on the capture of wealthy cities was indeed divided equally among the crew of the attacking ships, the commander alone getting an extra share. But in the ganbling and debauchery which followed, nothing was more common than that one half of the conquerors should find themselves on the morrow is most pressing want: and while those who had prudently retained or foltunately increased their sture of the precious metals would willingly lave directed their conrse home. wards, the others clanoured for renewal attacks nion the hated Spaniards. The separation of the lingish and French Buccancers, who together presented a unfad tront to the Sunnish feet in I6s5, marka tlee loginting of the thind and last ende in their history-hhas of disumion, decay. and extinction as an unaided commumaty.

The briliant aploits hegme in this third period by the sack of Lcun and Realejo br the Englisi under Davis have, even in their variety and caring, ia sameness wheh deprives them of interest, and the wonderful confederacy is now seen to be falling gradually to preces. The skill of Davis at sea was on one occasion displayed in a seven dayse engagement with two large Spanish ressels, and lhe interest undoubtedly centres in lim. Tow:aley and Swan had, bowever, by this time left lian, and nfier cruising together for some time, they, ton, firted. In IV8S Daris cleared Cape llura and arrived in the West Jandi's, while Swan's ship, the "Cygnet," was abandoncel as unseaworthy, after sabling as far as Madagascar. Townley had hardy joined the French Buccaneers remaining in the Sondh Sea ere he died, and the frenchmen with their companions crossed New Spain to the West Indies. And thers the Pieific, ravaged so leng hy this powerfa\} and mysonions brad of corsairs, was at length at peace irmol C'alifurria to Cape liorn.

The Wrest Tmdies had by this dine lecome lrot enough even for the bamed pirates. They hume doerelly along the coasts of Jamaica and St buming', but their day was mearly ores. OnJy once again-at the singe of ('athagena -aid they alpear great: but crea then the expedition was not of their making, and they formed an accession to regular forces orgmined in lirance. After the trearlsery of the French commander of this expelition a spirit of umity and desparing energy secomed reatrakened in them ; bott the could not avert and searculy delayed the rapidy aplroaching extinction of tlice conmanity.

Th, proximate causes of the disapreamence of this remarkable body of men are to be foumd in European [nlicy. The accession of William of Orange to the Lughish throne in I68: had raised the jealousy of Louis XIV., and the war which ensued was protracted and severe. French and Firgish rovera in the Caribbean cund
act but take the part of their countrymen at home, and the continuance of hostilities effected the severance of the bend of unity which had for three-quarters of a century kept the subjects of the two nations together in schemes of aggression upon a common foe. The peace of Ryswick in 1697 only left England and France free to pay court to Spain, whose king, weak in body and mind, wes evidently hastening to the grave. The succession to the crown was believed to depend upon his will, and the two nations used all their infuence, both in the Old World and in the New, to ingratiate themselves into the farour of the Spanish monarch. But that which really stopped the caree: of the Buccancers so effectually $8 s$ to prevent its being resumed was the fact, of so vast importance in the histo:y of Spain and of Europe, that in 1700 Philip V., first if the Bourbon dynasty, ascended the Spanish throne. Spai 1 , so little in herself, yct always great under grosit kings, now degraded and fal!en, almest immediately ruse before the cyen of astonishel Europe as a gigantic power in the Old Workl and in the New.

But the fall of the Buccaneers is no more accounted for fully by these circumstances than is their rise by the alienation and massacro of the islanders of St Domingo. There was that in the very nature of the community which, from its birth, marked it as lisble to speedy decline.

The principles' which bound the Buccaneers together were, first, the desire for adventure and gain, and, in the eecond place, batred of the Spansard. The first, es that evich could produce union amens men of dilferent astionalities, hardly descrvea to to called a principle. There was peruaps mach to gain, but it could be had nearly altays by private veuture under the colours of the separate Europena porers. unily one thing prevented this, and it is cernectod with their secend and great principle of unon, namely, that they marred not with one another, aor with cuery one, but with a single and a common foe. For whilo tho Buccancer forces included Encslish, French, and Dutcb sailors, and wero 'complenertel occasionally by not inconsiderable bands of native Indiana; she instances during the timo oi their prosperity and growth are few in which we find thern turning upon one snother, and treating their fellows with the savagery whin they axulted in displaying against the subjects of Spain. The exigencies, morcover, of their perilous career readily wated their suddenly acquired gains.

Settled labour, the warract of real wealth, was kenea:ls the dignity of those who lised by promoting its insecurity. Regular trade-though rendered attactive ly smugelingand pearl gathering and similar operations which were apiced with risk, were open in vain to then. Var, as the licence of the debauchee was in alnost wery cass substituted for the cares and !leasures of domestic life, so a band-to-mouth system of supply and demand rooted out gradually the prudence which accompanies any mode of 3ettled existence. In everything permanency was what was not aimed st, becauss the whole policy of the Buccaneers, from the beginning to the end of thear career, was one of pure destruction, and was therefore ultimately suicidal.

It has alresdy been seen how grat wis the influence of the Buccaneers upon the power and the colonial tactics of Spain. But it was more beneficial to the world and more ruinous to Spain, that they opened tho-eyes of the world, and specially of the nations from whom these Buccaneers Lad sprung, to the wholo system of Spanish American government, and comwerce-the former in its rottentess, and the latter in ita possibilities in other hands. That effected, all was effected, eince the extent of Spanish power was known. From this, then, along with other sauses, dating primarily from the helplessness and pre-
samption of Spain, there arose the West Indian possessions of Holland, England, and France.
A srort publisbed at Amsterdam in 1678, entitled Ds - Americaensche Zie Roovers, from the pen of a Buccaneer named Exquemelin, was trens'ated into several European languages, receiving additions at the hands of the diferent transistors. The Fiench translation by Oesmelin is named Bistcire áes Avanturiors qui se sont signalez dans les Indes; the English edition is entitled The Bucaniers of America. Other works are Rayails Eistory pf the Sottlements and Trade of the Europeons in the East and IVess Indies, book x., English translation 1752; Dampier's Voyagis; Geo. W. Thornbary's Monarchs of the Main, \&e., 1855 ; Lionel Wafer"s loyage ami Description of the Isthmis of fimerich, 1689; and the Uistoire del'isle Espaghole, etc., and Histoire et deseription gineral de la Nouvelle France of Pera Chsrlevoir. The statements in theso works are to be received with caution. A really authoutie narative, however, is Captrun Jawes Barney's Mistury of the Ëucraperss of Amerixa, Londua, 1316.
(T. S.)

BUCCARI, a royal free town of the Hasarian crowי. siturted in the comitat of Finme, on-a smanl ky of the Adriatic, in $45^{\circ} 15^{\prime} 40^{\prime \prime}$ N. lat. and $14^{\circ} 32^{\prime \prime} 1 l^{\prime \prime}$ E. lon 5°. Its harbour is of rathes limated dimensions, but the roat. stead is excellent, though the approach is cot un?tended with danger. The staple industry is the weaviug of linen, shipbuilding is also carricd on, and thero is an netiv, coasting trade in tish, wine, wood, and coal. The tumyfishery is of some importance. In tho neighbourhod of the town is the old castle of Buccaricza, and further soctb the flourishing little port of Perto Re or Kraljevicza. 'the population of Buccari in 1869 was 2116 .

BUCCCINO, a torm of Italy in the province of Irincinatu Citcriore, and district of Campagna, situated oa the Ravar Botta, wbich is here crossed by an ancicnt Loman budge Buccino is identified hy meaus of inseriptions foum on the spot, as the ancient Volcerum or Folcentium, which was a considerable muxicipal town in Lucania. Pomatation, fion?

BUCER, Martis (1491-1551), originally Mamas Kunors, an eminent German reformer, bora at Sichcustalh. a town of Alace, near Strasburg. At the ageur dificeube entered the order of St Dommic, and as be was a yunth of great promise ha was sent tu prosecute inis e:nfios at Hoideiberg. There bo studied the works of Erasama and Luther, sad whe present at a disputation of hay la:1": with some of the Roman Cathulie dectors. He liecions, a convert to the Reformel CLurch, abomdoned has arda, mi soon afterwards married a mon. He did wo, bumera, remain strictly a Lutheman. On the great question of tho sacrament of the Lord's Supper, his opinions were dechediy those of Zwingli rather than of Luther. Although dititr. ing from them in dectritie he was anxions to be in charch unity with the Latheran party, and coustantly ealeavored to bring abuat a coalition. In 1548 he was sent tor to Augs burg to sign the agreement, cailed the Interim, bewfors the lyuists and l'rotestants. His warm opposition to this project expesed him to many difficulties and hardshive, which induced him to accept the invitation of Archbishop Cranmer to fix his residence in England. On his arrival, in 1549 , he was appointed to teach theology in the university of Cambridge. King Edward VI. had the greatest regard for Bucer. Having heard that he bad suffered much from the cold, from want of a German stove, he sent him a hundred crowns to purchas 3 onc. Bucer dicd of a complication of diserders in 155], and was buried at Chia bridge with great funereal pomp. Five years afterwards, in Mary's reign, his body was dug up and burnt, and his somb denielished; but it was subsequently re-constructed by onder of Queen Elizabeth. Bucer's name is familiar in English literature from the use made of the reformer's doctrines by Milton in his divorcc treatises.

EUCH, Leopold von ($1774-1853$), an eminent German gcologist and geographer, was born at Stolpe in Pomeranis, April 25, 1774. In 1790 he studied st the mining 6 choul of Frciberg under the celebrated Werner, one of bis
fellow-students there being the illustrious Alexander Von Humboldt. At the age of twenty-three be published his Altempt at a Alineralogical Description of Landeck, and also an Attempt at a Geoguostic Description of Silesia. He was at this time a zealous upholder of the Neptunian theory of his illustrious master. In 1797 he met his old achool-fellow Von Humboldt at Salzburg, and with him explored the geological formations of Styria and the adjoining Alps. In the spring of the following year, Von Buch extended his excursions into Italy, where his faith in the Neptunian theory was for the first time shaken. In his previous works he had advocated the aqucous origin of basaitic and other formations; he was now not less clearly convinced that these owed their existence to vulcanic action. In 1799 he paid his first visit to Vesurius, which he did not again see till 1805 , when he was accompanied by Humboldt and Gay-Lussac. They had the good fortune to witness a remarkable eruption, which supplied Buch with datá for refuting many erroneous ideas then eutertained regarding the activity of volcanoes. Three ycars before he had explored the south of France, and directed special attention to tho extinct volcanoes of Auvergne. The aspect of the Puy de Dome, with its cone of trackyte and its strata of basaltic lava, induced him to abandon as untenable the doctrines of Werner on the formation of these rocks. The scientific results of his investigations he embodied in his Geognostical Observations during Travels through Germany and Italy, Berlin, 1802-9, 2 vols. 8vo. From the south of Europe Von Buch repaired to the north, and spent two years among the Scandinavian islands, making many important observations on the geography of plants, on climatology, and on geology. He also established the fact that the whole of Sweden is slowly but continuously rising above the level of the sea from Frederickshall to Abo. The details of these discoveries are given in his Travels through Norway and Lapland, Berlin, 1810. In 1815 he visited the Canary Islands in compans with Christian Smith, the Norwegian botanist. His observations hero convinced him that these and other islands of the Atlantic owed their existence to volcanic action of the most intense kind, and that the groups of islands in the South Sea are the remains of a pre-existing continent. The physical description of tho Canary Islands was puhlished at Berlin in 1825 . After leaving the Canaries Von Buch proceeded to the Hebrides and the coasts of Scotland and Ireland. His geological escursions cren into countries already repeatedly visited were continued without interruption till his 78 th year. Eight monthis before his death, he visited the mountains of Auvergno; and on returning home he read a paper on the Jurassic Formation before the Academy of Berlin. The circumstances of Von Buch's life were singularly favourable to scicntific pursuits. He inherited from his father a fortune more than suficient for all his wants. He was never marricd, and was completely unembarrassed by family ties. His excursions he always undertook on font, with a staff in his hand, and the large pockets of his over-coat filled with papers and geological instruments. Under this guiso, the passer-ly would not easily have recognized the man whom Humboldt pronounced tho greatest geologist of his time. He died at Berlin on the 4 th of March 1853. In addition to the works already mentionel Von Euch published others, of which we may specify the magnificent Gcological 1 lap of Germany, in 42 sheets, Berlin, 1832.
buchanan, georas (1506-1552), a celebrated Scottish historian and echolar, was born iu February 1500. His inther, a younger son of an old fanily, was the possessor of the farm of Moss, in the parish of Killearn, Stirling Bhio, but he died at an earry ace leaving his widow and thudren in vorerty. George, the third son, is said to have
attended Killearn school, but not much is known of his early education. In 1520 he was sent by his uncle to the university of Paris, where he prosecuted his studies with great ardour, and especially trained himself in poetical composition. In 1522 his uncle died, and Buchanan being thus unable to continue longer in Paris, returned to Scotland. After recovering irom a severe illness, he joined the French auxiliaries who had been brought over by the duke of Albany, and took part in an unsuccessful inroad into England. In the following year he entered the university of St Andrews, where he graduated as B.A. in 1525. He had gone there chiefy for the purpose of attending the celebrated John Major or Mair's lectures ors logic; and when that teacher removed to Paris Buchanan accompanied him. In 1527 he became B.A., and in 1528 M.A. at Paris. Next year he seems to have been appointed regent or professor in the college of Ste Barbe, and taught there for upwards of three years. In 1532 be became the friend and tutor of Gilbert Kennedy, earl of Cassilis, with whom he returned to Scotland about the beginning of 1537.'
While residing at Paris Buchanan had been converted to the Protastant faith, and his first production in Scotland was the poem Somnium, attacking with keen satire the Franciscan friars and monastic life generally. This assault on the monks was not displeasing to James V., who engaged Buchanan as tutor to one of his natural sons, and encouraged him to a still more daring attack. Under these circumstances the Franciscanus was written, and it is not surprising that the author became an object of bitterest hatred to all of the Roman Catholic faith. Nor was it yet a safe matter to assail the church. In 1539 there was a bitter persecution of the Lutherans, and Buchanan among others was arrested. He managed to effect his cscape, and with considerable difficulty made bis way to London and thence to Paris. At Paris, however, he found his resolute enemy, Cardinal Beaton, and on the invitation of Andrew Govea, proceeded to Bordeaux. Govea was then principal of the newly-founded college of Guienne at Bordeaux, and by his exertions Buchanan was appointed professor of Latin. During his residence there several of his best works, the translations of Medea and Alcestio, and his two great dramas Jephthes and Baptistes, were completed.
After three years be returned to Paris, and in 1544 was appointed regent in the college of Cardinal le. Moine, a post he held till 1547. He then accepted Gorea's invitation to a chair in the ners Portuguese university of Coimbra, afterwards one of the most celebrated seats of learning in Europe. But he had not been long in Portugal whed Govea's death exposed him to the nowearied persecution of the priests. -Buchanan mas several times examined by the officers of the Inquisition, and finally was confined to a monastery, where he was condemned to hear edifying lessons from the monks. During his imprisonment, which lasted several months, he began his famous version of the Psalms. On his release he sailed for England, but soon mado his way to Paris, wherc, in 1553 , he was appointed regent in the Colloge of Buncourt. He remained in that riost for two years, and then accepted the oflice of tutor to the son of the Marshal de Brissac.
In 1560 or 1561 he returnel to Scotland, and in April 156 . we find him installed as tutor to the young queen Mary, who was accustomed to read Liry with him dails. luckanan now openly joined the Protestant or Reformed Church, and in 1066 was appointed by the earl of Murtay principal of St Leonard's College, St Andrews. Two Frars before he had received from the queen the valuable pit of the revenue resulting from Crossraguel Abbey. IIe was thus in good circumstances, and his fame was stcadns increasing. So great, indeed, was his reputation
for learning aud administrative capacity that, though a layman, he was made moderater of the General Assembly in 1567. He had sat in the Assemblies from 1563.

The part Buchanan took in the affairs of Queen Mary is well known. He accompanied the Regent Murray into England, and his Detection (published in 1572) was produced to the commissioners at Westminster. In 1570, after the assassination of Murray, he was appointed one of the preeeptors of the young king. and it was through his tuition that James acquired bis great scholarship. Buchanan was a striet and severe master, and kept his papil in salutary awe and obedience. James long remembered the feelings of dread with which he was aecustomed to regard his formidable pedagogue.

While diseharging the funetions of royal tutor he also beld other important offices. He was fur a short time director of chancery, and then became lord privy seal, a post which entitled him to a seat in the Parliament. He appears to have continued in this office for some years, at least till 1579. He died on the 28th September 1582.

His last years had been ocenpied with tro of his most important works. The first was the treatise De Jure Regni apud Scotos, published in 1579. In this famous work, composed in the form of a dialogue, and ovidently jntended to instil sound political principles into the mind of his pupil, Buchanan lays down the doctrine that the source of all political power is the people, that the king is bound by those conditions under which the supreme, power was first committed to his hands, and that it is lawiul to resist, even to punish, tyrants. A theory such as this was not likely to be palatable to James. The book was conderned iat 1584, and again in 1664; while in 1683 it was bumed by the loyal scholars of Oxford.

The second of his large works was the history of Scotland, Revum Scoticarum Mistoria, completed shortly before Lis death and published in 1582 . It is of great ralue for tho period pessonally known to the anthor, which occupies the greater pertion of the book. The earlier part is to a considerable extent based on the rork of Bocce and repeats the legendary history which was for so long an articla of faith to every Seoteliman.

Buchanan is the greatest seholar that Scotland has produced. For mastery orer the Latin languace he has never been surpassed by any modern writer. His style is not rigidly modelled upou that of any classieal author, but has a certain freshness and elasticity of its own. 1Ie wrote Latin as if it had been his mother tongue. But inaddition to this perfect command over the instrument of expression, Buchanan had a rich yein of postical feeling, and great powers of thought. Wis translations of the Psalms and of the Greek plays are mere than mere versions; they have a peculiar gruee and felicity. The smaller satirisi poems are masterpieces of wit and expressivo language, while the two tragedies, Baptistes and Jephthes, are works whose merits have not perhaps been generally recognized.
There are two complete editions of Buchanan's worls. one by Ruddiman, 2 vols. fo., 1715 ; the other by Eurman, 2 vols. 4 to, 1725 . His life has been written by Dr Irving, Memoirs of the Life and Writings of George Buchanch, 2 d edition, 1817. The Jewhtianh and Baptist have been translated by A. Gibbs, 1870 .

BUCHANAN, James (1791-1368), fifteenth President of the United States, was born in Franklin Countr, Pennsylvania. His father, of the same name, was an Irishman who had eight years betore emigrated from Donegal, and had become a weli-todo farmer. The son completed his education at Diekinson College, Carlisle, and took his degree in 1809. He then applied himself to the study of the law, was admitted to the bar in 1812, and settled at Lracaster in Pennsylvania Notwithstanding his youth he soon gained considerable reputation, and with it a large
and groming practice. In 1812 he joined a party of voluateers who, under the command of Judge Shippen, marched to the defence of Baltimore agaiast the British; but their services were not wanted. He was at this time a zealous federalist: In 1814 he was elected nember of the State Legislature, and constantly recommended the rigorous prosecution of the wat. He was re-elected the following year; and in 1820 he became a member of Congress. Among his important early speeches were those on a defeieney in the military appropriation, in January 1829; on tho bankrupt law, in Mareh following, when he suceessfully oppesed its extension to all citizens whether traders or not ; and on the tarifi question, on which he maintained that duties ought to belevied for revenue only. He uttered grave marnings against forming alliances with Mexico and the South Anerican Republics, the condition of whieh was not caleulated to inspre hopefulness, and insisted on the immense impertance of Cuba, beth commercially and strategically, to the United States. In 1828 he supported Ceneral Jackson at the Presidential election, and was at the same time re-elceted to Congress. In the following year he succeeded Ianiel Webster as head of the judiciary committee, and in this capacity conducted the trial an impeashment of Judge Feck,-one of the causes edeleres of American jurisprndeace. On completing his fifth term, Buelauan retired from Congress (1831), and the next year was appointed envoy extraordinary and minister pleuipotentiary to St Petersburg. His inission is marked by the negotiation of the first treaty of commeree between the United States and Russia,-a trcaty by which im. portant privileges in the Baltic and the Black Sea were secured to the former. On his return from Russia he was clected United States senator ; aurl he retained his seat till 1845. In the great struggle beweeu President Jackson and the party headed by Mr Calhoun, Buchanan warmly defended the president and his claims. In the first years of the movement against slavers, he sar the large resulta which were likely to follow, and desired to suppress the ugitation in its infancy, and this by suppressing the riscussion of the subjeet in. Congress. He advocated tho recognition by Congress of the indeyendence of Texas, and at a later tinis its amexation. During the presideney of Tan Buren, Buchanan greatly distinguished himself in suppart of the prineipal incasure of the Government-the estrblishanent of an independent treasury. In 1845 he was appointed Secretary of State under President Polls ; and at the ciose of his term of office in 1843 he retired into private life. But four years later he accepted from President Pierce the post of United States Minister to Great Britain. In 1854 he was the origiuator and one of the three members of the Ostend Cenference on the subject of the acquisition of Cuba by the United States, and with his collergues maintained that, on the princinde of self-preservation from dangers of the gravest kind, en armed intervention of tho United States and the eapture of the island from the Spaniards would be justifizble? He returued from England in 1856 , and the same year was eleeted, as Democratic candidate, to the Presidential chair. For a short time there seemed to be ground for lope that political passions and excitement would subside. But this hope was soon found to be fallacious. The troubles in Kinsas and the large questions involved in them gave rise to new discussions and division. The president gave his support to the pre-slavery party, and dissensions grew durmg his administration to such an extent that disruption and war between North and South followed the election of his sucessor, President Lineoln. From the clese of his administration in 1860 till his death, Buchanan led a retired life. He died at Wheatland in Pennsylvania, June 1, 1863. Two years before his death he published an account of his administration.
bucharest, Buehorest, Bekorest, or, as it is callod by the in babitants, Bucurescr (that is, according to their owin etymolosy, City of Joy), is the capital of Roumania, the residence of the prince and the seat of a bishop. It is aituated in a hollory on the Riser Dimbovitza, a tributary of the Danube, in $44^{\circ} 25^{\prime} 30^{\prime \prime} \mathrm{N}$. lat. and $26^{\circ} 5^{\prime} 24^{\prime \prime} \mathrm{E}$. long., and nccupies an area of more than 20 English squarc miles. The number of its cupolas and minarets, and the profusion of acacia, poplar, and other trees that fill the numerous spaces of unoccupied ground, give it a picturesquo apyearance from a diatance. The arranjement of its streets is very irecgular, and in many districts it cannot be said that there are strects at all. In general the roadways are enther unpasel or only laid with rough blockz of differcut shes. A fer strects, indecd and nutably the Podo Mogoctol, whecl is the most impertant), have been paved with Abordeua granite. The city 13 lighted with gas produced from Eaglish coal, and -atwonsiderable hut far from satisfisotory supply of water is obtamed from the river and distriuated partly by water-carts and partly by iron pipes. of the public huildings few are of much architectural raportance, the national theatre is one of the largest, and the "academy" one of the finest. The latter is occupied oy the unversity, a library of 26.000 volumes, a public whicure of antiquatios and natural history, and a large teeatre, which is use? ly the senate during the parliaHentary session. The palace, an insiguificant buikling, was fuatuded hy the Golesco family in the 18 th century. There are 116 Greek churches in the city, of which the most remarkaile are the Metropolitan; St George, St Spiridion, and Sirtudar. The Rounan Catholics bave a parish-church in the centre of tho town and several chapels; there are Lutheran and Calvinistic churches, with schools attached for bouth boys and girls; and the Jews, who uumber about 15,000, have ten sy nazogues. There are about a score of conventua! establishmenis, the majority belonging to the Grect Church. The Brancovano hospital, founded by the famly of that name, has accommodation for between 200 aud 300 pratients, the military hospital for 300 , the Culza for 200, the Philanthropic for 100 , and the Pantelemonu for 140. The Xarcutza insane asylum can receive 220; and the IIelona asylum, founded by the Princess IIelena in 1859, has room for 220 orphan girls. There is also a chuldrcu's hospital for 100 pateuts, and a lying-in hospital sor 40. In Bucharest there is always a numerous garison, and the arsenal and barracks on the plateau of Dealu and the cavalry ank infantry barracks at St George are both extuare establishments. Cufés and cotfee gardensabound, and are allowel to remain open all night. Thero are two pubticgardens, the Cismegiu in the centre of the tomn, about a nill in carcumference, and the Kisilev on the outwirts, which is traversed by the fashiemable promenade known as this Chanssée. Public locomotion is facilitsted by whout 5 in drishkas in summer and as many sledges in wiuter; and a tramway has recently been laid down hy an Engiis! cumpuy. The monetary busmess of the city is extousive, -its princpal establishmeuts being the jank of Ponmana, fomdal in 1865, with a eapital of one million atesting, zud the Sorlite Financiere de Roumanie, with a capstal of six million francs. The manufacturing iulustry is slight, the principal article being Turkish cleth ; but the tride both in foreigu and native gouls is of veryconsiderable extent. Tho mercantile portion of the comnunity is largely cormposed of foreigners-Germans, Greeks, Frenclunch, Swess-who bey themselves very much ap.art from each other Davesum into chases and mationalitise is a warted 1. What ther arstocratic pretensions are no longer recergizel be Lw, are as exclusive ay ever. Thare are ahout 20,000 Thatryesmans who fill subordinate pentions; the droskan.
drivers are mainly Russians of the Lipovani sect; and Bulgarians, Armenians, gypsies, and many others swell the motley multitude. In spite of the fact that tine number of deaths is frequently in excess of the number of births, the increase of the population is rapid, and houserents hare become very high; and that it is more the habits of the people than the unhealthincss of the city that is to blame for the death-rate is shown by the steady internal increase of the Jewish community. About eighteen newspapers are published in the city-three daily and the others twice or thrice a weck. The railway system, begun by the opening of the lue to Giurgcro on the Danube in 1869, is rapidly extending, and there is direct communication nith Westeris Eurepe by the line to Lemberg. The pofulation, which was 121,754 in 1859, had increased by 1870 to 200,000 , and is now stated at 251,000 .

Bucharest owes its foundation in the 13th century to Radel the Black of Wallachia. Burnt in 1595 by Sinan lusha it was soon afterwards restored, but it was not till the 18th century that it appeared minch in European history: It was frequently of importance in the colltests for the neighbouring provinces, which 80 often broke out between the Turks and their northern rivals Austria and Russia; and in 1812 it gave its name to the treaty by which Bessarabia and a third of Moldaria were ceded to the latter power. In the war of 1828 it was occupied by the Russians, who made it over to the prince of Wallachia in tho following year. A rebelliou against Prince Bibesko in 1848 brought both Turkish and Russian interference, and the city was again held by Russian troops from 1853 to 1854. On their departure an Austrian garrisnn took possession and remained till March 1857. In 1858 the internatienal congress for the organization of the Danulian principalities was held in the city; and in 1861 the union of Wallachia and Moldavia was proclaimed. Prince Couza, the first ruler of the united prorinces, was driven from hie throne by an jnsurrection in Bucharest in 1866.
buChez, Pblippe Josepa Benjamin (1796-1865), French author and politician, was bern at Matagne-la-Petite, in the department of the Ardennes. He finished his general education in Paris, and afterwards applied hiraself to the study of natural science and medicine. Hatred of the Government of the Resteration, and enthusiasm for democratic ideas, were at that time widcly dififuscd among the young men of the schools of Paris, and thesc passions gained full posscssion of the mind of Buchez. With his friends Bazard and Flotard he founded, in 1821, a secret associa. tion-a system of French carbonarism--which spread rapidly and widely, and displayed itsclf in repeated attempts at revolution. In one of these attempts-the affair at Belfortwhich cost General Berton, Colonel Caron, and four soldiers of Rochelle their lives, he was gravely compromised, although the jury which tried him did not find the eridence sufficient to warrant bis condemnation. In 1825 he graduated in mediciuc, and soon after he published, along with M. Trelat, a Précis clémentaire d'Hygiène.- About the same tine le became a member of the Saint-Simenian Societs, presided over by Bazard. Enfantin, and Rodriguez, and contributed to its organ, the Producteur. He left it in consequence of aversion to the strange theological dogmas of its spiritual chicf, M. Enfantin, and began to elaburate what he regarled as a Christian socialism. For the exposition and advocacy of his priuciples he founded a periodical called LEuropicn. In 1833 be published an Introivection à ha Science de l'Hastoire, which was received with consilurable favonr, and of which a seeond edition, improved and enlarged, in two volumes, appeared in 1842. Not withstanding its prolixity and discursiveness, this is both an wteresting and a meriturinus wark. The part of it which treats of the aim, fumd:tw, and methods of the scienco
tof history is truly valuable. On the other band, what is most distioctive in M. Buchez's theory-the division of historical development into four great epochs origirated by four universal revelations, of each epoch into three periuds corresponding to desire, reasoning, and performance, sad of each of these periods into a theoretical and practical ageseems entitled to no higher commendation than that of being ingenious. (See Flint's Philosophy of History in Europe, i., 242-252). M. Buchez next edited, along with 11. Roux Laverne, the Histoire parlementaire de la Réroluton Francuise (1833-38, 40 vols). This vast, laburious, conscientious publication is one of the chief sources of information regarding the early periods of the first Freach Revolution. There is a review of it by Mr Carlyle (Miscellanies), the first two parts of whose awn history of the French Revolution are mainly drawn from it. The editors worked under the inspiration of a strong adiniration of the principles of Robespierre and the Jacubins, and in the belief that the French Revolution was an attempt to realize Christianity.
M. Buchez gave a general exposition of bis views in his Essai d'un Traité complet de Philosophie au point de rue du Catholicisme et du progrès (3 vols. 1839-40). Perbaps the fundamental doctrine of this treatise is that the primithe, intellectual, moral, and religious ideas of men cannot be sdequately esplained as innate, or as derived from sensation, sentiment, or reasoning, but must have been imparted by diyine revelation. It is substantially identical with the fundamental doctrine of De Bunald, although Buchez infers from it democratic instead of theocratic consequences. Great prominence is given to the concepthen of progress which is attained by generalization from a comprebensive surve of geology, physiology, and history. The suther sets very distínctly before himself also the aim of organizing the sciences inte a single comprehensive system. This he thought could only be accomphshed through an a priore synthetic method, and not, as had previously been attempted, by the analytical and experinental method. It was partly owiog to the reputation which he had acquired by these publications, but still more owing to his connection with the National newspaper, and with the secret sucieties bostile to the Government of Louis Pbilippe, that he was raised, by the Revolution of 184S, to the presidency of the Constituent A ssembly. He speedily showed that be was not possessed of the firmness, decision, and political capacity needed in a situation so difficult and in daya so tempestuous. He retained the position only for a very short time. After the dissolution of the Assernbly he was not reelected. Thrown back into pricate life, he resumed his studies, and added several wurks to those which have been already mentioned. A Traité de Politique, which may be considered as the com. pletion of his Traite de I'hilosophie, is the most important of the productions of the last period of his life. His brochures are rery numerous and on a great variety of mubjects, medical, historical, political, philosophical, \&:. He died in 1865. He found a discijle of considerable ability in M. Ott, who has advocated and applied his principles in various writings, the most recent of which, perhapls, places the metaphysical theory of Buchez in as favourable a light as it can be seea under.
(R. F.)
bucQu or Bura Leaves are the produce of sevema shrubby phants belonging to the genus Barosma (Nat. Order, Rutacea), natives of the Cape of Good Hepe. The principal species, B. crenulata, has leaves of a smooth leathery texture, oblongo ovate in shape, from on inch to an inch and a half in leugth, with serrulate or crenulate margins, on which as well as on the under side are conepicuous vil cells. The other species which yield buchu are B. serratijolia, having linear-laneeolate sharply serrulate
leaves, and B. betulina, the leaves of which are cuneate obovate, with denticulate margins. They are all, as found in commerce, of a pale yellow-green colour ; they emit a peculiar sromatic odour, and bave a slightly astriagent bitter taste. Buchu lesves contain a volatile oil, to which evidently their therapeutic influence is due, and are said to yield a bitter extractive principle, which has received the name of diosmin. The leares of a elosely allied plast, Empleurum serratulum, are employed as a substitute or adulterant for buchu. Buchu leaves are chiefly used is Europeas pharmacy in inflammatory disorders of the bladder and uribary organs; in the United States they are much employed by vendors of secret medicines. An infusion of the leases is tonic, sudurific, and diuretic. At the Caje buchu has great reputation in gout and rbeumatism, and as a stomachic stimulant; and in the form of buchu brandy aud buchu vinegar it is applied as an eunbracation in sprains, contusions, aud rheumatic pains.

DUCKEBURG, the capital of the principality of Schaumburg-Lipne, is situated at the foot of the Harrl. berg on the River Aue, about 6 miles from Minden, on the Minden and Hanover Railway. It has a castle surrounded by a park, a gymanaium, a normal seminary, a library, au orphanage, a synagegue, and three churches, one of which has the appropriate inscription, Religiones non structure cremplam. The first Lousns of Buickeburg began to gather round the castle sbout 1365 ; and it was not till the I 7 th century that the town was surrounded with walls, Pope. lation in 1871, 4686.
bUCKINGHAM, County of, Buckngmamshire, or Buces, so ioland county of England, between $51^{\circ} 25^{\prime}$ and $52^{c} \mathrm{~J} 0^{\prime} \mathrm{N}$. lap., aod $0^{\circ} 28^{\prime}$ and $1^{\circ} 12^{\prime} \mathrm{W}$. long., is bounded N. by Northamptonshire W. by Oxfordshire, S. by Berkshire, and E. by Bedfordshre, Mertfordshire, and Middleecx. It is the thirty-third in size of the English counties, measuring 53 miles at its greatest length and 27 at its greatest breadth, and containing, accordigg to the last ordnance survey, 467,009 acres, or nearly 730 equare miles. The aspect of the country is agreeably diversified by the distribution of foresta, rivere, hills, pasture, and arable land. In the southern portion of the county the forests, consistiug chiefly of beeches (from the Saxon asme of which tree, boc, the county is asid to derive its name), were at one time very extensive, but have of lato years been greatly thinned; woods of considerable extent are still to be found in the northern parts. The principsl rivers of Buckinglamshire are the Thancs, which eeparates it from Berkshire and Surres, and receives as tributaries the Colnc and the Thame; and the Ouso, with its tributary the Ousel, which belongs to the north of the county. The only Lills in Bucks worthy of mention are the Chilterma which cross it in a north-westerly direction, sad rise at tro or three points to the height of about 900 feet. Of the roads which pass through the county the most imporiant are that which connects London with Cheater and Holybead, by which the mails were formarded to Ireland before the introduction of railways, the great western roand connecting the metropolis with Bath and Bristol, and the roads to Oxforl and Birmingham. The only canal of sny importance is the Grand Junction, from which branches proceed to eeveral of the larger tuwns. The London and North-Western Railway passes through the north-east of the county, and the Qreat Westera through as small part of its southers extremity, while minor branches lelonging ta botb these systema afford ready dommunication between the more inportant places. The principal junctinns ane Prince's Risborough, Aylesbury, Verdey, and Bletchley.
The agricultural capacities of Bucks vary considerably in different parts of its extent. The vale of Aylesbury, lying between hills on either side, is one of the most fertile and
valuable districts in England, and is divided in nearly equal proportions between pasture and tillage. Towards the north, bowever, the soil greatly degenerates, and sometimes does Little more thau pay the expense of cultivation In 1875 the propricturs holding land of less and of more than oue acre in extent numbered 6420 and 3288 respectively,the largest owners being Lord Canngton with 14,835 acres, and Earl Brownlow, whth $11, \mathrm{i} 5$. The farms are not generally large. The largest do Lut exceed 501 acres, while there are many of not moretban 20 or 30 acres. The average suze in 1571 was 70 acres. In 1-5itthere were 60,182 acres under wheat, 28,002 in burley, 23,257 in oats. 16,663 in beans, and 7136 in pease; 1403 were occuped by potatues, 19,641 by turnas, 29,272 were 15 temporary grass, and $1 \times 6,941$ in permanent fusture. About 24,500 are covered with wood, and 1637 with orchards. Neither flax nor bops are grown. The quantities of cattle reared and fed in Bucks are very considerable,-the total number enumerated in the year lo74 veing 37,14 . The number of pilch cows is estimated at upwards of 27 , 1000 , and the large supply of dary-produce as rapidly conveyed to London by ranl, where it finds a ready market Hogs are cestensively reared on many farms, and are found to be a source of considerable profit to the farmer. Therr numbers anounted in 1874 to npwards of 40,500 . In many larts of the county, especially at Ayleabury, grect munbers of ducks are fattened for sole in the Louniou martets.

The manufactures of Buckinghams̄hice are nether very extensire aor very impurtant. The prinerpal are those of lace and straw plait The proportion of persoss chiefy engaged in agriculture is about 13 per cert. of the population : in trade and manufactures about 18 per cent.

Bucks was originally divided into enghteea hundreds, it is now divided into eight, mz., Nemost, Buckingham, Ashendon, Cottesloe, Aylesbury, Burnliau, Stoke, and Desborough, the last three forming what is well kwown as "The Chiltern Hundreds." That of Ayiesinry stil" retmas its ancient designation of the "three huadreds of Aylesbury." The umaber of pariskes in the catire county is computed at 202, part of those of Ibstone, Ickford, Kingsey, and Lewbnor extending into Oafordshire. The marlet-lowns are amersbam, Aylesbury (in all respects the most important town in the county, thungh Buckincham is the capital), Beaconsfield, Buckingham, (inestaza, Great Marlowe, High Wycombe, lvinghne, Newport-Pegnell. Uhey, Prince's Risborough, Stony Stratford, Wendorer, and Winslow. There are many other anteresting, thourh not very important, places in Buckinghanshite. uf whel we may mention Cbalfont St (rile--the residence fur a time of the poet Milcon, where he completad Paration Lost an! hegan Paralise Petguned; Haminden, the manorhouse of which was for many generations the abode' of the family of that name, and in the charehyard of which the patriut (who fell at Chalgrave in 1643) is buried; Medmenham, in the uld abbey of which a celebrated clul, of "Franciscans," of which Juhn Wilkes, Bubb Dodungton, and other political notorieties of last century were members, held their convivial meetugs; Pitstone, in the abley of which Queen Elizabeth used frequently to reside in her younger days; Beacensfield Manor, at one time the property of the poet Waller; Stoke Poges, celebrated ly Gray in his Elegy and Long Story; Slough, for many ycars the residence of Sir William Herschel, and the place where the great telescope was constructed and still stands; Saltbill (not far from Slough), where the Eton Montem, now abolished, used to be held; Olney and W'eston Underwoud, familiar to all the readers of Cowper; Buter's Court or Gregories, the seat of Edmund Burke; Bradenham, the mansion of the elder D'Isracli; and Hughenden Manor, the well-known residence of his son. The principal seats
in Buckinghamshire are Stowe, the property of the duke of Buckingham, and celebrated for its grounds, and its collactions of puctures and statues: Bulstrode, once a seat of the dukes of Portland, now the property of the duke of Somerset. Wiutton House belonging to the duke of Buckingham, Yen Huuse to Earl Howe, the Abbey, High Wycombe, to Lurd Carington, Dropmore to tha Hon Geurge Fortescue, Astun Cliaton io Sir A. Rothschsh. Ditton Park to the dube of Eucclesch, Hedsor to Lord Buston. Chefden to the duke of Westminster, Latumer to Lord veshom. Peterley House to Lord Dow wer. The antuquties of the county are comparatively few It is traversed by the three anchent roads known as Ickneld Strect, Abeman Street, and Watling Street; it has remains, in some cases very slight, of the baromial castles of Lavendon and Whitchurch, of the abteys of Missenden, Notley. and Burrham, and of the monastery of Murstey, and a number of nuteresting examples of carly ecclesiastrcal architecture, the must important beng the eburches of Chetwode, Stewkley, and Willesdon.

Fncks is in the Norfolk circunt. The quarter-bessions are held at Aylesbury, the assizes used to te beld alternately at that town and Buckngham, hat are now held only at Aylestury. The Reform Bill of 1832 reduced the number of anembers returned by Bucks to the House of Commons frum fuarteen to eleren. It now retarns eight, three of whom repsesant the county aad five the perlia. mentary buroughs. In leil the number of the county efecturs registered xas 7610 The result of the county eloctions is declared at Arlestury. Bucks is governed by a lurd-lieutemant and custos, co depoty-lieutenants, a higb sherifi, and about oun nagistrates It lies in the ecclesiastical province of Canterbury, and for the most part in the drocese of Oxford, and in arch-daacoary of Buckingham, which comprises the deaueries of Amersham, Aylesbury, Bletchley, Buckingham, Burnham, Claydon, Irughoe. Mersley, Nevpurt, Waduesdon, Wendover, and Vrsombe, in alh alrnet 180 tenefices 'The total income of endowed charituo 14 the courty was ascertaned on 1803-1 to be $£ 36,34)$. If which $£ 3305$ go to education and $£ 3034$ for maintenatice of alme-houses. There were 11,315 paupers in 187l, uf whom 44] were havatics or idiots, and the frevions year the peor rates amounted to 29457.

The forquation wasl was 163,554 , of whom 80.990 Fere males and 82,564 females In 18.1 it hadincreased to 155,579 , the mater beng 86,059 and the females 89,820 . The increase shace 1001 was 63 for cent The parlia. mentary boroughs (the first of which returns two members and the others one each) are Aylesbory, with 28,460 inlabitauts, Duchambam, 7545 , Chippug Wycombe, 10,492, Great Marlowe, fart of haich is in Berksbire, 6627. The towns of wore than 2000 inhabitants, not corporate towns, nor moluded many parhamentary borough, are Amershau, with a puphation of 272 ; Chesham, with 6488 ; Newport-Pagnell, whth 382s. The number of inhabited house's m the county in 1871 was 37,257 , unin. habutud, leat, huildun, lé

Buchmonas, the chef town of Luckinghamshare, a parliamotary and mumenfal burough and market-fown in the huadred of the same name, 58 miles by a branch of the Nurth-Western Lailway from London, is situated on the left bank of the River Uusp, which surrounds it on every side but the north and is crossed by three bridges. The town consists prucipally of one long street, straggling over a considerable estent of surface. The houses, which are chiefly of brick, are neat and cleau, though somewhat humble in character. The only public boiddings of importance are the town-hall, a brick structure dating from the'end of the 18 th century, and the church, dedicated to St. Peter and St. P'an, which is built of freestone or ti.e
site of the old castle, has a handsome spire, 150 feet high, and has been restored and extended under the direction of Sir G. G. Scutt, who was born in the neighbourhood. There are also a jail, a union workhouse, and several dissenting churches. An endowed free school for boys, who were clad in green coats by the will of the founder, Gabriel Newton, is now incorporated with the national school, which is intended to accommodate 300 pupils. The grammar-school of the town was founded by Edward VI., and occupies the chapel of the guild of the Holy Trinity, founded by Archdeacon Stratton in 1265. The manufactures, which include bone-grinding, malt-making, and tanning, are of comparatively small importance. Lace-making with bobbins still occupies a small part of the female population. There are also some corn-mills in the neighbourhood, and a few lime quarries. The borough of Buckingham formerly returned two nembers to Parliament, but since 1863 it has only returned one. It is governed by a mayor, four aldermen, and tiselve councillors. Population of parliamentary borough in 1871, 7545 ; of municipal borough, 3703. Buckingham is a town of great antiquity. It tras fortified with earthen ramparts by Edward the Elder in 918, and in 1010 it was captured by the Danes. It is mentioned as an ancient borough in Domesday Book, but docs not scem to bave returaed members to Parliament till the reiga of Herry VIII. In the reiga of Edward III it was a wool. staple, but not lung after its prosperity began to decline. From Queen Mary it received a charter in 1554. It was the headquarters of Charles I. for a ferr days duritg his war with the Parliament. In 1725 a third part of the fown was burnt to the ground.

BUCKINGHAM, George Villiers, Dute of (15921628), boru August 20, 1592, was a younger son of Sir George Villiers of Brooksby. His mother, who was left a widow early, educated him for a courtier's life, and the lad, being by nature little etudious and contemplatire, took kundly to tho training. He could dance well, fence well, and tall: a little French, when in August 1014 he was brought before the king's notice, in the hope that he would take a fancy to hum.
The moment was favourable. Since Salisbury's death James had taken the business of government upon himsele. But he wanted some onc who would chat with hins, and amuse him, and rould also fill the ofice of private sccretary, and savo him from the trouble of saying No to importunate suitors. It would be an additional satisfaction if he could train the routh whom he might select in those arts of statesmanship of which he believed himself to be a perfect master. His first choice had not proved a happy one. Robert Carr, who had lately become earl of Somersct, had had his bead turned by his elevation. He had grown peevish toward his master, and had placed himself at the head of the party which was working for a close alliance with Spain.

The appearance of Villiers, beaming with anmal spirits and good humour, was therefore welcomed by all who had an interest in opposiug the designs of Spain. With such powerful backiug Villicrs prospered at court, became a gentleman of the bed-chamber, was knighted, and reccived a pension of $£ 1000$ a year. For some little time, however, Somerset's pre-eminence was maintained. But the charge of murder brought against him completed his ruin, and Villiers at once stepped into the place which be had racated. In August 1616 he was raised to the peerage as Viscount Villiers. In January 1617 he became earl of Buckingham. In January 1618 he was a marquis by the same title. Estates to the value of some $£ 15,000$ a year were settled on him. With the exception of the earl of Pembroke he was the richest nobleman in England.

Those who expected him to give his support to the antiSpanish party were at first doomed to disappointment. As
yet he was no politician, and be contented himself with carrying out his master's orders, whatever they were. In his personal relations he was kindly aud jovial towards all who did not thwart his wishes. But James had taught him to consider that the patronage of England was in his hauds, and be took good care that no man should receive promotion of any kind who did not in oue way or another pay court to hirm. As far as can be ascertained, be cared less for money than for the gratification of bis vanity. But he had not merely himself to consider. His numerous kinsfolk were to be eariched by marriage, if in no other may, and Bacon, the great philosopher and statesman, was all but thrust from office, because he had oppesed a marriage suggested iur oue of Buckinghant's brothers, whilst Cranfield, the first financier of the doy, was kept from the Treasury till he would forsake the woman whom he loved, to marry a penniless cousin of the favourite.

In the meanwhile Buckingham had found an appropriate position in the mastership of the horse, which gave him contrul orer the royal stables. In January 1619 James made him lord high admiral of Euglaud, hoping that the ardent, energetic youth would impart something of his own fire to those who were intrusted with the orersight of that Rect which had been almost rumed by the peculation and carelessness of the officials. Something of this, no doubt, was realized under Duckingham's eve. lint he bionself never pretended to the virtues of an auministrator, aud he was too ready to fill up appointments with men who flattered him, and too reluctant to dismiss them, if they served their country ill, to cfiect any permanent change for the better.

It was ahout this time that he first took an indepen. dent part in politics. All England was talkingo of the revolution in Bohemia in the year before, and men's sympathy with the Cominental Protestants was increased when it was known that Jancs's son-in-law had accepted the crown of Bohemia, and that $2 n$ the summer of 1620 a Spanish force was preparing to iuvade the Palasinate. Buckiogham at first had throwu himself into the popular morement. Before the summer of 1620 was at end he had swung round, atd was in cluse agrecment with Gondomar, the Spanish ambassador. He had now marned Lady Catherine Nanters, the daughter vi the earl of Rutland, who was at Leart a Roman Catholic, though she outwardly cunformed to the English Church, and this alliauce may have Lad something to do with the change.
lowekingtam's mistates were owing mainly to bis lerity. If he passed briskly frum one camp tu the other, an impartial observer might tsually detect some personal motive at the bottom. Rut it is hardily probable that he was himself cunscious of anything of the sort. When he was in reality acting under the induence of vanity or passion it was easy for him to persuade himself that he was doing his duty to his country.

The Parliament which met in 1621 brodic out into a loud outcry against the system of monopolies, fiom which Buckingham's brothers and dependants had drawna profit, which was believed to be greater then it really was. At first he pleaded for a dissulution. But he was persuaded that it would be a wiser course to offer to put lumself at the head of the movement, and when lie canie fornard to say that he would rather sacrifice his brother than countenance wrong doing, he only gave utterance to those sentuments of patriotism which he really felt, when patriotism did not call upon him to sacrifice his own wishes. When, at a later periol of the scssion, Bacon's case was brought furward, he made no attempt to neet the attack directly, but he did his best to shield the falling chancellor from the extremg penalties demanded by his adversaries. It was not long before he showed on how shallon a basis impulsive generosity rests. Bacon clung, after his fall, to the pobsession of

York House, the home of his childhood. Buckingham resired to purchase it, and he stood in the way of the king's favour to the great philosopher till he had consented to well him the house.

In the winter of 1621 , and the sueceeding year, Bucking. ham was entirely in Gondomar's hands; and it was only with some difficulty that in May 1622 Laud argued him out of a resolution to declare himself a Roman Catholic. In December 1621 be actively supported the dissolution of Parliament, and there can be little doubt that when the Spanish ambassador left Zngland the following May, he had come to an understanding with Buckingham that the Prince of Wales should risit Madrid the next year, od which oceasion the Spanisb Court hoped to effect his conversion to the Roman Catholic Church before giving him the hand of the Infanta Maria By this time Buckingham had ganned over Charles an influence which he never lost; and when he oerried him in February 1623 to Madrid it was with the hope of effecting a great political object. The Palatinate had gradually fallen into the possession of Spain and of the Catholic League, and the two young men fondly expected that the grave statesmen of the Spanish monarchy would break with their co-religionists in Germany in order to present the Palatinate as a marriage gift to Charles.

It was not long before it became plain to Buckingham that the Palatinate was not to be ganned at Madrid. From that time he urged the prince to return. Charles was not to be persuaded so soon to relinquish the bope of carrying his bride home with bim to England. But at last his eyes were opened, and when the two young men sailed together from Santander in Scptember, it was with the final resoluvon to break entirely with Spain.

James had gratified his favourite in his absence by raising him to the highest title known in the English peerage. But the splendour which gathered round the new duke was owing to another source than James's favour. He had put bimself at the head of the popular movement against Spain, and when James, acknowledging sorely against his will that the Palatinate could ooly be recovered by force, ounmoded the Parliament which met in February 1624, Buckingham, with the help of the heir apparent. took up an independent political position. James was half driven, balf persuaded to declare all negotiations with Spain at an end. For the moment Buckingham ras the most popular man in England.

It was casicr to overthrow one policy than to construct apother. The Commons would have been content with sending some assistance to the Dutch, and with entering upon a privateering war with Spain. James, whose object was to regain the Palatinate, believed this could only be accomplished by a Continental alliance, in which France took part. As soon as Parliament was prorogued, negotiations were opened for a marriage between Charles and the sister of Lewis XIII., Henrictta Maria But a diffic lty erose. James and Charles had engaged to the Commons that there should be no concessions to the English Catholics, and Lewis would not hear of the marriage unless very large concessions were made. Buckingham, impatient to begin the war- as o00n possible, persuaded Charles, and the two together persuaded James to throw over the promises to the Commons, and to accept the French terms. It was no longer possible to summon Tarliament to vote supplies for the war till the marriage had been completed, when remonstranees to its conditions would be useless.

Ruckingham, for luckingham was now virtually the ruler of England, had thus to commenco war withont money. He propared to throw 12,000 Englishmen, nnder a German adventarer, Count Mansfeld, through France into the Palatinate. The French insisted that he should march through Holland. It mattered little which way he took. Without
provisions, and withcut money to buy them, the wretched troops siekened and died in the winter frosta. Buckinghame first military enterprise ended in disastrous failure.

Buckingham had many other schemes in his teeming brain. He had offered to send aid to Christian IV., king of Denmark, who was profosing to make war in Germany, and bad also a plan for sending an English fleet to attack Genoa the ally of Spain, and a plan for sending an English fleet to attack Spain itself.

Before these schemes could be carried into operation James died on March 27, 1625. The new king and Buckunghars were at one in their aims and objects. Both were anxious to distinguish themselves by the chastisement of Spain, and the recovery of the Palatinate. Both were roung and inexperienced. But Charles, obstinate when his mind was made up, was sluggish in action and without fertility in ideas, and he had long submitted his mind to the versatile and brilliant favourite, who was never at a loss what to do nest, and who urulled before his eyes visions of endless possibilities in the future. Buckingham was sent over to Paris to urge upon the French Court the importance of converting its alliance into active co-operation.

There was a difficulty in the way. The Huguenots of Rochelle were in rebellion, and James had promised the eid of English ships to suppress that rebellion. Buckinghim, who seems at first to have consented to the scheme. was anxious to mediate peace between the king of Fraocs and his subjects, which would set him free from foreign enterprises, and save Charles from compromising humself with his Parliament by the appearance of English ships in an attack upon Protestants. When he returned his main demands were refused, but hopes were given him that peace would be made with the Huguedots. On his way througb France he had the insolence to make lose to the Queen of France. Unless the testimony of his warmest admirers is false, he bad convinced himself by a sad expenence that women found it difficult to resist his seductive tongue and his handsome face.

Soon after his return Parliament was opened. It would have been hard for Charles to pass through the session with eredit. Under Buckingham's guidance he had entered into engagements invoking an enormous espenditure, and these engagements involved a war on the Continent, which had never been popular in the House of Commons. The Commons, too, suspected the marriage treaty contained engage. ments of whieh they disapproved. They asked for the full execution of the laws against the Catholics, and voted but little money in return. Charles adjourned then to Oxford, that be might plead with them more persuasuvely. Before they met there, the English ships bad found their way inte the hands of the French, to be used against Rochelle. The Commons met in an ill-humour. They had no confidence in Buckingham, and they asked that persons whom they could trust should be admitted to the king's conneil before they would vote a penny. Charles stood by his minister, and on August 12 he dissolred his first Parliament.

Buckingham and lis master set themselses to work to conquer public opinion. On the one hand, they threw over their engagements to France on behalf of the English Catholics. On the other hand they sent out a large fleet to attack Cadiz, and to scize the Spanish treasure-ships. Buckingham went to the Mague to raise an immediate supply by pawning the crown jowels, to place England at the head of a great Protestant alliance, and to enter in:o fresh obligations to furnish moncy to the king of Denmark. It all ended in failure. The fleet returned from Cadiz, having effected notbing. The crown jewels produced bus a small sum, and the money for the king of Denmark could only be raised ly an appoid to Farliament. In the measwhile the king of France was deeply offended by the treat-
ment of the Catholics, and by the seizure of Freach vessels on the ground that they were engaged in carrying goods for Spaia.

When Charles's second Parliament met on February 6, 1626, it was not long before, under Eliot's guidance, it aaked for Buckingham's puuishment. He was impeached before the House of Lords on a long string of charges. Many of these charges were exaggerated, and some were untrue. But as long as Charles refused to listen to the complaints of his minister's incompetency, the only way in which the Communs could reach him was by bringing criminal charges against him. Charles dissolved his second Parliament as he bad dissolved his first.

To find money was the great difficulty. Recourse mas had to a forced loan, and men were thrown into prison for refusing to pay it. There had been disasters to Charles's allies in Germany, and a French war was impending in addition to the Spanish one. The French were roused to reprisals by Charles's persistence in seizing French vessels. Unmilliug to leave Rochelle open to the entrance of an English fleet, Richelieu laid siege to that stronghold of the French Huguenots. On June 27, 1627, Buckingham sailed from Portsmouth at the head of a numerous fleet, and a considerable land force, to relieve the besteged eity.
His first enterprise was the stege of the fort of St Martin's, on the Isle of Rhé. The ground was hard, and the siege operations were converted into a blockade. On September 27, the defenders of the fort annonaced their readiness to surrender the next morning. In the night a fresh gale brought over a flotilla of French provision boats, whieh dasted throngh the English blockading squadron. The fort was provisioned for two months more. Buekiogham resolved to struggle on, and seut for reinforeements from England. Charles wonld gladly have answered to his call. But England Lad long since ceased to care for the war. Thére was no mooey in the exchequer, no enthusiasm in the nation to supply the want. Before the reinforcements could arrive the French had thrown a superior foree upon the island, and Buckngham was driven to retreat with heary loss.

His spirits were as buoyant as ever. Ill luck, or the masconduct of others, was the cause of his failure. He had new plans for carrying on the war. But the Parliament which met on March 17, 1623, was resolved to eraet from the king an obligation to refrain from encroachngy for the future on the liberties of his subjects.

In the parliamentary battle, which ended in the coneession of the Petition of Right, Buekingham took an aetive share as a member of the House of Lords. He resisted a: long as it was possible to resist the demand of the Commons, that the king should abandon his claim to iaprison without showing cause. When the first unsatisfactory answer to the petition was made by the king on June 2 , the Commons suspipected, probably with fruth, that it bad been dictated by Buckingham. They prepared a remonstrance on the state of the nation, and Coke at last named the duke as the cause of all the misfortunes that had occurred. Thongh on June 7 the king granted a satisfaetory answer to the petition, the Commons proceeded with their remonstrance, and on June II they informed the king that Buckingham had "so abused his powers," that it was no longer safe to continue him in office.
Once more Charles refused to surrender Buckingham, and a few days later he prorogued larliament in anger. The popular feeling was greatly excited. Lampoons circulated freely from hand to land, and Dr Lambe, a quack doctor, who dabbled in astrology, and was believed to esercise influenee over Buckingham, was murdered in the streets of London. Rude doggerel lines announced that the duke should share the doetor's fate.

With the clouds gathering round him, Buekingham went down to Portsmouth to take the command of one final ex. pedition for the relief of Rochelle. For the frst time even he was beginning to acknowledge that be had undertaken a.task beyond his powers. There was at furce of inertia in the offeials which resisted his effurts to spur thern on to au eaterprise which thes believed to be doomed to failure. He entered gladly into a scheme of pacification proposed by the Yenetian ambassador. But befure he cunld know whether there was to be peaco or war, the kuife of an assassin put an end to his career. John Felton, who had served at Rhe, had been disappouted of promotion, and had not been paid that wheh was due to him fur his services, read the declarativu of the Commons that Euckingham was a public enemy, and eagerly caught at the excuse for revenging his private wrongs under cover of thoso of his country. Waiting, on the morning of Augnst 23, beside the door of the room in which Buckingham was breakfasting, he stabbed him to the heart as he eame out. The man who for four years had been practically the ruler of Eugland fell dead upon the ground. He had only completed his thirty-sixth year three days befure. (s. R. ..)
buChinghay, George Villiers, Second Duke or (1627-1635), was born at London January 30, I 627, about a year and a half before the murder of bis father. He was educated at Cambridge, returned from a Continental tonr on the ontbreak of the civil war, and at once threw in his lot with the king. The detachment in which he held a cormand was defeated at Nonsuch, aud he with difficulty effected an escape from Eugland. His estates were confisated by Parliament, and part of them were bestowed upon Fairfax. He returned with Charles II. and toot part in the battle of Worcester, after which he again fled. Abont 1657 he returned secretly to Eughand and married one of Fairfas's daughters. . Arrested by order of Cromwell, bo was throm into the Tower and kept in confinement for some time. After the Restoration be recovered bis estates, and rose to high favour with Charles II. He was a man of great talent, bnt utterly without prmeiple, versatile and whimsical to the last degree.

> " A man so rarious tar he seluce to to bo Nor one, but all mankind's epitome."

He was a protigate and a statesman, a muscian, an aichemist, a writer of farces, and a conrtier,-" "everything by starts, and nothing long." He wes radiually fickle, and could not be faithful to any party. In 1671 his power was at its height. He had done nmeh to bring abont the dismissal of Clarendon, had formed the famus conncil called the Cabal, and was in faet prome minister of England. Lut the measures he and his assveiates passed were little calculated to allay the strong popular feeling against the Governinent. The Cabal was quickly dissulved, and Buckinghan, with his usual versatility, at once hecame an ardent friend of the denoeratic leaders. Soon afterwards be seems to have been diggusted with polities, and gradually withdrew from court. After the death of Charles to retired to his seat at Melnsicy in Yurkshare, and devoted hidiself to bunting and other country ammsements. He died on the 17th April 168S, in the bouse of une of his tenants, having been seized with a fever produced by sitting on the damp ground after being heated with riding. He was buried in Westminster Abbey: Inackinghan was the anthor of some farces, comedies, and miseellaneous poerns, but he is chiefly remembered in English literature by the Fichcarsal, a clever parody upon Dryden and other stilted tragedians. His works were collected in 1704.

BUCKinghamshire, Jons Sueprield, Duke of (1649-172I), was the son of Edmund, second carl of Mulgrave, and suceecled to that title on his father's death in 1658. At the age of seveuteca he joined the feet in
the war against the Dutch, but was not in any engagemeat. Ia 1672, however, on the renewal of hostilities, be distinguished himsulf by his bravery, and was appointed to the command of a ship. He afterwards served with the land forces, and for a short time joined Turenae, in order to study the art of war. On tho accession of James he reccived a seat in the privy council, and was made lordchamberlain. Ho was not among the lords who invited over the Prince ei Orange, but he acquiesced in the Revolution, and was nitimately received into the cabinet council of William. In 1604 Le was made marquis of Normanby. In 1702, on the accession of Aune, with whom he was a personal favourite, he became lord privy seal and lordlieutenant of the North Riding of Yorkshire. In the following year he was made duke of Normanby, and daine of Buckiaghamshire. Under the administration of Marlborough and Godoiphin, he threw in his lot with the high Tory party, and in 1705 was deprived of the seal. Two years later he was dismissed from the privy council. In 1710, when the Tories recovered power, Buckingham became lord steward; and in 1711 he was raised to the dignity of lord president. After the death of Anne he held no state appointment. He died 24ith February 1721. His works consist of two tragedies, a fow small poems of littlo value, and of the rhymed Essay on Poetry. His Essay on Satire is aaid to have been revised by Dryden, and is bometimes printed among the latter's works. The Essay on Puetry was highly praised by Addison, Pope, and ather critics of the time, but the praieo must have been due to the rank and not to the abilities of the poet. His works wero published in 1723 .
bƯCkLaND, Tue Very Rev. Willam (1784-1856), the cldest 8 on of the Rev. Charles Buckland, rector of Templeton and Trusham, in the county of Devon, was born at Axminster in Devonshire, 12th March 1784. He was clucated at the ancient Grammar School of Tiverton, and at Winchester, and in 1801 was elected by examination a scholar of Corpus Christi College, Oxford. In 1805 he proceeded to the degree of B.A., and in 1808 he was elected a fellow of his college. From early boyhood he had exlibited a strong taste for natural scienco; his innate bias was at this time stimulated by the lectures of Dr Kidd on mineralogy sud chemistry, and his attention was thus more especially drawn to the then infantscience of geology. He now devoted himself systematically to an examination of the geulogical structure of Great Lritain, making many excursions on horseback, and investugating both the order of superposition of the strats and the characters of the argnic remains which they contaned. In 1813, on the resiguation of Dr Kidd, he was appointed rebder in miacralogy in Osford; and the interest excited by his lectures was so great that in 1819 a readership in geology was founded and especially endowed by tho T'reasury, Dr Buckland being the first holder of the new appoistment. In 1818 Dr Buckland was elected a fellow of the Royal Sacicty, aad in 1824 be was chosen president of the Geological Society of London, of which he had long been a felluw. In 1825 he resigucl his fellowship at Corpus, and was presented by his college to the living of Stoke Charity, near Whitchurch, Hants, and in the same year he was appointed by Lord Livernool to a canonry of the cathedral of Christ Church, Oxford. In the same year, also. he married Mary, the eldest daughter of Mr Benjamin Morland of Sheopstead IIouse, near Abugdon, Berks, by whose high intellectual abilities and cecellent judgment he was materially assisted in his literary labours. During the succeeding twenty years he hboured diligently in various departments of his favourite science, visiting many interesting localitics, both at home and abroad, accumulating extensive collections, and communicating numerous memoirs
to learned socicties. In 1845 be was apppointed by Sir Robert Peel to the vacant deanery of Westminster, and was soon after inducted to the living of Islip, near Osford, a preferment attached to the deanery. In 1849 his health began to give way under the increasing pressure of his multifarious duties; and the latter years of his life were overshadowed by a long aud serious illness, arising from disease of the base of the skull, which compelled him to live in retirement, to the decp regret of a wide circle of friends and acquaintances. He died 24th August 1856, at the advanced age of seventy-three, and he was buried in a spot which be had himsclf chosen in Islip churchyard. Dr Buckland was a man many-sided in his abilities, and of a singularly wide range of attamments. Apart from his published works and memoirs in conncetion with the special department of geology, he accomplished in other directions much that entitles him to remembrance. Few men, indeed, ever more laboriously and consisteatly devoted a long life to the advancement of the cause of truth and to the benefit of their fellow.men. In addition to the work eatailed upon him by the positions which he at different times held in the Church of England, he eatered with great enthusiasm into many practical questions connected with agricultural and sanitary science, and rarious bocial sud even medical problemo. As a teacher be possessed powers of the higheot order ; and the university of Oxford is enriched by the large and valuable private collections, illustrative of geology and mineralogy, which he amassed in the course of his active life, and which are now known as the "Bucklsnd Museum." It is, bowever, upon his published scientific works that Dr Buckland's great reputation is mainly bised. His first great work was the well known Reliquive Diluriance, or Observations on the Organic Remains attesting the Action of a Universal Deluge, published in 1823, in which bo supplemented his former observations on the remaine of extinct animals discovered in the cavera of Kirkdale in Yorkshire, and expounded his views as to the bearing of these and similar cases on the Biblical account of the Deluge. Thirteea sears after the publication of the Reliquir, Dr Buckland was called upon, in accordance with the will of the earl cf Bridgewater, to write one of that remarkable series of works, known as the Bridgevater Treatises. The deagn of these tratises was to urhibit the "power, wisdom, and goodness of God, as maniiestcd in the creation," and none of them was of grenter value, as ovinced by its vitality, than that on geology and mineralogy. Originally published in 1836 , it has gone through four editions, and though not a "mamual" of geological science, it still possesses a high value as a rich storchouse of geological and palrontological facts bearing upon the particular argumeat which it was designed to iilustrate.

Of Dr Buckland's numerons riginal contribations to the sciences of Geology and Palmontology, the following may be mentioned ao being the most important:-1. "On the Etructure of the Alps and adjomeng parts of the Contivent, and their relation to the Secondary and Transition Focks of Englad "(Annals of Phil. 1821); 2. "Account of an Assemblage of Fosail Teeth nnd Bones of Elephant. Rhinoceros, Heppopotamus, Bear, Tiger, and Hyena, add Sixteen other Ammang, discovered in a Cave at hirkdale an Yorkshire " (Fhil. Trans) ; 3. "On a Series of Specimens from the Plastic Clay near Readiog, Berks, with observations on the Formation of which these Beds belong" (Traus. Geol. Soc. Lomdi) ; 4. "On the Megalosaurus or Great Fossil Lizand of Stonesfield " (Jbid); 5. "On the Cycadeoidera, a Family of Plants fonnd in the Oolite Quarries of the 1sle of Portlad " (ISid); 6. "On the I'scovery of a New Species of Pterodactyle in the Lias of Lyme Fegis "(1vid); 7 "On the Diseovery of Coprolites or Fossil Fraces in the Lias of Lrme Regis, and in other Formations" (IVid); 8."On the Evideoces of Glaciers in Seotland and the North of England " ($P_{\text {roce }}$ Geol. Soc. Lond); 9. "On the SouthWeatern Coal District of England (joint paper with Mr Conybeare, Trans. Gool. Soc. Lond) : 10 . "On the Geology of the neighborr: hood of Weyrrouth, and the adjacent parts of the Coant of Dorset * (ioust paper with Sir H. de La Beebe, L'ans, ficol. Š. Lond.)
buckle, Henry Thomas (1821-1862), the son of Thomas Henry Buckle, a wealthy London inerchant, and bis wife, Jane Middleton, was born at Lee, in Kent, Norember 24,1821 . He was a feeble and delieate child, who took no pleasure in the society and amusenents of other children, but who loved to sit for hours bearing his mother read the Bible, and whose own love of reading was called forth by a present from her of the Arabian Nights. In his mother he found unfailing mental sympathy and stimulus, and ber share in the educition of his mind and the forma. tion of his character was very great. Although she was of a naturally strong religious temperament, a painful personal experience had given her a horror of imposed docirines, and, according to the testimony of Miss Shirreff, she refrained from teaching dogmatieally even such views as were full of hope and consolation to herself. To lier Buckle aecins apecially to have owed his faith in progress through the triumph of truth, bis taste for sjeculation, and his love of poetry. In common with his father be had a keen interest in polities, a very retentive menuory, and a fondness for reciting Shakespeare. Even as a child he ahowed conversational power, and the only game he eared for was playing at "parson and elerk," with a cousin of about his own age, he himself taking the part of preacher. Owing to his delicate health he was only a very ahort tinie at achool, and never at college, but the love of reading having been early awakeaed in him, he was allowed ample means of gratifying it. In every fair estimate of his character due weight must be given to the faet that he was a self-educated man, althuugh one placed in exceptionally favourable cirenmstances, and that while he hid in a large measure the merits which flow from selfedueation he conld not altogether escape the defects which naturally aceompany them. He gained his first distinetions not in literature but in chess, being reputed, before he was twenty, one of the first players in the world. Ifis father died in January 1840, and in July of that year his mother, his unmarried aister, and himself left England and travelled in France, Italy, and Germany for a year, during which time, as also after his return home, he studied diligently modern langunges. From the spring of 1843 to that of 1844 was likewise spent on the Continent. He had by that time formed the resolution to direct all his reading and to devote all his energies to the preparation of some grent historical work, and during the next seventeen years, with rare selfdenial, he bestowed ten hours ench day in working out his purpose. At first he contemplated a history of the Niddle Ages, but by 1851 he had decided in favour of a histary of civilization. The six years which followed were occupied in writing and rewriting, altering and revising the first volume, which appeared in June 1557 . It at onee made its author a literary and even social celebrity, -the lion of a London season. On 19th Marel is5s he delivered at the loyal Institution' a lecture on the J.nfuence of Women on the Progress of hrouledge, which was published in Fraser's Mhegazine for April 1858, whence it lins been reprinted in the first volume of the Miscellaneous and Posthumons Works. The professed aim of this his first and only lecture in public was to prove that women naturally prefer the deductive method to the inductive, and that by encouraging in men deductive labits of thought, they have rendered an inmense, though uneonscious, service to the progress of knowledge, by preveating men of science from being as exclusiveiy inductive as they would otherwise be; but the facts and reasons adduced in support of these propositions were few and indecisive, the discourse being in the main aimply an eloquent general pleading for the combinarion of deduction and induction in scientifie investigation. On 1st April 1859, a crushing and desolating afliction fell upon him in the death of his mother. It was mader the
immediate impression of his ioss that he concluded a res'ew he was writing of Mr J. S. Mill's Essay on Lüurey with an argument for immortality, based on the yearning of the affections to regain communion with the belovel dead,-ns the impossibility of standing up and living, if we believed the separation were final. 'The argument is a strange one to have been used by a man who had maintained so strongly that "we have the testimony of all histhy to prove the extreme fallibility of consciousness." The rusien arpeared in Fraser's Magazine, May 1859, and is now to be found also in the Miscellaneous and Posthamous Works. The second volume of bis history was published in May 1861. Soun after he left England for the East, in order to recruit his spirits and restore his health. From the end of October 1861 to the beginning of March 1862 was spent by him in Egypt, from which le went over the desert of Sinai and of Edum to Syria, reaching Jerusalem on April 19, 1862. After staying there eleven days, he set out for Europe by Beyrout, but at Nazareth be was attacked by fever; and, endeavouring to shake it off and striggle onwards, when rest was what he required, he fell a victim to it at Damascus on May 29, 1862, sged forty. The marble altar-tomb over his grave has inscribed on it an ancient Arabic couplet whieh signifies,-
"The written word remains long nfter the writer; The writer is resting under the earth, but his works endure.'

The three volumes of Buckle's Miscellaneous and Posthumous IForks, edited by Miss Melen Taylor, and published in 1872, contain the leeture delivered at the lioyal Institution, and the review of Mill's Liberty, which have been already mentioned, "A Letter to a Gentieman ou Pooley's Case," "Fragments,"--of which the portions relating to Queen Elizabeth appeared in Fraser's Magazine about five years after the author's death,--and "Commonplace Books," enmposed of abstracts of works read, and collections of facts and ideas meant to bo wrought into his magnum opus, or, at least, to assist him in comprebending the history of civilization. The "Common-place Books" fill the sceond and third volumes, and it may be reasonably questioned whether matter so unsifted and unformed as is the bulk of that of whieh they consist slould ever have been published.

The farne of Buckle must rest wholly on lis socal. d History of Civilization in England. It is a giganuc unfmished introduction, of which the phan was, first, to state the general princindes of the anthor's method and tho general laws which govern the cunrse of haman progress; and secondly, to exemplify thesc principles and laws through the histories of certain nations claracterized by prominent and peculiar features,--Spain and Scotland, the United States and Germany. Its chief ideas are, - 1 , That, owing partly to the want of ability in listurinns, and partly to the complexity of social phenomena, extrenely little has as yet been done to mards discovering the principles which govern the elamater and desiny of nations, or, in other words, towalds establishiny a science of histury; ? That, while the theological dogma of predestination is a barren bypothesis beyond the province of knowledge, and the metajliysical dogma of free will rests on an erroneous belicf in the infallitility of consciousness, it is pruved by science, and especially ly statistics, that haman actions are governed by laws as fixed and regular as those Wlich rule in the physical world; 3. That climate, suil, fond, and the aspects of nature, are the primary canses of intellectual progress,-the first three indirectly, through deter. minning the accumulation and distribution of wealth, and the last by directly infacncing the aceumulation and distrization of thought, the imagination being stimulated and the understanding filmaed when the phenomena of.
tho external world are sublime and terrible, the understanding being emboldened and the inaguation curbed when they are simall and feeble; 4. That the great division between European and non-European civilization turps on the fact that in Europe man is stronger than nature, and that elsowhere nature is strongerst han man, the consequence of which is that in Europe alone bas man subdued nature to his service; 5. That the advance of European civilization is characterized by a continually diminishing influence of physical laws, and a continually increasing intluence of mental laws; 0 . That the mental laws which regulate the progress of society cannot be discovered by the metaphysical method, that is, by the introspective study of the ind.vidual mind, but only by such a coniprehensive survey ai facts as will emabie us to climinate disturbances, that is, by the method of averages: 7. That human progress hiss bean due, not to moral arencies, which are stationary, and which balance one another in such a manner that their influence is unfelt over any long lecriod, but to intellectual activity, which has been constantly varying and advanc-ing:-" The actions of individuals are greatly affected by their moral feeliags and passions; but these being antagonistic, to the passions and feelings of other indiriduals, are balanced by them, so that their effert is, in the great a "urage of human affairs, nowhere to be seen, and the total antions of mankind, considered as a whole, are left to be regulated by the total knowledge of which mankind is possessed ;" 8. That individual efforts are insignificant in the greai mass of human affairs, and that great men, alibough they exist, and must "at present" be looked upon as disturbing forces, are merely the creatures of the age to which they belong; 9. That religion, literature, and government are, at the best, the products and not the causes of civilization; 10. That the progress of civilization varics directly as "scepticism," the disposition to dunbt and to investigate, and inversely "as credulity" or "the protective spirit," a disposition to maintain, without examination, established beliefs and practices.

These are all the gencral truths which are contained in Buckle's theory of bistory. And obviously, however nbly advocated, however solidly established they might be, they most fall short of constituting a science of history, uuless that science be one of unparalleled simplicity and vagueness. But probably none of then are completely made out; probably none of them are quite true; while several of them seem to be nearly altogether falso. Buckle either could not define, or cared not to define, the general conceptions with which he worked, such as those denoted by the terms "civilization," "history," "science," "law," "scepticism," and "pratective spirit;" the consequence is that his arguments are often fallacies. Whenever he treats of matters metaphysical, psychologien, or theological, he shows plainly that his mind had been little exercised on such subjects. He assumes, without the slightest evidence, that law and free will, orderly histerical developnient and providential government, the metaphysical method and the method of averages, obeying nature and ruling nature, are so many alternatives of which the terms contradict and exclude each other; it does not seem to have occurred to him that freedom and law, historical order and providential government, internal and external observation, might co-cxist, or that Lacon might have had reason in writing-"natura non nisi parendo vincitur." "lie looseness of bis staternents and the rashness of his infercnces regarding statistical averages make him, as a great authority Luas remarked, the enfant torrible of moral statisticians. He denies the influence of race without adequate consideration, and so exaggerates the power of climate, soil, food, and the aspects of rature, as at times to be fairly rhargeable with uhvical fatalism. He neglects to raiso
the essential question, Must not certain moral conditions \sim realized before the aecumulation and distribution of wealth are possible? In attempting to prove the unpragressiveness of moral linowledge be gives us such assertions as these:-"That the system of morals propounded in the New Testament contaned no maxim whel had not been previously enunciated, and that some of the most beautiful passages m the Apostolic writings are quotatiuns. from Pagan authors is well bnown to every scholar:" "Systematic writers on morals reached their zenith in the13th century, fell off rapdly after that period, were, as" Culeridge wetl says, opposed by the 'genius of Protestantism,' and by the ent of the 17 th century became extinet in the most civilized countries,".-althuugh the faets are, that the passages in the Apostolic writings known to be quota. tions from Pagan authors are just three in number, two of which have nu claims to beauty, and that there have been more systematic wroters on morals in the 19th century than there were writers of all kinds charing the 13 th. The reasoning employed to show that intellectual forecs have been far more potent than moral forces in prodncing progress has many thaws, which have been often pointed out. What Buckle himseli says of the achievements of Richelien, Adam Sinith, Voltaire, and others, and of the effects of the protective spint in France and England, and of religious intolerance in Spain and Scotland, is irreconcilable with his doctrines that great men, government, and relggion have had almost no influence on civilization. His mradox about scepticism and credulity is partly a truism inaccurately expressed and partly its exaggeration. ."- -

The larger jart of Buckle's first volume, and the whole of the second, are composed of surveys of positive history, undertaken to prove the last of the general theses already mentioned. The rest of these theses are ignored. and some of them are even by implication contradicted. when be engages in actual historical work. Perhaps the bistorical work performed by him is none the worse on that account. The chief aim of the histurical portion of the first volume is to trace the working of the protective spirit in its political form, and to show its civil tendencies. France, the most civilized country in which that spirit is very powerful, is chosen as the field of illustration, and the history of the intellect and policy of France is laid before us in outline, and compared and contrasted with that of England, the developnent of which is held to have been comparatively spontaneous and normal. The first chapter of the second volume gives a general view of the history of the Soanish mind from the 5 th to the middle of the 19th century, designed to show why the protcctive spirit has prevailed in Spain in a religious form, and how it has isolated the Spanish nation from the rest of the world, weakened and degraded it, and hitherto frustrated all efforts at improvement. The other four chapters are designed to explain what Mr Buckle supposes to be the largest and most important fact in the history of Scotland, -the combination in its people of liberality in politics with illiberality in religion. In order to accomplish the explanation it is found necessary to argue that the Seottish Reformation was the work of the nobles, animated by hostility to the Roman Catholie priesthood; that the Protestant elergy, owing to being despised by the governing class, united themselves with the people, advoeated democratic prineiples, and, favoured by the course of events, acquired au immense autbority, the result of which was the general prevalence of extreme religious bigotry; that the Scotch philosophy of the 18th century, although a reaction against the theological spirit of the 17 th, retained the theological method ; and that, owing to its deductiva character, that philosopby has been inaccessiblo to the average intellect of the mation. and wewedess to free it
from the grasp of superstition. On the proof of these positions Buckle lavished labour, learning, and ingenuity, and, it will be generally admitted, attaned some considerable results. But the results were by no means so great or certain as he himself imagined. Few competent judges will deny tirat, in regard alike to France and Scotlisnd, he overlooked influences whinh had been as powerina in shaping the characters of these nations as those on which he laid exclusive stress. No explanation of French histury can be satisfactory which does not attach due weight so the series of events, by which the maty of France was built up, and which only begins aiter that unsty was completed; no explanation of Scotush history can be satisfactory whieh slurs over the wars with England. The French Revolution was, as Buckle represents it, a reaction against the protective spirit, - but it was a great deal more, and that he did not see, the Scottish Reformation was due in some measure to the antagonsm between the nobility and priesthood, as he has amply shown, but he might easily have still more amply shors that it was very far from wholly due to $1 t$. To some extent the Scoteh philosophy of the 18 th century was a reaction aganst the theological spirit of the 17 th , as he saw; but to a much greater extent it was a natural development of British and even European thought, which be should not bave overlooked. That etther the Scottish philosophy or the Scottish intelleet was essentially deductive be wholly failed to make out, and would never havo tried to make out, had it not been that his views as to the difference between induction and deduction were strangely vague and confused. Hume was not as deductive as Kojucs. Adam Smith, at lenst as a political cconomist, was less deductivo than Malthus and Ricardo. Black was esss so than Dalton and Davy. Tc say that deduction is a prominent characteristic of Hutcheson, Reid, or Dugald Stewart, is glaringly contrary to fact. If thear writings show any particularly Scotush trat, it is Scottish caution manitesting itself in suspicion of deduction.

Buckle had a high ideal of the historian's duties, and ho lnboriously endeavoured to realize it, but be fanered himself far more successful in the attempt than be really was, and greatly underrated what had been necomplished by others. Ho brought a vast anount of information from the most varicd and distant sources to contirm his opinions, and the abundance of his materials never perplexed or burdened bim in his argumentation, but examples of wellconducted histoncal inductions are raro in his pages. He sometimes altered sind contorted the facts; lie very often unduly simplified his problems, ho was very apt when he had proved a davourite opimon true to infer it to be the whole truth. His intellect was comprechensive and vigorous, but nettber classically cultured nor setentifically disciplined; it was amazingly stored with facts, but not rich in ideas; it was ambitious in aspuration, confident to axcess in its own fowers, and exceptionally unconscious of where its knowledge ceased and its ignorance began. It was deficient in ımagination, poetical feeling, and sympathy. Hence Buckle was narrow and barsh in his. judgments on certan great periods of time and large classes of men, on antiquity and the Middle Ages, on the clergy and statesmen, on beroes and martyrs. But he was fearlessly honest according to his lights, and gave expression to the most distasteful of his opinions with a manly openncss. He paid great attention to bis style, and it has been pronounced, by an eminently competent judge, "cqual to the sabject, precise enough for the demands of science, full, fowing, and flexible enough for every purpose of eloquence. Lacid when the business of the writer is to state, explain, or illastrate, it ascends, when anger at the oppressor or sympathy with the oppressed call upon it, to tones worting
of Edmund Burke himser aenoancing the corruptions of England or the wrongs of India."

References. - Bestdes the works of Mr Buckle mentioned above, sou In the Morningland, and especially Pilgrim-Memories, by J. S. Stuarn Glennie; A. von Uettingen's Morals'atistik, i. 155-172; J. G. Dropa sen's Erhebungder Geschichte zum Rang emer Wissenuchaft, reprint ed in his Grunulress der Historik from v. Sybel's Zeisehrifl, ix, (186:); Latrent's Phulosophe de l'historze, 215-237; Boullier's Moral et Proigres, 201-230; Etienne's Postivistne en lustorre (hev. d. Deuz Mondes, Mars 150186S); Edinburgh Review, for April 1858, art. vil: Prof. Masson in Macmillan's Mayazme for July. August, and September 18ti: J. H. Burlon, Phylax on Buckle; J. Hutchison Stirlagg on "Buckle, has Problem and his Mctaphysics" in the Aiorth American licuzele, July 1872 , and on "Mr finckle and the Aufklarang,' in the Journal of Spceulateve Phalosophy, Octobet 1S35, \&c.
(R. F.)

BUCKWHEAT, the seeds of various species of Fago pyrum, chieHy F esculentum, a herbaceous plant, native of central Asta, but cultivated in Europe on account of its seeds. Tbe sceds, as cnclosed in their dark browy tough rind, nre threc-sided in form, with sharp angles, similar in shape to beech-mast, whence their name from the German Buchwezen, becchwheat. Buckwbeat is grown in Great Britann only to supply food for pheasants and to feed poultry, which devour the seeds with avidity. In the northern coultries of Europe, however, the seeds are employed as human food, clitilly in the form of cakes, which when baked then have an agrceable taste, with a darkish somewhat violet colour. The meal of buckwhent is also baked into crumpets ns a favourite dainty among Dutch children, and in the Russian army buck wheat groats are served out as part of the soldiers' rations, which they cook with butter, tallow, or hemp-seed onl. Duckwheat is also used as food in-the United States; and by the Hindus it is eaten on "bart "or fast days, being one of the phalabas or lawful foods for sueh occasions. When it is used as food for eatile the hard sharp angular rind must first be removed. As compared with the principal cereal grains, buckwheat is poor in nitrogenous substances and fat; but the rapidity-and case with which it ean be grown render it a fit erop for very poor badly tilled land. According to Payen it contans-nitrogenous matter $13 \cdot 10$ per eent., starch $64 \cdot 00$, fat 300 , water $13 \cdot 00$, cellulose and ash 6.00. An mmenso quantity of buckwbeat boney is collected in linssia, bees showing a marked preference for the flowers of the plant. A dye-stuff is obtained from the leaves of a species of buck wheat, Polygorum tinctorium, which may be used for producing a yellow or olive colous on cotton, according to the mordant employed.

BUDA (German, Ofex), a royal frec town of the king. dom of Hungary, is situated in $47^{\circ} 29^{\prime} 10^{\prime \prime} \mathrm{N}$. lat. and $19^{\circ} 2^{\prime} 55^{\prime \prime}$ E. long, on tho right bank of the Danubes opposito the capital Pesth, with which it has been united since 1849 by a suspension bridge of much beauty, 1227 feet long and 39 feet wide. The mucleus of the town is the "fortress," wheh occupies an oblung elevation of por phyry rock, not unlike tho Acropolis of Athens. It contains the royal palace, the mansions of Counts Sandor, Telcki, and Erd ödy, the residence of the governor in command, the arsenal, and several buildings for official purposes. The palace includes the court church-where the regalia of Hungary are preserved, a picture gallery, and a library. Around this central portion there havo grown up various suburbs, known respectively as the Wasserstarlt, the Landstrasse, the Neustift, the Christinenstadt, and the Taban ol Rascian town, the last of which derives its nane from its Servian inhabitants, who are mainly vineyard owners. In the Wasserstadt are the chureh of St Anne and Elizabeth, and the military hospital ; in Christinenstadt, the Horvath gardens, with the summer theatre, and tho large mansion. house of Count Caracsonyi; aud.in Old Buda are the royal barracks, part of which was once the mopastery of

Mariazell. There are in the town upwards of fifteen churches, as well as вeveral conventa, and a Jewish synagogue. The educational establishments include a gymnasium of the bighest class, an upper commercial school, five uornal institutions, a school of design, a school of music, aud about sixteen schools of lower grade. There is also an obscrvatory in the town. Buda has long been celebrated for its mineral baths, which are five in number. The Bruckbad and the Kaiserbad were both founded by the Turks, and the buildings retain traces of Turkish oceupation. The temperature of the water is about $118^{\circ} \mathrm{Fahr}$. The town is cummanded by the eminences known as the Spiessberg or Nap Hegy, and the Blueksberg or Gellert Hegy, the latter of which is crowned by a citadef. The industry of Buda comprises the making of eannon, type-founding, silk-weaving, coach-building, and the manufacture of majolica, eopper wares, and gunpowder. A somewhat active trade is carried on in the red wine produced in the neighbouring vineyards, and Old Bula is the geat of a good deal of Piver traffic. The Dunube Steam Navigation Company have a considerable cstablishrent there, in which a number of their vessels are bailt. In 1869 the population of the commune was 53,988 . Old Buda was known to the Rumans for its mineral springs; but the modern town dates only from the Middle Ages. In 1247 King Bela built a castle, which was originally regarded as belonging to Pesth; but the town which gradually gathered round it soon aequired an independent importance. In 1526 it was eaptured by the Turks, and in their hands bccame a place of pilgrimage, as well as an important military post. In 1686 it was wrested from them by Charles of Lorraine. During the Hungarian wars of the present century it played a distinguished part. In January 1849 the fortress was seized by the Austrian general Windischgrätz; but in May it was taken by storna by the Hungarians under Gürgcy. On thcir departure the Russiais took possession, but shortly afterwards handed the place over to the Austrian forces.
budeus, or Budé, Gullaume (146i-1540), deecended of an aneicut and illustrious family, was a native of Paris. At an early age he was sent to the schools of Paris, and afterwards to the university of Orleans to study law. He passed his time, however, in idleness, and being heir to a large fortune, was left, on his return to Paris, to follov his passion for gaming and pleasure. It was only when the fire of youth began to cool that be was seized with an irresistible passion for study; and having disposed of his Lunting equipage, he abandoned business of every debcription, and applied himself wholly to literature. Without assistance, he made rapid progress, particularly in the Latin and Greek lauguages. The work which gained him greatest reputatiou was lis treatise $D_{e} A$ sse, the first edition of which was published at Paris in 1514, He was held in high esteem by Francis I, who was persuaded by him and by Du Bellay to found the Ruyal College of France, for teaching languages and scionces. He was sent by the hing to Rome as ambassador to Leo X., and in 1522 was male master of requests. He died in Paris in 1540. Of
his works, printed at Basel in 4 vols. folio in 1557, the most important is the Commentarii Grocce Linguse, which first appeared in 1529.
LUDAUN, a district of British Indis, in the Robilkhand division, under the jurisdiction of the Lieutenant-Governor of the North-Western Provinces, lies between $27^{\circ} 35^{\prime}$ aud 98° $29^{\prime} \mathrm{N}$. lat, and $78^{\circ} 21^{\prime}$ and $79^{\circ} 35^{\prime} \mathrm{E}$. long, and is bounded on the N. by the British district of Moradabad, on the N.E. by the district of Lareilly, on the S.E. by that of Shabjahanpur, on the S. by Farukbabad and Mainpuri, and on the west by Aligarh and Bulandshahr. The country is low, level, and is generally fertile, and watered by the Ganges, the Rámganga, the Sot or Yarwafadar, and the Mabiwh. The area is 2004.84 square miles, of which 1376.94 square miles are under cultivation, 382.54 square miles cultivable but not actually under cultivation, and the rest uncultivable waste. The district population in 1872 amounted to $934,3 \pm 8$ souls, residing in 193,589 houses, and inhabiting 2364 villages. Of the total population, 794,532 or $85^{\circ} 1$ per cent. were Hindus, 139,687 or 14.9 per cent. Mahometans, 129 Christians and others of unspecificd religion. Riee, wheat, sugar-cane, cotton, pulses, oil-seeds, and varieties of millet form the principal agricultural products of Budaun. The chief routes through the district are the roads from Farukbabad to Moradabad, from Agra to Bareilly, from Aligarh to Moradabad, and from Delhi to Bareilly. In $1870=71$, the total reienue amounted to $£ 130,424$, of which $£ 111,722$ or 85 per cent. was derived from the land. In 1872-73 Budaun district contained 303 schools, aftended by 4848 pupils. The fullowing towns in the district have upwards of 5000 inhabitants:-Bndaun, the administrative beadquarters,area,"335 'ácres, population 33,322; Islámnagar, population 5424; Ujhani, 7656; Sabsswan, 17,063; Bilsi, 5282; Alápur, 5347. Budaun district was ceded to the British Government in 1801 by the Nawab of Oudh. During the mutiny of 1857 , the people of Budaun sided with the rebels, and the European officer in charge of the district only saved his life by fight.

BUDDEUS, Join Francis (1667-1729), a celebrated Lutheran divine, and one of the most learned men Germany has produced, was born at Anklam, a town of Pomerania, where his father was minister. He studied with great distinction at Greifswald and at Wittenberg, and having attained to emincnce in languages, theology, and bistory, was appointed Greek and Latin professor at Coburg, -afterwards professor of ethical scienco and polities in the university of Halle, and at length, in 1705, professor of divinity at Jena, where, after having acquired a very great reputation, he died in 1729.

His principal works are,-A large historical German Dictionary, Leipsic, 1709, folio; Historia Ecclesiastica Y'teris Testamenti, Halle 1700, 4 rols. Sto ; Elementa Philosophia Pradice, Instrumentalus, et Theortice, 3 vols. 8 vo , which has passed through a great number of editions; Seledt Juris Natura et Gentium, Halle, 1704, 8vo ; Alisectlanca Scerna, Jena, 1727, 3 vols. 4to; and Istgoge Historico. Theo. logiaa ad Theologian Universam, singulasgue gjus partes, 2 vols 4 to.

BUDDHISM

BUDDHISM is the name of a religion which formerly !revated through a large part of lndia, and is now professed by the inhaintants of Coylon, Siam, and Burna (the southern Ludehists), and of Nepall, Tibet, China, and Japan (the nerthern Budhists). ${ }^{\text {I }}$ It arose out of the philosophucal and ethical tcachings of Sidthirtha Gautama,

[^20]the eldest son of Suddhōdana, who was raja in Kapilavastu, and ehief of the tribe of the Sajkyas, an Aryan clan seated during the 5th century b.c. on the banks of the Kohana, about 100 miles N. of the eity of Benảres, and about 50 milos S. of the foot of the Hināilaya Mcuntains.

We are accustomed to find the legendary and the miraculous gathering, like a halo, around the early bistory of religious leaders, until the sober truth runs the risk of being altagether neglected fur the glittering aud cuifyiug folse-
hood. Buddba has not esceped the fate which has befallen the founders of other religions; and as late as the year 1854 the late Professor Wilson of Oxford read a paper before the Royal Asiatic Society of London in which he maintained that the supposed life of Buddha was a myth, and "Buddha bimsel. merely an imaginary being." No one, however, would now support this view; and it is admitted that, under the mass of miraculous tales which have been baoded dowa regarding him, there is a basis of truth afready sufficiently clear to render possible an intelligible history, which will become clearer and clearer as older and better authoritics are made accessible.

The chief sources of our at present available ioformation Fegarding the life of Buddba are-1, The Manual of Buddhism, published in 1860 by the Rev. M. Spence Hardy, compiled from sarious Sinhalese soarces; 2 , The translation into English (published by Bishop Bigadetet in Raagoon in 1858 under the title Legend of the Burmese Butdha) of the translation into Surmese of a Pāli work called by Bigandet Mailalingarz-Wouttoo, of unknown author and date ; 3, The original Päli text of the Jätaka commentary, written in Ceylon in the 5th century 1.D., edited in 1875 by Mr Fausboll of Copenhagen (this is.our best authority); 4, Mr Beal'a recently pullished trămslation into English (under the title The Romantic Legend of Sakya Buditha) of a translation into Chinese, made in the Gth century A.D., of a Sanskrit work, called Abhinishkramana Sütra; 5, A Sanshrit work called the Lalita Vistara, undoubtedly very old, but of unknown author or date, the text of which has appeared in the Bibliotheca Indica in Calcutis, and a translation through the Tibetan into l'rench by M. Foucaux in Paris (1848). The first three bouks represent the views of the southern Buddhists, whuse sacred books are in Pali, and last the two those of the northern Buddhists, whose sacred books are in Sanskrit. The former aro much the more reliable and coniplete, the latter being inflated to a great length by absurd and miraculous legends, the kerncl off fact at the ceutre of which agrees in the main with the account found in the former. These have their noiraculous macidents too, the relation of the Sanskrit sources to the Pali resembling in many respects that of the apocryphal gospels to the New Testament.
1 As there has been little or no intercommunication between the tivo clurches since the 3 d century b.C., great reliance may reasonably be placed on these statements in which they agree; not indeed as a proof of the actual facts of the Buddha's biography, but as giring us the belief of the early Buddhists concerning it. It is to be regretted that the books we bave to compare are, as yet, of so comparatively modern a date; but, after the respective canons had once been fixed, it is not likely that translators 'would deviate very materially from the text of the biographics; 'so sacred to them, with which they had to deal. The southern canon-usually called the Tripitaka or three collection-was finally determined about 250 B.c., at the Council. of Pataliputra on the Ganges, held under the auspices of the Emperor Asoka the Great; and the northern about the commencement of our cra at the Conncil of Jälandhara, in Kashmir, beld under Kañishka, a powerful Indo.Scythian monarch. 'To the former belongs the Buddhavansa, or History of the Buddhas, on which, together with its commentary, our three southern accounts are chielly based; to the latter belongs the Lalita Vistara, the last of the authoritics $m \in n$ ioned above.

At the end of this article will be found a description of those parts of the canon as yet published; for what is known of the contents of the unpublished parts the student is referred, for the northern, to B. H. Hedgsen's Essays, pp. 17 et seq. and 36 et seq.; to Csoma Körousi in the Asiatic Researches, vol. xx. ; Burneuf, Intr., 34-68;
and Köppen, ii. 279 ; for the southern to Hardy's Eastern Morachism (1850), p. 166 et seq., and to M. Barthélemy St-Hilaire's papers in the Jouraal des Savants for Feb. and March $1 \$ 66$.

Part I.-The Life of Gautama Budda

At the end of the 6th century b.c. the Aryan tribes from the Panjab bad long been settled on the bauks of the Ganges; the pride of race had put un inpassable barrier between them and the eonquered aborigines; the pride of birth had built up another between the chiefs or cobles aod the mass of the Aryan people; and the superstitious fears of all gielded to the priestlood an unquestioned and profitahe suprenacy; while the exigencies of occupation and the ties of family bad further separated each class into smaller communities, until the whole uation had became gradually bound by an iron system of caste The old child-like joy in life so unanifest in the Vedas had died away; the worship of nature had dereloped or degencrated into the worship of new and less pure divinities; and the Vedic songs themselves, whose freedom was littlo compatible with the spirit of the age, had faded ioto an obscurity which did not lessen their value to the priests. The country was politically split up into little pridecipalitics, each governed by some petty despot, whose interests were not often the same as those of the community. A convenient betief in the doctrine of the transmigration of souls satisfied the unfortunate that their woes were the natural result of their own deeds in a former birth, and though unavoidable how, might be escaped in a future state of existeuce by present liberality to the pricsts. While boping for a better fate in their next bith, the oppressed people turned for succour and advice in this to the aid of astrology and witcheraft-a belief in wheh scens to underlio all religions, and is only just dying out among ourselves. The philusophy of the day no longer hoped for an immortality of the soul, but louked for a rclease from the misery which it fund inscparable from life, in a complete extinction of indivirual existence. The inspiriting wars against the enemies of the iryan Ireople, the infidel deniers of the \bar{A} ryan gods, bad given place to a succession of internecine feuds between the chiefs of yeighbouring clans; and in literature an age of pocts lad long since made way for an age of cummentators and grammarians, who thought that the old poems nust lave been the work of gods. But the darkest period was succeeded ly the dawn of a reformation; travelling logicians were willing to maintain theses against all the world ; whilst bere and there asectics strove to raise themselves above the gods, ad hermats earnest'y sought for some satisfactory solution of the mysteries of life. These were the teachers whom the people chiefly delighted to honour; and though the ranks of the 1 riesthood were for ever firmly closed against intruders, a man of lower caste, a Kshatriya or Vaisya, whose miod revolted againet the orthodox creed, and whose beart was stirred by mingled zeal and ambition, might find through these irregular orders an entrance to the career of a religious tcacher and reformer.

The population was moat thickly scattered within 150 miles of Benares, which was already celcbrated as a scat of piety and learning; and it was at Kapilavastu, a few daya' journey north of Denares, that in the 5th century b.c. ${ }^{1}$ a räja Suddtüdana ruled over a tribe who were called the

[^21] and that of Buddha.

Bakyor, and who from their weu watered rice-fiends could see the giant Himalsyas looming up aganat the clear blue of the Indian sky. Their supplies of water were drawn from the Rıver Rohini, tire modern Kobāna; and though the use of the river was in times of drought the cause of disputes batween the Sakyas and the noighbouring Koligans, the two claus were then at peace; and two daughters of the rāja of Koli, which was only 11 miles east of Kapila. vastu, wer the princtpal wives of Sudhoudana. Both wero childless, and great was the rejnicing when, in about the forty-fifth year of ber age, the eller sister, Mahāmāy ${ }^{\text {an }}$, promised Ler husband a son. In due tume she started with the intration of loing confined at her parent's home, but the party balting on the way under the shade of some lofty satia trees, in a pleasant garden called Lumbini on tle river side, her son, the future Buddha, was there unexpentediy lorn. The marvellous stories which gathered round the belief in his voluntary incarnation and immaculate conception, the miracles at his birth, the prophecies of the aged saint at his formal presentation to his father, and how nature altered her course to keep a shadow over his cradle, whilst the sages from afar came and worshipped him, will be referred to hereafter under the head of later Buddhism.

He was in after years more generally known by his family name of Gautama, but his individual name was Siddhārtha. When he was nineteen years old he was married to his cousin Yasodharā, daughter of the Koliyan rāja, and gave himself up to a life of Oriental luxury and delight. Soon after this, according to the southera account, his relations formally complained to the raja that his son lived entirely for pleasure without learning anything, and asked what they should do under such a leader if war arose. Gaatama, hearing of this, is said to have appointed a day for a trial of his prowess, and by defeating all bis compeiitors in manly exarcises, and surpassing even his teachers in knowledge, to have wou back the good opinion of the disaffected Sakyas. This is the solitary record of his youth; we hear nothing more till, in his twenty-ninth year, it is related that, driving to bis pleasure-grounds one day, he was struck by the sight of a man utterly broken down by age, on another occasion by the sight of a man suffering from a loathsome disease, and some months after by the horrible sight of a decomposing corpse. Each time his charioteer, whose name was Channa, told bim that such was the fate of all living brings. Soon after he saw nn ascetic walking in a calm and dignified manner, and asking who that was, was told by his charioteer the charaiter and ains of the ascetics. The different accounts of thes vary so much as to cast great doubts on their accuracy.' It is, however, clear from what fullows, that about this time the mind of the goung Rajput must, from some cause or other, have been decply stirred. Many an earnest heart full of disappoinurent or enthusiasm has gone through a similar struggle, has learut to look upon all earthly gains and hopes as worse than vanity, has envied the caln life of the cloister, trouble: liy none of theso things, and has longed for an opportuuity of cutire self. ourrender to abstineuce and meditation.

Subjectively, though not objectively, these visions may be supposed to have appeare! io Gantama. "Afor sesing the last of thea, he is sail to have spon the afternoon in This pleasare-rounds by the meer side; and having bathed,

[^22]to have entered lis: chariot in order to return home. Just then a mersonger arived with the news that his wife Yasodhara had given birtll to a son, his only child, "This," sa:d Gautana quietly, "is a new and strong tie I shall have to break." But the people of Kapilavastu were greatly delighted at the birth of the yoncg heir, the rija's only gracison. Gautama's return Eecane an ova. tion; musichans preceded and followed his chariot, wilite shouts of joy and triumplef fell on his ear. Among thess sounds one especiatly attracted his attention. It was the ruice of a young girl, his cousin, who sang a stanza, sayng, "Huppy the father, happy the nother, bappy the wife of stich a son and husband." In the word "happy" ! ry a double meaning; it meant also frced from the chains of existence, delivered, saved. ${ }^{2}$ Grateful to one who, at such a time, reminded him of his highest hopes, Gautama, to whom such thinga had no longer any value, took off his collar of pearls and sent it to her. She imagined this was the beginning of a courtship, aud began to buld day-draams about becoming his principal wife, but he took no further notice of her and passed on. That evening the daacing.girls came to go through the Natch dances, then as now so common on festive occasions in many parts of India; but he paid them no attention, and gradually fell into an uneasy slumber. At midnaght he awoke; the dancing-girls were lying in the ante-room; an overpowering loathing filled his soul. He arose instantly with a mind fully made up,-" roused into activity," says the Sinhalese chronicle, "like a man who is told that his house is on fire." ${ }^{3}$ He called out to know who was on guard; and finding it was his charioteer Channa, be told him to saddle his horse. While Cbanua mas gone Siddhärtha gently opened the door of the room where Yasodharā was sleeping, surrounded by flowers, with one hand on the head of their child. Iie had hoped to take the babe in his arms for the last time before be went, but now he stood for a few moments irresolute on the threshold looking at them. At last the fear of awakenug Yasodharā prevailed; he tore himself asray, promising himself to return to them as soon as his mind had become clear, as soon as he had become a Buddha,-i.e. Enlightened,and then he could return to them not only as hushand ana father, but as teacher and saviour. It is said to bave been broad moonlight on the full moon of the month of July, wheo the young chief, with Channa as his sole companion. leaving his father's home, bis wealth and power, his wifc and child behind him-went out into the wilderness to become a penniless and despised student, and a homeless wanderer. This is the circumstance which bas given its name to the Sanskrit work, the fourth of those mentioned above, of which Afr Beal has given us a version through the Chinese, the Mahähinishhranana Sütra, or Sütra of the Great Renunciation.

Next is related an event in which we may again see a subjectivo experience given under the form of an objective reality. Mara, the great tempter, appears in the sky, and urges Gautama to skop, promising him, in seven daye, a universal kingdom over the four great continents if he will but gire up his enterpise. When his words fatil to have ay elioct, the tetarter comsoles thimseli by the confident hope that be will still orercome bis enemy, snying, "Sooner or later some lastful or malicions or angig thought must saise in his nind; in that moment I shall be his master:" aod from that hour, adds the Burmese chroncle, "as a

[^23]shadow slways follows the body, so be too from that day always followed the Blessed One, striving to throw every obstacle in his way towards the Buddhahood." ${ }^{\prime}$ Gautama rides a long distance that night, only stopping at the banks of the Anoma beyond the Koliyan territory. There, on the sandy bank of the river, at a apot where later piety erected a dāgaba (a solid dome-shaped rehe shrinc), he cuts off with his sword his long fowing locks, and takng off his ornaments, sends them and the borse back in charge of the unwilling Channa to Kapilavastu. The next seren days were spent alone in a grove of mango trees near by, whence the ascetic walks on to Rajagriha, the capital of Magadha, and residence of Bimbisāra, one of the then most powerful rulers in the ralley of the Ganges. He was favourably receivcd by the rāja, a friend of his father'a; but though asked to do so, he would not as yet assame the responsibilities of a teacher. He attiahbed himself first to a Brahmon rophist named Alära, and afterwards to another named Udraka, from whom he learnt all that Hindu philosophy had then to teach. ${ }^{2}$ Still unsatisfied, he next retired to the jungle of Uruvela, on the most northerly spur of the Vindhya range of mountains, and there for six years, attended by five faithful disciples, be gave himself up to the severest penance and self-torture, till his fame as an ascetic spread in all the conntry round about "like the sound," bays the Burmese ehronicle "of a great bell hung in the canopy of the skies." ${ }^{3}$ At last one day, when he was walking in a much enfeebled state, he felt on a sudden an extreme wcakness, like thet eaused by dire starvation, and naable to stand any longer he fell to the ground. Some thought be was dead, but he recovered, and from. that time took regular food and gavo up his severe penance, eo much so that his five disciples soon ceased to respect him, and leaving him went to Benares.

There now ensued a second struggle in Gautama's innd, described in both soutbern and northern accounts with all the wealth of poetry and imagenation of which the Iudian mind is master. The crisis culminated on a day, each event of which is aurrounded in the Buddhist accounts with the wildest legends, on which the very thoughts passing through the mind of Buddba appear in gorgeons descriptions as angels of darkncss or of light. To us, now taught by the experiences of centnries how weak such exaggerations are compared with the eflect of a plain unvarnished tale, these legends may appear childish or absurd, but they have a depth of meaning to those who

[^24]strive to read between the hnes on euch ruwe ac. narticu late attempts to describe the indescribable. That which (the previous and subsequent career of the teacher bsing borne in miud) seems to be possible ond even probable, appears to be somewhat as follors.

Disenchanted and dissatisfed, Gautama had givea up all that most men ralue, to seck peace in secluded study and self-denial. Failing to attain his object by learning the wisdom of others, and living the simple life of a student, he had devoted himself to that inteuse meditation and penance which all philosophers then said would raise men above the gods. Still unsatisficd, longing always for a certainty that seemed ever just bogond his grasp, be bad added vigil to vigil, and penance to penance, until at last, when to the wondering riew of others be had become more than a saint, bis bodily strength and his indomitable resulution and fasth had together suddenly and completely broken down. Then, when the sympathy of others would have been most welcome, be found his fricnds falling away from him, and his diserjles lesving him for other teachers. Soon after, if not on the very day when bis followers had left him, be wandered out towards the banks of the Nairanjara, receiving bis morning meal from the bands of Sujāta, the daughter of a ucighbouring villager, and set himself down to eat it under the shade of a large tree (a Ficus religiosa), to be known from that time as the sacred Bo tree or tree of wisdom. There he remanaed through the long hours of that day debatiog with bimself what next to do. All his old temptations came back upon him with renewed force. For years be had looked at all earthly good through the medium of a philosoply which tanght him that $1 t$, without exception, contained within itself the seeds of bitterness, and was altogetber worthless and impermenent ; but now to his wavering faith the sweet delights of home and love, the charins of wealth and power, began to show themselves in a different light, and glow agann with attractive colours. He donbled, and agonized in his doubt, but as the sun set, the religions side of has nature had won the victory, and scenss to have come out eren purifed from the struggle. Hobad become clear in has mind, the Buddha, the Enlightened One, and had determined in the main to adhere to has belief; but from that night he not only did not clain any merit on account of bis selfmortification, but took every opportuvity of declaring that from such penaucas no adrantage at all would be derived. All that aght he ss said to have remained in decp meditation under the Bo tree; and the orthodox Buddhists believe that for seven times seven nights and days he continued fasting near the spot, when the archangel Brahoan camo and ministered to him. As for himself, his beart was now fixed,-his mind wasmade up,-but be realized more than he had ever done before the power of temptation, and the difficulty, the almost impossibility, of understanding and holding to the truth. For otbers subject to the same temptations, but without that earnestaess and insight whids be felt himself to possess, faith might be grite mpossitic, and it would only be waste of time and trouble to try to show to them "the only path of peace." To ono in his position this thought would be so very natural, that we need not hesitate to accept the fact of its ocrurrence as related in the books. It is quite consistent with his whole carcer that it was love and jity for humanity-ctherwise, as it seemed to him, helplessly doomed and lost-which at last overcame every of her consideration, and made Gautima resolve to announce his doctrine to the worli.

Gautama had intended to proclaim his new gospel first to Lis old teachers Alara aud Udraka, but finding that they were dead, be determined to address himself to his iomer fire disciples, and accordingly vent to the Decr. forex year Dinares where they were then living. An old
gattha or hymn or the northern Buddhists tells us how the Buddha meets, full of his newly-diseovered mission, an aequaintance on the way, who, struck with his appearance, asks him what religion it is that makes him su glad and yet so calm. Gautama tells him that he has now become free from all desires, de. But his acquaintance, apparently not caring much about these details, further asks him where he is going. The reply is striking. "I am now going," says Buddha, "to the eity of Benares to establish the kingdom of righteousness, to give light to those eashrouded io darkness, and open the gate of immortality to men." His acquaintance only sneers at his high-flown pretensions, asking what he means by all this. The Buddha adds, "I have completely conquered all evil passions, and am no longer tied down to material existence; and I now only live to be the propbet of perfect truth." His azquaintaoce replies, "In that case, venerable Gautama, your way lies yooder," and turns away ia the opposite direction. ${ }^{1}$

Nothing daunted, the new prophet walked on to Benares, and in the cool of the evening werit on to the Deer-forest where the five ascetics were living. Seeing him coming, they resolved not to recognize as a superior one who bad broken his vows; to address him by bis name, and not'as "master" or "teacher;" only, be being a Kshatriya, to offer him a seat. He understands their change of maner, calmly tells them not to mock him by calliug bim "the veaerable Gautama;" that they are still in the way of death, where they must reap sorrow and disappointwent, whereas he has found the may to salvation and can lead them to it. They object, naturally enough, from a Hindu point of view, that he had failed before while he ras keeping his body under, and how can his mind have won the victory now, when he serves and yields to his body. Buddha replies by explaining to them the principles of lis new gospel; and it will be necessary bere to aoticipate somewhat, and explain very briefly what this was, as the narrative will otherwise be difficult to follow.

The Buddhist Wity of Sulvation.-Everything corporeal is material, and therefore impermaneat, for it contains withio itself the germs of dissolntion. So long as'man is bound up by bodily existence with the material wotld he is liable to sorrow, decay, and death. So long as he allows unholy desires to reign within him, there will be unsatisfied longings, useless weariness, and care. To attempt to purify himself by oppressing his body would be only wasted effort; it is the moral evil of a man's heart which keeps bim chained down in the degraded state of bodily life, 一of union with the material world. It is of little arail to add virtue to his badness, for so long as there is evil, his goodness will only ensure him for a time, a ad in another birth, a bigher form of material life; ooly the complete eradication of all evil will set him free from the chains of existence, and carry him to the "other side," where he will be no longer tossed about on the waves of the ocean of transmigration. But Christian ideas must not be put into these Buddhist expressions. Of any immaterial existence Buddhism knows nothing. The frundations of its creed have been summed up in the very ancient formula probably invented by its founder, which is called the Four great Truths. These nre-l, That misery always accompanies existence; 2, That all modes of existence (of men or

[^25]animals, in earth and heavea) result from passion or desire (tauhā) ; 3, That there is no escape from existeuce except by destruction of desire; 4, That this may be accomplished by folloring the fourfold way to Nirsāna. Of these four stages, called "the Paths," the first is an amakening of the heart. There are fer that do not acknowledge that no man can be really called happy, and that men are born to trouble as the sparks fly upwards, but the majority glide through life filling up their time with business or with pleasure, buoyed up with ever-changiag hopes in their mad pursuit of some fancied good. Wheo the scales fall - from their eyes, when they begin to realize the great mystery of Sorrow, that pain is inseparable from existence, and that all eartbly good leads to vezation of spirit, when they turn fur comfort and for guidance to the Enlightened One, then they may be said to be awake, and to have entered the first staye of the Buddhist way of salvation. When the awakeued believer has gone further, and got rid, firstly, of all impure desires, and theo of all revengeful feelings, he has reached the seecond stage; in the third he successively becomes free (1) from all evil desires, (2) from ignorance, (3) from doubt, (4) from heresy, and (5) from unkindliness and vexation. "As even at the risk of her own life a mother watches over her child, her only child, so let him (the Buddhist saint) exert ${ }^{\text {' good-will without measure }}$ towards all beings ${ }^{\prime}{ }^{\prime 2}$
The order here observed is very remarkable. The way to be freed from doubt and heresy lies through freedom from inpurity and revenge and evil longings of all kinds; or, in other words, if a man awakened to a deep sense of the mystery of sorrow wishes to understand the real facts of existence, wishes to believe not the false or the partly false, but the true altogether, Buddha tells him not to set to work and study, not to torture himself with ascetieism or privation, but to purify his mind from all unholy desires and passions; right actions spring from a pure mind, and to the pure in heart all things are open. Again, the firtt enemy which the a wakened believer has to fight against is sensuality, and the last is unkindliness; it is impossible to build anything on a foundation of mire ; and the topstone of all that one can build, the highest point he can reaeh, the point above purity, above justice, above even faith is, according to Buddha, Universal charity. Till he has gained that the believer is still bound, be is not free, his mind is still dark; true enlightenment, true frecdom are complete only in Love.
The believer who has gone thus far has reached the last stag: ; he has cut the meshes of ignorance, passion, and sin, and bas thus escaped from the net of transmigration; Nir anna is already within his grasp; he has risen ubove the laws of material existence; the secrets of the future and the past lie opea before him; and when this one short life is over, ho will be free for ever from birth with its inevitable consequences, decay, and death. No Buddhist now hopes to reach this stage on earth; but he who has once entered the "paths" cannot leave thom; the final persevorance of the saints is sure; and sooner or later, under easier conditions in some less material world, he will wiu the great prize, and, entering Nirrāna, be at rest for ever. ${ }^{3}$

But to return to the narmative. For reasons too long to be specified here, it is nearly certain that Buddba had a commanding presence, and one of those deep, rich, thrilling

[^26]voices which so many of the successful leaders of men have possessed. We know his deep earnestaess, and his thorough conviction of the truth of his new gospel. When we further remember the relation which the five students mentioned above had long borne to him, and that they already believed those parts of his doctrive that are most repugnant to our modera feelings, -the pessimist view of life and the transmigration of souls,- it is not difficult to understand that his persuasions were successful, and that hes old disciples were the first to acknowledge him in his new character. The later books say that they were all converted at once; but, according to the most ancient Pali record,-though their old love and reverence had been so rekindled when Gautama came near that their cold resolutions quite broke down, and they vied with each other in such acts of personal attention as an Indian disciple loves to pay to his teacher, -yet it was only after the Buddha had for five days talked to them, sometimes separately, sometimes together, that they accepted in its entirety his plau of salvation. ${ }^{1}$

Gautama then remsined at the. Deer-forest near Benares until the number of his personal followers was about threeacore, and that of the outside believers somewhat greater. The priocipal among the former was a rich young man named Yasa, who lad rirst come to him at night out of fear of his relations, and afterwards shaved his head, put on' the yellow robe, ${ }^{2}$ and aucceeded in bringing many of his former friends and companions to the teacher, his mother and his wifo being the first femalo disciples, and his father the first lay devotee. It should be noticed in passiog that the idea of a priesthood with mystical powers is altogether repugnant to Buddhism ; every one's sslvation is entirely dependeat on the modification or growth of his own inner nature, resulting from his own excrtions. The hife of a recluse is held to be the most conducive to that atate of sweet serenity at which the more ardent disciples aim, but that of a layman, of a lelieving householder, is held in bigh honour ; and a believer who does not as yet feel himself able or willing to cast off the ties of home or of business, may yet "enter the paths," and by a life of rectitude and kindeess ensure for himeclf a rebirth under more favourable conditions for his growth in holiness.

After the rainy scason Gautama called together those of his disciples who had devoted themselves to the ligher life, and whom, for want of a better name, we may call monks, and aaid to them, "Beloved Rahans, I am free from the five passions which, like an inmense net, hold men and angels in. their power; you too, owing to my teaching, enjoy the same glorious privilege. There is now laid on us a grcat duty, that of working effectually for men and angels, and gaining for them also the priccless blessing of salvation. Let us, therefore, scparate, so that no two of us shall go tha asmo way. Go ye now and preach the most excellent law, explaining every point thercof, unfold. ing it with diligence and care. . For my part I shall go to the village of Seaa, near the deserts of Uruwela." ${ }^{3}$ Throughout his career Gautama jearly adopted the same plan, collecting bis disciples round him in the rainy season, acd after it was over travelling aboas as on itinerant preacher; but in subsequent years he was always accompanied by aome of his most attached disciples.

In the solitudes of Ururvela, there were at this time three brothers, fire-worshippers and hermit philosophers, who bad gathered round them a number of scholars, and enjoyed a considerable reputation as teachers. Gautama settled among them, and after a time they became believers

[^27]in his system, -the elder brother,Käsyapa, taking henceforth a principal place among his followers. His first set scrmon to his new disciples is related by Bishop Bigandet ander the aame of the Sermon on tlie Mount, the subject of which was a jungle-fire which broxe out on the opposite hillside. He warned his hearers agiinst the fires of concupiscence. auger, ignorance, birth, death, decay, and anxiety; and taking each of the senses in order he compared all human. sensations to a burning flarae which seems to be somethang it is not, which produces pleasure and pain, but passes rapidly away, and ends onl $\frac{1}{7}$ in destruction. ${ }^{4}$

Accompanied by his new disciples, Gautama wallicd on to Rajjagriha, the capital of King Bimbisära, who, not ummindful of their former"interview, came out to welcome him. Seeing Kisyapa, who as the chronicle puts it, was as well known to them as the banney of the city, the people at first doubted who was the tercher and who the disciple; but Käsyapa put an end to their hesitation by stating that ho had now given lup his belicf in the efficacy of sacrifices. either great or small; that Nirvana was a state of rest only to be attained by a change of heart; and that he had become a disciple of the Euddha. Gautama then spoke to the king on the miseries of the world which arise from passion, and on the possibility of release by following the Way of salration, which las been briefy sketched above. The raje invited him and his disciples to cat their simple mid-day meal at his louse on the following morning; and then presented Gautama with a garden called Veluvana or Ramboo-grove, afterwards celebrated as the phace where the Buddha spent many rainy scasons, and preached many of bis most complete discourses. There he taught for some time, attracting largo numbers of hearers, among whom two, Siriputra and Moggallana, who afterwarda became conspicuous leaders in the new crusede, then joined the Sangha, or Society, as Euddha's order of mendicante was called.
Mesuwhile the old Raja Suddbōdana, who had anxiously watched his son's carcer, heard that he had gisen up his asceticisro, and had appeared as an itmerant preacher and teacher. He seut thercfore to him urging him to come licenc, that he might sce him once more before lie died. The Buddha accordingly started for Kapilavastu, and stopped necording to his custem in a grove outside tho town. His father and his uncles and others came to see him theres but the Jatter were angry and would pay him no reverence. It was the custom to invite such teachers and their disciples for the oext day's meal, but they all left without doing so. The next day, therefore, Gautama set out at the usual hour, carrying bis bowl to beg for a meal. As be cntered the city he hesitated whether he whonld not go straight to the raja's house, but determined to adhere to his custom. It soon rcached the rija's ears that his son nas ivalkigg through the strects begging. Startled at such news he rose up, seizing the end of his outer rohe, and bastened to the place where Gautama was, exclaiming, "Illustrious Buddha, why do gou expose us all to such shamel Is it necessary to go from door to door begging your food 1° Do you imagine that I am not able to supply the wants of so many mendicants?" "My noble father," was the reply, "this is the custom of all our race." "How sol" said his father, "Are you not descended from an illuatrious line of kings? no single person of our race has cver acted so indccorously." "My noble father," said Gautama, "you and your family may claim the privileges of royal descent; my descent is from the prophets (Buddhas) of old, and they have always acted so; the customs of the law (Dharma) are good both for this

[^28]world and the world that is to come. But, my father, when a man has found a treasure it is bis duty to offer the most precious of the jewels to his father first. Do not delay; let me sharo with you the treasure I bave found." Suddhodana, abached, wok his son'e bowl and led him to his house. There the women of the palace came to welcome him, but not Yasodharä, whom he had not seen since be had watched ber sleeping in their chamber with their new-bora babe by her side on that eventful night now seven long years ago. "I will wat and see," she bad said; "perhaps I am still of some value in his oyes; he may ask, or come. I can welcume him better herc." Gautama noticed her absence, and rememberiag. doubtless, that a recluse could not touch or be touched by a wonan, he said, "The princess is not yet free from desire as I am; not having seen me so long she is exceeding sorrowful. Unless her sorrow be allowed to take its oourse, her heart will break She may embrace me; do not stop her." He then went to her, a ad when ahe aaw him enter, - not the husband she bad monrned so long, bat a recluse in yellow rubes with shaven bead and shaven face,-though she knew it would be so, she could not contain berself, and fell on the grouad, aad held him by the feet, and rept; then remembering the impassable galf between them, she rose and stood on one side. The rajja thought it neceseary to apologize for her, telling Gautama how eatirely she had continued to love him, refusing to enjoy comforts which he denied binself, taking but one meal a day, and sleeping on a hard uncanopied bed. The different accounts ofteu tell us the thoughts of the Buddha on any particular oecasiou; bere they are silent, ooly adding that he then sold a Jātaka story, showing how great had been her virtue in a former birth. ${ }^{1}$ And then ahey parted: she became an earnest hearer of the new doctrines; and when long aiterwards the Buddha was induced, much against his inclination, to established an order of female recluses, his widowed wife Yasodhara became oue of the first of the Buddhist nuas.

The next day a great festival was to take place to celebrate the marriage of Gautama's half-brother, Nanda. Gautama ment to the pavilion and said to Nauda, "the greatest featival after all is the destruction of all evsl desires, tha life of a recluse, the knowledge of truth, and the attainment of Nirväna." He then gave him his almsbowl, and Nanda followed him to the Nigrodha grove where he was skisying. On thear arrisal there Gautama asked him if he would aot enter the Society; but Nanda, though tenderly attached to his hald-brother, with whom he had been brought up 39 a play-fellow (Gantama baving no brothers of his own), did not yet desse to give up the world After much persuasion, however, he conscnted, and became a disciple. A few days afterwarls Yasodhara dressed kähula, her child and Gantama's, in his best, and told hum to go and ask his father for his iohentance. "I know of no father," sand the child, "tut the raja. Who is my fatherl' Yasudharä took hom on her armis, and holdiog him up to the wiadow ponted out to him the Buddha, who was then taking has modday meal at the palace. "That monk," ahe sand, "whose appearance is so glormous, 18 your father, he has four munes uf wealth, go to him, and eatreat him to put you 11 possessum of gour inheritance." Rảhula went up to Gautama and sad to him. without fear and with much affecton. "My father, how happy I am to be near you." Gautama salently gare him his blessing; but preseatly, when he rose to go, Rāhula followed

[^29]him asking for his inheritance. None of the people stopped him, and Gautama still said nothing. When they reached the Nigrodba grove, be called Sāriputra, and said, "Beloved disciple, Rāhula is asking for a worldly inheritance which would avail him nothing; I will give him a spiritual inheritance which will not fade away; let him be admitted among us." When Suddhōdana heard this he was exceedingly grieved; he had lost his two sons as far as all worldly hupes were concerned, and now his graodson was taken from him. Full of sorrow be determined $t 0$ save other parcate a similar affliction, and going to Geutama asked him to establish a regulation that no one should in future be admitted to the Society unless he had the consent of his parents. Gautama granted this request, and after some more intervews with hus father returned to the Bambu grove at Rājagriha.

Eightee mouths had now elapsed siace the turaing-point of Gautama's career-his great struggle uader the Bo tree. Thus far all the accounts agree, and follow chronological order. From this time the simply narrate disconaected stories about the Buddha, or the persons with whom he was brought into contact,-the eame story being usumlly found in more than one accumat, but uot often in the same order. It is not as yet possible, except very partislly, to arrange chronologically the suatches of biography to be gleaned from these stories. They are mostly told to show the occasion on which some memorable act of Gautama's took place, or some menorable saying was uttered, and are as exact as to place as they are iodistunct as to time. It would be impossible rithon the limits of this article to give any large number of them, but space may be found for one or two.

A merchant from Sunaparanta having joined the Socie* was desirous of preaching to his relations, and is said have asked Gautama's permassiua to do so. "The peot of Sunnaparanta," said the teacher," are exceedingly violeu: If they revile you what will you do l" "I will make nu reply," said the mendicant. "And if they strike you ?" "I will not strike in retura," was the reply. "And if they try to kill you ?" "Death is no evil io itself, many eren desire it, to tscape from the vanities of life, but I shall take no steps either to hastea or to delay the time of my departure." These answers were beld satisfectory, and the monk started on his mission.

At another time a rich farmer held a barsest home, and Gantama, mishing to preach to lim, is said to have taken his alms-bowtand stood by the side of the field and hegged. The farmer, a realthy Erahıan, said to bim, "Why do you come and beg I I plough and sow and carn my food, you should do the same." "I I, too, O Brahman," sard the beggar, " plough and sow, and having ploughed and sown I eat." "You protess only to be a farmer, no one seca your ploughing, what do you mean 1" sand the Brahman. "For my cultivation," said the beggar, "faith is the seed, self-combat is the fertilizing rain, the weeds I destroy are the cleaving to existeace, misdom is my plough, and its guidingshaft is modesty ; perserernace drama my plongh, and I gunde it with the retn of my mind ; the field I wort in is the law, and the harest that I rcap is the never-dyme nectar of Nirvana. Those whu reap this harvest destryy all the weeds of sorrow."

On another oceasion he is sast to have brought back to her right mand a young mother whom sorrow had for a time deprived of reasou. Her uame was Kisägotami. "She had been married early, as is the custom in the East, ant had a child when she was still a girl. When the beautiful boy conld run alone he died. The young girl in her love for it carried the dead rhald clasped to her bosum, and went from house to house of her putjang frieads asking taem to give her medicine fir it But a Buddhist convert thinking
"she does not understand," said to her, "My good girl, I myself have no such medicine as you ask for, but I think I know of one who has.". "Oh, tell me who that is ?" said Kisãgotami. "The Buddha can give you medicine; go to 3im," was the answer. She went to Gautama ; and doing homage to him said, "Lord and master, do you know any medicine that will be good for my ehild ?" "Yes, I know of some," said the teacher. Now it was the eustom for patients or their friends to provide the herbs whieh the doctors required; so she asked what herbs be would want.
'I want some mustard-seed," he said; and when the poor girl eagerly promised to bring some of so common a drug, he added, "you must get it from some house where no son, or husband, or parent, or slave has died." "Very good," she said; and went to ask for it, still earrying her dead child with her. The people said, "Here is mustard-seed, take it ; "but when she asked, "In my friend's house has any son died, or a husband, or a parent, or slave ?" They answered, "Lady! what is this that you say? the liviug are few, but the dead are many." Then she went to other :Ouses, but one said "I bave lost a son," another "We have lost our parents," another "I bave lost my slave." At last, not being able to find a single house where no one had died, her mind began to clear, and summoning up resolution stie left the dend body of her child in a forest, and returning to the Buddha paid him homage. IIe said to her, "Have you the mustard seed?" "My lord," she replied, "I have not; the people tell me that the living are few, but the dead are many." Then he talked to her on that cessential part of his system, the impermanency of all things, till her doubts were cleared away, she aceepted her lot, became a disciple, and entered the "first path."

For furty-five years after eutering on his mission Gautama itinerated in the valley of the Gangos, not going fuither than about 150 miles from Benares, and always spending the rany months at one spot-usually at one of the viliaras, or homes. ${ }^{1}$ whieh had been given to the Society. In the twentieth year his cousin Auanda becaue a mendicant, and from that time seems to bare attended on Gautama, being constantly near Lim, and delighting to render hum all the personal service whiel love and reverenee could suggest. Another cousin, Dewadatta, the sun of the raja of Koli, also joined the society, but became envious of the teacher, and stirred up Ajätasatru (who having killed his father, Limbisintra, had become king of Rājagriba) to persecutc Gantama. The aecuunt of tho manner in which the Buddha is sad to have overeome the wicked deviees of this apostate consm and bis parrieide protector is quite legendary; but the general fiet of Ajätasantru's opposition to the ner sect and of his subsequent conversion may be accepted. The rival teachers, or sophists, as might be expected, were bitter enemies of the new philosophy, and the Brabmins did all they could to put down a faith which inculcated such dangerous doctrines as the equality within the Soeiety of all ranks and castes, and the possibility of salvation without sacrifices or the assistance of the priests. They instigated certain men to murder Moggallãna, one of the two chicf disciples, and made several attempts on the life of the teacher himself; but many of the ehiefs, and the great bulk of the common people, are represented, with probable truth, as being uniformly in favour of his doctrine, though the number of those who actually joined the Society, was eomparatively small.
The confused and legendary notices of the joarueyings

[^30]of Gautama are sacceeded by tolerably elear aecounts of the last few daye of his life. On a journey towards Kusinagara, a town aboat 120 miles N.N.E of Benāres, and about 80 miles due \mathbf{E} of Kapilavastu, the teacher, being. then eighty years of age, had restec: fur a slort time in a grove at Pawã, presented to the Society by a goldsmith of that place named Chunda. Chunda prepared for the mendicants a mid-day meal, consisting of rice and port ; and it' may be nuticed in passing how highly improbable it is that any Buddhist would have invented the story of the Buldha's last illness kaving been brought on by such a eansc. He started for liusi-nagara in the afteraoon, but had not gone far when be was obliged to rest, and soon afterwards he sald. "Annanda, I am thirsty;" and they gave him water to drink. Half-way between the two towns flows the River Kukushtà. There Gautama rested again, and bathed fur the iast time. Feeling that he was dying, and eareful lest Chunds should be reproached by himself or others, he said to Ānanda, "After I am gone tell Chunda that he will receive in a fature birth very great reward; for, having eaten of the food he gave me, I am abuut to pass into Nirvana; and if he should still doubt, say that it was from my owa mouth that you heard this. There are two gifts which will be blest above all others, mamely; Sujati's gift before I attained wisdom onder the bo tree, and this gift of Chunda's before I enter the final rest of Nirvãa." After haltugg agan and aguin the party at length reaehed the Ruver Hiranyavati, elose by Kust-hagara, and there for the last time Gautama rested; and lymg dosn under some Sal trees, with bis face towards the south, be talked long and earaestly with Ānanda about his burial, and about certain rules wheh were to be observed by the Society after his death. Towards the end of this eonversation, when it was evening, Āaanda broke down and went aside to weep, but Gautama missed hum, and sending for him comforted him wath the promse of Nirvana, and repeated what he had so often sald before about the impermanence of all things, "O Āuanda ! do unt weep; do not tet yourself be troubled. Yun know what I have said ; sooner or later we mast part from all we hold nost dear. This holly of ours contaius whithu itself the power which renews its strength for a tume, but also the eauses which lead to its destruetion. Is there anything put together whel shall not dissolve 3 But you, too, shall be free from thas delusion, this world of sense, this taw of change. Beloved," added he, speaking to the rest of the disepplea, "Ananda for long years has scrved me whth devoted affection. He knows all that should be done; after I an gone listen to his wurd." And be spoke to them at sume length on the ansight mind kindness of Ananda.

About midnght Subhadra, a Braliman philosopher of Kusi-nagara, came to ask some questrons of the Buddha; but Ānanda, fearing that thes misht lead to a longer discus. sion than the sick teacher could bear, would not admit hum. Gautama heard the sound of therr talk, and askmg what it was, told them to let Subhadra come. IIe bergan ly asking whether the sxag great teachers ${ }^{2}$ knew all laws, or whether there were some that they did not know, or knew only partially. "This is not the time," was the answer, "for such discussons. To true wisdom there is only one way, the path that is laid down in my law. Many bave already followed 1 tt , and conquering the lust and pride and anger of their own hearts, bave beeome free from ignorance and doubt and mrong belief, have entered the caln state of universal kindliness, and reached Nirvāna ceve in this life. Save in my religion the twelve great disciples, who being good themselves rouse up the world, and deliver it from

[^31]indiffereuce, are not to be found. O Subhadra! I do not opeak to you of things I have uot experienced. Since I was twenty-hne years old till now I have striven after pure and perfect wisdom, and following the good path, have found Nirvana." A rule had bees made that no follower of a rival system should be admitted to the Soctety without four montis' probation. So deeply did the words or the impressive manner of the dying teacher work upon Subhadra that he asked to be admitted at ouce, aod Gautama granted his request. Then turning to bis disciples he said, "When I bave passed away and am no loager with you, do not think that the Baddha has left you, and is not still in your midst. You have my words, my explanations of the deep things of truth, the laws I bave land down for the Society; let them be your guide; the Buddha has not left yeu.' Soon afterwards he agaia spake to them, urging them to reverence one another, and rebuked one of the disciples who spuke indiscrmmately all that occurred to him. Towards the mornug be asked whether any one had any doubt abuut the Buddba, the law, or the Society; if so, be would clear them up. No one nnswering, be said, " Beloved meadicants, if you revere my uremory, love all the disciples as you love me and my doctriues." Ānanda expressed ths surprise that amongst so many none should doubt, and all be firmly attached to the law. But Buddha lad stress on the final perseverauce of the saints, saying that even the least anong the disciples who had entered the first path only, still had bis heart fixed on the way to perfection, and coustantly strove after the three bigher paths. "No doubt," he said, "can be found in the mind of a true disciple." After another pause be said, "Belored, that which causes life, causes also decay and deatlo. Ne:er forget this ; let your minds be filled with this truth. I called you to make it known to you." These were the last words Gautama spoke; shortly afterwards he bccame uncouscious, and in that state passed away.

Part II.-Early Buddism.

The accounts of Gautama's cremation and of the distri bution of his relics are full of the miraculons, but it seems that the body was burot with great reverence by the locial rajjas of Malra Even before this ceremony had taken place dissensions began to break out in the Socicty,-ode member of the order, Subhadra (not the Brahman mentioned above), having even gove so far as to rejoice that now at last they were free from control, and coutd not always be told to do this, or not to do that. Struck by this language, the chief disciples began at once to consider the expedency of holding a council, where all points of difference should be definitirely set at rest. Chief armo g the leaders was the aged Kisyapa of Uruvela, whose distaguished position before bis couversion, and his great learning, were not the only gromads of the respect in whith he was held by the infant Sucrety. He had been one of those most intimate with Gantama; so much so, that on one occasion, when walking together and talking of tac decpest truths of their beliet, the two freeds bad entared into a more than usual confidence aad intercommunion of thought au 1 feeling, and had then changed roves with one another in token of their sympathy and love. Şãriputrr' and Moggallāua were dead; but Ananda, the beloved disciple, a a Upali, who though of luw caste origin was looked up to in the Society as the greatest uuthority on pornts of conduct and discipline, were of one upimon with Kasyapa as to the advisablity of a comel This was ag eed upon; the disciples first serarated and went to the r homes, aod when they met again fur the rainy season is that vihära at Rajagrihe, which had been the first gift to the Society, the couucil was held uader the
presidency of Kāsyapa, and mith the patronage and assistance of Ajātasatru, the powerful raja of Magadha. The number of believers present was five hundred, but if any discussion took place no tradition of it has survired. We are only told that at each daily sitting of the councll. Which lasted seven moaths, Anaoda or. Upäli repeated soma portion of the law, and the whole assembly chauted it after them. A second council is said to have been held one huodred years later in Vaisāli, about 70 miles N . of Rajagriba, and another was certainly held about 250 B.c. under the Buddbist emperor Assoka, is his capital Pataliputra, the Palibuthra of the Greeks aod the modern Patna. There is reasonable ground for belief that the sacred books of the Buddhist3 at present existing iu Ceylon are substansially the same as the canon settled at this last council of ?ataliputra, and it is from these bouks that the modern accounts on which we are as yet obliged to depend purpert to have bees atd, with some alterations and additions, unduubtedly have been derived. The orthodox Buddhists hold the present canon to be identically the same as that settled at the first council of Rajagriha; but the internal evidence of those parts of the canon which have as yet been published tends to show that they caonot yossibly have been composed in their present state immediately after Buddha's death. The date, derived from Ceylon, which is usually assigned to that event is 543 B.c.; but those scholars who have devoted most attention to the point hold this calculation to contain a certain error of about 60 years, and a prubable error of 80 to 100 more; so that the date for the death of Buddua would have to be brought forward to 400 b.c., or a few years later. As the date of Asoka's council bas been determined with certainty to have been within a year or tro of 250 b.c., there remains an interral of a century aud a half between the first council and the earliest records now accessible to us, an interval amply sufficient for the growth of the supernatural element which they so largely contain. When these records have been published in the origiual Pali, it may be possible to decide how far some portions are older than the reat, and how far it is possible to rold that thay reproduce aay earlier canon; at present we can only claim in the following bricf outline to give an account of Buddhism as it existed 150 years after the decease of its fouoder. But when it is recollected that Gautama Buddha was himself learned in all the learming of his time, that he did not leave bebind him a number of decply sumple sayings from which his followers subsequently built up a system, but bad thoroughly elaborated a system of bis own before his mission began; that during his long career as teacher he had ample time to repeat the principles and details of the system to his disciples over and over agan. and to test their knowledge of it ; aod finally, that his principal disciples were, like timiself, accustomed to the subtlest metaphysical distinctions, and traned to ouat wonderful command of memory which Indian ascetics then possessed,-when these facts are recalled to mind, it will be seco that much more relance can be placed upen the doctrinal parts of the existing Buddhist canon than upon correspondingly late records of other religions, or on the biographical parts of the louddhist canon itself.

The Abhidiarma or Phalosopity. Budlhism does not attempt to solve the problem of the ultimate origno of the kosmos. ${ }^{1}$ It takes as its own ultimate fact the existence of the material world and of conscous beirgs living

[^32]'within it; and it holas that everything is subject to the law of cause and effect, and that everything is constantly, though perhaps imperceptibly, changing. Though in its principles it anticipates much that modern science bas proved, in its details it does not, as might be expected, rise much above the beliefs most current at the time of its origin; but it has formulated them into a hypothetical aystem sufficiently consistent with itself to hare satisfied Buddhists for more than 2000 years, however little consistent with actual truth. Scattered through space, it teaches, there are innumerable circular worlds in acts of three. All of these are exactly similar to our own, in the centre of which rises an enormous mountaia, called Mähs Meru, which is surrounded by seven concentric circles of rock of an enormous height, and the circle enclosed by the outermost is divided into four quarters, or great contipents, part of one of which is Jambudvipa, the earth in which we live. On the heights of Mahā Meru, and above it and the rock circles, rise the twenty-four hearens, and beneath it and the earth are the eight great hells. These heavens and hells are part of the material world, subject like the rest of it to the lew of cause and effect, and the beings within them are still liable to rebirth, decay, and death. Between Mahã Meruand the outmost circle of recks, the sun, moon, and stars revelve througb space; and it is when they pass behind the first circle of rocks that they appear to the inhabitants of Jambudvipa to set. This world, like each of the others scattered through space, is periodically destroyed by water, fire, or wind, but the sum of the demerits of the beings (men, suimals, angels, de.) who lived within it produces each time a oew world, which in its turn is fated to be destroged. The number of these beings never varies saro on those few occasione when one of thern either in earth or heaven attains Nirvāns; in every other case, as boon as an individual dies, another is produced under more or less material conditions, accordiog as the sum of the former individual's demerits, minus the sum of its merits, was, at the time of its death, large or emall. A belief in such hypotheses scems inconsistent with a fuadamental teuet of Buddhist philosephy, that there sre only two sourcea of koowledge, experieace, and inference; but the hypotheses themselves are too intimately involved in the whole scheme of Buddhism to leave much doubt as' to their having formed part of the original doctrine of its Sounder. They are, however, scarcely distinctivo of Buddhism, but, like the pessimist view of life, are rather modifications of previous beliefs which Buddhism adopted intw ite eystem, and from the consequences of which it promised to relieve those who followed out itz teachings. ${ }^{1}$

The two idaas of the atter vanity of sll earthly good and the inevitable law of rebirth, decay, and death will be ceen to lead naturally to the belief in Nirväna If life be an eril, and death itself be no delivery from life, it is necesssry to go further back to discover the very origin, the seed, so to speak, of existence ; and by destroying that to put an end at last to the long train of misery in which we are compelled to go again and again through the same weary round of experiences, always ending in disappointment. This seed of existence Buddhism finds in "Karma," the sum of merit and demerit, which, as each one's demerit is the greater of the two, often comes practically to much the same thing as \sin or error. It forms the second link in the Buddhist chain of causation, ${ }^{2}$ and arises itself from ignorance. Destroy

[^33]that ignorance which brings with it such a progeny, cat the links of this chain of existence, root out karms with the mistaken clearing to Life, and there will be deliverance al last-deliverance from all serrow and all trouble in the eteraal rest of Niryana. Anything less than this would be a mockery of hope; for there is no life outside the domain of transmigration, and by the inevitable law of change th:a which causes existence of any kind would itsolf be the ceuse also of decay, and bring with it after a time the whole chain of evils from which the tired teart of man seeks relief.

Te reach this end, to destroy karma, and thus to attain Nircana, there is only one way-the feurfold path already explained abore, which is also summed up in the Buddhist books in the eight divisions, " right viers, right thoughts, right speech, right actions, right living, right exertion, right recollection, and right meditation." ${ }^{3}$ By these means ignorance will be overcome and karma destroyed, and after the organized being has been dissolved in death, there will be nothing left to bring about the production of another lifs. For it must be understood that while Buddaism occasionally yielded se far to popular phraseology as to make use of the word soul, it denies altogether that the word is anytbing more than a convenient cxpression, or that it has any counterpart in fact. Birth is not rebirth, but new birth; transmigration of soul becomes a transfer of karme; metempsychosis gires way to metamorphosis. As one generation dies and gircs way to another-the heir of ths consequences of all its nces and all its rirtues, the exact result of pre-existing causes-so each individual in the long chain of lifc inherits all of good or evil that all its predecessors have done or been, and takes up the struggre towards enlightenment preciscly there where they hava left it. There is nothing eternal, but the law of cause and efect, and change; the kosmos itself is passing away; even karma can be destroycd; nothing is, everything becomes. And so with this organized life of ours, it contains within itself no eternal germ; it pesses away like everything else, there only remains the accumulated result of all its actions. One lamp is lighted at another; the sccond flame differs from the first, to which it owes its existence. A seed groris ioto a tree and produces a seed from which arises another tree different from the first, though resulting fromit. And so the true Buddhist saint does not mar the purity of his eclf-denial by lusting after a positive happiness wbich he himself is to eajoy hercafter. Ho himself will cease to be, but his virtue will lire and work out its full effect in the decrease of the sum of the misery of contient beings.

A not unatural confusion has arisen from the fact thet the result of each man's actions is held not to be dissipated as it were into many streams, but coacentrated together in the formation of one new sentiont being. This link of coanection betreen the two otherwise distinet individuals bas led to expressions in Buddhist writinge which when read by Christians sccmed to infer the existence of a soul. Phrases used of thoso living eaints who have entered the fourth path, and liave practically attained Nirvāna, have also been supposed by mistake to apply to Nirvana itself. And when further Nirvāan has been described in glowing tcrms as the happy eeat; the exccllent eternal place of bliss, where there is no more death, neither decay; the end of suffering; the home of peace; the other side of the occan of eristcace; the shore of salvation; the harbour of refuge; the medicine for all evil; the transceadent, formless, tranquil state, the Truth, the Infinite, the Unspeakable, the Everlasting, -it has been supposed by some Eurepesn echolars to mean a blissful state, in which the soul (!) still exists in an everkasting trance. There can,

[^34] Hardy and Bigandet find in the modern Sinhalese and Earncse books the same opinion as Alvis and Gogerly and espeeiaily Chidders have found in the more ancient authoritiss; and though the modern books of the Northern Bud¿hists are doubtful, Eugene Burnouf has clearly proved that their older texts contain only the same doctrine as that held in the South. Buddhism does not aeknowledge the existence of a soul as a thing distinct from the parts and powers of man which are dissolved at death, and the Nirvãnz of Duddhism is simply Extinction. ${ }^{1}$

It will seem strange to many that a religion which ignores the existence of Guid, and denies the existence of the senl, \therefore ould be the very religion which has found most aceeptance - nong men, and it is easy to maintann that had Buddha Enrely taught philosophy, or had he lived in later ages,
zright bave had as small a tellowing as Comte. (anta:na's porser over the people arose in a great degree in the glow of his practical philanthropy, whieb did not rink in the struggle against the abuses most peculiar to Ls time; his philosophy and his ethics attracted the kutases, from whose chaincd hands they struck of the xianacles of caste, and in leaving the sehool for the world inny :nscnsibly beeame a religion. But there is no ressen to oelieve tint Gautama intended either at the beginning or the and of his career to be the founder of a new religion. He seems to have hoped that the new wine would go into the old bettles, and that all men, not exeepting even the Brawins, would gradually adept his, the only orthodex, $50: 3$ of the aneient creed. However the question of the his rieal suecession or connection between the different sjams of Hindu philosophy be nltimately settlod, whether ary of them were post-Evadhistie or not, they afford at Jeast sufficient evidence that beliefs very ineonsistent with the practical creed of the masses met with little opposition from the priests so long as they were taught only in schools, of philosephy; and Duddhist morality was not calculated to exeite anger or hatred. But the very means which Gautama adopted to extend and give practieal effeet to his teaching, while giving it temporary suecess, led to its ultimate expulsion from India. It was his Society rather than his doctrino, the Sangha rather than the Dharma, Which both gave to his religion its praetical vitality and exeited the active hostility of the Brahmins.

The Sangea or Society, the Buddhist Order of Mendicants. - It was a logical conclusion from the views of life held by Glatiama that any rapid progress id spiritual life was only "nmatible with an ascetic life, in which ail such contact with the world as would tend to create earthly desires could bo reduced as much as possible; and aeeordingly from the first he not only adepted such a mode of life for himself but urged it on his more earnest disciples. He conternplated zo such division between elergy and laity as obtains in Clristian countries, and constantly maintained that Thoro was no positive merit in outward aets of self-denial or Foranee; but holding that family connections and the rossession of wealth or pewer were likely to prolong that siistaken estimate of the value of things, that clinging to hfe which was the origin of evil, he tanght that to forsake The world was a necessary step towards the attainment of apiritual freedom. Little by little, as occasion arose, he laid down rules for the guidance of these who thus devoted themselves to the higher life, and insensibly as he did se,

[^35] orders which aprung up afterwards in the west. But not even now has the order becomea priesthood It possesses no mystic porers of regeneration or confrmation or absoluticn from sin; it works no miracles by consecration or by prayer, and its doors are always open alike to those who wish to enser end to those who wish to leave it. In a system vaich acknowledged no Creator and no God, the monks could never become the only efficient intercessors betwean man and hia Biaker, and since salration wes beld to be and to depend npon a radical change in wan's neture, brought about by his own self-dental and a: own self-eontrol, the monks could never obtain poxe: over the keys of heaven and hell. When successive bings and chiefs were allowed to endow the society, not indeed with gold or silver, but with the few necessaries of the monkish life, meluding lands and houses, it gradually ccased in great measure to be the school of virtue or the most favourable sphere for intellectual progress, mod became thronged with the worthless and the idle; but in the ame of its founder it undoubtedly contaioed few besides those who longed under his guidadee first to train themaelves sad then to preach to others the glad tidings of rest; that bope, to us 80 uninviting and so cold, to them-to rhom life, under their glowing sky snd under the oppressive weight of tyranny in church and state, was a burded too heavy to be borne-to them $s 0$ welcome and so sweet, of viter rest in ennibilation. For admittance to the Society no other credentials were at first required than the simple wish of the applicant; afterwards on different eccasions a few necessary conditions were imposed, the applicant being obliged to state that he was free from contagions disease, consumption, and fits; that he was peither a slave nor a debtor nor a soldier, that is, that he was sui juris; and that he had obtaincd the consent of his parents. At first, also, the candidate was admitted withont any ceremony by merely shaving his head, putting on the gellow robes, and leading an ascetic life; afterwards a simple ceremony was adopted, probably identical with that now in use in Ceylon, an excellent account of which has been given in the Journals of the Ceylon Asiatic Society for 1852 and of the Royal Asiatic Society for 1873. At first alse there is no mention of any distinction within the ranks of the society; but the preparatory rank of novice was very early introduced, and later on, as the religion became more and more cerrupted, the order became more and more subdivided, until in Tibet, in the 14th century, we find a complete episcopal hierarcis.

Rules of the Order.-The most usual names appied is the sacred books to the senior members of the order are Sramana ard Ehikshu, and to the novices Samaneta. The first, from which the third is derived, meens one who ezerts himself, controls himself; the second means simply a beggar. Self-conquest and porerty, then, were to be the distraguishing characteristics of the "sons of Säkya," but it was not left to them to decile for themselves how far this selfsuppression and ahstinence were to be carrich. The teacher gave a number of rules and directions which haw been banded down to us more or leas correctly in the Vinaya, the first part of the Buddhist canon, and whieh are summed ap in the " Pàtimokkba," a book which, though not included in the canon, cannet be mueh later than the grest council of Asolsa, about 250, and is regarded with much reverence by the monks, from its baving from time immemorial been ordered to be read twice Eonthly in every monastery. Theso rules may be roughly divided into two divisions, those which are obligatory, and those which, net being obligatory, are recommended to such as wish to work out their own salration to a point further than that attainable by the ordinary rules. And first, as to food. No monk can eat solid food except betreen sunrise and noon, and
total abstin ace : :om intoxicating druks is obligatory. The usual code of obtaining food is for the monk to take his begging-bowl, a brown earthenware vessel, in shape nearly like a soup tureen witbout its cover, and holding it in his hands, to beg straight from house to house. He is to say nothing, but simply stand outside the but, the doors and mindows of which in India are osually large and open. If anything is put into his bowl be utters a pious wish on behalf of the giver and passes on; if nothing is given he passes on in silence, and thus begs straight on without going to the houses of the rich or luxurious rather than to those of the poor and thnifty. As the food of all classes consisted almost exclusively of some form of curry, the mixture was not so very incongruous, and when earough had been given, the monts retured to his bome to eat it, thinking the while of the impermanence and worthlessness of the body which was thus nourished, and of the processes through which the food would have to pass. To express a Buddhist idea in the quaint words of Herbert, " Look on meat, think it dirt, then eat a bit, and say withal, Earth to earth I commat." From the first it was permitted to wealthy or pious laymen to invite one or more wonks to take their mid day meal at their houses, and this was frequently done, especially on full moon days; it was also allowed to the laity on special occasions to bring food to the monastery. For the stricter monks further vows are mentioned of abstinence from saimal food, of eating the whole meal without rising, of refusing all invitations and all food brought to them, of eating everything in the bowl without leaving or rejecting aoything, and so on; but it is doubtful whether they are ever observed now, and they were formerly taken only for a time. Much later a practice sprung up of the order possessing rice fields, letting Them out to be cultivated op condition of receiving a share of the produce, and then baring their meals cooked at home by some lay follower or even slare.

As regards residence, Gautama considered a loncly life in the forest to be the most conducive to self-conquest; but as he bimself, after having lived apart from the world, spent his life from the commencement of his prophetic career among men, so from the first the lonely life was adopted only by the most earnest, and that only for a time. The majority of the monks lived in compraies in groves or gardens, and very eoon the piety of laymen provided for them suitable monasteries, several of which were built even In the lifetime of Buddha. During the fine weather the monks often travellod from place to place, as their teacher did, but during the rainy season they always settled in one spot in or near a town; and near the ancient cities of India have been lately discovered extensive ruins on the site of the monasteries mentioned io the Pali books. On the other hand, there hare been found numerous rock caves, many of which especially in Ceylon, were eridently meant for solitary hermits, and they often bear inscriptions in the old Pāli charecter, brought by Asoka's son Mahendra to Ceylon in the 3d century b.c.

As regards clothing, the monks were to be habited in clothes of no value, put together from cast-off rags; but here again the practice of Buddha himself, and that follored by the large majority of the brethren, was to dress in simple robes of dull orange colour, first torn to pieces and then sewed togetber again, so as to form two under garments, and one upper garment to cover the whole of the body except the right shoulder. All tbree are simply lengths of cotton cloth; the trio under ones, the antara-rãsaka and the sanghàti, being frapt round the middle of the body, and round the thighs and legs respectively; and the upper one, the uttarassnga, being first wrapt round the legs and then drawn over the left shoulder. The colour was probably at Grst chosen as the one regerded with most contempt,
because of its being neariy mod sunu as that of very old raga of the common white cotton cloth, and because cloths of that colour rere of no value at all for ordinary purposea, but the orange-coloured robes, from their very peculiarity as a aign of the members of the Sangha, soon came to be looked upon as an honour, and were sought after on that account alone; so that the Dhammapada, a collection of etheal rerses, one of the books in the Buddhist canon, has to give a warning that those who ore not free from sin (kasãva) are not worthy of the orange colour (kāsāva). In Buddkist countries men's ordinary dress is merely a clotb wrapt round the loins, whereas the monks are to cover the whole body, and are not permitted at any time to lay their robes aside. To do so would be to lay aside their membership of the order, to put on or to put off the robes being curreat es. pressions for joining or leaving the Society. Of course no ornaments are allowed, and even the natural ornameni of hair is not permitted, complete tonsure being obligatory on all. No monk should fossess more than one change of robes, and minute rules in detail are laid down to guard against any brother eren by indirect methods taking any steps to procure hirnself new ones; to provide them spontaneously is the duty and privilege of the laits.

It is scarcely nccessary to state that sexual intercourse, theft, and murder entail upon the eulprit irrevocable expul. eion from the order; while the ease with which the Society could be left provided an escape for those who found the vow of continence too hard to keep. On the sow of poverty a few words ought to be aaid. In bis individual right no monk is to possess more than the following eight articlea: I, 2, 3, the three robes mentioned above; 4, a girdle for the loins; 5 , an alms-bowl ; 6 , a razor ; 7, a needle; 8 , a water-strainer, through which be is to strain all he drinksnot only to remove impurities, but alse and chicfly to prevent the accidental destruction of any living cratures. This individual row of porerty has howcrer been swallowed up by the permissiou given to the community to possess net only books and other personal propery, but cuen landsand houses. Gautama himself is said to have received such gifts on behalf of the Sangha, which et the time of its expulsion from India must have rivalled in wealth the most powerful orders of the Middle Ages ; and in sume Buddhist countrics at the present day the Society possesses enormeus tracts of the most raluable land. But water-drinking celibates, who take only one tueal a day, and dress in a simple uniform, could never indulge in unbounded persoual luxury. Many members of the order enjoy the fascinating sense of wealth, so completely contrary to all the principles of their religion, and to the precepts laid domn by their Teacher for the attainment of spiritual progress; they are often lazy and not seldom avaricious: but in the southern church at least they are not disgraced by gluttony or drunisemess, and have never given way to the weak ranity of dress, or of the pomp and pride of ritual.

The ror of obedience was never taken by the Buddhist monks or nuns, and in this may bo noticed a fundamental difference between them and their brethren and sisters in the West. Mental cultare, not rental death, was the aim set before the Buddbist ascetic by the founder of bis order. Each one is to conquer self by Liroscle; and the observance of no cercmony, the belief in no creed, will svail thim who fails in obtaining, this complete eelfmastery. Outward respect and courtesy to his superiora are exacted from the novice, but his own salvation and his usefulness as a teacher depend on his self-culture. He is to obey not his brother, but the law; his superior has no supernetural gifts of riscom or of absolution; and by himself must the ascetic stand or fall. A few eimple rules of discipline are laid down, but the bighest pundshment is to compel the fallen brother to return to the world,
which be has not sufficient self-control to reject. Twice a month, when the rules of the order are read, a monk who has broken them is to confess his crime If it be slight some siight penance is laid upon him, to sweep the courtyard of the wibāra, or to sprinkle dust round the sacred Bo tree, but no inquisitorial questions are put to any one. Cbarges may be brought against a monk for breach of the ordinances laid down by Buddha, and must iLen beexammedinto by achapter, but none can change or add to the existing law, or claim obedience fromanyothermember of theorder, however young.

The dariy life of the nuvice should, according to a nanual in Sinhalese called Dina Choriyawa, be about as follows. He shall rise before dayheht and wash. then sweep the wibāra and round the Bo tree, fetcb the drinking water for the day, fileer 1t. and place it ready for use. Returning to a sulitary place he shall then meditate on the regulations Then be shall offer flowera before the sacred dagaba or Bu tree, thinking of the great virtues of the Teacher, and of his own faults. Soon after, taking the begging-bowi, be is to follow his superior in his daily round for food, and on their return is to bring water for his feet, and place the alms-bowl before him After the meal is over, he is to wash the alms-bowl. then agan retre, and meditste on kiodness and lore. About an hour afterwards he is to begin his studies from the books, or copy one of them askng his superior about passages be does not underetand. At suneet he is again to sweep the sacred places, and lighting a lamp, to listen to the teaching of his superior, and repeat such passages from the canon as be has learnt. If be finds he has committed any fault he is to tell his superior, he is to be content with such things as he has, and, keeping under his senses, to grow in wisdom without baughtiness of body, speech, or mind 15 The supeniors, reheved by the novices from any manusl labour. were espected to devote themselves all the more earnestly to intellectual celture and meditation There are five priuepal biods of medi tation, which 10 Buddhasm takes the place of prayer The first is called Maitri-bhāranā, or meditation vo Love. in which the monk tainks of all beings, and longs for bapptness for each First, thinking how happy the himself would be if free from all sorrow, anger, and eril desire. he is then to wish for the same happmess for others, and lastly, to long for the welfare of bis foes, remembenng their good actions only, and that. in some former birth bis enemy may have been his father or his freend, he coust endeavour in all earnestness and truth to desire for him all the good be would seek for himself. The second is Karnoá bhárana, or meditation on lity, in which be thinks of ald bengs in distress, realizes as far as he can their unbappy state, and thus awakens the sentiment of pity. The third meditation is Mudta-bbivana, or meditation on Gladness, the converse of the last. The fourth is Asubhabhavana, or Purity, in wich the noonk thinks of the vileness of the body, and of the horrors of disease and corruntion, how ererything corporeal passes away like the foam of the sea, and how by the continued repetition of birth and death mortals become sulject to coutinual sorrow. We hear of the mirage in the desert cheating the unwary traveller's eyes with the promiso of water to quench his burning thirst; but this mirage of hawan life, raising hopes of jog that turns bitter in the drinking, is a more real moclery. The fifth is Upekshabharenan, or the meditation on Serenity, wherein the monk thinks of all tinings that moen hold good or bad,-porer aud oppression, love and bate, riches and want, fame and contempt, youth and beauty, decrepitude and disease,-and regards thens all with fixed indifference, with utter calmoess and serenity of mind.

[^36]The Duty of the Laity. -Gautama's ideal was that all mea. should sooner or later join the order, and thus that an end should be put at once to andiridual existence and to misery and \sin, but even those who did not enrol them selves in the Sangha could obey many of the precepts, and by a virtuous life bere raise themselves in theur next birth to a higher and less material state of existence Laymen could thus take the "three refuges," and keep fire of the "ten pre:epts" viz., not to take life, to steal, to lie. to conimit adultery or fornication. or to drink strong drink ${ }^{2}$ There are also ten commandments applicable to the latty, wiz, io avold taking life. theit, Hilit intercourse, lying, slander, sweariog, idle talk, cotetousness, anger, and wrong bellef z.e.. ether superstition. doubt. or heresy, the first three are sus of the body, the nest four sus of the olouth, the last three sins of the miod. The following short extracts fron the Buddbist Scriptures will perhaps give a better idea of the lay position in the Buddhist system than auy longer description in modern terms In abswer to a question as to what be considered the summum bonum, Gautama is reported to have sand-
" 1 To serve wise men, and not to serve fools, to give honour to Whom honour is due, - this is the greatest blessing 2 Toduell in a pleasant land. to hare done good deeds in a former birth, to have right desires for one's self, - this is the greatest blessing 3 Much in sight and moch education, a complete trainong and pleasant spech. -this is the greatest blessung 4. To anccour fatber and nivilur to cherash wife and child, to follow a praceful calling, -this ts the greatest blessing. 5 To give alma, and the nghteously, to help one's relatives, and do blameless deeds, - thas is the greatest bleesing. 6 To cease and ahstain from sin, to eschew strong drink, not to be weary in well doing, - thas is the greatest blessing. 7 Reverence and lowliness, contentment and gratitude, the regular hearing nf tha latr.-this is the greatpst blessing 8 To be leng-suffenng and meek, to associate with members of the Sangha, religioue talk at due seasons;-this is the greatest blessing 9 Temperance and chastity, a conviction of the four great trutlis. the bope of Nir. vana, -this is the greatest blessing 10 A mind unshaken by the things of the world, without anguish or passion, and secure, \rightarrow this in the greatest blessing 11 They that act like thas are invucible on every side, on pery side they walls in safety, and theirs is the greatest blessing. " ${ }^{3}$.

Self-conquest and urversal charity, these are the foundation thoughts, the web and the woof of Buddbism, the melodies on the varations of which its eoticmg harmooy is built up. Such a religion could never remam burned in the clonster, or reman the parilege of the few From the first it became an appeal to the many, and addressed itself not to the learned or the rich but io all mankind, to men and women, slaves and bondmen, Brahmus aud Südras, nobles and peasants alike The abuses of caste adod prestcraft could no longer grow and thrive among men who looked at every question from a rationahstic staudpoint, while thear hearts were aglow with real and practucal philanthropy In Guatama's view meu differed one from another not by the accident of birth, but by their owa attainments aud character, the same path to the same salvation lay equally open to all, and even in this life the poor and the despised were welcomed to the ranks of the order, where wealth was abandoned, and birth went is nothing in comparison with character or msight It is true that, like Cliristianity, it did not in so many words condemn any of the political institutions amid which it arose, there is nothing said, at least in the older books, against slavery or despotism or wealth: and erev as regards caste, Cantams did not directly interfere with it outside the limits of his Society But the new wine soon burst the old bottles;

[^37]the principles of the new creed were quite inconsistent with oppression and wrong of every kind; and the government of Asoka, as Buddhist emperor of India, was probably the most enlightened, and certainly the most philanthropic, which the natives of India have had.

Part III.-Later Buddeism.

It is not surprising that teaching so earnest and so high, 60 deep-reaching and so radical, should have met with eager acceptance among a people intensely religoous, to whooi the doctrines of the priests held out so little hope in exebange for the privileges it clamed from them on behalt of an oppressive caste. It is only to be regretted that the bistory of Buddhism in India lies under no thick z eloud that very little is known of it with certainty. Imme diately after the death of Gautama the first council of 500 was held at Rajagriba, as related above, and the ycung church, in the vigour of its purity and fresh enthusiasm, spread very rapidly among the surrounding tribcs. In leas than 150 years after the death of its founder, tha new religion bad become the most powerful in Norther. 2 and Central India, and was the state religion of Magadha, whose kings claimed the superiority over the whole peninsuln. It probably continued to gain in the number of its adheren?s till two or three centuries later, but soon after the commencement of our era it began to deeay; though Fa Hian, ء Chinese pilgrim, who visited India about 400 a.d., found it still flourishing over a large area, it was certainly not inceasing, and scarcely maintaining its ground. Hiouen Thasang, another Chinese pilgrim, has left us an account of Lis journey made about two centuries later, and he found Buddhism in a much lower condition even than it had fallen to in the time of Fa Mian. In the 8th and 9th centuries a great persecution arose, and the Luddhists were so utterly exterminated that there is now not a Buddrist in all India; although of course the effects of so great a movement could not pass away, and it left its mark for ever on the Hinduism which supplanted it. The full reasons for this revolution are not known: but so much is clear, that long before its expulsion Buddhism had become very corrupt; the order had beeome wealthy and idle; and the laity, instead of following the precepts of the Teacher, had gone back to the old devil-worship, witcheraft, and astrology, which alwass underlay their nominal beliefs. From the great body of bis followers the ethics and philosoply of Guatama were concealed by the mass of legends and ouperstitions which bad grown up around the story of his life; and though the Buddhists no longer propitiated the favour of the gode by sacrifices of living beings, they rested their hopes more on their liberality to the monks than on the harder duties of self-control and charity,-tho latter word having thus become even more limited in its meaning than it has among ourselves. Their worship of the relics of the Buddha came very near to rank idolatry; their reverence for their ancestors came very near to worship, and was a dangerous source of emolument to the mooks; while the old Hindu gods were regarded mueh more bighly than was at all consistent with the Buddhist Abhidharma

Buddhism had, bowever, been introduced into Ceylon, at - time when it was comparatively pure, by Mahendra and Sanghamitra, the son and daughter of the emperor Asoka It became at once the state religion, and the only religion of the jslard, on which Brahminism had never gained much hold. Protected there by its isolated position, and by the patriotic spirit which identified it with the Sinhalese nation, whose hereditary enemics, the Tamils, were first Joins and afterwards Hindus, it has retained almost its pristine purity to modern times. From Ceylon it was jatroduced into Burma in the 5ith century A.D., whence it
penetrated into Arakan, Kambase, and Pegu, and fnaliy into Siam in the 7th century of our ere. As already mentioned, it became, in a less pure form, the state religion of Kashmi! about the time of Christ, and was thence earried to Nepal and to Tibet and China. It would be jorpossible within the limits of this artiele to trace its various fortunes in these countries, bat the following remarks may not be out of place.

It would be hazardous as yet to attempt to trace chronologically the growth of the Buddlist legends, but in one or other of the Buddhist books are found the following ideas, the growth of which was, under the circumstances, almost inevitable. Gautama himself became regarded as omniscient, aod as absolutely sinless; he was supposed to have descended of his own aecord from heaven into his mother's womb, and to have had no earthly father; angels were said to bave assisted at his birth, immediately after which he walked three paces, and in a voice of thunder proclaimed his own greatness. On his formal presentation to his father, an aged saint is said to have worshipped hin and prophesied that be would become a Buddha, who would show the people the way of salration. When the babe was five months old, he was left under a tree, where he meditated so deeply that he worked himself into a trance; and five wise men who were journeying northwards through the air, being miraculonsly stopped over the place where he was, came down and worshipped him, the hymu put into thei mouths surprising us in the midst of so absurd a legend L its beauty; in five stanzas they anoounce that the babe shall be the teacher of a law which shall be the water to extinguish all the fires of the sorrows of life, the light to enlighten the world, and the chariot to carry us through this wilderness to the promised land ; that he shall deliver men from the bonds and shackles of the world, and be the great physician to dieal all their diseases, and do away with the miseries of life and death. The only other legend we have of his youth is one in which he is said to have surpassed all his contemporaries in feats of bodily and mental skill, and even to have taught his teachers,- the later forms of this legend bearing a curious resemblance to some parts of the apocryphal "Gospel of the Infancy." In the accounts of his father's home and of his marriage he is surrounded with all the state and wealth of the eeldest oon and heir to a powerful monareh, whereas it is apparent from the gengraphical and other details that his father's power ean only at most have extended a few tniles from bis home. It was a pious task to make lis abnegation and condescension greater by the eomparison between the splendour of the position he abandoned and the poverty in which he efterwards lived; and in countrics distant from Kapilarastu the inconsistencies between these glowing accounts sud the very names they contain would pass unnaticed by eredulous hearers. With the same object of magnifying the person of Buddha, he is related in the legends to have performed at various times a very large number of miraeles, mostly mere manifestations of powe: of no direct advantage to any one, and only designed to impress those who beheld or might hear of them with ? belief iz. his great superiority over other tcachers. Of several of these legends we have different versions in authorities of diferent ages, and it is exceedingly interesting and instruetive to notice how the supernatural parts of the story gradually grow. Among the northern Buddhists of Kashmir, Tibet, Nepal, and China, these legends bave assumed much larger dimensions than among the southern Buddhists in Burma, Siam, and Ceylon, the former laving evolved a theory of the spirit of the Buddhas still working in the church, while the latter remain at the standpoint apparent in the canon as fixed by the conneil of Asoka.

The amplifieation of Buddhism by ite northern diseiples will be described under the beading Lasmascr. It is
eoough to nuwce here that it is callod by them the Great Vebicle, in contradistinction to that of the southern church, which they eall, not without some contempt, the Little Vehicle; and the Great Vehicle, while bolding fast to the, real foundation of Buddhism, its ethical views of selfconquest and charity, has in fact developed an entrely new religion. This is based on the worship of Maitreya, the Dhyămi-buddhas, Monjйsri, and Avalokiteswara, personifications respectively of charity, meditation, serenty, and misdom. The first of these erpears in ancient Buddhism as the name of the Buddha to come, and the last is the boly spirit of the northern Ruddhist church. Among the Dhyani-buddhas, who are philosopaical abstraetions corresponding to the earthly Buddhas, Amitābha, i.e., Infinite Light, is the heaveuly counterpart of Gautama, and sood took the most impertant place. Avalokiteswara "proceeded" from bim, and manifests him to the world since the death of Luddua; and his morshop in the loth century of our era bore ris full frut in the invention of a berog, Ádibuduha, the orrgin of all things, who, using the wisdom withon him, produced by meditation the five Dhsāal. buddbas, of whom Amitablua is the fourth,-a notwon euriously similar to the theosophy of the Cnostics, and utterly opposed to the Agnostic materialism of Buduha,

It Tibet especially, the development in doctrme was followed by a development in ecclestastical government. which runs so remarkably parallel with the development of the Romish Lierarchy as to awaken an interest whoch could scarcely otherwise be found in the senseless and fatal corruptions which hare overwhelmed the aacient Buddhist beliefs. The Buddhasm introduced into that country in the 7 th and 8 th centuries of our era was a form of the Great Vehicle, already mueh corrupted by Siva-ism, a mixture of witcheraft and Hindu pbilosophy; but it worked a great change among the savage races who then inhabited those remote valleys. In the 13 th century the country was possessed by independent chiefs, who struggled with the abbots of the great monasteries for power over the people; and the crozier proved itself in the long run more powerfal than the sword. We then find the two leading priests or archbishops, the rantshen Lama and the Dalai Lámn, elaimıng to leofficial incarnations of Amitābha and Avalukitesswara ; and the latter as such succeeded in obtaining superior political and secular power, leaving to his brother pope bis high ecelesiastical position and the aroma of holiness-a division of power which has agam resulted in a Guelph and Ghibeln-like rivalry. Lamaism, with its shaven priests, its bells and rosaries, its images and holy
water, its popes and bishops, its abbots and monks of many grades, its proeessions and feast-days, its confessional and ; purgatory, and its worship of the double Virgin, so strongly resembles Romanism, that the first Catholic missionaries thought it must be an imitatiou by the devil of the religion of Christ ; aud that the resemolance is not in externals only is shown by the present state of Tibet the oppression of all thought, the Idleness and corruptiod of the monks, the despotism of the Government, and the poverty and beggary of the people.

Of the sacred books of the Northern Buduhists, we have in the original debasel Sanskrit only the "Lahta l"istara" a legendary life of Buduha, published in the Bubonticea Indica at Calcutta the rfans. lations of which are mentinn in the beginming of thrsartucle. Of the canon of the Southem Budibusts, which is about twice the length of our Buble, we bave in the artemal $\mathrm{Pahonl} y-1$ the Dhanmapada, a collection of didartic prems chited by Mir Fausholl of Copentuager with a Latin translation in 1855: : ' The Ehuddaka Patha, a smill collection of hymns mulusted ty Irofessor Childers. with Enelish tranclation, Journal of the Roval Amate Socity for 1869 ; and 3. The Upasampada-kammarica, the nomal by wheh laymed are allentted to the order, punlished by Mr Dirkson in the Journal of the Royal Asuatic Socety for 1si3 The Patumokibla, a manual of the rules of the order 10 Pith, has been published ty Mir Mnayeti with \& Russian translation, in 1867. A fuller account by the wrater of thas article of all the work alrendy accomphshed an the ellitug of Pill texts, dictionaries, and erammars, mall be found in the Sirpurt of the Phalolaqual Sncrety for 1575 Of Enropeado works on Buthlusm the following are the most important, and references will be found in them to the many smaller treatises on the subject - Eugine Burnonf, Introtuction a l'hastore du Boudhisme Indurn, 1844, and Le Lotus de la Bonne Lor, 155:': The Rev Spunce Hardy's Eastern Monachism, 1850. Manual of Budilhism, 1Ren, and Legends and Theories of the Buddhasts, 186b, all compile from Sinhalese sources: Bislap Pheantet's Leqend of the Burmose Budiha. 1859, 2d edition 180io, St Julten's Hustoire de la vie de Mowen Thang, 1853. and Memozres sur les contres orcadentales. 1856 ; Professor lassen's Indische Altorthums. Fizute, vol ii. 1849, 2d edution 1875. Wasshlef Der Eudihas. mus, seine Doqmen und Literatur, 1860 . of whech a French translation appeared in I'ans in 18 n5; Koppen's Echoson des Butitha, rol i on Southern Buduhasm, 1857, vol. it on Limavsm, 1559 ; The Pev. Samuel Beal's Trarels of Fa IIran and sump rum, 1\&69, Catena of Buddhast Scriplures from the Chinese, 1sil, and Romantic His, tory of Sikya Buldha from the Chinese Sanshrat, 1875; Captinn Rogers's Buddhaghosha's Parables (from the Burmese). with introdinction hy Professor Max Muller, 15.0, Schlagmareat's Buddhasm on Tibet, 1863 ; A. Scluwner. Ene Tihensche Labersbeschrobung Sohahjammes, 1849; Hougeon. Essays, 187s A very large number of other writings on Buddhism have also been pullished either separately or in different learned journals in Europe and India. Thoso who wish to refer to those palers wall find a list, very complete up in date, of all works, large or small, on the subject in Otto and Ristner's Dudtha and his Doctrones, a hillio. graphical cssay publishad in 186 ? by Messrs Trubner and Co. of Lowdon

BUDGELL, Eustace (1685-1736), a literary man of some cminence in his time, the son of Dr Gilbert Budgell, was horn at St Thomas, near Excter. He was educated at Christ Church, Oxford, from which be removed to the moner Temple, London; but iustend of studying law, he deroted his whole attention to literature. HIe was tefriended by Adldison, who was first cousin to his mother, and who, on being appointed kectetary to Lond Wharton, lord-lieutenant of Ireland in 1:10, took Madgell with lume as one of the clerks of bis nflico. Eudgell, who had read the classics and the best English, French, and Itahan authors, tuok part with Stcele and Adison in writing the Tatler. He was also a contributor to the Sprctator and the Guar-dian,-his papers being marked with an X in the iormer, and with an asterisk in the latter. He was sulsequently made under-secretary to Addison, chief secectary to the lords justices of Ireland, and deputy-clerk of the council, and was afterwards chosen a member of the Irish parliaroent. In 1717, when Addison became pridecipal secretary
of state in England, he procured for Eudgell the place of accountant and comptroller-general of the revenue in Ircland. But the next year, the duke of Bolton being apponted lurd-lieutenant, Budgell wrote a lampoon against Mr Webter, his secretary, in wheh the dubo himelf was not spared. This led to his removed irom his prost of acconntant-general, upon which be returaci to England, and, contrary to the advice of Addison, pulished his case in a pamphlet. In the year 17:0 he lost 200.000 by the South Sea scheme, and afterwards suent fintoo more in uasuccessful attempts to get into partiament. This completed his ruin. He at lenoth employed hamself in writing pauphlets agaiust the ministry, and published many papers iu the Cratisman. In 1703 he began a weekly periodical called tho Be , which he contmaed for shove a hundred numbers. By the will of Dr Mathew Tindal, who died in 1733, a legacy of 2000 gumeas was leit to Budgell; but the bequest (which had, it was alleged, been mserted in the will by Budgell himself) was successfulic disputed by

Tindal's nephew and nearest heir, the continuator of Rapin's History of England. Hence the satirist-
"Let Budgell charge low Grub Strect on my quill, And write whate'er he please-except my will."
It was thought that he had some hand in publishing Dr Tindal's Christianity as Old as the Creation; for he often talked of an additisnal volume on the subject, but never published it. After the cessation of the Bee, he became so involved in lawsuits that he was reduced to very distressing gtraits. Ho then studied law, and was called to the bar, attending the courts for some trme; but being unable to make any progress, and fading his prospects utterly rumed, he determined to put an end to his life. Accordingly, in 1736, he took a boat at Somerset-stairs, after flling his pockets with stones, ordered the waterman to shoot the bridge, and while the boat was passing under it threw himself into the river. On his desk was found a slip of paper with the words-" What Cato did, and Addison approved, cannot be wrong."
Besides the works meationed above, ho wrote a tmanslation of the Characters of Theophrastus He never married, but left one natural daughter, who afterwards assumed his name, and became an actress at Drury Lano.

BUDGET (lit. a bag or small sack), the name applicd to an account of the ways and means by which a minister of finance purposes to defray the expenditure of the state. In the United Kingdon the chancelior of the exchequer, usually in April, lays before the House of Commons a otatement of the actual results of revenue and expenditure in the past fnance year ending Mareh 31, showing how far his estimates have been realized, and what surplus or deficit there has been in the incomo as compared with the expenditure. This is accompanied by another statement in which the chancellor gives an estimate of what the produce of the revenue may be in the year just eatered upon, supposing the taxes and duties to remain as they were in the past year, and also an estimate of what the expenditure will be in the curreat year. If the estimated revenue, after allowiag for normal increase of the principal sources of income, be loss than the estimated expenditure, this is deemed a case for the mposition of some nem, or the ingrease of some exasting, tax or taxes. On the other hend, if the estimated revenua ehows a largo surplas over the eatimated expenditure, there is room for remitung or reducing some tax or taxes, sud the extent of this relief is generally limited to the cmount of eurplus realized in the previous year. The chancellor of the exchequer has to take parliament into confidenco on his estimates, both as regards revenua and expenditure, and when the taration and expondituro obtain the assent of parliament, the results as thus adjusted become the final budget estimate for the year. This system of annual review and adjustment of the publie finances obtains not only in the British colonies, but is carried out, with remarkable despatch for so great an empire, in British India The Jndian budget, giving the results of income and expenditure in the year eading December 31, aud the prospective estimates, is laid before the Inuperisl Parliament in the course of the ensuing session. The budget, though modified by differets forms, has also long been practised in Yrance, the United States, and other constitutional countries, and of late years has in some cases been adopted by arbitrary powers Rassia began the publication of annual budgets in 1860; Egypt has followed the oxamplo; and Turkey, if fanacially zeinstated, will have to eubmit to a nore strict account of her income and expenditure. Apart from national budgets, to be discriminated (I) as budgets passing under parliamentary scrutiny and debate from year to year, and (2) budgets emitted on executive authority, there sre in all the Ereater countries local and municipal taxations and expendi-
tures of only less account thai the national. The ordinary budget of the city of Paris has increased from $£ 1,600,000$ in the reign of Louis Philippe to $£ 8,000,000$ at the present time; while the extraordinary budget, relating chiefly to public improvements and the city debt, is over $\mathfrak{E} 4,000,000$ more. In federal governments, such as the United States, the German Empire, or the Argentine Republic, the budgets of the several states of the federation have to be consulted, as weil as the federal budget, for a knowledge of the finances. The local tazation of the United Kingdom is equal to nearly one half the imperial revenue, and requires in its rarious protinces the anme process of examination. The budget is an essential part of the machicery of representative Governments; and in the rapid progices of state lozns, it has begun to be acknowledged by despotic Governments as a necessary basis of ronficeace between then aul their creditors.

BUDWIIS (in Mohemaa, Ceske Budegovice) the capital of a circle in the Austrian kingdom of Bohemia, is situated on the right bans of the Meldau, at its junction with the Maltsch, in $43^{\circ} 53^{\prime} \mathrm{N}$ lat. and $14^{\circ} 30^{\prime} \mathrm{E}$. long. It is well built and partally forttied. Chief among its public buildings are the council house-a handsome structure, and the enthedral, with a great detached tower, built in I500; it has also en episcopal palaee, two gymnasiums, a theological seminary, a training college, a deaf and dumb institution, a theatre, a bospital, and a poorhouse; aud a short distance to the north stands the eazto of Frauenburg, belonging to Frince Schwarzenberg. Its manufuctures sre very rarious, and comprise pottery, nails, wire, parquetry, musical instruments, black-lead pencils, suarar, beer, vinegar; and liqueurs. There are silfor ond gold mines in the mountains to the east of the town, which are still worked with considerable profit. The railmay from Budweis to Linz, laid in 1827 for horse-cars, was the first line constructed in Germany. Budweis was founded by Ottocar II. in 1256 , and way reccived into the number of privileged eities by Frederick II. In 1611 the town was captured by the people of Passan, but was retaken by the imperina generel Bouquoi. In 1742, it was besieged by the Barariens. Population in 1869, 17,413.

BUENOS AYRES, the largest and most important provnce of the Argentino Republic, is bounded on the N. by the Parana. Which separates it from the provinee of Entre Rios, and by the proviuces of Santa Fs, Cordeva, and San Luis ; on the E. by the Aulantic ; on the S. by Patagonia; eud on the S. and W. by the country of the Indians, which extends westwards to the Andes. Tho area of tho province is estimated at ahout 440,000 square miles. Its seaboard along the Rio de la Plata and the ocear ia upwards of 900 miles in length. According to the last census of 1869 the population wes 488,700 , of which 171,404 belong to the eity of Bueuos Ayres; in tho present year (1876) it may be estimated at 600,000 , of which 220,000 belong to the city, and 350,000 to the prorince. By the last returns the number of immigranis is from 60,000 to 90,000 per annum, the greater prort of whom renain in the province of Buenos Ayres.

The general aspect of the country, as vieved from the sca, is cminently uninteresting. From the month of the Plata to the Bathia Blsnca the sea-line presents an unbrobea saries of sand-dunes, varied here and there with low ridges of rock. From this latter point to the Patagonian frontier, the aspect of the coast is less monotonous, though equally destitute of life or interest. Though Buenos Ayres is the only province of the Argentine Republic that borders upon the sea, and though all the exports aud impe:ts of the country pass through it, it possesses very few harbours. Ooe of these (that of the eity of Buenos Ayres) is satremely bad; anotier (that of Bahis Blanea, near the southerr.
extremity of the province), possesses great natural advan. tages, which are by no means adequately appreciated. It might bo turned to good account as a starting-point for resels engaged in trade with the South Amcrican states that border upon the Pacific, but the difficult and sometinaes dangerous navigatiou of the adjoining seas counterbalances in the meantime the other advantages which it afiers. The interior of the conntry, except where it is intersected by the low mountain ranges of the Ventana and Vaulean in its zouthern portious, and the spurs of the Andes in the west, is one vast plain, of which by far the larger part is laid ont in estancias, or cattle farms, though the scil is in itzelf well adapted for producing all the Europcan cercalia. Agricultural pursuita, however, are by no means in favour with the natives, who cannot bring themsolves to engage in any pursuit that cannot be proasculed on borseback. "Every man, woman, and child ir the country rides," says Parist. "One might fancy one's solf in the land of centaurs, amidst a population balf-men, ball-torses. Even beggars ride on horseback." Some of the cattle-farms are of immense extent; one in Yazticular is mentioned by travellers as comprising more thas 300 square miles of land, and yielding an enormous reveaue to th. proyrietor. Some of the largest of them belong to British settlers, and are worked by British servants. The cattle were formerly hunted dowa and killed metely for the sake of their hides and tongues, while the carcases were abandoned to beasts and birds of prey. They are now slaughtered in abatteirs, where every part of the animal is made available. The beef is salted for esportation ; the tallow is boiled down, and now forms an impertant item in the farmer's revenue; and the trade in hides is stcadily increasing. Beef and an infusion of the native tea are the staple food of the natives. In the province of Puenos Ayres there are $45,500,000$ shecp, which give a yield of $136,500,000 \mathrm{ib}$ unwashed woul: 5,116,000 cows ; and $1,500,000$ horses. This gives the umusual average of 200 sheep, 20 cows, and 6 borses to every inkabitaut. The sheep-farms cover over $40,000,000$ acres; and the number of shepherds may be estimated at 30,000 , of whom at least a quarter are Irish or Scotch. The total value of exports from Buenes Ayres in 1872 was $£ 9,148,633$, -the miost impertant being wool $203,610,000 \mathrm{lt}$, sheep-skins $72,970,000 \mathrm{H}$, on and cow-hides $3,121,758$, jerted beef $816,220 \mathrm{qq}$., tallow $1,182,240 \mathrm{gq}$. The valuc of inports in 1872 may be stated approximately at $212,000,000$, of which. Great Eritain contributed $C 3,800,000$, France $£ 3,200,000$, Spain $£ 800,000$, Prazil $£ 700.000$, United States $£ 700,000$, Italy $£ 600,010$, Relgium $£ 600,000$, Qermany $£ 400,000$, other countries $21,200,000$.

Of tho cerealy grown in Buenos Ayres the most important is maire, which is indigenous to the country. Wheat thrives well in the southern parts of the province, but the inhabitants rarely graw more than enough to sughly their uwn neccssitics. In the event of a surplus it is comandy yoxport 'to Brazil. The vine, fog, omage, and clive have been introduced from the Old World, and are found to sui, the ctimate admirably ; but the most valuaibe of European fruits is the peach. A considerable fruit trade is carried on in coasting vasplis by merchants fur the most part Italian or lrench.

The gcographical position of Buenos AFocs is such as to enable it conpletely to control the fureign commercial rolations of the entire republic of which it forms a part. The exclusive policy wrich it has always pursucd on this pcint has often involval it in serions quarrels, not only with many of the South American states aud the ot her proviaess of the Arsentiue Repnblic, but with England and Frence. Binen the expul won of General linsas, the navigation of the Parana and Corgasy has been thrown open, and

and city of Buenos Ayres on a level with the other frn vinces of the republic.
The only towas of any importance, besides the capitel. are San Nicolas, which is situated on the Parana, abow 200 miles N.W. of Buenos Ayres, and contaius a population of about 10,000; San Pedro, also on the Parana, about 150 miles from the capital, in the same direction, with a perulation of 1000 ; Chascomus, on a lake of the same name, a place of considerable importance; Dolores, 150 miles south of Buenos Ayres; Villa de Mercedes, Chivilcoy, Las Flores, and Belgrane.

Beexos Ayres, the capital of the Argentine Republic and of the province of Buenos Ayres, is situated on the right bauk of the estuary of the La Plata, in $34^{\circ} 39^{\prime} \mathrm{S}$. lat. and $58^{\circ} 18^{\prime} \mathrm{W}$. leng. The river is at this point so mide that it is quite impossible with the naked eye to distinguisb the

opposite bark, and et the sme time so shallow, that ships drawing 15 or 16 fect of water must anchor seven or eight miles from the city. Smaill critt generally ancler in what aro called the inner roads, atres ct of the city. The depth of water is never sufficient to admit of therr coming to shore.
The town of Bucnos Ayres is situsted in a vast plain extending westwards to the Andes. 'like level uniforms: of its outline is only broken by the equres of the sario. churches. The stranger, on landing, is struck with the
regularity of the streets, "which are quite straight, and intersect each other at distances of 150 yards, forming squares like those of a chess-board, with the cleanly appearance of the houses, and the general air of independence that distinguishes the inbabitants. The houses till lately had never more than two storics, and commonly only one, the rooms of which open into cach other, and were chiefly supplica wich fumiture of a very inferior description from the Unitel States. A chimney was a thing unknown, and the old Spanish brazero alone was employed in Leating the danip and white-washed rooms. A great change has, however, taken place in these respects within the last few years. A rage for building has prevailed, and now splendid edifices of three and foor stories may leseen in every street. The furniture is now snjplied from Europe, the walls arc papered, grates and chimneys have come into ashion, and English coal is burned. These comforts are all the more valuable, as the climate of Bucnos Ayras is one of the most hurrid and changealle in the worl. The streets of the city are now tolerably paved with gramite. They exceed eighty in number, thirty-one of them runting from Whe river side due west, and fitty-one from north io sonth. The city is licing provided with drainage and water supply, and is well lighted with gas. Thore are eleven parishes, containing sixteen Roman Catholic churches. There ale two city liospitals, supported by the municipality, and four for forcigners, ivelunging to the English, French, Italian, and Irish communities. The theatres are five in number, and there is also a coucert hall. Five markets for the daily supply of the city with provisions are placed at convenient distances; and the plases " 11 de Setiembre" and "Constitucion," are the great wool markets for the north and south districts of the camp. Floliculture is a favourite puasuit ; and many English and Scoteb gardeners have nursernes in the neighbourhood of the town.

Of the grublic baildings may be noticed the Gosernment house, which is situated on the beach, a residence for the president of the Republic; the eathedral, which is surmounted by a handsome dome, and las a laree portico with twelve Corinthian pillars; the cabildo or town-house, in which justice is administered; the churches of La Merced, San Francisco, and Sra Domingn; and the custom-liouse, The Plaza de la Victoria, round which sone of these edifices are grouped, is the handsomest square in Buenos Ayres. In the centre of it is a handsome momument, crected as a memorial of the War of Independence. When the number of British residents in the town began rapidly to increase application was made to Gereral liosas for a site for a church. This was inmacdiately granted, and the minister for the time being sct an examile of liberality and toleration to his countrymen by laying the foundation-stone of the edifice, which cost in all ahout £4000, Lalf of which was defrayed by the Lritish Gorcrnment. The Scottish residents have built a smell Presbyterian chapel, and the Roman Catholic furtion of the English sobjects are allowed the use of one of the aational charches, in whick a priest performs the service. In 1842 the Metbodists crected o meeting heuse, which is used by all denominations of the Eritish lyisenters. The Protestant Germans, who are pretty numerous, hare a shurch in connection with the Established Cluyech of Yrussia. To each of these places of rorship schools are tttached for children of Loth sexes. Tbe facilities for ducation are very considerable, and of these the imhabitants .vail themselres extemsively. Besides the denominational \because :hools already alluced to, there is a university, attevded y about 500 students, and possessing a valuable library. The sons-of the wealthicr families of the city are very ${ }^{\text {s requently }}$ sent to Europe to complete their criucation at -wne of the great schools and colleges in France and

England. The Buetos Ayreans inhern from their ancestorn much of that passion for music which characterizes the Spanard. Poetry also is much cultivated smong them. Desides its university, Buenos Ayres contains many literary aud scientific institutions. On these the most important arc the school of medicine, the academy of jarisurudence, a special academy of mathematics and the ylysical sciences, a normal school, and a society for the pronotion of agriculture. The charitable societies, "houch not very mumerous, are rather inmortant. Spanith is the language spolion by the: Lucnos Ayrean descendants of the old Spari- id settiors.

Buenos Aytes was founded in 1505 by a Spanishexpecition lamias Don Jorge de Mendon, who landing at this phace after nany haruships, testowed upon it the name it no bears in conmemora, of tho fue weather which prevalied ot that time. At first ho endeavoured to concinite the native Indines, wat hostibities soou benke out, and. despite their nimost ellorts, the Sjatiands vere obliged to abandon the new settlencest; and ffer almost increatia diftenties succetrd in reahing Asuncion in l'aramay, with their nambers redaced lyy three-fumths. In 15,50 another expedition nubler Don Juan the Garay book possessicn of the site of the old fort and established themselves then fomming cities and cetablishing sethements is every drection with such viccecs that in 1 lezo a nres goverument was crectel, water the name of the powempent of the Lio dela l'lata. Buenn syles !"came the caydal, and the seat of a neiv bishoprie crated at this time try Puplanl Y., at the dequest of Dhatip 111. of Spuin. After the kupe of a century, Buchos Ayres begraat to rise into sikinimportance as to excite the jealousy
 imposed upon her furcigen ated intenal commerce let only to continual heart-burnings with the ganent comery, and Brenos Ayres soom beame a remberwis tor the smughters if such nations as were stroug thought it set spain ar defance. Ahter materous moditications of its govemment, ned of its relations to the parent state, the provinces of the lio to la linta wete in 177ce elected into o vice-pyalty, of which Puenus syms continued to be the calital. Two years hater the uhd commutial restritions wete abolished and a new commocal colle putmbated, so likend as to he called the "Yree-Trate ligguthens." Accorting to the old system the bumos Aycans were ondy allowed to export merchandiso to the lootugnest settchume in Brazil, and the quanty wes limited to 2 tivo fanceas of "heat, 500 quintals of jethed leet, and 500 of tallow. All intercaure whether comulies nas strictly prohibited. By the new system, nitat ports in spin, and twerty.

 hides, for instance, the stante commedity of the contily, the expmits to Spain lefore 1773 only amomatel to 150,000 antually ; after that year they wase 80 fiom 700 , 6 in to 800,000 . In 1805 , and ateain in 1 E07, the Brimah invaded Puenoz Ayres; and though the natives aptlied for astistance to the home asathoritos, they were tohld that they mast defend shemselves as hey hest rapht, as Stain could scrad them no hol!. 'They accudindy rusu itarme, and twice expedted the invaders. In the following vear they were thentenc! with invasion by the 1 nure wheat of lortugai. The neroluthon which they dispiayed on the of esish Irevented that prince from iusisting upon his chams, In 1810 the evreumstanceq
 a pulicy whith was construed by dhe Spanisl Cortes into an ect of rebeilion. A civil war cnsuct , and Feminum, cal his iestora. tion after the expulaion of twe Ficnch from sian, instead of tryms to couchiale the malcontents hy timely concessions, obstinately 1 Frased to accele 10 their lawful denands. Tlice tesult of this wis that, on the gth of July dete, Wepties hom the benviness of the Riode o Ithata assembled in corgress at Tucuman, - wemaly dularet their segaation from Span, fint their determination to constitute a free and indepndert state. Euchos Ayres contaned to the the eapital of tho new refublic, whach was governed ly autherities censtheuted in that aty. The exclusice ? gobenors of which began to cey out for a felfatatum in of paition to the Central Governaunt of Buenos Ayres. Hy hat influmee the new conatitution, which confermi on a hicf rat astrate residing in the eapital very extensive civil and mithary powers over the "hole requblic, was repudiated, and a cis if was whs the conserquence.
 the constitution on a sufficiently wae hasis to meconde the interesta of all Jattius-hut always without sumecos; and ham 1527 till the expulsion of Rosas in 185\%, en metam of the constiturnt
 to delegate to the Executive Governmes: of Ruenos Ayres the undivided charge of the nationd bunsess, such as the narasement of the fublic dubt, the waintenauct of relationg with forcipn nomers.
the defeace of tho wuatiy in tae event on war, tac. While these internal dissentions were going on, war was declared between the young confederation and the empire of Brazil, and Euenos Ayres was blockaded for a year and a half by a Brazilian fleet. In 1898, however, the siege was raised by the intervention of the English, and by the decisife battle that took place at Ituzaingo favourable to the Argentine erms. This foreica prar thus ended, the ciril war broze ont once more, and was only temporarily chectsed by the accession of General Rosas to power in 1335 . Aiming at territorial aggrandizement, Rosas soon becance involved in war with the neighbouring states of Paraguayand Uruguay. England, France, and Brazil interfered, with the intention of effecting an amicahle arrangement between the belligerents. Rosas rejacted their modiation and the united fleets of England and France took possession of the Buenos Agrean fleet rhich was engaged in the siege of Monte Video, and opened the navigation of the Parana to the merchant men of all wations. In the subsequent operations Rosas sustained serere losses, ret obstinately refused to yield. In 1848 the English flect returned home, and was followed by the French in the follow. ing year. Brazil was now left to carry on the war alone, but she found ready alliez in eome of tie provinces of the Argentina Confederation, which had long regarded with hatred and aversion the supremany arrogitad by Buenos Ayres. With the asaistance of these and the adjoining etates of Uriguay and Paragues, a large army was raised, which, under the command of General Urquiza, deftated Rosas at the bettle of Monte Caseros, February 3, 1852. liosas after bis downfall fied to England. Urquiza was appointed provisional director of the oonfederation; but the Boenos Ayreans protested agaiost his policy, which threatened to undermine the prerogatives they had been long struggling to secure. Civil war ugain broke out; and in 1853 Buenas Ayres was besieged by the forces of the other states of the confederation. On the 20th of June the siege wes raized, and a temporary accommodation effected.

Since the establishroent of the Argentine Republic in 1861 the city and province of Buenos Ayres have both very considerably develoned their resonrces. In the prorince there ars now 450 miles of railvey, and 2228 miles of telegrapb lloes; in the city there are six haes of tramway, which trarerse the town in every direction Most of the railways and three of the trampay lines belong to English companies. There are thirteen diferent lines of steamers trading between Europs and tias Port of Buenos Ayres. Population (1870) estimated at about 220,000 .

BUFFiLO, the Englisb name of Bubalus, a genus of Ruminant Mammals, belonging to the family Bovide, and including the well-known Iudian and South African species. The Indian Buffalo (Rubelus buffuius) is characterized by 1ts arched forebead, large homs compressed at the base, slightly trinnguiar, and curved in the form of a half moon, and its thiek hide coverod sparingly with coarse hairs, which become atill more scanty in aged individuals. It is a native of India and of the istancla forming the Indo-Mriay Archipelago, whera it now occurs in a state of domestication, and forms a valuable beast of burden; but although it has for ages been under the control of man, the Bainsha or tame buffalo shows little or no variation from the wild forms. The Arna or Wild Buffalo is found in creat herds throughout India and the adjacent islands, frequenting swampy grounds in the neighbourhood of woods, eating the long, coarse grass which abounds in such localities, and loring abovo all things to roll itself in mire, or to plunge up to the ears in any pool or stream it may come npon. This fondness for moisture is equally marked in the tame varicty, and js decidedly inconvenient when the animal, laden with goods, yields to its instinet and lies down in any stream that may cross its path. The rutting season occurs in autumn, when soveral femaies follow a single male, forming for the timo a amall herd. The period of gestation lasts for ten months, and the female produecs one or two calves at a lirth. The Arna is a poweriul and conraceous animal, calable it is said of overthrowing an elephant, and generaily more than a mateh even for the male tiger, which asuaily deelines the combat when not impelled in it by hunger. The Itadian driver of a herd of tame buttaloes does not shrink from entering a tiger-frequented jungie, his cattle, with their massive horns, making short work of any tiger that mar come in their way. Bufalo fights and fights between tufaloss and tigers form principal features in the public entertainments of Indian princes. In Ceylon 1h.
buffalo is put to more useful purposes, where, according $\boldsymbol{\omega}$ Tenjent, the astives make an ingenious use of it when abooting waterfowl in the aalt marshes. "Being an object to which the birds are accustomed, the Singhalese tran the bufaloes to the aport, and concealed behind the anmal, browsing listlessly along, they guide it by ropes attached to its horna, and thus creep nadiscovered within shot of the floek." These are known as "eporting buffaloes." The domestic buffalo has spread from its original home in India over the greater part of Southern Asia and of North Aírica, and was introduced towards the close of the 6th centary into Greece and Italy, forming an jnvaluable beast of burden in the marshy districts of those countries, whers the great breadth of its feet, scmewhat resembling in this respect those of the reindeer, give it a decided advantaze over the horse and ox. It grazes in herds in the Pontine marskes, where, according to Scaliger, it will lie for hours submerged almost to the muzzle. The milk of the buffalo is plentiful and of excellent quality, the Hindoos making it into a kind of butter called ghee; its flesh, however, is not held in much estimation.

The Cape Buffalo (Bubalus caffer) is nearly equal in eize and fully equal in atrength and courage to its Indan congener, from which it is readily diatinguished by the form of its horns, these being inmensely broad at the hase, where they approximate ao closely as almost to meet, thua forming, especially in old bulls, a solid rugose mass impenetrable to bullet, and extending from the eye to the back of the head, then spreading horizontally and curring upwards and inwards to the tips, which are usually 4 feet apart. The bide, which is thick and tough, is thinly clad with hair, old animals beng entirely naked with the exception of a alight fringe along the back and withers. This buffalo roams in herds over the plains of Central and Southern Africa, always in the near vicinity of weter Formerly herds sometimes numbered five or six hundred, but such has been the havoc wronght among them in recent years by bunters that rarely are they to be seen in companies of moro than ten, while in the colonized portion of South Africa they are rapidly dsing out. Nor is man their oaly enemy, for by night when be ceases to distnrb they are liable to the attack of the lion, and by this mesi, the wonnded, of which there are great numbers, and ti. diseased are cut off. The Hon. W. H. Drummond, in hi. work on The Large Game of South Africa (1875), gives it as his opinion that in "a few years a buffalo will be as searee as an elephant now is." This species has never been domesticated, probably owing more to the uncivilized condition of the vative inhabitants than to any special intractability in the buffalo jtself. Like its Indian ally in is fosd of the water, which it visits at regular intervals during the twenty-four hours; it also plasters itself with mud which, when hardened by the sun, protects it frons the bite of the great gadflies which in spite of its thick hide seem to cuuse it considerable annoyance. It is also relieved of a portion of the parasitic ticks, so common on. the hides of thick-skiuned animats, br means of the redbeaked rhinoceros birds, a dozen or more of which may be seen rartly perched on its horns and partly moving sbout on its back, and picking up the ticks on which they feed. The hunter is often guided by these birds in his search for the buffalo, but oitcner still thes give timely waming to their host of the dangerous prosinity of the hunter, and have thus earned tho title of "the boffalo's guardian birds." The Cape Eufalo is the most formidable of the large game of South Africs. Genctally, homever, it attacks only when wounded, although" rogues" or "soli-taires"-terms applied to old bulls which for bome reasert or other have been expelled from the herd and whic: wavder about morose and savage- often attack witleas
provocation. - When wounded they immediately charge in the direction from which the fire proceeded, and on his skill in avolding thes charge the life of the huvter depends. In butialo huntung, as ia bisoa huatuge, it is spectally important " to kill ruth a single bullet." The bide of the Cape Buffato is tade by tha hatires into shelds impervious to mu-ket shut.

BUTFALO, an American city, the capital of Enie County, a the State of New York, U.S, abuat 293 miles N.W. from Sew York, m $42^{\circ} 53 \mathrm{~N}$. lat. and $78^{\circ} 55^{\prime} \mathrm{W}$. long. It is a purt at the east ead of $L a k e ~ E$ re, at the mouth of Butfalo Ruver, aud at the head of Niagara River, wheb 18 bere crossed by a tine aron rallroad bradge. The caty runs for fibout tive mles along the shore of the lake and Niagara River. In population Buffale is the therd crty in New York, aim the elerenth in the Conted States. It mas founded in 1801, beciate a multay post in 1813 , and was burned by the Eritshon the last day of the year 1813. After tha war, the place was rebuilt, and 101832 it attaned the raik of a chty. In 1820 it contanuel 2095 inhabitants. After the cpraing of tho Erie Canal 10 1825, its growth wis rapid, tie p, ulation bereg 8653 in $1830,18,213$ in 1840, 12,201 is $850,81,129$ in $1860,117,714$ in 1870 , and l3f, iss ia. 375. The city commands a fine vier of the lake, the cli tate is pleasant aud healthful, the streets, broad and generally lined with teees, are well paved, lighted, and supplisd with sewers. There are many fone residerces math attractive g:ounds, and numerous squares and puolic F aces. A combination of parks or pleasure grounds has t en tad out, catending to over 500 acres. It comperses t: - -e sections, ai uated respectively in the northern, weate rn, ard eastera paits of the city, cungected by howeverds wlich together afford a drive of nearly 10 miles. The m st prominen : public buildings are the City and Cunty Hall, a grajite structure, is the form of a double Rorian crsss, with a tower 245 feet high, just erected at a cust of orer $\$ 2,000,000$; the Unj ed States Custom House and Post Office, tae State Arsenal, and the Erie Conaty Pt mitentiary, which is one a tho sir penal establishments of New York, intermediato between the refurmatories and the state prisons. A state asylum for the iasane is is process of construction at Worth Buffaio, with a front of about 2700 feet and a capacity for 60) paticuts. It will be oue of the largest iestitutions of the kirad in the United States, and will cost not less than $\$ 3,000,900$. The city contains 76 churches, the most inposive uhtices being St Joseph's Ca hedral (Roman Catholic) aud St Paul's (Episcopal). Th, public school3 comprise a central granuwar achool and thirty-sis district achools. Four orphanasplume scb sols aro also maintained. One of the eight state norma. schools is situated bera. Anoong ot her educational insti utions are Carisius College, fonded by the Jesuit fathors; St Joseph's Ccllege, conducted by the Christion brothers; Martia Luther College (theological); St Mary's incademy and Industrial School for girls, and the Nedcal Collego of the University of Buffalo. The charitable mstitutions of the city are numacrous. There are several libraries, the most important being that of the Young Men's Association, with about 30,000 volumes, and the Grosvenor Free Library, which contains abvut 15,000 volumes of raluable reference works. The former society has a coamodious hall and library building adjoining. The Society of Natural Sciences has made an extensive collection of minerals and fossil casts, and the Buffalo Historical Society has a large library and cabinet. There are published in the city eight daily nerspapers, including four in German, one tri-weekly, fourteen weeklies, four monthlies, and three quarterlies. The city is divided into thirteen wards, and is gorarned by a mayor and tweatyeix aldermes. It has a paid fir fiepartment. with steam
fireengines and a fre-alarm telegraub, bas an efficiens police, aod is well supplied with water Irum the Niagara River. The assessed value of property in $18 i 3$ was ubout $\$ 38,000,000$.

The position of Buffalo on the great water and railway chanaels of communacation between the West and the East gires it a commercial importagce surpassed by that of few other American cities. Its barbour is capacious, and is protected hy extensive breakwaters. The city is the centre of an impertast ssstem of railroads. Bestdes oiber hnes which converge bere, it is the eastern termisua of the Lake Shore and Mhchigan Sunthern E:alway, of the Canala Suuthern, and of a branch of the Grand Trunts Ralway ot Casada; it is the western termiaus of the Erie Caual, the New lurk Ceutral Rallway, and a division of the Ene Railway. There has been a largo decrease in the extent of the lake commerce sinco 1862 , owing to the tacrease of railroad facitues. The registered warine of the port, June 30, 1874, cumprised 801 reseels of $15:, 789$ tons, of which 533 were canal boats. The annual value of the imports from Canada sa between $8,0,000,001$ and $83,000,000$, the exports are less thas $\S 500,000$. Suce 18.0 Buffalo has been a port of foreign entry for imports, nhich are conveyed thuther, in bund, by rall from New York, \&c. The number of lake ressels that arrived on 1874 was 3720 ; the clearance numbered $3 i-27, i 643$ caual boats arrived, and abuut the same number cleared, the latier carried $1,448,172$ tons of freight, ralued at $846,244,875$. The manease quabaties of grain mering from the Western States to the seaboard coastruto the most important feature of the comenerce of the city. The ageregate receipes (including flour) ty lake and Grand Truub and Canada Southern Railwaya in 1874 were $70,030,555$ bushels. The receipts during tho ten jeara eading with 1874 amounted to $529,874,944$ bushels. For receiring, storing, and transferriog this rast amount of produce to canal boats and railway cars, there are thurty elesators, capable together of storing $6,875,000$ buabels, and of trausferrigg no less than 2,672,000 bushels a day. Meny of these elevating warehouses are costly atructures of stone, or of iron and brick. Saveral of thear bave graiu"driers" attached Live-stock and lumber from the Westero Statea and Cobada, and coal from Penneylvania, are also leading items in commerce. In 1871, 504,594 catte, 183,800 sheep, 1.431,800 hogs, a 1 2 21,937 horses, amounting in in ralue to nearly $860,000,000$ passed thrcugh Butalo For the accommodation of thes traflic, extensure and wel! arriaged yards have been erected at the cast cud of the city. Tho receipts of lumber ty lake an 1874 amonited to $145,624,639$ feet, besides akuut $40,000,000$ shingles, and $25,000,000$ stares. The raporta of coal comprisud 800,000 tons. The coal trade is rapidy increasing. The manufacturing interests of Buffalo are estensive, and bave grown with marked rapidity un reccat years. The leadirs establishneats aro blast fureaces, roling. mills, foundries, breweries, tannenes, manufactorics of agricultural implements, zud tlour mills. Of the last-named there are ele sen, with a yearly capacity of 839,000 barrels, the average aneual productivn of flour beng about 250,000 barrele. Wouden ship-bulding "as formerly carried on here, but it bas been superseded by irea shynbuildag. Two extensive establishments are deroted to thes industry; these have conatructed the fineat lake ateamers, tesides suyplying the Goverameat with a number of iroo revenue vessels. The number of ships built at Buffalo in 1874 was thirty-seven, but they were mostly small oocs. Mlany canal boats are also built there.

BUFFIER, Cladde (1661-1737), a writer on grammas and history of coasiderable note, but more 1 emerkable for his researchos in nevcbology and metaphreice, has bon in

Poland May 25,1661, of French parents, who returned to thei- nature comintry shirtly neter their son's birth, and setiled at Nowen. He was educated at the Jesuits' college there, and was received into the order at the age of mineteen. Soon after his admission a dispute with the archbishop regarding certain points in theolony compelled him to leave Rouen. He went to Rome, bat did not long remain there ; and on his return to France he retired to the college of the Jesuits at Paris, where he spent the rest of his life, otudying and writing, and fulalling with much success his duties as a college lecturer. He seems indeed to have been an admirable teacher, having, as his works show, a great power of lucid and precise exposition. Buffier's objeet in his Traité des verités premières, his best known philooophical work, is to discover the ultimate principles upon which all knowledge is based, to lay down "propositions eo clear and obvious that they can neither be proved nor refuted by other propositions of greater perspicuity." The basis of all human knowledge and the foundation of every other truth he finds in the sense we have of our own existence and of what we feel within ourselves. He thus takes as the foundation of his philosophy subetantially the aume ground as Descartes, cogito ergo sum; but the superstructure is reared on very different principles. Descartes tried to reach a knowledge of the not-self by an a priori or metaphysical proof of the divine existence. Euffer rejects this sort of evidence as useless. I want, he in effect ssys, to obtain a certain knowledge of what is distinct from myonlf, and this I can never do by mere metaphysical demonstration, which only givos me tho hypothetical certaints of ideas logically connected together; in order to know what exists distinct from myself I musi have recourse to "common sense." Common sense he defines to be "that disposition which nature has placed in all or most men, in order to enablo them, when they bave arrived at the age and use of reason, to form a common and uniform judgment with respect to objects different from the internal oentimout of their own perception, which judgment is not the consequence of any anterior princirle." The truths which this "disposition of nature" obliges us to accopt ean neither bo proved nor disproved; they are admitted in all countries and at all times; and they are practically followed by all men, even by thoso who reject them speculatively. But Buftior does not elsim for the truths of contaon bense the sams absolute certainty as characterizes either the knowlodge we have of our own existence or the logical deductions we make from our thoughts; thoy possess merely the highest probability, and the man who rejects them is, ma he pointedly puts it, to bs considered a fool, bat he is not in oo doing guiliy of a contradiction. The greater part of the Traite is dovoted to an enumeration and examination of thaso truths. They aro euch as the following: "- "There are other beings and other men in the wort besides myself;" "All men havo not combined to deccivame." Bux axions lize " $2+2=4$," or "the whole io greater then a part" are mere lugieal connections of ideas, not truths of common senso. Buffier's aversion to scholsstic reficements and unmeaniag definitions bas not unfrequently given to his writings an appearance of shallowness and want of metaphysical insight; but his merit as one of the earlicat to recognize tho psychological as distinguished from the metaphysical side of Desartes's principle, and to $11 s 0$ it, with no inconsiderable skill, as the basis of an aualysis of tho human mind, similar to that cnjoined ly Locke, will always be acknowledged. In this ho has anticipated the spirit and method as well as many of the resulte of Reid and the Scotch echool. Tho Traite appeared in 1717, and was followed in 1724 by the Elénents do Diétaphysique. Buffer also wota a "French Grammar on a nev plan," and a number of histerical
essuys. Most cf his works appeared in a collected form in 1732, a.jd an Englith transhation of the Traite was published in 1780.
bUffon, George Louts Leclerc, Comte de, wae born on 7 th September 1707, at Montbard, in Burgundy, and died at Paris on the 15th April 1788. His father, M. Leclerc de Buffon, was councillor of the Eurgundian parlieftent, and his mother, Anne Christine Marlin, appears to have possessed corsiderable natural gifts. Buffon was the eldest of five children, and does not seem to have been in any way a precocious child. On the contrary, he seems from his earhest years to have been characterized more especially by great persererance, patience, knowledge of the value of time, and exceptional powers of steedy application and protracted labour. He was originally destined to his father's profession, and studied law at the collegs of Jesuits at Dijon ; but he soon cxhibited a marked predilection for the study of the physical sciences, and mora particularly for mathematics. Whilst at Dijon te mode the acqusintsnce of Lord Kingston, a young Englishman, who was at the time staying there along with his tutor, 3 man of ability and discernment. In this agreeable companionship, Buffon travelled through Italy, being then nineteen jears of age. Returning to France, he commenced to study at Angers, still in company with Lord Kingeton; but having quarrelled with a young Euglishman at piay, and oubsequently wounded him, he was compciled to leave this town. He thereupon removed to Paris, and during his sojourn in the capital he translated Newton's Flucions and Hales's Fegetable Statics, which he subsequently presenteo to the Academy of Sciences. From Paris he procecded in England, where he remained three months; but his travels seem to have ended here. At twenty-five years of age be succeeded to a considemble property, inherited from his mother, ond from this time onward his bife was a completely independent one, and be was enabled to devote binsel' entirely to his scientific pursuits. He returned now th France, and lived partly at Montbard and partly at Paris.

Though loving pleasure, and not keeping himself free from the prevalent - vices of the age in which he lived, Butous apent the remainder of his.life in regular scientifie labour, employing an smanuensis, and thus securing a permanent record of his work. At first he directed his attention more especially to mathematies, physics, and agriculture, and his chief origiaal papers are connected with these subjects. In the spring of 1739 ho was elected a member of the Academy of Scieuces; and at a lator period of the same year be was appointed kceper of the Jardin du Roi and of the Royal Minseum. This appcars to have fally dctermined him to derote himself to the biological sciences in particular, and ho commenced to collect materials for his Natural History. In the preparation of this volumincus work, he associated with himself Daubeaton, to whon the descrintivo and anatomical portions of the treatiso were entrusted, and the first three rolumes ruade their appesrance in the fear 1749. In the year 1752 (not in 1743 or 1760, as sumetimes stated), he married Mario Fmaçois's de Saint-Belin. He seems to have been fondily attached to her, and felt deeply her death, which took place at Mnut. bard in 1769. The remaiuder of Inaffon's lifo, as a private individual, presents nothing of sprecial interest. He belonged to a very long-luced ace, his father haring atiained the age of ninety-three, and his grandfather eighty-seven years. He died himself at the age of eighty-one, of resica. calculus, haring refused to allow of any operation for lat rchef. He left onceon, George Louis-Marie Jeclerc, who Wha an officer in the Freoch army, and who ched by the grillotine, at the age of thirty, on tho 10th July 1793 (22 Messidor. An II.). having espoused the party of the ruvia of Orierne

Buffon was a member of the French Academy, perpctual treasurer of the Academy of Sciences, Fellow of the Royal Society of London, and member of the Academics of Berlin, St Petersburg, Dijon. and of most of the learned societies then existing in Europe. Of handsone person and noble presence, endowed with many of the external gifts of nature, and rejocing in the social advantages of high rark and large possessions, he is mainly known by his published scientific writings. Without being a profound Corigival nvestigator, in the modern sense of this term, Bution possessed cousiderable pover of generalization, along with the art of expressing his ideus in a clear and generally attractive form. His chief defects as a sclentific writer are, that be was given to excessive and hasty generalization, so that his bypotheses, however seemungly briiiiant, are often destitutc of any suffietent basis in obserred facts, whilst his literary style is not anfrequently theatrical and turgid, and a great want of method and order is commonly observable in bis writings.

His great work is the Histoire Naturelle, générale et particulière; and it can undoubtedly claim the merit of having been the first work to present the previously isolated and apparently discounected facts of natural history in a popular and generally intclligible form. The sensation which was made by its appearance in successive parts was very great, and it certainly effected much good in its time by generally diffusing a tasto for the study of nature. For a work so rast, howerer-aiming, as it did, at being little less than a general encyclopædia of the seiences,--Bufon's capacities may, without disparagement, be said to have been insuffieient, as is shown by the great weakncss of parts of the work (such as that relating to mincralogy). Thic Histoire Naturelle passed through scteral cditions, and was translated into various languages. The cdition most highly prized by collectors, on account of the beanty of its plates, is the firsi, which was published in Paris (1749-1804) in forty-four quarto volumes, the publication extending over more than fifty years. In the preparation of the first fiftees volumes of this edition (1749-67) Buffon was assisted by Daubenton, and subsequently by Guéncau de Montbéliard, the Abbé Bexon, and Sonnini de Manoncourt. The following seven volumes form a supplement to the preceding, and appeared in 1ir4-89. Thise were succeeded by nine volumes on the Birds (1770-83), and these were followed by five wolumes on Minerals (1:53-88). The remaining eight volumes, which complete this cdition, appeared after Buffon's death, and comprise Reptiles, Fishes, and Cetaceans. They were cxecutcd by Lacepede, and were published in successive rolumes between 1788 and 1804. A second edition was connoneneed in lifit and completed in 1804, in thirty-six volumes quarto. It is in most respects similar to the frst edition, except that the anatonical descriptions are suppressed, and the supplement recast. Of the iemaining editions of Duffon, the best is that which was commenced under the editorship of Lamouroux, and completed under that of Desmarets, in forty rolames octavo (1824-32). It is the only modern :dition in which the anatemical descriptions of liaubenton are preserved. Thongh not without his enemics-seicntific and clerical-Buffon had many warn friends, and his death was marked by the delivery of highly laudatory addressess, by Condoreet at the Academy of Scienecs, Vicq-d'Azir at the Académic Francaise and Bressonet before the Soeiety of Agriculture. Extravagantly belanded by some, and vehemently attacked by others, we can recognize his merits without blinding ourselses to his defects.

This brief notice of his life may be fitly closed by tho following quotation from Cuvier, in wbich tie great French aaturalist, wLilst rejecting some speculations which reeent
science has generallly accepted as proba'ste, ascrites to Euffon the honour of being the first to clearly apprehend what is now adnuitted as the true pranciple of guidance in investigating the order of the universe :-" It is impossible to defend, in all their detals, either the first or the sceond of Buffon's theorres of the earth. This comet which strikes off portions of the sun, these vitrified and incandeschit plonets which refrigerate by degrecs, some more rapidly than others, those organzed betugs which appear successirely on the surface of the planets, as their temperature becomes suficiently lowered, can culy be regarded as tights of fancy. Bu: Buffou has not less the merit of having been the first to point out clearly that the actual condition of the globe ts the result of a succession of changes, of whel we can tind the evidences to day, and it is he who first drew the observa tuon of all investigators to the phenomena by which thest changes can be miravelled."
($\mathrm{L} . \mathrm{A} . \mathrm{x} . \mathrm{s}$)
BUG, a name common to all the specees belonging to the Cimicide, a family of Hempterous Insects, the beat known example of which is the House Bug or Bed Bug (Cimex lectularius). Thas diegustug insect as of an oval slazpe, of a rusty red colvur, aud, in common with the whale tribe to which it belongs, gives ofl an ofensive odour when touched unlike the others, however, 1 is is wingless. The lug is provided with a proboscis, which when at test lies along the inferior side of the thorax, and through which it sucks the blood of man, the sole food of thrs species. It is nocturnal in its habits, reruaining concealed by day in erevices of bed furniture, amoug the hangings, or behind the wall paper and shows considerable activity in its nightly raids in seareh of food. The female deposits her eggs at the beginning of summer in crevices of wood aud other retired situations, and in three wecks they emerge as small, white, and almost transparent larve. These change their skin very frequently before undergoing metamorphosis, which in their casc is "ineompletc," the p 1"pa elusely resembling the perfect insect, and attaining its full development in eleven weeks. Two enturies ago it was a rare inscet in Pritain, and probably owes its name, which is derived from a Celtie word signifying "ghost" or "goblin,"to the terror which its attacks at first inspircd. Other species of bugs suck the blood of many of the lower warn-blooded animals, but the majorty, as in the genus Tingis, confine themselves to the juices of phints.

BUGENHAGEN, Jonaxn (1485-1558), surnamed Pomeranus, a German Reformer, was born at Wollin, in Pomerania, on the 24th June 1485. He was cducated at the university of Greifswald, and gaiued high distinction as a classical scholar. In 1505 be was made rector of a school at Trentow, and was soon afterwards selected by the abhot of a neighbouring convent as one of the lecturers to the monks. In 1520 he received a coly of Luther's work on the Babylonish captivity, which speedily wrought a clange in bis viers. He warmly cmbraeed the principles of the Reformation, and suceecded in bringing over the aged abbot and several others. He made bis way to Wittenberg in the following year, was warmly received by Lutber and Melanchathon, and quickly becance a foremost man in the Heformation movement. He was specially qualifed for organizing the new chureb, and his activity spread itself over a wide district. In 1528 be arranged the church affairs of Drunswick and Damburg; ;al 1530 those of Lubeck and Pomerania. In 1537 he was invited to Denmark by king Christien III., and remainel five yeara in that country, organizing the chureh and schools. He passed the remainder of his life at Wittenberg, braving all the perils of war and persecution rather than desert the Flace that was dear to him as the home of the Reformation. He died on the E0th April 1558 . Among his numercus works is a history of Pumerania, which remained unpublished till 1\%SE, Pomeranio in IF. Libros Divisa.
buGUlMa, a town of European Russa, in the government of Samara, 243 miles from the city of that mame. on the small river Bugulminka, a sub-tributary of the Volga, in $54^{\circ} 32^{\prime} \mathrm{N}$. lat. and $32^{\circ} 47^{\prime}$ E. long. The town ruse into exrstence about 1741-5, and was peopled by soldiers, exiles, and peasants. During the Pugacheff insurrection it was vanply besieged by the rebels. In 1781 it was made a town of the Ufa government; in 1806 it was transferred to Orenburg, and in 1851 to Samara. Its principal umportance is derived from its situation at the junction of two great roads from Ufa and Orenburg, by which it mantains an extensive transit trade. A great annual fair is held from 14th to 21 st of September (o. s.). Population in 1867, 5455.
bugures ins, a toma of European Russa in the government of Samara, stuated at the junction of the rivers Kinell and Tarbbanka, 177 mules E.N.E. of Samara, in $53^{\circ} 39^{\prime} \mathrm{N}$ lat. and $52^{\circ} 25^{\prime} \mathrm{E}$. long. It dates from about 1748 , and in the true of the Pugacheff revolt was the acene of the outrages of Karpoff's band. Its changes from government tu government corncide with those of Bugulma. The principal buildings are two or three churches, a monastery, a hospital, and a caravanserar. It manufactures leather, wax, potash, and beer, and carries on a pretty extensive trade. There are two annual fairs. Population in $1=67,7450$.

BUHILE. Jobasn Gortlieb (1763-1821), distinguished as a scholar and an historien of $\mathrm{F}^{\text {bilosophy, was born at }}$ Brunswick, and graduated at the university of Göttingen, orbere he obtaned a charr at a very early age. Thence he was salled to the professorship of ancient languages at Moscow. After his return to Brunswick he was appointed to the char of natural law, which he beld till his death in 1821. Buble's activity was great, and the productions of his pen are numerous. He edited Aratus and part of Aristotle (the Bupontine edition, 5 vols.), the frst volume of which is a mastenly survey of Arstotelian Itterature. His fame, however, is principally derived from his labours on the bistory of philosophy. The Geschichte der philos. Vernuntit, 1793, was suspended after the first volume, but the Handluwh der Geschacitte der Philasophie, 8 rols. 1796-1804, is a very complete rad valuable work. More impertant than etther of these is the Geschiche der neuern Philosozhie, forming one of the great series of histories of the sciences from the leuassance It is a work of much learning, and is woll written; th fanlts are general weakness in critical appreciation and want of due sense of proportion. The History of Modern Phlosophy Las been translated into French, 6 vols 1806.
BUlfL WORK, otherwise Bool, Boule, or Boulle-work, is a kind of inlayng and ornanentation of cabinet-work, so named aiter the muventur André Charles Boule, a celebrated French calinetmaker (1642-1732) By a hapiy selection of different wrods from India and Brazil, arranged with great taste, and the use of brass, ivory, gold, tortoiseshell, \&c., Boule protuced upon his furniture arabesques and pictures, representing a rarnety of auimals, lowers, and fruits: and he finally succeeded in producing historical scenes, as battles and houts, landscapes, and other artistic effects. Lous XIV. appreciated has abilities, gave him lodgings in the Louvre, aud, in 1629, appeinted hum cugraver in ordinary of the royal seals. In the patent authorizing this be received also the designations of "architect, painter, carver in mosaic, artist in cabinet-work, chaser, inlayer, and designer of fgures." His skill was great in all these branches, and he carried them to a bigh degree of artistic perfection in timepieces, screens, furniture, and other articles. He worked for tho royal residences and for foreign princes, and attained fortune and position.

The beginnings of art in carving are found amongst the
relice of prehistoric racea, and when it arrived at the degree of perfection it afterwards attanned in the East, inlaying was a natural result. We find this to bave been practised by the anclent Egyptain and other Assatic races. Its attendant, veneering, ras also employed by them, workmen applying the veneer with glue beng represented on the Egyptian monuments. As elvilizas. tha adranced westward, the Greeks and Romans fulioned in the art, the latter race mlayisg their furnture wit marquetry or tarsid-work, using wory, ebony, bus, talu. bid'seese maple, beech, and other wuods. Thear ironze art cles they danascened with ornaments of the frections m.tals and metalle analgams. The spirit of the Middle Ages was adrerse to the development of this art, aud but fers traces of it are foud. In the South Kensugtent Maseum is a cotler of cypress, nuth tlat surface magery filled in with coloured was composition, that dates frum the 14th century. The Venetians derived their marquetry frim Fersia and India, as is indicated by the geumetric patteins inlard with ivory, metal, aud woods, staned of "antous co ours. Flurence took a prominent place in this manufacture if the 15th century. Certesina work was the result. It was so called from the great Certosa, Charterhouse, ir Carthusian monastery, between Milan aud Pavia, in the chorr-fttungs of which this kund of ornament, wory mland into solid cypress and walnst mood, is employed. Work in the Persian style, with its geometric Ggures, still reaches us from Bombay, the presen: great seat of the Farsecs.
The Renaissance artists chietly ewployed wood in making urniture, ornamenting it witb gildng a dd panstung, and inlaying it with agate, carnelian, tapus azuli, marble of various tints, ivory, tortolse-shell, wot ler-of.pearl, and various woods. Boule imprared upon his tiy mlaying brass devices into wood or tortore-sbell, which last be greatly used according to the design be had immediately in fiew, whether flowers, scenes, scrolls, dc. , to these he cometimes added enamelled metal. In thas process the brass is thin, and, like the oramental wood or tortois-shell, forms a veneer. In the first instance the production of his work was costly, owing to the quautity of valuable material that was cutamas and wasted, and, in addition, the labour lost in separately cutung for each article or copy of a pattern. By a subsequent mprovement Bonle effected an economy by gluing together various sheets cf material and sawing through the whule, so that an equal number of figures and matrices were jroduced at one operation. Boule adopted from thme to time various plans for the improvement of his designs. Ho placed gold-leaf or other suitable material under the tortoise-stell to produce such effect as he required; be chased the brass-work with a graver for a like purpose. aud, when the metal tequired to be fastencd down with brass pins or nails, these were hammered tat and disguised by orna. mental chasing. He also adopted, in relief or in the round, brass feet, brachets, edgings, and other ornaments of apprepriate design, partly to protect the corners and er ges of his work, and partly for decuration. He subsequently used other brass mountings, such as claw-feet to altars and pedestals, or figures in high or low relief, according to the effect he desired to produce. Boule's contemporary, Reisner, a German, used a variety of woods, tulip-wood more especially, in the production of dowers and other ornamental designs, contrasting the dark with the light kinds, crossing the grain, and employing other ingenious derices. After him this particular style was called Reisner-work. The Spaniards of the IGth ceatury used silver for inlaying.

[^38]
B U ILDING

Reaztion of
bulling $\frac{\mathrm{HE} \text { art of buituing comprises the practice of civil }}{\text { architecture, or the mechanical operations necessary }}$ bullding © architerture. to carry the designs of the architeet into effect. It is not unfrequently called practical architecture; but the adoption of this tern would tend only to confuse, by readering it diffeult to make the distinction generally understood between architecture as a fine or liberal art and arehitecture as a mechanical art. The execution of works of arebitecture necessarily includes building, but building is frequently employed when the result ia not architectural; a man may be a competent builder without being an architect, but no one can be an accomplished architect unless he be competent to specify and direct all the operations of building. A scientific knowledge of the principles of masonry, carpentry, joinery, se., and of the qualities, strength, and resistance of materials, though of the utmost importance to an architect, must be attended by a minute aequaintance with 2 great variety of less nubitious details. Such are those which relate to the nerangement of a plan for tice greatest possible degree of cunvenienee on the smallest space, and at the least expense ; its transference to the ground; the preparation and formation of foundations; the arrangement and construction of drains, sewers, and vent-shafts ; the variettes of walling with stone, and of laying bricks in brick work; the merit of the varioua modes of bonding and tying walls, both lengthwise and across; the arrangement of gutters on roofa, to get sufficient fall, and to conduct the water to the least ineonvenient places for fixing trunks to lead it down; the arrangement and formation of flues; the protection of walls frora damp, of timber from moisture and stagnant air, and of metals generally from exeiting causcs; the cost of materials and labour, and the quantity of each required to produce certain results. Together with these, an architect ought to be practically aequainted with all the modes of operation in all the trades or arts employed in build'ng, aod to be able minutely to estimato beforeliand tho sbsolute cost involved in the execution of a proposed structure. The power to do the latter neeessarily involves that of measuring work, and ascertaining the quantities done. These things may certainly be referred to the survegor or measurer, but they are not the less incunbent on the architeet, who cannot bo said to be thoroughly master of building, or the practice of his profession, unless he be skilled in these operations.

Building ineludes what is called construction, which is the bradeh of the science of architceture relating to the practical execution of the works required to produce any structure ; it will therefore be decessary to explain the subject in a general manner before entering upon building in detail.

It nay, perbaps, be uscful to premise that, should it occur to zome readers that the present article bas too great a tendency to supply information on tbe manuer of building in a modern atyle, and that the earlier method is not elaborated, it must be remembered that, although the atyles of architecture have varied at different periods, buildings, wherever aimilar materials are cmplosed, must be construeted on much the same principles. Greater selentific knowledge of the natures and properties of materials has, however, given to tho modern workman immense adventages over bis medixval brother craftsman, and caused many changes in the details of the trade, or art of building, although stones, bricka, mortar, \&c., then as now, formed the element of the more aolid parts of all edifices. The introduction of fir. too, in place of the more
solid and durable timber oak, has likewise oceasioned sinilar changes, too numerous to mention in detail, in the sister arts of carpentry and joinery, probably also causing the division of the carpenter's trade of the mediaral period. Certain exceptional features of meliaval work did exist, and most, if not all, will, it is hoped, be found referred to in this article.

Gexeral Principles of Construction.

The object of construction is to adapt and combine fit Stablity materials in such a manner that they shall retain in use the the object forms and dispositions assigned to them. If an upright of conwall be properly constructed upon a sufficient foundation, wall. the combined mass will retain its position, and bear pressure acting in the direction of gravity, to any extent that the ground on which it stands and the component materials of the wall can sustain. But pressure acting laterally bas a necessary tendency to orerturn a wall', and therefore it will be the aim of the constructor to compel, as far as possible, all forces that can act upon an upright wall to aet in the direction of gravity, or else to give it permanent means of resistance in the direction opposite to that in which a disturbing force may act. Thus when an Arcb arch is built to bear against an upright wall, a buttress or other counterfort is applied in a direction opposed to the pressure of the arch. In like manner the inclided roof of Root. a building, apanning from wall to wall, tends to thrust out the walls; and hence a tie is applicd to hold the opposite sides of the roof togetber at its base, where alone a tie can be fully efficient, aud thus the roof is made to act upon the walls wholly in the direction of gravity; or where an efficient tie is inapplicable, buttresses or counterforts are alded to the walls, to enable them to resist the pressure outwards. A beam laid horizontally from wall to wall, as Deasa. a girder to carry a floor and its load, may sag or bend downwards, and tend thereby to force out the walla; or the beam itself may break. Both these contingencies are obviated by trussing, which renders the bcam stifl enough to place its load on the walls in the dircetion of gravity, and strong enough to carry it safely. Or if the beam be rigid in its nature, or uncertain in its structure, or loth (as cast-iron is), and will break without bending, the constructor, by the suith's art, will supply a check and ensure it against the possible contingency.

Perfeet stability, however, is not to be attained with Materius materials which are subjeet to influences beyond the control of man, and all matter is sulject to certain influences of that nature. The infuences mostly to be contendcd against are heat and humidity, the former of which produces movenent of some kind or to some extent in all bodies; the latter, morement id many kinds of matter; whilst the two acting together contribute to the disintegration ordecay of materials available for the purpases of construction. These pervading influences the constructor sceks to counteract, by the selection and disposition of his materials accordingly. From the tenacity of wrought irnn, and its almost plastic claracter in the hands of the smith, it is employed to tie Iroo. together other more bulky but less costly and nore rigid materials; but on account of its exceeding susceptibility of heat, and its consequent expansion and contraction, wrought iron must be used in short lengths only, unless where protected from great alternations of heat and cold The rapid decay, too, of wrought iron when exposed to humi. dity, and especially when it is alteruately wet and dry, will teach the constructor not to expect enduring stabilit?
in his works if he makes them dependent upon wrought iron. Cast-iron is brittle, and may not be exposed with iagnuity to ranswerse strain, especially if suck straia bu witanded by action tending to induce vibration; it serpands and contracts under the iufluence of heat, bat it resists compession in every direction, and if used in small bodies, is valuable as a means of connecting other Daterials.
 lenth from the nucre absorption of either heat or humidity, and at the same time practically both inextensible and incomoressible in that direction, and heing also readily wrought and easily combined alike with other tiuber and with tron, is a valuable muteriai in the bands of the constructor; ! at it shrinks and swells in the direction of its tbickness, and, in consequence, is subject to rapid decay when exposed © alternations of moisture and dryness; and although in s any rarieties tinber is perdurable and unchanceable in 1 rm if it be kept cither altogether free from moisture or always whally wet, its quality of inextensibility is greatly \therefore immished in value to the constructor on account of the comparatively slight resistance ic offers to compressing gower, and the comparative ease with which its fibrous structure 15 torn asunder. From this cause it cannot be grasped or otherwise beld so that its power of resisting extension may be made available in any degree proportioned to its streagth; whilst its quality of incompressibility in the opposite direction is of less value to the constructor for many purposes which require that quality in the material, because it absorbs moisture by the ends of the fibre more readily, and with a far more mischievous cffect, than it does in the direction in which it is compressible. Hence timber rots more rapidly by the ends than by the sides.

Stone and brick, the otber man available materials in generai construction, keep their places in combination by meins of gravity. They may be merely packed together, bui in general ther are compacted by means of mortar or cement, so that although the main constituent materials are wholly meompressible. masses of cither or of both combined in sractures are compressille until the setting nedouin has indurated to a like eondation of hardness. That kind of stone is best fitted tor the purposes of general construction which is least absorbent of utoisture. and at the saue than free to work. Absorbent sione exposed to the weather rapidly dismetegrates; and for the most part 1 absurbent stone is so hard that ic eannot always bo used wih a due regard to economy. When, therefore, fiting s:nue of both qualities can be obtained, the harder stone can be exposed to the weather, or to the action which the sofur stone camot resst, and forms the main body of the :Thetare of the latter so protectec The hard and the sott shahd be made to bear alike. and should therefore be chersed ano bonded tugether by the mason's art. Whether The work ie ot stone wrought into blocks and gaved to thicknes, or of wuch dressed or otherwisu anshaped rainde compacta with mortar.
Brick Good bricks are dess ansurvent of mosture than any stone of the sann: worse of hardness, and are better non-- muctors of heat than atome. As the basis of a stalle stracture, brickwork is more to be relied upon than stone in the form of rukne, when the constituents bear the radion to ouc moller last above refercal to, the setting 1, ! wia! being the same in both ; because the brick, by its shanat form, seats itach truly, and produces by bonding a in purfectly combined mass; whilst the impufectly sta pud and variously siaed stome as ircosed rublle can 2. At or bed nor bond tmly,-the inequaties of the form 1. "ins to be compensated for with mortar, and the ardarity of size of the main constatuent accounted for 3 the introduction of larger amb amaller stones. 'ihes

truy mrought and accurately seated and bonded blocks of stone, mortar leing used to no greater extent than may be Lecessary to exclule wind or water, to preveat the dis. integrating astion of both upon even ile most durable stone. When rwater alone is to be dealt with, and esiecially when it is liable to act with fo:ce, mortar is necessary for securing to evcry block in the structure its own full weight and the air of every other coliateral and super-inposed stone in order to resist the loosening effect ruich water in poweriul action is sure to produce.

In the application of construction to any particular actionse object, the nature of the object will gieatly affect the ubjects or character of the constructions and the materials of which construc. they are to be formed.

Every piece of construction should be complete in itseli Lactionter and independent as such of everything beyond it. A door ylete is or a gate serves its purpose by an application wholly foreign itsels to itself; but it is a good and effective or a bad and incffective picce of construction, indeperdently of the posts to which it may be hung. Whilst the wheel of a wheelbarrow, comprising fellies, spolias, and axle-tree, is a piece of construction complete in itself, and independent as sush of ererything bejond it, an arch of masonry, however large it may be, is not necessarily a ficce of construction complete in itself,--it would fall to pieces without abutenents. Thus, a bridge consisting of a series of areles, howe:er Erids. extensive, may be but one piece of eonstruction, le arch being complete in itself without the collateral arches in the serics to serve as its abutments, and the whole series being dependent thereby upon the vitimate abutments of the bridge, without which the structure would not stand. This illustration is not intended to apply to the widely istended masses of the older bridges, by which each pire becomes sufficient to abut the arches springing from it, wut which tend, in providing for a way over a river, to choke up the way by the river itself, or compel the river to throw it down, or otherwise destroy its own banks. A bridge, of which the way is formed upon arches of masnnry, may be thus but one piece of construction; and in like manner, Putane that paragon of constractive slill, the cumplete church, chand on whether cathedral or otherwise, as built in the Pointed catcuai style when that style was practised in full accordance with true constructive principles, is but ond piece of construetion. As in the loby series of arches in a bridge, viaduct, or other such work, in which the piers are vertical supporte to the bridging structure, and may be of no grater snostance than is necessary to bear the weight coning directly by vertical pressure from the superincumbent structure and its possible load, but throwing all the jressure arising from weigh acting laterally, or as thrust, upor. terminal abutments.-nothing may be onitted, as nothing can be removed from the structure of the lounted arcl cathedral, or other church built in that style, the whole system of which is bridge-like in construction, without learing something unsupported or unresisted that requires vertical support or lateral resistance. The western towers of a Pointed cathedral form effective abotments to the long sencs of arenes of the inner ranges over the piers which staml between the nave and the aiskes un buth sides, whilst turres or masswe buttresses and decp porches upon the northern and southern transept fronts ferform the same services in respect of the archu's of the transepts. The counteracting east end of the chancel forms a true constructive abutment to the arches of the ehancel, whilst the tower, with, it may be, a spite mpn it, at the intersection. of the four grand compartments of the cross, gives, by its weight, abuttal to theru all. The want of this last-named grand and essential lody in the system is but too strongly manked in many of tha English cathedrals, by the iron hars

transepts, and chancel, and to relieve the piers upon which the transept arches bear at a higher level from the thrust to which, being without the weight of a tower upon them, they have contioually yielded. Transversely, the weight and the thrust of the vaulted ceilings of the nave are brought up to, and thrown against, the pierstof the clereetory, which stand upon the main piers or columns of the incerior L low, and are abutted by flyiog buttresses, which carry the thrust down to the pinnacle weighted buttresses of the outer aisle walls, which have already received the weight and thrust of the vaulted ceilings of the aisles themselves. Corbels in the walls and spreading capitals upa shafts take the weight directly, and leave the walls 2nt pers but little encumbered in the middle, so that the vertical structure is continued upwards without bearing upon the springing stones of the arches.

But it is not necessary that the arch employed should be the Pointed arch, to produce combinations as effective in construction as the most perfectly designed and extensively elaborated work of the kind referred to as models of constructive skill; the akill consists in a full and clear perception of the bearing and leaning of every part, and of the means necessary to eupport and counteract the bearings. and the leanings within the reasonable limits of the work with reference to its object and purpose-to the end that the work may become complete in itself, and independent as a piece of construction of everything beyom it.
the springing walls, or under the arch whose thrust is to be resisted; yet in the construction of retaning walls, according to the common practice, the counterfort is placed on that side which receives the pressure, where its utility is very questionable, eaccpt to keep the retaining wall from falling back against its load, which, from the transverso section geoerally given to such walls, they would be apt to do. if not so propped up by their connterforts. Wharf and quay walls, and the revetment walls of military works, may require a face unbroken by projections; but this is not the case with retaining walls for roads and railways, where a long line of projecting buttresses would be unobjectionable, the counterforts becoming buttresses and mocely changing places with the wall. On account of the common practice of battering the faces of retaining walls in curved lines, and Butterag of radiating the beds of the brickwork composing them from the centre of curvature in cvery part, the back of the wall must contain more setting material than the face, with the same quantity of solid brick, that is, if the work be bonded through. Counterforts must be built in the same courses, and consequently must have still thicker beds of compressible mortar than the wall; or the bond between the wall and its counterfort must be dropped, and the counterfort thus become utterly inefficient.

The retaining walls in the cutting upon the line of the Examples extension of the London and North Western Railway, from at Camdec Camden Town to Euston Square, are, according to the Town common practice, built wholly of brickwork in radiating courses and with counterforts following their own contour. " In this case the centre of gravity of the .wall falls who!ly

lig I
Tranaverse section of the Furion Inciline tetainong walls, one-balf na execuled with cast-lran htruts to counfetforted and reclange walla and tho other hatt with the brick bubt nbutiang beam to countor-arched retatomg walto staptert at the rece of the spidegna a allo by toverted arehes

Fig. 2.
Flan of the wove showing tho part as execuled above the tron atring mith the ralls pasalng andcrneatb, and tho other part at the tevel of the rails, whe the inverts in plan andor zbem.
behind its base, and the counterforts not commencing until the wall has reached one-third its height render it still more dependent for support upon the ground it is intended to retain. It is well known that these extensive walls, though furnished with all the collateral works necessary to protect them from exposure to undue influcrices, and although set nearly one-fourth of their height in the ground, failed to a considerable extent. A system of strutting with strumps cast-iron beams, arross from the opposite walls, as shuwn tu
fig. 1 , to mare eack sid the othe, was applied to meet the emergenco; but this is limited to the upper parts of the walls.

Abutting struts from opposite walls, occurring at intervals only, leave the intermediate portions of the walls exposed to pressure from behind without support, unless these intermediate portions are so disposed as to communieate the pressure upon them to the struis. Hence a common retaining wall, abutted at intervals, would require these ietervals to be more or less distant, in proportion to the strength of the wall between them. Instead, therefore, of a continuous wall on each side of the cutting, buttress walls should be placed at intervals, opposite to one another, and etrutted apart at their toes by an inverted arch (as in fig. 2); and above, at a height sufficient for whatever traffic the

Brich
Learl.
Built gbutitug beams cutting is to accommodate, by a built beam of brickwork, in vertical courses, supported on an arch, and prevented from rising under the pressure by an invert upon it, as in fig. 3. This built beam will then be, as it were, a pieco of walling turned down on its vertical transverse section, and will resist any pressure brought upon it through the buttress walls, to the full extent of the power of such a wall built vertically to bear weight laid upon its summit; the pressure would be applied in the line of the greatest perer of resistance, and there would be no teadency to yield, except to a crushing force. Let such transverse buttress walls, so etrutted apart, with the road between them, be the springing walls of longitudinal counter-arched retaining walls, which, being built vertically and in horizontal courses, but arched in plan, against the ground to be retained, will carry all the force excrted against them to their springing walls, and the springiug walls or buttresses will communicate, through the strute, the power of resistance of each side to the other, and thus insure the eecurity of both.

Fio. 3.-Built abutting Beams.
This arrangement may be carried to any extent in height, by repeating the abutting beam or strut at such intervals as the thrust to be resisted and the strength of the buttross springing-walls may require.
Pimanty of To constructions thus arranged, any requisite power may onterals. be given, by altering the quantity of materials in each part, -the length of the buttresses transversely of the cutting, the number of struts to each pair of buttresses, or the length of the compartments. The thickness of the buttresses should be in propertion to their height and length, and their length should be in propertion to the flatness and weight of the struts with their arches, and to the space in height between any two of them, as well as to the magnitude oi the thrust brought to them by the counter-arched retaining walls. The inverted arch below and the built beam above must, of course, have sufficiont eubstance to eabble them to resist, witbout yielding in any direction, the pressure brought to them through the buttresses; and the retaining walls themselves must haro substanco given to them according to their height, to the pressure they are liablo to receive from behind, to the leagth of the compartments, aud to the extent of their
flexure ;-subject, of course, as to all these, to the nature of the materials, workmanship, and mode of structure.

The positive strength which such constructions should Strength of possess depends much, of course, upon the nature of the the consoil, and its susceptibility of being. affected by external stractiosr. influences; but it depends, even in a greater degree, upon the manner in which the constructions can be applicd to the ground they are intended to retain. A very slight power will retain at rest a body which the exertion of great force could not step if once is motion, and a half-brick counter-arch, set in close centact with undisturbed ground, would hold safely up what three tipues the substance would not stop if there were space and opportunity for motion between the ground and the brickwork. It is impossible, therefore, to state precisely what is the least strength which the retaining constructions must have, but there can be no question that too much strength is better than too little, and it is geperally cheaper to pay in materials than ir labour to eave materials.

Fio. 4.-Transverse section through the centre of a Ee: :
The diagrams, figs. 4 and 5, represent a cutting 65 feet Anexample deep to the level of the rails. It is assumed that the of a curground at the top may stand for the first 15 feet at less ${ }^{\text {ting. }}$ than 2 to l, and that it may, therefore, be cheaper to run out to that depth with slopes, leaving 50 feet from the rails, or about 52 feet in all, to be retainct. As the bricklayer may follow up the excavator with bay after bay, his wofk lying mostly on the sido and out of the way of the excavator, the latter would run out the spoil without interruption, his mork being beached onwards and shored as he proceeded. - As every compartment, with its buttresses, invert, abutting beams, and counter-arches is complete in itself, the ground being backed against the counter-arches as the work rises, the shering would come out, and be sent on for use on the forward benches. This invert may be turned upon footings in half-brick rings, to get the largest quantity of solid resisting matter in the curved line. At a height from the surface of the rails sufficient for headmay-assumed at 14 feet 6 inches-a 14 -inch bonded arch is turned from buttress to buttress, springing from skewbacks on corbelled courses. Upon the back of this arch the abutting beam is built of brick on end and edge, bonded as a wall, with beds vertical and widening over the haunches of the discharging arch and under the similar inverted arch turned upon it; so that although the beam be in the centre but 21 inches deep, it presents an abutment at each end of three times that depth. The object of the invert over the abutting beam is to. stiffen it, and to bring dorn and distribute the weight and pressure from the buttresses more effectually. The built beam, and its sustainiug and stiffening arches,
should be composed of particularly well-formed bricks of really good quality, set in cement or in some quick-setting mortsr, that there may be no yielding to the pressure which must be immediately thrown upon this part of the construction. Another bailt beam, of greater depth, becsuse of the absence of any inverted srel to stiffen it; is thrown across over the back of a semicircular arch, with its abutting ends exteaded in like manner.

Fig. 6. - Plan at twice the scale of the Section (fig. 4).
Te relieve the work from water, a drain being run along over the middle of the inverts, or oide-drans being passed by ring culverts through the buttresses, drain-shafts are carried up at the backs of the buttresses sganst the apringings of the wunter-sicbes, to within a few feet of the surface. These shafts, being steeaed with open joints at intervals to admit drainage water and communiesting with the draios below, prevent the pessibility of water Jodging about the backs of the counter-arches, or even in the greund itself. The drain shafts shoald be semi-domed with bricks set dry and covered in, sad the walls also backed up with geod clean gravel, through which the surface water may percolate and pass freely down to the shafts.

The constiuctions are assumed to be of brickwork, for the obvions reason that the cases supposed being clay cuttings, briek is the material which would be most econenical. But if masonry be cheaper, it may of course be used with the same effect. Where a cutting intersects loess beds of laminated stone, sad psrticularly strata incliaed to the berizon, se as to be unsafe with the ordinsry alopes, euch constructions are arailable; and in cases where the sides of the cutting will stand vertically or nearly so, as in chalk, it may be useful to apply similar coastructieos, though of slighter charscter, to cheek the separation and fall of masses from the precipitous sides. It is abvious, too, that these constructions present the means of security, when the stratum ferming the base of any cutting is too weak to bear the weights of slopes, or of retained sides, without rising between them. Sheet-piling may be driven to sny depth along the backs of the counter-arched walls so as to be retained at the head by the walls; and thus in effect the walls would be carried down to a safe depth, even through the weak stratum; whereas sucb piling st the toes of slopes is commonly found to be almost if not wholly useless, for the want of a stay to the head.

The ignitibility of timber, and the rapidity with which it burns when placed in circumstances so fsvourable to that effect as by its disposition in an erected building, bave led to its prohibition for the purposes of the main enclesures
of houses and buildings generslly, in London, and in many of the larger provincial towns. It is possible, however, so to protect timber employed in the enclosures and for the internal partitions and floors of buildings as to render were dwelling-houses practically incombustible. Whilst, however, the liability of timber to take fire and to burn may in a great measure be connteracted, and notwithstanding that this material combines the advantage of economy with security, stone and brick are undoubtedls better adapted for the main structure of a building. Brick or stone, or brick and stone together, with a settiug material, ought to be employed, but in such manner ouly as to be free from dependence upon other and less trustworthy materials. The most perifect erections as buildings are those in the composition of which thes principle bas been understeod and fairly practised. If adventitious aid be given to brick or stone walls by foreign materials, the materials ought to be at the least harmless. Iron in bulk is not a proper Iron. substance to incorporate with walls because of its great expansibility by beat; butiron used in thin lemines, as hoopiron laid in walls in the bed-joints of the brick or Heop-itas stone, cannat be productive of any bad consequences, while it is mest beaeficial in that form as a tia to the structure.

Bricks come ready sbaped to the hands of the workman Brieks and in a form the best adapted for the arrangement in the con- stone. struction of a wall which, under the designation of bond, gives it such a degree of consistency that a weight placed opon the top is carried by the wall in every part throughout its whole thickness, and throughout a greater or less propertion of the length according to the height of the wall. Stone, on the other hand, cemes to the workman without regular form; and with skili on his part to dispose and arrange the materials, goed erections may be produced of rubble, for although the thickness of which walls may be built of rubble with safety will depend in a great degree upon the quality of the mortsr, much depends also on tije skill of the workman in bedding sod bending the stenes. Under say circumstaaces, hewever, a wall so composed cannot safely be charged with heavy weights, or be exposed to the vibrating action of floors, until the mortar shall have iadurated to some extent; whereas a wall of brick work is secure by the horizontal bedding of the brieks, and by the effect of the transverse bond which the alterustion ef header and stretcher almost neccssanly produces. Stone, again, may be dressed to any share, and so as te menld it to every variety of construction with the snallest possible quantity of mertar or cement. From blecks with reugh hammer-dressed parallel beds, up to the most complete and perfectly wrought parallelepipeds adapted to any srrangement of bond that may be best adapted to the structure, and with combinatioas of rudely formed and perfectly formed pieces of stene, walls may be bult of stone of greater strength than the best brick can be made to yield, whilst stone walls are liable to be inferior in every respect to brick-buile walls of erdinary quality.

Some combinations of the two kinds of materials have Combinsthe effect, however, of making a better wall than could be tinus of the produced by the main constituent in the form employed ${ }^{\text {two. }}$ alone. A stone-rubble or pebble built wall is greatly improved by ene or two bonding courses of brickwerk at short intervals; and a brick wall is improved and adapted for a higher purpose by thorough eourses, at intervale, of goed stone, wrought to bed and joint truly; whilst on the other hand, a wall substantially of stone-rubble or pebble, and faced with brickwork, is essentially an unscund wall; and in like manner a brick wall faced with wrought stone is liable to be wesker than the brickwork would have been without the stone.

With regard to the thicknesses of the walls of buildings, Thickeess it is generally considered that these should be governed by of wills

Sonstruc. tion of civic strue rlly.

the height of the structure; but they ought not to be determined by that condition aloue. Chimney-breasts, or o:her buttress-like projections, bailt up with a wall, and extending to more than the thickness of the wall, make it in fact stronger in its transrerse section, and justify less geacral thickness in the body of the wall, whilst window and other openings in a wall leave piers which ought to be of greater thickness than the mere height would require. Eut all retarns, andeed, whether as chimney-breasts or as cross walls, bailt bad bonded with a wall, tend to render unnecessary the full thickoess which the beight might rezuiro ; whilst, as just matimated, the umssion of portions If a wall for door and window openags should be compensated for by additional substance to the parts which remain. Walls subjected to undue action, such as that arising from slight joists taded into them, or that occasioned by inclined tumbers, as under galleries in churches, chapels, and theates, require to be of greater thickness than they otherwise would; whilst it is quite wonderfal to what great heights brick walls may be built with safety, if they are weil built, and exposed to no other action than direct pertical weight. When, indeed, euch walls stand upon a onficient foundation, direct vertical weight mathout motion is a means of becurity to the walls so long as the weight is reasonably mithin the power of resistance of the materials to crasbing pressure. The object to be looked at, therefore-the walls beang honestly built-18, as before remaried, to make the weight to te imposed upon any wall act apon its solids vertically and steadily.

Floors apon girders, or framed to strong trimmers-the girders or the trimmer-joists ranning into and bearing apon the piers or solids of the walls-are far preferabla to what are termed sungle floors, of which each joist runs into the wali. Girders as the bsiss of floors render plates in the walls wholly annecessary, by depositing the weight in the right places, withoot requiring plates to carry it on from the weaker to the etronger places; and being of necessity atont and rigid, they form a fair tie and strut to the walls into which their bearing ends are tailed. Whether girders or trimmer-joists be employed for placing the weight of floors upon the walls of a bailding in the safest manner, the bearing timbers ought to be placed npon preces of stone as templets built into the walls, and to be made to take a cog-hold of the templets, so as to enable them to the and stay the walis by means of the cogs. It ls by menns of the girder bearing upon the solids of the walls, though with bad carpentry, that the French are able to carry ap their soft, conrsed-rabble, stone walls to beights that would certanly be unsafe if the walls were seamed mith wooden plates, and saaken by tloors of single joist; each, for instace, as a wall of a total height of say 85 feet, with a thickness of 18 Eaglish moches on the ground-floor and through enz storice, or about 65 feet, and finished by a gable, -the besement being valled with walls about 20 inches thick. It is by means of the solidity given to she floors by the garders, and the oolid bearings which the gerders obtain, that the floors are able to carry the dead weight of matter which renders them practically fireproof, as described below, in addition to the moving weights to which the floors of buildings aro necessarily exposed in use. We can and do frame lloors most effectively by carpontry alone; whereas the French do the work so badly, that no important bearing is, or indeed may be, tristed by then to the framed joint-doy-nailed stirrup streps of iron being always brought in add. But the conimon practice is England is to use single or anframed uc, rs, which carry the weight and the vibration to which foors are exposed juto the walls, over woids as well as over nolids; while the Fronch frame their floors to or upon sarcers, by moans of which the floors are brougtt to bear
upon the solids of the walls. The walls are thus not only less exposed to vibratory action, but are both tied togetber and strutted apart with better effect by the stout girders atiffered by joists than by joists which themselves require some foreign and to stifien them. Bioreover, single floors of joists, anless tuimmed at frequent intervals, when, indeed, they may be termed balf-framed, are supposed to require plates of timber laid along the inside faces of outer walis and upon internal walls. This defect is avoided by French budders, who exclude all timber, eacept the bearing ends of girders, from their walls, and use framed floors.

When the walla of a building have reached their full Fren-plate height, the wall-plate cormes into use legitimately-to cops and roof. the walls, in fact, and to form a corb as a base apon which to place the roof, which should deposit its weight, nevertheless, by means of its tie-beams upon the plates over the solids of the wall below, and which shonld, moreorer, oversail, to as to cover and effectually shelter from the weather the enclosing walls also.

In eetting forth the atructural advantages derivable from Castiron the use of girders as the bases of flours, it may be necessary girdur. to repest the warning already iotimated against the use of grders of a material of uacertain strength, and of treacherous character when exposed to transverse strain. Cast-iron is of ancertan strength, mainly because of the imperfections which the most skilful fonnders, with the best materials and every appliance at command, cannot always avoid, and which are most liable to occur in the production of complex forms in loag lengths; wielst careless founding and rapid cooling are contingencies connected with the production of castiron girders-which are neceesarily long and complex castings. Cast-iron is treacherous, inasmoch as it is brittle and liable to be startled into fracture by impact trifling when compared with what it mas hare borne safely as a dead-weight. Proving long metal castings by straining them opon their transperse section does bat aggravate imperfections, and leave the casting weaker; whilst no dead-werght proof is proof against blows or other action iaducing vibration. It is only under circurustances which do not admit of concussive action upon the beam, or which prevent it from vibrating under cay shock that may reach it, that cast-iron can be safely used in beams of long lengths to carry beary weights, without some appliance to mitigate, at least, the imperfections which this sobstance exhibits. The application of wrought iroa tension bars as solea to beams and girders of cast-iron Tenetos would prevent the most serious consequences from attend-bara ing the failure of the casting, if the beam were also prevented by binders, or by other sufficient means, from turning round when the biow produces an oblique fractare. Wrought iron girders can be aod are now extensively nsed to carry floors, fortitions, and ercn walls with safety.

Inasmoch as some soils are liable to change in form, Feondor expandiug and contracting under meteorological influencea, thos. as clays which owell when wetted and shrint when dried, concrete foundations are commonly interposed upon euch soila to protect tho building from derangement from this cause ; or rather, for that purpose wallis of the cheaper material, concrete, instead of the more expensire brick or stone structure, are brought up from a level sufficiently below the ordinary eurface of the groand. When concreto is used to obriate the tendency of the soil to yidd to pres. sure, expanse or extent of base is required; and the concrete, being widely spread, should therefore be deep or dick as a layer, only wath refcrence to its own porser of transmitting to the ground the weight of the wall to be built upon it, without breaking across or being crushed. But when concrete is used as a substitute for a wall, in - carrying a wall down to a low level, it is in fact a wall, wide only in proportion to its comparstive weekness in tbe
absence of mampulated bond in its construction, and encased by the soil witho which it is placed. the most part, suffictently provided for by applying what are technically termed footings to the walls. The reason for a footing is, that the wall obtans thereby a bearang upon a breadth of ground so much greater than its own width or thickness above the footing, as to eompensate for the difference between the power of resisting pressure of the wall and of the ground or ultimate foundatiou upora shich the wall is to rest. It will be elear trom this, that ? a building ss to be erected upon rock as bard as the uman vustatueut of the wally, no expanded toothags will be sectssary, if upon chalk, upon strong or upun weak stavel, upon sand, or upon clay, the looting rust be expanded with reference to the power of resistance of the stratum to be used as a foundation, whilst wor upon atade ground, or other loose and badly combined ar imper. feetls resisting sonl, a solid platiorm bearmg evenly over the ground, and wide enough nut to sink hato it. becomes necessary uoder the constructed footing. For thas purpose the eastert, the most famuliar, and, for most puaposes, the most ellectual and durable, is a layer of concrete, which may bo formed so as to cover a surface large enough io ubtan from the most ylelding soil the amount of restatance to pressure required to support the wembt of the minended building It will be evadout that upon a conerete foundatuon a footing or expanded base may or may not be required to in wall, aecordug to the hardness of the concrete and the kind of wall to be buile, but it to perhaps becter to give the footing to the wall than to wast for the sutioctema induration of the concrete to eabble the mall to do without a footing, and better still, to lay the concrete of such berght only with refereuce to the spread or extent of base beyoud the toes of the footing, as the gravel of which the concrete 18 made would stand at in an ancombaned cond. tion. Concrete, indeed, is at all tumes more sately to be regarded es a substance to be placed as a layer than as a substance to be set up as a wall for although excelleut erections as walls may be nadu of concrete-its erections in the same form may te made of tempered elay or of pises. work-aenther concrete nur tempered clay ts to be regarded as a proper substance with whela to form the lufter nalla of buildings in towns. The use of have concrete involves walls of a constierable thekness J'orthand cement cuncrete, a stronger material and baving the property of bardening rapidly, is more commonly useff for thin walla Severa] patents have been taken for erectiog buildinga whth conerete walls by the construction of troughs furmed of frames and novable boards or shutters. But considerable duubt exists 1s to the extent to which such walls can be buite as many bave cracked, proved leaky, and shown other faults, whilst nuch economy does not resuit except where the work 18 very plan and straghtforward, where little 1 spent on subsequent finish, and where the materals can be obtaned al very little cost either for themselves or for carrage.

Construction for Protection agatnst Fire. - 110 uses seldom tike fire from common accidents, such as oceur to the bighter novable furnituro and to drapery ; but, for the most part, from the exposure of timber in or atout the structure to the continued action of fire, or of beat capable sooner or leter of inducrag the combustion of timber, and as the eource is most-commonly in defective gas-piping. or in some stove, furnace, fluc, pipe, or tube, for geceratang or for eonveying heat, or for removing the producta of combustion, much of the real danger to buildiugs from firo rould be prevented by avoiding that degree of prozimity timber to all such things as can lead to its comvtion. With a view to lessen the danger to whicb sangs with timber in their structura ar.. patosed from
fire, it will be well to consider how far the timber and wooden fittiags commonly used may be nectssary ettber to the stabibty of the buildings, or to the comfort and convemence of the mhabitants. But it is not our intention to describe bere the vartous modes of fire-proof construt: Protective troa, but only to notice the prisciples upon which ordinar: builhings may be reudered nearly meombustable. So low as danger of fire $1 s$ brought tu buldings through phpes and tubes the necessty must be admatted of euarding the conibustible raterabs ased 16 busldags from any chauce of becomag tgented When beat is produced and pasisod tirough fapes in any undufactory, whether it te to act as power, or for drymg or tor warmang, the bres used may be grarded, and the mactunery which regulates the menenty of the leat to be transmated may be under constant care, but evell in such cones there ean be no certanty that the heat shall nut at sume tome arrive at the porm of dauger. But when beat is diffused throughout drellarghouses by means of apharatus whach is coumatted to persoris unskilet meits use, and unconscious or carcless of the danger which may arise from neglect. it seems mpossible to lay down inflexible rules for distances from timber whech shall render it sate from beated papes Twelve or fifteen mobes way not be a greater distance than safety requares under some crrcumstances. Whalst there are many cases in whach the aftual contact of such papes with tumber is hard!. neonsistent wath safety. When the ar ghout beateo bodies is not confoned, as it would be withan the umbers of an urdinary thoor, a distance between the timber and the heated surface equal to the longest dianeter of the tube or pupe will be found suffictent if the temperature of the In pe does not exceed that of boiling water. It is to bo understood that a piece of wood will hear a ponerful deadbeat upou lis sudes for an mdefinite period wathont gnitmg, unless a thansverse section of the fibre, as at or around a live knot. or where a branch bad been lopped, present itself to the action It is by the end that a plece of woud expased to powerful hear most readily agnites. The gases evolved in the substance of the tabiber by the action of heat apphed to its surface, expanding as they are evolved, are thrown out by the pores among the fibres at the ends, if the ends are vear enough to the action to allow of this effect, with less power than may be enough to obtain vent for the intlammable gases laterally.

The English Gorernment, when it has legialated upon Buildingo sucb matters, has generally confined itself to making Acts. Frovisiod that the enclosing walls of buldings should be formed of ancombustable materials. In provisions regarding the least thicknesses of such walls, these were generally determaned with reference to the height of the building, and to the area to be enclosed, as an indication of the protable lengths of the walls, and thas butha for the pur. pose of promotiug salety of structure, and of checking the spread of fire from building to buildiag. As, bowever, is most cases greater thickness is required in the side wall of on ordnary dwelling. bouse in a town to render its structure secure than $1 s$ necessary to enable it to check the spreading of fire, suci walls are frequently nade of greates theckness than would bo necessary to fulfil the objects which the Legislature has had in view, if the walls were not supposed to extend the whole length of the two longer sides of a parallelogram without intermediate cross or rethrn walls. A solid, well-built brick wall, one brick or 9 iuches thick, between two ordinary dwelling-bouses of five or six squares 10 area cach, will prevent the communtation of fire through it from one to the other. But, in towns, ardinary dwelling. bouses, which wecupy each an area of five on six squares, are generally disposed in plan as paralielograms, having thear opposite sides 18 or 20 feet, and 28 or 30 feet respective'y in longth, and are seldom carried up to less height than 35
or 40 feet; and wells of such lengths and heights could bardly be deemed safe if not more than one brick thick. Consequently, a greater thickness bas been prescribed as the least thickness of the walls of buildings of the sizes indicated. In the older Metropolitan Building Aets much geeater thícknesses were preseribed for the walls likely to be the longer walls; whilst the only necessity for more than one brick rises from structural requisites, and not from any insufficiency of a wall of solid brickwork one brick thick as a means of preventing the spread of fire.
But the requisites of tha structure would be as well fulfilted by one-brick walls upon the long sides as by $1 \frac{1}{2}$ brick walli, if the ordinary internal cross partition for dividing a house into front and back rooms were built of brick work abutting upon, and at right angles to, the longer walls, and carried up eoursed and bonded with them. That is to say, party-wallis of one brick or 9 inehes in thickness, connected at their ends by $1 \frac{1}{2}$-briek or 13 -inch front and back walls, and at or about the middle of their length by otber 9 -inch eross walls, would be at the least as strongeas $1 \frac{1}{2}$.brick party-walls, though conneeted in the same manner at the two cuds, but without the abutting and connecting cross wall of brickwork. Instend, however, of such internal cross walls, hollow partitions of timber are commonly used in all stories above the basement story; and it is by these partitions, and by the light and highly inflammable wooden stairs, that fire extends itself rapidly throughout ordinary dwelling-houses; whilst the substitution of a brick wall for the cross timber partition would in most cases justify the abatement of a half brick of the thickness otherwise neeessary to party walls, and give an indectructible infernal support to the floors, whereby also ope of the means by which fire travels rapidly through a house would be removed. It is true that there must be openings as doorways, and fittings in them for doors, in such internal partition wall; but the wall could not carry fro up from floor to floor through its own heart, as the holiow wood-lathed quartering partition carries it. Doors and shutters, and door window linings, in and against brick or stone walis, may take fre and burn in any story of an ordinarily built dwelling-house, without carrying it beyond the stery in which the fire occurs; for a plastcred ceiling of the mest common descruption will resist the action of flame upon its surface for a lory time, and plastering of really good quality, though upon wood latbs, will beep fire off from the joists by which it is beld up, almost without danger, so long as the fire acts upon the face only of the plastering. If, however, fire reach the joists tbrough the agency of hollow quartering partitions, the enemy has turned the flank of the plastering, and the floors and skirtings above and behind it taking fire, the building almost ineritably falls a prey to the flames. Any step, indeed, from the hollow quartering partition towards a solid wall is a step towards security. A brick wall is, perhaps, the best internal partition for all the purposes of strength and security from fire; and in small hoases, which will not afiord the expense of 9 -inch walls, half-brick walls with 0 -inch jambs at the doors, and short 9 -inch piers on alternate sides of the partition, at intervals of 3 or 4 feet in length, will give sufficient strength; but even quartering partitions, if based upon brick walls, may be rendered nearly proof against fire by brick-noggiag them, especially if care be taken to fill in with brickwork between the joists over the bead of one partition and under the sill of onother, as well as between the timbers of tho partitions. Filling in between the joists, and up as high as the skirtings go, will do something, indeed, towards diminishing the dangerous tendency of even lathed and plastered timber jartitions; whilst the adoption of the plan now cowementy practised in Pario in arming not caly interand pattitions,
but the rearward esternal enclosures of buildings, would secure to the structure the structural efficiency of timber on end in carrying weight, and give the solid and incombustible character of a brick or stone wall to a partition or enclosure which is structurally of timber. The plan referred to is, to frame and brace with timber quarterings much in the manner practised in England, except that the timber used in Paris is commonly oak, and is generally seasoned previously. The framed structure being complete, strong oak batten-laths, from 2 to 3 inches wide, are nailed up to the quarterings horizontally, at 4,6 , or even 8 inches apart, according to the ebaracter of the work, thronghout the whole height of the enclosure or partition; and the spaces between the quarterings, and behind the laths, are loosely built up with rough stone rubble, which the laths prevent from falling out until the next process has been ctiected. This is, to apply a strong mortar, which in Paris is mainly composed of plaster of Paris, which is there of excellent quality, laid on from both sides at the same time, and pressed through from the opposite sides so that the mortar meets and incorporates, embedding the stone rubble by filling up every interstice, and with so much bods on the surfaces as to cover up and embed also the timber and the laths-m such a manner, indeed, as to render the concretion of stone and plaster, when thoroughly set, an independent body, and giving strength to rather than receiring support from the timber.

The English brick-nogged partition is, io point of struc. Partitis, 1 s ture, nothing without the aid of timber. The plastering in foralat is merely spread upon the surfaces of brick and wood and is fragile in the extreme, and alsays liable to crack and drop off. This lathed and plastered partition is composed of the hollow framework of the timber quarters, with two slight thicknesses of mortar, as plastering, hung upon slighter laths, orer and between which the Haccid mortar forms a key for itself; but all necessarily depends upon the timber, and fails with it wherever decay or fire may destroy it.

Only second in importance to the internal partition as a Stairs source of danger, or as a means of safety, are the stairs; and the stairs are second in importance only when the partitions are made to carry the floors of the several stories. In Eugland, and in London partienlarly, even when the steps and intermediate landings are of stone, it is but too common to find the passage from the street door to the foot of the stairs, and the fioors which connect fight with flight at the seccral landings, either wholly of wood or of slight stone paring laid upon wooden joists or bearers. Any stone faring upon wooden joists will certainly retard the action of fire upon the joists, especially if assisted by a well-plastered ceiling; but in this, again, if the floors be not formed of wholy incombustible materials, the Frewch practice as to floors would be better than ours.

In Paris stone stairs are far less common in modern houses than they are in London in houses of corresponding character and date; but wooden staircases in Paris are rendered almost as safe as common stone staireases are in England, by a process similar in character to that applied to partitions and enclosures. The reault is an almest incombustible structure. Wooden staircases formed between brick or stone walls, or betwcen partitions of the kind above described as commonly made in modern buildings in Paris (that is, filled with a solid mass of coucreted rubble). may perhaps be set on fire, but they can hardly bnrn.

It has been remarked that a mere plastered ceiling will Cellings resist the action of fire for a long time, although the plas- aud tuors tering be upon wooden laths, and the laths nailed to joists of timber; ; and as firo does not readily act downwards, flooring inourds may take fre from above without any immediewly serious consequence to the joists uuder them,
so long as there is no access of air from below. But the English indoor plastering apon laths is commonly of the most fragile kiud, and the slightest weight falling apon the back of a ceiling will make a breach through it, whilst the floors are commonly of deal laid upon fir joists, and are exposed to the action of fire from below directly the lathed and plastered ceiling bas failed; if, indeed, the fire have not found its way to the joists under the flooring boards by the hollow lathed and plastered quartering partitions. In the timber enclosures and partitions, which economy induces the Paris builder to introduce as substitutes for walls, the timber is so embedded in and made part of a solid concrete, as to be protected from almost every casualty of which it is susceptible. But the French reader their floors also so nearly incombustible as to leave but little to desire in that respect, and in a manner attainable with single jossts, as. well, at the least, as mith josts framed into girders. According to their practice, the ceiling must be formed befors the upper surface or floor is laid, as the ceiling is formed from above instead of from below. The carpenters' work being complete, atrong batten-laths are nailed up to the under gides of the joists, as laths are in England; but they are much thicker and wider than our laths, and are placed so fer npart that not more, perhaps, than one-hali of the space is ocrupied by the laths. The laths beng afised-and thes must be soundly nailed, as they have a heavy weight to carry-a platform, made of rougb boards, 15 strutted up from below parallel to the plane formed by the loths, and at about an inch below them. Mortar is then laid in from atove over the platform and between and over the lafths, to a thickness of from $2 \frac{1}{2}$ inches to 3 nches, and is forced in under the laths, and under the joists and girders. The mortar, being gauged, as plasterers term 1t, or rather, in great part composed of plaster of Paris, Boon sets sufficiently to allow the platform to be removed onwards to another compartment, until the whole ceiling is formed. The plaster ceiling thus produced is, in fact, a strong slab or table, in the body of which tho batten-lathe which hold it up are incorporated, and in the back of which the josts, from which the mass is suspeaded, are embedded. The foishing coat of plastering is then laid on. Such a ceiling will resist any fire that can act upon it from below, under ordinary circumstances ; and it would be difficult for fire to take such a hold from above as to destroy the jolsts to which a ceiling so composed is attached, the laths and the under side of the joists being alike out of its reach, and consequently auch a ceiling alone would dmmonsh the danger from fire, althongh the floor abore the jossts were laid mith deal boards.
Flooring matenals.
even if fire were let in between the floor amd celing. But it has been already stated that the practice of making these incombastible floors is connected with tho use os walls which have no timber laid in them bedwise, and that the timber enclosures employed insteed of walls, and the internal partitions, are rendered practically incombustible, whilst the wooden staircase which economy dictates to the Parisian builders-the freestone which is used in bulding walle being altogether too soft for the purposeLs also rendered, in the manner already shown, almost unassailable by fre.

It may be remarked with reference to the employment Exparaluo of any substance such as oinder, being of tho nature of of pluster pozzuolana, or vulcance scoria, in mortar, to form a floor in floors. the manner abuve described (about 3 inches thick), that asall auch mortars expand in setting, the walls of buildings may be forced out by the expansion of the plaster floors, if the whole surface of the floor 10 any etory be at once covered with the mortar. A margin of 4 or 5 inches on every side should be left void until the expansion bas taken place, when the floor may he completed with an assurance of close jouts, and without injury to reasonably stable walis.
When a boarded floor is required, as the surfaces of the true joists le under the mortar, a base for the boards is formed of what English carpenters would call stout fillets of wood, about $2 \downarrow$ inches square, ranged as joists, and strutted apart to Eeep them in their places, over the mortar table, to which they are sometmes scribed down, and that to these fillets, or falae joists, the flooring boards are sccured by nails; so that in truth the boarded floor is not at ail connected with the atructure of the floor, but is formed upon ts upper coat of plaster. . The wooden fioor thus becomes a mere fittung in an apartment, and not extending beyond the room the floor might burn without communicating fire to the stars, cren if tho stairs were readily 1 gntible.
The practice now in Paris, in respect of floors, is to form Fioors with the structure of, wrought aron joists rolled 10 the form ras jovsta known mith us-as I, T, and I rron; and to fill with we same strong plaster between, below, and ahove the iron, and so to form a slab of plaster from 6 to 8 inches thick, according to the bearing and the depth of the iron barsthe bars beng enveloped m tho plaster; and the ceiling is formed as before described by laths restmg on the lower Ganges. In order to hghten the weaght of the solid plaster, earthen pots hare been placed between the jousts and the spaces filled up with the mortar.
The necessity which arises with us of dividing the upper r per stories of houses 1 nto more rooms, as bed-roons, than are partitions commonly required in the lower stones, will be made an objection to any process that would render the partitions heavier, bot it is not in the upper stones that the lathed and plastered partition is most dangerous in resplect of fire. General!y the stars nay be enclosed by sold fartitious throughout almost the while beight of an ordnary dwelling. house mithout oveasioning any minonvenence as regards the greater weaght of such a Inrtituon, and geucrally, too, She partutiou which dindes the front from the back rooms of such houses may be carred opythroughout the whole beight of a house without reworing the bearing, if the house be judiciously disposed. But eren if a partation rest upon a beam or grder, s very shight addition to the scanthing of the umber will wake up for the additional weight which the filling in of the partition would in oolve, if the matenals of the core he well chosen, and it te well known that a prece of tumber placed over a void as a bressummer, and carrying a wall, resista the action of fire for a long time, and the longer if it be of oak or other hard wood. It at not necessary, however, thas the tumber employed in part.-
tions and enclosures should be of oak; though it is desiable that main beanng timbers, in situations which render them most liable to be exposed to the action of fire it the event of casualty, should be of such timber rather than of fir; but the quarterings, or partition timbers, which the plaster cencrete wholly cocases, may be of fir as saiely almest as of oak.

The core used in Pares consists for the most part of chips and spalls arising is the process of dressiog the soft freestenc which is the main constituent of the walls of most buildiags in that city. Almost any hard material, however, will furnish rubble fat for the porpose, which must be angular and irregular in form, se as to allow the mortar to pass freely through the rubble, and embed it all Putble of brick material, as bruken burrs, or even of old bricks freshly brokea, will auswer rery well, but if brickbats or shreds of plain tiles be used, care must be takeu in packing not to bring flat beds together, or the mortar will not pass through and make a perfect concrete. Rubble of almost any kind ruay be used; but the kinds of atone which are themselves coacretions, and present rough surfaces upon the fracture, are the best, while achistose or scaligg slaty stones are the worst for the purpose. But there is no better substaace for coring partitions upon the plan described than clay burnt into a kind of brick rubble
The same process applied to external eaclosures will justify the use of timber in their structure in situations and under circumstaaces in wbich it may he properly prohibited when the tamber is merely lathed and plastered, or even brick-nogged, for brick-nogging adds wothiag, as already remarked, to the strength of a partition or an enclosure, but rather takes from it. being itself a source of infirmity. But chamneys and their flues, with their congeners, stores aad furnaces, ought not, under any circumstances, to be formed in an enclosure in which timber is employed as a part of the structure.

Under some circumstances, agrain,-that is to say, when any street of a tom is 80 wide and the buildings to be built freating it are to be of such small eleration, as to make the communication of fire from one side to the opposite side practically impossible, if the buildiags adjoining lateralty are effectually separated from one another by sufficient walls, party or otherwise, and theat projor before the outside faces of the frone and back enclosures so as effectually to prevent fre from prassing round them,--the temperature of dwelling bonses nay be much more easily manatained and regulated if the outside surface be boarded. Weather-boarding is a safe and ecooomical, us we!l as a neat, wholesome, and equable outside casing for the froats of a dwelling house, if the boarding be backed up solidly, and the timber quartorings necessary to socure it be properly filled in ketween and tehind with brick or stone ceork, or with rubble and roncrete in the manuer already descrived Brickwork bulds up badly with the rakiog braces of tumberfraned enclosures, and the courrete described would not be an perfect with weather-boardang on one side as if the murtar were thrown in from buth sides, but raking braces are less essental to enclosures wheh are filled on and lacked with a heary borly of brickwork or concrete, than when mere hathing or even brickrorging is to be employed ou the insude A 9 -iuch brack wail may, andeed, be very well tuilt up with framed quatiorings without raking lorares, if the work be built betueen and around the quarterngs, carrying, that is to ayy, the inner half-brick before the ansule faces of the quartering, and so as to show on the insile a plain brick wall

Builuing Trades. -The artifecrs whoso trades properly Baiding belng to the builder's business are the dugger or excavator, trator
founder, ironmonger, gasfitter, painter, and decorator. In this order the works of the trades will be described, and we now proceed to the ordinary routine of the practice of building. The two publicatiens which should be noticed bere as comprising more detailed references to these trades are Gwilt's Encyclopodia of Architecture, 8ro, 1869 , edited biy Wyatt Papworth; and Cresy's Encyclopocdua of Cival Engureering, 8vo, 1861, - these will not, therefore, be noticed in the list at the end of each trade.

Foundation.--The architect baving furnished the specif. Founds. cation and workiag-drawings of his desiga, the first step won. is to prepare the foundation; and as thes relates to the Lricklayer as well us to the masain, we say what is necessary respecting it here. Much in tbis particular, it is evindent, must depend on localities. It 1 not of so much importance that the ground be hard, or even rocky, as that it be compact, and of similar cousistence throughout; that it be so constituted as to resist eutirely and threughout, or yield equally to the superincumbent weight. But an the ordinary processes of building little requires to be said of the artificial preparation of foundations beyond the notice of it already given. When a goed, hard soll is easily accessible, as solid gravel, chalk, or rock, we hare mothing to do but to remeve the surface mould, dig to the sound bottom, and at once to put in the footings. On softer ground it was usual to employ footiags at least double the width of the wall, and frequently more, but since the invention, or rather revical. of the use of concrete, this is seldom or aever dane. In this case, or when the ground is a deep clay, be the material used what it may, it should at least go so deep as not to be affected ly change of temperature, or the rising and falligg of springs, as the alternate ehrinking and swelliag of the ground must affect the building. Frost seldom penetrates a foot into the ground in this ceuntry; bat in clay soils, fissures, the cunsequences of drought, are found 3 feet and more in defth. Thic basis should, therefure, be below this point in such a stratum. If the groued be springy, it should be drained, if pessible; if not: a foundation ebould be made with concrete as low as the lewest level of the water; or if very deep or bugey, piles must be used. The plan of building on sicepers and Planhius planking, so common some years ago, is rery lad, as they rot after a time, and the building settles in all directions, as the greater weights crush the decaged timbers sooner than do the lighter pertions of the midding. Where ground is alternately wet and dry, the test timber soon decars; even piles should alway be kept in the mater. The use of coucrete, except in sery peculiar cases, las cotirely Conerete superseded every other artificial foundation. It may be defiaed as a sert of rough masonry, compesed of briken pieces of stone or gravel, cemented together rith lime prepared in rarious ways, and theronghly maxed with it, aad not laid by hand but thrown at random into the trinches, to form the depth required.

Ady bard substance, broken into small pieces, will make good coucrete. That most used is gravel, or ballast. This should not be too fiae, as the sand which may be in it will mix with the lime and form a sort of mortar, assisting to cement the stones tugether If broken stones or masons' chips are used, it is desirable to add some sharp sand with then. J'be general rule is, that no piece of stone should caced a hen's cgg in size. In this country the lime is geverally ground, which is bad, as the core or mubornt portion is ground up with the good lime. Alout one-sisth fiart of lime is gencrally used; chalk hime shonld not be used in a damp situation. It is nused with the lallast by scattering it among the stones, and turning it all over with a shorel, water being at the same time thrown upon the mass. It is then, while hut. filled into the trenches, sometincs by shooting frow stage
erected for the purpose 6 or 8 feet above the work; but this process has been very justly censured as uncertain by eminent engineers, who prefer to put it in layers of not more than one foot in thickness, and to level each course, ramming it down thoroughly. When the lime is too hastily put into the trenches, and has not had time to be thoroughly olaked, the process will continue, and the mass will puff or swelh and sometimes cause considerable muschief. Wing walls of bridges havo been thrust out by this means. To make a solid concrete all the interstices of the gravel should be filled with the sand, and the lime and the water will be absorbed without any increase of bulk. In France the lime is first made into a paste, and the mixture is then called beton, not concreto; this is a more scientife process for obtaining a sound substance. In some experiments made by the Architectural Publication Society, where the materials wero carcfully mixed, no change took place in the bulk; but some experimentalists, ןractica! men, and writers differ on this point, and assert there is a loss of one-seventh in bulk when set. The lime, if it can be procured, should be liydraulic; and concrete-as much improved by the addition of the voleanic sands.: French authors recommend, as good proportions, one-ifili liydraulic lime, one-fourth pozzuolana, one-eighth sharp sand, and the rest broken stonc or gravel; or 20 per cent hydraulic lime, the same of trass, the same of sharp saud, 15 per cent. of gravel, and 25 per cent. of broken stonc. Perhaps the very best concrete is made of a sumple mixture of gravel, sand, and Portland cement. It is unnecessary to enter into the details of fomdations in water, as thes but seldom comes within the ordiuary builder's province.

Digger or Excavator. -The digger works whth a pick-axe and a spade or shovel. With the pick-axe be breaks duwn the sonl if it be hard or very stiff, and throws it out with the shovel ; but compacted sand and alluvial soll are spited and thrown out wath the spade alone, whthoue prewous breaking down. When rock occurs in a fomdanon, the assistance of the quarrymau is requisite to cut through or blast it, as the occasion may regure. The digger should be requared to produce a perfect level in every direction, and especially in trenches for walls; nor may thas be done by replacing loose matter, but the level must be produced on the solid or undisturbed bed. A good excavator will dig and brow out, of common sonl, into a basket or wheelbarrow, s or 10 yards per diem; Lut of stu clay or firm gravel not more than 6 yards.

When the excavation has to be dug to a depth about the height of a man at will be necessary to strut the ground to prevent its falling in, especially if it be of a sandy, loose, or watery natare. This is done by plachug on each sude of the cutting upright planks aguinat the som, which may be either open or close, according to the qualaty of the soil, and against these one or more bonzontal walmen pieces senured by horizontal cross jueces or struts, and wedgry up as necessary. On these struts are formed the landings or stages on which the lowest wurkman throws the soll be digs up, which is then agan thrown up by a second man to another stago or to the suriace, according to the depth. Sometimes the soil is hoisted in baskets or tubs raised by a windlass worked by hnud, or by a horse-run. When the work has been exceuted for which the excavation was prepared, the digger has to fill in over and around it, carefully ramming the soil to prevent incqualities on the surface by the soil sinking, and to prevent water soaking in which might affect the foundations.

Bricework

The tools and implements eunleyed by the bricklayer are the trowel, plumbrule, rod, lewed, square, bevei, dine-pins
and lines, raker, jomer, crow-bar, pics-axe, and ramuer, together with a hod and spate for his Labourer. Besider these there are suudry others, as an axe, saw, and rubstunt. used in ctutting and gauging bricks, and some which are peculiar to thag a ad paving. A pug-mill and screens fur mixing and temperng mortar, aud tuls and pals fur water, arealsoauxiliartes of great muprtance.

In ordinary practice the bricklayer's scaffolds are carried up with the walls, and are made to rest un them. Having built up the walls as high as be can reach from the ground, he plants a row of foles, whach vary in herght from 30 to 40 and even 50 tect, parallel to and at a distanie of abour 4 feet 6 inches from the walls, and from 10 to 12 leet apart. To these, which are called standards, are attacbed by means of cords other poles called ledgers, horizumally and on the insule, ath therr upper surface on a level wuh the laghest course of the wall yet land, and on the ledgers and wall short transerse foles, called putlogs or putlocke, are laid as joists to carry the Hoor of scaffold hoards These putlocks are placed from 4 to 6 fect ajart, according to the length and strength of the scaftold bards, and the ends which rest on the walls are carefully laid on the mudde of a stretcher, so as to occuly the phace of a beader brick, which is inserted when the seaffolds are struck after the work is finstied On the thour of the seatfold thas formed the bricklayer stands, and the materials are bronght up ladders to han by labourers in hods from the gromid below; or they are borsted up in baskets and luctiets by means of a pulley-wheel and fall; or by the borse-ruu whach is more generally used, fonmed of a level prathway in which the horse moves, dranmg up the load by the intervention of sattch blocks and guide wheels, or ly the now usual horstung machme, norked by men, horses, or sieampower. The mortar 19 placed on ledged boards ahour 3 feet square, at convement hastances, and the Uricts are stremn on the senfold between the mertar buards, leaving a clear way aganst the wall for the backlayers to more along unobstluctedly. The workman then recummences the operation of bracklaymg, begmomg at the extrome lett of his course, and adiancmg to the righe mathl he caches the angle or quom in that derection, or the place where las fellow-workman on the same sude may have begha. Tlhas he goes on with course atter course mith the wall 1s, its high as he can convemently reach from that scaftuld, when another ledger is tad to the prabes, anther row of puthens land, and the boards are removed up to the new lend The lageer and most of the jutlocks, however, reminn to give steadmess to the tempurary structure, and so on : the full leerght of the wall, whe pules benge preced ont ly additomal lengelas as may be requared if a seatold be very much exposed, and run to a great height, it must be hraced. This is done ty tyme poles dagobally acruse on the outside to the standards and dedgers, and as mas be further secured by tyng the ends of sonne of the fublecks to the ledeers, but an ontside scaffold sbould bever be attached many way to the bulding abont whela it stander A scaffold should never the loaded heavily, as well (1) accunnt of the nurk as of the scaffuld itself; tor the punlucks restme, as they do, on single bricks, in a grece wall, they exert an murious mintuence on it, which every addtronal pound weght on the scatfold must necessariy merease, and the puttucks thenselves are latle to be bent or broken. A constant and steady suplly of incles and ${ }^{3}$ mortar on the part of the labournis, whthent averloading the scaftold at any one time, shouh be strictly required.

The suspended scaffold is a very ingenaus contrivance. Swarnded by which jointing and other extermal repars of a house can ecatod be performed at a comparatively sinall cost, and wathout interference wath the thoroughfaric The front can alsa !.e pawted by. the sause netalis. Althangh known at least
oefore 1825, it is only of late years that this scaffold lias been much used. A couple of planks are secured side by side to form a platiorm, whicb is guarded by a railing all round to prevent the workmen falling off. To iron bands are secured pulleys and ropes, passing over other puilleys made fast to two or more beams projecting out of the upper windors, or secured to the roof-timbers, by means of which the workmen employed can rase or lower the scaffold to any position where it is wanted to get access to the work to be done.
Brickmaking.--The manufacture of bricks forms the subject of a separate article. See p. 279 of the present volume.

Mort: 13 ald cemonas.

Lime.

Mortars and Ceizenes.- \AA fer observanons on the composition of mortars and cements for bricklaying will be necessary here. Mortar is of two kinds,-common mortar, or that mixture of lime aud sand ordinarily used in building; and hydraulic mortar, or that which will set under watere Cemeat is a name given to the produce of certain argillicoous stones, after calcimation, which will set rapuly in the air, becoming a hard adhesive substance in a short time, and will also set under mater, bothe withoat admixture of any other substance. The name is given, too, to certain artificial imitations of these substances, possessing the same propertics; and besides, to various bituminous or oleaginous compositions, used in building for similar purposes.

Pare lime, which is an oxiac of a metal called calcium, does net exist in a natural state. It is, horever, fuond abumantly in the conditions of carbonates and subcarbonates, in chalk, and in the various other descriptions of limestoncs. Its clemical qualities and analysis will be described under the proper beadings in this work. Limes are generclly classed, since the publication of the work of Vicat, as-(1) rich limes, (2) poor limes, (3) limes slightly liydraulic, (4) hydranlic limes, and (5) eminently Bydrmulic limes. In treating of mortar we have to deal with the first two of this division. The first operation is to drive of tho water, which all limestones contain in a greater or less degrec, and the carbonic acid gas, which is dune by calcining or burning in a kiln at red heat; this must lie lept up for sureral hours, care being taken to avoin any approach to vilrification. Dy this process it is slidutiy diminished in bulk, loses nearly hale its weirht, and becomes eastic lime. The lime is next converted into - hydrate by a process called "slaking." or throwing pure water over it from time to time till it hisses and cracls with consideralle force and some noise, gives off a large quantity of hot vapour, and falls into a powder. The rick limes, which are the purest oxides of ca!cium, increase to dauble their bulk in the process. The poor limes swell to a mach less degree. The hydrates thus formed absorb water, and easily take the form of a paste. They contain rather less than one-third water to twothirls lime. In this state, if treatel with pure water, frequently renewed, every particle of the rich limes, and very nearly the whote of the poor limes, will be taken up in solution. In the process of slaking too much water shomll not be used, as it "drowns" the lime, according to the cxpression of tbe wormen. When in the furm of paste it begina to alosorb carbonic acid, which is ahwas prescut in air in considerable quantities, and gralually to erystallize arsin, and so to barden. If the air be excluded from the hyluate of pure lime, it may be kejt for almost any longth of time. Alberti (ih. ii. cap. II) says that he once discovered some in an old dituch, which from certain indications must have been there suo years, and was as suft as inncy or marrorn, and perfectly fit for use.

The rich limestones give a whits liwe, which easily slakes, and inereases in bults; but it is surivus that though
the stones differ so muci in outward appearance and in texture, the lime, if they be well burned, is mane. The softest chale and the hardest rag-stone or marble yield on equally good lime, the ealcium which they contain being the sane mineral. But as chalk geuerally contains water. irregularly distributed in some places and not in others; and as it does not exhibit the change that marbie or stone does, it is fruquently unequally burned, and therefore slakes imperfectly. It is said by Higeins (Morters and Comonts, $P, 29 \%$, however, that lime made from chnils absorbs carbonic acid more rapialy than that made from stone; but experience does not seem to warrant this cun clusion. Poor limestoncs are those which cuntain silica magnesia, manganese, or metallic oxides. In consegtera sices. of this they are more liable to ritrify in burning, and do nut siake so fredy. The lime is geserally of a lawner culur than that from rich limestones, which is said to be a pruof of the prescmee of the above-named metallic oxides. If, lomever, they le ground so as to facilitate the slaking of every paticle, and if used immediately being made up, poor limes proluce a mortar which becmes harler than ilat from the rich limes, and which resists water better. In fact, works where the latter lave been used have bern found to fail entively by the action of ruaning watre, which, as before las been said, will continue to remore tho whole of a rich lime particle by particle.

It is found that the enixture c! some kind of hard matic. in particles or granules facilitates the setting of mortar, and renders it harder and more adhesive than when used alone, besides the enving of limestone and expense of turning. The harder this material and the sharper the particles the better, as the brick or stone has alnays some irreguiaritios on the surface, into which these angles or sharp poiats may enter, and form what is called a key. The substance most generally used is sand, which is classed as nitersand and pitsand. The former is usually preferre: as it is more free from earthy matters, laticularly solf loams or elay. Mortar made with sand containing on. seventh or one-eightb part of fat cios moulders in wintelike mar, -a circumstance which prowes the propriety of freeing from clay the sand used in mortar. If rit-sand bo used it should be well washed. Scarely any material is hetter than crushed quart z, or mint, from the slarpanes of the angles of the particles; in $f e x$, it is said that rery sharp saud, with an inferior line, wili make a more adhesive mortar than soft sand with the best lime. The practicn! mixing of mortar will be noticed further on. Where sar l is scarce, other materials are sometimes ased, the princi, 1 and cheapest of which is burned clay. The Romans us ! this extonsively in the form of pounded tile. At present the custom is to throw up clay mixed with fuel in loose heaps, to burn it slowly, and then to crind it in a mild with a proper quantity of lime. The meach writers at one time asserted that burned clay, if net ejual to pozzo lana, was very nearly so ; and large quant tics mere usc. as hydraulic mortars at various public wor's. Where the water was fresh, as at Strasturg, the work stood rory well ; but where these mortars ware expered to the actios of sea-water, they failed and went th poder in three u. four ycars. Vicat gave great attention to the subject: and though lie attributed much of the falat to the imperfect carbonization of the materials, it apears with but little dumbt there is some inherest dimernace between tha pozzuolanas and other volcanic products and those produced artificially. After long insestigation, Vicat was of opinme that this failure was due to the quantity of bydrochloride of magnesia always present in seawater; but in what may this affected the burned clay and not the volcanic products be was waile to explain.

A vory excellent mortar. much used by eugincers iu

Volcame

 products.tunnels, is composed of one part of moderately hydraulio lime, one pirt of coal ashes, one part of burned clay, and two parts of sharp sand. The vitrified refuse of furnaces, called slag, and the scorim from the iron-worke, have also been crushed and used instead of sand; and with lime, slightly hydraulic, produce good mortar. The former is preferred to the latter, as having sharper and harder particles, and containing mach less iron. Coal cinders have been used, and seem to have some hydraulic properties; they should, however, bo employed with caution, for it is considered they make the lime "short." Wood cinders are too alkaline to.be used with safety.

The vitrified and ealeined products of volcanoes make most excellent materials for mortars, particularly where required to be eminently bydraulic. The principsl of them is the pozzuolana, which abounds in Italy. It is called so from being found in great abundanco at Pozzuoli, near Naples, and is, in fact, the basis of all the best Roman mortars, ancient as well as modern. It is usually sënt to England from Civita Vecchis. It varies in colour from reddish brown to violet red, and is sometimes greyish; it bas a roughly granulated appearanee, and sometimes resembles a cinder in texture, and has frequently a spongy appearance. Acids have little effect on it, and it is not soluble in water. A similar earth is found in the centre of France. But one long known in this country comes from the village of Brohl, near Andernach, on the Rhine; this is called tarrass or trass. These materials have a wonderful effect in rendering even tho rich limes eminently hydraulic, and in less proportions improving the hydraulic limes. Vicat says, these uortars begin to set under water the first day, grow hard in the third, and in twelvo months are as hard as the bricks themselres. The mixture of common lime with these materials, according to the French writers, should bo λ of pounded lime to $2 \frac{1}{2}$ of pozzurlana, or to 2 of trass; or 1 of lime to 1 of and and 1 of pozzuolana.

In addition to the hydraulic limes, which have been thus described, there is a poculiar class of stones, which, when burned and pulverized, msy bo used as mortar, rithout admixture of sand or any similar substance ; and whieh will not only set rapidly under water, but will acquire an unusual degree of hardness and tenacity. Theso are called natural cements. Mr Parker is supposed to have been the inventor; at any rate, that gentleman took out a patent about sixty years ago for what he called Roman cement. His materials were the argillo-calcareous nodules, or septaria, found in the Isle of Sheppey, and commonly called bald-pates. They contain about 70 per cent. of carbonate of lime, about 4 per cent. of oxide of iron, 18 per cent. of siliea, and 6 or 7 per cent. of alumina. The process is simply to break the stones into small pieces, and burn them in running kilns with coal or coke; they are then ground to a powder, and headed up into easks for use. The suceess of Parker's cement led to experiments in other places, and the same process was carricd on with other srgillo-calcareous nodnles, as the septaria at IIawick; those in Yorkshire, whieh produce the eement called Atkinson's; and those in the Isle of Wight, which produce the Medina cement. Similar substanees were also discovered, and the same processes carried on in France and in Russia. All theso cement-stoncs effervesce with acils, and lose about one-third of their weight in burning. Parker considered that the more the stones were burned short of absolnte vitrification the better; but this is not the practice in the present day, though, no doubt, sound in theory. When taken from the kiln these stones will not slake without being pulverized; and if kept dry, and not exposed to the air, the cement will be good almost any length of time; but it rapidly absorbs both water and carbonic acid if not carcfully closed up, and falla back into a state of subcarbonate, from which it
is said it may be recovered by fresh burning, but it is doubted whether it is ever so good as on the first calcination. The great utility of these cements, and the expense of Artificial obtaining the stone, induced manufacturers to endeavour cements. to diseover some method of making an article by artificial means which shonld resemble the natural cements. Mr Frost seems to have been the first who attempted it on a largo scale; but though be was assisted by the science of General Pasley, the results did not come up to the expected standard. Of course, the object was to produce an argillo-ealcareous substance containing the same chemical qualities as the natural nodules, which might be burned in kilns as they are. The attempt to combine argil in the form of burned clay, to be mixed with lime instead of pozzuolana, lad partially failed, as has been stated above. The experiments conducted by General Pasley, and by Vicat at Meudon in France, were all based on the principle of mixing .together, in a mill, with a quantity of water, masses of chalk and clay, just as the brickmakers do for the production of malm brieks, but in the proportion of about four of the former to one of the latter. The fluid misture is run ont into shallow reccivers, and when dry is cut into small blocks or lumps, and burned exactly as the natural nodules are. The ditfieulty was to give the materials the full degree of calcination short of vitrification. A suceessful result seens to have been at list attained by the inventors of the Portland cement, so called Portiand from its dear rescmblance to Portland stone in its colour. cement It not only possesses the property of setting more quiekly, and has greater powers of cohesion than the natural cements, but it may bo used with a supcrabundance of water in tiel form of grout, which they cannot be; above all, it seems to resist the action of sea-water beyond $a \|$ others; and it is proof against water when used as a mortar in setting brickwork, and in the composition of concrete for founds. tions. It also forms a very superior cement for plasterer's work. A prepared patent earbonate (Westmacott's patent) Westma is used in combination with chalk, grey, and all other cott's limes. All the carbonie acid being removed from the lime patent in its burning, 75 per cent. of this acid is restored by its mixture with the prepared patent carbonate, and its induration immediately commences, instead of the lime gaining tho carbonic acid by atenospheric inflnence through a lengthened period. It is uscd as a quick stucco for rapid plasteting; and as a carbonated lime for external usc it is in the course of a few days converted into a stone mortar.

Selenitie mortar is the name given to a composition Scotts lately invented by Major-Gencral Scott. He was the first seleritic to observe, about eighteen years ago, that a limestone mortar. capable of conversion by burning into o bydraulic lime might furnish a good ecment by simply ollowing a small portion of sulphurie acid gas to pass into the kilo during the burning of the lime. Having found difficulty in carry ing out this process, he now mizes with the water used in the preparation of the mortar a small quantity of sulphate of lime (i.e., plaster of Paris, or gypeum) or green vitriol. It has the advantage, when used for plastcring, of allowing the setting coat to be applied in forty-eight hours after the first coat has been put on. This mortar is said to save balf the lime, is four times as strong, and sets in ono quarter of the time required by eommon mortar. The lime will take six parts of sand, and is said to be an cxecllent substitute for l'ortland cement for concrete at less eost.

Asphalt, or mincral pitch (see Asprilt), has lately Bituminous come into extensive use for paving, for covering the backs cements. of arches, or rendering the walls of basements where wet is.likely to soak through, also as a damp-course over the footings of walls to prevent the rise of damp, and for lining cisterns and tanks to prevent the escape of the fluid. The best qualities are the Val de Travers and the Seyssel,
both obtained from France. In using asphalt for paving, a bed of coacrete, made of the best hydraulic lime, is first prepared, and made fair at top by a rendering of similar mortar. The asphalt will not dissolve with heat hy itself, hut will calcine in the caldron. A small quantity of pire mineral pitch is therefore first put in ; when this is hot the asphalt is added, and soon diseoves; a quautity of powdered stone-dust is then stirred in, and a small portion of quicklime. The mixture in its melted state is then laid on the bed of concrete (which must be quite dry), abd spread close and fair, sume sand being sprinkled over the top and well trowelled in. The best proportions are sail to be about 2 pints of mineral pitch to 10 B of asphalt and one-fourth hushel of stone-dust. Another method of forming a paving is to place on the concrete a layer ahout 3 inches in thickness of hot asphalt in powder, and then to ram it down with hot iron rammers, until it has coino to its proper consistency; it is then finshed as usual Thes thas been lately much used for roadways in the city of London and elsewhere. The same material has been compressed into tiles about 6 inches square, and these land on a good foundation. A very inferior imitation is made by mising n quantity of sharp sand with gas-tar, heated in a caldron, and then adding some quicklime. This may do for rendering walls; dc., to keep out wet, but it is of very litule use as paving. Gravel coated with tar, and theu laid end set in tar, rammed dowo, and sanded over, makes a very good pavernent for ordinary footpaths.

As before noticed, particular attention inust be paid to cleansing the sand to be used for mortar of every particle of chy or mud that may adhere to or be maxed up with it. Sea-sand is objectionablo for two reasons: it camnot be perfectly freed from a salive taiat, and the particles aro moreover generally rounded by attrition, caused by the action of the sea, which makes it less efficient for mortar than if they retaned their natural angular forins Luno should not be slaked until the moment it is to be mised up with the sand in mortar, bat the sooner that 18 done afior it is burnt the better. The proportion of lime to saud generally taken, and the best, is one to tbree; but if both the materials be of good quality, that is, if the lime slake freely, and become a fine pungent impalpable powder, perfectly clear from argillaccous or any other foreign matter, and the sand be clean and sharp, one part to four is enough ; mero 19 injurious. The ingredients should be well mixed together, and with just as much water as will suffico to make tha compound consistent and paste-like. Ot late years, in lien of sand, burned clay, as abovo noticed, has been mnch used in localitics where it is difficult to obtain the former materal. This is ground up with lime in a mill, hut unless very great care 18 takea in its manufacture the result is a very proor substituto for sand and lime mortar; and brick and lume rubush have also been used in liko manner, with an equally infenor result. Rein or other soft water should be osed for tho furpose of making mortar, and not spring or hard watcr, though any other may be preferred to what is brackush orea in tho slightest degree. Higgins recommended that limewater should be used in preference to pure water. A quick-settur coment, such as thuse which aro commonly used in builoing is Eugland, and known as Parker's or homap cement, and Portland cement, can only be mixed or gangoa os it is requred for use. A bricklayer will keeg a dabourer fulty empleged in gruging cement for him alone. It is mixed wath sand in the propertion of from about two or three to about five or bix of sand, to one of the cement, according to the qaality of the latter; and the labourer as he gauges on one board suppiice the muxtmo to tho bricklayer fit for tiae on another boand, a apadeteiciatime; it must then bo arplied wathon half
a minute, or it sets and is spoiled and wasted, for it should never be worked up again.
The average size of bricks in England is a fraction Bnct under 9 inches long, $4 \frac{1}{2}$ inches wide, and $2 \frac{1}{2}$ inches walls. thick ; and in consequence of this uniformity of size, is wall of this material is described as of so many bricks in thickness, or of the number of inches which result from multiplying 9 inches by any number of bricks; a 9 -inch or oue-brick wall ; a ly.jnch or one-brich-and-a-half wall ($13 \frac{1}{2}$ inehes would be more correct. in fact, for although a joint of mortar must oucur in this thichness, yet the fraction under the given size of the brick is cnough to form it); an 18 -inch or two brick wall, and so on.
The great art in brocklaying is to preserve and mantain a boad, to have every course perfectly horizontal, botb longitudinally and transversely, and perfectly plumb (which last, however, may not mean upright, though that 19 tho general acceptation of the term, for the plumb-ruie may be made to suit any required inclination, as marard aganst a bauk, for instance, or in a taperng tower), and also to make the rertica! joints recur perpendiculsrly over each other, which is rulgarly and techrically called keeping the perpends. By bond in brickwork is intended that fordimp arrangement which skall make the bricks of every course cover the joints of those in the course belor it, and so tend to make the whole mass or combination of bricks act as much together, or as dependently ono upon anotber, as possible. The workmen should oe strictly supervised as they proceed with it, for many of the failures which bave accurred may be referred to their ignorance or carelessness in thes particular. The object of bonding will te understood by reference to the diagram, fig. 3, Pate XX. Here, it is evident, from the arrangenent of the bricks, that any weight placed on a would (supposing, as we are obliged to suppose, that every ,brick tears equally, throughout its whole length, a stress laid on every part of it) he carreed down and borne alike in every course from b to c; in the same manner the brick d is uptorne by every brick in the line e f, and so throughout the structure. Fut this forms a longtudual bond only, which canzot extend its influence beyond the width of the brick; and a wall of one brick and a half or two bricks thick, huilt in this manner, would, in effect, consist of three or four half-brick-thick walls, acting independently of cach other, as shown is the plan at i in the dagran under fig 1 . If the bricks were turned so as to show their short sides or ends in front, instead of their long ones, certainly a compact wall of a whole brick in thickness would be prodaced; but the longitudinal bond would be shortened mehalf. as at g $c h$, and a wall of any greater thekness, in the same manner, must be composed of so many ididerendent onobrick watls, as at k in the plan licfure referred to. To cbriate this, to produce a transversc, and yet preserse a true longitudinal hood, the hrecks are haid in alternate courses of headers and stretchers, or of ends and sides, 2° shown in fig. 2, thus combming the advantages of the tw modes of arrangement $a b c a n d g c h$ fig. 1, in $a b c$ fig. : Each brick in fig. 2 showng its long side in front, of being a stretcher, will lave another lying parallel to it, and on tho sarue levol, on the other side, to recenve the other ends of the tricks showing as headers in front. which in their turn bind, hy coverng the jont between thera. as shown in the end of such a wail at d. Thus a well-bonded 9 incl or one-brack wall is produced. The end elevations of the same wall at a and f thow how the process of bonding is pursued in walls of one and a half and two bricks thick, the stretcher bengelutted in the eame course by a header,-thus, in a $44-1 n c^{\circ} \mathrm{wa}$ whl, invertugg the appearance on tho opposite sides, as seen at c. and produche tho sama appcarance in su 18 mph wall, 凤as:\%. In the diagrom
under fig. 2 , at g, is the plan of a 14 -inch wall, ahowing the headers on one side, and the stretchers on the other, and at h is the plan of the course immediately above it, in which the headers aud stretchers are inverted; at k and i are shown in the same manner the plans of two conrses of an 18 -inch wall. This is called English bond. -Thicker walls are constructed in the same manner by the extension of the same principle.
But a brick being exactly balf its length in breadth, it is impossible, commencing from a vertical end or quorn, to make a bond with whole bricks, as the jnints must of necesaity fall one orer the other. This difficulty is obviated by cutting a brick longitudiaally into two equal parts, which are called half headers. One of these is placed next to a whole header, inward from the angle, and forms with it a three-quarter length between the stretchers above and below, thus making a regular overlap, which may then be preserved throughout; halt headers so applied are technically termed closers, and are shomn next the uprighi angle of the wall fig. 2, and the first joints inwards from the square ends by the beaders in the plans at g and h. A three-quarter stretcher is obviously as available for this purpose as a half beader, but the latter is preferred, because, by the use of it, uniformity of appearance is proserved, and whole bricks are retained on the returna. In walls of almost all thicknesses above 9 inches, to preserve the transerse, and yet not destroy the longitudinal tond, it is frequently neeessary to usc half bricks; but it becomes a question whether more is not lost in the general firmness and consistence of the wall by that necessity, than is gained in the uniformity of the bend. It may certainly be taken as a general rule, that a brick ahould never be cut if it can be worked in whole, for a new joint is thereby ereated in a construction, the dificulty of which conaists in obristing the debility arising from tho constant recurrence of joints. Great attention should be paid to this, especially in the quoins of buildings, in which balf bricks most frequently accur ; and thers it is not only of consequence to have the greatest degree of consistence. but the quarter bricks uzed as closers are already admutted, ond the weakness consequent on their admission would only be.mercased by the use of other bats, or fragments of bricks.

Another modo of bondeng brickwork, which may be aupposed to bave ansen from the appearance of the ends of a wall according to the former mode of arrangement (see e and j, fig. 2), instead of placiag the bricks in alternate courses of headers and stretchers, places beaders and atretchersalternately in the same course, fig. 3. The plans below this at c and d are of two courses of a 14 -ineh wall, with their bond. ahowing in what manner the joints are broken in the wall honzontally as well as sertically on its face. This is called Flemısh bond. Closers are also necessary to this vanety of bond; balf bricks also will occur in both, but what has been said with reference to the use of them in the former applics even with more force to the latter, for they are more frequent in Flemish than in English, and ite transperse tie is thereby rendered less strong. Their occurrence is a disadvantage which every care should be taken to obviate. The arrangements of the joints, however, in Flemish bond, presenting a neater appearance than that of English bond, it is generally prefcrred for external walls when their outer faces are not to be covered with some composition; but English bond ahould have the preference when the greatest degree of atrength and compactness is considered of the highest importance, because it affords, as we have already noticed, a better transverse tie than the other.

[^39]alone. In Flandera, Hollaad, and Rhenish Germany, which are bricklaying countries, no kind of bond is found but what is known in England as English bond. But it bas lately been noticed that the mediæval brick buildings in the'ncrtb-east of Germany are "Frked in Flemish bond, or as it is there called "cross-bond ;" and it is also to be seen at Brussals in work of ebout the oud of the 18 th century. Many of the buildings designed by Ingo Jones in Englavad, and perhaps all of thosa by Sir C. Wren, are executed in Flemish bond, which name, it has beeu euggested, might huve been denved from the word "flemishing" used by workmen, and thus applied to brickwork as meaning work better "finished off" than the other kind.
It has been attempted to improve the bond in thick walls by laying raking courses in the core between external stretching courses, and raversing the rake when the course recurs. Thus obriates whaterer necessity may exist of using half bricks in the heading courses, but it leares triangular interstices to bo filled up with bats, as is showr in Plate XX. fig. 4. This represents the plan of 36 -inch or three-brick wall with raking courses at a, betwaen external ranges of stretchers, and lying on a complete course of headers, and at b a wall of the same thickness herringboned, courses of beaders would bed and cover thas also, and, in the aecond course above, the raking or herringboning woald be repeated, but the direction of the bricks reversed. It will be seen that the latter demands, in addi tion to the triangular filling in bats at the outer ends of the diagonally placed bricks, half bricks to fill up the centra! line of interstices, rendering berring-bonng more objectionable in that particular, though it has some advantages over simply raking, or thorough diagonal courses in other points Neither mode should, however, be bad recourse to for walls of a less thickness than three bricks, and that moed is almost too thin to admat of any great adrantage from it.
Not sccond in importance to bonding 19 , that the brick- Walls to work be perfectly plumb. or vertical, and that every course be vertica: be perfectly horizontal, or level, both longitudinally and and level transpers:ly The lowest course in the footing of a brick wall sbruld be laid with the strictest attention to this latter partuc:lar; for the bricks beng of equal thickness through. out, the slightest irregularity or incorrectness in that will be carred into the superumposing courses, and can only be rectified by using a greater or less quantity of mortar in one part or another, ao that the wall mill of course yield unequally to the auperincumbent weight, as tho work goes on, end perperuate the infirmity. To sare the trouble of keeping the plumb-rule aud level constantly in his hands, and yct to insure correct work, the bricklayer, on eicaricg the footings of a wall, builda up ass or elght courses at the external angles (Plate XX fig. 5), which be carefuilly plumbs and levels across, and from one to the other. These form a gauge for the intervening parts of the courses, a line being tightly strained from one end to the other, resting on the upper and outer angles of the gauge bricks of the next conrse to be laid, as at a and b, and with this he makes his work range. If, however, the leagth be great, the line will of course 89 g ; and it must therefore be carefully set and propped at sufficieut intervals. Having carried up thres or four courses to a level, with the guidance of the line, the work ahould be proved with the level and plumbrule, and particularly with the latter at the qucins and reveals, as well as on the face. A smart tap with the eud of the handle of the trowel will generally guffee to make a bric's yield what little it may be out, while the work is ao green. and not injure it. Good workmen, however, take a pride in showing how correctly ther work will plumb without tapping. In work whieh is circular on the plan, both the level and the plumb-rule must be used, together with
a gauge-mould or a rangiog frammel, for every course, as it must bo evident that the lige canoot be applied to this in the manner just described. Fer every wall of more than one brick thick, two men should be employed at the same time, one outside and the other inside; one man cannot do justice from one eide eren to a 14 -inch wall.
Bricks should not be merely laid; every brick should be rubbed and pressed down in such a manner as to force the mortar into the peres of the bricks, and so produce absolute adhesien. Horeever, to make brickwork as good and perfect as it may be, every brick should be made damp, or even wet, befure it is laid, especially in hot weather, otherwise it immediately absorbs the moisture of the mortar, and, its surface being covered with dry duat, and its pores full of air, no adhesion can take place; but if the brick be damp, and the mortar moist, the dust is eniri.uped in the cemeatitious mstter of the mortar, which also euters the pores of the brick, so that when the water evaporates their attachment is complete. To wet the bricks before they were carried to the scaffeld would, by making them heavier, add materially to the labour of carrying; in dry weather thcy would, moreovar, become dry again before they could be used, and for the bricklayer to wet every brick himself would be an unnecessary waste of his time; boys may therefore be advantageously empleyed to dip the bricks oo the scaffold, and supply them in a damp state to the bricklayer's hand. A watering-pot with a fine rese to it ahould also be used to moisten the upper surface of the last laid course of bricks preparatery to strewing the mortar over it. In bricklaying with quicksetting cements all this is of even more importace; indeed, unless the bricks to be set with cement are quite wet it will not attach itself to them at all.
As mortar is a more yieldiag material, used in brickwork merely for the purpese of making ihe detached portions of the staple adhere, by filling up their interstices snd excluding the nir, and the object is to produce as unyielding and consistent a mass as pessible, no more should be used than is sufficient to preduce the desired result. No two bricks should be allowed to touch, because of their inaptitude to adhere to each other; and no apace between them ehould be left unoccupied by mortar which may preduce adhesion. When the bricks are a fraction under $2 \frac{f}{f}$ inches thick, four courses of bricks and mertar, or brickwork, are usnal y allowed 11 inches in height ; and if they are fully that thickness, four courses are ellowed 11 iaches. The result of thick beds of mortar between tho bricks is, that the mortar is pressed out after the joint is drawa, on the ontside, in freat; and being mede convex iostead of slightly concave, the jeints catch every drop of raia that may trickle down the face of the wall, and arc thus saturated; the meisture freezes, and in thawing bursts the mortar, which crumbles away, and creates the necessity, which is constantly recurring, of pointing the jorats to preserve the wall. The diagram, fig. 6 , shows the section of a 9 -inch wall, with the jeints on the side a as drawn, and on the side b as bulged, in censequeace of the quantity of mortar in them yielding to the weight above. This, toe, is in addition to the incenvenient settling, which is the consequence of using too much mortar in the beds. In practico, bricklayers lay the mortar on the course last finisbed, and spread it over the surface with the trowel, coneidering that it will fill the space betwecn the bricks of that course, in addition to what they nuay lave placed in the cdges of the outside jeints; but the mertar ought. net to be so thin as to fall into the joints by jts own weight: so. unless they press it dewn, half the beight of

FIg. 6.
the space between the bricks remains unoccupied, and the wall is consequently hollow, incompact, and necessarily imperfect. To abviste this, it is common to bave thick walls grouted in every third or fourth course ; that is, 1 mortar made liquid, and called grout, is poured on and spread over the surface of the bricks, that it may rua in and fill up the joints completely. Thie, at the best, is but doing with grout what should be done with mortar; sad filling or flushing up every course with mortar requires vory little additional exertion, and is far preferable. It also assists is making the house warmer and drier, by preventing the passage of wind or damp through the joints.

All the walls of a building that are to sustain the same walls ic floors and the same roof should be carried un simultaneously; be carnen uader no circumstances should more be done in one part up the than can be reached from the same scaffold, until all the sether walls are brought up to the same height, and the ends of the part first built should be racked back, as at $a b$, Plate XX. fig. 2, and net carried up vertically with werely the toothing necessary for the bond, as at $a b$, fig. 3 .

Brick work ahould never be carried on in frosty weather, Fmor nor even when it is likely that frost will occur before the walls can be covered io or become so dry as not to be affected by frost. Covering an unfuished wall with s thick layer of gtraw wheu frost may supervene is a very useful precaution; and on the straw weather-boarding should be laid, to prevent access of moisture from rain or snow Merely vet weather may be guarded against by following the directions given above as to flushing every course of the wurk well up with mortar, so that no interstices be left into which water may insinuste itself, and by covering the walls with boards to act as a coping when the men are not actually at work on them; the joints in the face of a wall that is not to be plastered in any way should be pratected in this manner with great care

After the footings of a wall (above noticed) have been Damp brought up to the level of the finished surface of the prosf ground, or to the undersido of the joists of the lowest floor. wurso there should always be introduced a damp-proof course, intended to prevent that rise of damp from the soil in the brickwork which is the cause of so mach disflgurement and injory to buildings, This damp course is formed in various ways, as a layer of asphalt, or asphalt canvas, or some similar material. One of the best and mocst usual, as the materials are always at hand, is formed of two courses of slates, well breaking joint, and set in cement. Another is Taylor's or Jennings's patent stoncware damp, course, which being pierced horizontally admits air to the space under the floor and thas ventilates it.

Where the ground mould come against the walls of a basement atory, it is requisite, in order to keep them dry, either to ferm an open drain or area, or to make what is called a dry area. This is done by buiding up against the soil a thio wall of Urietwork not less than 8 inches frem the main wall, and cither
 straighte or curved, and covering it ever above the ground with stone or elate, as in fig. 7. Thus any water coming through the thinner wall falls dorn, and is conveycd amas or eoaks through the bottom. This thinuer wall requires

Dry arean
support from the main $\ldots .$. , and the carity bus to ba ventilated

Besides the outer or main walls of a bouse, there are interior walls, or partitions as they are called. These m largo structures are always executed in brictwork; in smaller ones they are usually cunstructed of timber; and these timbers are often filled in between the uprigits by brickwork formed of bricks laid tat or on edge according to the thickness of it. A plate of wood is occasionally introduced to strengthen the work, which is then plastered over This is called a brick-nog partition. In many of the model lodging-houses in London the partition walls hove been constructed a balf brick in thickness in good mortar, for the whole beight of the building, the floor joists being fixed aganst them to steady them.

Misuerials aud labon fer rod of brict work.

Another sort of wall consists of two skins of brickwerk with a few inches between them; this is called a bollow wall. The two skins, either both of half a brick thick, or the outer one of one brick and the inner one of half a brick, are tied together by iroa band-ties at various intervals. These when straight are sometimes found to transmit the wet llown through the outer facing to the inner one, so a bead or loop is formed in the centre of the tie, which throws uff the water. This hollow space tends to make the houses twoth dry and warm, but it is said to form receptacles for :nsects, \&c. An addition to such walls has been lately nade by a series of these looped ties supporting a course of slates placed aot quite vertical but sloping back slightly. The aext course of ties is built in at such a level that it tixes the top of this first course of elate in Ilace, and provides a atarting for the next course. Thus, is the heart of the wall there is a contibuous surface of slates, slightly overlapping at joists and at beds, and so placed that whatever moisture blowa through the outer skin is not able wh peactrate, but will trickle down the slates to the botton of the cavity in the hollow wall. This ia one of tho many building patents of Mr John Taylor.

A rod of brickwork will consume about 4500 bricks, though the number will be a few more or less than this, os tho bricks happen to be below or above the arerage size, and as the joints aro made thicker or thinner The quantity of mortar, it is evident, will be affected by the latter consideration also; but in London it is generally reckoned at from ainety to a hundred striked bushels to the rod, or from four to four and a half cart-loads, each containing about one cubic yard. The labour on a rod of lrickwork may be doae on an arerage by a labourer in four days ; this, however, does not soclude making and turuing the mortar, nor scaffolding. Many things will, however, affect the time in which the work may be performed, toth of the bricklayerand his laboures, the former san do one-fourth as much more, at the least, in walls whi h are to be plastered, as in those in which he has to keep the perpends and draw the joints, \&c., and more in thick walis than in thin ones; and the capability of the latter will depend, inversely, on the rate at which the former can proceed, on the distance he may have to carry the bricks and mortar to the foot of the ladder, and mainly on the height he has to carry the materials up the Iadder. In great heights, however, the materials should be boisted.
grof tiling. Tiling being much less in vogue than formerly, in consequeace of the better appreciation of the superior qualities of slate for covering roofs, and the moderate cost at which slates are now furaished to the builder, it no longer maintains its separate artificer, but is performed, when it is required, by the bricklayer. Tiling is for tho most Plain tifes. part of two sorts-plain tiling and pantiling. Plain tiles are simple. parallelograms, generally about $10 \frac{1}{2}$ inches in length, 6 inches wide, and $\frac{5}{y^{2}}$ of an inch thick; and each
tile has a hole pierced throngh it near one end, to receive the oak pin by which it $1 s$ hooked to the lath. The tiles are laid in mortar and sometwes in hay, or moss, on the laths, which in England are of oal or fir, with an overiap of 6,7 , or 8 inches. Tho greatest overlap or swallest gauge makes the securest work, though it does not present so good an appearance externally as a longer gauge does; and it requires, morever, a greater number of tiles and laths, thereby addug materially both to the weight and the cust. The great overlap and the mortar (or hay or moss) are both necessary to prevent the ram ana snow from driving in between and under the tile especially mben of a low pitch. Plan tiling requires tire pitch of the roof to be at an angle of at least 50°, and 13 one of the beaviest coverings that can be used, though it is at the same tume one of the warnest. The tiles, bowever, readily and rapldy absorb mosture, which they communicate to the laths aud rafters umder them, to the serious imury of both the latter: and the mortar in which they are set requires to be frequently pointed, the constant atmosphenc changes to which it is exposed occasioning it otber deto crumble and fall away in no long time. Terro-metallic scriphons tiles are made math projections at the back to catch on the of thing. laths, in lieu of pegs. Italman tiles have been made in England since about 18:0, and are occasionally used. They are slightly curred, tit easily one into another, and hate a borizontal indentation across the upper part to prevent the wind driftung the ram orer the head of the tile They have either wide or narrow vertical rolls. Taylor's new roofgg tiles bave a plane surface with olightly turned up edges at the sides, and a lump on the surface near the upper edge to prevent the upper tile slipping. The cover tile is of a similar size and form. They are recommended as half the weight of the common tiling ; they ve about as light as slating, and may be laid to nearly as that a pitch.

Pantiles, are parallelograms of irregular surface, straight Pantipen in the direction of their lencth, which is $13 \frac{1}{2}$ inches, but twisted in the transverse sectiou. Measuring the whole surface across, a tile 139 methes wide, but in a right line from pont to point not more than 7, and its thickness 19 half an inch; a small tongue or lip ss bent down at one end from its flatter consexity, on the under side, to hook it to the lath by, instead of a wooden pin through it. as in a plain tile. Pantules are set dry or in mortar, of laths. They are not lnid side by side, but overlap laterally as in Gig. 8 ; consequently all tho orerlap they hare longitudinally is 3 or 4 inches only, or enough to prevent rain and anow from driving u? under the upper, over the end of the lower tile: and heoce pantiling is but

Fia. 8.-Pantiling. littlo more than half the wemght of plain tiling. It is, however, a much loss warm covering fon Douses, and is more liable to be injured by violent gales or gusts of wind than tho latter is; but again, it presents a far more pleasing appearanco to the eye. Pantiling will not bear a much tatter pitah than the other. It as greatly improved by beagg pointed on the inside with lime and bair. Sometimes, inceed, the whole of the work is, as we have said, set is mortar; but this mode has disadrantages to which pointinginterally is ant lialle, and its superiurity in other respects is ouestionable. In both pan and plain tiling large concave tiles are used to cover the hips and ridges of a roaf. These are not gecerally made to orcriap each other in any situation, bet are set in mortar, and fasteged with nails and hooks fitted for the parpose, and driven into the woodwork of the root. In addition to these an ornamental ridging or eresting is often introduced. A variety of patterns ara now made for thie purpose. Another form of
pantile very uzeful for common purnoses is the Bridgewater tile; it is rather wider than the eummon tile and has a double roll, being about $16 \frac{1}{2}$ inches wide and 14 inches long.

As plain tiling is heavier than slatnge, the plates and rafters of the roof have to be muade stouter than is necessary for slates, consequently the expense of the roofing is added to, supposing that the same thickness of wall be suthicient. The tile also imbibes oue-seventh part of its weight or about 5 oz . of water in ten minutes, and takes many days to dry again thoroughly, this necessarily tending to deteriorate the timbers.

When the top of a brick wall is not protected by a roof, it must be covered or coped in some manner, or it will soon be destroyed by the weather. Sometimes this is done by means of a course of bricks set across it on their edges in cement, and called a barge course, but it is a very imperfect covering, for water will trickle down the face of the matl on both sides, as the coping brick can be no longer than the thinnest wall is in thickness. Two double courses of plain tiles may be put side by sude under the barge course, making a projection over each face of about $1 \frac{1}{2}$ inch, as shown in fig. 9. This is much better than the bargo

Eection.

Barge course.
Tile creasing.

Fia. 9.-Coping.
course alone; but still the covering receires no inclination outwards to throw the water off ; the upper surfaces are all horizontal. Tho same objection exists to foot-paving tiles, which are also used as a coping ; but none of these methods is available for any well above 9 inches in thickness. Stone coping, therefore, which may be made of sufficient width, and be both weathered and throated, is much to be preferred. One of the greatest faults in the modern practice of building, both architecturally as a matter of taste, and practically as a matter of prudence, is, that these copings, and eornices whieh serve as such, do not project suticiently to protect the wall from the weather. A massive and well-projected cornice on a wall serves as a roof or pent-house to it; and, besides imparting great beauty to the plainest structure, protects the wall from the premature decay of its upper part especially, and of the joints generally, if it bo uuplastered brickwork, whieh thereby calls for the frequent reretition of pointing. Elfective and pleasing cornices and blucking-purses may be formal with uncut bricks alone; and these, set in coment, would, with judicions manaremeut, ahl materially tooth to the appearance and durability of brickwork, without the fureign aid of either the plasterer or the masan. Figs, 10 and II show two of the ap. froved modes of furming plain copings in hick work to gardon and other walls.
From the injury which accrues to the joints of brickwork through

Fig. 10

Fig. 11 Brick Copings. bid management in its execution and imperfoct protection when executcd, arises the necessity, so frequent at tho present day, of pointing. Sumetimes frost will have supervened before the surfaces of the joints in a wall are dry ; consequently, the mortar bursts and peels array, and the wholo then requires to bo pointed. Preparatory to this operation the seaffold, if it has been struck. must be
re-erected, the mortar raked out of the joints to a depth of about $\frac{3}{8}$ of an inch, or deeper if the injury have reached further;--this can be done by a labourer;-a bricklayer then goes over the abole with a hard hair brush and water to cleanse and moisten the joints; and then, with mortar prepared for the purpose, be carefully fills them all up, and neatly draws them with his trowel. This mortar must be of the best quality; it is generally compounded with a certain proportion of forge or smith's ashes, which gives it a blue tiuge, and adds greatly to its power of resisting the action of the weather. Cement is sometimes used instead of this blue mortar. If peculiar neatness be required, every joint is marked with a nartor praliel ridge of a fue white putty, in the cormpsition of which bone-lime forms a principal ingredient. The former is called flatjoint, and the latter tuck-pointing. If it be an old wall that requires pointing, a scaffold must be erected before it; and where the putlocks cannut be rested on window-sills and the like, half bricks are generally drawn from the wall to make rests for them, and restored again when the work is done. The former process is then gone through with a common wall; but if it require tuck-pointing, the whole surface is well washed, and then coloured to look like new brickwork, before the pointing is done. The gauged arches over the windows and dours are always coloured, and the joints draren with peculiar neatness. If in the original building of the wall the ferpends have not been preserved, that is, if the rertical joints have not licen made to fall perpendicularly in the alternately recurring courses, the workman in pointing stops up the old joints, which are irregular, with putty of a brick colour, and forms falso new ones in the proper places.

Arches in brickwork are plain, rougbert, or gauged. Archew Plain arches are built of uncut bricks, and the bricks being rlain. parallelopipeds, an arch built of them must le made out with mortar ; that is, the difference betreen the outer and inner periphery of the arch requiring the parts of which an arch is made up to be wedge-formed, as in fig. 12.

Fig. 12.

Fig. 13.
which the briek is not, the difference must be made in mortar, as in fig. 13, so that the inner or lower angles of bricks ased for this furpose should all lut touch. The mortar should be more consistent than that used in ordinary walling ; and the centre on whict an arch of this kind is set or built should not be struck or removed until the work is thoroughly hard, or rather all sumh arches should be set in cement which will harden inmediately. In consequence of this iuherent defeet in uncut-hrict arehes, in cxtensive continuous works, such as sewers, tunnels, vaults, \&c., it is adrisable to make them in thin independent rings of half-brick or one brick thick, as the case may be ; that is, a 9 inch arch should be in two hali-lrick arches, as at a, fige 6, Plate XX., and an 18 -inch arch in two one-bricks, as at b, each arch in the lattur case being bonded in itself as in a common 9 -inch wail with headers and stretchers. It is evident that, liy this mode of strueture, a greater quantity of the solid material comes into the back or outer ring or arel than into the lower one; and if they lad been honded togcther into one arch, as at c, all that differencemust have hcen mado up with mortar. Moreover, whatever jressure comes on the outer ring is carricd by it directly to the inner or lomer, from whose joints, however, the mortar cannot eseape or be pressed out, the inner angles of the bricks, by meeting, preventing it below, and the bricks of the upper arch, which convers the

Fig 4
BUIJ.DING.

-

B UILDING.
CARPENTRT
Fig 1.

Sirongest of ath meohcies of joundig eno timbirs. calleit
Fishanga Zicim.

JOLVIS

PL.1TE 17TE

Ticbeam

Fig:10 NO2.

VOL.IV
BUILDING.
jolnLng plates
Fig1.

pressure, are tnemsetves opposea to ine back of tha s3me joints, so that its power of resistance is made equal to that of the bricks themselvea, except at the ends; which, in such works as we have supposed, are remote, and rayy be protected by the use of cement in their joints, whilst mortar is used in the rest. Rough arches are those in which the bricks are roughly cut with an axe to a wedge Jorm, sad are used over openings, such as doors and wiodows, when the work is to be plastered on the outside, or in plain back fronta, outhuuses, garden-walls, \&c., when, bowever, they are neatly pointed with what is called a tuck or tucked joint. Semicircular and elliptical arches are generally made plain, or without cutting the bricks; but arches composed of a smaller segment of a circle (rulgarly and technically called scheme arches), if not gauged, are cut or axad. Very fiat arches sre distingushed by the tern camber, from the French cambrer, to round like en arch. It is arches of this kind which are generally employed over windows and doors in external work, and they too are either cut or gauged. Gauged arches are composed of bricks which are cut and rubbed to gauges and moulds, 60 as to form perfectly fitting parts, as in masonry. Gauging is equally applicable to arches and to wolling, as it mesns no more than the bringing every brick exactly to a certann form, by cutting and rubbing, or grinding it to a certain gauge or measure, eo that it will exactly fit into its place, as 10 the finer works of masunry. Gruged brickwork is set in a putty instead of common nortsr, but it is, seldom used except for arches in the fronts of houses, dic., which are to be neatly finished. These sre for the most part straight, and are generally from 11 to 12 inches in dapth, or the beight of four courses of brickwork. Their value as arches mill be best understood by reference to the dagram, Gg. 7, Plate XX., by which it appesrs that all the materal between the anffit of the straight srch or bead of tha opeaing $b c$, and the dotted line $b f \mathrm{c}$, is useless, the intrados or soffit of the really efficiant part of the srch being st that duttod line itsalf. This is tha src of an angle of 60°,-its chord, the width of the upening, being the base of an equilateral triangle constructed on it, and the joints are tho radiu of a circle whose centre is at a. $b d$ and $c e$, the continuations of the sides of the triangle or radii $a b$ and $a c$ are technically termed the skow-back of the arch. Sometimes the arc is made under a more acute engle, in which cass the skew-back is less, that is, the external angles $c b d$ and b c e are less obtuse; a amaller unavailable portion of the arch is thus left between the src and its chord, but that portion is less securely retanned under the fiatter. segment, because the joints or radii diverge lass, or are mora nesrly parallel. These gauged arches baing, as they for the most part are, but a half brick in thickness, and not being tied by a bond to anything behind them-for, indeed, almost the whole, if not the whule, of thear height 18 occupied behind by the reveal and the wooden lintelrequire to be exacited with great care and nicety. It is a common fault with workmen to rub the bricks thinner bebind than before, to insure a very fine joint in front. This teads to make the work bow outwards; it should rather be inverted, if it be done at all, though tha best work is that in which the bricks are gauged to azactly the asme thickness throughout. The same iaule occurs when 3 gauged arch is inserted in an old wall, on account of tho difficulty of filling up with cement the space behind the bricks. Fig. 8, Plste XX. is a transverse aection of fig. 7 , end the gauged-arch, lintel, \&c., in it show the total disconnection of the gauged arch with any surrounding brick work to which it might be bonded. The absurdity of constructing archea circular on plan, especially in a thin unbouded abcll of bricks, is so clear as hardly to reguire notice 4-iE
lt is generally neld that nothing but its own components should be admitted into a brick wall, except what is absolutaly necessary for its connection with the other parts of a building, such as wall-plates and wood-bricks (and that these should be avoided as much as possible), templets, lintels, \&c. Wall-plates are applied to receive the ends of the joists, and distribute the weight of the floor to which they belong equably along the walls. If the joists tailed siagly on the naked bricks, their thin edges would crush those immediately under them, and the rest of the brickworb would escape immediate pressure altogethor. Wall-plates may be avoided by the use of framed floors, which are carried by a few large beams, under whose cods stout pieces of timber or stone, 2 or 3 feet in length, are placed. These supports are intended, like a wall-plate, to distribute the weight over a considerable part of the wall, and prevent the necessity of placing the beam on the naked friabla bricks, and are called templates. As bond timbers and wood-plates are now interdicted by the Buildings Act in London, the joists have to be tenoned into trimming joists carned by brick, stone, or iron corbels. Lintels are used over aquare-beaded windows and doors, Lintela. instead of arches in brickwork. They are uaeful to preserve the square form and receive the joiner'a fittings, but they should always bave discharging arches over them, and Discharg. should not tail into the wall at either end more than a few ${ }^{\text {nog }}$ arches inches, that the discharging arch be not wider than is inge. absolutely necessary. Fig. 9, Plate XX , indicates the elovation of the insido of part of an external wall with a window in it, and shows the lintel over the opening with a discharging arch over it, and wood-bricks under its ends, on the jsmba of the opening. Discharging arches should be turned over the cads of beams, and templets also, as in fig. 10. They may generally be quadrants of a circle or even Glatter, and should be turned in two or more half bricks over doors and windows, sud other wide openinge, but over the ends of beams they need not be in more than one Wood. half brick. Wood-bricks are used to prevent the neceasity bricks. of driving wedges noto the joints of brickwork to nail the joiner's work to. They are pieces of timber generally cut to the size and shape of a brick, or portion of une, and worked in as bricks in the inner face of a wall, where it is known tho joiners have occasion for something of the kind. This is principally in the jambs of the windows and doors for their fittings, and along the walls, at proper heights, for the skirtings or wainscotting, as the case may be. The use of bond timbers in brick walls ia objectionable becsuse Bons of their liability to shrink and ewell, to decsy, and to timber be set on fire; and in England tho use of timber in 'walls has, since tho extension of the manufacture of iron in thesc countries, been in a great degree superseded by that metal in the form known as hoop iron. Thin and Hnop iros nerrow strips of this matalare laid in the bed joints of mortar, at intervals more or leas frequent according to the nature and character of the work, with . the best effect in respect of compactness and consequent strength. An improvement on the straight band has been introduced by Mr Tyerman, whereby a notch is made and the tongue bent down, which coming at each hollow of the bricks tends to afford a better hold ou the mortar.

It will be generally found that a brick wall built with Brick and mortar and faced with ashlar has settled inward to a askiar less or greater extent, as the work has been more or lesa carefully performed. Indeed, in the mature of things it cannot be otherwise, unless the brick backing be worked in some cement which sets and hardens at once; for the outer face is composed of a layer of unyielding maternsl, with few and very thin joints, which perhaps do not occupy a fiftieth part of its height, while the back is built up of an infinity of small parts, with fully one-eighth its height
of joints, which are composed of menterial taist must both yield to pressure and shriuk in drying. Some part of the ill effect attendant on this is obviated by the bond-stones, which tail in or run through the wall, and tond to keep the discordant materials together; but still much of at remains. And besides this, the internal or cross malle, which have no atone in them, will either settle down and ohrink aray from the external ralls, or drag them inward, as they happen to be well or ill bonded or thed. For these reasons, brickwork built in this manner with masonry should be executed with exceedingly well-tempered mortar, made with no more lime than is absolutely necessary to cement the particles of sand togetber, and the sand again to the bracks, worked as stiff as it can be, and laid 10 as thin courses as may be to answer the purpose required of it. A bore all, work of this kind must not be burcied, but allowed time to dry and shriok as it goes on. In somelarge edifices the brickwork is carried up and cainpleted, and atter a oufficient time has elapsed for the work to have ecteled, the ashlaring is carried up and worked an with the bond stones set an the brichmorts for the pur рояе.

Discharging arches orer vacuities haming been disposed of incidentally, we bave now only ta speak of them undet openings, in which aituation their use is to distribute the superiacumbent weaght equally over the substructure. or along the foundation as the case may be. For this purpose the arch is inverted, as shown in fig. 4, Plate XXI., and by means of it the weight brought down by the prers is carried along the footugs, which are thas equally borne upon throughout their whole length. Arches of two half bricks are andicated bere, that being sufficient for orinaly purposes, and to develop the principle; in large and heavy warks, archee of three half bricks, and even greater may be judged necessary. Any arc between a quadraut and a eemicircle may be used with advantage; but au are of less than 45° cannot be recommended for the invarted discharging arch under piers. Arcbes require abuturents Whether they are erect or inverted, this is often forgotten when inverted arches are used.

Not the least important part of the bricklager's art is the formation of chmney and other flues. Great tact is required in gathering-over properly above the fire-place, so es to conduct the smote mio the smaller five, whach itself requires to be built wath great eare and predision, that it be not of various capacity iu difierent parts, in one place contracted to a narrow stright, and in another more widely expanded, and so on. There is now often introduced at the level of the mantel, a plate with an opening in it

Discharos lag ractes andes opernios. through rhich the smoke iscendis. This, which is called a chimney-hopper or charney lititel, is very useful wot onls to ensurc the proper gathering of the flue, as the brickwork of the flue is formed at ouce upoo $1 t$, but as a substitute for the usual register, and it alou renders ueedless the usual iron chimney bar required to support the breast. It 18 absolutcly necessary that dues be of a certam magnitude, but the bare ehould be regulated ty the saze of the fireplace, or rather by the quantity ot smoke to whach it is requared to give vent. For large kitchen fires it is con. sidered bost to have two flues.

Practical men differ as to whether a tapering flue, or an cularging flue is best for carryng away smoke. They are uwually made of one size throughont. Of late years cylindrical earthenware tubes have been used with advantage, and of a smaller bore than the common 9 -inch by 14 -inch capacity. With glazed tubes it has been found that the soot falls down with thunderelays aud other strong l'angeting ribrations. Flues of brick are plastered or pargetted with 9 mortar in which.a certain proportion of cow-dung is mised, which preventa it from cracking and peeling of with
the Leat to which it is exposed. The part brought out into the room from the wall, and over the opening, is called the breast. The dooring in the openirg is called the hearth, fig. 8, Plate XXI. ; it is set on the bricks or stones of the wall, and is usually of stone, although cement and iron plate are sometimes used. The slab is that part of the Hoor of a room which is mmediately before the fre-place, and along the extent of its front. In basement rooms, this slab is supported by a brick wall brought up from the ground ; but in upper rooms the slab is aupported by a fat balf brick arch called a brick trimmer, which is turned from the chumey breast under the hearth on one side to the trimmer juist on the other, which is generally made somewhat thicker than the other joists for this purpose. The chmney-piece which comes in front is fixed by the mason after the carpenter's rork is done.

The plate above mentioned assists in ensuring a proper cauces of Jraught to the flue, and presenting a smoky chimaey, baoks These are frequently caused by mant of sufficient air to feed chmaeys the fire, which must be supplied frow the room itself or by a tube brought from the outside of the building. Another cause of smoke is too short a fuunel, especially if the flue be a large one, as formerly built for sweeping by boys. Every fire-place must have its own flue. Other causee are-one fire overpowerng the other, when there are two in oue large room, ur two rooms communicating by a doorway, or when the tops of chinneys are commanded by higher buildings, or by a bill, au that the wind sometimes Hows almust perpendicularly into the tops of the chimneys that lie in its way and beats down the smoke. A down. draught is usually produced by the difference of the external atmosphere from that in the room; this often brings down the smoke of a nemhourng chmney; it can occasionally be obviated by raising one of them, or by fixing on it one of the exhausting pots now manufactured for the purposs. The bad construction of dire-places is another cause of smoky chmness, the throat being too large for the fire. We shall not attempt to describe the many patent and other inveutions submitted for curing these nuisances, but what is known as Billings's terminal must be excepted. It consists of a low concal top about a foot bigh, placed on the flue, and screened on each side by a terra-cotia baffer, rising somewhat higher than the pot; the wind striking tho former is thrown upwards and assists in extracting the smoke; the latter prevents the smoke of one flue being blowu down the adjoining ones in the same stack. TLe common terra-cotta pot with lourre sides is also useful an! ornamental.

Brack and tule paving is performed by the bricklayer p Brick-paving is either flat or on edge, in sand or in mortar b or cement. Brick flat-paring in sand, that is, with the bricks laid on then broadest surfaces, and bedded in and on dry and, is very slaght and fragule, and brek fat-paving set and bedded in mortar is very little better; for if the soil on which the parang is laid be light and sandy, tho bricks are easily displaced by being pressed unequally; and if it be clayey it will probably be most, and the thin porous brick absorbing the mossture, will generally becomn saturated, and preseat a dawp unoholesome tloor. Paving with bnets on thenr edgea, however, forms a much bette: floor, and is preferable to a stone paving, if the latter be land on the ground without the ratervention ci footinge. Brick-on-edge paving in sand is generally used in beer cellars, pantries, dairies, stables, dec., as ats mumerous open jointa allow wasted or discharged fuids readily to eacape; and it is both cool and dry under ordiuary circumetances. In mortar or cement, bricks on their edges form a souad, dry floor; the smallness of the surface exposed by each brick in this manner leaves them, of couree, less euscepable of partial pressures, and the derth from the woil to the
surface is such that damp rarely shows through. The paring brick differs from the common brick only in thickness, its dimension in that direction being rather less than 2 inches, instead of $2 \frac{1}{2}$ inches, and in being rather harder and more compact. Dutch clinkers are paving bricks, smaller and much harder than the English, and of a light yellow colour ;

Fio. 14.-Paving of Dutch Clinkers. they are 6 inchos long, 3 inches wide, and $1 \frac{1}{2}$ inch thick, and are always set on edge and herring-boned, that is, instead of being placed in parallel lines, they are set at right angles to each other, as in fig. 14, yet with a perfectly even face. Paving tiles are made $9 \frac{1}{2}$ inches and $11 \frac{1}{2}$ inches square, though they are called 10 inch and 12 -inch or foot tiles respectively, the former being 1 inch , and the latter $1 \frac{1}{2}$ inch thick; they are set in coursea, as stone paring would be, the alternating courses breaking joint. A sort of tiles called terro-metallic are manufactured for stabling and similar purposes.
Here may be mentioned the extended manufacture of ornanental tiles. The tiles formed in intaglio and enamelled, similar to those used by the Muory in Spain, have enabled the architect to break through the monotonous aurface of brick buildings, and to introduce ornameutal forms and. colorr without the necessity of resortiag to plaster and atucco. From the geological position of London and many other towns, bricks must always be the prevailing material for building purposes; such means, therefore, for the safe introduction of colour and ornament are especially desirable and sbould be carefally studied. With this, too, has come the estended use of ornamental brickwor's by the introduction of tnoulded bricks of all forms, and of many colours, together with a material uf a like nature, by which decorative work of a more ornamental character can be obtained, namely terra-cotta, or prepared clay moulded or wrought and then burnt in a kiln. Tiles as ahove referred to are made for mosaic and tesselated pavements in plain colours (some being enamelled), ior halls, footways of land. ings, censervitories, \&c., also glazed tiles for hearths, and white and toned tiles, with the caoaustic tiles of many colours, for walls. The former are msnoufactured of all sizes, co that by the combiration of certain forms and colours an endless varicty of patterns are obtainable. For pavements they require to be carefully set in cement on concrete, and in cement on walls.
Sewere and drains which are not cylindrical should be built with concave bottoms; this keeps the streana more tigether, and enables it the better to oarry its impurities along with it, whereas a flat-batomed drain effers a large surfaco for the particles of soil to attach themselves to, nad the stream of water being more scattered is less efficicnt in force. Drains near houses, and in other places where it may be necessary to open then at any time, may be of the form of which a, fig. I, Plato XXI. is a section, with a flat covering of stone paring, or large paving tiles, set and jointed with cement. CHun-bartel drains, of 9 -inch or 12 -inch diameter, as at 0 , are the best in ezposed situations, because they are the strongest; but as there is no mode of cleaning, if they are too long to be raked, but by breaking them up, they should not be employed except with a considerable fall and a frequent or constant stream of water through them, as from a pump trough, rain-water trunks, \&e. They are constructed on a barrelled centre of wood, which the bricklayer drags on as he advances with his work, finishing as he goes. No.drain ehould have an inclination or fall of less than one-quarter of an inch to a foot; and where the etream is infrequent and dull, as much more would be a great advantage. Large sewers, which are accessible from the sods, or from side entrances,
for mex to clear or remove any acciaenta. ., usuctions, are best made circular, elliptical, or egg-shaped, as in fig. 15. The last two shapes aro generally preferred, because in proportion to the capaoity the height is greater. The form in fig. 15 maintains the greatest possible depth with a small quantity of luid, and combines this qualifcation with those of great strength to resist external pressure and large capacity with a given amount of materials. The form shown at c, fig. 1, Plate XXI., is now

Fio. i6.-Section of Sewer. disused, though it was long advocated for sound work. manship and regular jonts. A rate of fall of I in 120 , or 1 inch in 10 fiet, is desirable, although less will suffice for a main sewer.

Pipes or hollow cylinders of well made and well-burat Pipe glazed etoneware form the most efficient house-drains. drins Such pipes are put together with great accuracy with sockets, so as to fit spigot and faucet fashion; movable tops are provided su as to give access to them at any part required, whout taking up and relaying the drain from one or other of its ends, as was so often the case with the old brick drain Proper bends, junctions, syphons, dec, are also unde of the same cuateriat. In using pipes for drains, it should be borne in mind that a litt!e larger than large Enough is better than the reverso of this. No pipes should be laid down for a house-drain of less bore than 6 inches, nor should earthenware be used for drains requiring a greator bore thau 12 uchea, the material is too treak to aliow of nore, and the materna! is not strong onough to stand more then a dead pressure. Glazed stonewara pipes are also employed for small sewters in side etreets, or to take of the collected ε nil and water from a short row of houses into the bam brick sewer, and thence to a watercourse or to a reservoir of a main drainago acbeme.

In building drains it is of great importance that proper Trapa' traps shouid be constructed to prevent the ascent of foul ar and the passage of vermin. At every sink there should we a bell-trap, and a well-trap within that, or near the lather end of the drain. Suppose a cirain leading from a Kitchen or scullery to the commen drain of the hoise, in which it meeta that which may come from the watercloset and other places. The beil-trap in the sink itself wild prevent the return of sure! when it is constsatly in uas, but it is liable to be leit out, broken, or oitherwise injured, or it may become dry by evaporation; it is, therefore, necessary to have a trap not so liable to such ordinary contingencies. Let a well be made 18 inches or 2 feet in diamoter, square or round, and 2 feet 6 inches or 3 fees deep, across and below the level of the drain, a shown in plan, fig. 2, Plate XxI., and in longitudinal section, fig. 3 ; it must be built around with brick in cement, and be plastered on the inside with the same material, which will make it capable of retaining fluids, Uprightly across this well, and in tho trausverse direction of the drain, must be placed a sound piece of paving etone, so long that its ends may be iuserted in the sides of the rell, as shown in fig. 12, and so wide that its upper cdge shall touch the covering of the drain, and that its lower may reaoh 6 or 9 inches down into the well below the bottom of the drain. Mortar or cement must prevent the passage of air between the upper edge of this trap-stone and the cover of the well and drain, and the trap is complete. The water coming from the sink flows along tha drain from a to b (fig. 3), where it falls into the well, and filling it up to that level it flows on again from c in the direction of d, to the cess-pool or oommon sewer from which, however, no smell can return; for the trap-stone
e, the lewer hall of which is thus immersed in watar, complately bars the passage. It is evident, however, that if the well should leak the water in it may fall below the lower edge of the stone, and the efficiancy of the trap be destroyed, but if it te made perfect in the first instance, there can be no danger of any inconvenience that a bucket of Fater thrown into the sink will not cure. It is from the droing up of the fluid in water-traps that uninhabited bouses are so frequently offensive. Tbese well-traps form an effectual bar to vermin, and they may, therefore, be advantageously placed at the entrance of water-closet dreins, to prevent rats from getting at the soil-pipes, which they will gnaw and destroy if they can get access to them. Internal drains, or those which go through a bouse, should alwaye pass under the doorways if pussible, in external walls at least. If, however, carcumstances should render it absolutely decessary that a drain be taken through a wall, an arched ring or bull's eye should be made for it to pass by

All the traps to the drains should be ventilated, as well as the head of the drain itself, by a tube carried up to the top of the bouse, and away from any opening where the foal aur could be blown into any of the rooms. The sewers should also be ventilated, if not by the gully or side gratings, then by a grating placed over them in the contre of the roadway There have been numerous sugges. tions for ventilating shafts in the lines of man drainage, but nothing beyond a tall lamp-pest has been carried out, and no doubt this 13 sufficient.

In country heuses where the dranage is used for manure to the gardens or land. the drain from the closets may be led into a brick or iron tank or cesspool, the surplus water being carmed off by an overflow drain. Cesspools are atrongest if made cylindrical, and should be bricked round and domed at the top, with a manhole in it for access, which should be fitted with a stone, having a ring in it by which the stone can be rased. But whether they are made to retan fluids or not is not a matter of consequence, if they be placed in a secluded situation, where, if the object be not to get rid of the waste, there is seldom, at least, any desire to retain it. I_{11} towns and cities where the common sewering is as complete as it ought to be, and water-closets are used insteao of priries, cesspools are unnecessary, as the soil becomes so much diluted by the water that goes down with it, that it flows readily enough through the private drans to the common sewer, and so on with the rest, to the common receptacle. Sometimes, iadeed, it may be found necessary to clean out the well-traps before described, but this cannot often occur. Galvanized tanks are occasionally used in some parts of the country. with pumps attached, by which the sewage can be rendered avalable for the garden. Earth closets on Dr Moule's system, or the cinder-sifting ash closets, are valuable for preventing the waste of an importaut manure. For workmen's cottuges in large towns and villages they must be of great service, but whether they are adapted to a torn house, or are applicablo on an extensive scale for the relief oi town drainuge, is a question which stild remains unsolved.
The principal publications on Brickwerk are as follows :-Mraon, Sechanch Ezarcises, sto, 1682 : Langley, London Proces of BTE: k Leyers' Work, \&e., 2d edition, 8 vo, 1750 ; Sannders, Observations on Brock Bond, 8vo, 1805, and reprinted in vel. i. of the Civil Engineer and Archutect's Sournal, 1838 ; Elmes, Fonindations, $8 \mathrm{vo}, 1808$; Nicholson, Archuectural Inctionary, 4to, 1819; Dary, Construc. fion of Fumdations, 8vo, 1839; Dempsey, Builder's Guide, 8vo, 1852. The forem publications are mostly comprised in the list at the end of the Mason-work. For Omamental Brackwork, see Degen, Comstructions en Briques. 4to, no date. Essunwen. Nordieutsch. Lands Backsten Bau an Mattelaldir, foho, 1863, Runge, Rssai sur
 Satole sirchtecture as dialy, suc. 1865 .

Mason-Work.

The word mason is derived directly from the French macon, which sigmifes indifferently a bricklayer or mason. Du Cange attributes the origin of the xord to the low Latın macerna, a wall; but a more pribable denvation is that from the old German mezzan, to cut. Among wurselves, at present. we reckon three eorte of artificersrubble or rag.stone masons, frcestone masons, and marble masons. This last branch, however, is rather that of the carver or statuary. The art of vorling or reduciag stone to the proper shape for the mason to set, f.e. to place them in the walls, \&c., has generally been called stuneocuting, and depends very much on the nature of the stone for its detanls. Stone masonry is the art of bulding in stone.

The mason's tools consist of a handsaw, for cutting soft Tools stones; a drag, which ts a llat plece of iron wherewith to finish its surface; chisels and gouges for forming mould lngs, gauges and moulds for sinking them to the proper forms; a mallet, chisels, tools, and points for workıng the barder stones; a level, a plumb-rale, a square, a bevel, with rules of various sorts wherewith to try the surfaces in the progressive stages of the work. Granite is brought to a face by the scabbling hammer or granite axe, and the operation is called nidging. In rubbed work a surface is obtained by smoothing it with sand or gritstoae. Marbles are polished by being rubbed with the gritston then with pumice-stone, and lastly with emery powder.

Rubble walls are scaffolded with single, and ashlar-Scatolsop fronted or other gauged stone walls with double-fronted scaffolding, -the former tailing one end of the putlocks in the wall, and the other having an mner row of standard poles, and ledgers parallel to the outer, making the scaffold entirely indepeadent of the wall. In some places, horever, it is the custom to dispense altogether with an external scaffold in building stone walls, particularly with gauged stones. With light and plain work this may be done without rauch inconseaience or retardation, but if the work be heary or delicate, considerable delay and incorrectness result. Sometimes the finer work, such as that to mouldings, flutes, and foliate or other enrichments, is merely boasted or roughed out before the stones are set, and finished afterwards, but this can be done well only Irom a secure floor or scaffold on which the workman may feel be can move freely and surely. For large and elaborately decorated structures, such as a public building, a mechanical scaffolding has to be erected, by which some economy is effected through diminishing labour, or some emergencies met attendant on the works themselves. Where the face of a stone is worked in the shop and may have some weeks or months labour on it, it hecomes a valuable work worth careful handling. Hence the old. fashioned kind of scaffolding, of poles and ropes, has oeen much superseded by the so-called whole timber or framed scaffold, with its tramway and crab engimes aloft. It 16 usually fermed by laying square timbers on the ground to receive simils uprights, which are secured by aron ties to it, on the heads of these are placed horizontal umbers, which are also secured to the uprights, and the whele ss kept from changing position by timber struts and braces. On these another range may be erected, and so on to the requred heigbt. Trammays are placed on at, and a travel. ling crane, worked by band labour or by steam, raises the heary weights, carries them to their places, and at once dcposits them in the work with great ease. By the use of a steam-lift, with a long arm to reach many fect above it, on the first stage of the frame scaffold, no other scaffold is necessary except a slight one for the use of the workmen to set the stone. The clock tower at the Houses of l'arlifment was built by a scafold formed of two timbers.
each 2 feet 3 inches deep and 14 mohes wide, running across from side to side, on which rails were fixed to carry a travelling platform of the whole width which went the reverse way. To one side of the first named timbers was suspended a platform which carried the machinery for aising the materials from the bottom up the central shaft ; they were then raised on to the traveller which carried them at once to the required spot for fixing. When a certain beight of work had been done, the huge timbers were raised by six screw-jacks working together, and rested on the new wail, the jacks being removed and prepared for another raising when necessary. The Victoria Tower was erected on a somewhat similar principle, but having two travellers working upon a circular tramway on a strong trussed framing, the ends of each secured to a central drum. To raise the materials a strong under-trussed parallel framing was formed on one side, which brought them up on the outside of the tower.

Slones uscd in Building.-It may be useful to give a list of the atones principally used in building, according to their geological formation, with aome practical remarks upon each.

Of igneous rocks of volcanic origin, the varieties which are used on the continent of Earope are those light stoncs called tufa and pumica, and the stona, called peperimo. The two former were exteosively employed by the Romans in the filling in of vaulting, ${ }^{2}$ on account of their grest lightness. The latter stone, which is obtained in large quantities near Rome, was used by that people extensiraly, particularly for anbstructurea, being obtained in large blocks. Of the second division of igneous rocks, the erappean, porphyry and serpentine hare been used, but chiefy as ornamental coloored stones, and hava been generally classed aa marblae. Of the third division, the supersilicated rocks, granite alone is now extensively amployad, not only in engineering worka, but in public buildinge and dwelliogs. It is got from the quarries by splitting the blocks with wedgea, and is ao hard that it cannot be cutby any ordinary saws. It has to be worked first with large tammers, and then reduced by pointed chisels, and consequently is very expea. ave in building. Machincry is used very largely in cutting and also in polishing it. Some very good apccimeos come from Corn. *all and Devonshire, but by far the best are from Duadee and Aberdeen. A variaty of the latter, called Peterhead stanite, is only to be equalled by the finest Oricntal granites. The Kingstown granite from near Dublin is much used locally.

Of the aqueous rocks, mechanically formed, and of the arenaceous varietias, gravel is used for concrete, and and in making mortar. Saadstones and gritstones are very extensively used. These are either laminated, as the Yurk stoae, uscd geaerally for paving, as it can readily be aplit ioto large surfaces of amall rclative thickness, or compact, as old Red Sandstones, which stand rery well Internally, but periah sadly with the weather, as may be eecn at Chester Cathedral. The New Sandstones, the best of which is the Calverley atone got near Tunbridge Wells, are casily quarried, but If aarn, the wet saw and sand must be used. The finer grained compact sandstones, which are comparatively free from iron, and form very good building.atones, are very mamerous. Scch are the Bramley Fall, used for bridge copings, plintha, zc.; the Park Spring, Elland Edge, Whitby, and others, all in Yorkshire ; tho Hollington in Staffordshire; the Mansfield in Nottinghamshite; end the Minera quarries at Wrexham. A bed of the last is much used at Cheater and Livcrpool for building purposes, and it has just been introduced into tha London market, for which city it is thought it will be very eligible, on account of its lasting qualities; It has been also used at the National Safe Deposit Compeny's offices in London. - Scotland can boast of some of the fineat quarries of sandstone, the best, perhaps, being the Craigleith, much used at Edinbargh. The College, courts of law, Regiater House, Customhouse, Royal Exchange, National Monumcot, aod many churches and private residences there, ara built of this excellent material, which has elao been extensively exported to Hamburg, Altona, Gothenburg, and other places. Humbie atone has also been much used, both at Edinburgh and at Glasgow, where it forms tho Royal Exchange and Royal Bank; it is easier to work than Craicleith. Glamis is also a fine sandstone ; the castle there, as well as those at Inverquharity and Cortachy, and Lindertis House, are built of this material. In Fifeshire, at Cullalo, ara quarries whenca the stones for the monument to Lord Melville at Edinhurgh, and that to Lond Nelson at Yarmouth, were obtained. In addition to beauty and durability, these atones have the merit of being capable of receiving the finest and smoothest forms from the chisel of the workman. Another class of sandstooes are commonly called firestones, as they endure the action of fire better than mose others. Of these the best known is the Reigate stone, which is the priacipal material
used at Windroa: Castle, Hnengtan Coutt, and in many ol's buildings round London. Tise Miaera stone already mentioned is another.

Of mechanically-formed aquenis stones classnd as argiliaceous, the Clubs: Cluach only is used in building. It may be eetn in Ely and Peterborough eathedrals, and many other medieral buildiags, and is a beautiful material for interior carred work, but mill not atand the weather.

Of the aqueous stones classed as chemically formed, there is Tra none of note but the Travertine, or, properly apeaking, Tiburtine. This is a coarse grained stone, of warm colour, found in large blocks, and extensively used at Rome, both in ancient and modern build. ings, of which the cathedral of St Peter's may be cited as an instance, but it is uabmoma is England.

Of aqueous rocks, organically derived, the calcareous claim prin. Limestonea cipal attention. The chief of these are the limestones, which are classed as compact, magnesian, or oolitic limestones. Of the first, Compact the best, in the south of England, is that called Chilmark, of which limestowes Salisbury Cathedral and Wilton abbey, and many other fine buildings, have been erected. In the Midland counties the Tottenhoe stone, of which Dunstable Priory, Woburn Abbey, Laton church, \&c., are built, is an excellent stone. There is also a stone of high quality got at Hopton Wood, near Worksworth in Derbyahire, used at Chatsworth, Belvoir, Drayton Manor, \&c. Ancaster stone, near Sleaford in- Lincolnshire, has been used for a number of years; also Ham Hill, near Yeoril, in Somersetshire. Of magnesian lime- Maguesian stones we may name the Anston and Bolsover Moor stones, used limestones formerly at Soathwell Minster, and lately at the Houses of Parlia. ment; the Tadcaster stones, used at York, Beverley, aad Ripon Minsters, aod very many other buildings; the Roche Abbey, used at the buildiag of that name, and very many other churches in Yorkshire and Lincolnshire ; the Brodsworth, near Doacaater; and the Fuddlestone, near Sharburne in Yorkshire. These atooes contain a great deal of carbonate of magnesia, from which they taks their name, are of besutiful: texture, and atand well in the country as building atones, but fail in-Landon.

A very excellent limeatore for rough walling, especially for Gothic work, is that called Kentish Ray. It is found in large goantities in Keotiab the neighbourhood of Naidstooe; it is very hard, and is worked Rag. Fith large hammers instead of the esw. Jambs, strings, and mouldings are sometimea worked of it, but the hardness makes the work expensive; these, as well as the quoin atones and'dressings, ara therefore formed of Caen or Bath or other local stones. Kentish Rag does not answer for interior work.
The most importantsubdivision of the limestones used in masonry Oolitio is the Oolitic. They are so called because they rescmble, when stones broken, a conglomerate of globular eggs ; they are also named roe. atones, from their reserahlance to what is called the hard roe of a fish. Very good examples of these are the Barnack atone from Northamptonshire, of which l'eterborough Cathedral, Croyland Abbey, Bur* leigh Honse, \&c., are erected, and the Ketton atone, used at most of the colleges in Cambridgc, and at Bury St Edmunds, Bedford, Stamford, Doultiog in Somersetshire, and at Wells Cathedral and surrounding churches. But the principal English oolites used in masoury are the Bath and the Pertland. The former, as its name Bath imports, is found in the ncighbourhood of Bath. The chief quarries atome are the Box Hill, Combe Down, Farleigh Down, and Corsham Down: all these quarries vary in quality at different depihs. The Corsham Down is said to produce the finest in quality, and the Box Growod stone to be the hardest; but everything in the use of this stona depends on the bed selected. Large quantities of a similar stone sre imported from Cacn, in Normandy. This is more compact in texture than Bath, and therefore fitter for carving, but doea not appear to atand our climate so well. The best raricty of this atone is said to be the D'Aubigny stone. Almost all these oolites can be anmn with a common dry saw, which saves a great deal in the labour of conversion. But, withont doubt, the best of all this class of stones is that from the laland of Portand; for beauty of texture, and for durahility, it perhaps exceeds any stone in the world. It seems the only one unaffected by the smoke of London; and thercfore the greater number of its buildings, St Paul's among the rest, are of this grone. Being of hard texture, however, it must be sawn by the
stone use of sand and water, and is much more expensive to work than the softer oolites. There are betwcen fifty and sixty quarriea on the island. The hest are said to be those on the north-castern side; hut, as with all stones, there is good and had in every quarry, and everything depends on the selection. It is said that when Sir Christopher Wren built. St Paul's Cathedral, he had this stone quarried and exposed to the weather on the sea-beach for threb years, before he suffered it to be used.
Of siliceous stones, flint is sometimes used for rough walling and Siliccous for ormamental facing with brickwork; but in England this work stenes. is done by the bricklayer, and not the mason.

The only remainiog class is that of the metamorphic rocks, of Metamor. which the crystalline-or saccharine and the serpentinous limestone phic rock. are nsed ; but these are all apecies of marbles, nged more as orna- or maithes mental than as constructive building-stones, and need not. bo dwelt upon here.

Many of the early buiangg of the Middle Ages were entirely constructed of masses of concrete, often faced with + species of rou:h anst. The early masoary seews to have been for the most part worked with the axe and not with the chasel. A very eacellent axamplo of the contrast between the carlier and later Norman masonry may be scen in the choir of Canterbury Cathedral. In those times the groining was frequently filled in with a light tufa : tone, sidi by some to have been brought from Italy, kut nore pro. hibly from the Rhine. The Normans imported a great quantuty of stene fion Caen, it being easily worked, and particularly fit for earving. The freestones of England were also much used; and 1 in the first Pointed period, Purbeek and Bethereden marbles were employed for colima shafts, \&c. The methods of working and setting stone were much the same as at present, except that, as the roads were then in a very tod state, and in many places the only means of conveyance was by pack-horses, the stones were used in much smbler sices. The methods of setting out work were, however, diflerent from those of other styles, as mitht be expected from the difference of forms. As time went on the art of masonry advanced till, in England, in point of execution it at length rivalled that wi any country.

From the regular and determined form of bricks, modes or systems for setting or arranging them may be formed, and any workman, by habit and an exertion of memory merely, may become competent to build a brick wall as well as it can be built, but it is not so with stone used in common masonry walling. The workman in this material has for ne most part to deal with neasses of all forms and af all sizes, and a continual oxercise of the judgment is required from him beyond the tact or skill which may be acquired by practice. For this reason workmen are genecally less to be trosted to their own discretion in stone building than even in bricklaying. The young mason: should bo extremely carcful to avoid making the beds of stones concave or hollow; for if this be done, in any case where the stoncs bave to bear much pressure, they will flush or break off at the joints and disfigure the work. The best or highest sort of stone walling is the easiest to set; it is that in which the stones are all tooled and gangel in regular parallelogramic figures, to range in courses and suit the thickness of the wall to which they are to belong; and the most difficult to exccute properly is that in which amorphous stones are used, the masen being allowed merely to dress then roughly with bis hammer or axe, and f.t thenn in as he best can to form the most compact mass: this is called rubble walling.

From the brittle nature of stone, great tact is required in setting, to prop or bear up the longer picces in every part, or they will break across, and thus occasion more injury than could accrue if the whole mass had been made up of small pieces. Very long lengths, therefore, should be avoiled, even in regular tooled courses, with which the bearing is or should be perfectly even, and a seteling down of the work itself is hardly to be feared. There is a certain medium which may be preserved; and although the object is obviusly, in stone as in brick walls, to form a compact mass, as mbroken into parts as possible, a mason will act judiciously in breaking a very long stone into two or more shorter ones, and working them in that stete, thetigh be thus uakes two or more additional joints, well knowing that he has the power of counteractmer to a certain extent the ill cffect of joints made by himself, but that those made by aceident are irromediable.

The otservations made in the section un brickwork, on the use of mortar, will apply here also. Of whatever quality the stone may be of which as wall js to be built, it should consist as much of stone and as little of mortar as possible. If the stono be inferior in durabilty and power of resisting the action of the atmosphere to the mortar, besides the certain fact that the mortar will yield until it has set hard, and so far act injuriously, no ulterior good is gained; and ic the stone be the more durable material, the more of it that cuters into the wall the better. Indeed, in rough salling, if the stones be pressed together until the
more promirent angles on their taces come into actuai contact, the interstices being occapied by mortar, it will be better than if a thick yielding mass were allowed to remain between them. Absolute contact, Lowever, shuold not be permitted, any more than in brickwork, lest the shrmking of the mortar in drying leavo the stones to such unequal bearng as the prominent parts alone would aford. Stone bun'g generally of a less absorbent nature than brack, it 13 not a matter of so much importance that it be wetted before seting; nevertheless, adhesion ou the part of the mortar 13 more certain and more complete, if the stones be worked in at least a damp state.
 shown in the precediug section; and bond is of not lesa importance in stone walling thau in bracklaying. We have also hinted above at the greater difficulty of understand:ne. forming, and preserving it in the former, and can now only adli it few observations in addition that can be of any use, and these with reference to rubble walling particularls. Instead of carefolly making the joints recur one over the other in alternate courses, as with bricks and gauged stones, the joints sbould as carefolly be made to lock, su as to give the strength of two or ihree courses or layers between a joint in one course and one that may occu. vertically over it in another. In bonding through a wall, or transversely, it is much better that many stones shouid reach'two-thirds across alternately from the opposite sides than that there should be a fetw thorough stones, or stones extending the whole thickness of the wall. Indeed, one of the many faults of stone masons is that of making a wall consist of two scales or thin sides, with thorough stones now and then laid across to bind them togetber, the core being made up of mortar and small rubbie merely. This is a mode of structure that should be carefully guarded against. There is no ketter test of a workman's tact and judgment in rubble walling than the buidling of a dry wall or wall withont mortar, aftords. Wialls are frequently buile with mortar that without it would have fallen down under their onu weight in a height of 6 fect, in consequence of their defectire construction,-thus revdering it evident that they are only held together by the tenacity of the mortar, which is very seldom an equivalent for a proper bond of stonc. Masons are rery apt to set thin broad stones on their narrow edges to show a good face, by which the wall is injured in two ways; the practice tends to the formation of a mere case on the surface of a wall, and it for the most part exposes the bed of the stune to the atmosphere, as a stoms is more likely to be broad in the direction of its Led than across it.

The footings of stone walls ought to consist of the largest Foothige stones which can be conveniently procured. It is better to have them of a rectangular form than any uther; and if they are not square, their largest surfaces should be land hurizentally. With this shape and disposition they will make the greatest resistance to simking. Wlen footings cau be obtained the full breadth of the wall in one piece, they are to be proferral; bot if not, then every alternate stonc in the course may be the whole breatith. Each course should te well bedded in mortar.
linkble walling is ciths conrsed or uncoursed. In the fubble latter sort, fis. 5 , Plate XXI., the work is carited on with wal". stones of any sizes, as they occur, and without reference to Uncoursed their heights, somewhat in the manuer of the Cyclopean work. walling of antiguity,-the iutenstices of the larger beimg filled up with smaller stones. For this work the mason uses no tool but the trowel to lay on the mortar; tho scabling hammer to break of the most repulsive irregularities from the stones, and the pluneb-rule to keep his work perpendicular. The hue and level are cqually unnecessury; as the work is independent of considerations
which are sffected by them. An atientive and intelligent workman will, however, make a sound wall with this species of construction, by fitting the stones well together and packing them with as little mortar as possible, yet filling every crevice with it, and carefully bonding through to secure compactness, transversely at the least.

In coursed rubble walling, fig. 6, Plate XXI, the line and level are used, the work is laid in courses, each course being carefully brought up to the same level in itself, though no attention is paid to uniformity in the lieights of the different courses. For'this species of walling the stones are generally thoroughly dressed by the workman in the gross before he begins building. He is careful to get parallel beds to them, and he brings tha best face of each stone to a tolerably even surface at right angles to the beds; the ends, tooc, receive some little attention, aud for this purpose he uses an axe in addition to his scabling hamoer. The quoins in coursed rubble walling are generally built with peculiar neatness and precision, and they are set to eerve as gauge courses for the rest. This, when well executed, makes a sound and excellent wall. It presents, however, rather a rough and homely appearance, and in finer works must be covered with stucco or cement, or faced with ashlar.

Ashlar is an external rind of gauged stones in equal courses, having tooled or closely-fitting joints to give a wall a neat and uniform appearance; it is axed, tooled, or rubbed, as may be thought most in character with the structure, or that part of it to which it is to belong. Ashlar stones, or ashlars as they are commonly called, are made of rarious sizes on the surfece, as the character of the edifice may requiro or convenience demard, and vary in thickness from 5 to 8 or 9 inches. Some of the ashlar stones must, it is clear, be used transversely as bond stones, or the facing, having nothing to connect it with the wall behind, would soon totter and fall. Bond stones are generally put in alternate courses, with the backing to the jambs of openings, buch as windows, and oftener, if these do not recur within a length of 5 or 6 feet; the bond stones themselves, too; should not fall in the same vertical chain, except when they are in the jambs of openings, but should break in their alternate courses. Ashlar is commonly set in fine mortar or in putty. It is generally recommended that ashlars should not be made regular parallelopipeds, but run back irregularly to tooth in with the backing, the vertical joints being left open from about an inch within the faco of the wall, and the upper surface or bed of the stones made narrower than, though perfectly parallel to, the lower. These things may exert a slightly beneficial influence under some circumstances; but the mode of construction involved is so radically bad, that unless the backing is set in a quick-setting cement, or is so well packed as to be proof against its general tendency $\$ 0$ settle away from the ashlar facing, no method of the kind
in materially improve it. A well-compacted wall of coursed rubble, the courses being frequently made up of whole stones and faced with ashlar, may be mado tolerabiy sound and trustworthy. Brici-hacking, with ashlar facing, cannot be considered as good. though it has the adrantage of not requiring battening and lathing for inside plastering, as the stone-backed wall does. Uncoursed rubble with ashlar has all the disadrantages of both the preceding, with nothing to recommend it before either of thein. A thin inner brick wall, like a hollow wall, is very often necessary, where it is anticipated that the rain will be beaten through the stone-work by the impetuosity of the mind. The settleraent of these two kinds of werk during the setting of the mortar is so different, that the walls often separate; or where this is prevented by bond stones, the walls bulge uatwards and bear unequally on their base.

These evals are best prevented by using as little mortar as possible in the interior parts of the wall, and not raising the wall a great height at a time.

In order to give an uniform colour to a stone or ashlar mall, masons mix up pounded chippings of the stone they hare nsed with some lime, salt, whiting, and size, and a hittle ochre, with which they colour the stone as they clear off the work. It is called badigeon, and is used also or plastered walls, where joints are sometimes drawn in colons to represent stone-work. Small defects in the stone are filled up with the same, or with shell-lac and the pounded stone.

There are many different sorts of ralling or modes of Locs rarie structure arising from the nature of the materials furnished ties. in various localities. That of most frequent oscurrence, perhaps, is a manner in which either squared, broken, or rounded fints are used. These depend entirely on the kints care with which they are arranged, and on the mortar with which they are compacted, as also on a coursed chain, which is commonly introduced at short intervals of larger stones or of bricks, to act as a bond; the quains, too, in this species of structure are generally constructed of dressed Pise work stones or of brick. Another sort of building is that of Pise work, which from its economy as well as its general utility, bas been much used in rarious countries. It consists of merely compressing earth in moalds or cases, whereby houses of two or three stories in height can be raised. Strong earths, with a mixture of small gravel, form the best material. The earth cannot be used when it is cither too dry or too wet; when prepared it is put into the moulds and rammed down. The openings for the doors and windors must be left at the time of building the walls; and the openings have to be faced with wood for hanging the doors or for inserting the frames. The exterior decorations are best made of stone or brick; wood will not unite very well with the Pisé; the flues are also formed of brick. work. The exterior should be cemented or rough-casted; which should only be done when the wall is quite dry, or the cement will be cast of by the damp. The walls require to be bonded at the angles by thin rough planks to each course of about 3 feet in height, and the interior walls to be likewise so tied to the main ones. Such rork has lasted over a century and a half. It mas extensively practised at Lyons and in the soith of Frauce during the last century. Several attempts have been made of late years to build C-arete concrete walls for houses, and with much success. The t.. .ss process is similar to that already described. One patentee has been cnabled to produce a clicap material wherewitb Le has built erery part oi a house,-walls, floors, staircase, and a flat roof, and even the doors, the material being sit in an iron frame, thus reuderint the house perfectly incombustible. Several suck "monolithic doors" have lately been put up in London in place of plate iron doors.

Whatever objections lic against bond timber in brickwork apply with equal force at least to the use of it in stone. walls. Hoop-iron bond is not ouly available in all kindo of stone walling, including the higlly-wrought close-jointed kind, but it is invaluable, as it may be used both longitudinally and transversely as it may in brickwork; whilst it compels the building mason to bring his work up to a true and fair bed as often as the bend is to be laid in it. Dis- Ditcesergcharging arclies, it must be cuident, are as necessary in and ing archece to stone walls as to walls of brick, and they may be treated much in the same manner. See fig. 10, Plate NX., and fig. 4, Plate XII .
lihen walls are not entirely of masonry, in the ordinary trees of course of coonomic building, stone is frequently used for stoce copings, cornices, string and blocking courses, sills, landings, parings, curos, steps, stairs, hearth-stones and slabs, and chimuey-pieces; to these may be added quoins and architectural decorations. or dressing for windows, doors
\&c, thougn both the former and latter are not unfrequedty execnted in plaster composition or cements. Quoin-stones are gauged and wrought blocks with parallel beds and vertical faces, placed on the angles of buildings in the Greek, Romsn, and Italian styles, with the intention of adding to their beauty and strength, as in fig. 7, Plate XXl.; they are used in all kinds of walling, and are generally made to project before the face of that to which they are attached, mostly with a westhered angular joint, or with a rectangulsrly grooved or moulded one. The quoins are coursed with the rest of the wall if it be of stone, and are made to occupy the exact space of a limited number of courses of brick in a brick wall, or of flints where these are used. Copings in ltalian work to cover walls, parapets, \&c., are worked with a planu horizontal bed, two vertical faces, and an inclined or weathered back or upper surface, either forming an acute angle with the outer and wider, and an obtuse angle with the inner and narrower face, to throw the water off, shown at a fig. 9 , Plate XXI.; or sloping to both sides from the middle, as at b; the latter is techaically termed saddle-back coping. In both cases they are made to project over the wall or parapet on hoth sides; and in the projected part of the bed under the edge or edges towards which the inclination is given, a channel or groove, called a throst, is cut, to intercept the water in its
Ihroating. leclination to run inwerds to the wall. On gables or other inclined planes the coping is neither weathered nor throated, as the water is necessarily impelled along its course to the lower end, and not over the sides. It is a curious circum. stance that the mediæval designers rarely made. their copings to project on the inside of a parapet, as shown in fig. 16 , 80 that the exterior projection, which was returned up, was perhaps intended as much for effoct as use. To protect the separate stones of a coping course from the danger of being displaced by high wiods or other accideutal causes, and to form a chain through its whole length, the stones are linked together by cramps of copper or iron let into their backs and run with lead. These metals, however, especially the iron,

Fro. 16.-Copings. for the most part act very injuriously, from their exceeding sedsibility to atmospheric changes, and their greater or less tendency to oxidation; indeed, the stone invariably suffers more than the work Joggles, \&c, bedefits from the metal cramps. Tenous, dowels, joggles, or dovetails, of stone, of hard word, or of slate set iu Portlaad cement, applied so as to be protected from the weather, are far better, and would answer every desirable purpose sufficiently. Lead dowels, when small, are occasionally used. The value of joggling and doweling to stone-work is well exemplificd iu the construction of Eddystone lightbouse. Cornices are but ramified copings, and are or may be subjccted to thie same general laws. Care must be taken, bowever, in arranging them, that their centre of gravity be not brought too far forward, in the anxiety to project them sutficiently, lest they act injuriously on the wall by pressing unequally, and their own seat be also
but the part of it in tue wall should be of the exact height of one, two, or more courses of brickwork. The woodcut, fig. 17, is a usual cornice or string course in the later period of medixalal art in England. A blocking course is either a very thick string projecting over or flush with the face of the lower part of the wall to cover a set-off; or it is a range of stone over a crowning cornice to bring the centre of gravity more in on the wall thau it otherwise would be; in the former case it is treated exactly as a string, excepting that, if it bo flush below, there is no occasion fur a throst; in the latter it has a horizontal case bed, parallel Fio. 17.-Cor. rertical sides, and a weathered back or upper surface. Sills are weathered and throated like the parts of Sills. a string course, Plate XXI., fig. 7, a and b; yet in medizval work they may be seen flush with the upright of the wall. They are laid across window openings as a base to tho sash-frame; distinct sills in the same line may, indeed, be considered as an intercepted string course. In the ordinary practice of building, window sills are seldorn set in brick. wallis until they are absolutely required to set the sash-frames on; or they are set but not bedded, except at the ends. The object of this is to prevent any settlement that may occur in the piers from breaking the sills across on the unyielding part of the wall under the windows. A necessity for this, however, can only arise from bad collstruction; for with a geod bond in the brickwork, all would aettle together, and the sills might be completely bedded across at once.

Landings are platforms of stone, either over an ares Landingz before a door, at the head of a ligat of stairs, or as the floor of a balcony. They are made four, five, six, or eight inches in thickuess, according to their extent and bearing if not one piece of stone they are of nicely jointed pieces joggled and plugged together, and ere worked on the face and edges just as their situation may demand. They should also be very carefully pinned into the walls. Fig. 18 will show the danger, should they not be e0, through the full length of their insertion. If the front edge be pinned up, as at A, but a vacancy be left, as at B, the point C will become the fulcrum of a lever, and the landing have a tendency to turn st that point, and to break at the edge C. Every step and landing should have 8 inches hold in a brick wall All landings Fro. 18.-Extromity of Landshould be well joggled ; the joint
 joggles made as at a, fig. 19, is called by workmen a he, and that at b a she joggle. An accident at the Poly. technic Institution in London arose, no doubt, from the carelessness of the workmen, who put two landinge toge-

Fio. 19.-Jogesles.
ther, in Fhich two she-joggles were worked, as in fig. 20, aud filled the open epace with plaster. There happencd to be a large fossil in tho stone close to the wall in the landingb, which, having no support from the other landing a,

Fio. 20.-Joggles badly joined. gave wsy, add caused the destruction of the lower portion of the staircase upon which it fell

Stoue pavings are preparea and laid in various ways. Ordinary paving is of self.faced or of tooled York; and for 3etter purposes it is of rubbed Portland stone. For entrance balls, equare stones, with the angles slightly cut off, the four ppaces thus obtained being filleu up by a small squ. re of blaek or other coloured stone, makes a neat paring, which is replaced by marbles in best houses ind pablic buildings, if a tesselated pavenieut be not required. Stone paving that is not exposed to the sun and air, if next the ground, should be laid on footings of briek or stone, or it will be constantly damp should the soil be close and elayey; but in yards, open areas, \&c., it may be laid on the ground, bedded in sand, and jointed with mortar or cement. Stone-paved fioors should be formed on briek arehes, or on a timber toor prepared for the purpose; the latter, however, is a very bad mode of sapporting paving, as the impressiou derived from the presence of the stone is, that the floor is ineombustible; but if it be bedded on combustible material, the danger to buman life in the event of fire is greater than if the stone paving did not exist at all. It is worked, eut, and set more or less expensively, according to cireumstaneea. A curb is a range or course of thieker and stronger stone to bound a pavenent, and is either flush with the paving showing as a step on its outer edge, or is raised above it to reeeive a balustrade, and shows on the outer side as a blocking course ; in the latter situation it is generally joggled and plugged in the joints. The term atep or ateps alone is usnally understood to mean external ateps, whether arranged in long or shurt flights, or the aingle atep in a doorway into whieh the door-frame is tenoned. A atćp shonld have a plain horizontal bed, and a very alightly weathered tread or upper surface,--the front or riser worked plain and. pertical, or with a moulded nosing, and the back sunk with a joggle or bird's-mouth joint to receive the step or landing above or behind it. Steps for areas or back courts are often made of 2 or $2 \frac{1}{5}$ in. stone for the tread, the riser being formed of a $4 \frac{1}{2}$ or 5 in. stone, both tailed into a wall at one or both ends. This is mueb lighter in effect. Slate is sometimes used for the treads.

Stairs are but a flight or combination of steps used internally, and the general prineiple of designing staircases, as regards the rise and tread of steps, setting out enrves, cortails, landings, dc., are given'in the part treating of joinery. The ehief difference between these and other staireases eonsists in the fising, the one being framed with wooden strings, while the other have no strings, but are supported entirely by the walls. If there be a wail at each end, they are simply built in at the time the work goes up; but if they are supported at one end only; they are ealled geometrical stairs, and depend entirely on their being aecurely wedged into the wall; on which and on the support each derives at one edge from the step below, they wholly rely. If they are square in seetion, they are ealled nolid steps; but as the under side or soffit, then, is irregular, it is usual to make the steps of somewhat a triangular diape, so as to present a contimed soffit-. In this ease they are called arris, or feather-edge stcps. Care should be taken that there are no sudden or irregular changes in the curves. These may be easily avoided by the metiod shown in the portion relating to joinery for the easing of the curves and ramps in bandrails.
In bouses built of stone the flues are namally formed in brickwork. The chimney-picees eonsist of plain jambs, or boxings, or other vertical sides more or less decorated and moulded, and of the arehitrave or transverse covering or mantel, fig. 8, Flate XXI, with its shelf or cornice. The parts of a chimney-piece are generally put together rith an adhesive plaster or cement, and affired to the wall or chimney-breast behind with cramps, holdfasts.
and plugs. The material of which chimney-pleees, if not of wood, are composed, varies from the coarsest stone to the finest marble; and the labour on them varies to a still greater extent.
Masonry to reeeive architectural decorations is generally Decorativo worked into the walls as they are carried up; but as they masorry, are seldom homogeneous either in matter or construction, the result is wostly the eonverse of what it purports to be, for the work is more frequently weakened than strengthened by the deeorative masonry. Stones of whieh colomns are Columne is be composed, whether eaeh column is to be of one stone or more, are generally roughly boasted out before they are set, and are finished afterwards to traversing moulds and templets with a plumb-rule, whose sides are cut to the diminution obtained from the bottom and upper diancters. whatever it may be. Flutes are cut at the same time and in the same manner. The beds of the joints in columns should be worked with the greatest precision, so as to obtain parallel planes, that they may fit firmly and elosely together; they must not, however, be worked hollow to make a close joint externally, or the arrises will chip off. It is considered a good plan, where the columns are large, to put a piece of thin milled lead between the beds, cut cireular, and extending to within a short distance of the surface, and that the rest be filled with a fine adhesive putty, made as nearly of the colour of the stone as possible. This makes a solid bed, and protects the arrises effectually; bat it will not do so well for slight columns, beeause it narrows the bed so materially. A joggle or dowel of hard wood, slate, or eastiron let into the core might be a suffieient counteraction, and it would certainly add to the stability of a polylithie shaft. The other parts of a columnar eumposition may be sufficiently cramped and joggled together with wood and metals, aceording to the situation, thougb it may be again remarked, that neither wood nor metal should be nsed. unless it can be protected from aceess even of the atmo. sphere.
Seetions for Roman monldings are given in the part Greek and relating to joinery, but as those used in Grecian architecture Rormn are parts of conic seetions, and nut struck by complasses, ${ }^{\text {nanllimes }}$ we give a short prohlem by which they may all casily be set out. Both Ruman and Greeian munldings are shown on Plate XIII. of vol. ii.
Let an ovolo be the moulding required (fig. 21), the height of which (to the point where the moulding curres backward) is AC or BD , axd the greatest projection AB or CD ; and let CE be a tangent line, or line which the curve must touch but not cut. Produce $C A$ to F. and rake AF equal to $A C$, and $A G$ to EI. Divide GB BE each into the same number of equal parts as 5 . Draw the cooodina:cs from F and C to the respective numbers, their intersections will trace the curve. if BE be more than half the whole hoeght, the curve is on ellipse; if exactly half the height, it is a parahola; and if BE be less than half $B D$, the curve will be a hyperbola. All other miouldings can be drawn by this method, it being rerae mbered that cymas, ogees, and all refex curves, rast be divided and drawn in two
 separate portions.
The mouldings in mediæval arehitecture differ entirely Meaeral from those of other styles. They are ehiefly formed by a moulduts combination of curves stopped by right lines or worked into other curves and bollows. The monldings differ in IV. . 60

Each of the several periods of the style in Engianci, and also in the variations of the style as practised here and in each country on the Continent. We insert an outline, fig. 22. of a window jamb at Sleaford church, Lincolnshire, to fhow the forms and combination of an example during the Decorated period. A full description of those nsed in each style would exceed our limits, nor, indeed, is it a subject within the scope of this article. They are sometimes set yut with the compasses, and many often appear to have

cia. 2\%-Outline of Wiudow Jamu at Sleaford Church.
a torus, a grete bowtelle; a hollow or scotia, a casement; an ogee, a ressauate, and so on.

Wartines the moin! Ings the builder's command have been already noticed at the commencement of this section. The soft stones and marbles are easily sbaped into mouldings with the chisel sud the mallet, and are sawn and the surfaces even fiaished with a plate having a fine edge. These stones will take mouldings of minuter character than the barder stones, which have to be worked with foree, and require pointed tools to form the faces. The bardest material, granite, ggain, bas to be stmned with heavy picks to make sn inpression, so that only bold ornaments have a good effect; much money has been thrown away in details more suitable for softer materials. Good effect is obtained by the contrast of axed and polished surfaces. A designer should visit the places where buildings in granite bave been erected for a knowledge of a proper applieation of that naterial.

The earliest arches were circular and, of course, easily set out. But as the Pointed styles came in, several methods were used for describng them. Pointed arckes may be classed as-lst, lancet ; 2d, equilateral ; 3d, depressed ;

Fla. 23.-Larueet Arch.

Fla. 24.-Equidsteral Arch.
una 4 th, four-entred or Tudor. In the first the centres, as 1, 2, in fig. 23, are ontside the arch a b. At West.
minster Abbey the arches of the cboir are so acutery pointed that the distances $I a$ and $2 b$ are nearly two-thirds of the entire opening $a b$. In the nave at Yor's the poiute are withont the arch at a distance of about one-fifth the opening a b. In equilateral arches the centres are exactly on the points $a b$ in fig. 24, so that the apes c, joined to o and b, will form an equilateral triangle. The nave arche at Wells are of this descripticn, and also those at Linenlo (see vol. ii. Plate XVIII. fig. I). In later times the arches were of lower pitch, as fig. 25, and then, of course, the centres 1 and 2 were within the arch a b. At Salisbury Cathedral the distance al is one-sixth of $a b$, while in the choir at Lincoln (rol. ii., Plate XVIII., fig. 2) it is as much as two-fifthe. To describe arehes which shall be similar to one another throughout a building,

Fio. 25.-Depressed Arch. however the openings may difier, this principle must always be borne in mind. that the centres are to be always distant from the pointa $a b$ by some aliquot portion of the whole opening. This is the more important, as the lines of tracery will not fail into their proper places except the arches are set out upon sonte regular principle. If the arches are not cquilateral, seme distance from each point $a b$ should be first determined on (say one-third the opening $a b$), and after this, whatever the span of the other arches may be, one-third its own opening is to be taken from the points αb, as the centres from which to strike its curves. The only exception is that, in mediæsal buildings, the arches to the doorways are frequently somewhat flater than those of the windows. In the Tudor Forr-cen. period the arches are very frequently drawn from four tred arche, centres instead of two. As there has been great misapprebension as to four-centred arches, some persons treating them as parts of conic sections, whereas they are really parts of segments of circles, it is thought well to give two methods of describing these arches. .
First, when the width $A B$, fig. 26 , of the arch, and the aper lieight $O C$, are given, and a tangent to the upper circle as $C D$. In this case draw $A D$ perpendicular to $A B$, and set out A1 equal to AD ; drall C 3 perpendicular to CD , and make CE equal to AD or A1; join 1E and bisect the snme as shown by a perpendicular meet. ing CE Produced in 3 ; join 3 ! and produca towards F , then 1 and

8 will be the centres for half the arch; and, transferring the printa across, 2 and 4 will be the centres for the other half. In the second case, when the width $A B$ and the bicight $O C$, and the centres of the emall circles 1, 2, are given. Make AD equal to A1, join CI) (which will be a tangent to the upper curve), draw e3 at right anglen
therio, make CE equal to $A i$, jom: $1=$, bsect the same, and proceed 23 before. 'The points FG, as has betore beed explanced. are the ponuts where the circles will meet each other The jounts to these arches will all radiate to ther respectire centres

Spacimens of various sorts of the tracery which adorn the mindows of the mediæval periods, and are io fact their greatest glory. are ahown in Plates XVIII., XIX., and XI. of vol th The designs for tracery are almost infinite and the various methods of setting them out would Gili is rolume. But although they display such angenury and fancy that one would thiok the design to be quite arhutrary, it will be found that they are sll, or very nearly sil, set out on the principle of geometncal intersections. AD example will show the principles on which the medueval arcbitects proceeded to describe the tracery, and also the me:hod of fioding the joints of the vanous preces of atone.
'eis ab (fig. 27) be the opeming of the arch; as there are to be two mulluoss, divide the ssme anto three equal parts, as a $c, c d, d b$; then determine the points from which to strke the srch. In this instance, for the sake of simplicity, we make it equilsteral (as in fig. 24), a and b then sre the centres for stnkung the main

Fio 27.-Construction of Window Tracery.
erch acg. bf g. and the height og se that of an equilstersl trisogle. Produce the springing liof. snd the same opeaing of the compasses through c and d will gree the proncipal inner branches of the tracery $c e, d f$ From the centre o, whth sn opening extending to the middle of the lights $a c, d b$, strike a acmacircle; rause perpendiculsry from a sod c to 1 and 2 ; draw a line through 1 and 2 ; on thas and the springing line will be found the centres of the lowcr okees: bisect the part of $g o$ cut off by 12 in h, which is in fact the same thang as dividing the whole haght og unto three; divide $h g$ into three psrts, at 3 end 4 ; through 3 draw a bonzon. ta! line, and set of from 3 distances one-thind of the mith od or draw the perpeodicular lines as showa, which is better; theo 5 and 6 will be the centres of the upper quatre-foil. From the line 12, on the same perpendicular as last, set dowa similar pouts, as st 7 These will be the centres for the lower subdimion as shown. Next draw ehfand subdivide by amilar perpendiculars, and where the lines intersect, as at 8 , will be the ceatres for the upper subdivisions. The lines thus drswn will form s apecies of skeleton diagram, as showa on the right side of fig. 27, which is called the clement of the tracery. and is in fact the centra line of the mallion, as shown by a, fig. 28. On each side of this, using alwsye the same centres for the same branches, draw lines, showing the face (or whst the Forkmed call the nase) of the mallion, and answering to $b c$; and then others answering to the sides of the mullion, as $d e$ Any other monddings apon their eides or faces may be drawn in like manner. Fut in the cusping as shown,
 and the tracery is complete. The practical Fio. 28.-Mallion. stone-mason will take care never to make a joint where there is an angle of any sort, as the point of s casp. f, pll cases the jorsts must tend to the centres of the circles from which they are otruck, and where the lines branch of in two direc. Hoos, the joints must not be in one line, bat mast tend in two, or '4s many directions as there are branches, and each to the centre of
such respertive branch. When the lines are perpendiculsr, as at c and d, and at the jount below h, the joints are forzontal. A close inspection of fig 27, where they are cerefully drawn, mall fully elucidate the matter The elaborate west window at York Cathedral (see Plate XVIII. of vol u.) ts entirely get out on this principle, and ao is the still more remarkable instance, the eastern mudow at Carlisie, which is compesed of 86 pieces of stone, and the desigo for which is drawin from 263 centres.

All the upper construction of windors and doors, and of sisle arches, should be protected from superncumbent pressure by strong reliering arches sbore the labels, as shown by the dark tiats 10 fig. 27 , which shoold be worked 10 with the ordinary masonry of the walls, and so set that the weight sbore should out press on the farr work, in which case the joiots of the tracery, \&c., will sometimes Aush or break out.

In medixral raults the cruwas a $b, c d$, are not level, Medtaval but all have a sirght curve or epring, as shown in fig. 29, raulting. and the filling-10 between them siso is slightly curved, so as to partake in some degree of the character of the dome as well as of the groined arch; and for the most part the ribs in early vaulting are not true segments of ellipses, but approximations drawn by the compasses. The

Fic. 29 - Medirval Vaultiog. triumph of mediæral stone-masonry, however, is that spècies of groun known as fan-vaulting. It is unlike that of any other age or time. The roofs of King's College Coapel' at Cambridge and of Henry VIL's Chapel at Westminster are eminent and late examples. The earliest are supposed to be 10 the cloisters of Gloucester Cathedral. It is impossible in our limited space to give demonstrations of them, and we mast refer our readers to the admarable treatise on the aubject by Professor Willis, published in the first volume of the Transactions of the Rogal Iostitute of British Architects. The filling-in between the ribs of medieral grons is generally of clunch, or of some soft abono, over which a layer of concrete is sometimes placed in each manner as to bind all together and to resist the thrust.

The bold and beautiful termination to medizval towers, Spirce. which we call a spire, and the French call fieche, is another proof ot the skill of the medixval masons. These are generally octagonal, and rise partly from the wall of the tower and partly from arches thrown angle-wise from wall to wall inside, to cut off the corners, as it wers, and sfiord a epringing to the spire. The wonder of these constructiona is their extreme lightaese sad thinness. The top of the epire at Salisbury is 411 feet from the ground, of which the tower takes up 207 feet, leaving, of course, 204 feet for the beight of the apire itself; this is only 9 inches thick at the bottom, diminishing to 7 inches, or on an average ouly about the 300 th part of its height. It has been attempted to ahow mathematically that the joints of a apire would be stronger if formed at right angles to its face, but they would then slope inwards sod bold the wet, which in audden frosts would do most senous mjury; practically, therefore, it is found best to lay the courses on a level bed. They should, however, be frequedtly doweled and cramped together, bat not with metal, for the extreme thinness of the stone would soon cause it to rust and break ont the stone.

The principal poblications on masonry are as follows :-

English.-Moxon, Mechanick Exercises, "to, 1677-93, 1700 : Bstiy Langley, Ancient Masonry, fol., 1738 ; Nicholson, Practical Builder, 4to, 1823, \&c.. ; Practical Treatise on Wasonry, 8vo, 1828 ;

Guide to hailway Masonry, 8vo, 1839-46; and Practual Masonry, Bricklaying, \&c., 4tg, 1830; Dobson, Rudimentary Treatise on Masonry, 1849, 1856 - Robson, Masons, Brichlayers", and Decorators' Guide, 4to, 18 Gz .
Forcign.-De l'Orme, Nonvelles inventions pour bien bastir, tec, foL, 1501 ; Jousse de la Flèche, Secretset Archtecture, Fol., 1612 ; Bosse, La Pratique du trait pour la Coupe des Pictres, fol., 1643 ; Derrand, Des Traits et Coupe des Voutes, fol, 1643 ; Des la Rue, Traté de le Coupe des Ficrrcs, fol., 1728; Frézier, Traite de Stercotomie, 4to, 1737 ; and Elements de Stérétomie, 1759 ; Simonin et Delagardette, Traite de la Coupe des Picrres, 4to, 1792 ; Douliot. Traite speciale dr Coupedes Pierres, 4to, 1825 ; Vorlegeblatter fur Matrer, fol., 1835 Adhemar, Traite de la Coupe des Pierres, fol., 1836-40: Normand, Épures d'Escaliers en Pierre, 4 to, 1838 ; Le Roy, Traitide Geometrie descriptive, 4 to, 1850 ; Claudel et Laroque, Maçonnerie Pratique, 8 vo , no date; the article Maconnerie in the various Encyclopedics, and the general treatise by Rondelet, L'Art de bien batir, with supplement by Blouet, fol., 1842-46.

SAWYER-WORK.

The labour of the sawyer is applied to the division of large pieces of timber or logs into forms and sizes to suit the parposes of the earpenter and joiner. His working-place is called a saw-pit, and his almost only important tool a pit-saw. A eruss-cut saw, ares, dogs, files, compasses, lines, lamp-blaek, black-lesd, chalk, and a rule, are all accessorios which may be considered necessary to bim.
The facility with which sawing whole timber is now done by the aid of the upright saw-frame, and smaller timber by the circular-saw bencl, has in large factories and workshops caused the saw-pits to be out of date; timber after it has beon ent at the mills can be again rednced into sizes and scantlings it a rapid rate, and with great exactitude and little labour. In some comintry parts, however, the suw-pit is still used. Unlike most other artificers, the sawyer can do absolutely nothing alone; sawyers are therefore alwnys in pairs,- - one of the two standing on the work, and the other in the pit under it. The log or baulk of timber being esrefully and firmly fixed on the pit, and lined for the ents which are to be made in it, the top-man standing on it , and the pit-man below or off from its end, a cut is commenced, the former bolding the saw with his two hands by the handle above, and the other in tho same manner by the box handle below. The attention of the tup-rman is directed to keeping the saw in the direction of and ont of winding with the line to be eut upon, and that of the pit-man to cut down in a truly vertical line. The saw being eorrectly entered, very little more is required than steadiness of hand and cye in keeping it correctly on throughout the whole length. In the operutions of the carpenter and joiner much depends on the manner in which the sawyers have perforned their part. The best work on the part of the carpenter eannot retrieve the radieal defects in his materials from bad sawiag; und although tbo joiner need not allow his work to suficr, bad sawing causes him grent less ni wood ard immense ndditional and otherwise unnecessary labour. Plaulks or heords, and seanilings, on euming irum the gawpii, shavid bo as streight and true in ciery farticular, execpt mere smoothuess of surface, as of they had been triod upon the joiner's beach; and gool worknem netually produce then so. Sav-milis, too, by the trout and heany with which they operate, show the saverer whet may lis effected; for though ho can hardly hope to equal their oficet, he may scek to approaci it.

Carpentry.

Carpentry or esrpenter's work has been divided into threo principal hearis, manely, descriphive, constructice, and mechanical. The first shows tho lines or methods for forming evocy a.eccies of woik by the rules of geometry; the
second comprises the practice of redueing the timber into particular forms, and joining the forms so produced so as to make a cumplete whole according to the intention or design; and the third displays the relative strength of the timbers cond the strains to which they are subjected by their disposition. Here, vie havo merely to describe the practical details of carpenters work in the operations of building. The carpenter works in wood, which he receises from the sawyer in beams, scantlings, and planks or boards, which he ents and combines into bond-timbers, wall-plates, lloors, and roois. He is distingnished from the joiner by his operations being directed to the mere carcass of a building -to things which have reference to structure only. Almost everything the carpenter does in and to an edifice is ahsolntely necessary to its stability and efficiency, whereas the joiner does not begin his operations until the earcass is complete; and every article of joiners' work might at any time be removed from a building without undermining it or affecting itg most important qualities. Certainly, in the practice of building, a few things do occur regarding which it is diffecult to determine to whose immediate province they belong; but the distinction is sufficiently broad for general purposes. The earpenter, with the bricklayer or mason and some of the minor artificers, constructs the frame or hull ; and the joiner, with the plasterer and others, decorates and rigs the vessel. On the former the actual. existence of the ship depends, and on the latter depends her fitness for use.

The carpenter frames or cumbines separate pieces of timber by scarfing, notehing, eogging, tenoning, pinning, and redging. The tools he uses are the rule, the axe, the Toole adze, the saw, the mallet, hammers, cnisels, gouges, nugers, wimbles, pincers, hook-pins, a square, a bevel, a pair of compasses, and a gance, together with the level, square, and plumb-rule; besides these, planes (for making grooves, rebates, and mouldings), gimets, pincers, a sledge-hammer, a maul or bectle, wedges, and a crow-bar may be considered useful auxiliaries, though they are not absolutely necessnry to the performance of works of carpentry. Planing and other machines are used to diminish the great manual labour of working the surface of planks and boards, and of moulding, tenonirg, and wher similar operations; and so elabcrate are some of these mschines, that a four-panelled door can now be made complete in a couple of hours, which formerly was considered a good day's work for a man. Cireular-saws are employed for working up larger timbers; and for ripping $u p$ boards or scantlings of moderate thickness, they are now uscd in all workshous.

The fir timber in gencral nse is imported from Memel, Timbe Kiga, Dantzig, and Sweden. Memel timber is the most convenient for size, Riga' the best in quality, lantzig the strongest, and Swedish the toughest. Riga timber can ilways be depended upon. Red pine mny be used wherever durability and strength are objects; Qnebec yellow pine for light dry purposes. Iu selecting timber, spongy heart, porons grain, nud dead knots are to be avoided; the brightest in colour, and where the strong red grain appears to rise on the surface, are the best to be chosen. For joists nud main timbers, the best woods are from lantzig, Memel, or Riga; for naritions and minor timbers, American red wood, whieh not being strong as the Baltic timber, must be cut to a hittle larger size. For sleepers, window-sills, and some parts of a roof, oak is used; for framing, Christiania deals or battens; for panelling, Christinnia whits deal or Ameriean yellow pine; for upper thoors, Dram or Drammen and Cluristiania whites; for ground floors, Stockholin and Catle yellows; for warehouse Hoors and staircases, Archangel and Onegs planks ; for best floors, St Petersburg, Cnege, Dram, and Christiania batens. American deala
should not bo used for floors, as iney are softer; and Swedish deals are bad for framing, as they warp. For interior biashings generally, Baltie red and white woods, and the a merican red and yellow piae. are to be preferred.

We must tirse proceed to consider the means by which form to the work of the carpenter is to be secured, and the conaections by watheb the varrous stranas are excited aad communtated. The following practical renarks on variuus minem are abridged from the article by Prof. Robisou in the tormer editions of this work.

The jonnings practised in carpentry are almost infinitely various, and each bas adsantages which make it preferable in some circurastances. Many varieties are employed merely to please the eye We do nut concern uurselves with these; nor shall we consider those wbich are unly employed n connecting small wurks, and can never appear un a great scale ; yet even in some of these, the skill of the carpenter may be discovered by bis choice, tor in all cases it is wise to make every, even the smallest, part of his work as strong as the materials will admit. He will be particularly attentive to the cbauges which will necessarily happen by the shrinking of timber as it dries, will consider what dimenaions of his framiogs will be affected by this and what will not, and will then dispose the preces which are less ossential to the strength of the whole in such a manner that their tendeacy to shrink shall be in the sawe direction with the shriuking of the whole frannog. If he do utherwise, the searus will widen, and parts will be aplit asuoder. He will dispose his boardings in such a manner as to contribute to the stafiness of the whote, avoiding at the same tune the giviag them positions which will produce tateral strans on trass beams which bear great pressures, recollecting, that althuugh a single board has little toree, yet many unted have a great deal, and may frequeatly pertorm the office of vary powerful struts.

Our hats confioe us to the jomings which are most easential for connecting the parts of a sitigle phece ot a frame (when it cannot be formed of one bearm, enther for want of the necessary thackness or length), and the joums fur connecting the different andes of a trussed frame

Much ingenatty bas been testowed on the manner of bulding up a great beam of nauy thickuesses, and many singular methods are pracused, but when we consider the mauner th which the cobessun ut the Iibres performs ita office, we see chat the simplest are tormed on the same principles as the most rebined, and they are less apt to induce false notions of the strength of the assemblage Thus, werc it required to buld up a beam for a great lever or a girder, so that it may act nearly as a bean of the satue suze of one log. It maty enther be done by platu joggling, as in Plate XXIJ. hig 1. A, or by scarding, as in B or C. If it is to act as a lever, having tbe gudgeon on the lower side at C, we believe that most artists will preter the form B and C. We may trequently gan a considerable accession of strength by this builhugup of a beam, espectally if the part which is stretched by the strain be of oak, and the uther part be fir. Fir being so much superior to oak as a pullar, and oak so much preierable as a the, this construction seems to unite both advantages. But much better methods of making powerful levera, girders, sc., are obtaned by truasing. Observe that the efficacy of bothinethods depends cnturcly on the difficulty of causing the prece between the cruss jomns to slide along the timber to which it adheres. Thereiore, if this be moderate, it 19 wrong to make the notches decp, for as soon as they are so deep that therr ends have a force suffictent to push the slice along the line of junction, nothing is gained by making them deeper, and this requires a greater expenditure of timber.

Scarfings of beams are frequently made oblique, as in Plate XXII. fig. 2; but thia aeems a bad practice. It
begins to gield at a poiut where the mood is crippled and spliatered off, or at least brused out a little. As the
 the soldd parts to rise a little upwards, and gives them some teadency, nut only to pust thear antagousts along the base, but even to tear them up a little For sinular reasons we disapprove of the tavounite practice of many artists to make the angles of their scarfings acute, as in tig 3. This often causes the two preces to tear eact uther up. The abutments should always be perpendicular to the directions of the pressures This las is also to be extended to the abutments ut different pieces of a 1 rame. and the artist must even attend to the shrinkiog of the timbers by drying. When two umbers abut obliquety, the joint should be most full at the obtuse angle of the end, because, by drying, that angle graws more ubtuse, and the heam would then be 10 danger of aplinterng off at the acute angle.

It is evident that the uncest work is indtspensably Wedgus. necessary in building up a bean. The parts must abut wh each other completely, and the swallest p ty ur vold takes away the whole efficacy. It is usual tu give the abuthing joints a small taper to one side of the beam, so that they may require muderate blows of a mand to force chen in, and the joots may be perfectly cluse when the external surfaces are even un each side of the beam. Put we must nut exceed in the least degree, for a very taper wedge bas great force, and if the proces be draven together by sery heavy blows, the whole is left in a state of violent stran. and the abutments are perhaps ready to splinter off by a small addition of pressare. It is not unusual to leave some abutsuents upen enough to admit a thin wedge teaching through the beam. Nor ss thas a bad practice, if the wedge is of material which is nut compressed by the driving or the stran ul service lron wauld be preterable fo- this purpose, and for the joggles, werc it not that, by its too great hardness, it crapples the fibres of number to some distabce. In consequence of this it often bappens. that in beame which are sulgected to deaultory and sidden strains (as in the levers of rectprocating engineto), tito juggles or wedges widen the bules, and work themselven loose; therefore skilful engineers never admat them, atus indced admit as few bults is pussible, for the same reason but when resistiug a steady ur dead pull. they are not so mproper, and are freģuently used

Beams are built up, not only to ancrease thear dimensions: in the direction of the strain (which we bave butherrt called their deptb), but also to merease thear breadth, or the dimensions perpendicular to the strain. Sumetimes the breadth of girder is doubled, if it is thought two weal for th load, aod when the thickness of the Hoornog musi nut be ancreased.

The mast of a great ship of war must be made biggry savean an athwartship, as well as fore and aft. This is one of ibe uprighes nicest problems of the art, and professional men are by no means agreed in their opmons in regard to it We shall content ourselves here with exhibiting the differemt methods. The most ubvious and natural method 19 that shown in Plate XXIS. fig. 4. It is plain that (undependent of the connection of cross bolts, whach are lased in then all when the beams are equare) the picce C cannot bend in the direction of the plane of the figure without bending the prece D along with it. This method is much used in the French navy, but it is undoubtedly muperfect. Fig. 5 exhibits another method. The two halves of the beam are tabled into each other in the same manner aa in fig. l. It is plain that this will nut be affected by any unequal swelling or shrinking, vecause thas is insensible in tho direction of the fibres; but when bent in the direction $a b$, the beam for. 4 is weaker than bent in the direction
ef. Each half of fig. 4 has, in every part of its length, a thickness greater than half the thickness of the beam. It is the contrary in the alternate portions of the halves of fig. 5. When onv of them is bent in the direction $A B$, it is plein that it drags the other with it by means of the cress butments of its tables, and there can be no longitudinal sliding. But unless the work is accurately executed, aed cach hollow completely filled up by the table of the other piece, there will be a lateral elide along the cross joints sufficient to compensate for the curvature; and this will binder the one from compressing or stretching the other in conformity to this currature.

The imperfection of this method is so obvious that it has seldom been practised; but it has been combined with the other, as is represented in fig. 6 , where the beams are divided along the middle, and. the tables in each half are alternate, and altermate also with the tables of the otber half. Thus 1, 3, 4 are prominent, and 5, 2, 6 are depressed. This construction evidently puts a step to both slides, and obliges every part of both pieces to move together. $a^{a b}$ and $c d$ show sections of the built-up beam corresponding to AB and CD . No more is intended in this practice by any intelligent artist, than the causing the two pieces to act together in all their parts, altheugh the strains may be unequally distributed on them. Thus, in a built-np girder, the binding joists are frequently mortised into very dilferent parts of the two sides. But many scem to aim at making the beam stronger than if it were of one piece; and this inconsiderate project bas given rise to many whimsical modes of tabling and scarfing.

The practice in the British deekyards is somewhat different from any of these methode. The pieces are tabled as in fig. 6, but the takles are nat thin parallelopipeds, but thin prisms. The two outward joints or visible seams are straight lines, and the table 1 rises gradually to its greatest thickness in the axis. In like manner, the hollow 5 , fer receiving the opposite table, sinks gradually from the edge to its greatest depth in the axis. Plate XXII., fig. 7, No. 1, represente a section of a round piece of timber built up in this way, where the full line EF, GH is the seetion correspending to AB of fig. 6 , and the dottcd line EG, FH is the section corresponding to CD. This construction, by making the external seam straight, leaves no lodgment for water, and looks much fairer to the eye; but it appears to us that it dees net give so firm a hold when the mast is bent in the direction EH. Tho exterier parta are most êrretched and most compressed by this bending; but there is hardly any abutment in the exterior parts of these tables. In the very axis, where the abutment is the firmest. there is littlo or no diffcrence of extension and compression. But this construction has an advantage, which, we magine, much more than cempensates for these imperfections, at least in the case of a round mast, it will draw together by hooping incomparably better than any of the others.

Jogrges of clm are sometimes used in the middle of the large tables of masts; and when sunk into the firm wood near the surface, they must contribute much to the strength. But it is very necessary to employ wood not much harder than tho pinc, othervizo at will soon colarge its bed and become loese, for the timber of these large trunks is very geft.

The most general reason for precing a beam is to ihcrease its length. This is frequently riecessary, in order to procuro tie-beams for very wido roofs. Two pieces must bo scarfed tegether. Numberless are the modes of doing this, and alnost every master carpenter has his fovourite nostrum Some of thom are very ingenious; but here, as in other cases, the ruost simple are commonly the stiongcet. Wo do not imegine that any. the most
ingenious, is equally strong with a tie consisting of twõ pieces of the came scantling laid over each other for a certain leng ${ }^{2} h$, and firmly bolted together. We acknowledge that this will appear an artless and clumsy tie-beam, but it will be stronger than any that is more artificially made up of the same thickness of timber. The next simplest and most obvions scarfing is that represented in Plate XXII., fig. 8, Nos. 1 and 2. If considered merely as two preces of weod joined, it is plain that, as a tie, it has but half the strength of an entire piece, suppesing that the belts (which are the only connections) ars fast in their holes. No. 2 requires a bolt in the middle of the scarf to give it thatstrength, and in every other part is weaker on one side or the other. If the bolts were sufficiently numerous and sufficiently firm, so as to produce a great degree of adhesion or of friction between the parts, this joint might be made almest as strong as the entire beam, since there is nothing to prevent the co-operation of each side with the other throughout its extent; but much of the strength rould be lost if the bolts became loose, eren in an inconsiderable degree. But the belts are very apt to bend by the violent strain, and require to be strengthened by uniting their ends by iron plates,-in which case it is no longer a wooden tie. The form of No. 1 is better adapted to the office of a pillar than No. 2, especially if its ends be formed in the manner shown in the elevation No. 3. By the sally given to the ends, the scarf resists an effort to bend it in that direction. Besides, the form of No. 2 is unsuitable for a post, beeause the pieces by sliding on each other by the pressure are apt to splinter off the tengue which cenfines their extremity. Figs. 9 and 10 exhibit the most approved form of a scarf, whether for a tie or for a post. The key represented in the middle is not essentially necessary, the two preces might simply meet square there. This form, without a key, needs no bolts (although they strengthen it greatly), but, if worked very true and close, and with square abutments, will hold together, and will resist bending in any direction. But the key is a very great improvement, and will foree the parts together with perfect tightness, but it must not be over driven. The form of fig. 9 is by far the best (it is somerimes said to be tabulated, that is, to render the joints as close as possible, and the juncture more independent of any bolts which might be placed similarly to these in fig. 8, No. 1),-because the trianole of fig. 10 is much more readily splintered of by the strain or by the key than the square mood of fig. 9. It is far preferable for a poct, for the reason given in speaking of fig. 8, No. 1 and No. 2. Both may be formed with a sally at the ends equal to the breadth of the key. In this shape fig. 9 is well suited for joining the parts oi the long corner posts of spires and other wooden towers. Fig. 9, No. 2 differs from No. 1 only by baviag three keys, the principle and the lengitudinal strength are the same. The long searf of No 2, tightencd by the three kevs, enables it to resist bending much better.

None of these scarfed tie-beams can bave more than one third of the strength of an entire piece, unless with the assistance of iron plates; for if the key be made thinner than one-third, it has less than one-third of the fibres to pull by We are confident, therefore, that when the heads of the belts are connected by plates, the simple form of fig. 8, No. 1, is etronger than those moro ingenious scarfings. It may be etreugthened against lateral bending by a little tonguc, or by a sally, but cannot have both.

The strengest of all methods of piecing a tie-beam rould Fishing be to set the parts end to cnd, and grasp them betreen beam. other picces on each side, as in Plate XXIII., fig. 1. This the ship-carpenter calla fishing e beam; it is a frequent prac tice for occasional repairs. Perronet used it for the tie-beams or stretchers by which be connected ths opposite feet of
'a centre, which wàs yielding tō its load, and had pushed aside one of the piers above 4 inches

Where the beams stand square with each other, and the strains are square with the beams and in the plane of the irame, the mortise and tenon is the most perfect junction. A pin is generally put through both in order to keep the sieces united, in opposition to any force which tends to part hem. Every carpenter knows how to bore the bole for his pin, so that it shall draw the tenon tight into the mortise, and cause the shoulder to butt close, and make neat work; and he knows the risk of tearing out the bit of the tenon beyond the pin, if he draw it too much. We may just observe, that square boles aod pins are much preferable to round ones for this purpose, bringing more of the wood into action, with less tendency to split it.

Ship-carpenters have an ingenious method of making long wooden bolts, not passing cumpletely through, which take a very fast hold, though not nicely fitted to their holes, which they must not be, lest they ahould be crippled in driving. They call it fox-tail wedging. They stick into the point of the bolt T, Plate XXIII., fig 2, thin wedges of hard wood, ao as to project a proper distance; when these reach the bottom of the hole by driving the bolt. they eplit the end of it, and aqueeze it bard to the side. This may be practised with advantage in carpentry. If the ends of the mortise are widened inwards, and a thin wedge be put into the end of the tenon, it will bave the same effeet, and make the joint equal to a dove-tail ; but this risks the aplitting the piece beyond the shoulder of the tenon, which would be unsightly, and may be avoided by two very thin wedges a and c being atruck in near its angles, projecting equally; as a very amall distance within these are to be placed two thorter ones b, d, and more within these if necessary. In driving this tenon, the redges a and c will take first, and split off a thin slice, which will easily bend without breaking. The wedges b, d will act uext, and have a aimilar effect, and the others in succession. The thickness of oll the wedges taken together must be equal to the enlargement of the mortise towards the bottom.

When the atrain is transverse to the plane of the two beams, great care must be taken by the artist in placing his mortise. A mortise in a girder for receiving the tenon of a binding-joist of a Hoor should be as near the upper side as possible, because the girder becomes concave on that side by the strain. But as this exposcs the tenon of the bind-ing-juiat to the riak of being torn off, we are obliged to mortise further down. The form in Plate XXIII., fig. 3, generally given to this joint is extremely judicious. The aloping part a bgives a very firm support to the additional bearing $e d$, without much weakening of the girder. This form ahould be copied in every case where the strain has a similar direction

The joint that most of all demands the careful attention of the artist is that which connects the ends of beama, one of which pushes the other vary obliquely, putting it into-a state of extension. The most familiar instance of this is the foot of a rafter pressing on the tic-bean, and thercby drawing it away from the other wall. When the direction is very oblique (in which case the extending strain is the greatest), it is dificult to give the foot of the rafter such a bold of the tie-beam as to bring many of its fibres into the proper action. There would be little difficulty if we could allow the end of the tie-beam to project to a emall distance beyond the foot of the rafter; but, indeed. the dimeosions which are given to tiebeams for other reasons are always sufficient to give enough of abutment when judiciously emploged. Unfortunately this joint is very liable to fail from the effects of the weather. It is much exposed, and frequently perishes by rot, or becomes so soft and friable that a very small force is sufficicot either
ior puthrg tine filamears out or the :e-beam, or for crushing them together. We are therefore obliged to secure it with particular attention, and to a vail ourselves of every circusastance of constraction.

One is naturally disposed to give the rafter a deep bold by a long tenon, out it has been frequently cbserved in old roofs that such teoons break off. Frequently they are observed to tear up the wood that is above them, and push their way through the end of the tie-beam. This in all probability arises from the first sagging of the roof, Iy the compression of the rafters and of the head of the bingpost. The head of the rafter descends, and the angle with the tie beam is diminished by the rafter revolving round its step in the tie-beam. By this motion the heel or inter angle of the rafter becomes a fulcrum to a very long sud powerful lever much loaded. The tenon is the other arm, very short; and being still fresh, it is therefore very porerful. It therefore forces up the wood that is above it, tearing it out from between the cheeks of the mortise, and then pushes it along. Carpenters have therefore given up long tenons, and give to the toe of the tenon a abape which abuts firmly, in the direction of the thrust. on the solid bottom of the mortise, which is well supported on the under side by the wall-plate. This form, represented in Plate XXIII., fig. 4, has no tendency to tear up the end of the mortise. The tenon has a small portion ab cut porpendicular to the surface of the tie-beam. and the rest $b c$ is perpendicular to the rafter.
But if the tenon is not aufficiently strong and it is not so strong as the rafter, which is thought not to be stronger than is neecssary), it will be crushed, and then the rafter will alide out along the surface of the beam. It is therefore necessary to call in the assistance of the whole rafter. It is in this distribution of the strain among the varicus abutting parts that the varieties of joints and their merits chicfly consist. We cau ouly mention a few here that have met with most general approval

The aim in fig. 5, Plate XXIII.. is to make the abutments exactly perpendicular to the thrusts. The action is the same as against the joggle on the bead or foot of a king-post. This is a very effectual joint; it is not, however, much practised. It is said that the sloping seam at the shouldcr lodges water; but the great on seems to be a gecret notion that it weakens the tie- eam. Fig 6 exbibits a form that is more general, but certainly worse. The shoulder-joint is sometimes formed like the dottcd line abedcfg of fig. 6. This is much more agreeable to the true principle, and would be a very perfect method, were it not that the intervals $b d$ and $d f$ are so sbort that the little wooden triangles b e d, d c f will be easily pushed off their bases $b d, d f$. Fig. 7, No. 1, seems to bave the most general approbation, but we fail to perceive its peculiar nerits. It is the joint recommended by Price, and copied into books of carpentry as the true joint for a rafter foot. The visible shoulder.joint is flush with the upper surface of the tie-beam. The angle of the tenou at the tie ucarly bisects the ubtuse angle formed by the rafter and the beam, and is therefore somowhat oblique to the thrust. The inner shoulder $a c$ is nearly perpendicular to $b d$. The lower angle of the tenon is cut off Lorizontally as at $e d$. Fig. 8 is a section of the beam and rafter foot, showing the different shoulders. Fig. 7, No. 2, is a simpler, and in our opinior a preferable joint. We obscrve it practiscd by the most cminent carpenters for all oblique thrusts; but it surely employs less of the cohesion of the tie-beam than might be used wilhona weakening it, at least when it is supported on the other side by the wall-plate! Fig. 7, No. 3, is also much practised by the best carpenters. Fig. 9, No. 1, is proposed by 3Ir Nicholson as preferable to fig. 7. No. 3,
because the abutment of the inner part is better supported. This is certainly the ease, but it supposes the whole rafter to go to the bottom of the socket, and the bean to be thicker than the rafter. Some may think that this will weaken the beam too much, when it is no broader than the rafter is thick; in which ease they think that it requires a deeper socket than Nicholsun has given it. Perhaps the advantages of Nicliolson's construction may be had by a joint like fig. 9, No. 2.

Whatever is the form of these butting joints, great care should be taken that all parts bear alike; and the artust will attend to the magnitude of the different surfaces. In the general compression the greater surfaces will be less compressed, and the smaller will therefore change most. When all has settled, every part should be equally close. Because great logs are moved with diffeculty, it is very troublesome to try the joint frequently to see how the parts fit; therefore we must expect less aceuracy in the interior parts. This should make us prefer those joints whose efficacy depends chiefly on the visible joint. It appears from all that has been eaid on this subject, that a very small part of the cohesion of the tie-beam is sufficient for withstanding the horizontal thrust of a roof, even though very low pitehed. If, therefore, no other nse is made of the tie-beam, one much slenderer may be used, and biocks may be firmly fixed to the ends, on which the safters might abut, as they do on the joggles on the head and foot of a king-post. A tie-beam may have to carry a floor or ceiling (sometimes the workshops and store-rooms of a theatre), and therefore requires a great scantling, but frequently beams have little to do, and contain an unneceeasry quantity of timber. It is therefore of importance to asceriain the most perfect manner of executing such a joint, and we have directed the attention to the principles that are really concerned in the effect. In all hazardous cases the carpenter colls in the assistance of iron straps; and they are frequently necessary, even in roofs, notwithstanding this superabundant atrength of the tie-beam. But this is gemerally owing to bad construction of the wooden joint, or to the failkre of it by time.

There needs but little to be said of the joints at a joggle worked out of aolid timber; they are not near so diffcult as the last. When the size of a \log will allow the joggle to receive the whole breadth of the abutting brace, it ought certainly to be made with a square shoulder; or, which is atill bettcr, an arch of a circle having the other end of the brace for its centre. Indeed, this in general rill not sensibly differ from a straight line perpendicular to the brace. By this circular form the settling of the roof makes no change in the abutment; but when there is not auffieient stuff for this, we must nooid bevel joints at the shoulders, because these almays tend to make the brace slide off. The brace in Plate XXIII., ig. 10, No 1, must not be joined as at b, but as at a, or in some equivalent manner.

When the rery oblique action of one side of a frame of earpentry does not extend, but compresses, the piece on which it abuts, there is no difficulty in the joint. Indeed a joining is unnecessary, and it is enough that the pieces abut on each other; and we have only to take care that the mutual pressure be equally borne by all the parts, and that it do not produce latcral pressurcs, which may eause one of the pieces to slide on the butting joint. A very glight mortise and tenon is sufficiont at the joggle of a king post with a rafter or straining beam. It is best, in general, to make' the butting plain, bisceting the angle formed by the sides, or else perpendicular to one of the pieces. In fig. 10, No. 2, where the straining beam ab cannat slipaway from the pressure, the joint a is preferable to b, or indeed to any uneven joint, which oever fails to
produce very unequal pressures on the different parts, by which some are crippled, others are aplintered off, \&e.

When it is neceesary to employ iron straps for strength. Plai:sz ening a joint, considerable attention is necessary that we straye.
may place them properly. The first thing to be determined is the direction of the strain. This must be resolred ioto a strain parallel to each piece, and another perpendicular to it; and then the strap which is to be made fast to any of the pieces must be so fixed that it shall resist in the direction parallel to the piece. Frequently this cannot be done; but we must come as near to it as we can. We can hardly give any general rules. Fig. 30 ehows the nature of the strap or stirrup by which the king-post carries the tie-beam. The strap that we observe most generally ill placed is that $\underset{E_{x}^{x}}{\text { en }}$ which connects the foot of the rafter with the beam. It only binds down the rafter, and does not act against its horizontal thrust. It should be placed farther back on the beam, with a bolt through it, which will allow it to tarn round. It should embrace the rafter almost horizontally near the foot, and should be notched square with the back of the rafter. It is represented in fig. 11, Plate
 XXIII. By moving round the eye-bolt, it follows the rafter, and cannot pinch and cripple it, which it always doe: in its ordinary form. We are of opinion that straps which have eye-bolts in the very angles, and allow all motion round them, are of all the most perfect. A branched gtrap, such as may at once bind the king-post and the two braces which butt on its foot, will be more serviceable if it have a joint. When a roof warps, those branched straps frequently break the tenons, by affording a fulcrum in one of their bolts. Au attentive and judicious artist will conside: how the beanss will act on sueh occasions, and will avoid giving rise to these great stra:ns by levers. In the foregoing reasoning upon the direction of straps, regard has been had especially to the economizing of their immediate strength; but it may happen that the principal purpose of the strap will be answered by its pressing the raftet firmly upon the beam, and this effect may be produced by a certain deviation frum the horizontal position, with but little diminution of the strength of the strap,-a deviation which has also the advantage of allowing the strap to embrace the whole of the beam, without weakening it by driving a bolt through it. We most not, however, aud the risk of crippling the end of the beam. A skilful carpenter never employs many straps, considering them as auxiliaries foreign to his art, and subject to imperfections in workmanship which he cannot discern or amend. We must refer the reader to Nicholson's Carpenter and Joiner's Assistant fo 1 more particular account of the rarious forms of atirrups, serewed rads, and other iron-work, for carrying. tie-beams, de.

The diagrams of Plate XXIV. will illustrate the use of Forther the before-described joints on a smaller scale in the further illustra. operations of the carpenter's work.

Ordinary scarfing is the cutting aray equally from the ends, but on the opposite sides, of two pieces of timber, for the purpose of tying or connecting them lengthrise, and is done to wall-plates and bond-timber. The usual mode is by cutting about three fifths through each piece on the upper faec of the one and the under face of the other, about 6 or 8 inches from the end, as in fig. 1 , Plate XXIV., transversely. making what is technically termed a calf or kerf, and longitudinally from the end, from tro-fifths dorn on the same side. so that the picces lap together rith a sort of half dovetail. The heary supervening weight of the wall and joists renders it impossible that they should be drawn apart without tearing the fibres asunder or lifting the weight. Nevertheless
these joinue are generally spiked, and it is always required that they be made to fall in or under a pier. Notehing is either square or dovetailed ; it is used in connecting the ends of wall-plates and bond-timber at the angles, in letting j.oists down on beams or binders, purlines on principal rafters, \&c. Nos. 1, 2, 3, 4, and 5, fig. 2, show varieties of notehes applied as we have described No. l is a simple square noteh; No. 2, a dovetailed noteh. No. 3 is the rotch mosi commonly used; it is sumilar to No. l, but that the ends are allowed to run on so that the one piece grasps the other, and each-forms a cog to the other. No. 4 is an telique-angled, dovetailed noteh, and No. 5 ohows how joists are notched or let down on beams and binders, and purlines on principal rafters. A noteh is cut into tl 3 under edge of the joist or purline an inch or an inch and a half in depth, and considerably.sborter than the beam, binder, or rafter is in thickness. Notches are also cut down on the upper angles of the bearing pieces, as long as the rider is thick, as deep as the notch before described of the latter is, and so far in as to leave a thickness on its own edge equal to the length of the notch in the riding joist or purline. In the diagram one joist is indicated in its place let down in the notch, and another indicates the notch in its own edge, and leaves exposed the notches in the binder Cogging, or corking, as it is vulgarly termed, is the last-mentioned species of noteh extended on one side, and leaving a narrow tooth or eog alone in the bearing-piece fush with its upper face, No. l, fig. 3 It is used principally in tailing joists and beams on wall-plates and templets, and the cog is bere made narrower, because the end of the joist or rider coming immediately beyond the plate, that part. which forms the shoulder of the noteh wonld be hable, on being strained, to be chipped off or torn away, if it were not kept as long as possible; and it $1 s$ not of so much mportance to guard against weakening a wall-plate which is supported along its whole length, as a beam, binder, or principal rafter, which rests on distant points alone. No. 2 of the same bigure shows another mode of tailing on joists and beams by a dovetail notch, which, to distonguish it from the flat cotehes, Nos. 2 and 4, fig. 2. is called corking, or cogging also, though the operation eertainly is not cogging. This is a good mode if the timber be so well seasoned as not to be likely to shrink more; but it would be mproved by allowing the rider to take a bearing in a notch like that to No 1 before the dovetail commenced, as at No. 3, for In the ordinary mode it is weakened in a point of great importance. Whatever notches and cogs for beams and joists are required in wall-plates and templets, should be made before they are set on or in a wall; for, as they are always bedded in mortar, anything that may break the set must be avolded. A cog-hold is best obtained through the agency of a chair of cast-iron, wheh should, however, be itself cogged or joggled to a stono templet laid in the wall under it, and be capped or covered by another broad flat stone, as an inverted templet, with a joggle from the chair rinning up into it.

Tenonng implies mortising also as a matter of course. They are the names of the two operations necessary to one result, - that of producing a connection between two pieces by inserting part of the end of one into a bole of similar size cut in the side or face of the other. A tenon is formed by eutting in on each side or edge of a piece of timber, near its end, transversely, to a certain depth, or rather, leaving a certain part of the breadth or depth uncut, and then eutting in longitudinally from the ends as far from each edge as the transverse cuts have been made in depth, thas removing two square prisms and leaving a third undivided. This is the tenon. An exeavation in the side of a piece of timber, of a certain depth, in the direction of its thickness, parallel
to its edges, and bounded lengthwise by lines at right angles to them, is a mortise. Tenons and mortises are made of exactly corresponding size, and are most frequently at equal distances from one or the other side or edge of the two pieces to be conjoined; and for the most part, too. every angle formed in the process of tenoning, both internal and external, is a right angle. . Tenous are called joggles in some situations, when they are not intended to be borne upon, and their use is merely to keep the puece of timber to which they belong steadily in its place, without being liable to slight accidents from lateral pressure or violence. In eombining timbers by means of mortises and tenons, to produce as great a degree of strength as possible, it must be obvious that the object to be kept in view is to maintain the end or tenon of the ono as large and efficient as it may be, and weaker the other as little as possible in forming the mortise. For the efficiency of the mortised piece in 8 horizontal bearing, it is clear that as much of its thickness should be below the mortise as possible, as at a, fig. 4 ; for if it be put low, as at b, the supcrincumbent weight on the tenon would more readily split or rend it in the direction of the grain, as indicated; but the case is inverted with the tenoned pieces. With the mortise at a the tenon could only bave the effieacy of so much of the piece to which it belongs as there is of it above its under surface, which is a very small part of its depth; whereas with the tenon at b it would command the power of the greatest part of the depth. To guard as much as possiblo against the danger of too great a mortise and too small a tenon on one side and the other, and to obviate the difficulty arising from the efficiency of one or the other of the two pieces being affected by putting the tenon too high or too 10 w , a compound, called a tusk tenon, is used for almost all horizontal bearings of any importance, especially to joists snd binders, to trimmers, beams, girders, bressummers, dc. The bedy of the tenon in this is a little above the middle of the end, and it runs out 2, 3, or 4 inches, or more, as the case may requirc. Below it the tusk protrudes, and above it the shoulder is cut down at an obtuse angle with the horizontal line, giving the strength of the whele depth of the timber above the under tusk to the tenon, and giving it a bearing in a shallow mortise, whilst a greater depth o! the mortised piece than the tush rests on receives the body of the tenon, and so protecta its comparatively narrow margin from undue pressure. The diagram No. l, 6g. 5 , shows the tusk tenon, with the scetion of a beam iatu which it is mortised, and Nu. 2 indicates persyectively the appearance of the mortise in front. Pinning is the inser Pinding tion of nearly cylindrical preces of wood or iren through a tenon, to detain it in the mortise, or prevent it from being drawn out by any ordinary force. For this purpose the pin is inserted cither in the body, or beyond the thickness, of the mortised piece, as indicated at a, fig. 5 , or at a, fig. 6. Wedging (see b, b, No. 2, fig. 25) is the insertion of Wedgias triangular prisms, whose converging sides are under an extremely acute angle, into or beside the end of a tenon, to make it fill the mortise so completely, or bind it so tightly, that it cannot be easily withdrawn. The wedging of ten. ons also assists in restoring to the mortised piece of timber much of the strength it had lost by the excision of so much of its mass, which indeed the tenon itself does if it fil elosely in every direction; but the assistance of the wedge renders the restoration more poriect than the tenon could secure of itself, by compressing the fibres of both, longitudinally to those of the one, and transversely to these of the other, thus removing the tendency of the mortised picee to yield in any degree in the weakened part, though it eannot make up the loss in its tenacity occasioned by the scission of its fibres.

In scarfing, cogging, and notching, the shoulders are
alvays cut in with the oaw; but the check is for the most part struck out with the mallet and chisel, or adze, as may be most convenient. Tenons should be made entirely with the saw. Hortises are generally bored at the ends with an auger whose diameter equals their thickness; the interrening part is taken out with a wide chisel, cutting in the direction of the fibre ; sad the ends are squared down with a chisel whose breadth just equals tho thickness of the mortise. Wood pins must be rent to insure the equal senacity of their whole mass. Wedges are cut with the saw, but straight-grained stuff is always preferred for them.

Bend-timbers and wall-plates should be carefully notehed together at every angle and return, and ecarfed at every longitudinal joint. The scarf shown at fig. 1, Plate XXIV., is suficient; and the noteh at No. 3, fig. 2, may be preferred where notehing is required; neither pinning nor aailing, bowever, can be of great use to either the notch or the scarf. Boad-timbers are passed along and through all openings, and are not eut out until sneh. openings are to be permanently oceupied, that is, by windows with, their sash-frames, $d c$., because they assist in preventing irregular settlements, by helping to carry the weight of a heavy part slong the substruction generally, instead of allowing it to press unduly upon the part immediately under it.

It is the dnty of the carpenter to sopply the bricklayer or mason with wood bricks in sufficient quantity, and to direct him where they should be placed to receive the joiner's fittings, or the battening, which the carpenter himself may have to put up for the plasterer.
or rows ehould ce repated at intervals atot exceeding 5 or 6 feet. The struts should be cut at the euds mith exactly the same inclinetion or bevel, to fit closely. G:ust care should be taken, too, not to epiit the oiruts in nailing; but the trouble of boring with a gimlet is seted by making a slight nack or incision with a wide-set ear for each nail, of which there should not be less than tro st each end; and the nails used shonld be clasp-nails. If the etruts wero notched into the joists, as in fg. 32, it would add very materially to their effiency, but perhaps not in proportion to the additional labour it would involve. Thas strutting should be done to eingle flooring under any circumstances, as it adds materially to its firmness and indeed to its strength, by making the joists trans.

Fig. 32.-Herring bone Stru:tang. mit any stress or pressure from one to another.

The efficuency of single flooring is materially affected by the necessity which constantly occurs in practice of trumming round fire places and Alues, aud across vacuities. Trimming is a mode of supporting the end of a joist by tenoning it into a prece of timber crossing it, and called a trimper, instead of running it on or into the wall which supports the ends of the other joists generally. A trimmer requires for the most part to be carried or supported at one cr both of its eads by some of the joists, which are called irimming joists, and are necessardy made stouter than if they had to hear no more than their own share of the stress. Conmonly it is found enough to make the irim. mers and trimming jousts from half an anch to. au ineb thicker than common josts. In trimming, tusk ter ws should be used ; and the long tongue or main body of the tenon should run not less than 2 inches through, and be draw-pinned and wedged, moreover, if it do not completely fill the mortise in the direction of the length of the latter.

The principal objection, bowever, to single fooring is, that sound readily passes through, the attachment of the boards above and of the eciling below being to the same joists throughont. Another objection, and one slrady referred to, is tho necessity of making the joista so thin, not to injure the ccilinge, that they with duffenty recence the flooring brads in theur upper edges withont splitting. A partial remedy for both these disadrantages 18 found in a mode sometimes adopted of making every third or fourth joist an inch or an inch aud a half dexeer thon the intervening joists; and to these, ceiling justs are noched and nailed, or nailed alone, as shom in Plato XXIV. deg. This, by diminishng the number of founts of confac: iotween the upper and the lower surface, for tho ceilung : =... must be carefully kept from touching the shalloterto of the floor, is less apt to convey sound -an one stor: on another, and allows conveniently thin jersts to be tasc :or the ceiling without affecting there of the floor.

Double floering (seo Piate XX1Y. fig. 8, Nos. 1 an. 2 , and Plato XXV. fg. 3) consists of threc diwunct serice of joist, which are called kinding, bridging, and ceiling juists. The bnders in thi are the real support of the :loor; they ran from wall to wall, and carry the brideing joists abue and the cciling joists below them. Binders need nut be less and shonld not be much more than 6 feet apart, that $t e$, if the bridging or flooring joista are not inordinately ber: k. The bridging joists form the upier tier, and are no *) lad down on the tinders with the notch Nio. 5, Plate XNIV. fig. 2. The ceiling joists range under the binders, aud are notched and nailed as shown at No. 1, fig. 8; but the notch must be taken entirely out of the ceiling joists, for, the lower face or edge of the binder may not be wounded by any means or on any account, and, moreover, no cood would be gaincd in any other respect b; doing so. When
it is an object to save height in the depth or thickness of this apecies of floer, the ceiling joists may be tenoned into the binders, instead of being nailed to them; in this case the latter must be chase-mertised on one side, fig. $3 \stackrel{\text { en }}{ }$, for the conrenience of receiving the former when they are them-
 selves set and fixed. A chase is a long wedge-formed groeve of the breadth or thickness of

Frc. 33.-Chase Mortise. the mortise, of which it is indeed an elongation, so that the tenon at one end of the ceiling joist being inserted in the regular mortise in the binder prepared for it, that at the other end is driven along the chase up te its place in the mortise in the next binder. When ceiling joists are thus chase-mortised, their lower-or under faces are allowed to come a little below the under face of the binders, and.the space across is firred down by slips not wider than the ceiling joists are thick. No. 2, fig. 8, shows a transverse compartment, or bay, of a floor in this manner; but it is net so good a one as the preceding; for, besides the weakening of the binders, by cutting eo many mortises and chases in them, it is almost impossible to give the ceiling floor the degree of frmness and consistency it possesses in the other way, besides requiring the firring down on the binders. The same spaco would be better gained by catting the bridging joists eo much lower down; as they may, with the sort of netch indicated above, be let down fully half their depth without great injury to either bridging joists or binder, for they can almays be made to fit tightly or firmly, and very little more labour is invelved in notching deeply than slightly.
Flooring is said to be framed when girdezs are used together with binding, bridging, and ceiling jeists (see Plate XXIV. fig. $9,{ }^{\circ} \mathrm{Nos.1} 1$ and $\cdot 2$, and Pl te XXV. fig. 4). Girders are large beams, in one or more pieces, sccording to the length required, and the size and etrength of which timber can be procured. They are intended for longer bearings than mere binders may be trusted at, and may be etrengthened by forming a built beam. The principle of constructing girders of any depth, says Tredgold, in his Carpentry, is the same as thst of building beams, and when properly conducted they are as strong as any truss can be made of the same depth. The most simple methed consists in bolting two pieces together, with keys between to prevent the parts sliding upon each other,-the upper one of hard compact wood, the lower of teugh etraight grained wood. The joints ahould be at or near the middlc of the depth; the thickness of all the keys added together ehould be greater than one-third mere than the whole depth of the girder; and if they be made of hard wood, the breadth sheuld be sbout twice the thickness. They may be held together by bolts. Fig. 34 is a good form held by bsads, and, if the upper timber be cut so as to be amaller towards the ends, would admit of theso heops being driven on till perfectly

Fics. 34, 35.-Girders
tight. In fig. 35 the parts are tabled or indented together instead of being keyed, and a king-bolt is added to tighten the jointa: Girders may be further strengthened to almost any extent by trussing; but to be efficient, the height of the truss must always be greater than the depth of the beam itself, and the atrength is increased by extending that height as the space or bearing increases. A truss is indeed a wooden arch, whose hateral thrust will of course be
grester the smaller the angle scbtended by it, and wice versa. It has been a commonly received opinion, that a truss less than the depth of a girder adds materially to its strength; but experiments have proved that very littlo advantage is gained by such a one, even when esecuted in the best manner, and that, badly executed, the beam or girder is weaker with the truss than without it. In seme situations the flooring joists can be raised te a certain height to allow of the head of the truss, which is usually made oi iron, being placed at a sufficient height to be truly

Fio. 36.-Trussed Girder.
efficient. Such is the trussed girder shown in fig. 36, intended for a great length. A common mode of strengthening a beam or bressummer, is to cut the timber in hale longitudinslly, whereby any defects in the interior can be seen ; then to reverse the pieces, end for end, snd bolt them well together. Some additional strength is obtained by putting between the timbers a plate of wrought iron about the depth of the beam and about half an inch in thickucss, and then bolting the three together, as in Plate XXIV. fig. 9, No. 3.
Binders are made dependent on the girders by means of double tusk tenons, and on and to them the bridging and ceiling joists are attached as above described. Plate XXIV. fig. 9, No. 1, shows the transverse section of a compart- Plane of ment or bay of a framed floor ; No. 2 the same longitudinally floore of the girder and of the bridging and cciling joists, and traneversely of the binders. Plate XXV. fig. 1 , is the plan of a single floer of jeists tailing in on wall-plates with two chsins of struts, and trimmed to a fire-place. Fig. 2 is a floor similsr to fig. 1 , with ceiling joista nailed to deeper flooring joists at intervals, as in Plate XXIV. fig. 7. Fig. 3 is the plan of a double floor; and tig. 4 is that of a framed floor of joists, bays of which are shown in section in Plate XXIV. figs. 8, 9. It is to be observed, with reference to the diagram fig. 9, No. 1, that binciers ought not to be framed into the girders opposite to one another, as they are here shown to be as a matter of conven:ence, since the girder is unduly weakened by being mortised on both sides at the same place. Cast-irou shocs render mortising the one forming a tenon upon the cther almest unnecessary; and in like manucr cast-iron shoes laid into a wall upon stone templets give a good and safo bearing to the girders; but it is not evergwhere that castiren shocs are attainable, and mortises and tenons may be made anywhere.
The above descriptions of the three sorts of floonng apply to floers which are to have a ceiling as in house building, or may be left open, as usual in warebouscs. But in house building accerding to the practice of the medixval period, these timbers would be left exposed. They would all require to be planed smooth, the gircers moulded, the binders partly so, and the joists pertruys only atop-chamfered, which is done by cutting the arris of the timber to an angle along its whole length, but stopping short of the ends by a few inches, when it is returnied into the arris by a cant. The underside of the joists in a framed floor may be lined with chamfered boarding or fermed into panels and ornamented,-a boltel or a eet of mouldings forming a frame or cernice all round against the binder. The girders would rest upon stone corbels, either moulded or decorated with foliage or figures, or all three united. Viollet le Duc, in his valuable Dictiomnaire raisonnê de PArchitecture, gives several exaninles of snets a flook
of one of which we avail ourselves, from a house at Rheims of the 15 th century (fig. 37). He gives an example also of

Fio. 37.-Yedixval Flooring.
a floor formed of a girder into which joists are laid formed of square timbers cut in balf through the diagonal. These are fixed elose together like a succession of ${ }^{\prime}{ }^{\prime}$, thus vvovv, and buarded over. The top of the angle space formed by two joists is filled up with a emall angle fillet presenting a flat surface. The whole effect is unique.

In medieval carpenters' work it was always the rule only to mould the useful members, and so it was also as regards the carving. Most of the old wood carving is so coutrived as to be wrought out of the same plapk or thickness as that which is moulded, or else is a separate piece of wood, in a spandril for instanee, enclosed within the constructional members. In joining their werk, which was of oak, they trusted entirely to teconing nod pinning with eteut oak pins.
Aithough cast-iron columns and stanchions have for some years been preferred to timber posts as supperts to girders of warehouse floors; lately the latter have again come into use from their known greater resistance to fire, whereas cast-iron soon euceumbs to the great beat and the effects of water upon it. Such posts are usually made of fir or of oak, the dimensions of which vary according to their cempound of croshing force and stiffuess which is as 25 to 40 . The eaps to them should be long, so that they may not press inte the girders, and if practicable, iron dowels should pass through the girders to catch the ! basee of the posts in the floor above.

Partitions of timber are called quartering partitions, and they are geverally framed. Common quartering partitions, which rest on a wall or floor, and have nuthing to earry, consist merely of a sill, a head, and common uprights called studs to receive the lath for plastering ; these last may be simply joggled or tenoned into the bead and sill, as shown in llate XXIV. fig. 4, c, and stiffened by struts or stretching pieces put between them and nailed. When, however, a quartering partition is over a racuit/, or rests only on certain points, and has, moreover, to sustain a weight, a floor porchneee, it is framed and trussed with king or queen posts and trussing pieces as to the tie-beam of a roof, and is thence called a trussed partition; and the Gilling iu of common uprights or quarters for the laths is generally performed by jnggling them at one eud intw either head or sill, and nailing them securely to the trussing pieces. In the diagraun, Plate XXV. fig. 5 , it is supposel that an upening or doerway is to be made in the partition, so that the timbers of the truss are placed around it with queenposts, and a small internal truss is put over the door-head to prevont it from sagging, and to carry the long part of the partition, which we supposed required to bear a floor, so that the partition aets also, in fact, the part of a trussed
girder in the most arailable form. Fig. 6 piesents another method of framing a similar partition. Such partitions should be set up in every stery before the beams and joists of the floors are laid, that their borizontal timbers may be notehed on to the wall-plates, and that the joists or binders may be netched on to them if occasion require it ; but they should be fixed rather below than above the level of the wall-plates, because they are not liable to settle dom so much as the walls, though even that will depend in a great degree on the nature of the walling, and its liability to yield. As the whole weight on partitions is supported by the priveipal posts, their scantlings must be first considered, which sheuld be done in two different ways: first, when the studs are to be filled in with briekwork and rendered thereon, when they are called briek-nog partitions; or secondly, when they are to be lathed and plastered on both sides, or to be waiaseoted. Thin partitions of wood only are called framed partitions and are considered in the portion relating to the joiner.

Roofing is another very important branch of the art of poofing. carpentry. The most simple form is a shed-roof or leanto, whieh is.merely obtained by pieces of wood being laid across in the position of an inclined plane to throw off the water. Rectangular buildings are ustrally covered by a roof in the form of a prism, the vertical section of which is an isoseeles triangle. The beight of this, or as it is technically called, the pitch of a roof, has raried in difforent ages, to suit the exigencies of the elimate or the taste of the designer. A few examples showing the insertion of the foot of a principal rafter into a tie-beam, the struts into a post, and the heads of struts, are given in Plate XXIII.
To relate all the specialities which the earpenter may Specalititrs have to do in some particular buildings, as a church, for of carpeninstance, would far exceed our limits. The mode of ty. executing such things wonld be the same as alresdy described, the style only making a difference in the result. Pewing or benebing-the pulpit and reading-desk, stalls, sereenwork, font cover, gallery front, se.-all depend on the arehitect's designs. Again, shop fronts are now almost a speeiality, together with shop-fittings; and among the miner things in a house are the cupboards, closets, bath, cisterns, kitchen dresser, plate-rack, dust-bin whea not of whelly of brick,-also stable fittings if the improved iron fittings be not used. Centeriag for arches and for bridges, wharf-walls, spires, turrets, belfries, church bell hangings, gables, are all embraced in carpenter's work, bs well as timber houses, the manner of framing which, and the names of the different timbers, will be found described in Le Muet's work (1747) and others of that period, and illustrated in many valuable publications, by Nash, Richardson, Habershon, Claytan, Viellet de Duc, Parker, Dollman, and others; and not least of sueh werks in timber are the bara, porches, lych gates, palings, with chests and presses, and tables and chairs fermerly.
Pugging floors, frring down joists, braeketing and eradling for plastering, and some other things, are operations performed indifferently by the carpenter or the jeiner, as less or greater precision is required in the performance.

See Moxon, Nechanick Exercises, 4to, 1679 ; Godiry Richards, Transtation of the First Book of A. Palladic evo, $167 \tilde{7}_{6}$; Smith, Carpenter's Compranion; 8vo, 1735 ; Price. British Carpenter, 4to, 1733-35; Batty Langley, Buidder's Cornplete Assistant, 8ro, 173s, and his Euider's and Horiman's Treasury of Designs, sto, 1740; Swan, Carpenter's Complete Instructor, ito, 1759 and 1768; Pain, British Pulladio, fol, 1886 and 1s0t, and his Practicat Houso Curpenter, 410,1734 ; Nicholson, Carpenter's New Gubite, ito 1792, his Buidder's Sew Director, 4to, 1824, and his Architcetural Dictionary, tio. 1835; Tredgold, Principles of Carpentry, edit. by Barlow, 4to, 1853 : Weale, Carpentry, 4to, 1849 ; Newland, Carpenter's Assistant, sc., fol., 1860; Laxton, Examples of Building Construction, largo fol., 1855-53; Tarbuck, Encyclowadios of Prastical Carpentry and Joinery, \&c., 4to, 1857-59; A. W.

Pugin, Chancel Screens, 4 to, 1851, and his Details of Ancient Timber Houses, 4to, 1836 ; Bury, Ecclesiastical Woodwork, 4to, 1847; Brandon, Analysis of Gothic Architeclure, 4to, 1849 ; Dollman, Ancient Pulpits, 4 to, 1849 ; A. Pugin, Ormamental Gables, 4to, 1831 ; and the following foreign publications: Jousse, Le Theatre de l'art de Charpentier, fol., 1650; Le Muet, Maniere de bien bastir, fol., 1623, translated by Pricke, fol., 1670 and 1675 ; Emy, L'Art de la Charpenterie, fol., 1841-42; Kraft, L'Art de la Char. penterie, fol., 1805; L'Art de la Charpente, fol., 1819-22, and Supplement by Thiollet, fol., 1840 ; Viollet de Duc, Dictionnaire, 8vo, 1857, \&cc.

Jonnery.

Joinery is one of the useful arts which contributes most materially to the comfort and convenience of man. As the arts of joinery and carpentry are often followed by the same individual, it appears at first view natural to concluds that the same principles are common to both these arts; but a closer examination of their objects leads to a different conclusion. The art of carpentry is directed almost wholly to the support of weight or pressure; and therefors its principles must be found in the mechanical scienees. In a building it includes all the rough timberwork decessary for support, division, or cosnection; and its proper object is to give firmness and stability. The art of joinery bas for jts object the addition in a building of all the fixed wood-work necessary for convenience or ornament. The joiner's works are many of them of a complicated nature, and require to be executed in an expensive material; therefore joinery requires much skill in that part of geometrical science which treats of the projection and description of liaes, surfaces, and solida, as well as an intimate knowledge of the structure and naturs of wood. A man raay be a good carpenter without being a joiner at all; but he cannot be a joner without being competent, at least, to all the operations required in carpsatry. Tha rough labour of the carpenter renders bim in some degree unfit to produce that kind of accurate and neat workmanship which is expected from a modern foiner; but it is no less truc, that the habit of neatness and the great precision of the ioiner make him a much slower and less profitable workman than tho practised carpenter in works of carpentry. In carpentry, as before observed, framing owes its atrength to the form and position of its parts; but in joinery, the strength of a frams depends upon the strength of the joisings. The importance, therefore, of fiting the joints together as accurately as pussible is obvious. It is very desirable that a joiner should be a quick workman, but it is still more so that he should be a good one; that he should join his materials with firmoess and nccuracy; that he should make surfaces even and emooth, mouldings true and regular, and tho parts intended to move so that they may be used with ease and freedom. It is also of the greatest importance that the work, whea thus put together, should be constructed of such sound and dry materials, and on such principles, that the whole should bear the various changes of temperature and of moisture and dryness, so that the least possible shrinkage or swclling shculd take place.
expense without the aid of new principles, end these principles were discovered and published by practical joiners. As might naturally be expected, these authors had but confused notions, with their scanty geomotrical knowledge; and, accordingly, their descriptions are often obscure, and sometimes erroaeous. The change from the heavy mullioned casement and its guard of iron bars to the sash windows necessitated some new method of protection, and boxing shutters were invented. The framed wainscot of small panels gave way to the large bolection moulded panelling. Heavy doors, whicl were fomerly hung on massive posts, or in jambs of cut stone, were now framed in light panels, and hung a moulded dressiags of wood. The scarcity of oak timker, and the expense of working it, led to the importation of fir timber from the north, which gradually superseded all other material except for the choicest works. . Buri the art is still far short of perfection, and in some respects it seens to have retrograded. It is seldom that large glued-up panels will now stand well. Mouldings of great girth give at the mitres, doors wind, and skirtings shrink from the floors jn a way seldom seen in old houses. The sashes, perhaps, are mado better than tho heasy barred windows of a century and a half ago. In no other respect, however, has joinery made tho progress which has been made in other arts. The improved state of machinery has also done but little for its excelieace, though the circular saw-bench, the planing-machines, the moulding-machines, and the nortising-machines have done much to reduce the cost of labour. This last machine was suggested in the seventh edition of this work (1830), attention having been drawn to the subject from the improvements in the art of blockmaking, and it is now uscd in most of the large establish. ments throughout the country.
The joiner operates with saws, planes, chisels, gouges, Toola hatchet, adze, gimblets, and other boring instruments (which are aided and directed by chalked lines), gauges, squares, hammers, mallets, ahd a great many other less important tools; and his operations are principally sawing and planing in all their extensive varieties, setting out, mortising, dovetailing, \&c. Descriptions of the tools, with instructions for using them, may be found in Moxon's Mechanick Exercises, 4to, London, 1677-80, snd in Nichol. son'e Mechanical Exercises, London, 1812.
There is likewise a great range of other operations, nona of which can bo called unimportant, such as paring, gluing up, wedging, pinning, fixing, fitting, and hanging, and many things besides which depend on nailing, \&c., such as laying floors, boarding ceilings, waiuseoting walls, bracketing, cradling, firring, and the like. In addition to the wood on which the joiner works, he requires also glue, nails, brads, screws, and hinges,-and accessorily he applies bolts, locks, bars, and other fastenings,-together with pulleys, lines, weights, white-lead, hold-fasts, wall-hooks, icc., de.
The joincrg' work for a house is for the most part prepared at tho shop, where every convenience may be supposed to exist for doing everything in tho best and readiest manner; so that little remains to be done when the carcass is ready, but to fit, fix, and hang, that is, after the floors arc laid. The eashes and frames, the shutera, back Haps, backs, backs and elbows, soffits, grounds, doors, \&c., are all framed and put together, that is, wedsed up and cleaned off, at the shop; the flooring boards are prepared, that is, faced, shot, and gauged with a fillister rebate; and the architraves, pilasters, jamb linings, skirtings, mouldings, \&c., are all got out, that is, tried up, rebated, and moulded, at tho shop. Tho joiner very often turr.s the house he bas to fit up into a workshop; for benches, and a fire for his glue-pot, are nearly all he requires, should be not have the now usual "gencral joincr" machine

There is no art in which it 19 requared that the structure and properties of wood should be 30 thoroughly understood as in joinery. The practical jouner, who has made ithe nature of timber his study, has always a must decided edrantage aver those who have neglected thas most important part of the art.

It 18 well known that wood contracts less in proportion, in dameter, than it does in circumference; hence a whole treo always spliti in drymg. Mr Knight has shown that, in consequence of this irregular contraction, a board may b_{H} cut from a tree that can scarcely be made by any means to retain the game form and pasition when subjected to various degrees of beat and moisture. From the ash and the beech he cut some thin boards in different directions relatively to them tranverse septa, so that the septa crossed the middle of some of the boards at right angles, and lay nearly parallel with the snrfaces of others. Both Einds were placed in a warm room, under perfectly similar circumstances. Those which had been formed by cutting across the trancerse septa, as at A in fig. 38 , soor, changed their form very considerably, the one side becomung hollow, and the other round, and in drylog, they contracted nearly 14 per cent. in width. The other kind, in which the septa were nearly parallel to the surfaces of the boards, as at B ,
 retained, with very little variation,

Fig 39 thear primary form, and did not contract in drying more than $3 \frac{1}{2}$ per cent. in width. (Philosophical Transactions, part ii. for 1817 ; Phülosophical Magazine, vol. 1. p. 437.)

As Mr Knight had not tried resinous woods, two specimens were cut from a piece of Merael timber; and to render the result of the observations more clear, conceive fig. 38 to represent the section of a tree, the annual rings being shown by circles. BD represents the manner 10 which one of our picces was cut, and AC the other. The board AC contracted 3.75 per cent. in width, and became hollow on the side marked b. The board BD retained its original straightness and contracted only 0.7 per cent. The difference in the quantity of contraction is still greater than in hard woads. From these experiments, tho advantages to be obtained merely by a proper attention in cutting out boards for panels, \&c., will be obvious; and it will also be found that panels cut 90 that the septa are nearly parallel to their faces, will appear of a finer and more even grain, and require less labour to make their surfaces even and smooth. But as this system would necessitate the rejection of all but the heart of the tree for superior work, a method has been adopted which it is said was first used by the billiard-table makers. Let AC, fig. 39, represent tho piece above referred to by the same letters. It will become

Fig. 39. bollow on the side marked b, no doubt because the rings of the wood when cut across are relieved from tenson, and endeavour to expand themselves. To counteract this ; is customary, in all good work, to rip the plank down the ceritre, and then to " turn the stuff ingide cut" as it is popularly called. This is done by reversiog the rood, end for end, so as to bring the heart aganst beart, and the outade aganst outgide, as 19 shown in fig. 40 (without

Fig. 40. which the glue jointa are sometimes liable to fly), and also so as to reverse the curcular parts of the grain.

In wood that has the larger transverse septa, as the oak, for example, boards cut as BD will be figured, while those out as AC wall be plain. :

There is another kind of contraction in wood whilst drying, which causes it to become curved in the direction of its length. In the long styles of framing we have often observed it; indeed, on this account, it is difficult to pre vent the style of a door, huag with centres, from curving, so as to rub against the jamb. A very satisfactory reason for thes kind of carving has been given by Mr Knight, which also points out the manner of cutting out wood, so as to be less subject to this defect, which it is mast desirable to avold. The interior layers of woad, being clder, are more compact and solid than the exterior layers of the same tree; consequently, in drying, the latter contract more in length than the former. This irregularity of contraction causes the wood to curse in the direction of its length, and it may be avoided by cutting the rood so that the parts of each piece shall be as nearly of the same age as possible. But as this would also necessitate the rejection of a great deal of stuff, a simpler method is found, which is always to turn the heart of the wood outwards. Thus, in framing a door, the heart should always go against the jambs, and the sap side to the panels.

Besides the contraction which takes place in drying, woad undergoes a considerable change in bulk with the variations of the atmosphere. In straight-grained woods the change in length is nearly insensible, and hence they are sometimes employed for pendulum rods; but the laterad dimensions vary so much that a wide piece of wood will serve as a rudo hygrometer. The extent of variation decreases in a few seasons, but it is of some importance to the joiner to be aware that even in very old wood, when the surface is removed, the extent of varation is nearly the same as in new wood.
It appears from Rodelet's experiments (L'Art de batir, article "Menuiserie," tom. 1v. p. 425, 1814), that in wood of a mean degree of dryness, the extent of contraction and expansion, produced by the usual changea in the state of the atmosphere, was, in fir wood, from $\frac{1}{3} \frac{1}{0}$ to $\frac{1}{3}$ of its width, and in oak, from $\frac{1}{\pi^{2} \frac{1}{2}}$ to $\frac{1}{8 \frac{1}{3}}$. Consequently, the mean extent of variation in fir is $\frac{1}{150}$, sad in oak, $\frac{1}{10 \%}$; and, at this mean rate, in a fir board about $12 \frac{1}{2}$ inches wide, the difference in width would be $\frac{1}{10}$ th of an inch. This will show the importance of attending to the maxims of construction we have already lad before the reader; for, if a board of that width should be fixed at bath edges, it must unavoidably split from one end to the other.

The kinds of wood commonly employed in joinery are Risds of -the oak, the different spectes of pine, mahogany, and *wad. sometimes lime-tree and poplar. Of the aak there aro two species common in Britain; that which Linnæus has named Quercus Robur is the most valuable for joiners' work; it is of a finer grain, less tough, and not so subject to t wist as the ather kind. Oak is also importex' from the Baltic ports, from Germany (that known as waioscot), and from America. These foremn kinds being free from knots, of a stranghter grain, and less difficult to work, they are used in preference to British species. The greater part of joinerg' work is executed in fir imported from the north of Europe. Yellow fir is used for outside work, as doors and sashes, and for floors where thero is likely to be much wear. Very good red pue deals bave been imported from Canada. Inside work is almost always framed of white fir. Some vory good pancls when not too wide, and excellent mouldings, are made of American pire. White fir is often used for internal work, and yellow phe is much used for mouldings. The forest of Braemar, in Aberdeenshare, furnishes yellow fir of an excellent quality, little inferior to the best foreign kinds. - For the gencral purposes of joinery, the wood of the larch scems to be the best; this useful tree thrives well on the Scottish hills. Some fine specunens of thave been obtaned from Blair.

Athol It makes excellent steps for stairs, floors, framing, and most other articles. Mshogany, in joinery, is only used where painted work is improper, as for the hand-rails of stairs, or for the doors sad windows of principel rooms. For doors it is not now so often used as it was formerly, its colonr being found to be too gloomy to be employed in large masses. Lime-tree, and the different epecies of poplar, make very good floors for inferior rooms ; and may ofteu be used for other purposes, in places where the carrage of foreign timber would render it more expensive. Lime-tree is valuable for carved work, and does not become worm-caten; but carring is at ?resent seldom used in juinery.

From these timbers, the oats and fir especially, the joiner ubtaus the bsttens, fillets, boards, sod planks, with which he performs sll his works, entting them into acontlings and thin deals as he requires them.

Battens are narrow boards running from half an inch to an inch and a half or 2 inches thick, and from 3 to 6 or 7 inches wids. A piece of stuff of too small a scantling to le a batten is called a fillet. The term bosrd is spplied to sawed stuff-when its width exceeds that of a batten, and its thickness does \therefore ot exceed 2 inches or $2 \frac{1}{2}$ inches. The term plank is applied to large pieces of stuff whose width is great in proportion to their thickness, and whose thickness nevertheless does not exceed 3 or 4 inches. In London thess terms are used in mach more restricted aenses than they are here doscribed to mean, because of the fixed and regular sizes and forms in which stuff for the joiner's use is for the most pert brought to market there. A bstten, to a London joiner, is a fine flooring bosrd from an inch to an inch and s kalf in thickness, and just 7 inches wide. A board is a piece cnt from the thickness of a deal abose width is exactly 9 inchos; and nearly everything sbove that width, and not large enough to be called a scantling of timber, is a plank

Mouldings, in the Romen and Italisn styles, as used in joinery, sra generally composed of parts of circles, and differ somewhat from thoso used in stone. (See Plates XIII.; \&c., illustrating the article Arceitecture, in vol. ii.) Mouldings are almost the only part of modern joiners' work which can, in atrictness, be called ornamental, and consequently that in which the taste of the workman is most apparent. The form of them should be distinct and varied, forming a bold outline of a succession of curved and flst aurfaces, disposed 60 as to form distinct masses of light and abade. If the mouldings be of considerable length, a greater distinction of parts is necessary than in short ones. Those for the internsl part of a-building should not, however, have much projection; the proper degree of shade may always be given, with better effect, by deep sinkings judiciously disposed. The light in a room is not sufficiently strong to relisve mouldings, without resorting to this method; and hence it is that quirked and under-eut mouldings are so much esteemed. The following present

together. If there be a deep sinking under a bead (as fig. $\mathbf{4}^{45}$), it is called a quirked or cock bead ; if there be two

FIa. 45.

Fig. 46.

Fic. 47.

Fig. 48 Quirkei Bead. Doublo-qurked Bead. Reeds. such sinkings, so as to show three-guarters of a circle in the bead, it is called (fig. 46) a double-quirked bead; two or more beads, side by side (as fig. 47) are called reeds ;

Fio. 49.—EBllow.
the fourth part of a circle, or half a bead (as fig. 48), is called an ovolo, or quarter round. A moulding composed of two convex parts is also called an ovolo, the upper part

of the curve being continued round into the bed similar to a quirk, as fig. 44. In concave mouldings a simpla curved grooving, as fig. 49, is called a hollow, and two or mure

Figa. 63, 54. - Forme of Cyme roote
such grooves are flutes, as fig. 50. A hollow forming the fourth part of a circle is called a cavetto, fig. 51; a

Fica. 65, 56.-Forms of Cyme reversa.
deep hollow between two fillets, as used in base mouldings, is a scotia, fig. 62. Mouldings which are partly convez

Fio. 67.	Fio. 58.	Fig. 69.	Fio 60.
Rebste.	Groove.	Fecking.	Filles.

and partly foncare, ara of two sorts, the cyma recta, as figs 53 and 54, end the cyma reversa or ogee, as figs 55 and

56 , which may be made of greater or lees projection. Grecian mouldings are all similar in principle, but the parts are of conic sections instead of circles, as explained above, p. 473.

A plain equare sinking on the edge of a board, as fig. 57, for the purposes of framing, is called a rebate; if away from the edge, as fig. 58, a groove; placed under a cap (as 6.59), or as a necking (as 6g. 60), it is called a fillet; three such fllets under an ovolo, when composing part of the capital of a column, are called annulets. In all kinds of framing the mouldings which rise above the styles are called bolection mouldings (see fg. 82).

The roouldings during the medizval period used by the carpenter and joiner, who were perhaps the same person, eeldum varied from those cut by the mason, except that they were somewhat more refned and less in size, as appropriate to the material out of which they were to be cut. "They are such as would not be executed in any other material ; they are sharp, delicate, minute, and quaintly under-cut. Every curve is subtle; every alternation of round and flat and hollow thoughtfully contrived, graceful, and yet vigorous; they are very often ualike any stone mouldings," вays Mr G. E. Street, in a lecture in 1865 on " Eaglish Woodwork in the 13th and 14th Centuries," printed in the Transactions of the Royal Institute of British Architects. "In the stalls at Selby there is an elaborate cap only $\frac{3}{4}$ inches in height; and at Winchester a band $\frac{7}{8}$ ths of an inch in height, and yet consisting of four distinct members, and showing in elevation as mary as eight distinct lines." The woodents appended will suffice to explain the author's meaning. Fig. 61 is a mullion from etalls at Winchestor Cathedral, and fig. 62 from St Nary's Hospital at Chichester. Figs. 63 and 64 are arch mouldiags from the same stalle; and fig. 65, the cornice of a screen is

Figs. 61, 62 - Mediæval Nullions. Old Shoreham church. Fig. 66 is a cap and baso from the stalls at Winchester.

Fios 63, 64, 65. - Medieval Mouldiugs and Cormee.
When an inclined or raking moulding is intended to join with a level roulding, at either an exterior or an interior angle, the form of the level moulding being given, it is necessary that the form of the nelined moulding should bo determmed, so that the corresponding parts of the eurfacea "f the two mouldings should meet in the same plate, the plane beine the plane of the mitre. Thas may be otherwise expressed by saying that the mouldings should mitre truly together.

When the lengtle of a joint at an angle is not consider. able, it is sufficient to cut the joint in such a manter that when the parts are joined, the plane of the joint shall hensect the angle. This kind of joint is utown fur two dite rent
angles, by fig. 67, and is called a mitre. When an angle of considerable length is to be joined, and the kind of work does not require that the joining should be concealed, fig. 68 is often employed; the small bead renders the appearance of the joint less objectionable, because any irregularities from shrinkage are not been in the shade of the quirk of the bead. A bead upon an angle, where the nature of the work does not determine it to be an arris, is attended with many adrantages, it is less liable to be injured, and admits of a secure joint vithout the appearance of one. Fig. 69 shows a joint
 of this description, which should always be used in passages. Fig. 70 represents a very good joint for an exterior angle, whether it be a long or a short one. Sucb a joint may be nailed both ways. But the joint represented by fig. 71 is superior to it; the parts, being drawn together by the form of the joint itself, can be fitted with more accuracy, and joined with certainty. The angles of pilasters are often joined by this last method. Interior angles are com.
 monly joined as shown in fig. 72. If the fic.66.-Capand upper or lower edge be visible, the joint Base from Meis mitred, as in fig 67, at the adge only, dixasal Stalls. the other part of the joint being rebated, as in fig. 70. In this manner are put together the ekirting and dado

Fig. 67.

Fig. 70.

Fig. 68.

Fig. 71.

Fig. 69.

Fig. 72.

Fios. 67-ia-Diferent forms of Joids
at the interior angles of rooms, the backe and backlinings of windows, the jambs of door-ways, and various other

Fig. 73 -Doretail.

Fig. 74,-Nitro. dovetail.

FIo. 75-Lap dovetaus.
parts of joibers' work. Fig i3 18 an exvelient method of joimng augles for drawers, frames for lead ensterns, bures.
\&ce, and is commony canted a aovetail. If a portion of the junction is cut off at an angle of 45°, as fig. 74, while the portion at b is doretailed, it is called a mutre dovetail; while if the portion at a (io fig. 75) passes the other portion at right angles, it is called a lap-dovetail. A very good joint is sbown in fig. 76, the angles being brought togather at an angle of 45°, two or more saw curfs are cut with a dovetail saw, and thin pieces of rood glued in as shown; this is called a keyed mitre.

Fig. 77 shows four methods for securing planks together as practised
 in France during the medizval period, from Viollet le Due's Dítionnarre. Fia 76.-Keyed Mitre. He does not appesr to show the junction formed by running a toague of one piece through anotber piece and pianing it on the oatside, as practised now in England in furniture, as tables, dic.

Fio. 77. -Medixval Joints.
Ulue is a viscid tenacions matter used as a cement to sonoect objects together. The common or animal glue is made from certain portions of animals reduced after certain processes by boiling to the required consistency, and dried in cakes. The best marine glue is composed of caoutchouc dissolved in naphtha, to which shellac is added, and beated until amalgamated. It is insoluble in water; suffieiently solid to give streagth, and adbesive to an intense degree. Glue is uaed principally in patting framed work together, but not at all in fixing, and even for the former purpose it is much less used by good workmen than by bungling hands. When the stuff is well seasoned, and the trying up, setting out, mortising, and tenoning are well and accurately executed, there is no necessity for glue on the tenons and shoulders; the redges alone need be glued, to attach them to the eides of the tenons, that their effect may not depend on mere compression. Joiners are generally furnished with a cramp, with which to force the joints of traming into close contact; it is either of rood acting by means of wedges, or of iron with a screw. This, too, is unnecessary with good work, every joint of which may be brought perfectly close without grest violence of any kiod. The cramp will sometimes give bad work the semblance of good, but it cannot make it really so. If any eracking and starting be heard in the joiner's work of a new building, it geaerally indicates one of two things: either the cramp has been required in putting the framing together, or, having been put together, it has been forced out of wiadiag in fising, and the constrained fibres are seeking to regain their natural position. A good workman does not requre cramp, nor will his work, if he has been supplied with seasoned stuff, ever require to be strained, and consequently the cracking and starting of joiners' work iodicate unfit stuff or bad work, or perhaps both, It is tue that glued joints will sometimes ly; but when they do, there need be no hesitation in determiuing the
presence of buth bad work and stuif in an improper state.

It is seldam possible to procure boards suffeiently wide Joining for panels mithout a joint, on account of beart shakes, with glue. which open in drying. In eutting out panets, for good work, shaken wood should be carefully avoided. That part near the pith is gemerally the most defective. If the panels be thick enough to admit of a cross or feather tongue in the joint, one should alw, is be angerted, for then, if the joint should fail, the surfaces wll be kept even, and it will prevent light passug through A pery good way also is to glue a piece ofstrong canvas on the back of the parel when the work is not intended to be seen on both sides. Sometimes plane surfaces of considerable width and length are introduced in joners' work, as in dado, window backs, \&c.; such surfaces are commonly formed of anch or loch and quarter boards joined with glue, and a cross or feather tongue ploughed into each joiat. When the boards are glued together, and have become dry, tapering pieces of wood, called keys, are grooved in across the back with a dovetailed groore. These keys preserve the surface straight, and also allow it to shrink and expand with the ebanges of the weather. It would be en endless task to describo all the methods that have been employed to glue up bodies of such raried forms as occur in joinery ; for every joiner forms methods of his own, and merely from his being most familiar with bis own process, he will perform his-work, according to it, in a better manner than by another, which to an unprejudiced mind has manifestly the advantage orer it. The end and aim of the joiner, in all these operations, is to aroid the peculiar imperfection:s and disadrantages of his materials, and to do this with least expense of labour or material. The straightaess of the fibres of wood renders it unfit for curved sarfaces, at le:ust When the curvature is considerable. Heace, short pieces are glued together as nearly in the form desired as can be, and the apparent surface is covered with a thin renecr ; or the work js glued up in picces that are thin enough to bend to the required form. Sometimes a thin plece of rood is bent to the required form upon a cylinder or saddle, and blocks are jointed and glued upon the back; when the whole is completely dry it will preserve the form that had been given to it by the cylinder. The curve should be made a little "quicker" than the curve inteuded, as the stuff will always spring back a trifle on being released. A piece of work glued up in thicknesses should be very well done; but it too often happens that the joints are visibls, irregular, and in some places open; therefore other methods have been tried.

Large pieces of timber should never be used in joinery, because thes cannot be procured sufficiently dry to prevent them splitting with the heat of a warm room. Therefore, the extcrnal part of columns, pilasters, and warks of a like kind, should be formed of thin pieces of dry wood; and, if support bo required, a post, or an iron pillar, may be placed within the exterior column. Thus, to form columns of wood, so that they shall not be liable to split, narrow pieces of wood are used, not exceed. ing 5 inches in width. These are jointed like the staves of a cask, and glued together, with short blocks glued along at each joint. Fig. 78 is a plan of tho lower end of a column glued up in staves; the bevel at A is used for forming the stares. that at B is used for adjusting them when they are glued together. A

Fio. 79-Jointing of Columa. similar plan must be made for the upper and of the columa, which will grve the width of the upper end of the fiares. The bevels taken from the plan, as at A and B,
are not the true bevels; but they are those generally used, and are very dearly true when the colums are not much diminushed The aame method may be adopted Yor forming large pillars for tables, \&e. If a column have flates, with fillets the joints should be m the fillets, in order to make the column as strong as possthe, also, if a column be intended to have a swell in the midde, proper thickness of wood should be allowed for it. When columns are small they may be made of dry wood, and turned in a lathe, when they can be moulded at the same time. Balusters for stairs are made thus. To secure small columos agamst apliting, 3 hole ahould be bored down the azis of each evlumn
If a piece of wood be boiled in water for a certain time, and then taken out and immedately bent into any particular form, and it be retaned in that form till it be dry, a permanent change takes place in the mechanieal relations of its parts; so that though, when relieved, it will spring back a hittle, yet it will not return to ita natural form. The same effect may be produced by steaming wood; but though both these methods have been long practised to a considerable extent in the art of ship-building, we are not aware that any general principles have been discorered either by experiment or otherwise, that will enable us to apply them in joinery, where so mueh preesion is required. They do not seem to have been tried; and before they can be rendered extensively aseful, the relation between the curvature to which the wood is beat, and that which it assumes when relieved, should be determaed, acd also the degree of curvature which may be given to a piece of a given thickness. The time that a preee of wood should be boiled or steamed, 10 order that it may be 10 the best state for bending, should be mado the subject of experiments; and this beng deterniaed, the relation between the time and the bulk of the prece should be ascertained. A novel aod very simple and effective way of boiling sasb-bars or thin articles has been adopted,

Fio. 79.-Boiling Sash-bars.
as shown in fig. 79. Take a piece of common cast-iron pipo of sufficient diamcter, stop up one end with a plug of wood driven tight, fill the pipe with water, raise one end in a sloping position, leaning it on a pile of bricks, and kindle a firo under the prpe. For the joiner's purposes the process might jerhaps be greatly iuproved by saturating the convex side of each piece with a strong solution of glue inamediately after bendugg it. By filling, in this manner, the extended pores, and allowing the glue to barden thosoughly before relieving the preecs, they would retann their shape better.

The object in framing is, to reduce the wood into narrow preces so that the work may not be scosibly affected by its shrinkage, and, at the same time, it enables us to vary the surface without much labour. Besides this, as the strains from the grain of the wood are in different directions, the work is prevented from winding on its face. From this view of tho subject, the joner will readily perceive that acither the parts of the frame wor the pancls should bo wida. And as the frame should be cotannced of
narrov pieces, it follows that the pauels abould not be rery long, otherwise the frame will want strength. The panels of franugg should not be more than 15 uches wide and 4 feet long, and panels so large as this should be avoided as much as possible. The width of the framing is commonly about one-third of the width of the panel. Frames in joinery are usually connected by mortise and tenon joints, with grooves to receise the panels. W'ainsectug, doors, window-shuttera, \&c., are framed in this manner.

In framug or framed work, the onter vertical bars which are mortised are called styles ; and the transerse, those on whose ends the tenons are formed are called rails (Plate XXVI. fig. 2). In doors the open spaces or squares formed internally by the rails and styles are divided in the wioth ly bars parallel to the styles. These are tenoned into the rails, and are called munuions or mountings, or, vulgarly, muntuas. The frame being formed by trying up, settus up, mortising, and tenoning, the inner or face edges of the styles, and of the highest and lowest rails, and both edizes of the muntins and of the inner rails, are greoved wath the plough to receive the edges and ends of the filling-in parts or panels of the framework Panels are cither flat, raised, or flush (Plate XXVI. Eg. 3). Flat panels are no thicker than the grocves into which they are fitted, and consequently cheir faces are as much below the surface of the framing as the groove is in from each side of the styles and rails. Raised panels are thicker than the groove in the framing, but are not so thiek as to reach the surface; nor 18 the panel thickened through its whole extent. It fits exactly into the groove, and thickens gradually for an inch or two, aud ther sets off at a right angle with the surface, moreasing suddenly three or four sixteenths of an incb. A panel nay be raised on one side only, or on both sides. Flush panels are rebated down from oue face to the distance the plouth groove $1 s$ in from the surfaee of the framing; and the back of a paucl thus rebated on one side is worked down to be even with the other edge of the groove, leaving a tongue to fit it exactly; for if it be required to make panels fash on both sides, this is generally effected by filling in on the back or flattened side with an extraneous prece. Panels of external doors and shutters may be readered more secure by boning them, and inserting iron wires, as noticed in the Transuctions of the Society of Arts, vol. xxv. p. 106. Framing is not, however, often finished in the manner above described, especially with raised and flush panels; mouldiags are generally introduced, and are either struck or worsed in the aolid aubstance of the framing, or are in separate pieees or slips, and laid in with brads. If a mouldiag be struck or laid in on one side oulf, and the other is left plain, the framing is described as moulded and square, a tlat panel being in that case understood; if the pasel be rased the framing will be descrived as moulded with a raised panel on one side, and square or flush on the other. It may be moulded with a tlat pauel, or moulded with a raised panel, on both sides; and the moulding may, as before iatimated, be ether struck 19 the solid or laid in any of the precedng sases. Mouldngs which are laid in round the panels of iranag are neatly matred at the angles, and bradded, to apprear as much as possitle as if ther were struck in the solid. In nailng or braddag the mouldings, the brads should be driven into the framewerk, and not into the panels. Framing with sunk pauels, in some kiads of work, has the edges of the ralls and styles ether stopr chanfered or alghtly curved. With a fiush pancl the mouldngg is alwayseither a bead, or a series of beads called recds; and is, no the ease of a single bead, which is most common, always structs on the sohd frame, and the work is called bead-lush; but reeda are generally struck on the parel ia the drenting of the grain, and laid in on the parnl across it, of along the eads; this is termed reed-fuch

Flush panels in inferior works have a single bead struck on their sides in the direction of the grain alone, the endo abutting plainly, and this is termed bead-batt, the fact that the psoels are flush being inferred.

The plainest quality of framing, in which it is square on both sides, is used in the fittings of inferior bed-rooms, inner closets, sod the plainer domestic offices, but almaye internally; framing moulded on one or both sides, in rooms and places of a grester degree of importance, snd in places where the work may be more generally seen; in some cases a fat panel mas be enriched by a small moulding laid on its surface, leaving a margin between it and the larger meulding at its extremities. This nosy be done in drawingrooms and spartments of that class, especially if they be in an upper etory ; and raieed panels should be confined to the framed fittings of dining-rooms and other apartments on a ground or principal story. Framing with flush panels is almost restricted to external doors, de., one side of a door being bead-flush, and the other flat and moulded, perhaps, or the face may be monlded with a raised panel, and the back bead.fush; and this for principal entrancee. Besd-butt framing is found in external doors to offices, \&c. Partitions between rooms are often tade of framing as abora described. Lately some sliding partitions have been put forwsrd, one of which consists of two or three largo sliding framings, sod felt is relied upon to render them sound proof. This is by Stone; while that by Williams consists of a series of framings pivoted at top and bottom, and with the pivots running on grooves at top and bottom, so that the shutters may be formed into a pilaster-like mass at the side of the room.
It is of the utmost importance in framing that the tenons :ad mortises should be truly made. After a mortise has been made with the mortise chisel, it should be rendered perfectly even with a flost,-an instrument which differs from a single cut or float file only by having larger teeth. An inexperienced workman often makes his work fit too tight io one place, and too easy in another, hence the mortise is split by driving the parts together, and the work is never firm; whereas if the tenon fill the mortise equally, without using any considerable force in driving the work together, it is found to be firm and sound. The thickness of tenons should be about one-fourth of that of the framing, and the width of a tenon should never exceed sbout five times its thickness, otherwise, in wedging, the tenon will become bent, and bulge out the sides of the mortise. If the rail be wide, two mortises should be made, with a space of solid wood between; tig. 80 shows the tenons for a wide rail. If the tenon occurs at the end of a piece of framing, it must be set back a little, so as to allow eufficient solid wood to form e sound mortise ; this is called a bsunching (see e, fig. 81). In thick framing, the strength and firmness of the joint is much increased by putting a cross or ieather Fic. So. - Tenons tor wido tongue in on each side of the tenon ;
 tongue in on each side of the tenon ; Railing.
these tongues are about an inch in depth, and are easily put in with a plough proper for such purposes. The projected figure of the end of a rail, as in fig. 80 , shows these tongues pat in; in the style there are grooves ploughed to reccive them. Sometimes these projections are left in the solid wood itself, in which case they are called stump tenons. Sometimes, in thick framing, a double tenon in the thickness is made; but we give the preference to a single one, when tongues are put in the shoulders, as we have described; because a strong tenon is better than two weak ones, and there is less dificulty in fitting one than two. The panels of framing should be made to fill the grooves, so as not
to rattle, and yet to allow the panels to shriak without splitting. When the mouldings are stuck on the framing, as is often the case in large stuff, it becomes necessary to find the lines to bring the angles together. In square framing, this is done simply by cutting ab,cd, as in fg. 81, at a mitre; but if the framing be oblique sngle, it is done by scribing; the angle st $a b$ being determined by the eye, $c d$ is cut parallel to it. Where large projecting or bolection mouldings ars used, the French have s very excellent way of framing (fig. 82), which it would be well to imitate

Fio. 81. Fiting Mcald. wes to Framing. in this country. Here C is the panel round which the moulding B is framed and mitred, the whole is then framed into A, which is a section both of the styles and rails. When a frame consists of curved pieces they are often joined by means of pieces of hord wood called keys. Fig 83 is the head of s Gothic window frame joined

Fio. 82.-Bolection Moaldings. with a key, with a plan of the joint below it. A cross tongue is put in on each side of the key, and the joint is tightened by means of the wedges, a, a. It is, however, a better method to join such pieces by means of a screw bolt instead of a key, the cross tongues being used whichever method is adopted. Where the ends of the bolts cannot be allowed to project, they should be fixed as bed bolts.
Doors are made two and four psnelled for the most part when the
 panels are fist and the framing aquare,
 eir-psnelled when the lstter is moulded, and six. eight (as figs. 2 and 3, Plate XXVI., to which the details in the following description will apply), or even ten-psnelled when the framing is of the superior descriptions. Doors which sre hung in two equal widths to occupy the doorway, and are hung to the opposite side posts or jambs of the frame, are said to be folding-doors or double-margined,-that is, the styles or margins are repeated necessarily in the middle where they meet. The strle, muntin, and rails to doors are the same as in framing or wainscoting; and the panels may be moulded in the ssme manner. Doorways are fitted with jamb linings, and architraves or pilasters. Jamb linings, as A in fig. 86, when they exceed 9 or 10 inches in width, should always be so framed to correspond with the door on the outer faces; or they may be made solid. Narrow and plain jamb linings to inferior rooms are rebated on oue side of the lining only, and the rebate forms the frame into which the door is fitted. To superior work they are rebated on both sides, as if it were intended to put a door on each side. The jambs are fixed to the inner edges of the grounds. which sre fised to the wall to reccive the architrave or other decorations to the opening, and to stop the "plasterugg, if they sre wide, and not framed, backings are put across to stiffon then, and these backings are doretailed into the edges of the grounds.
It requires a considerable degree of care to hang a door, Eangins a shutter, or any other plece of work in the best manner. donss, In the hinge, the pin should be perfectly straight, and truly cylindrical, and the parts accurately fitted together. The hinges should be placed so that their ases may be in
the same straight line, as any defect in this respect will produce a considerable strain upon the hinges every time the banging part is moved, will preveut it from moving freely, and is injurious to the binges. In hanging doors, centres are oíten used instead of hinges; lut, on account of the small quantity of friction in centres, a door moves too easily, so that a slight draught of air accelerates it so much in falling to that it shakes the building, and is disagreeable. This may be in some degree remedied by placing a small syring to receive the shock of the door.
The greatest dittieulty, in langing doors, is tu make them to clear a carpet, and be close at the bottom when shut. To do this, that part of the floor which is under the duor when shut, or the width of the jambs, may bave a piece of wood about a quartes of an inch thick above the general level of the floor, which, with placing the hiages su as to cause the door to rise as it opens, will be sutficieut unless the carpet should be a very thick one. Several mechanical contrivances have been used for either raising the door, or adding a part to spring close to a floor as the door shuts. The best method now in use, and the simplest, is the invention of the rising or sker-butt hinge. The parts of this which bear on each other are made with a double bevel, so that, if more than balf opened, the door falls against the wall by its own weight ; if less than half open, it closes itself.

Varions kinds of hinges are in usc. Sometimes they are concealed, as in the kinds of joints called rule joints; others project, and are intended to let a door fold back over projecting mouldings, as on pulpit doors and outside folding shutters. When hinges project, the weight of the door acts with an increased leverage upon them, and they soun get out of order, unless they be strong and well fixed. The door of a room should be lung so that, in opening the door, the interior of the room cannot be seen through the joint, This may be done by making the joint according to fig. 84. The bead should be continued round the door, and a common butt-hinge answers for it

Fia. 84.-Door-Joint.

Fic. 85. - Bevel for Eljge of Door.

Bevel for
alge of door.

The proper bevel for the edge of a door or sash may be found by drawing a line from the centre of motion C (fig. 85) to e, the interior angle of the rebate ; ed drawn perpendicular to $\mathrm{C} e$ gives the Eocel required. In practice the bevel is usually made less, leaving an open space in the joint when the door is shut; this is done on account of the interior angle of the rebate often being filled with paint.
The extension of the princiule of ploughing and tonguing work together is one of the most important of the improvements that have beea introduced by modern joiners. It is an easy, simple, and eflectual nethod of combination, and one that provides against the greatest defect of timber-work, its shrinkage. Dy means of this method, the bold mouldings of medieval architecture can bo executed with a comparatively small quantity of material ; and even in the mouldiugs of modern architeture it saves much labour. For example, the moundel part of an arehitrave may be joined with the plain part, as slown ky fig.

Fio. So.-Juining of Architrave.
86. If this method be compared with the old method of glucing une piece upon another. its advantage will be more ovident

Architrares and pilasters are variousty sun' and moulded Arehiaccording to the faney of the designer. They are fixed to traved the grounds with their internal edges exactly fitting to the rebates in the jambs, and they form the enriched margia or moulding of the frame in which the door is set. Architraves are mitred at the upper angle, but pdasters have generally a console or an enriched block or cup resting on then, to which they fit with a square joint; botb the one and the other either run down and are scribed to the floor or rest on squared blocks or lases, which may be the heaght of the skirting board, or of the whule base.

The architrates, skirtings, and surbase mouldings, are Fixing fixed to pieces of wood called grounds, as A, fig. 86; and as somuls the straightness and accuraey of these mouldings deperd upon the care that has bees taken to fix the grounds truls, it will appear that fixiug grounds, which is a part often lcit to inferior workwen, in reality requires skill and attention; besides, they are almost always the guide for the plasterer. Where the plasterer's work joins the grounds, they should have a small groove ploughed in the edge to form a key fur the plaster. In old work the ground was generally hidöen, but in modera work it is frequently shown, which is a saving of stuff; thus, instead of architraves being prepared

Fig. 87.-Door-Jamb aod
Ground.

Fig. 88.-Ground and Mouldings.
as in fig. 86 , they are made as shown im fg. 87 , where A is the rebated and beaded door-jamb, and B the ground, which is generally splayed at the back as a bey to tho plastering instead of being grooved. On this a thiu piece of stuff is bradded to form the double-faced architrave, instead of sinking out of the solid, and on this the ogee or ovolo moulding is nailed. Again with base mouldugs, A (fig. 88) is the ground fixed against the wall, on the top of which is nailed the upper moulding B, and C shows the skirting and lower moulding, fixed against a fillt on the tloor.

We have thus far spoken chiefly of joinery as par- Fixing formed at the bench; but by far the most important fart joineru remains to be considered; for, however well a piece of work. work may have been prepared, if it be not properly fixed, it cannot fulfil its intended purpose. As in the preceding part, the general principles will be stated that ought to be made the basis of practice ; and these illustrated ly partieular examples. When the carcass of a building is ready for the joiner, the first thing to be done is to cut the bond timber out of the openings, set tho sash fames, and fill them with old sashes or with oiled paper on frames, to exclude the weather, but-admit light. The floorivg juists are then proved with straight-edges, and any inequalities in them are renoved with the adze; the flooring boards are next cut down to their places, and are turned with their faces downwards until the ceilings are done. First, however, the pugging is done, if any be intended. This is to prevent sound passing through the floor when fimished, and is sometimes called deafening sound-boarding. It is effected by nailing fillets to each side of the joists, near the bottom, and laying on these pieces of rough boards acrosa
and close together; then there is put a layer of mortar mixed with chopped straw, or sometimes clay, sawdust, or amall shells.

The preparation given to Hooring boards in superior work is planing the face, shooting the edges, and ganging to a thickness, -the common fillister or stop rebate plane being used to work down to the gange mark, from the back of every board, and about half an inch in on each edge. When a board is to be laid, it is turned on its face in the place it is to oecupy, and the workman with his adze cuts away from the back over every joist down to the gange rebate, so that on being turned over it falls exactly into its place, and takes the same level with all its fellows, which have been brought to the same gauge; then follows the process of laying, and the result must, if the work be done well, be a perfectly even and level surface. The slight inequalities of surface which may ocenr are reduced with a amoothing-plane, the brads being previously punched below the aurface if the floor be face-nailed. Floors are in ordinary cases either laid straight joint or folding, and are edgenailed, as Gg .89 , or face-nailed. According to the folding method, two boards are laid, their heading joints all on the same joist, and of course in the same straight line, and aailed at sueb a distance apart that the space is a little less than the aggregate width of the three, four, or five boards intended for it ; these boards are then put to their places, and, on account of the narrowness of the suace left for them, they rise like an areh between its abutments. The workmen force them down by jumping upon them. Accordingly, the boards are never soundly fired to the joists, nor can the floor be laid with any kind of evenness oraccuracy. This method should be avoided in all good work. Straight joint flooring is when every board is laid separately, or one at a time, the heading joint or joints being broken or covered regularly in every case. Dowclling is the drivingpina of wood or iron half their length, into the edge of the last laid board, the outer edge of which has been skewnailed, their other ends running into holes prepared for them in the inner edge of the uext board, in the way the head of a cask is beld together, and then its outer cdge is stew-nailed in the same manaer, and so on. Tonguing is effected by grooving both edges of every board, and fitting thin alips and tongues into them. The boards are usually forer ${ }^{\text {d }}$ together by pressure as with a clamp applied to the outer edge. The nail used in face-nailing floors is called a flooring brad; it has no head, but a mere tongue projecting on one side of the top of the nail, which is put in the direction of the graiu, that it may admit of being punched in below the aurface level, otherwise the superficial inequalities could not be reduced when the floor was completed, because of the projecting heads of the nails. For side or edge nailing, however, clasp-nails, nails whose heads extend seross on two of the opposite sides, are used.

As boards can seldom be got long enough to do without joints, it is usual, except in very inferior work, to join the tuds with a tongued joint, as shown in fig. 89, where B

Fio. 89.-Tongued Joint.

Fio. 90.-Forked Boards.
is the joint. The etched board is first laid, and edge-nailed to the joist. In oak floors the ends are forked together aometimes, as ahown at A (fig. 90), in order to render the joints less conspicnous. The joints should be kept as distana from one another as possible.

In laying floors the advice of Evelyn only to tack the boards duwn the first year, and nail them down for good the aext, is certainly the best method when it is convenient
to adopt it ; bnt, as this is very selom the case, we must expect the joints to open more or less as the wood has been more or less seasoned. Now, these joints always admit a considerable eurrent of cold air; and also, in au upper room, unless there be a counter floor, or pugging, the ceil ing below may be spoiled by spilling water, or even by washing the floor. To avoid these disagreeable results, the boards should be ploughed and a tongue inserted into each joint, according to the old practice. When the boards are narrow, they might be laid without any appearance of nails, in the same way as a dowelled floor is laid, the tongue serving the same purpose as the dowels. In this case the cross or feather tongues for the joints should be used. A new system of flooring has for some years been used in London, to which the name of "Yictoria floors" has been given. A rough floor of boards, three quarters of an inch thick, is first laid, and the rest of the joiners' work fixed, and the plastering finished. When all is done, a floor formed of inch or inch and quarter plauk, ripped down the middle, and consequently very little more than 5 inche wide, is laid; the rough boarding being first covered with a layer of shavings, or old newspapers, or other waste paper. These boards are dowelled on one edge and nailed on the other, and a very sound floor is thus formed, which neither springs nor creaks. A wainscot floor can be laid well on this principle.

Another early operation in joinery is the fixing of the Fixing framed grounds for the doors and windows, and for the frames skirting (Plate XXVI. fig. 5, and woodcuts, figs. .86, 87, and 88) to which the plasterers may float theis work. The skirting grounds are geaerally dovetailed at the angles, and are well blocked out, so that they may not vibrate on being struck, or yield to pressure when the plasterer's straight-edge passes roughly over the surface; they must also be set with the utmost truth and precision. When the floors are cut down and the grounds fixed, the joiner's operations in a building should be suspended until the plasterers bave finished, or nearly so, and then the floors may be laid. By deferring this operation until that period, the worknen of the two different trades are prevented from interrupting each other, and indced iujuring each other's work; and joiners always find employment in the shop preparing, as before intimated.

If the part to be fixed consists of boards jointed together, but not framed, it should be fixed so that it may shrimk or swell without splitting or winding. The nature of the work will generally determine how this may be effecter. Let us suppose that a plain back of a window is to be fixed. Fig. 91 is a section showing B the back of the window, A the windowsill, D the floor, C the skirting, and E the wall of the house. The back is supposed to be prepared as previously stated, and is kept straight by a dovetailed key a. Now, let the back be firmly naded to the window-sill A, and let a narrow piece d, with a groove and cross tongue in its upper edge, be fixed to bond timbers or plugs in the wall, the tongue being Fin. 91.-Back of inserted also into a corresponding groove a Window. in the lower edge of the back B. It is obvious, that the tongue being loose, the back B may contract or expand, as a panel in a frame.

In getting out skirtings, if the work be of a superior Skirtiss description, the boards should be tricd up as for framing in every way except bringing to a width, which need not bo done. The face edges, however, must be worked with great precision, and moulded or rebatcd as the case mas require. Rebating or tonguing will be perhaps necesaary when the skirting consists of more than one piece, that the different
pieces may be made to Et deatly and finmly together, and all but the lowest piece must of necessity be brought to a pidth, as well as tried up in other particulars. A skirting in a single width is called by that term; but when it is made up of more than one part it is designated a base ; the luwest board ts then called the skirting board, and the ofper the base moulding or mouldings (Plate XXVI. figs. 1 and 5) The skirting board is not brought to a width because the latour would be lost according to the ordinary mode of fixing it. The board is applied to its place with its lower edge touchng the floor. but as the most perfectly wrought lloors are fuond to have some slight uneverness of surfuce so closs to the wall, a straight edge would not Git closely down to it in every part. The board is therefore propped up at one end or the other uatil the upper or faced edge as periectly parallel with the average line of the Coor, or rather so as to be perfectly level. A parr of stroag compasses, such as are used by the carpenter, is taken, and opened to the greatest distance the loner edge of the skirting board is from the floor throughout its leagth; the onter edge near the point of one leg of the compasses is then drawn along the floor, whilst the point of the other, being kept vertically above it, is pressed against the face of the board, on which it marks a line exactly parallel to the surface of the floor, indicating, of course, every, even the slightest, irrigularity there may be in it. If the floor be not a very uneven one, the excluded part may be ripped off with the hand or the panel saw, which may generally be made to follow the traced or inscribed line exactly, if, however, the line be a very irregular one, having quick turns 10 it , the Beribing, latchet must be used. Thus operatiou is calted scriburg, and the result of it is evidently to make the skirting fit down on the floor with the utmost precision Care must be taken in performing the operation that the upper edges of the skirtings be not only level, but that all which are in immediate connection be scribed to the same height, that their upper edges may exactly correspond

In the principal rooms of a house, the skirting C (fig. 91) is usually grooved into the floor D. and lixed only to the narrow pieee d, calicd a ground. (See also Plate XXVI. fig. 5.) By fixing in this manner, the skirting covers the joint, which would otherwise soon be open by the shrinking of the back, and from the skirting being grooved into the Honr, but not fastened to it. there cannot be an open joint be' ween the skirting and floor When it is considered that an open joint in such a situation must become a receptacle for dust and a harbour for insects, the inportance of adopting tuis method of fixing a skirting will be apparent. As grooving a floor is attended with considerable labour, and as the boards will sometimes 'wist, it is more common now to nail a small filtet to the door, aganst which the back of the skirting rests, and, of course, has full room for expansion Defore skirtings are tised, vertical blocks are put at short intervals, extending from the floor to the narrow grounts. and made exacily fush with and true to the latter, and are firmly naled. These form a sound backing, to which the skirtings may be liradded or nailed, and so prevented from warpung or bending in any manner. If. however, the skirting be not very wide. and be sufficiently stout to stand without a backing, a fillet ouly is nailed along the floor as a stop for its lower edge, but this is rendered unaccessary if the skirting be tongucd into the flor, as the tongue will answer every purpose of a stop (fig. 6. Plate XXVI.) The ands of shirtings sbould be tunkued into cach otber when it is necessary to piece them in lingth, and on returns or angles the end of one should be tugucd into the returned face of the other 10 the square paits, and mitred in the ohlique-angled or moulded parts.

The dedo of a room should be fixed in the same manner as explained above for window backs (fig. (1). When a
chair-rail or surbase is required, gronnds aimilar to those for the base are fixed to range like them with the face of the plastering, the surbase itself must be wide enough to cover the grounds and the joints formed by them and the plastering completely; it is in effeet a coraice to the stereobate (or pedestal, as the three pasts may be termed of base, dide, aud surbase), and the space or dato between it and the base is generally understood to be wamscoted, though it is more frequently plastered.

In tixing any board above 5 or 6 inches wide, similar Fixing precantions are accessury as those detaled in fig. 91, other laze wise it is certain to split when the house becomes iohabited. beards We may, in general, elther fix one edge and groore the ' other, so as taleave it at liberty, orfix: it in the middle and leave both cdges at liberty Sometimes a wide board, or a prece consisting of several boards, may be fxed by means of buttons screwed to the back, which tura 10 to grooves in the framing, bearers, or joists, to which it is to bo fixed. If any shrioking takes place the buttons slide in the groores. In this manner the landings of stairs are fised, and it is much the best mode of fixing the top of a table to its frame. The parts of the outside frame of a sash are distin. Sasbes guished by the terms applied to the similar parts of common framing. The upright sides are styles, and the transverse or borizontal ones, which are tenoned into the ends of the styles, are rails; but the inger framewerk or divisions for the pancs are called merely upright and cross bars these bars, according to the way they are moulded, are called lamb's tongue, orolo, beaded, de.),--the upright beng the morticed, and the cross bars the tenoned, as with the outer framework (Plate XXVI. fig. 1). Sashes are got out like common framing, the parts are tried up, set out, and mortised and tenoned, exactly in tho same mander, allowance being made on the length of the rails and all tenoned preces in the setting out, as in common framing also, for the portions of the mortised styles and upright bars which are worked aray in formng the moulding and retate. The mecting rals of sashes which are in pars, to be hung with linea, are made thicker than the other parts by the thickness of the parting bead, and they are bevelled or splayed off, the one from above and the other from below. that they may meet and fit closely. When the framework is completed, although it cannot be put togetber because of what has just been referred to. the rebate is formed by the sash fillister on the further part of the face edge, and the moulding siruck on its hither angle. These things beug done, the moulded edges are either mitred or scribed at the sboulders and haunches, and the sash may be put together. If sash bars are mitred at the joints, they require dowels in the cross bars to act as tenons; but if they can bo scribed dowelling is not nccessary. Sashes are cither hung upon hinges or bung mith lines, pulleys, and weights. Fixed sashes are put into frames, of which every part may be solid but the stop, which must be put in behind the sast to detain It. Sashes hung with binges are usually callec' casements, and require solid rebated frames; but there cav be no stops to them, excent their own movable fastenigg, and the outer atop, which of course the rebate furnishes These are usually known as French caseraents, or sasb doors, as they are called when they open down to the ground or floor: they bave now taken the place of sash windows, where they may lead from the rooun to garden paring, or to a balcony, or may be used for similar purpuses. The ordinary arrangenent for an aperture is that of two leaves morking on bugges at the sides inwards or cutwards, meeting in the centre of the opening. With the former, which is the usual mode, one leaf is secured to the head and sill by balta cither round or sunk in ; the other leai, when closed, 18 sccured to the first by a handle fixed on the secoud and turning ofer a staple fised on the first. If the cascment
should be a high one, this second leaf oiten requeres a bolt at top and bottom, to secure it against the force of the wind, which by bending it admuts the cold arr and wet. When it is placed towards an exposed aspect, and is thus subject to driving rans, it is necessary to take many precautions for the prevention of wet being blown through the meeting surfaces all round the easements. To effect this object, the styles. ralls, and frames are sunk and beaded in varrous ways. Figs. 92 and 93 represent sills and r^{\prime}

bottom rails; and fig. 94 , recting rail, styles, and frame, which latat is an ordinary arrangement in France. An amproveusent to the were handlefor securng the leaf of the casement is that of affixing au upright wetel rod, which is turned by the handlo $\mathrm{C}_{1} \mathrm{f}$ f. 92 , on the leaf beng closed, and by hooks at top and bottom as I, fig. 95 , catching into a plate fixed for them, and effectually fastermg it. A simpler method has been shown where, in lieu of the rod, a reeded bar, as D. fig 96, 19 moved to and iro as the leat is requared to bs opened or siut, the top and britom of the bar belng rounded as shown at E, tig. 97 , so as to slide into two regmental plates F, securen to the aill and lintel. Fig. 96 is a plan of the two ceasments, and 97 a plan of the head and sill. The metal rod. which ia of brass, $1 s$ called the Espagnolette bolt. Another mode of securing the casements las lately been meroduced, whereby 8 flat plate, the whole height of the opening, is inserted in a groove formed in une edge of the mecting style of a leaf; and on this beme closed the plate is shot forward by a bandle into a groove u the other leaf, fastening the two together, the plate forming a stop agaiust both the wind and the rain. This is a patent arrangenent of Arch. Smith and Co. Fig. 98 is a plan of the usual French casement used at Faris. A shows the two leaves of the casement when ahut ; B is a plan of the shutters in their boxing, CC the shutters when closed, D the bolt, E the inside architrave and F the Persennes, or outside blinds, sbut against the stone reveals. and so provided for by the architect, instead of being an addition made by the upholsterer after the work is done, and perbaps spoiling the design. The ordinary mode is for them to be hung with projecting binges to admit of their being folded back into the face of the wall, which is a hideous arrangement for any façade, except perhaps one of plain brickwork or plain cement. GG shows the position of the blinds when shat, and E is the outside architrave. Much difficulty arises in freventing the rain and wind from penetrating under such
doors. Tha Frech raise the doors very much to secure this, as shown an ags. 92 and 94 . In England various methods have been adopted by forming second sills of

Fig. 98.-Section of Freach Window. the luttom ral. An arrangement in met.il B is screwed to the upper weathering of the wood sill C,
kaving on its onter edge a plate D hinged to it. When the door is opened this plate falls down, and when the door or leaf is shut, a pme, let into the underside of the bottom rail, forces up the langed plate D, and presses it aganst the urst mamed plato A, making all ught. Fig. 100 is a section of a medreval moulded bottom rail found in France. When the wadow lights are carried up over the casements, as is very often the case, the uppor ligata are generally fixed; but it 1 better that one or two of then should bo ren-

Fig. 99.-Water Bar. dered available for ventilating the apartment when it is not desrable to lave the door itself open. This will be effected by lunging the light on the bottom rail, with the necessary means of opeang and closiag th, or placing it on centre bages at the sides.
Soshes hung with lines require cased frames (Tlate XXVI figs. 1, 4), to receive the pulleys eod weights. The sill of the framic is made, as inlic former cases,

Fia. 100-Ancent French Bottom Rall. zolid is sunk and wentbered, and is eeneratly mede of a more durable material thon the rest of the frame, t! e sides in the direction oif the theteness of the frame are of ancand a quarter or one and a hadi meb toard, very truly tried up, and grooved to receive a parting bead; fur th must be obvious that sashes hung with lines to rum vertically up and down wituin the begght of the frome must be themseives in two heights, and must pass each other in separate and diatinct channels. The ends of these boards are fized intotion upper face of the solid sill below, and into a similar board parallel to ihe sill which forms a bead above, and they are called palley preces, or styles, because they receive the polleys, which are let into them near their upper ende,

Linings from 4 to 6 inches in width, and from threefourths of an inch to an inch in thickness, are nailed on to the edges of the pulley pieces, nnd to the sill and head above and belor, inside and outside, in the direction of the breadth of the sash frame, and are returned along the bead in the directien of its length. The outside linings are made to extend within the pulley pieces about half an inch, t form a stop for the upper and outer sash; and the inside liniags are made exactly flush with their iuner faces. The casing is completed ly fixing thin linings on the outer edges of the outside and inside linings, parallel to the pulley pieces, to prevent anything from impeding the weights. Thin slips called partiog beads are fitted tightly into the grooves previously noficed is the pulley picces, bat they are not fixed, as the upper sasb can be put in or taken out only by the temporary removal of the parting-bead. An inner or stop bead is mitred round on the inside to complete the groove or channel for the lower. sash; the stop bead eevers the edge of the inside linings on the sides and heal, and is fixed by means of screws, which may be removed withont violence when it is required to put in or take out the sashes. A bole covered with a movable pieee harge enough to allow the lead or iroo weight to pass in and ont, is made in eaeb of the pulley pieces, so that the sashes may be hung after the frames are eet, and to repair any accident that may occur to the hangings io after use (Plate XXVI. fig. 4). It may be remnrked that sash frames require greater truth and precision from the workman than anything elsé in the joiners' work of a building; and unless the stuff employed be quite sound and perfectly seasoned all the werkman's care will be thrown away.

Sashcs, it may be remarked, are never fitted uatil these frames are immovably fixed, so that if there be any inaccuracy in the latter, the sashes are cut awny or pieced out to make them fit; but, as they are intended to traverse, the fitting in that case can only apply to one particular pesition, and in every one but that there must be something wrong. Any incerrectness in the sash frame, ngain, must threw the shutters and their back flaps out; indeed, the sash-frame, though apparently a secondary part of the arrangement, is that which affor ta all the rest beyond nnything else. When sashes have heen fitted, a plough groove, wide and deap enough te receive the sast-line, is made in tho onter edges of the styles, for about two-thirds of their length, at their upper ends. They are then primed and glazed, and when the putty is sufficiently set the joiner hangs them. He is furnished with sash-tine, which is made of the best flax well phaited together, tacks, and iron or lead weights, which are generally oade cylindrical, with a ring at one end, to whieh the line may be attached. A sash is weighed, and two weights are selected which together amount to within a few ounces of a ceunterpeise. The line is then passed through the pulley, which was previously fixed in the putley style ; the end is knetted to a weight which is passed in at the hole left for the purpose ; and at a suffieient distance, which a eommon degree of intelligence will readily determine, the line is cut off nad the end tacked into the greove in the style of the sash. Other modes of attaching the sash-line to the sash are also used.

Of recont inventions comuected with windows there are some for enabling the parting-beads to be taken ont, or are dispenseri with, so that sashes may be readily eleaned withont the operator stamling on the sill, a dangerous practiee, and without the nse of the glazicr's horse, which tends to imjure the inside painting. A contrivanco for easily opening and clesing sashes of large size by an -rrangement of cerds and pulleys, which likewise serure it when shat, is patented by Mr Meakin. Another, having counterbalancing rack slips for hanging sashes, dispenses with the use of sash lines, pulleys, and sash weights.
objection to this invention may be that both upper and lower sasbes must be opened at the same time. There are other useful arrangement for opening windows; sueh as those used in the wards of bospitals, where the opening is divided into about four horizontal lights working on pivots, all opening to any required extent by a raek and pinion. A sash fastener-with a second spring, which clips the projection on the lower sash when the fastening is closed, and another where the shape of the arm of the fastener is nitered, both prevent the sash being opened from without by a knife, a common mede of forcing an entrance into buildings. Patent wrought windows, and patent wrought iron water-tight windows and frames suitable for churches, parsonage heuses, \&c., are readily obtainable.

The fittings of a window which has bozed shutters consist Window of back linings, grounds, back elbors and soffit, together fittinge with shutters and back ${ }^{\rho}{ }^{\rho}{ }^{2} \mathrm{p}$, and architraves (or pilasters) round on the inside to lorm a moulded frame (figs. 1 and 4, Plate XXVI.) Back lioings are generally framed with fush panels; they fit in between the inside lining of the sash frame and the framed gronad, to both of which they are attached, and form the back of the boxing into which the shutters fall back. They are tongued into the insido lining by their inner edge, and on the outer cdge the ground is uailed, and they are set at right angles to the sash-frame, or cobtusely outwards, as the shutters may be splayed or not. The back is the continuation of the window fittings from the sash-sill to the floor on the inside; the elbows are its returns on both sides under the shutters, and the soffit is the piece of framing which eatends from one side of the window to the other across the head, or from back lining to back lining. These are all framed to correspond with the shutters on the face; but, as they are fixed, their backs are left unwrought. Window shutters are framed in correspondence with the door and other framed work of the room to which they belong, in front, and generally with a flush payel behind; the back-flaps are in one or two separate breadths to each shatter, according to the width of the window and the depth of the recess; they are made lighter than the sbutters themselves, and they should, when shat to, present faces exaetly corresponding with those of the shatters, both internally and externally. The shutters are hung to the sash-frame with butt binges, and the back flaps are hung to their outer styles with a hinge called a back-flap, from its usè. The shutters and their back flaps are hung in one, two, or more heights, as may be found convenient. The moulded margin round the boxings of a windew on the inner face are mado to harmonize generally with the similar parts of the doors of the room or place to which it belongs. Sce other examples of shutters and their boxing in fig. 98. The fixing and hanging of window fittings or dressings are lardly less important, for the accuracy required, than the making and fixing of the sash-frame itself; the slightest infirmity or inaccuracy in any part will be likely to derange some essential operation.

To this old manner of forming shutters must be added Rolling the rolling shutters of Chark, Bunnett, Franeis, Snoxell, sbutters. and others. These can be fixed cither at the top, hotton, or sile of the window as convenient, and are made of wood, stecl, iron, or of wood and iron, nany of thom requiring machinery to raise and to lower them. The advantages consist in the small space occupied, the great secority oltained, and the rapidity and ease in opening and shutting them. They are, however, apt to stich, and some are noisy, but one is called the "noiseless self-coiling revolving steel shatter." One variety cunsists in a sheet of woll-tempered corrugated steel, which coils up on itself like a roll of paper; nether is a self-acting wood recolving shotter, with hardened steel bands.

Tho construction of stars is generally considered the highest department of the art of joinery. The principal object to be attended to is that the stairs should afford a safe and easy communication between floors at differeat levels. The streagth of a stair ought to be apparent as well as real, in order that those who ascend it may feel conscious of safety. To make the communication safe, it should be guarded by a railag of proper beight and strength ; in order that it may be easy, the rise and width (or tread) of the steps should be regular and justly proportioned to each other, with convenient landungs; there should be no winding steps, and the top of the rail should be of a convenient height for the band. The first person that attempted to fix the relation between the lieight and width of a step, upon correct principles, was, we behere, Blondel, in his Cours d'Archuecture. His formula is arnticable to very large buildings, but not to crdinary dwelliggs. Mr Ashpitel, who investigated the subject at length, gives the following rales for buildings of seven differeut classes :-

Tread breadic In inchea.	Rise height in Inche.	Tread breadth in inches.
, 12 51	- 10
114	57	9
11	.. 6	$9 \ldots$
104...	61.	

Rise holghtbin nches	
	63
	if
	7

These dimensions give angles of ascent varying from 24° to 37° Of course the projection of the nustuy to not reckoned.
Hawksey's patent treaas for staircases topublic thorough. fares are compused of iron frames, 1 m which small hlocks of wood, placed the end way of the grain, are so secured as to present to the foot a ronghened surface. They appear to be durable, and to admat of easy renewal of the wood when worn or injured.

The forms of starcases are various, commencing with a atraight flight, which shnuld only be used to a low stury. In towns, where space cannot be allowed for conventent forms, they are often made triangular, circular, or elliptieal, with winding steps, or are made of a mised form, with straight sides and circular ends. In large mausions, and in other situations where convenicnce and beauty are the chief objects of attention, winding steps are never introduced when it is possible to avoid them. Good stairs, therefore, require less geometrical skill than those of an inferior character. The best architectural eifect is produced by rectangular staireases, with ornamented railing and newels. In Gothic structures scarcely any other kindcan be adopted with propriety for a principal staircase. Modern architecture admits of greater latitude in thus respect,-the end of the staircase being sometimes circular, and the hand-rail continucd, beginning from cither a scroll or a newel.
When a rectangular stairease has a continued rail. it is nccessary that it should be curved so as to chauge gradually trom a level to an inclined direction. This curvature is zalled the ramp of the rail. The plan of a staircase of
 ABCD in fig. 101, and fig. 103 shows a section of it, supposing it to be cut through it $a b$, on the plan. The Land rail is supposed to begin with a newel at the bott n, and the form of the cap of the newel ought to be determined so that it will mitre with the hand-rail. Let H in fig.
 102 be the section of the band-rail, and $a b$ the radius of the newel: then the form of the cap may be traced at
C. The sections of hand-rails are of varous shapes ; oume of the most common ones are too small; a hand-rail should never be less than would require a square of which the side is $2 \frac{1}{2}$ inches to circumscribe it. For the level landings of a starrcase the beight of the top of the hand-rail should never be more than ahout 40 ioches, and in any part of the inclined rail the height of its upper side above.

Fio. 102.-Section of Hand-Rail and Newel. the raiddle of the width of the step should be 40 inches less the rise of one step wheu raeasured in a vertical direction. To describe the ramps, let $r s$ in fig. 103 bs a rertical liae drawn through the middle of the width of the step; sct $r u$ equal to $r s$, and draw ut at right angles with the back of the rall, cutting the horizontal hate st in t; then from the poist ℓ, as a centre, describe the curve of the rail. "When there is a contrary flesure, as in the case before us, the method of descriting tho
lesser curse is the sanne.

Fio. 103.-Section for Construction
The band-rail of a stair generaily begins with a scroll, and the first step of the stair, is generally fimeshed with what is called a curtail, a form corresponding closely to the scroll. There are a great variety of geometrical spirals; but as they all fanish on a point, and as all architectural scrolls and volutes finish on a circle or cye, the usnat mathematical scrolls are inapplicalle. The earliest spiral adapted to architecture was that of De Lorme. Since his time several systems have beco invented, particulaly that

Fig. 104

Fig. 105.

Fics. 104 to 106 illustrate the construction af the lodic Volate
of Goldmann; the best is that derived from the Ioni, volute (fig. 104).

The height, eye, and numher of revolutions of the
\because ral being grean to cescribe the curre, let $A B$ be the Gial height, and AC the intended height of the eye, an:d let the spiral be required to make two revolutions. Divido BC into four times as many parts as there are 3 volutions required $(4 \times 2=8)$, because there are four madrants in every revolution. Draw any line DE equal 1) the beight of the spiral. Sct down from D half the number of the parts and one mare $(4+1=5)$; this is the top of the eye. Set down half AC at O , and describe the eye; then at O set up half a part' to F , and make FG , FH'mOF; then, as in fig 105 , draw OG, $O H, G i$, and from O draw a line parallel to OH, and divide the same into as many parts as there are to be revolutions. Fig. 105 is for one, and fig. 106 for two revolutions. Bisect OI at X ; make $2 \mathrm{I}=2 \mathrm{X}$, and join XI ; and through 1 drasw NiN parallel to OF to meet OG and XI. Draw the quarter circles, as in the diagram, - HD being the first openicg of the compasses, GP the next, and H, G, I. K, L, M, and N
being the centres. To describe the scroll let $A B$, as in fig. 107 , be the width across, usually about 10 or 12 incles; let EB be the intended diameter of the eye; and let the scroll be required to make one revolution and a half, or six quadrants (these are shown at greater size by tho aide of fig. 108), then proceed as last directed, and complete the ecroll, also dot in the lines of the nosings and risers. For the curtail step transfer the lines of nosings a, and the lines of the risers b, to another place, as in fig. 108, and set out the thick. ness of the vencer within the line of nos.

Fig. 107.

Fig. 108.
Fiog. 107, 108 illustrate the formation of Scroll and Curtail Step. ing, the part within this represents the solid block of the curtail. The places of the balustere are shown in fig. 107.

It is obvious that in every geometrical staircase, the half of a cylinder placed upright in the well-hole would touch the wreathed string in all parts, another a little less would touch all parts of the hand-rail. Jet 119 suppose ACB, as in aig. 109, to be the ylan of half a cylinder so set upricht in the well"aloles and let us suppose A E to be the heignt of the same. Divide the curved line ACB into any courenient number

Fro. 109.-Construction of Hand-Rail. of paris, and set the same off by compasses on the atruight line from C to A^{\prime} and C to B^{\prime}. Or, in case ACB is a vemicircle, divido the line $A B$, draw the diameter $C D$, watinge $a \mathrm{D}$ equal to three-fourths of the radius, and draw $\triangle A, D B$, and the rast of the lincs thruugh the points of
division, as shown in the diagram. Then A' B^{\prime} is the otretch out or length of the circumference ACB unrolled. Bus $A^{\prime} E$ is said to be the whole height. From E set down the respective heights of the winders, step by step, as shown. Now let G be the representation of the cylinder, with the different lines squared up and across, these will give a representation of the curve at which the rinders must ascend, and which, of course, must regulate the hand-rail The other faint lines show the edge of the covering.

Fig. 112 represents the plan of a staircase; beginning with a scroll, and haviag steps winding round the ceircular part of the well-bole. In. the first place, let the end of the steps be developed according to the method we bave just given (fig. 110 shows this development). Now the hand-rail ought to follow the inclination of a line drawn to touch the nosings of the steps, except whers there is an abrupt

Fig. 111.

Fig. 112.

Fios. 110-112. - Development of Circular Hand-Rail.
transition from the rake of the winding to that of the other steps ; at sucb places it must be curved,-the curve may be drawn by the help of intersecting lines, as a fig. 111. The part which is shaded in fig. 109 represents the bendrail and ends of the steps when spread out, and the bandreil is only drawn close to the steps for cunvenience, as it would require too much space to raise it to its proper position. This development of the rail is called the fallingmould. We will now refer to fig. 113, and will suppose the inner semicircle of ACB
to be the plan of the wellbole, and eA, $a \mathrm{~B}$, the width of the rail; then the outer shaded part $\triangle C B$ will bo the plan of the rail on the level: $\triangle D E B$ is the cylinder referred to beforeADE beng the angle at which the atairs ascend. Now since by the principles of Conic Sections the ob. lique section of a circular cylinder is an ellipse, if the cylinder be circular the lines may then be found by a trammel. Be it of

Fio. 113. - Tracing the Face-Mould what section it may, the delineation of a cylinder cut at any angle $A D E$ may be fonnd by dividing it into equal parts, and eetting up the ordinates $a l, b 2$, dc., as shown. This delineation is a plan "on the oblique," or the facemould of the rail, to be cut " on the plumb."

The wood uscd for hand-rils being of on expensive kind, it becomes of some importance to consider bow the plank may be cut so as to require the least quantity of material for the murred part of the rail. Now, if wewere
to suppose the rail executad, and a plaia board laid upon tho upper side of it, the board would torich the rail at three peints; and a plank laid in the same position as the board would be tbat out of which the rail eould be cut with the least waste of material Let it be required to find the moulds for the part $a b$ of the rail in fig. 112, and to avoid confusing the lines in the omall Ggure, the part ab thas been drawn to a larger scale in fig. 114. The plain
buard mentioned above would touch the rail at the points marked C aud B in the plan; draw the line $C B$, and draw a line parallel to CB, so as to touch the curve at the point E. Then E is the other point on the plan ; and a^{\prime}, c^{\prime}, sud b^{\prime}, are the lueights of these points ill the developmeat in fig. 110. Erect perpendiculars to CB, from the points C, E. and B (fig. 114), and set off Ca in fig. 114

Fio. 114.-Illustrating the Tracing of sloulds. equal to $a^{\prime} c$ in fg . 110 , $\mathrm{E} e^{\prime}$ equal to $d e^{\prime}$, and $\mathrm{B} b^{\prime}$ equal to $f b^{\prime}$. Through the points C and E , draw the dotted hino $C h$; through a^{\prime}, e^{\prime}, draw a line to meet $C E$ in h; and through the points a^{\prime}, b^{\prime}, draw a line to meet CB in g^{\prime}; thea join $h g$, and make Ci perpendicular to $h g$. Now, if $C d$ be equal to $C a$, and perpendicular to $C i$, and $d i i$ be joined, it will be the angle which the plank makes with the horizontal plaue, or plan. Tberefore, draw FD parallel to Ci , and thenee find the section, which is the same thing ns woald be obtained by projecting vertieal lines from cach point in the hand-rail agginst the surface of a board laid to touch it in three points. The inexperienced workman will be much assisted in applying the moulds if be sequires a clear notion of the position when executed.

To find the thickaess of the plank, take the height to the under side of the rail cr in the development (fig. 110), and set it off from s, in the line C , to r, in fig. 114; from the point r draw a line parallel to $d i$, and the distance between those parallel lines will be the thicknees of the plank. The muold (fig. 114), whieb is traced from the plan, is called the face mould. It is applied to the upper surface of the plank, which being marked, a bevel should be set to the angle $i d C$, and this bevel being applied to the edge will give the points to which the mould must be placed to mark out tho under side. It is thea to be sawn ont, and wrought true to the monld. In applying the bevel, care should be taken to let its stock be parallel to the line $d i$, if the plank should not be sufficiently wide for $d i$ to be its arris. In the method fig. 113, ADE, on the rise of the stair, is the bevel. After the rail is truly wrought to the face-monld, the falling-mould (fig. 110), being applied to its convex side. nill give the edgo of the upper surface and the surface will be formed by squaring from the convex side, -holding the stock of the square ulways so that it would be vertical if the rail were in its proper sitnation. The lower surface is to be parallel to the uprer one. The sudden ehange of the width of the ends of the steps causes the soffit line to have a broken or irregular appearance ; to avoid this, the steps are made to hegin to wind before the curved part begins. Different methods of proportioning the ends of the steps are given by Nicholson, Houbo, Rondelet, and Krafft. We caznot in this place enter into a detail of these methods, nor can we give the varied systems of cutting the rail in the spring and in the plumb, sbout whieh so mueh has been written, but for the readar's iffortation a list of the
principal writers on Siaircasto and Fand-Railing is subjoined.

Nothing appears to hare been written on joinery untilJosejh Moxon, Bihitw a iellow of the Royal Society, published a work entitied Mechanicic Ezercises, or the Doctrine of Handyrcorks, 4to, 1677. TThe introduc. tion of the geometrical staircase, or stair supporid oo one side bo the wall, invented, says Palladio, by the famous Luigy Comaro (the firat English example of which is said to be that orected in stone by Sir Ciristopher Wren in St Paul's Cathedral), led to the greatest charges in the art of joinery, ioasmuch as the bines for setting them -out necessitated" very considerable knowledge of genmetry. The hand-rails of these sfoirs offered mest difficulties, and no imperfeet attempt to remore them was first made by Halfpeony, in his Art of Sound Euilding, wublished in 1725. Price, the author of the Bratish Carpenier, pullished in 1733-35, was more euceessful, and his remarts show a considerable degree of knowledge of the true nature and object of his researches. The publication of thas book must hare produced a considerable sensation in the trade, for it wss soon followed by many otber works of diflerent degrees of merit. Of these the publications of Langley and of Pain were the most popular, and were follored by Roubo, L'Art de Menuisier, folio, 1771 ; Sliaife, Kiy to Cevil Architecture, 8vo, 1774 ; Transuctaons of the Socicly of Arts, dc., for 1814; Trentise on the Construction of Starcases and Hand-hails, ito, 1820; Roadelet, Traute do l'Att de befir, tom. iv. 4to, 1814 ; limilt, Traite sur l'art de la Charpentier, part ii., folio, 1820 ; Jeakes, Orthogonal System of Hand-Railing, 1849; Ashpitel, On Hand-Rails and Skircases, 4to 1851 ; Gaipin, Jouner's Instructor, Sutrcasing and Hand.Ratling, 4to, 1853 ; and Riddell, Hard-Ratling Simplyied, folio, Phils. delubia, 185C and $186^{\circ} 0$.
The establishment of the principles of joinery on the sound brais of geometrical science was reserved for Nicholson. In has Cor. penter's Neso Guide and Carpenter and Joiner's Asswtont, pablished in 1792, 4 to, ha has made aome most valuahle corrections and addi. tions to the lubours of his predccessors. This wnter has been the founder of all the oubsequent works on the subjec: ; his books hare been published again and again, in variour forma, with additions from time to time, by differeat hands, as Galpin's Joiner's Oum Book, showing Improvements since the Days of the late Mir Nichntson, 4 to, 1856. Correspouding improvements wre also made in the practice of joinery, for mbich we are much indebted to an architect, Dir James Wyatt.

For rerived mediaral and Elizahgthan joinery, particularly as adapted to windows and staircases, sce W'eale's Carpentry. 4to, 1849, and Shar, Detarls of ElLabethan Archutecture, 4io, 1839. Many modera improvementa are givca in Laxton's Examples of Bualuing Construction, fol., 1855-5S, and in Newland's Carpenter and Juner's Assishant, fol., Liverpool, 1860.
The priaciples of joinery wero coltirated in France by a very different class of writers. The celebratril Blondel, na archatect of great eminence, had given details for the construction of shuttere, mainscoting, doors, hinges, fasteainge, de., in his work Distribution des Jaisors de Plaisance, $4 t 0,1737-38$. In the extensire worls of Frezier, entitled Coupe des Pierres c: des Foss, 3 vols. 4 to, 1739 , all the leadiag principles sre given and explained with tedous minuteaess, offeriog a atriking contras: to the brevity of Enghsh writers. The first clementary work on that part of geometrical science which containo the principles of jonery appeared in France in 1705, from the pen of the celebrated Geapard 3longe, whogave it the Dame of Gsometrie Desenptice. The ir nat celebrated Fredch work which treats of jointry is Roodelet's L'Art de balur, which occupied fourteen years (from 1802 to 2816) in pmlatcation. It is also the best foreign worl: on the subject; but it is litale sidapted to the atate of jomery in England. In practice the Prench joiners are very much inferior to the Eugliah workmen. Therr work is rough, slovenly, and often clumsy, and at the best ia confiaed to cxternal effect. The neatness, soundness, and accuracy, which is common to every part of the works of an English joiner, is scarcely to be found in any part of the works of a Funchune. The little cormespoadence, in point of excellence, between :hemr theory and practice leads us to think that their theoretical knowledge is con. fined to architecta, engneers, se., instead of heing diffused amon Re $_{8}$ workmen, as it is in England. See also Thiollet et hour, Nouveau Erueil de Menuwerie, 1837 ; Viollet-le-Itic. Dri. Favsonne du Mobilier Français, 8vo, 1858, \&c.; and Nusban, Manuel de Menuiseric, 4 to, 1849 . Much also may be learned from Emy, Traile de la Charpente, fol., 1847-particularly with regard to framing. Tho publications of other aations do not call for parti. cular notice.

Cabinet-maning.

Cabinet-making, or that part of the art of working is wood which is applied to furniture, has snme affinity with joiner the same matcrials and tools being emploged in
both, and tíe mode of execution beng the same. Correctness and strict uniformity are not so essential in movable, as in the fised parts of buildings; they are also more under the domituion of fashion, and therefore are nut so confined by rules as the parts of buildings. Cabinet-making offers considerable scope fur taste in appropriate and beautiful forms, and also in the choice and arrangement of colonred woods. It requires considerable knowledge of perspective, and also that the artist should be able to sketch with freedom and precision. If the cabinet-maker intend to follow the higher departments of his art, it will be Decessary to study the different styles of architecture, in order to make hinself acquainted with their peculiarities, so as to impress bis works with the same character as that of the rooms they are to furnish.

In cabinet work the French wurbmen are certainly superior to the English, at least as far as regards external appearance; but when use as well as ornament is to be considered, the latter certainly earry amay the palm. The appearance of French furniture is much indebted to a superior method of pulishing, which is now generally known in Englaod. The method of making and using French polish is minutely described in Dr Thomson's Annals of Phulosophy, vol. xi. pp. 119 and 371. For many purposes, however, copal varnish (such as coachmakers use) is preferable ; it is more durable, and bears an excellent polish. Foreign oak is much use for cabinetwork; and lately, the fine curled oak that is got from excrescences produced by pollard and other old trees has been used with success in furniture. When well manged it is very beautiful, and makes a pleasing variety. It is relieved by imhaid borders of black or white wood, but these should be sparingly used. Burders of inlaid brass, with small black lines, give a rich effect to the darker coloured kinds, as in buhl-work. Cedar is occasionally used for small fittings, or for cupboards where woullens and furs aro stored. Ebony and initation ebony are useful for cases. Russian birch. has of late years been largely in request fur bedroom furniture from the cleanly appearance of it. But of all wwods mahogany has maintained its place since the first introduction of it in the end of last centary. The japanner is now seldom enployed to give a colour to wood, as varicty can be obtained by staining, heightened by varmshing; or the plain deal or pino is polisted or varnished like mabogany or oak. Patterns or lines aro stencilled or burnt in according to one or other of the maoy patents now before the public.

Many curious works on furnture were publishod in the reigns of Louis XIV. and XV.; those by Sir W. Chambers and the Adams also desorve attintion. Cruden's Jouncr's and Cabinct-maker's Darling. $8 \mathrm{vo}, 1770$, is a curious book. In ornamental composition much benefit may be derived from Tatham's Etchings of Ancient Ornamental Architecture, London, 1799; Percier aod Fontaine's Recueil des cécorations intéricures comprenant tout ce qui a rapport d l'A Aneublement, Paris, 1812 ; ant, for geaeral information, Sheraton's Cabinet Dictionary, 1803, and his C'abinct.onteier and Uphol. sterer's Drawing-Rook, 4to, 1793, may be referred to. Bridgen's Designs for Furniture, fol. 1826, and Shaw"s Details of Elisatethan Architecture, 4to, 1839, are of wach value. But the inost important works that can be consulted at the present time are the various illustrated publications relative to the Great Exhititions in London and Paris (1851, 1855, and 1862), where some of the fuest specionens of earpentry in the world were exhibited. Tbe mosi accessible to the Euglisp reader are the Airt Journal and the Illustrated London News.

Slater-work.

The sfater works his material, slates, tor the protection of a building by coveriag the roof timbers with it, in the same raanner as a bricklayer works his tules. besides this, which is his chicf business, he suphlies sawn slates for shelving in larders and dairies, for tanks and cisterns, for paremente, stera, and landings, for pavels of doors, for
covering hips aud ndges, and a few other purposes. Enamelled slate for chinney-pieces. livaturies, and simila applications is of great utility.
The slater's principal toul is a large knife or chopper Tools cailed a saixe, sax, or zax, witi: which, before he begins to work on a roof, he shapes and trims the slates on the ground, sitting on one end of a stool, which forms a sort of becch and bas uprights by which to square the slate With this knife be strikes off the uneveaness on one side of a slate, making it as nearly straight as he can; he then runs a gauge along it, marking the greatest width the slate will bear, avd, cutting to that line, makes it perfectly parallel. He next, wth a square, brings the thickest and best end to right angles with the sides, generally ly chopping, but sometimes by sawing; and then marking upward from the stpuared foot or tall, makes two mail holes, where, by calcolating the gange the slate in hand will bear, be knows the batten must come. He also uses a drag. "hich is a long flat piece of iron having a cutting cdge at the top and buuked on each side; when be las to strip a roof, he forces it between the slates, and pashes out or cuts off the heads of the mails, and thus tho slate is loosened. He has also to comple of knee pads to kneel urion while at work.
The best slate oltained in Britan is from the quarrics Qualtes of of Bangor in Carmarvonshire. The Llangollen quarries state are remarkable for the size of the slates that can bo obtained. The Delabole quarries in Curnwall have been worked for a considerable period, and supply a grey blue slate. Good slate is also procured in the neighbourhood of Tavistock in Deronshire. An estecmed pale blue green slate is obtained from Kembal in Westmoreland. Cumberland sea green slates are shipped from Maryport. What and Abbey green slates are much in vogue. The Dallachulish quarries in the north of Scutland are extensive, and supply a good quality. In Ireland are several, of which tho Valentia, co. Kerry; Killaloe, co. Typerary; Benduff, co. Cork; and those in co. Wicklow, are the best.
The best slate is of a blusb-grey colour, which breaks before the zax like well-burat pottery, and will ring in the same manner on being struck. Whitish or light greycoloured slate is for the most part stony; dark blue or blackish slate, on the other hand, cuts very freely, but it absorbs moisture and decays rapidly. The oest slates have a bard and rough feel, whilst av open absorbent slate feels smooth and greasy.
Though slate is classed among the incombustible materials, it must no be depended upon for resisting fire. as unfortunately it will crack and fall to pieces at no very high temperature.
The scantlings of slate are cut in the quarnes to set Sues sizes, and these are split into tablets, thimer or thinner according to the size of the slab and the nature of the slate; for the inferior qualities are neither so compact in material, nor so clearly laminated or schistose, as tho superior, and will not therefore read so freely. The sizes of slates best known in the British maket are distinguished by the names of ladies, countesses, duclesses, and queeus. Ladies ureasure 15 inches by S , conntesses 20 inches by 10 , duchesses 24 inches by 12 , and queens 36 inches by 24 , and they are valued in proportion to their marnitude. Besides these, there is a slate which equals tho queen in extent of surface, but is of very much greater thichness; this is called Welsh ray. A smaller slate, again, which is less indeed than the lady, and is cnt from the refuse of large scantlings, is called a double; in size it does nut often exceed 12 inches by 6 . Westmoreland slates are thick aud hory like the Welsh rag, but do not generally run so large.
The principle on which slates are laid is the same as that
which is employed in plain tiling. To a roof with projecting eaves a wide board is placed over the ends of the rafters; but when the eaves tail into gutters, the gutter-board is made wide enongh to receive the esves-course For light olating it is necessary to board a roof all over with three-quarter inch rough boarding. This is done by the carpenter; but for strong beavy slates, fllets or laths or battens are considered sufficient; and these are laid by the slater himself, to suit the length of his slates. Three inches wide and one inch thiek is a suffieient size for them, if the rafters be not more than 12 inehes apart. Against gable or party-walls, a feather-edged board called a tilting fillet is laid to turn the water from the wall. A preferable plan, however, is to board all roofs; it gives a better bed for the slates, and fewer are broken if there be occasion for workmen to walk over them in repairing or in cleaning out the gutters. The expense, too, is but trifliug beyond that of the laths. A still further benefit is obtained by bedding the slates in mortar or in bay, which fills up the spaces left by the thickness of the tirst slate, and with the buarding tends to keep the roof coole: in summer and warmer in winter, a very desirable result for the habitable rooms close under them. Where the roofs are finished with diagonal boarding on purlins without rafters, it makes a very sound bedding for slates. All the slates being gauged to a width, zind dressed as noove described, and sorted in lengths, they are then taken up to the roof in rotation, beginning with the longest and largest for the lowest courses. The first eourse the slater lays is little more than half the length of that which is intended to cover it, and is necessary to break the joints at the eaves. This is called the doubling eaves-course; and the coveing eaves course is brought to the same foot line, completely to eover it. Then to ascertain the gange:from the length of the slate deduct the bond, whieh should never be less than 2 inches, and need not bo more than $3 \frac{1}{2}$ inches, and the half of what remains will be the gaugo. Thus, if the bond be fixed at 3 inebes, and the slate is 2 feet 3 incles in lungth, the gauge will be 1 foot. This gauge or margin is set up from the foot of the caves-course at each end, and a line strained to mark it along the wholo length, and so on, to the ridge or top, where another half-course is required to conmleto the work, and that is in its turn secured by a eovering of shect lead with a roll. To a bupped roof care is taken to complete every course up to the angle, by cutting slates to fit its olope; and these are also covered by an overlap of sheet lead with a roll, it being nalled or serewed to the hip rafter, and the head bossed over. Slato ridging with - roll, as fig. 115 , or with a groeve for seceiving an ornamented cresting, is now very usual, and ovon a common ridge tiling is neeessary to prevent theft of the lead in

Fx. 115.-Ridge of Roof. some localitics. Fig. 116 shows specimens of the ornamental red ridging tiles oceasionally used, eontinuously or some lengths of a plain tile apart. In fig. 115, A, A are the two portions of the slate roll ridging, B being the roll with a bole drilled at each end for the insertion

Fio. 116.-Kidging Tiles. of a pia to fir the lengths; C the ridge picce fixed in the bead of the king-post $D ; E$ the rafter ; F the lath on
which G, the elating, is nailed. In nathng a elate, it wust not be strained or bent in the slightest degree, or it will certainly fy in some sudden atmospherie ehange, to whieb it is of course constantly liable, even if it escape fracture from being trodden on by the workmen themselves or by others. Cupper, being less liable to oxidize from exposure to common causes than any other metal that will answer the purpese, should always be used for slate nails. Zine is also oeeasionally used; and iron tioned and painted nails are sometimes substituted by dishonesty on the par: of the workwan or builder, or bad economy on that of the proprietor. The French method of fixing slates by means of wire clips whieh bold the botion of the slates is unusual in England. A method has lately becn introduced of effecting it with lead clips, which is said to dispense with a certain proportion of slates. Each slate is held in something of the same manner which the slater now adopts when a broken slate has to be replaced, and the min adrantage is supposed to be that the slates sre firmer.
The mode above described of ascertaining the gauge or matgin by the bond, is equally applicable to every sort of roof-covering that is made up of small inflexible parallelogramie slabs or tablets; and it should be borne in mind that the greater the angle is at whieh the rafters rise, or, in technieal language, the higher the pitch of the ronf, the less the bond may be, and vice versa. With slabs or tablets that vary in length, too, as slates generally do as they are brought to market, it is the bond whieh it is of importance to observe; but of they are of an invariable length, as tiles are, it is sufficient that the gange or margin be attended to.
A very light and neat coruring is produced by laying patent wldo slates side by side, and covering their joints with slatine narrow slips bedded in putty, the overlap at the ends being no more than the bond is with the usual mode. It is known as patent slating, and was introduced by Mr Wyatt, who never, however, oltained a patent for it. Indeed it is in prineiple the mode which was adopted in nncient Greece in covering the roofs of templea. Neither boards nor fillets are used, the slates bearing from rafter to rafter, whieh may be 2 fect or more apart, and to the rafters the slates nre screwed. The covering slips are also screwed, as well as bedded in putty. Slating of this kind unay be laid at no greater elcyation than 10°, Whereas for slating in the ordinary was the angla should never be muelh less than 25°, though large slates with a $3 \frac{1}{2}$ inch bond, earefully laid and pointed, may perhaps be trusted at a rise of 20°. This meale of npplyng slate is not without the disadvantage attending the fixing of any substance that freely takes up and readily parts with heat. In expanding and contracting the joints are too often destroycd, nud leake are tho common consequence.

Thatching is an admirable covering for securing warmth in winter and coolness in summer; but it is suljeci to injury by birds, and to risk from fire. It is still occasionally used in pieturesque cottages, arbours, and similar buildings, and was much used for churches in Norfolk nald Suffolk. The thateher requires a ecmmon stable fork, to tess up the straw together before being made into bundies; a thateher's fork, to carry the straw from the heap up to the roof; a thatcher's rake, to conib down the straw straight and sroooth; a knife, or eares knife, to cut and trim the straw to a etraight. line; a knife, to point the twigs; a Laif glove of leather, to protect the hand when driving in the smaller twigs or spars; a long flat needle; a pair of leather gaiters to eome up above the knecs, used when kneeling on the rafters; and a gritstone to sharpen the kuives. Wheat straw lasts from 15 to 90 years, and oat, atraw about 8 ycare. Reed thatching, as done in the West
"of Englant, is the auss atter the tass have been cut off, leaving the cleas, sound pipe atraw, of which a thicknese of 3 inebes is laid on the common-thatching with spars on'y. The materials required are straw or reeds, laths, nails, withes, and rods. A load of stram, haid on about 12 to 16 inches in thickness, will do a equare and a balf; a bundle of oak laths, $1 \frac{1}{i}$ inches vide, and from $\frac{1}{4}$ to thick, nailed about 8 inebes apart, 1 square ; a hundred of withes, 3 aquares; a pound of rope yarn, 1 square; a hundred of.rods, 3 squares; and $3 \frac{1}{2}$ hundred of nails, 1 square. Probably thatched roofs were-formerly ornamented by a specizs of cresting, for in some parts of the country the withes or millow twigs that bind the thatch are cometimes arranged on the tops of ricks and cottages in an interlacing manner, terminating at the apex or at eacb end with a spike with a rudely formed cock. Viollet-leDuc, in his Dictionnaire, alludes to the custom of forming the ridge in mud, ia which plants and grasses were inserted to prevent the earth being dissolved and washed away by the rain.

Plumber-work.

Leed, as the name imports, is the material in and with which the plumber works. The principal operations of this trade are directed to the covering of roofs and flats, laying gutters, covering hips, ridges, and valleys, fixing water truaks, making cisterns and reservoirs, and laying on the requisita pipes and cocks to them, fixing water-closet apparatus, setting up pumps, and applying indeed all the bydraulic machinery required in cconomic building. The plumber's tools are knives, chisels, and gouges for cetting and trimming, rasps of files and planes fur fitting and jointing, a dressing ond fatting tool for the purposes its name expresses, iroo hammers nad wooden mallets for driving and fising, lades in which to melt solder, grozing irons to assist in soldering, a hand-grate or store which may te comventently moved from place to place for melting solder and beating the grozing irons, a stock and bits for boring holes, and a rule of two feet in lcngth divided into three parts, two of boxwood, the third of steel, for passing into places he may lave to examine; also compasses, lioes, and chalk for setting out and marking, and centrebits of all sizes for making perforations, togeiher with weighing apparatus, as the quantities of most of the materials used by the plumber must be cither proved or determined by weight. The waste of lead in working is very trifing, as cnttings all go to the melting pot ngain with fittlo or no loss but that of refound. ing or casting; and even old lead is taken by the lead merchant in exchange for new at a very trifing allow. ance for tare and the wat of reworking. A plumber is elways attended ty a labouter, who dues the more laborious work of carrying the materials from place to plece, helps to move them whico decessary, melts the solder and beata the grozug irons, sttends to hold the one or the other, as neither may be set down or put out of hand when in use, and assists in some of the minor and coarser operations.

In boerding roofs, flate, and guttera for lead, elasp-asils or flooring brads ahould be used; and the first care of the plamber should be to punch, them all io from an eighth to a quarter of ao iach below the surface, and stop the Eoles carefully and completely with puity, ur a chemical process will ensue on the slightest access of moisture should the iron heads of the anils come in contact with the lead, and the latter will, in the course of no long period, be completely .perforated over every one of them. Neither should lead in surfaces of any esteat be solderes, or in any manner fastened at the edges, without being turned up so as to moke pulicieut allowance for the expmisien and contraction which it is coustantly undergoing during the various changes
in the temperduse of the atroosinere. It may be tazen, indeed, as a general rule, that solder should be dispersed with as much as possible. Like glue to the joiner, it is indispenssble in many cases; but lite glue elso, it is in common practice maue to cover many defects, and much bad work, that ought not to exist. The soft solder used by plumbers on account of its melting easily is a compesition of tin and lead in equal parts, fused together, und run itto moulds in shape not unlike the bers of a gridiron. In the opcration of soldering, the surfaces of the metal atended to bo joined are seraped and rendered very clean; they are then brought close together, and sprankled with resin os beras at the joints to prercnt oxidation while soldering. The heated solder is then brought in a ladie and poured on the joint, and amoothed and Enished by a hot grozng itos and rubbed down with a cloth.
Sheet lead, whether cast or milled, is supplied of various weight or thickoess, and is always deseribed as of such weight (4 to 12 pounds) to the superficied foot. There are very few purposes, iodeed, in huilding, in which lead of leas than 6 it to the foot should be used, and very fer in which the meight needs to exceed 10 . For roofs, filats, and gutters, usder ordioary circumstances, 7 or 8 bib lead is a very fair sud sufficient average; for hijs and riuges, lead of 6 B to the foot is thiek enough; and for flashings 5 故 lead need not be objected to. Cast lead has been preferred for the former purposes, because its surface is harder, but milled lead is of more eren tinicktess throughout, bends without cracking, which is not always the case with cast lead, and makes neater work. Sheats of cast lead rua from 16 to 18 feet long and 6 feet wide; milled sheets are mado of about the snme midth, and 6 or 8 feet longer than cait sheets. Neither the one nor the otber may be safely used ou flats, or in gutters exposed to the wide raoge of tcmperature of our climate, in pieces of more than half the length and half the oreedth of a sheet; that is to say, from 8 to 12 feet long, and 3 feet wide, are the limits within which sheet lead will expand and contract without puckering and cracking; and to allow it to move freely it is laid with rolls and dnps in cucha a manner thast any extent of surface may be covered wath the effect of continuity, though the pieces of lead forming the covering be of such small sizes as above stated. But all fixixg, whether by soldering or otherwise, is to be carefully avoided. A roll is a piece of wood made about 2 inches Rolle thick and $2 \frac{1}{2}$ inches wide, rounded on one edge, and fixed with that edge uppermost, so as to come 4 iuches withio balf the width of a shect, that the edges may be turned up sad folded round and over it, benay lapped by, or lapping the edge of the adjoining sheet (Fiate XXYI fiz. i). Lead sufficiently stout, dressed neatly and closely down to the boards under it, and over the roils at its edges, will require no fastenng of any kind, umess it be so light as to be morable by the wind. Folls are used mostly in roois and nats: drips prinerially in gutters, though they may bo requred io long flat: The drip is formed in the frot instance by the carpanter in laying the gutter boards, nccorlung to an arrangenent vith the plumber. It is a difference made in the height of the gutter of from 1t inches to 3 inches, where one shect terminates in length, and meets nuother in continuation. The end of the lomer is turned up against the drip, and that of the upier is dressed down over it, so as effectually to preveat the water from driving up under it. Where the fall is not great, b piece ehould be cut out across the higher gutter bonrd, so that the top of the uoder-lead may lie level with the baard. Gutters should baven fall of at least au eighth of an inch to Gaterm) the foot, sud in fats it should be rather more, for such a covering is only so called in contrudistinction to the pitch of a roof; euds and sides which are acainst a wall should
turn up against it i:om b to $\%$ inehes, seeording to eircumstances; and the turning up under the slates, tiles, or other roof covering, to a gutter, should be to the lerel of that against the wall at the least. The turning up against the wall should be covered by a flashing. This is a piece of lead let into one of the joints of the wall above the edge of the gutter lead, and dressed neatly dowa over it, to prevent water from getting in behind it (Plate XXVI. fig. 6). Parallel or bor-gutters are necessary next garapets where a curb ronf is formed, and are useful in valleys of small roofs where the depth for it ean be obtained. Fig. 117 is a section of such a gutter next to a parapet wall, in which A is the wall plate; B the tiebeam of the roof; C a bearer for carrying one end of the gutter bearer D , the cther end being tenoned into the pole plate K ; E the gutter boards earried by its bearers; G the lead gutter, laid in somewhat of an aral shape by the small angle fillets,

Fig. 117.-Gutter and Roof-Tinbers. which are useful in preveating the lead being returned at a right angle, where it is aometimes cracked in laying; H the flashing; I the eaves' beard for raismg the last row of slates, over which the lead is fixed; L the common rafter; M the slating; N the princival rafter forming part of the truss of the roof; O the saddleback coping of the wall, throated on botb sides. Where thick walls could be obtained, it was usual to form this sort of gutter below the timbers of the roof, whereby they were kept dry, and damage from the ovethowing of the gutter prevented. The same result is occasionally achieved by a cornice projecting more than usual, the gutte: being formed on it in place of a real blocking course. It the gutters and flats are to be often walked upon, they should be protected by deal lattice work rased on tillets hut not fixed. Snow falling down the slopes is preenented by tuis from stapping the gotters, und it also lessens the action of the sun upon the lead-work. Lead ou ridgcs and bipy and the top and sides of dormers, not being in suticient masses to be secured by its own reight, nust be fastened by mails bossed over.

In making cisterns and reservoirs, uriless they be cast (aad theso are now disused), the sheets of lead must of necessity be joined by soldering; but the water they are intended to contain protects the lead frow the frequent and sudden changes to which in other and more exposed situations it is exposed. The lead-work forms a linng to a wood caise, which has groored and tongued sides and a bottorn. But cisterns are now commonly made of ziuc, or of galvanized iron, or of slate; the last two do not require a casing, but may perlaps be enclosed in a closet. Service or water pipes to and from the cisterns, as also waste or orefflow pipes, are also made of lead, and described by their bore, as $\frac{1}{\frac{1}{2}}$ in. $\frac{3}{7}$ in., inch; and so on. They are generally supported ond attacked to the wall by means of iron haldiasts. Iron water pipes are fised where lead will probably be stolen. The opinion that some waters are injured oy coming in contact with the lead of cisterns and pipes, has led to the formation of pipes of tin encased in lead. The water companies are now requiring a water regulator to be put to each closet, or a water waste preventor where the constant supply is obtained, but these are a very troublesome addition to the plumber's work, on account of the dificulty of keeping them in working order. The coustant supply system re-
quires taps of a diferent construction from trose used in other cases; these are called " screw down ralves," from their action, and resist the pressure of the water. As repairs must occasionaliy be needed to the main pipes, it is recommended that, to prevent inconrenience, one ur more eisterns be always provided ia the house for contaiaing tro days' supply of water.

Rain-water trunks and pipes are made of a certain number of pounds weight to the yard in lengrh, according to tho bore or calibre that is requred. The pipes are fitted with large case heads above, to rcceive the water from the gutter spouts, and with shoes to dehver the water below; they aro fixed or attached to the walls of buldings of stone usually with flanges of lead, which are secured by means of spko nails,-iron and other metals having suferseded lead whera brick is used or economy requres the eubstitution.

The varieties of water-closet apparatus, of which Under. hay's patert is one of the best, are too numerous to be hero described. Pumps of all kinds and powers are amongst thos other matters coming withon the ;lumber's province, tuget her with cocks, bosses, jerules, washers. valves, balls, grates, traps, funnels, service boxes, and a numerous collection of other articles.
A metal occasionally used for roofs in lieu of lead is Lnome Patent by the mame of Wetterstedt's patent marine natal. It is marino composed of lead and antimony. Its adrantages are its niêti. malleability, great tenacity, elastuety, and durability, and its ${ }^{\prime}$ resistance to acids, exidation, and the action of the sun and atmosphere. It is manufactured in sbecto of cettan sizes, from 3 ib to 8 ounces per fout, according to the pur. poses for which it is required, the later weipht being useful for liniag damp walls. It sbould be secured with wrougits copper nalls. A fatent metailhe cansas is alio mamefactured of various substauces and strength, serving for waterproof and secure covering.
Sheer copper was formaily used on account of its lightness Conper to cover roofs and Hats. The thickness generally varied roctiog from 12 to 18 oudecs per square foct. It was laid liko lead, but the phates beng of sinall size were soldered together. It rill be well to nutuce that water collected from coppor clannels must not be used for culinary purposes, as a film of verdigris is formel, whicb is poisonous. Copper is inuch ased for roufing in furegn comtries.

Lead and corper, where ecurony is required, are super- zine roofa seded by zine, which is not unly muels cheaper, but when good is nearly as durable, and is not so habie to be corrusgated by the action of the sum. Zunc is sutject to osida. tion; bitt the oxide, instead of scalug offas that of iron docs, forms a permenent coanng on the metal. Its expansion and contraction are greater than those of any ethe: metal. Zinc shects as manuancured wary in quality, seme being very britele. That surplied ty the Vielle Montagno Zinc Mining Company possesses a hich reputation fur purity and excellence. Zinc must he laid like lead, without fixing either by nails er solder. No. 13 gauge, weighing 19 oz. 10 drs, is the least for roofs. flats, and gutters on loarm. ing. No. 14, a medium thickness, weighing 21 cz. 13 drs., is used for roofs and flats; and No. 15 or 16 , weighing 24 oz . and 26 oz . 3 drs. per foct superficial, fur best work and roofs without boards. Zinc pipes are extensively used as chimney pots; stamped and moulded ornamental zinc for dormers, Maneard roufs, vanes, gutteriag, and rain-water pives, cisterns, de. ; and perforated zinc for blinds ard ior ventilation.

Tin cannot class with the building materials in Eaglead, Tin noodngi although it is extensively used for covering roofs in America and in Russia.

[^40]
Plaster-wore.

No art in the economy of building contributes more to produce internal neatness and elegance, and no one is less absolutely important, so far as the use and stability of a structure are concerned, than that of the plasterer. The very general application of plaster is of comparatively late date; for wainscoted walls, and boarded or boarded and canvased céilings, or aaked joista alone, are frequently found in houses of rather over a century old, both in Evgland and on the Continent ; and a retura to this state of completion in the present day is the result of the attempts of the medixval school of architects, and their cry of "no shams," which has not been quite successful among themselves, for plaster and cement are used by many. The valls of houses were formerly plastered above the wainscoting and coloured, while the ornamented plaster ceilings of the time of Henry VIII., Wizaboth, and James I., are still the admiration of lovers of the art. Still earlier epecimens of the plasterer's skill are cztant in the pargetted and ornamented fronts of halftimber houses.
Fo the more common operation of plestering comparative.y te: toals and few materials are required. The plasteror is ationded by a labourer, who supplies his boards rrith moliar and by a boy ou the scaffold with hmo to feed his hawk, which is a plece of wood about 10 inches equare with a handle under it, for carrying up small portions of plastering mortar to the wall or ceiling, to be there delivered and spread by the trowel, a thin plate of hardened fron or steel with a wooden handle, similar to that used by the bricklayer. The plasterer is obliged to keep this implement particularly clean and dry when he is not actually using it, lest it rust in the slightest degree, as it is clear that the brown oxide of iron would sadly discolour his finer work on touching it again with the trowel. He is accessarily furnished with a lathing hammer, a hand float, a quirk float, and a derby or darby, which is a long two-bandled float for forming the fioated coat of lime and hair ; brushes for fine or rough work; three or four jointing trowels for mitres, \&e. ; jointing rules ; moulda for corvices, whilich are of weod, but for worls of any importance the frame is caade of wood and the oatline cut out of a copper (or more usually ziac) plate,-these are inserted in the mooden stock, and ngrrow pheces of woud are fixed to the moulds transversely to guide and steady them aiong the screeds; a straight edge, wherevath to bring the plastering on a wall or ceiling to a perfectly even surface by traversing it in every durection; a sereen, having metal wires to act as a sleve for separatiag the coarser materials which enter into the composition of plastering mortar, - these ase thrown against its outer face, to separate the particles which are too large for the purpose from the finer,- the saad and lime, too, are mised much more efficiently and completely by screening them torecthe: that in any otber manner; a spade and bod like those of the bricklayer's labourer; a rabe to separate the bair ased in tho mortar and distribute it thronglove the mass; and a surver for the hark boy to beat up the mortar, and to deliver it in stall pats en the lawk.

The plasterer, as the term imports, works in plastic, adhesive compositions, which are had on walls, toth internally and externally, to stop crevices, reduce inequalites, and minduce an even, delicate surface, capable of recewing any Clemation that may be apphed to is, elther in culour or otherwise. These compositions are as various as the modes of antying then, the rudest being a compost of loam, a m. Thy char, and hme; this is usate enly for the commonest farfosen, and heing taid on in one coat, is washed cyor with a thin miatura of lime and water, a process termed

bighest work of the plaster - - the making imitations of marbles and other costly stenes, from the purest calcinen gypsum mixed with a solution of gum and isinglass and colouring matter to produce the required imitation. His materials are laths, lath nails, lime, sand, bair, and plaster, a variety of stuccoes and cements, together with various ingredients to form colouring washes, de. Seaffolding is not generally required for new work, but with old work it is sometimes necessary. Under ordinary circumstances, the plasterer is enabled to wask, stop, and whiten the ceilings and walls of rooms from trestles, with boards laid across them. In lofty saloons and halls, charches, dec., seatolding is indispensable. It is necessary, too, to a front that is to be plastered in any way; but this may be afterwards washed, repaired, and coloured from a ladder, without the :ntervention of a scaffold, except perbaps the suspended scafold now so much used.

Lates are narrow strips of some straight-grained wood, Lathing generally of fir, though oak laths are sometimes used, in lengths of 3 and 4 feet, or to sult the distances at which the joists of a floor or the quarterings of a partition are set, and in thickness from $\frac{1}{4}$ th to ${ }^{3}$ ths of an meh ; those of the greater thickness are called lath and a balf. Lath nalls are either wronght or cut ; cut nalls are iu common use in England with fir laths. Coarse stuff is composed of ox Cosrse or horse harr from the hide, in addition to lime and sand stuff mortar ; this is intended to act as a surt of mesh to net or tre it together, and form a coarse but plastic felt. The hair should be long, and feee from all grease and fith Road drift is unft to be used in place of clean sharp sand in mortar, unless it be completely cleansed from all animal and vegetable matter, and of mud and clay. Fine stuff is made of fine white lime, caceedingly well Fine stul slaked with water, cr rather macerated 2 w water to make the slaking complete; for some purposes a small quartity of hair is mixed up with this material. The mere paste, when allowed to eraporate until it is of a sufficient consistence for working, is called putty. Gauge stuff is composed of Gauge about three-fourths of putty and onefourth of calcined etaff. gypsum or plaster of Paris; this may be mixed only in small quantities at a time, as the plaster or gauge redders it liable to set very rapidly. Bastard stucco 18 made of Stucca tro-thirds fire stuff, without hair, and one-thrd of very fine and perfectly clean sand. Common stucco is composed of sbout three-fourths of cleas sharp sand and onefourth of the best lime, well incorporated. This inust be prutected froin the air from the time it is made up until it is required to be laid on the walls. Parker's (or Parker's Roman) cement, when of good quality, with fine clean sharp sand, Cements, in the proportion of aboyt three of sand to one of cement, and well executed, forms a very good external coating for walls. It $1 s$ vulgarly called " comps," a cuntraction of "coraposition." Portland cement, so called beeause the mortar formed by it when mised with saml is supposed to present the appearance of stone from the Portland quarries, is in mach esteem for an outside sturen, as the colour to which it dins is suticiently agreanhe to the eye wathout any colourng wash, whereas l'arker's cement is too often of a dark dirty sint, requing painting or colouring to render it tolerable. Portland cernent is also much valued as being proof against water wheu used as a mortar in setumg brickwork, and in the composition of concrete for foundations. The patent selenite cement nlready described (page 459), is stated to be an excellent substitute for Portland cement ; it takes double the usual quantity of sand, and is stronger even then than ordinary mertar. Pastering is finiched in much less time than by the conmon mode.

A class of cements cajable of taking a brilliant polish reseniting maribe, and censequently very suitable for internal decoration, deserves to be mentionent The chief
of these are Reene's marble cement aud Parian cemeut. They become excessively hard in a short time, and are capable of being painted in a few days. The prineipal component is said to be obtained by the precipitation of alum by an alkali, which gives a white powder of great brilliancy. Tints can be made up with these cements for coloured decorative work. Cements made by the misture of oil with various substances were formerly much used both here and abroad. The best known in England was called Hamelin's mastic, that in France the mastie de Dhil. These cements being very expensire, and requiring to be constantly painted, have now gone neariy out of use. For outside plastering they form a rery fine clean surface, as may be seen in the quadrant in Regent Street and other buildings of that date, but in-many instanees it has been taken off and Portland cement substituted.

Blue lias lime was formerly greatiy esteemed as a cement for outside work, but the carelessness of the burners has teaded much to limit its use, there being a large proportion of underburnt stone left in it. The workmen also would not take the requisite pains for slaking this line, and manufacturers therefore ground it, by which operation the core becomes mixed up with the properly burnt material, and the efficiency of the lime is destroyed. The lumps shou!d be broken as salall as nutmegs, then mmersed in water on a sieve until air-bubbles freely rise to the surface; the lime so wetted is to be left in a heap covered by damp sand for twenty-four hours, after which time it saould be screcaed and mixed with the proper quantity of sand and the least possible quantity of water. To one of lime may be put not more than from two to two and a half of sand. When slaked it does not increase in bulk.

Coats of

 plastenng.The various coatings of plastering are distinguished thus. On laths, plastering in one coat simply is said to be laid, and in two coats, laid and set. In three-coat plastermg on laths, however, the first is called the pricking up, the secoad is said to be fluated, and the thided set. On brick or stone walls, plastering in one plain coat is termed readering; with two coats, a wall is said to be rendered end set; and in three, rendered, floated, and set.

Before beginning to lath a ceiling, the plasterer proves the under face of the joists, to which he has to work, by applyiag a loag straight edge, and nakes uj for any slight inequalities in them, when the work is not to be of a very superior description, by nailing on laths or slips to bring them as nearly even as be can. When the inequalities are great, or if the work is to be of fine quality, he recurs to the carpenter, who takes ofe inordinate projections with his adze, end nails on properly diressed slips where the joists do aot come down low enough, and thus brings the whole to a perfect level. This operation is called firring, or furring. If it be a framed foor with ceiling joists the plaster has to work to, it is tolerably sure to be straight; but the carpenter must have firred dowa on the beams or binders to the level of the ceiling joists, unless the celiing joists have beea nailed to the beams or binders, when aothing of this kind is necessary. If a ceiling is to be divided into compartments or panels, the projecting or depending portions inust be bracketed or cradled down to ${ }^{\circ}$ receive the laths. It is an important point to be attended to in plastering on laths, and in ceilings particularly, that the laths should be attached to as small a surface of timber as pussible, because the plastering is not supported or upborne by its adbesion or attachnent to the wood, but by the keying of the mortar itsclf, which passes through between the laths, and bends round over them. If then the latbs are in constantly recurring contact with thick joists and beams, the keying is as constartly intercepted, and the plastering in all such places must depend entirely on the portions between them which are properly keyed.

Under a single floor, therefore, in which the joists aro necessarily thick, a narrow fllet should be nailed along the middle under the whole length of them all, to receive the laths and keep them at a suffeient distance from the timber to allow the plastering to bey under it; thus too the surface may be made more perfectly even, as it is in single Aoors that inequalities mostlyoccur. This being all arranged, the plasterer commences lathing. The laths should be of the stronger sort. Thin reak laths, if used in a ceiling, are sure to produce inequalities, by aagging with or yielding to the weight attached to them; one or two weak ones in a ceiling of otherwise strong latbs may be the ruin of the best piece of work. They should be previously sorted, the weak, crooked, and knotty, if there be such, being re served for inferiorworks, andithe bestand straightest selected for the work oi most intortance, so that the workman shall find none to bis bund that is not fit to be brought in. Taking a lath that will reach secoss three or four openings, Le strities a nail into it on one of the intermediate joists, ut about threc-eighths of an inch from the one befure it, and then secures the enus of that and the one that it meets of the last row with one mail, leaving the other end of the lath be bes just eet to be secured in the same manner with that which shall meet it of the next bay in continuation. It is of importance also that in ceiling work be pay attention to the bonding of his work. In lathing on quartering partitions and battened walls, the boading is not a matic: of much importance; nor is the thickness or the timbers bebind the latter of so much consequence es in a ceiling, becsusa the tootbing which the thickness of the lath itself afferds to the piastering is enough to sumport it rertically; but, nevertheless, the more complete the koying, even in works of this kind, the better, as the toothing above will not protect it fromany exciting cause to fall forwards, or away from the laths. The thinner or wealer sort of lath is generally considered sufficiently stroag for partitions.

When the lathing is completed, the work is either laid Fisterion or pricked up, accoiding as it is to be finisked with one, on laths. two, or three coats. Laying is a tolerably thick coat of coarse stuff or lime and hair brought to a tolerably even striace with the trowel only; for this the mortar must le we!l tempered, and of moderate consistence,-thin or moist enough to pass readily through between the latha, and bend with its onn weight over them, and at the same time stif enough to leave no danger that it will full apart,--a contingeney, horsever, that in practice frequently occurs in cousequence of badly compused or badly tempered mortar, unduly close lathing, or sufucient force not having been used with properly consistent mortar to force it through and form keys. If the work is to be of two coats, that is, baid and set, when the laying is sufficiently dry, it is rougaly swept with a birch broom to roughen its surface, and then the set, a thin coat of fine stuff, is put on. This is done with the common trowel alone, or only assisted by a wetted hog'a bristle brush, which the morkman uses with his left hend to strike over the surface of the set, while he presses and smoothes it with the trowel in his right. If the laid work should have become very dry, it must be slightly moistened before the set is put on, or the latter, in shrinking, will crack and fall away. This is generally done by sprinkling or tbrowing the vater over the surface from the brush. For floated or three-enat work, the first, or pricking up, is roughly laid on the laths, the principal object being to make the keying complete, and form' a layer of mortar on the laths to which the next coat may attach itself. It must, of course, be kept of tolerably equal thickness throughout, and should staad about onequartcr or three-eighths of 3 a inch on the surface of the loths. When it is finisbed, and while the mortar is still quite moist, the plasterer scratches or scores it ail over
IV. $-G_{4}$
 engrt. The scorings shouid be made as decp as passible without laying bare the latus; and the rougher their wiges are the better, as the object is to prorluce a surface to which the next coat will readily attach itself. When Live pricled up coat is so dry as not to yield to pressure in - a slightest degree, preparations may be made for the inting Ledges or marging of lime and hav, about 6 or laches in width, and extending across the whole breadth a cesting or beight of a wall or partation, must be made in the angles or at the borders, and at distanees of about 4 feet apart throughout the whole extent, these nust be findo perfectly straight with one another, and be proved in every way by the apphation nf strasht edges, techmcally theso ledges are termed screcds. The screcds are gauges fir the rest of the work; for when they are ready. and the : -urtar in ther is a little set, the interspaces are filled up :usb with them, and a derby float or long straight edge ! Eing maile to traverse the sciceds, all the stuff that projects beyond the line is struck off, and thus the whole is brought to a straght and perfectly even surface. To perfect the woria. the screeds on ceilings should be levelled, and on welis and partitions plumbed. When the flonting is sutri. ciently set and nearly dry, it is brushed with a lurei brom o3 before described, and the third cont or set is put on. This for a fine ceiling that is to be whitened or culoured must be oi futty; but if it is to be papered, rhich is very musuel, cidinary fine stuf, with a little har in $1 t$, will be belter. Walls and partutions that are to be papared are also of this latier, or of roueb stueco, but ior jant the set inust be bastar \ddagger stucco trowelled. Thas coat unost be worked of exactiy the same thickness throughout, to preserve to the cxtermal surface the arlvantage taat has been obtained by floating. For ali but the last-mentioned, the set on floated work, the truwel and brush are considered sufficient to produce fine and even work; but trowelled ftucco must moreover be hand forted. In this operation the stucco is set with the trowel in the usual manner, and brought to an even surface with that tool to the extent of t wo or three yards. The workman then talaes the landtiont in his right hand, and rubs it smartly orer the surdace, prossing gently to condense the miterial as much as possible. A's he work the flat he spuinkles the surface with water from the brush in his left hand, and ewentually produces a texture as.fine and smonth almost as that of folisher? matbles

But lathing and plastering on liins as prictised in Fngland is at best a very flimsy afiair, and greatly reguires inprovement. Stronger laths than the laths conmonly employed, put on furthee arort, and with beaded wronglat mails, anit the plasterng land on mpon buth sides in uparht work, or buth above and below the eethnge at the same time, two men working areme ons another, will prodnce work in sune deuree worthy if the ramo. The practice of the French in this respect as well worthy the consideration, and to a great extent the imutation, of Enclish plasterers.

The proecss of fastering on the maked beith ur stune mall differs but litile, except in nibne, from that we bave deacribed as the mude on laih. The shmele roat is called remderiner, and it nead difer only in the gamoty of Lair, Finch may be less than is necessary for layins on lath, and in the consistence of the mortar, whick ma; ter made more raatic, to work easier, and becauz in n moister state it sil. attacy jtself more firmly, to the wall; the wall, bowever, muse itsch big well wetted hefore the rendering is arritio. The set is the same, ard is put on in the same AVIser as to twocoat wor't on lath. For threecont or Heatod wate, the firte of rongh renulering shonid be mode

work Dehind it, and be acorporated with it as much as possibie. As its name imports, its surface in3y, indeed should, be rough; but it is not scratched or lined as the similar coat on lath is. For this, too, the wall must be prevously wetted, that the mortar may the better attach itself to 1t. For the floating, screeds must be formed as beforo described, and the consecutive process is exactly the sume as on luth, both for the floated and ir the set cuat. In almust every case in whach plastering 3 to be roated, the workman finds a ginde for the feet of bis wall screeds w. the narrow grounds whech the juner bas previously fixed for has skirtings; from these lie plumbs upwards, and nutites bis work yerfectly Qush with them.

Mouldings and cornices (as large combinations of mould. ings and flat surfaces immediatedy under the colings of rooms are called) are formed with ruuning noulds, and are generally executed before the setting cuat is put on the walls and ceiling. If the curnice do not fropect more than about un meh and a half, or 2 incles, from the urdinans work, a backing of lame and hair will be suthicsest, and if any one part only happen to be more than ordinarily protuberant, a row of nails from 6 to 12 unches ajari stuck into the wall or celling in the line of that fart whll give it sufficient support. But if the general mass of the cormee be more than that amounts to, and cxtend inore than f of E inches along the celling, it must be brackeled ont, and the bracketing lathed and prieked un, as tor nidinary work. This pricking up, or other preparation, must of course be perfectly set before the cornice is run, amd there should Le one-fourth of an meb at least of clear space between the preparation and the monld in the nearest yart A womter. screed or parallel straiglat edge is tacked on witb brads to the wall, and another on the ceilng. if the cornice be large and heary, as guides or gauges for the mould. Whose rests are chased to fit them, and then one man layng on gauge stuff in an almost thid state with an ansular trwel, another works the mould backwards and forward wer at, which stribes off what is superthous, and gites the cohverse of its form to the rest. The mould is nevir taken dowa from the work at jight angles to the lum of 11 , but is drame off st the end, so that none of the parts of the moulding or cormice is injured or torn by it, wheh must D. Lerwise frequently be the ease, from the pecular forms at times grven tus the details. If a cornica be too large and heavy to be exccuted at once, it may be done in the same manner at two or more fmes, in so nany flerts, and if ary part or parts of a moulding or cornice is to be enrrehrd, the space for it is left racant ly the mould. and the enrichment is afterwards sumplied. As a cornice cannut be completed up to the angles hy the mould, it is worked by band in those sumations to a joint. The jommgs are termed intres, and in forming them the plasterer uses the jounting touls we have already descmbed.

Models for enrichments are made by the anedeller, Euract accoraling to the design or drawing shlimited to ham, and Ewne from them the plasterer makes wax or gelatane moulds, or, as in ordinary practice, the mollulier supplies the moulds on whic! the ormment is cast m phaster of Paris. If the ornament be in recurting leng:los or parts, as as usually the osse, only ome length or part is molblled, and casts of as many as are requard are thiten from the mould; some simgle ormaments, azain, which are very large, require to ho moulded and cast in lars, which are put together by muans ol cement. W'len the cast ornaments are suffeiently sify the pieces are scmperland irimmed, ond the jonnts made clean and even: and they are set in the cornice with plaster of Puree, with white lead, or with a eomposition ealled iron cement, as the case may reguire. If the castings havo something in the cornce to rest upon, the first will do; but if there is mothing to retain or attach tbem tut tho
cement, one of the last two must be used Flowers and other ornameots on ceilings which are too large and neavy to be trusted to adhesive matter alone, mast be screwed to wooden cradliug behind sad above them.

In plastering a wall with common stucco (and its use is mosily for outside work), the first thing to be done is to remove the dust from it by brushing, and then to wet very completely with wster If the wall to be stuccoed be an o!d one, or one of which the joints lave been drawn, the mortar of the joints must be chipped or even raked out, and the bricks picked, to expose s new and porous eurface to the plastering before brushing and wetting. The wall is theu covered with stucco in a fluid state, applied with a broad and strong hog's bristle brush, hae common whitewasbing. When this is nearly dry. the stucco must be laid on es in common rendering, unless the work is to be lloated, when the process is nearly similar to that in flosted plas. cering. Screeds must be formed at che highest and lowest extremities of the wall, or of that part of the wall which is in the same vertical line, sad is not intercepted by string conrses, and be returaed at the angles, putting the whole surface into a sort of frame. These must be made perfectiy straight snd plomb, so as to be quits out of winding by the careful epplication of the plumb-rule snd straight edge. Inner vertical screeds must then follow at three or four feet apart across the whole surface, aod be made to range exoctly with the outer ones, sud then the interstices must be filled in as before. As the work is made good it must be well rubbed with the hand float, as in the execution of trowelled stucco internally, to compress the inaterial, and produce a hard, even, and glossy aurfnoo. Preparations for cornices and other projections from the straight aurfnce of the work must have beer previously made in or on the brick or stone-work by the protrusion of bricks, tiles, or whaterer may be best suited to form a core; and the mouldings and. cornices are rua with moulds, in the manner described for the same thiugs internally, only that in work of this kind no plastic materinl but the stucco itseif is used,-that is, there is no preparation of any softer material than the stucco itself put onde: it. In running cornices in this materiul, workmen are very upt to mix a littlo plaster of Paris with the stuceo to make it set under the mould, and thus givo sherpuess and fulness to the wouldings; but this should not be perinitted; for the plaster is not quakifed to stand the weather as the stucco is, end, if mixed with it, wall produce premature decay. When the stucco is perfectly dry, it iasy be painted in oil colours, or be coloured in distemper; und in cither case it is geucrally (though not invariably) ruled over the surface with a lead point, to give it tha appearanca of gauged stone-work.

Rendering in the Roman and Fortland cements is execuied almost exactly in the same manner as stucco (rendering is, only that it is laid on the saturated wall directly, without the preliminary operation of roughing in, or wasking the surface with a solution of the material. The same process, too, is followed in floating this cement, and with the aame exceptions; and as, in addition to its superior hardness and capacity for duration, it is a quicksetcing cement, it is far preferable to any of the common stuccoes for running cornices, mouldings, dic. These cemeats msy, like stucco, be painted in oil, or coloured; but instead of a size colour, which is used for almest every other purpose in plastcring, the colour for this compositioc. is mixed with diluted sulphuric acid. This soo may be lned and tinted to imitate stona and stone-worl of any aescription.

It may not be amiss here to reter to some of the causes of the premature decay which takes place in stuccoes and cornents when used externally as a coating to Falls. The
pramsry cause is the nresence of nuddy earth and decayed animal and vegetable matter in the sand used with ting lime and cement. To this may be added frequent im. purities in the limes and cements themselves, particularly of argillaceous matter in the former, and sometimes the too great proportions of lime or cement to sand., Thess things mught, however, remain quiescent for a lorg time if the work were well protected from access of moisture, which is the grand excitong cause The paint, or distemper Wash, on the surface, is generally sufficient to prevent the rsin which may best against a vertical face from penetrat. ing, especially if the work have been well hand-luated and trowelleal, to make it close and compact; but the el il arises from exposure above, and from the numberless horizontal unfloated surfaces which are constanliy prosented. These receive and collect the water, and eonvey. in strearns over the vertical surfaces what is not imme distely absorbed, snd the work thus becoming saturated, frost seizes and bursts it, or warmth calls the regetstive powers of the impurities in it into action, and the whole is covered with n green sward. Let the sand of whith 14 plaster composition is to be formed, whether with lime ur cement, be washed until it no longer discolours clian water, and be well compounded with cementitious matter. free from impurities with which it is so frequently ohseged; let the work be well hand-Honted and trowelled, particulsrls; on the backs or upper horizontal surfaces of projecticns, and protected sbove by projecting eaves or otherwise; and the work, with combion care and aiteation to paint or distemper at interrals, will last as long as anything of the kind can te cxpectod, or is found, to last auywhere.

A cheap and useful corering for external walls, which arof protected by projecting eaves, in plain buildings, is rough. cest. This is executed in the following manner:-The surface is first rougbed, or indented, and thon well brushod with a stiti brush to remove all dust or loosa earth. It is then covered with the rough cast, which consists of a sma! quantity of mortar diluted with water, to which a trowel of pure limo is mided to mako it about the thackness of creala. After the workmar has done all whthin has remeh tho scatioldiug is lowered, and he proceeds With the remainder. Another process is somewbat dearer. After having been roughed or indented, the wall is sprinklod wath water, and then rendered with lime and bair; and when thot is set, anuthor cout of the sane material is superadded, laid as evenly as it can be without loanmg, and as soos as a plece of two or three yards in extent is executed, the workman layg on it na almost flnid mixture of clean fine gravel and strong lime, which havo been well mixal tugether. Ihis is immediately washed with any ochrcons colour that masy be desired, at the whole dries nato one compact mass. A third precess, called stuccoing, is performed by the worsman lixying on a few trowels of stucco, which lee spreads 29 luwch as possible; a second workman grovided with a brish aud a small wood float follows Lim, and after iprinkling ins mortar with water le rubs over that part lie has wotisd whth the float, and at the same tima it may bo whitead with lime alone. When the lime is vory rooul this mazes very good work.

In renovating and repairing plasteric. the whole aurface Repairs. is first well washed to remoso the dirt whicll mey have attached itself, and as much of the carthy matar of the previous coat of whitening or chlouring as will come sway, any injurics the work may have received, such as crachs and fractures, are then repared; and when the now stuff is quite dry, the joinings aro ecrapod to produce an even surface, and the whole is again whitened or coloured once or twice or oftener as may be renuired, to mask it beas out well. Stuccoed walls which have been painted must
be well ruobed with pumice stone, to take off the old paint as much as possible before the new work is proceeded witb.

For a decoration torrooms having plastered walls,

ncised

 plastering. instead of papering or flat painting, or for a suitable ormamentation for the interior of churches built at sinall outlay, the old system of pargetting las becn revived. The usual stucco or other phaster finish is, white still wet, stamped over with a pattern made of bress, or for rougher work of wood, to any reometrical or w:her form in accordance with the style of architecture; this indents the surface. It may be left all of one colour, or the open portions of the device may be filled in with another coloured plaster.A nother revivel method, especially for outside work, now much in use is called sgraffito. It was in vogue with the Italian artists about, two centurics since, who executed some very elaborate specimens of ornamentation with it. The process ia briefly as follows:-First, mix with the mortar somo coloming substance of the tint desired for the pattern of the design; then apply a thin coat of it to the wail. When this coat is nearly dry, appiy on it aroother coat similarly prepared but of the colour intended for the grounding, and then, a mould having been prepared in zinc of the exact outline of the pattern, it is to be applied to the surface, its outer elge marked round, and with a sharp tool as much of the upper coat of plaster is cut away as comes within the fattern, down to the face of the lower coat. - By a careful arraugement of pattern, a considerable varicty of colouring may be cmployed; and even tharee coloured conts can les put on, cutting through sametimes one, sometimes two, as may he desined to represent the design As the colour is in the material itself, there as ne foar of its seatiog and so presenting a bad apmearance; ${ }^{\text {nnd }}$: is a comparatively elump rocess for the deceration of a uw surfaec which cannot be painted for some time. Thie procens has been adupted in England with coloured cements for outside work.

Under the phaterer's trade it may be desirable to mention some of the varicties of artificial marbles, scayliola, anc other smilar worm tor the deromation of luildings. Scagliola is a species of phaster or stucco invented about 1600-50 in laty. "The work is lathed and pastered as usuol, and then the artist commences, prepring his material, which is composed of the purest gypsinia broken into suall pieces and calcined, passed through a very fane siuve asd mixed up with glue, isinghass, \&c. In this solution the colours are dimused that are required to le imitated in the marble; or the colours are prepared separately, and afteriwards mingled and combened nearly in the same manner that a painter mises the primitive colours on his palcte to compese his diflerent lints. When the gypsmu is prepared and mingled, it is laid on the plaster, and then floated with proper moulds of wood, the artists during the tloating using tho colvurs necessary for the imitation, by which means they become mingled and incorporated with tho burface. The process of polishing follows, first ly means of pumice stone, then with tripoli and chareval and fine and soft linen; after this the surface is rubbed with a piece of felt dipped in a mixture of oil and tripoli, and last of all with pure oil. The imitation may be so good that excejt by fracture or by sound it cannot be discovered to be a counterfeit.

Marezzo mathle is made of cement mixed with fibre for strength and to resist a blow. Shatos are hededed on flaster of Paris, and with cramps and dowels like marble. Every variety of marblecan be imitated in it, and it receives a high and permanent polish. The Marke Universe? Company have put forward a new manufacture of a similar descrip. tion. ${ }^{\text {T }}$

Modelling, Carted Work, and Gilding.

The modeller copies the drawings of the designs which Moreling may have been prepared for the enrichments, in whatever material they are to be cast, whether in plaster, in metals, or in composition of any kind, for the plasterer, smith, or decorator. The model is made of soft wood, by the usinal chisels and gouges, or in a finely-tempered and plastic clay called modelling clay, or in wax. The modeller works the clay with lis fingers, assisted by a fow ivory, bonc, or steel tools for finisbing off neatly and sharlly, and for working in farts which be cannot reach with his fingers. The best workman is onc who can do most towadd producing the required forms with his fingers, unassisted by artificial tools, as a greater degree of ease and frecdom almost always results from the use of the hanes alonc. 'The modeloboing completed, it is noulded, that is, a mould or moulds are made from it of a preparation of resin or of gelatine, sometimes of plaster of Paris; the moulds, if they have to be formed in portions, are fitied exactly to each other at the edges, and in these moulds casts in plaster of Paris or other material are made to any extent that may be required. Fur smith's riurk the wood model is sent to the fouder for casting in metal. For carved work, such as caps of culumns, shidds, medallions, consoles, \&c., the model may be sent to the mason or stone carver for the completion of the block, which may have been left in a boasted state by the mason when settivg it

The modeller having some pretensions to be considered on artist rather than a mere artilicer, is for the most part pat accordirg to his merits, rather than for so much timm, according to the ordinary mode of determining tha aiue of artificers' works.

The earver is strictiy an macpethint artist, whose busi- Cared ness it is to cut ormaments and curichments in solid and work" durable matcrial, such as stone and wood, so that, like the modeller, he nust be paid according to the tasto and power he may exhibit in his works, rather than as a common artificer. The art of carving has, however, been in a great measure superseded by modelling and casting. In works of a free style, or of a medieval character, the carver is often left free to exercise his own tante and fancy or talents in the exccution, with or without a shetch ly the architect before him. The decorator, in adihition to chats Decorativa in plaster of Paris, now nakes use of compen ition orma-worik. ments, which are formed of a mixture of whiting and ghe pressed into moulds; or of papier mathe, whin is praper pressed into moulds; or of a composition of a thin coit of plaster of laris ponred into the mould, and then covered with coarse canvas, the result hring to all aprearance a d laster cast, but it is far lighter in weight-a figure tho size of life being rearlity moved about ly eneferson. It was an old process revived ly the late Mr Owen Jones, and well carricd ont for him ly M. Desachy, in the claborate ornamentegl ceiling at St James's Hall, lit cadill:.
Gilding is applied to eastings as well as to carrings ; Gilding. but the former being, almost as a matter of courec, liss sharp and spirited in their flexures and details, as well as less firm in substance than the later, castings can less bear to he further subdued by the application of doveign matters to their surfaces than carvings max. Gilling is the arylication of gold leaf to surfaces, which regaire, howerer, to be previously preparcd for its reception. The work is first primed with a solution of boited linseed cil and carbonate of lead, and then covered with a fine ghtinous composition alled gold size, on which, when it is nearly dry, the gold leaf is laid in narrow slips with a fine brush, and pressed down with a picce of cotton wool heh in the fingers. As the slips must be made to averlap, each other slightly, to insure the romplete cortring of the whole surface, the loose
edges will remain urattached; these are readily struck off with a large sable or camel-hair brush, fitted for the purpose; and the joints, if the work be dexterously executed, will be invisible. This is called oil gilding, and it is by far the best fitted for the enrichment of surfaces in architecture, because it is durable, and is easily cleaned. and dnes not destroy or derange the forms under it so much as burnshed gilding does. The latter requires the work to be covered with varivus laninie of gluten, plaster, and bole, which last is mired with gold size, to secare the adhesion of the leaf.

Glazinc.

The business of the glazier, the manufacture of whose material has of late years im roved and rogressed in a very remarkable degree, may be confined to the mere fittung and setting of gliss; even the cutting of the plates up into squares being generally an indepeodent art, requiring a degree of tact and judgment not necessarily possessed by the building artificer.
The glazier is supplied with a diamond or other cutting tool, laths or straight-edges of various lengths, a square, a glazing-knive, a hacking knife, a bammer, a duster, a sashrool, a tru-foot rule, and a machine called a glazier's hurse, which he fixes outside a window sill, and stauds on to reach the upper pancs for glazing or cleaning purposes, without remoring the sash, and so injuring the beads and paint.

His materials are simply glass, putty, and priming or paint. The glass is supplied by the glass-cutter, of the qualitios and sizes required for the particular work to be executed. The putty is made by the glazier bimself, or by a labourer, of fino clean powdered ebalk or whitening, well mised and combined with linseed oil, and kacaded to the conaistence of dough. No more putty ahould be made at onee than is likely to be worked up in the course of a few days, as, the oil drying out, it becomes hard and partially set, and is therefore less available for its purposes. Priming is a thin solution of white (with a little red) lead, mixed in linseed oil. For ordinary glass, the sashes are sent to the glazier from the joiner, after having been fitted into their places, and only require to be glazed before they are permanently set or bung. Supposing that no preliminary ,proness is required, auch as stopping (the result of bad joiners' work) and knotting (and knotty stuff should not be admitted in sashes), the aashes require to be primed. The priming is laid on every part of the sash except the outer edges of the styles and of the bottom and top rails, with the sash tool or painting brush, that is, if the sashes are intended to be painted; for if not, the rebates only must be primed. The object of thisis to prepare the material of which the sash is composed for the rcception of the putty, which would not otherwise attach itself so firmly as it does after this preparation. Tho priming being sufficiently dry, the workman euts the panes of glass down into their places, making every one fall readily into the rebates without binding in any part; indeed the glas, should fit so nicely as not to touch the wood with its edges anywhere, and yet bardly allow a fioe point to pass between it and the aash-bar or rebate, the object being to encase it conpletely in putty, and yet that the putty should not be in greater quantity than is absolutely necessary. The glass being fitted or cut down, the workman takes the glazing-knife in his right hand, and a lump of putty in the palm of his left, the sash being laid on its face, that is, with the rebates upward, before him; with the knife be lays a complete bedding of putty on the returning narrow stops of the rebates, all round to every pane. This being done, the panes of glass are put on it as they have been fitted, and every one is carefully rubbed down with the
fingers, forcing the putty out below and round the edges of the glass, until they are nearly brought into contact with the wood or other material of the sash. The rebates are then filled in with putty behind, the mass forming exactly a right-angled triangle, its base being the extent of the stop of the rebate, and its perpendicular the depth from the glass to the outer edge of the rebate; and the third side or bypothenuse is neatly smoothed off. The sash being then turned on its edge and beld upright by the left hand, the protruded putty of the bedding, or back putty as it is called, is struck off with the knife, and the section of it neatly drawn. The sasbes are now deposited on their faces to allow the putty to set, and then they may be hung and painted.

To very large squares, and to plate glass, ncedle points, or simall nails called sprigs, are used to retain the material securely in its place while the putty is soft and yielding. These have to be carefully inserted, for if they fix the glass it is apt to fly at any sudden vibration. Large squares and plate glass are usually mserted after the sashes are hung, to prevent risks of breakage. Where the bar and frame can be made to allow of it, large squares are secured in their place by wood beads screwed to the rebate in lieu of putty. In this case the edge of the glass is first covered with a pieçe of flannel, or this india-rubber, to fill up crevices, and so preveut admission of dust, aud stop any current of air.

Lead-work, as it is terned, is the glazing of frames Lead-work. rather than of sashes with small squares or quarries of glass, which are beld together by reticulations of lead; and these are secured to stout metal bars, which are fised to the wiadow frames. Leaden reticulating bars are grooved on their edges to receive the quarries, and are tied by means of leaden ribands or wires to the saddle bars, which, in their turn, are affised to the stouter bars before mentioned, if the bay or frame be so large ns to require both. This is now extensively carricd on in tho painted glass window slops, where the glass is cut to patterns, and shows outlines of figures, costumes, dc. "Stained glass" is obtained by mixing colours in the pot while in the furnace, hence the term " pot metal" for it. A kind of coloured glass has only a skin of colour on one side of the white material, and hence is terned "flashed glass."

Besides all the varieties of elear glass, the glazier baa variesies or now at his command the many qualities of obscured glass, glass. beyond the ground and painted glass of former days; the lace-pattern glass, executed by laying a pattern on the material which bas been covered with a varnish, placing it in a box filled with a fine powder, which when shaken adheres to the varnished portions, and then put. ting it in a kiln where it becomes fixcd; the patent rough plate for conservatories, rorkshops, \&c., and its fluted varictics; the rough cast plate for workshops and storchouses; the stained ornamented quarry for church windowa, \&e. Lastly, there is the engraving on glass by aid of the sand blast,-a new and easily managed methud, consisting in a jet of air blown violently tbrough a tube, carrying with it particles of fine sand. The action is very rapid, and it reduces the surface in a few minutes to the condition of ground glass. A picee of lace, however, is sufficient to arrest the action of the sand. Reece's patent embossed and coloured glass is useful for screena and for windows which are not meant to bs looked through.

Coming within the ecope of the glazier's businees is the norel pavement light, conaisting of a frame of iron cast with small many-sided apertures, into which are placed a aeries of domeshaped or prism-sbaped blocks of glass, reflecting the light falling upon them. They distribute the light to a greater extent than a piece of rough plate-glass, and like Chappuis's and other reflectors require to be kent elean. Moore's mindow ventilator allows of the
admission of air through its touvres, which are worked by a wire or cord as necessary. Hartley's patent perforated glass atternpts to gan the same end by small slits formed in the pane.

For publications relating to the glazier's chicf material, see the s.rticle Glass. For patteras of lead-work, see Shaw's reprint of W. Gidde, Booke of Sundry Draughtes, 8vo, 1615.

Smith-work and Gasfitting.

The smith is the worker in wrought metale of all kinds required chiefly by the carpenter and joiner, who fixe3 them in the building. Smithery is the art of uniting teveral lumps of iron into one lump or more, and forging them to any desired shape. Thee earlier parts are done at the forge and on the anvil with the hammer, and hence is produced "wrought work," whether for useful or for ornamental purpozes. Machinery has been brought extensively to the smith's assistance, for rolling, drilling, planing, \&c. The ornamental portion of his work is wrought iron shaped by band into devices and patterns according to the various styles of arebitecture, as in gates, railings, standards, binge bands, locks, handles, knockers, lanterns, eandlesticks, and other lighting contrivances, Which are also executed in brass-work and in cast-iron.

The founder's work is all cast metal, guch as for ornamental gates and railings, ran-water pipes, cistern heads, and other portious, gutcering, stable-fittings, coal-plates, \&c. These eqmimonly require to be fitted and fixed by the smith. The founder supplies all fire-grates, stoves, and other apparatus for varming and also for ventilation.

The gasfiter is a suith who supplies and fixes east-iron pipes for dianters above two inches, and wrought iron for those of smaller bere, where gas 13 required to be used. A three-quarter anch pipe is considered by some as the least size to be used even for suptlying roms on an upper story; tin or compesition metal pipes are Exed for sizes under half an inch, and also flexible tabes. It is. recommended that no ppes should be embedded in the plastering, as is usualiy the case. In 'raris the gas pipes must be seeu for their whele length, and where passing through a floor or partition they must be int thruugh a larger pipe having both ends open. Lights should not be fixed within 36 moches beneath woddwork. The solar or sun light is one of the modern additions for lighting large halls, as well as for dwelling. ormas; the globe lights, and some others of the same tind, all assist also in ventilating the apartments by tubes earrying off the products of combustion, which tubes are ordinarily fised in the thickness of the floor; and as the air therein is rased to a very ligh temperature, great preeautions are required to prevent danger by fire to the timbers, and also where the tubes pass through the roof. The effect of continued hot air on wood is little understood by the publie generally. The star light, an invention of the late Mr Owen Jones, eonsists of a number of jets placed either horizontally or slightly inclining upwards at the jets; this is productive of a pleasing and brilliant light. There are many varieties of gas burners. sueh as the one called a fish tail, from whieh the form of the flame is the worst as regards econemical results; the bat's-wing is better, and the argand is, the best. The latter is a metal ring, pierced with numerous small holes, which divite the flame and allow of the proper combustion of the gas. Besides the common metal burners, there are some made with a soepstone or other cap, to prevent corrosion; and one of the better class is Bromner's patent burner, inte which the gas is adnitted through a very small opening adapted for supplying only a certain fueatity of gas per hour. The usual burners have a
large opening up to were the gas is consuined, and hence a waste of it.

For publications relating to the smith and founder's trade, sse the article 1 BON ; also Brandon, Analyszs of Gothic Architerture, 4 to, 1847: Viollet-le-Duc, Duct. Raws., 8.v Grille did Scrrurerie: Wyett, Metal Work, iol., 1852; Jousse, La fideie ouverture de l'art du Serruretie, fol., 1627 ; L'A rt du Serruretie. 10 Description des arts ei metzers, fol., 1767 ; Fordnn. Livre du Ser. rurcrie, fol., 1723; Cottingham, Smith, Funuler's, de., Director, 4 tn, 1823: Pugiu, Designs for Iron and Brass Worh. 4 to. 1835 ; Shan, Examples of Omamental Metal-Work, 4to. 1825 ; Weildon, 7 he Smith's Pight Hand, 8vo, 1765, Leconke, Choix de nouteaux modeles de Scrrurerte, fol., 1838 ; Scoti, Ur7amental Dessgrs, fol, 1852 ; King, Orfecreree el ouvrages au mmyer age. fol., 1853-60 T'ijou, A Niw Eooke of Drawings, fol., 1693 ; Bordeaux, Serricter: du moyen age, 4to, 1858; Bury et Hoyau, Modeles de Serituretic, fol.. 1826 : Thiollct, Modeles, dic., fol., no date: Lachave, Baleons, dic..

House-Panting.

The real object of painting is to protect wood, metals, and stuecoes from the action of the atmosphere, by covering them with a material which is capable of resisting it. A continued succession of monsture and dryness, and of heal and frcst, soon effects the decomposition of woods, eauses oxidation in most of the metals used for econome purposes, and destroys the generality of stuccoes if thear surfaees be exposed nakedly to it. A solutiou of eeruse or white lead in linseed oil spread over them prevents theso injuries in a great measure, and for a considerable period of time; and as the application of such an unction can be repeated without much trouble or expense as often as occasion may require, it may be said to furnash a protection agamst the contingencus named. In addition to the uality of painting, it is also avalable as an ornanent, by brugeng disagreeably or diversely coloured surfaces to a pleasing and uniform tunt, or by diversifying a disagreeable monotony of tint, to suit the taste and fancy; and thrs is done in a great measure by the addition of varous paments to the solution before mentioned.
The panter worls with brushes of various sizes, made Took of hog's bristles, or of harr with a misture of bristles, and pencils made of badger's har; these, with the addition of pots to hold his colours, a grinding-stone and grinder or muller for grinding or triturating them, a pallet and a pallet knife, dusting brushes and a seraping knife for eleanng iron-work before repanting, are almost his ouly mplements. In painting the cutside of windows be sonctimes uses the glazier's horse. His materials are eomparatively few also; but for some purperes these require a great variety of ingredrents, the preparation and combnation of which, however, now develves principally on the manufacturer or colourman, and not on the painter himself. The colours are ground with a muller, which colons is worked on the stone until they become a very fine powder; with some, the more they are ground the better is the colour. The powder is moistened with a little water or oil, as neeessary, from time to time. They should all be ground separately; it is not good to produce a tint by mixture until they are well prepared. Only the quantitieg necessary for the work undertaken should be got ready. Commen colours are those which are produced by the addition to white lead (or zine white) and oil of lamp-back, red lead, or any of the common ochres; blues, greens, rich reds, pinks, and yellows, dc., being more costly, are taken as such. Unflatted white as a common colour; Listted it elasses with the rich colours. if the same surface be painted of two different tints, it is said to be in pasty colours. The substance generally constitating nine-tenths of the body of paint is carbonate of lead, commonly called white lead, the quality of «hich is therefore of the greatest importance
to the durability of the work. It is said to 1mprove ty belog kept fo: several yeara before use. Thrce qualitics are manufactured, and there are six or more chief modes nf adulteration recorded, which accounts in some measure for the great difference in painters' prices, and the reLitive values of therr work when done. The other metallic white paint occasionally used, especially in water colour prantugg. is zinc white. It is well known for ats antense whateness, its resistance to sulphurous and otber deteriorating causes, and its barmless qualites to the workman and the inmates of the house under decoration. Zinc white possesses less tody than white leal, and great care is requiste that the colour when ground in oul is of suf tient coosistence to be had on a biat sarface wathout ...asing through; any oil in excess will torm a shght e^{-1} itinous coating on the surfacc, retaning every partecle o. fust brought in contact mith it. until it has evaporated. In general this white does not dry so quackly as the oth r colour, but this defect is remedied by the alphication ot proper drsiug oils. It is asserted that in consequence of the great durability of tho colour, the pant may be wasbed for a succession of three, four, and even five gears; and that after each successuse washong the surface will be found as clear and bright as when fresh painted.

In painting or layng on the colour, the brush muen be 'constantly at rught angles to the face of the work. only the ends of the hars, in fact, touching it, for in this imanner the paint is at the same tume furced into the pores of the wood and distributed equally orer the surface. If the brush be held obliquely to the work, it will leave the paint in thick massers wherever it is Girst applied after beang dipped for a fresh suplly into the pot, und the surface will be daubed, but not painted. Painting, when properly executed, will not present a shinms. smooth, and glossy appearance. as if it formed a fitm or akin, but mill shom a fine ond regular gratn, as if the surface were natural, or bad recerved a mere stan with. out destroyng the organal texture. Inmatave grainnge, however, and the varnshes which are inteaded to protect them, and make them bear out, necessanly produce a new and artificial texture ; and for this reacon sonte consuder them to a greater or less exient disagreable, hewerer well the imitations mas be effected. Carved mouldias and other enrichments liare to te picked ont with a pencal or small brush, that the quirks, de., be not choked up.

As it must be presumed that all the wond submited to the operations of a painter, which has pasself through the hands of the joiner, is already well seasoned and properly dry, it is only decessary to say generally, that the work should be free from mosture oi any and every hind before paint is applied to it, or it will at the least frove useless, and probably injuricus rather than tenesicial. This remark applies alike to wood and to plaztered work, hoth internal and exteral ; that is, whether they be suklectad to the more violent clanges of the weather or not. Dampiness or moistare in wuods, stopped in or covered up with paint, will, under ordinary circumstances, tend to then destruction; and in stuccoes it will sume the paint, and most probably injure the plastering itself also. The Grst thing the workman has to attend to in painting new wood-wnrk is to prepare its surface for thio reception of paint, by counteracting the effect of anything that may tend to prevent it from becoming identified with the material. Thus, in painting pine-roods, the resin in the knots which appear on the anfface must be neutralized. or a blemish will appear in the finished work over every resinous part. In best work the knots should ba cut out to a sligth depth at the bench, and the holes filled up with a stiff putty made of white lead, japan, end torpentive. The rext best way is to cover them with
gold os silver leat. The usum method is to cover there with a size knotting, which is a preparation of red leab. white lead, and whitening made 1 nto a thin pasta witis size. The coramon coating of red ochre st rurth nothing. The next process 18 that of priming, which consists 10 giving a coat of whte lead rith red leáa and a little drier in linseed oil. The is the first coat, upon wheh the look of the finished work much depends. Inequalties or unevemesses oi surface must be red:ced wath ismapar or pumice stone or made up with futy, The reeesary process for thling knots will Eenerally leave a fim, whict n:ust be rubbed down; and the heads of nals and brads havang been punched in, will present indentations, which should be stopped, as well as auy cracks or otber imperfertions, with purty. A second coat is then given, conssisting of "hits !ear and haseed onl. It should have a good body, and be tard even. This coat, when thoroughly dry, is in best work rubbed dwn mith fine sand pape: mit carefully examned th ascerem if any further siop. aing be required, and then the thard cont or ground congat saphied, of a sonewhat darler thint than wanted wheb imshed, having suftechat onl for easy worhug, bue not too ahid, -about two-tbrds onl and one-therd tarper: tine are ased. The flatung coat follows, the object ot which 15 to do 2way with the gloss or glaze ci the oil, by obtainirg a firt appearace. Whate leal is Eased with marpontine, wibl sometumes a hatlo cotal varnish; the colvarang matier is added, but alows lighter then the ground colour, or it would when firsenal appear in a sernes of shades and stripes. Flatung mast the eanc:ned quackly, on account of the craporauca of the turpuane. and the brush 18 generally, if the almass, cantied up tion wall and not across it. Scome panters use a larze quarnty of turpentiae in the several coats for cquack werk, as it drızs more rapidy ; but for coud and lasting woric :o turpeathe should be used. Flated work is general!y dene only to best arartments. chom staircases, catrance halls, de., and omited in the arper rooms, in bodrooms, and in tasements. All new rood work should he panted a smacient number of coats to "bear out" as it is called; this is a precaution aganst each cont beng so much diluted with iutpentue or ceher flud as not to cover sufficiently, whech is seen by a deadness in one part and a glaze in antither. The prming cost and three others shouid be sumbient. Sometres Fhaser and new wood are tirst done ever with clearcole. which os whate lead gronan up in wator and aize adala Thas prevents absorption of the oll, but the pint adics subseqquently is apt to Wister or to crack off ; it :Lerciore should not be allemed.

Plaster and stacco to be painted requires sume care in the workmanshap of it, as noticed un.ler "Master-work," supra, to prevent bubles, and must be quite dey. Sorne persons recommend a priming or a cecond coat of strons: double size ; the rext chat then consis's of white lead in wil cs stiff as possible, and then another coat of size, and so on; but such work should be repudiated. A gooud fre cont of primiog, as much as the stucco will absork, is essential.

All new outside work should he primed with red itai nut in or litharge, mised in linseed oil; tho second cont is of the same mistare if four-coat work is to bo done, end in this coat all defects are to be made good; the thiri and fourth coate, as may be determined upon, are generaily of the tint required.

In painting old work, where two conts are generajiy ats werk. considered sufficient, the surfeco mast be well washed to get rid of all dirt and grease, and then rubbed down wita pamice-stone to remore all inequalitics. The work them receives one coat, efter which any holes are stopped b: the painter with puty, the socond and pullato a : inta
coat, or a flatting coat, are theo applied. Sometimes each oit the earlier coats is rubbed down.
Old ceilings and somits of stairs are either, washed to clean off the dirt and grease, stopped (which in cutting out the cracks and stopping them with new plaster), and whitened by a coat of whitenng or Spanish wbite mized with site; or after the two first operations they are finished in distemper, which is white lead and size; it presents a better appearance. Colouring is also done to plastered walls, the white being nused in half linseed oul and half tarpentine, and some earth adlled to make the tut required. Limewhiting ss doue by the bricklayer's labourer. Stucco or plaster-work, which is tateuded to be panted, but which is not sufficiently dry to receive the oil, mas have a coating of water colours, or distemper colour, as it is called, iri order to give a more finished appearance to that part of the building. The colour selected should be grouad very fine, and tncorporated with the whiting and parchment, or other stroug size. Two coats will be required to make it bear out uniformly. When the stacco is sufficiently dry, and it is desired to be panted. the whole of the above colouring has to be washed off, and the painting proceeded with as described for new work.

Metal paintiug

Metal-work, not being absorbent, only requires when new to have a priming, and one, two, or three coats of oil prints, as may be considered necessary. It should bave a coat as soon after it leaves the founder or smith as possible, to prevent early stages of oxddation. Old work should be cleaned, scraped, and filed if necessary, to renove rust, broken paint, and dirt.
Graining is onderstood among painters to be the 1 ml tating of the several different species of ornamental woods, as satin-wood, rose-wood, kng-wood, air-wood, mahogany, mainscot or oak, and others. After the necessary coats of paint have been pot on to the wood, a ground is then laid of Naples yeliow and ceruse, diluted with turpentine of for satin-wood, which is left to dry. The painter then preparcs smail quantities of the same gellow and ocire with a hittle brown, and boiled oil and turpentine, and having moxed this, spreads it over some small part of his work. The tat hog's har trushes beng dipped on the liquid and drasa down the newly laid colour, the shades aod grainungs are produced. To obtain the mottled appearance, the camel's har pencils are applied, and when completed the work is left to dry, and afterwards covered by a coat or two of good copal varnish. Imitation wanssot requires the use of combs of various degrecs of fineness to obtasn the grain (whence the process is called combang by some persons), and the dower 19 got by wipiog off the colour with a plece of rag. When dry it is over-graned to obtan a more com plete representation of the notural wood, and then varnished. If the work be done in water colour and wot in oll, beer grounds to act as a drier are mixed with the colour, tois scts it ready for varnishing. A "patent graining-machine," a sort of roller with a puttern opon at, has lately been introduced. The writer of thas artecle suggested some years ago that deal wehl suzed to prevent absurption might be at once grained either wanscot or pollard oak, without the prebiniurry nperation, delay, and smell of painting. When dry it is to be varnished ns usial. The effect is sonuewhat better than that obtamed by the usual method of grainag.

Marbling 18 the imitation of real inarbles, gramtes, de.,
c. some of which arc represented by splasking on the carefully preparel ground, which shonld have been panted and often ruhtead nod polshed to ubtan an cyen surface; others have to be painted in colours, and then well varnistied. The most cxpert at this sort of imitation do their work so as to prevent its easy detection except by the touch.

Ornamental painting embraces the execution of friezes and the decorative parts of architecture on walls and cenlangs in chiaroscuro (or light and shade) or monochrome colouring. The ground is weil prepared, and of the tint of the proposed work; the ornament and figures are driwn upon it, and are then panted and shaded to gise them their due effect. This kind of work is sometames painted on cloth and then fastened up. When the ornamental work is of a sunilar pattern throughout, as mouldings, fretwork. a runming ornament, dc., it is effected by stencilhng This metbod consists in drawing a certan length of the pattera on paper, which is priciced through with a barge sazed needle, then land on the wall to be ormanented, and struck with a small Lanen bag contanang powdered chatk, the cha!k eaters the apertures, and fixes itself agunst the pant. The panter then drams it, or fills in the puttern with coloürs. Another methad is to cut out the fattern where possible, and the paper, beng stuffened whit sue, is latd on the surface, and a brush fillat wath the colour passed over it ; the paper is carefelly removed and land on a frest place, and so on. The pattern may then be twuched up wher dry with another unt, or with gold, or another paitern watl minuter detallad on it, and the operation repeated A wall surface may be covered wath such an ormatientation of which paper bangings are a cheap subshtute.

Many of these methods of decoration baving been styled shams, the promoters of real woods advucated the dis. use of paints, \&c. This has led to the mereased use of deals and phes for inside doors, wanscots hames, shuters. and the like, which, if not left as completed by the tradesmen, are sized and varmshed or pohshed But in such a case a good sclection of the wood is necessary, and it has to be picked. Another methud is to stam the nomber, as of roofs, galleries, and the like or the jomers' wotk, so that at represents various thats of oak, and thas is protected by a coat or two of varmsh. These systems are open to the objection that the varmsh, espectally in tumns, darkens rapidly. and every coa: of at adds to the defect, so that on a few years pant is required to give the work the clean and hvely appearance the wood orgenally possessed. Real wanoscot, mahogany: and other moods are usually polished, the first is sometmes varmshed after being properly prepared tu prevent the rise of the gran which occurs when it is touched by a liquid.

Varaishing having been frequently referred to, we must Varzionnotice that there are many varietits useful for varous pur. ${ }^{\text {lag. }}$ poses Like white lead, oul, and thrpentine, they are subject to much adulteration, whereby the work is deprived of us proper consistency, and the panter and bis employer dissatusfied with the result. There are drying varnishes nate with spirit of wine, these are applied to some furnture, mouldings, dc. Varmshes made with essential ouls, espect. ally those made with oll of turpentine or etber and pere copal, are very sohd, aod better than those made with fat dyying oils, wheh, from thear colour beng dark, are usec only with grounds of a dark colour Varash can some thimes be tinted to correct defecis of colour an graining, dow Fur wood-work copal varnish in on should alene be used?

It is not watha our province to enter upon the bighes class of pauting on walls, which conics under the trade of the decorator, ancluding that of the gilder nod the artistic draughtsman and colourist, nor apon the higher class of paper-hangings. Decorations must necessarily depend upon the taste and still requared or employed in producing them, Paper-hangings are pand for by the plece or yord. a picce being made in England twelve gards long and twenty unches wide, und the hanging is charged at so much the prece. A dozen of horders is twelve yards long, they are charged by the yard for the material, and by the Idozon for hanging. Sizing and othermse preparmig tae
walls snay be requisite before banging the papers; and washing old papers from of the walls should always be insisted upon by the orner of a house, as accumulations of paste, colours, and size are apt to breed vermin; and, as some think, to give rise to fevers. French paper-hangings are only eighteen inches wide and nine gards long. Wood-linings, old panelled wainscutiog, and other arregular surfaces, require to be canvased and papered before the decorative paper is hung, otherwise it is liable to erack with the shrinking of the wood.

The principal publications on house painting are as follows -'Tiogry, Painter's and Varnisher's Guide, 8vo, 1832. 3d edit.. Higgins. Painter's and Decoralor's Companion, 4to, 1 41; Arrow. smith, House Decorator's and Painter's Guide, 4to, 1840 Field, Rudi. ments of the Painter's Art, 12mo, IC50, and his Chrfic tography. 4 to, 1841 : Smith. The Art of House Painting, 12mo, 168\% 1 mproved by W. Butcher, Svo, 1821; Whittock, Decorative Painter's Guide. 4to, 1841 ; Moxon, Grainer's Guide. 1842 ; Barbet, Fantor's Assis'ant, $12 \mathrm{mo}, 1852$; Wood and Marble Imitator's Manual, 8 vo . Edinb. There are two or three Freach journals which give ex. ainples of imitations of woods and marbles, and illustrations of decorations for apartments.
(W. P.)

Index op Pbincipal Subjects.

Legal defnition.

BUILDING SOCIETIES, or societies "for the purpose of raising, by the subscriptions of the members, a stock or fund for making advances to members out of the funds of the society upon freehold, copyhold, or leasehold estate by way of mortgage," may be "either terminatiug or permanent" (37 and 38 Vict. e. 42, § 13).

A "terminating" soeicty is one " which by its rules is to terminate at a fixed date, or when a result specified in its rules is attained;" a "permanent" socicty is one "which bas not by its rules any sucb fixed date or specified result, at which it shall terminate" (\$5).
Popular definition. A more popular description of these socicties would be,-Societies by means of which every man may become

Foatings. 470.
Foundations. 452. 456.
Fouoder's work. 510
Framing, 490. 493
Gasitung. Gll
Girders. 4s2,4
Gis
Glazing. 309
Glue. 489
Graininz, si2.
Grouting. 4riz
Gutters. 502.
Halls, 413 .
Hating-bone brickwork,
48.

Flnges. 492
I'on sa building mate-
HAL 147 .
Jorgles. 472.
Joinery; 484-499.
Joinis In brickwork, 462:
In carpentry. 177: vannus fortas of, 179: in Joinery, 48,
Knotting. 511.
Landing 472.
Lathing, 504.
Lesh idy.

Lintels, 46 is

Warbles, initstion, 508
Mason-work, 468-4io.
Masts. 47 Z .
Bindelling. 50 s .
of, f60: use or, 10,
Mortising. 179, 4i]. 431
Mouldinas, $433, \$ 06$: wari-
ouskinds of 487 ; fixing.
Plaster-work, 504-803: re-Plumber-work. 502
rlumbling snd levell ng. Minmbl
4 tl .
Pointed cathedral, 45. Pointing. 4Gt
Pozzuntans. 453
Rooting. 484, 5i1, 503.
Rongh cast. 507.
Bubble waling. $4: 0$.
Ssshes, 404: fitung of. Ssshes
436
Suwyer-work, 476
Scaffolding. 457. 4is
Scagliola, sis
scathing. 4is. 450
Scrabinz 494
Suncis. 41%
Shutiera $49{ }^{\circ}$
SkITt!
Slater-work. 500 O
Smith-wolk, 310
Soider, 502.
Splies. 473.
Stability, 447
Stails. 154.1 133. 49i-439

Stencilliak. Bis.
Stoge as bulldiag mata. rlal. S1: compated wits brleks 451.
stones used for bulldag. 469
itraps. 4RO
Hring courses. 472.
tucco, 514
Enons 479.451.491
Thatching. 601.
Tileg, ormamental. 467.
Thing. 463 .
Timber as buslding minerial. 415. kinda used. 17: ehrinkage. 480.
Tracery, 4is
Traps in drains, 467.
Truss. 489.
Trmolnc. 482.
Varnishlak. 812
Voultine. tis
Wall-plases, 165
Wajs, thikness of, 451,
MN10. 463.
Wedging. 479.481
Wiadow extinca 496.
Wood-brictg, 405. "bis own landlord," their main purpose being to collect together the small periodical subscriptions of a number of members, until each in his turn has been able to receive a aum sufficient to aid bim matcrially in buying his dwelling. houss.

The origin and early bistory of these societres is not very clearly traceable. A mention of "building clubs" in Birmingham occurs in 1795; one is known to bave been established by deed in the year 1809 at Grecowich; another is said to have been foupded in 1825 , under the auspices of the earl of Selkirk at Kirkcudbright in Scotland, and we learn (Scratchley On Building Societies, p. 5) that similar societies in that kiagdom adopted the title of "menages."

When the Friendly Societies Act of 1834 gave effect to the wise and liberal policy of extending its benefits to societies for frugal investment, and generally to all associatiens having a similar legal object, several building socicties were certified under it, -so many, indeed, that in 1836 a short Act was passed (6 and 7 Will. IV. cap. 32), eonfirming to them the privileges granted by the Friendly Societies Act, and according to them the additional privileges (very valuable at that time) of exemption from the usury laws,
simplicity in forms of conveyance. porer to reconvey by a mere endorsement under the hands of the trustees for the time being, and exemption from stamp duty. This Act remained unaliwed till 1874.

The early socicties were all "terminating,"-consisting Terounar of a limited number of mumbers, and coming to an end as tog soon as every member had received the amount agreed socistes upon as the value of his shares.
Tske, as a aimple typical example of the working of such a society, one the shares of which are $£ 120$ each, realizable by aub scriptions of 10 s . a month duriug 14 years. Fourteen years hap. pens to be vearly the time in which, at 5 per cent. compoued interest, a aum of moncy becomes doubled Hence the presene value, at the commencemeat of the esciety, of the $£ 120$ to be real ized at its conclusion, or (what is the sanae thing) of the suhscrip tions of 10 s . a month by which that $£ 120$ is to be raised, is $£ 60$. If such a society had issued 120 ahares, the aggregate subscriptions for the first moath of its existence would amount to exactly the sum required to pay one member the present value of one share. One member would accordingly receive a sum down of $£ 60$, and an order to protect the other members from loss, would erecute a mortgace of his dwelling-house for ensuring the payment of the future aub. ecription of 10 . per month until every member had in like manner ohtained an advance upon his abores, or accumulated the 2120 per share.
As $£ 60$ is not of itself enough to buy a house, even of the mos: modest kind. every member desirous of using the aociety forits onginal purpose of obtaining a dwalling-house by ite means woult require to take more than one share. Ia this respect the Act of 1836 presented a curions inconsistency; it limited the amount of each share to $£ 150$, and the amount of the monthly contributions on each ahare to $£ 1$, but did not limit the number of ahares o member might bold. If its purpose in this respect was to confine the operation of these sccieties to the industrial clases, it was de. fective. The only rational erplanation of the provision is that it wis az anticipation of the modern system of hmited liability.

The earlier formed societies (in London at least) did not Names of usually adopt the title "Building Society;" or they added to societea. it some further descriptive title, as "Accumulatiag Fund," "Savings' Fuad,". or "Investment Association." Several are described as "Societies for obtaining freehold property. ${ }^{*}$
or simply as " Mutnal Àssociations," or "Societies of Equality." The building societies in Scotland are mostly called "Property Investment Companies," or by some similar name. Although the term "Benefit Building Society" occurs in the titile to the Act of $\mathbf{1 8 3 6}$, it was not till 1849 that it became in England the sole distinctive name of these societies; and it cannot be said to be a happy description of them, for as ordinarily constituted they undertake no building operations whatever, and merely ad. vance money to their members to enable them to build or to bny dwelling-houses or land.

The name "Building Socicty," too, leaves wholly out of sight the important functions these societies fulfil as means of investment of small savings. The Act of 1836 defined them as societies to cnable every member to reccive the amount or value of a share or shares to erect or purchase a dwelling-house, dc., but a member who did not desire to erect or purchase a dwelling-house might still receive out of the funds of the society the amonnt or value of his shares, improved by the payments of interest made by those to whom shares had been adranced.

Pormsnent

About 18 ± 6 an important molification of the system of societies.

Statistica,

 these societies was introduced, by the inrention of the "permanent" plan, which was adopted by a great nunber of the societies established after that date. It was seen that these societies really consist of two classes of mombers; that those who do not care to have, or bave not yet received, an advance upon mortgage security are mere investors ; and that it watters litule when they commence investing, or to what amount, while those to whom adrances have been made are really debtors to the society, and arrangements for enabling them to pay off their debt in various terms of years, according to their couvenience, would be of advantage both to themselves and the encicty. By permitting members to enter at any time withont backpayment, and by granting advances for any term of years agrecd upon, a continuous inflow of funds, and a continuous means of profitable investment of them, would be secured. The interest of each member in the society would terminate when his share was realized, or his advance paid off, but the socicty would continuo with the accruing subscriptions of other members cmployed in making other advances.Under this system Building Societics have largely increased and developed. In the county of Middlesex alone, 1600 socioties were certificd between 1836 and 1874 ; in that of Lancaster, 1300; and the total number of societics cstablished in Eagland and Wales cannot be less than between 5000 and 6000 .

Deducting the terminating societies which have reached their termination, and the permanent societies which have failed or been dissolved, it is estimated that more than 2000 societies are still in existence. The operations of some of these societies are rery extensive. The Queen's Building Society at Manchester has an income of $£ 734,578$, and assets amounting to $£ 910,224$; 3 society at Halifax hes an income of $£ 261,654$, and assets $£ 430,683$; one at Burnley $£ 221,508$ income, and $£ 324,919$ assets (Arport of Registrar, 1875). Thero are nlso several large bocieties in Scothand.

The total funds and income of building societies cannot be accurately ascertained ; let the Royal Commissioners who inquired into tho subject in 1872, eatimated the total assets of the socictics in 18.0 at 17 millions, and their annual income at 11 millions. The larger societiea are in tha North of Fngland, where, indect, all closses of provident associations, notably fricndy societies and coooperativo societiea, aro more fully developed than in tho Gouth. To this remark, however, there is one exception, viz., the Birkbeck Building Scciety, London, whoso receppts for the year 1874 a mounted to 44 millions, but by far tho larger portion of that enormous aum consisted of deposits paid to the society is a banker.
F'art Bow. A varicty of the terminating class of socicties has met with some
bution of a member tho has not received an advance being muck smaller, while the amount of the advance is much larger, and it is made without any calculation of interest. Thus a society will issue say 500 ahares, on which the contributions are to be 1s. 3d. per week, and, as soon as a sum of $£ 300$ has accumulated, will allot it by ballot to one of the shareholders, on condition that he is to renay it witbout interest by instalments in 10 or $12 \frac{1}{2}$ ycars, and st the same time to keep up his ahare-contributions. The fortunate recipient of the appropriation is at liberty to eell it, and fiequently does so at a profit; but (except from fines) no profit whatever is eamed by those tho do not succeed in getting an appropriation, and as the number of menbers successfulin the ballot nust necessarily be amall in the earlier years of the society, the others frequently become dis. contented and retire. These socictics camot, of course, borrow money, for as they reccive no intercst they cannot pay any. The plan has recently been modified by granting the alpproriaticas alteraately by ballot and salc, so that hy the premiums paid on the sales (which are the same in effect as payments of interest on the smount actually advanced) profits may be earned for the iuresting menbers.

A fuether modification of the " mutnal" " lan is to make ail the Apuropros appropriations by sale. The offect of this is to bring the matual tions by society back to the ordinary form ; for it amounts to precisely the ssle arily. same hing for a man to pay 103. a month on a loan of $£ 60$ for 14 years, as for hint to borrow a nominal sum of $£ 84$ for the same period, repayable in the same manner, but to allow $\mathfrak{\text { £ } 2 4}$ off the loan as a "bidding" at the sale. The only difference between the iwo classes of socictics is that the interest which the member pays who bids for his advance depends on the amount of competition at the bidding, nnd is not fixed by a rule of the society.
in $187 \pm$ an Aet was passed at the irstance of the brilding societics Act of conferring upon them several raluzble privileges, and relieving 1874. them of sone disabilities and doults, which had grown up from the judicial expositions of the Act of 1835 . Building socicties are norv incorporated bolies, and the menbers, and all who derive title through them, henceforth will not have to trace that title throughs 3 succession of trustees for a socicty. Again, a distinct declaration is given to the members of entire frecdom from liakility to pay anything beyond the arrears due from them at the twre of winding up, or the amount actually secured by their montgage deeds. Power to horrow moncy is also expressly given to the socicties hy the Act., but upon two conditions:- that the limitation of liatility inust be made known to the lender, by being printed on the aknowledgment for the loan, and that the borrowed mocy must not exceed two.thirds of the amount secured by mortgage from the members, or, in a torminating society, one year's income from cubscriptions.
Previous to the passing of the Act (or rather to the judicial decision in Lring v. Read, which the clause of the Act makkes statutory) there had been, on the one hand, grave doubts on high legal cuthority whecther a society could borrow money ot all $;$ white, on the other hand, many societies in order to raise funds carried on the business of deposit banks to on extent far exceeding the emouris used by them for their legitimate purpose of investmient on morsFage. It is now enacted, that if a society horrom more than the statute suthorizes, the directors accepting the losh shall be persca. ally responsible for the excess.
The history of building socicties thus briefly traced showa grest progress in the past and cqual promise for the future. The social and moral ntility of socicties established for the direct purpose of aiding a man to become proprietor of bis dwelling-house is obrious, and the extent to which that purpose has boun effected is very conaideraille.

It may oe mentioned that building societies flourith in America (notably in Massachusetts, where they are called "Mutual Loan Fund Associations," and Pennsylvania), and in the British colonies, especially that of Victoria, Australia.
(E. W. B.)

BUITENZORG, the capital of an essistant-residency in the island of Java, is situated in $6^{\circ} 37^{\prime} \mathrm{S}$. lat. and $106^{\circ} 52^{\prime}$ E. long., and is 66 miles S. of Batavia, with which it has been connected by rail since 1872 . 1,ying 830 feet above the level of the sea, and possessing a salubrious climate, it is becoming a forourite place of residence for the Dutch of the greater city. Its principal buildings comprise the now church, which serves both for Protestant a:sd Roman Catholic worship, a mosque, the regent's mansion, excellent barracks for the garrison, a prison, buitt in 1848, a bathing cstablishment, and the country palace of the governor-gencrai. This aptenad edifice occupies the site of the old castle, which was founded in 174t hy baron ran Imhof, enlarged by Daendels in 1809, restored by Van der Capellen in 1819, and destroyed by an earthquake in 1834. The botanical gardens, laid ont in 1817 by Van der Capellen. are among the finest and most extensive in the rorld. la
the neighborrhood of Buitenzorg is Batton-Toulis-Cocabatou, a sacred wood held in high veneration by the natives.

BUJALANCE, a town of Spain, in the province of Cordova, and about 25 miles ${ }^{\circ}$ E. of that city. . It contains a Mooristi castle flanked with towers, two hospitals, a foundGug asylum, and a scminary for the education of girls. Seather and woollen elotb are manufactured. Population 8946.

BUKOWINA, a duchy and crown-land of the Austrian empire, bounded on the N. and N.W. by Galicia, W. by Hongary and Transylvania, S. by Moldavia, and E. by Molldavia and Russia. It bas an area of 4036 Englisb square miles, and the population in 1869 amounted to 511,964, of whom 255,919 were males and 256,045 females. The country, especially in its southern parts, is largely occupied by offisboots of tbe Carpathian mountains. Its northern berder is skirted by the Daiester, and a considerable section is drained by the Pruth, but by far the larger portion belongs to the system of the Danube, and is watered by the bead streans of the Sereth, the Noldava, and the Bistritza. The climate is bealthy list severe, especially in wiater; and the soil, particularly in the north, is of great fertility. A large part of the surface,-according to official statistics in 1870, no less than $1,050,849$ aeres, or.nearly one-balf of the whole,-is occupied by woodland; and the very name of the country is derived from the abundavec of beech-trees. Wheat, rye, onts, maize, barley, beans, potatoes, flas, and bemp are all more or less cultivated; and ahout 643,319 acres of arable land are under tillage. Gardens and meadows oecury 301,700 acres, vineyards 11 , and pasture 290,531 . In 1870 the number of horses io the duchy was 42,649 , cattle 224,424 , sheep 217,913 , goats 18,786 , and swine 133,385 , while the bee stocks amounted to no fewer than 27,091. The mineral productions comprise copper, -iron, lead, silver, coal, salt, sulphur, and alabaster, some of which, however, are only yielded in very molerate quantitics. In 1870 the iron ore obtained amounted to 5508 tons, the copper to 945 , and the salt 2590 . The principal mineml surings are at Dorna-Watra, Jakobeny, and Lopusma, but none of them as yet are much frequented. The country is divided into the eight districts of Czernowitz, Kimpolnng, Kotzmann, Radautz, Sereth, Storozynec, Suczawa, and Wisznitz, the capital Czernowitz forming a separate and nintlr division. There are seven towns in all, eight market-villages, ànd 456 bamlets, the most populous places being Czernowitz with 33,884 of a population, Radautz 9429 , Suczasa 7450, Sereth 6486, Kuszusmare.6419, and Kimpoling 5561. Industrial activity is still compantively slight, the most important establishments being the bresieries, of which there were fifteen in 1870 , and the distilleries, which numbered forty-nine. The population is of various origin,about 180,000 being Ronmanians, 200,000 Ruthenims, and the rest Germans, Poles, Jews, Hungarians. \&c. The German language alone is used in twenty-one of the village schools, and Roumanian in forty-nine, while in many both are in use. In 1869 there were 376,946 adherents of the Greek church, 74,347 Catholics, 11,393 Protestants, and 47,772 Jews, the total population amounting to 511,964 , while in 1857 it was only 456,920 . The Bukowina diet consists by the law of 186 d of thirty members, including, besides the bisbop, ten-appointed by the landed proprietors, seven by the towns, and twelvo by the rural communes. Five members are sent to the imperial dict. Originally a part of Transylvania, Bukowine, passed in 1482 to Moldavia, and in 1775 to Austria, who united it in 1786 as the Czernowitz circle with Galicia, but in 1849 raised it to its present independence

BULACAN, the chief tomn of a province of the same name in the Philippine island of Luzon, situated on an arm of the Pampanga delta, about 15 miles N. of Manila. With the exception of the cburches aud a few stone buildings, it was completely destroyed by fire in 1859, but has since been rebuilt Population estimated at about 10,000.

BULANDSHAHR, a district of Britisb India, in the Mreerut division, under the jurisdiction of the Lieutenant Governor of the N.W. Prorinces; lies between $28^{\circ} 3^{\prime}$ and $28^{\circ} 43^{\prime}$ N. lat, aud $77^{\circ} 25^{\prime}$ and $78^{\circ} 32^{\prime}$ E long. It is bounded on the N by the district of Meerut; on the E by the districts of Noradabad and Budaun; on the S. by the district of Alizarb; and on the W. by the districts of Gúrgion and Dellí The district stretches out in a level plain, with a gentle slope from north-west to south-east, and a gradual but very slight elevation about midray between the Ganges and Jinma. Principal rivers, the Ganges and Jumna-the former navigable all the year round, the latter only duritig the rains; minor rivers, Hindan and East Killi Nadi, not navigable. The Ganges canal iotersects the district, and serves buib for irrigation and navigation. Arca of Eulandshalir district, 1910 square miles, of which 1368 are under cultivation ; 346 cultivable, but not actually nadercultivation; and the rest uncultivable waste. Population in 187:, 936,593 souls, residing in 182,694 houses, and iuhabiting 1506 villaces; persons per square mile, 490 ; per village, 598 ; per house, $5 \cdot 1$. Of the total population 760,602 or $81 \cdot 2$ per cent. there Hindus; 175.900 or 18.8 per cent. Mahometans; and 91 Cbristians and others.

Cotton, indigo, sugar, wheat tolacco, barley, millés end variou: kinds of yulse, form the princirel agicultural iruducta. The chie tralfic roates are-(1), Poad from Marrut to Aligarl) ; (3), frim Delhi to Bareilly: and (3), between Deihi and Auupshahr. 'Jlie East Indian Rallway passes through the district. Total revenue io $1870-71,5150,120$ of which 2155.676 , or 88 Fer curt., was from lanal. The regular constabulary police consisted of 523 men iv 18:0-71, 保的es the rural or village watch. Bulandahar distrin:contained 302 schools in 1872-73, atunded by 6059 [14 ils. The following twelve tnwns in the district have upwards of 5000 inlabib tants:-]. Baran or Bulandshahr, the administrative hodequaters, situated on the right hank of the Kail Nadi, on the route from lareilly to Delhi, io 25° of N. lat and $3 \tilde{j}^{\circ} 50^{\prime}$ E., long. : aten, 111 acres; population, 14,804; municijal income in 1872, $\pm 10: 5$; expenditure, $£ 1139,2 \mathrm{~s}$; rate of municipal taxation, 1s. 5sd. per licad. 2. Dilai-area, 106 acres; pofulation, 7752 ; municipal income, $£ 346,16 \mathrm{~s} .9$ d.; expenditure, $£ 298,75.4 \mathrm{~d}$. ; rate of thxation, 109 d . per head. 3. Andpshahr-area, 323 arres ; population. 9336 ; municinal income, 2548 , 14 s .; exfenditure, ${ }^{2} 532,14 \mathrm{~s}$. rate of taxation, $1 \mathrm{~s} .3{ }_{k} \mathrm{~d}$. per heal. 4. dahancirailad-114 acres popmlation, 9.108 ; municipal income, $£ 571,35.51$. ; expenditure,
 acres ; mpuation, 11,150 ; minicipal income. $£ 455$, l9s. Gd.;
 Dinkanr-area 251 artes; pmplation, 5423 ; municipal income, £1S9, 2s. fit. ; expenditure, £163, 9x.]d. ; rate of tanatioo, 8 g d perhead. 7. Jhajhar-area, s0acres; pomblation, 5632 ; municipal income, 2afl. Jis 5d. cependiture, E190, 2s. 9d. ; rate of taxa. tion, Jnsd. per luad. 8. lewar-area, is acres; pophation, 7399 ; municipal income, £232, lis. 4d. ; cxpcuditure, £233,175. Id.; rate of taxation, 9!d. per lueal. 9. Siyana-aren, 65 acres; polulation, 6268; municipal income, £294, 14s. 5d.; expenditure, £251, 2s. 4d.; rate of taxation, 1] d . 10. Gulaothi-area, 44 acres; population 5608 ; muniapral inconc, £239, 0s. 8 d . ; expenditurc, £2: 2 s .7 l. rate of taxation, 101d. per liead. 11. Khirja-aren, 406 acres population, 26.858 ; muncipal income, $\{2201$, 145 ; ; expenditure 23028, 10s.; rate of taxation, 1s. 8 ̧d. per head. 12. Sitiaodarabar -area, 199 acres; population, 18,349 ; municipal income, 2058 ; expeaditurc, $£ 539$, 10s. ; rate of taxation, 1s. 0sd. per bead. The climate of the district is hiable to extremes, being very cold in the minter and excessively hot in the summer.

Towards the end of the last century, the district passed into the hands of Perron, a French common satlor, who had woo his way up to the rank of a general in the Dlarbatti service Its anuezation formed one of the leading points in the Dlarquis Wellesley's policy, and it was ceded to us by the Scindia treaty of 1803 . Bulandshahr enjoyed a bad conspicuonsoess in the muting of 1857, when the cujar peasantry plundered the towns.

BULGARIA, otherwise known as the vilayet Tuna or province of the Danube (though the two do not absolutely coincide), 13 a political division of European Turkey, which stretches aleng the right bank of the Danube from the influx of the Timok to its mouth, and is bounded on the south by the main chain of the Balkan, which separates it from Rumelia. On the east it is washed by the Black Sea, and on the west is conterminous with Servia. Its area 19 estimated at 32,932 square miles. It may be roughly described as a great table-land. sloping with more or less regularity towards the river, having its surface broken with numerous offshoots and underfalls of the southern mountans, and furrowed by the channels of the many streams to which those heights give rise By far the larger proportion of the area belongs to the basio of the Danube, which in this part of its course receives Irom the right the Jibritza, the Ogust, the Shat, the Isker. the Vid, the Osma, the Yantra, the Lom, and the Kosliasbilar A few streams (mostly small) find their way directly to the Black Sea, the only one of importance being the Kamtchyk, which drains the eastern extremity of the Balkan. In summer many of the smaller streams are almost dried up; but before barvest is fairly over, the wet season frequently sets in, and in spring again there 19 an abundant rainfall. Atrical- Throughout the most of the province the soil is excellent, and if it were properly cultivated would yield the richest crops. As it is, the inhabitants are able not only to supply their own wants, but to furnish a considerable export of agricultural produce. The cereal most abundantly grown is wheat, but Ludian corn 13 also pretty common with the Mussulman farmers. Little hay is made, and turmips are quite unknown. Potatoes are only cultivated by the Tatar settlers in the Dobrudsha. The peach, the apricot, the grape, and many other fruits come to great perfection; and wine $1 s$ manufactured in considerable quantities, but in a very careless and rude manner. The buffalo is the animal chiefly used in agricultural labour, though horses are sufficiently common. Cows, pigs, and goats are also kept, and sheep farming is largely carried on in many parts, but the character of the varions stocks is very poor.

31inerals.

 The mineral wealth of the province is totally neglected, and its rich supplies of timber are often hcedlessly wasted.Commanl Roads can hardly be said to exist: for though several have cation. been. constructed by caterprizing pashas, they bave soon been allowed to fall into total disrepair. A single rallway line stretches from Kustendji to Cheruavoda on the Danube A considerable amount of traftic, howerer, is carried on by the river, and the export trade on the Black Sea is of growing importance. The prorince is politically divided into the sandjaks of Rustchuk. N1ssa, Widdin, Tirnova, Sofia, Varna, and Tulcha. Its principal Tewuo. towns are Widdia, Nikopoli, Sistova, Rustchuk, Rassova, and Hirsova along the Danube: Kustendji, Baltshik, and Varoa on the coast ; and Batadagh, Basarjyk, Shumna, Tirnova, Lovatz, and Vratza. The population, which amounts to from two to two and a half millions, is of various elements, and is estmmated as follows:-

The population along the coast is of a very mingled description, the genmme Bulgarian looking down on the

Gagaons, as he calls the mongrel race, with no swall-comtempt. The Tatars are emigrants from the Crimea, who were permitted to leave the Russian empire after the last war. They are industrious and prosperous, but the Circassians, who have fed from the Caucasus at the advance of Russia, are for the most part very poor. The Turks, Tatars, Albaninns, and Círcassians are Mahometans; the Roumanians, the Armemans, and most of the Russians belong to the Greek Church; and the Gypsies are part Mahometan, part Christian, and part Pagan.
The Bulgamans werexonginally a people of Ugrian or Finoish ex. tractuon, according to Professor Rosler, a Samoyede race. They appear for the first time in history about 120 b.c., when a band, under the leadership of a efiettain salled Vound, took refuge in Armenia and settled on the baaks of the Araxes. They are aext menthoued by Bishop Eunodius as marching towards the left bank of the Danube, and in the following century they became known to the Byzantine empire as a hostile power. About 660 they seem to have brokeo up into several divisions, of which the most important rrossed the Danube under Asparuch (third son of Kubrat, whe had delivered them from the domination of the Avars), settled in Mcesia, subjugated the Slavonic population, and extorted tribute even from the Greek emperor. The kingdom thus founded gradually extended northwards to the country of the Therss, and south over a large part of the peninsula Its most prosperous period was the reign o! Simeon (893-927), who not only made himself formidable to thGreeks as a warmor, but also took an interest in the interaal pro gress of his country, secumag the establishmen: of Christianity, which had been introduced by Boris or Bogoris about 862, and bestow ing his patronage on the early efforts of native literatura. Aftes his death decay began; tho Russians and Petchenegs mraded the country, and the Byzantiae emperors took no rest till the Bulgarians, sadly dimmished in numbers, acknowledged the supremacy ol Basilius in 1019. More than a century aud a half later, two brothers, Peter and Asan or Yusan, headed a successful insurrection, and founded what is known as the Bulgaro. Wallachasn kingdom of the Asaaides, which. after maintaining itself agaiast the Byzantunes and the Huagarians, and even becoming master of Macedoma and Thrace, at last fell under the Tatar yoke, and was baally su'ujugated to Turkey by the fatal hattle of Kossova.

The Bulgarians retain but little trace of their Finnish origin that they were recoganed as belonging to that race is shown by thi name Uunogonduri, applied to them by the Byzantiaes. They still bave high cheek bones; their hair $1 s$ light and than; their eyelid, do not open wide; and the geaeral form of the face is frequentls oval. Of their condition in heathen thmes little is known, thougl a few important deductions, such as that they hat slares, can bx drawn from the questions presented by tbem to the Pope 'in 866 (See Acta Conciliorum, v.) They wera so far Slaronicized by th 9th ceatury that the church germice was held in Slaromic. A preseot, though their language is still fundamentally Slavonic, anc is usually placed between the Russisn and the Servan, yet it v largely mingled with Turkish and Persian, and has even a consider able element of Jtalian and Greek. The Turkish infuence not onf: appears in the vocabilary, but it is no uncommon thing, especiaily in the more preteatious forms of speech. for Slavonic verbs to 6 conjugated in the Turkash mode A grammar was publisbed 1: 1852 by A. and D. Kiyrak Canckof, and Miklosich bas deroted bim. self to the study of the dalects Of early hterary remanos there is an almost total lack; but a oumber of popular songs that seem to hare beeo handed down, prrhaps from heathen umes, have been collected (See Dozon's Les Chumts Populairs Buigares. Paris, 1871.) These songs lave hittio or ao poetic merit, but are full of wild cosmogonic muths. The modern literature is writea 10 a dialect which is hardly uoderstood by the mass of the people, and its existence 18 largely due to forcimn inlluence The alphabet in use is a compound of letters from the secular and ecclesiastical alphabets of Russu. Though nommally menters of the Greek Church, the Bulganans are in many respects as pagur ss they were conturnes ago, and their superstitions are almost countless. The clergy, appointed by the herads of the church at Constantinople, are deplorably ignorant, and frecuently know as little as their flocks of the meaning of the prayers which they read in Greck. Themr arbitrary and oppres, sive dealings excited a strong movement of revolt about 1860 , and the bishops were expelled from many of the towns. A juac, thon with the Roman Catholies, to whom the aational chureh of Bulgaria has frequently shown a leaming. was proposed by one party; which soon found oumerous supporters; but the agitation will probably end in the establishment of an indepeodeot Bulgarzan herarchy

No anconaderable number of Bulganans are to be found beyond the promnce that bears thear oame. They form a more or less im. portant element in the whole region from the Danube to the Ifean $_{\text {g }}$ and from the Black Sea to Eastern Albana. Gochlert reckons thas
there are 4,000,000 in the Turkish empire, and Professor Szabo makes their number in Servia 100,000 . As early as the 14th century emigration took place to the Banat, where tha Bulgarians number upwards of 23,000 ; and in Transylvania there is a colony which retains its dialect. (See Denkshrifter d. Wien. Akad., Phil.tist. Cl., 1856.) Much more important are the Bulgarian settlements in Bessarabia, which in 1862 numbered 70,000 inhabitants. These began to be formed as early as 1787, and receired strong accessions from 1801 to 1812 . The chief town which owed its existence to this transmigration is Bolgrad, on Laka Yalpuk, which passed with a portion of Bessarabia to Moldavia in 1851. About 1865 it had 9000 inhabitants.
For faither Information the readet mar consalt Jochmos's "Jnuraey Into the galkan in $1847^{\prime \prime}$ (Jour. R. Oeag Sor. Iss4): Frälin. In yeim. de ('Acad. de St Pectriboura, aérie el, tom. 1.: Lejean, Ethnagraphie de la Turquie d"Europe, 1 R61: St Clair and Brophy, Residence in Bulgaria. 1869: Tozer. The Highiands of Turkey. 1869: Sax "Skiz2e van mulgarten." In Nitithel. der K. K. Geovr. Gesellsed. in Wrien,
 der Balkam 1875: Brsdafika, "Dle Slaved In der Turkel" (Pelemanns Bitheh., 1869, 玉(L): R. Rüsler, Eümanısche Studien, 1872.
bulgarin, Thaddäus (1789-1859), a distinguisbed Russian writer, was born in Lithuania His father was an officer under Kosciusko in the last disastrous Polish campaign. By some influence of friends Thaddaius was entered at the college for military cadets at St Petersburg, and afterwards reeceived a commission 10 the Russian army, wth which he served against Napoleon and in Finland. He then left the Russian army, joined the Poles under Napoleon, and took part in uearly all the great campaigns in Spain, Germany, and Russia. After the fall of the emperor he took up his resideoce in Warsam, and devoted bimself to litcrature, writing in his native Polish language. In IE15 be removed to St Petersburg, learned Russian, and becano Russian in every way. He edited, alone or in conjunction with Gretch, the Northern Archives, the Northern Bee, ond the Russana Thatia. In 1829 his first novel, Ivin Vuzhagen, ganned great popularity. A continuation was afterwards published under the title Peter Ivanovith Finizhagon. Ihs otber works comprise two novels, Demetrius and Mazeppa, an Account of Russia (Russia in an historicel, statstical, geographical, nad literary point of vicw), sull his Remeniscences. An English trasslation of his best novel, Ivan luzzhagen, was published in 1831 .

BULGARUS, the most celebrated of the famous "Four Doctors" of the law school of Bologna. He ts sometimes erroneously called Bulgarinus, which wiss properly the name of a jurist of the \ddagger tht century. Bulgarus was a native of Bologna, and was regarded as the Chrysostom of the Gloss-writers, being frequently designated by the title of the "Golden Mouth" (os cureuni). The ume of his birh is not known. A popular tredition represents him to hare beeo a pupil of Iroerius, but uofortunntely uothing 19 known of Irnerius after 1118 A.D. Bulgarus, on the other band, died io 1166 A.D., having attained a great age, and baving become childish before his death. 'There is thus no inseparable difficulty in point of time in accepting thas tradition as far as regards Pulgarus, alehough Savigny considers the general tradition to be inadmissible which represents all the Four Doctors to have been pupils of Irnerius. Martinus Gosia was the next most eelebrated of the Four Doctors. He and Bulgarus were the chiefs of two opposite schools at Bologna, corresponding in many respects to the Proculians and Sabioians of lmperial Romé, Martinus being at the bead oi a school which accommodated the law to what his opponents styled the equity of "the flurse $^{\prime \prime}$ (equitas bursalis), whilst Bulgarus adhered more closely to the letter of the law.. The school of Bulgarus ultimately prevailed, and it numbered amongst its adhereats Joannes Bassianus, Azo, and Accursus, each of whom in his turn exercised a commanding influeneo over the course of legal atudies at Bologna Bulgarus took the leading part amongst the Four Doctors at the diet of Roocaglia in 1158, and was one of the most trusted advisers of the Emperor Frederick I. His nost selebrated work is lis commentary De Regulis Juris,

Which was at one time priated amongst the writings of Placentious, but has been properiy reassigned to its true author by Cujacius, upon the internal evidence contained in the additions annexed to it, which are undoubtedly from the pen of Placentinus. Savigay considers this Commentary. which is the earliest extant work of its kiod emanating from the school of the Gloss-writers, to be a model specimen of the excellence of the method istroduced by Irnerins, and a striking example of the brilliant results which had been obtained in a short space of time by a constant and exclusive study of the sources of latr.
bull, Papal. See Bulls axd Briefs.
BULL, George (1634-1710), bishop of St David's, was born at Wells, and educated at Tiverton school, Devonshire. He entered Exeter College, Oxford, but had to leave in consequence of his refusal to take the oath of allegrance to the Commonwealth. He was ordained privately by Bishop Skinner in 1655. The first benefice he enjoyed was that of St George's uear Bristol, from which be rose successively to be rector of Suddington in Gloucestersbire, prebendary of Gloucester, arebdeacon of Llandaff, and in 1705 bishnp of St Dand's. He died February 17, 1710. During the time of the Commonseatth he adhered steadily, though with great prudence, to the forms of the Church of England, and in the reiga of James II. preached very strenuonsly against the errors of Romanism. His works are among the coost solid contributions made to theological learning by the Church of England. They uniformly display great erudition sad powerful thinking. The Harmonia Apostohica, published in 1670, is an stiempt to show the fundamental agreement betreen the doctrines of Paul and James with regard to justification. The Defensio Fidei Aicence, his greatest work, published in 1085 , tries to show that the doctrme of the Trinity wis no articie of faith in the Christian church before the Council of Nicea, It stlll retains value as a thoroughgoing examination ot all the pertinent pessages io early church literature. The Juducium Factesue Cathotioce obtained for him the thank of the French elergy. His last trentise, Primitive and" Apostolical Tradition, was published ahortly before his dearb. The best edition of his works is that io 7 vols., published at Ozford by tho Clarendon Presa, under the superntendence of the Rev. E. Burton. This edition contans the Lieie by Nelson. The Harnoonia, Defensio, and Judicium are translated in the Library of Anglon Catholic Theology.

BULL, Jons, a distinguished English composer and organist, was born in Somersetshire about 1563. In 1591 be was appointed organist in the. Quecen's chapel io succession so Blithemnn, from whom be had received his musical education; in 1592 be received his degree of doctor of music at Cambridge University; and in 1596 be was mada music professor at Greeham College, London. As he was unable to lecture in Latin according to the foundation-rules? of that colltge, the executors of Sir Thomas Gresham made a dispensation in his favour by permitting him to lecture in English. He gave his first lecture on 6tb October 1597. He afterwards wisited France and Germany, and was everywhere received with the respect due to his talents. The story told by Anthony Wood of Dr Bull's feat et St Omer, which consisted in adding, within a few hours, forty parts. to a composition already written in forty parts, is simply impossible. Honourable employments were offered to hian by various Continental princes; but he declined them, and returned to England, where he mas appoiuted organist to James I. in 1607, and ia the same year resigned his. Gresham professorship. In 1613 he agaio went to the Continent on account of bis health; and, in the Nether lands, entered ioto the service of the srchduke. In 1617 he was appointed organist to the cathedral of Notre Dame
at Antwerp, and he died in that aty on the 12th March 1628. The usual statement that he died at an earlier date at IIemburg or Lübeck is incorrect. Little of his music bas been published; and the opinions of critics differ much as ua its merits. A claim uade on his behalf to the compusition of the music of the English national anthem bas given rise to much discussion, but it seems now generally agreed that the claim is not well founded. Contemporary writers speak in the highest terms of Dull's skill as a performer on the organ and the virginals.

BULLA (literally a bubble) was the term used by the Romans for any boss or stud, such as those on doors, sworl-belts, shields, \&c. It was applied, however, more particularly to an ornancot, generally of gold, worn suspended from the neek by children of noble birth until they assumed the toga virilis, when it was bung up and dedicated to the hausehold gods. See Costume. In ecelesiastical and medireval Latin, bullu denotes the metal scal of oval or circular form, bearing the name and generally the image of its owner, which was attached to official documents.' The bulla of the ompire was of gold, while the Papal bulla was of lead. See Bulls and Briefs.

EULLELNCH (Pyrrhula mulgaris), a species of conirostral bird belonging to the family Fringillida, of a bluishgres and black colour above, and generally of a bright tilered beneath, the female differing ooly in having its colours somewhat duller than the male. It is a shy bird, not associating with other species, and frequents well-wooded distriets, being very rarely seen on moors or other waste lands. It builds a shallow nest composed of twigs lined with nibrons roots, on low trecs or thick anderwood, ouly a few fece from the ground, and lays four or five eggs of a biuish white colour speckled and streaked with purple. The goung remain with their parents during antumn and winter, and pair in spring, not building their nests, however, till May. In spring and summer they feed on the buds of trees and bushes, choosing, it is said, such only as contain the incipient blossom, aud thus doing immense injury to ochards and gardens. In autumn and winter they feed irincipally on wild fruits and on seeds. The note of the bullfinch, in the wild state, is soft and pleasant, but so low as searcely to be andible; it possesses, however, great powars of mitation, and considerable memory, and can thus be tanght to whistle a variety of tunes. Ballfinches are very abundant in the forests of Germany, and it is there that most of the piping bulfinches sold in this country are trained. They are taught continuously for wine months, and the lesson is rencated throwhout the first montinis, as during that change the young birls are apt to forget all that they have previously acguired. 'ithe Inllinch is a native of the northern comatries of Europe, oecurring in ltaly and ether sonthern parts only as a winter visitor. White and blaek varietics are occasinnally met with; the latter, it is said, on the muthority of White of Selburne, may be froduced by femding the bullinch exalusively on hemp-sced, when its plumage gradually changes to liack. It breeds in confincment, and hybrids betwecu it and the canary have hen produced.

BULLINGELR, IIENRGed (1501-1575), an eminent Reformer, was born at Bremgarten, near Zurieh. He stadied at Emmerich ant Cologne, where he real some of Luther's works, and after his return home lectured at the abley of Kappel. In 1527 he heard Zwingli at Zurich, and in the following year he accompanicd him to the great conference at Berne. He was made pastor at liomagaten in 1520 , and married one Anna Adlizelawegler, formerly a mun. In 1531 he had to fly to Zurich ia consequonce of the Catholic victory at Karpel, and was som afterward apseinted minister of the rriacipal church. He was a powerful upholder of the Zwinglian ductrine of tho Lorl's

Supper, and wrote an able defence againgt Luther. He had also numerous controversial writings against the Anabaptists. His printed works are very numerous, and many of them were translated into English. They form ten vols. folio. Bullinger died at Zurich in 1575.

BULLION is a term applied to the gold and silver of the mines brought to a staudard of purity. The term is of commercial origin, and has reference to the precious metals as a medium of exchange. It followed from this office of gold and silver that they should approximate in all nations to a cemmon degree of fineness; and though this is not uniform even in coins, yet the proportion of alloy in silver, and of carats alloy to carats fine in galu, has been reduced to infinitesimal differences in the bullion of commerce, and is a prime clement of valuc even in gold and silver plate, jewellery, and wher articles of manalactrre. All the new goll and silver coinage of France, Germany, Spain, Italy, Belgium, and the United Statesprobably of a still wider circle of the priacipal coining countrics in the world-contain nine-tenths of pure metal. The coinage of Russia is on the British standard of eleventwelfths, as nearly as it can be expressed in simple fractions of pure geld and silver, the alloy in silver being a littlo more in all cases than the alloy ill gold. Bullion, whether in the form of coins, or of bars and ingots stainped; ;s subject, as a general rule of the London market, not only to weight but to assay, and receives a corresponding value.

The recognition of gold and silver from the earliest times as a convenient means of purchase, their ultimate adoption as a prevailing standard of value, their coinage by all the richer states into pieces of money, in virtue of which their circulation and absorption have been immensely increased, and the extent to which they hare becone the necessary financial reserve of Governments, banks, trading companies; and merchants, have given to these metals a greatly moro extended uso and importance than they could have acquired in the ordinary process of aris and manufactures; though even in this latter sphere, as gold and silver beecme more abundant and communities ricluer, the furposes to Thich they are applied and the demand fur them aro susceptible of much expansion. Writers of high authority have attempted at various periods to estimate the production of gold and silver, and correlatively their use and consumpt in the monetary system and the arts; but there is scarcely any subject of statistical inquiry on which it is so difficult to arrive at more than conjectural results. Vot in view of the theoretical speculations that arose on the Cali. forvian and Australian gold discuveries, the produce of these new fieds of supply may here be riorthy of notice. The Califormian mines were computed to bave in three years yiehded gold to the ralue wi $£ 35,000,000$ ster'ing. 'Tho Australim mines, still more prolfic, reere estimated in three years from their opening to be eqpal to an ammal produce of $\mathscr{E} 20,000,000$ sterling. Such results, sustained over a considerable period of years, presuntel a phenomenon similar to the more slowly develumad etfects of the discovery. of the South American minus in the lth century ; and it must be admitted that C'aliturnia and Austradia, after many reverses in their mining industry, femain the most gold-productive comatries in the work. Lut their produce of halion has of hate years much fallen in amount.

The director of the U'misel states" Aint, in his report for 1855, estimates the am: 1201 yieh of guh and silver in Cahforna and other Conitel States possessions at $8100,000,000$, or athut 50.010 .000 . The tutal export of Lullion and specie from Austadia, aftor dulucting the import (chictly interodmial), varited in the difteen years 185s-1872 from 111 to 7^{\prime} mitlions storling ler anmum the general tendency being towards the lower amounts in thu Incor vears (Stutivitiol Abstract for Colonial aref.
other Possessions of United Kingdom, 1874). The annual average export in these fifteen years was $£ 9,747,635$, and must be held to measure amply the produce of the gold aud silver mines of Australia. The annual production of bullion in the United States and Australia cannet, on these data, be estimated at mere than 28 milliens sterling. Humbeldt found the annual produce of the geld and silser mines of America, Eurepe, and. Nortbern Asia, at the begioning of the century, to be about $£ 9,700,000$. The yield of geld and silver from the same sources in 1850-57 was estimated by M'Culloch, in the Commercinl Dictionary, to be $£ 14,000,000$. The old geld and silver mines can bardly have become mere preductive since the advent of the Califoraian and Australian diggings, so that it would appear the latter have increased the visible annual supply of gold and silver about threefold, or from $£ 14,000,000$ to $£ 42,000,000$. Japan, so far as can be judged from the exchanges, must nem be added to the list of geld-producing ceuntries. For scseral years in succession Japan has exported considerable and apparently increasing amounts of treasure, or geld and silver ceins of itsown mint. In 1874 this expert amounted to $\$ 13,332,794$, or nearly three millions eterling (Sir Henry Parkes's Summary of Consular Reports). During the first six menths of 1875 the imports of bullien from Yokehama to Lendnn were $£ 1,257,170$ gold, $\mathfrak{£ 9 5 , 0 8 0}$ silver; and not improbably the next great access of the product of goldmines may be from that part of the morld. But netwithstanding this marbed increase of gold and silver since $\mathbf{1 8 5 0}$, when one considers the increase of population, the still greater increase of trade and industry, and the vast extension of financial and cemmercial affairs in the same period, it may be held doubtful whether gold and silver bave lost any of their eld proportion to the need for them and to the werk they bave to do.
When the coffers of the great banks of Europe were filled with the virgin gold of Califernia and Australia, one of the first consequenens was a desire on the part of countries in which silver was eitlier a collateral standard of value with gold, or the sele standard of rahue, to discard the silver standard and adept gold as the sole standaril, invelring in either case a large displacement of silver coinage and rescree, and a large infusion in its ream of gold comate and reserve. This result was eshibited in the mint operations both of France and England. In the fermer country silver retains its quality of legal tender in a modified degrec; but the proportion of silver âthorized by the Bank Cbarter Act of 1844 has long disappeared from the bullion reserve of the Bank of England, which now consists wbelly of gold. It was oue of the first resolutions of the German Empire, on the conclasion of the war of 1870-71, net only to make gold the sole standard, but to dislodge all the eld silver meney of the German States; and in the same connection it nny be observed, that the directer of the United States' Mint, in reporting $£ 20,000,000$ as the annual produce of the United States' mincs, uses this fact as an argument for the immediate resumption of specie payment-or, in ether words, that the A merican people, by a strenueus effort, should strive to keep as much of the bulion-product of their mines at home as may cnable the whele currency of the Union to become cither gold and silver, or of cenvertible gold value. This preference for the mere precieus metal as the sole standard of valuc, and for gold and silver coin as a medium of gencral circulation, may be espected to extend througheut the werld in proportion as the preduce of the mines may be increased; and in this respect alene there is a vast opening for the beneficial use both of geld and silver. It gives some idea oi the immense service of bullion in the internatienal exchanges, as well as in the replenisbment of
the internal metatic circulations, to obscrve that in the thirteen years $1858-70$ the annnal average registered import of gold and silver (real value) to the United Kingdom was $£ 27,083,330$, the average annual export $£ 22,095,346$; and that in the same thirteen years the average annual coinage of gold and silver in the Royal Mint was $£ 4,854,661$, or nearly equal to the annual eacess of imports over exports of bullion, which flows in all this volume through London to and from every part of the glabe-(Statistical Abstract for United Kingdom, I872).

While the production of gold bas declined of late years from the maximum attained after the Califormian and Australian discoveries, the preduction of silver bas begun to increase, and in the rapid development of minerals containing this metal, is generally espected to increase in the future. But it would seem premature from the facts of past experience to anticipate any permanent depreciation of the value of silver in relation to gold. The price of silver in the market of London from 1833 to 1873 ranged from 59 d . to 621 . per oz., and during that time fully maintained its standard ralue in par with that of gold(Table of Messrs Pixlcy and Abell, bullion-brokers, London). But in the subsequent years a decline in the price of silver bas occurred, and it fell in 1875 to 56 d . per ounce. This may be the result of temporary canses, such as (1) the fact of $£ 20,000,000$ of German silver, displaced by the new gold coinage hanging over the market; and (2) a cessation of demand for India and China, which the exchanges of the Enst with Eurepe may at any time alter.

BULLS AND BRIEFS, Papal, are the two kinds of autheritative letters issued by the popes in their official capscity as head of the church, the bulls being the more impertant. They are distinguished from each other by several marks.

A bull is written on thick polished parchment, cemmonly in angular Gothic characters, and in Latin; it is always open; it commonly begins with the name of the Pope, but without adding any number (e.g., Pius, not Pius IX.), then follows the term rpiscopus, then serwe servorum Dei, then either the rimse ad perpetuam rei memoriam, or the grecting in Domino salutenn et apostolicem benedictionem. It closes with the place and the date, which is commonly given according to the kalends, nones, or ides of the menth and the ycar of the pope. The chief merk, however, of a bull is the seal. The popes use three kinds of seals- 1 , the signet-ring; 2, since the end of the 5 th century, the bulla; 3, from the 13th century, the armu'zs piscatoris. A bull is sealed with the scond, the bulla, and from this it derives its name. The bulle is a globular seal of lead; on the one side there is, in modern times, the heads of St Peter and St Paul, with the letters S. PE, and S. PA; on the other side is the name of the Pope. For. merly the bulla often bore other impressions; the name of the rope was always given, but somatimes the titio Papa was impressed on the opposite side; sometimes a Seriptural image, such as the Good Shepherd. The popes evidently began to use this particular seal when, from the growing weakness of the cmpire, the temporal authority of the bishop of Rome began to be a real thing, and the popes assumed the consular dress and insignia; for the butla had been uscd by the emperor of Constantinople, and its use was permitted to many of the great officers of state who were accustomed to act for the emperor. The lulla was the common imperial seal, and was used not merely by the cmperors of the East, but alsus by the carly German cmperors, and even by some of the miner European sovereigns. It was sometimes made of geld, sometimes of silver, often of lead, and it was not until the earlier part of the Middle Ages that the leaden bulla became the dis tinctive mark of a Papal charter.

Non auro, nou wrgento, sacra Bulla refulget, Insignit charias plumbea forma sacras."
The word bulla-meaning first a bubble, then any kind of small ornament "quasi inflata," then a seal of a globular shape-came to be applied to a charter sealed with sucin a globular seal, and since the 15 th century, exclusively to Papal letters of the first :ank. If the bull is in forma gratiosa the seal is attached by threads of red and yellow solk; if in forma ragorosa, hemp is used. If the Pope sssues a bull before he $1 s$ enthroned, nothing is put on the seal, and the bull is commonly called bulla blanca. Before the time of Nicholas IV. such tulls were only valid if confrmed after enthroming. Since then they have beea vald without confirmation. Consistorial bulls are issued after consultation with the consistory of cardials, and are signed by all the cardinals consulted. Ducange (Glass. Med. et Inf. Lat.) says that consistorial bulls are often sealed with the signet-ring.

A bref is not so important as a bull. It is written upon white paper, or thin parchmeat, in modern cursive characters, and is sometimes sent open, sometimes closed. It begros wath the name of the Pope, then the title l'apa, then the number of the Pope, then the phrase ad perpctuam rei memoriam, or in Domino salutem et apostolican beneductionem; it ends with the name of the place, and the date (the day of the month, the year A.D., and the year of the Fope), and, finally, the words sub annuto pescators. The prineipal mark of the brief $1 s$ its seal. It is sealed with red wax, wath the signct ealled "the fisherman's riag," which dates from the 13 th century, and bears a representation of St Peter fishing in a boat, and the name and the number of the Pope. The distinction between breef and bulls is not miuch older than the 15 th eentury. In the early Middle Ages the word brcve was used to denote all borts of short charters, and Ducange in his Glossary gives over a hoodred different kiods of these. Papal bulls and briefs, like all other important legal instruments, are liable to be forged, and hence Roman Catholic jurists have made a special study of the various marks by which they are able to tell the ago of a charter. The bulls and briefs of greatest importance have been pullished in Bullaria colleenons which have been put forth at different times under the authority of the church. The most important of these collections is the Bullariuni Maynum Ronanum, a Leone Magno usque adBenedictum $\times 1$ F., Luxembourg, 1727-1758, 19 vols. fol., and its contmations.

BƯLOW, Friedrich Wilhela (1755-1816), a Prossian general, was born at Falkenberg on the 16th Febroary 1755. He entered the army at the age of fourteea, rose elowly, and in 1737 was placed at the head of a tattahon. He took part irr the campaigas of $1806-7$, and in 1803 was made major-general add brgadier of iafantry. On the renewal of the war agamst France in 1813 be took the field with the rank of hentenat-general, was engaged in the hattle of Mackern; and stormed the defences of Halle. He was victonous over Ondnot at Luckan and Grossbeeren, and over Ney at Dennewtz. He led the attack on the fortifications at leppse, and was conspicuous in the Prusstan victory at Laon. To him alsu belonged the honour of closing the campaign by the eapture of Montmartre. For has valuable servees he was rased to the rauk of gencral, and made Baron Dennewitz, whth a handsome revenue. Durng the Humled Days be commanded the fourth ermy corps, and by his raphd narch contributed to Blucher's success at Waterloo. After the eunclusion of the war he retired to Köngsterg, where be died on the 25th February 1816°.

BULWER, Sir Henry Lytton Earle (1804-1872), statasman and diplomatist, created a peer, under the title of Baron Dalling and Bulwer, in 1871 . Soe Dallino.

BLLWER-LytTon, Sir Edfard George Earlz Lytton (1806-73), brother of the preceding, ereated a peer, under the title of Baron Lyttons in 1866. Seo Lytton.

BUNDELKBAND, an extensive tract, consisting partly of British districts and partly of native states, in the NorthWestern Provinees of India, lying between $23^{\circ} 52^{\prime}$ and $26^{\circ} 26^{\prime} \mathrm{N}$. lat., and $77^{\circ} 53^{\prime}$ and $81^{\circ} 39^{\circ} \mathrm{E}$. long. It is bounded on the N. by the Jumua, on the E. by the Baghalkhaod or the Rewa state, on the S. by the Central Provinees, and the W. by the state of Gwalior.

It comprises the British districts of Hamirpur, Jalaun, Jbánsi, Lalatpur, and Bándá ; the semi-independent states of Orebbá or Tehri, Datiya, and Samther ; and the following petty states held under grants from the British Government, viz:-Ajegarh, Alipurá, Ashtgarhi Jagir, Tor!. Fathpur, Bijna and Pahârí Banká, Bárondá, Báwaní, Beri, Bfhat, Bijáwar, Charkhâri, seven Chaubiyaná Kalinjár Jagirs, Chhatrapur, Garmuli, Gaurihar, Jasii, Jiguf, Khaniys Dháná, Lughást, Naigaon Ribabı, Panaá, and Sarila. Leogth of Buadelkbaod-200 miles from S.E. to N.W., breadth, 155 miles ; area variously estimated from 18,099 to 23,817 square miles.

The surface of the country is uneven and billy, escapt in the N.E. jart, which forms an irregular plain cuit up by rarincs scooped out by torrents during the periodical rains. The phains of Bundelkband are antersected by three mountain ranges, the Bindhachal, Panna, and Bander chains, the highest elevation not excueding 2000 feet above sea-level. Beyond these mages the country is further diversified by isolated hills rising abroptly from a common level, and presenting from their steep and nearly inacces. sible scarps eligible sites for castles and strongholds, wheace the mountaineers of Eundelkhand have frequentiy set at defiance the most powerful of the native states of India. The geaeral slope of the country is towards the north-east, as indicated by the course of the rivers whieb traverse or bound the territory, and finally diecbarge themselves into the Jumas.

The principal rifers are the Siodh, Betwi, Ken, Baighnn, Paisuni, Tons, Pahuj, Dbasta, Bermá, Urmal, and Chardrawal. The Sindh, rising near Sironj in Melwa, marks the fromtier line of Bundelkhand on the side of Cwalior. Parallel to this river, but more to the eastward, is the conrse of the Betwa. Still further to the east flows the Ken, followed in succession by the Baighin, Paisuni, and Tons. The Jumns and the Ken are the only two navigable rivers. Notwithstanding the large number of streams, the depressoo of their ehannels and herght of them banks render them for the most fart unsuitable for the purposes of irrigation.-which is condueted by merns of jhils and tanks. These artificial lakes are usually formed by throwng ennbankments across the lower extremities of valleys, and thus arresting and atcomolating the waters flowing through them. Some of the tanks are of great capaeity; the Barwa Sagar, for instance, is $2 \frac{1}{2}$ miles in diameter, Diamonds are found, parnenlarly near the town of Paona in a range of bills called by the natues Band-athil.

The manes of Maharajpur, Rajpur, Kimera, and Gadasia cuntain the finest damonds, one dug froa the last $1 s$ reputed to be the largest in the world. It was kept in the fort of Kalnjas amoug the treasures of Raja Himmat Bahadur. In the reme of the Emperor Akbar the minee of Panná produced damonals to the amouat of $£ 100,000$ ammally, sod were a considerable source of revenue, but for many years they hase nut been so profitable.

The tree vegetation consists rather of jongle or copse than forest, abounding in game whach is preserved by the natire ehicfs. There are also within these coverts sereral vaneties of wild ammals, such as the tiger, leopard, bsena. wild boar, nilgai, and jackal.

British Bundelkhand contans a population of 2,161,495 souls. The total pepulation of Bundelkhand, British and nutive, has been estimated at 2,260,714. The people represent various races. The Bundelas,-the race who gave the name to the country,-still maintain their dignity as chieftains, by disdaioing to cultivatc the soil, although by no meane conspicuous for lofty sentiments of honour or morality. An Indian proverb avers that "one native of Bundelkhand commits as much fraud as a hundred Dandis" (weigbers of grain, and notorious rogucs). About Datiyá and Jhanst the iubabitants are a stout and handsome race of men, well off and contented.

The prevailing religion in Bundelkhand is Hinduism.
The principal crops are wheat, joár, cotton, indigo, sugarcane, a red dye called ach, various kinds of millets and pulses, and makuá (Bassia latifolia). Carpets are manufactured at Jhánsl, and paper at Kalpı. Lamboo and Acacia catechu from the jungles form important articles of trade. Principal routes-(1), from Allahábád to Nasirábad through Bándá; (2), from Fathipur to Ságar throuğh Bándá; (3), from Cawnpur to Jabalpur ; (4), from Cawnpur to Guná through Kâlp! and Jhánai; (5), from Bándá to Gwalior; and (6) from Agra to Sagar. The Jabalpur line of the East Indian Railway passes through the native states of Bundelkhand. Principal towns,-Kálpı, Báodá, Jháosí. Datiỵá, Ujcbán, Jalaun, Chbatrapur, Mahobá, and Tehári. The olimate of Bundelkhand is sultry and unhcalthy.

Historv. - Chendre Varmá, chief of the Chavuet Rajpots, appears

 to have established the earlicst paramount power in Bandellihand tourards the close of the 9th ceatury A.D. Under his dyansty the country attaized its greatest splendour in the carly part of the flth ceatury, when its Kija, Fhose dominions cxtendel from the $J u m a a$ to the Nerhudda, marehed at the head of 36,000 horse and 45,000 foot, with 640 elephants, to oppose the invasion of Aahmud of Chazal. In 1183 the Chandel dynasty was overthrown by Pirthwi Rij, the ruler of Ajmir and Delhi, after which the conntry remained in rinous anarchy until the close of the 1 4th ceutury, when the Buadelis, a spurious offshoot of the Garliwi tribe of Rajputs, established themselves on the right bank of the Joman. One of these took possession of Urcha by treacheronsly poisobing its chief. His suecessor succeeded in further aggrandiz. ing the Buadelis state, but he is represented to have been a noto. rious plundercr, and his character is further atained by the assassina. tion of the celebrated Abullazl, the prime minister and historian of Albar. Jajhar Sinh, the third IBundela chief, unsuccessfully revolted against the court of Delhi, and his conntry became incorporated for a ahort time with the empire. The struggles of the Buadelis for indepeadence resulted in the withdrawal of the royal troops, and the admission of several petty atates as feudatomes of the empire on condition of military service. The Bundelis, under Champat lija and his son Chhatra Sál, offered a successíl resistance to the proselytizing efforts of Aurungzebe. On the occasion er a Mahometan invasion in 1732, Chhatra Sil asked and obtained the asaistance of the Marhatti Peshwi, whom he adopted as his son, giving him a third of bis dominions. The Marhattis gradnally ex. tended their influence over Buadelkhand, and in 1792 the Peshwa was acknowledged so the lord paramount of the country. The Marbatta power was, however, on the decline ; the flight of the l'esliwa from his capital to Bassein before the British arms changed the aspect of atfairs, and by the treaty concluded betrecen the Peshsia and the British Governruent, the districts of Einds and Jlamirmur were transferred to the latter. Two chicfs then held the ceded districts, llimmat Bahadur, the leader of the Sanyisis, who promoted the views of the Eritish, and Shamsher, who made common causa with the Marhattis. In September 3803, the united forees of the Eng. Iish and Himmet Bahadur compelled Sharnsher to retreat with hia army. In 1809 Ajajgarb was hesieged by a l Pritish force, and again three years later Kalinjar was besieged and taken after a heavy loss. In 1817, by the treaty of Pooneh the British Covernment acquired from the Peshwa all his rights, interests, and preteasions, feudal, territorial, or pecuaiary, in Bundelkhand. In carrying ont the provisions of the treaty, an assurance was given hy the British Go-ern. ment that the rights of those intcrested in the transfer should be acrupulonsly respected, and the host of petty native priacipalit:es in the province is the best proof of the siacerity and good faith with which this clause has been carried out. Duriog the mutiny of 1857, however, many of the chiefs rose egainst us, especially the Ráoi of Jháosi.superintendence of tue Government of India through its agent in Rájputáná, situated between $24^{\circ} 58^{\prime}$ and $25^{\circ} 55^{\circ}$ N . lat., and $75^{\circ} 23^{\prime}$ and $76^{\circ} 36^{\circ}$ E. long. It is bounded on the N. by the native states of Jaipur and Tonk; on the E. by the state of Kotal ; on the S. by Sindhia's territories ; and on the W. by the state of Udaipur. Many parts o! the state are wild and hilly, inhabited by a large Mina population, a race of robbers. Two rivers, the Chambia and the Nij , water the state; the former is navigable by country boats. Area, 2291 square miles, population 11 1871-72, 224,000, or 97 to the square mile. The chieftain and the greater gart of his followers are Rájpnts. Principa! crops-ludian corn, joir r, wheat, pulses, and oil-sceds. Iron is found. The chicf's annual income amounts to $£ 50,000$, derived from land-tax levied beth in kind and money, and from customs. Thefts and petty robberies are still of frequent occurrence. Our political relations with Bundi commenced in 1804 durung the Marbattá war, and in 1818 its chief accepted our protection. The present ruler has managed the state for the last fifty years, and done mucb to improve the condition of the people. Bundi pays an annual tribute of $\mathfrak{£ 4 0 0 0}$ to the British Government.

BUNKER HILL, a small eleration, 110 feet high, in the town of Charlestomn, 1 mile N. of Bostorr, in Massa. chusetts. One of the noost celebrated battles in the rar of American independence was fought here on the 17 th of June 1775. The Pritish remained masters of the field after a long and bloody contest. A commemorative obelisk, 221 feet high, bas been erceted in the centre of the grounds iacluded within the redoubt on Breed's Hill. See Boston, vol. iv. p. 32.

BUNSEN, Caristian Charles Josias, Baron von (1791-1850), was born 25th Lugust 1791, at Corbach, an old town in Waldeck, one of the the suallest of German principalities. He was of honourable but humble origin. His father, to eke out the scanty subsistence provaded by his few acres of land, had entered a regiment "granted" to Holland by the prince. Without promotion or encour agement, he attended conscientiously to the drudgery of his post during twente-nine long years, to return at last, in 1780, a widower, with broken bealth and a maserable jension Brighter days were in store for him through the affections of his sccond wife and the birth of Cbristab. It is on record, how joyous were the evenings in that old fashioned Corbach bome, when, after reading a cbaptet from the family Bible, and devoutly praying with has household, the kindly old man loved to prune, by pithy remarks and snatches of proverbial lore, the redundant enthusiasm and all erobracing fervour of has son. To the latter, success and a host of foul admarers seem from the first never to have been wanting. Nor did humility of demeanour, exquisite sympathy with all men, and an almost unexampled power of work ever fail ham. The Corbact gramaiar school was brilliantly passed, and after it a first year of university studies, at Marharg, devoted to divinity. But Göttingen in those days attracted all suicrair munds, and the youth of eigbteen found himself on bis way thither with the last savings from his father's purse, intent upon appeasing his desire for those wider refions of philological and historical learning in which be knew his strengtb must lie. Again all avenues of outward success opened to the unpretending student, although so young he was entrusted with lessons at the Latin school, aid soon after with the office of private tutor to W. C. Astor, only son of the well. known merchant king of New York' Bunsen soon became the acknowledged though unobtrasive centre of a chosen band of students, few only of whom have failed to attais that reputation to which their abilities seemed to call them,

BUNDI, \& Rajpu: state of India, under the political

[^41]or that degree ot public usefulness to which in an hour of geavine enthusiasm they one and all vowed to aspire "Right royal in all his ways," as a poet has fitly described him, he sympathized with the favourite pursuits of each, wrestled with all, made them to luve each other, and held high among them the ideals of youth and of science. It was quite a day of rejoicing in Cứtingen when Bunsen bad won the uaiversity prize essay of the year 1812 by a treatise on the Athenian Law of Inkeritunce, and again a few months later when the uaiversity of Jena granted him, unsolicited, the honorary degree of doctor of philosophy.

The timo had now come for Mr Astor to travel. Bansen had seen little of tho world before then. Only one journey bad ho made, but that one was to Weimar, and in compsny with Arthar Schopenhauer, one of his Gettingea acquaintances, a man of genias, whose fate it has been to live unkrowa and to becomo after death not famous only, but tho fouader of a numerous and tarbaleat school of metaphysicians. Bunsen was introduced to Gocthe, and hore away the impress of the society that assembled aruand the great poet. In 1813, a journey was undertiken to Suuth Germany, during which Mr Astor was well pleased to see his friend revelling in the company of chuice spirits at each centre of intellect, and shared in his exultation over the crushing blow that had fallen upon Napoleon at Leipsic. Some months later they separated at Cruttingen, Astor to roturn to New York, with en understandiog that they would meet for furthor travel twe jears later, and Buasea to resnme his studies which bad lost nothing of their vast range. It scemed to Bunseo a parpose not exceeding the limits of a man's life to coroprebend the lustory of all Teutuaic races in ruligion, laws, language, and literature. That was the beruic age of comparaive philulogy; and thas we see Bunsen, who had read llebrew when a boy, plunging into Arabic at Munich, Persian at Lejden, and Norso at Copenbiagen, as opportunitics uffered fur each.

At the close of 1815 Bansen fraad bls way to Berim, to lay before Niobuhr the historian what was ihen already a many years' plan of dearned inquiry. This step led to amportan consequances in the hfe of Bunsen. Niebuhr not oaly approved of the Titanic scheme, aud bopod that Prussia, io which all the hopo of Germans then began! to be centred, woild in timo find money fos assisting it, bat so powerial an impression did bo receive on that occasion, that whe they met again two years later, Niebubs, haring meanwhile become Irussian envoy to the Papal court, exerted all his inflnence to draw Bunsea into official life. Of the two intervening years it will sullice to relate that they had heen spont by lonsen in assidaous labour among the librarics and collections of Paris and Florence, whither the hope of meetug his furmer pupil, Mr Astor, had led hinn; and that he contracted daring his stay in the capital of Franco a love for the peculiar graces of French geains which never left him through life.

Fascinated by the condescending friendship of Niebuhr, by the glories of liume, and alsa by the charms of English sucicty, Buasen contramed his stay in that city. In July 1817 he married Miss Waldington, eldest denghter and co-beiress of Ar B. Waddington of Lhaover, Monmouthshire. Even then his purpuses ia lifo remaned purely scientific. Litlle did be dream that the Eternal City was to become has bome for wenty ono years, or that one of the unst difficult problems of European diplomacy would ther be entrusted to his sands.

When Niebuhr obtaned the consent of wis Gorermment for the ajpointment of Lumsen as sueretary of the Roman cmbassy, negotiations were beng actively carred on het weea Berlin and Rome for a new establishment of the Pajal Clurch io the Prusstat dumiaions. This had becume
necessary, since 1815 , by the addition of strual millions of Catholics to the fopulation of that mainly Protestant conotry, of which they now formed no less than two-fifths. An agreement was the frait of these labours, by which the king of. Prussia allowed the pubication withia his dominions of a Papal bull (called De sulute animarum), circuanscribing the Catholic dioceses, aud determining the position of the Romanist hierarchy. During this peried of initiation into the mysteries of Papal statecraft, Bunsen had occasion to learn that the Vatican began, under the fostermg care of the Jesuit order, to rovive from the inanition into Which the French Ficrolution and its effects had thrown it So universal and so strong was the wave of reaction in those days throughout Earope, that Protestantand Cathai:rulers agreed in the conriction that of all conservatism the apes and sapreme exponent must be the Pope, as representing "the most ancient successiun of suvereigns," as "ap. bulder of things as they are." Considering themselves the Pope's bora allies, they closed their cyes to that stealthy encroachment of absudate lomish puwer iatu the diuceses within their territory with which the preseut generation is becoming, acquanted in America as retl as 10 Eurupe. Dansen was anong thuse who first discerned the coanng danger. To direct oflicial attention tuwards it, to ward it of by fairness und impartality tuwards bis Catholic fellowsubjects, to preserve religions peace in his country, thenceforward became the main object of his official hatours.

At first his success was great. In Bethn the king and his minister, and at Rome tach successive Pope and his cardinal secretary, bestowed upon him every mark of confideace and even of affection. King Frulerict Wibian III. had orade his acquantance as early as 1822 during a brief stay at Rome, aml had taken unwonted pleasure not only ia bis couversation generally, but evea in the coitspo'ea but clegant frankness with which Bunsen defended his views wher. at :asiance witb no or two of his sovereign's fayourite theorics. He evinced his aparechatur of two youthiul diplomatist by desiring hin in undertake the legation after Nicbulu's retirement from bis ofhee.

In the Papal Government, also, Buasen's honest endeavours to preservo a good understanding were readily acknowledged, and furmed the basis for one of the rarest life fricndships, and yet a most real one, with Monsignor Capaccini. the contidential adviser of successare Pujes in foreign atfairs, who never swerved from bis principle of both recenving and meting every communication of the Prussian enroy with equal trust and trathfulacss.

A fow mords will explaio the causes which eventarly led to a failare of Dunscr's pacific efforts. Marriages between Romanists and Irotestants (or so-aslled mixed marriages) bad formerly been of rare occurrence in Prussia Before the iron will of Frederic's the Great, the nave demaods of tho bierarchy of Silesia-the chief of which is a promise on oath that all children shall be brought up as Cathulics-mad dwindled intu a passive attitude on their part. After the acecssion of Rhiucland and Westphalia to the Prussian monarchy bud added to the frequency of sach marriages, it was traly fortunate that a predate of moderate views in matters ecclesiastical and a good patriot-Couais Specgel-bed the archiepiscopal see of Culogne (IS25). With him, whe furbate prucessions of his own accord as leading to immorality, and ahe favoured a more enlightened education of candidates for holy orders, an arrangement whinh would leave the consemences of spouses and prosts anvolated was practicable. It was easly demoned by Bunsen's personal nerotastion with the archbishop. Tbe other Prassian bishops alson consentul ; but such was the stothfuiaess of the absolute king's Government, that the death of that wise archlumber (1835) occurred before its ratification. and such then blindress to ren?
offered to promete a narrow-min \quad Brion Droste, to the vacant post. "Is ycur king mad?" blently: exclaimed the cardinal-secretary, whilst hastening to accept, on the part of the Vatican, the proffered tool of Papal aggression! Before two years bad passed the religious strife was in a blaze cverywhere,-jesuit advisers more eagerly listened to at Rome, Prussian bishops all but unanimous in their opprosition against muderate counsels, and (so the Government was informed) the leadership of these machinatiuns against the internal peace of Prussia entrusted to menbers of that uniformly Ultramontane body, the Belgian bishops. In this extremity Bunsen was again summoned to Berlin from his post. It 19 difficult at this distance of time to discern how far the advice he may have given was founded upon too sanguine a view both of the power of an absolute king, unaided by an emancipated publie opinion, a free press, or a parliament, and of the iutensity of the agitation raging in Catholic districts. Eut this much is known that, when the seizure of the chief offender in his archiepiscopal palace at Cologne was resolved upon, Bunsen understood that the arehbishop, would forthwith be placed before the ordinary judges of the country for disobedience to its laws. This was never done, and the scizure was so mismanaged that the incriminating documents are ssid to have been destroyed before the judicial authorities had set foot in the palace. Thus a complete failure was the result of this very unsafe step. The Governwent thought it easier to leave Bunsen unsupported when, after his return to Rome, he courageously attempted to convince the Vatican of the arehbishopis guilt, and, in the bope of burying the mater in oblivion, they acecpted Bunsen's offer of resignation, in A prill $1: 38$. It may not he irrelevant to mention here that the king's successor, Frederick William IV., on his elevatiun to the throne in $18 \cdot 10$, released Baron Droste from prison. This romantic king established bis policy towards the Vatican on the principle of granting liberty of action to the rapal power,-a liberty so well employed both before and since the revolution of 1848 , that at this moment (1876) all the energies of a powerful chancellor and a unitell Germany are taxed to the utmost to find a basis for harmonions coexistence between modern states and the hierately of Rome.

When Bunsen left the Eternal City a ledatically disappointed man, be was able, nevertheless, to lowk hack upon a term of gears filled with everything that could adorn liteintense domestic contentment, intimacy with distaguished men of every nation who had sojouned in home during his 1 wenty-one years' residence there, success in establishing institutions which, like the Archeologieal Institute, the German Ilospital, and the Prutestant chapel, have rutlived his stay, experience in public affairs, and a deepenng of his religious consictions. Raligion bad become tho centre of bis niost tender emotions, of his mellectual activity, of his practical aspiratons. To restore to the Bible that place in the households of his country which it had possessed in the first generations after the Relormation, to revive the knowledge and the love of the German reformers' hymns, to give his people sucls a Book of Common Prayer, resting upon the liturgies of allChristian ages, as would belp congregation:s in " presenting themselves a living sacrifice," to rekindie the fervour of wher days for works of self-devotion and charity, to work out a Christian philosophy of history,-suel were the purpuses to whieb be devoted his happiest and best hours in each succeeding year. Whilst he was at Rome a book of ancient hymus and a liturgy were printed.

Bursen always louked batk in later years upon his Roman time as men are apt to remember their college days. ahght joyous had been his intercourse with artists such as Thorwaldsen, Rauch, Wolff, Cornelius, Sebnorr, Overheck.

Schinkel, Felix Mendelssodin. He had beturie one of the best-informed men among art-collections, and was so atracted by the charms of Roman topograply as to surrender to the temptation of contributing rolumies to the Gerran Description of Rome.
Few strangers bave eve: lived in terms of greater intimacy mitn ltalians, or possessed a more entire command of their language than Bunsen. He was a believer in their national revival and political future at a time when Italy was "a geograpbical expression" only and when her art treasures and ber blue sky were her only acknowledged qualities. Among Americans Mr Ticknor; among Russiana Itainsky, Joukovsky, and A1. Tourgenieft; among French. men the Due de Blacas, Curite de St Ablare, Chatearbriaud. Champollion, Ampre, and others became Lis friends. But his most cherished intercourse was wath Enghish risitors and residents, ${ }^{1}$ to which he owed an acquameance whith Eritish life such as has rarely been possessed by any foreigner who never bad set fout in this cumery.

Tuwards England, then, did he turn his face in 1838 to enjoy the leisure occastoned lay his remural from the Capitul, and in Eugland, ezeept whea he beld a hrief diplomatic appointment as Prussian ambassalur to Swatzerland from 1839 to 1841, the remander of his offical life was spent.

Between the Crown Prince of Prussia and Eunsen a very close intimacy had sprung up ever sinee they met at Berlin in 1828. They were attracted to ench other ly sumilarity of literary tastes, of poetic temperament, and of religious aspiration. In their euthusiasm for each other, the prince as well as the public servant fondly thoped, ycar after year, that diversity of charscter and of self-gruwn conviction, Lowerer marked, would tend rather to compicnsate defects than to disturb harmonious action. Their currespondence lately published (in part) by lanke, the historian, shows the tritafulness and the durabhey of tins remarkable friendilip, and belps to explain why its resulis were nut commensurate to the moral worth and inteltectual capacity of the men who were untel! ly it.

The new king bad no souner ascented the throne under the name of Frederick Williarn W. than he contemplated the erection of an Anglo J'russian bisbopric at Jerusalean, intended to represent European Protestantism as a minted rower, and to give a rallying point to Protestant missong In Syria and Ialestne. The time semed prontious fur this fantastic scheme. The four allied powers, under the leadership of Great Britain, had reinstated the sultan on the pressession of Syria. The Turkish Goverument would therefore readily grant a similar representation to Protestant eburches to that prosessed by Orthodox Grecks esed Roman Cstholies. King Frederick William summoned Eunsen to his capital, and instructed him to degotiate in Lordun the establishment of such a bishopric on Mumit Zion. In an incredhby shert tanc (June to Norenber 1841) Bunsen sueceeded in bianging it alout, wath the Engli:la Givernment's cousteous assent, and the energetic furtherance of the areblistiop of Canterbury and the bishop, of London, I'russin paying in a captal which secured une hali of its endowment, whilst the other half was to te ruised in England. Nuch suspicion was felt and ofposition raserb against any association of the Church of Lnyland with German Protestantism, in both countrics alke, Llougla from

[^42]opposite motives. Tu Luusen this "special mission" brought in a rich harvest of friendly feeling among the leaders of both parliamentary parties, so that when Queen Victoria selected his name out of three proposed by the chivalrons courtesy of the Pruseian king fur the post of Prussian ambassador, be fouad hiuself well received by all classes of English society. The King's visit to Englond in February 1842, as sponsor to the Prince of Wales, helped to prove the earnest desire of Prussia to seek the friendship of Great Britain. An event, however, which directed the eyes of the British public even more to Bunsen than royal favour was the publication of Arthur Stanley's Life of Dr Arzold, in whose private letters an admiration amounting almost to enthusiasm for his Cerman friend was expressed with a fervour unusual to A rnold'a slately reserve. Although not palatabla to the growing ritualistic echool, and not always considered a safe theologian by the partizan leaders of the Low Church, Bunsen retained to the last the affection of the British nation, among whom he spent thiteen eventful gears.
In the year 1844 his adrice was asked by the king on tho constitutional changes,-from absolutism to a representative government,-upon which Prussia, although in a firat-rate înancial military and administrative condition, found herself irresistibly constrained to enter. His advice, though studiously conservative, was considered of too aweeping a nature, and the king contented himself in 1847 with convoking an assembly composed of nil members of the eight provincial diets of the monarchy, and clothed with scarcely any constitutional powers.
On the question of church organization, also, the king and his friend were fated to disagres more strongly than they had expected. Bunsen's views had developed into a eystem essentially Presbyterian, though with an Episcopal headship. He beld up the coñstitution of the Episcopal Church of America as, perbaps, the best type to follow, hecause it contained personal rule organically allied to the free power of the laity. He recommended these ideas to his countrymon ay well as to his sovereign in a book eatitled The Church of the Fiuture, which bas not been without influence in the eburch constitution now (1876) about to become law in Prussia.
The king's expectations of a quiet time for maturing his work of reconstruction in church ind state were rudely brokon in upon by the French Revolution of Febrnary 1848. Bunsen's warning voice had been raised in vain; the discontent of the educated classes helped to weaken the distracted councils of Frederick Willian IV., and, though a corstitution was eventually promulgatod, Prussian polities succurbed under the tutelage of the Austrian premier, Princs Schwarzenberg, in 1849 Bunsen's diplomatic labours wero mainly directed to settle, as German commiseioner, the dispute with Denmark about the duchies of Holstein and Schleswig, Great Britain having offered her mediation. In these duchies a strong agitation of soveral years' standing had roused the German population, which occupies the whole of the former and part of the latter, to oppose the centralizing tendencies of the Danish Govarnment. During the troubles of March 1848 they had taken up aros against Denmark and found assistance in Germany, then for the first timo aspiring again to the position of a national power. This disturlance of the public peace of Europo was, however, regarded with so much disfavour by all powers, and secretly also by the sovereigns of Prussia and Austria, that the Danes obtained, iu 1852, a European protocol, which reversed the political sutsonomy of the two duchies, and scted the crown of Denmark, after the death of the king and his son, upon l'rince Christian of Glütksburg. It was the fate of Bunsen to bre cinliged to add his signature to this protucol, although
it contained an abrogation/of those "constitutional right. of Schleswig and Holstein," upon which he had dilated i: a Letter to Viscount Pudmerston, printed in April 1848.
The unity of Germany wis another of those wishes in which Bunsen and his royal patron had been one ever since the berinning of their acquaintance, and yet found the:nselves widely apart when the question came to be practically tested. The king sincerely aimed at the resuscitation of the vencrable German empire, fancying that the leadership within the federation of sovercigns might be divided betwecn Austria and Prussia, yet so as to leave a kind of ceremonial primacy to the former. Enlightened Germans, on the contrary, bad then already arrived at the conviction that the leadership must be in Prussian bands. Austria, hampered as she is by the numerical preponderance of non German populations, and the divergence of her interests from those of Germany, should, they thought, take her place within a wider federation. Gradually and almost imperceptibly did this truth work its way through time-honoured tradition. Bunsen was one of its most eloquent apostles, in his official correspondence as well as in pamphlets publiehed in 1848. Several times he was sanguine enougb to believe such a policy to be permanently grasped in Berlin, but the king's vacillating temper and his adberence to tradition refused to be wrought upon beyond the approval of half-measures. Thus the opportunity was los:, the potentiality of the Prussian military power neglected, and a gnawing disappointment left in the miuds of the best patriots throughout Germany.

With small hopes, and with no other wish but to serve as long as possible a sovereign whose friendship and confidence had outlived their former agreement on unatters of religion and policy, Bunsen continued in the thankless task of representing Prussia after the downfall of those proud hopes that had pictured forth a revival of the German nationality under Prussian leadership. His mainobject, parsued nader every difficulty, and seizod with energy on every favourable opportunity, was to dissociate the policy of Berlin from that of St Fetersburg and Vienna and to draw closer whatever bonds of com!mon sentiment or interest existed between the English and German com: munities.: He was not tardy, thercfore, in advising bis royal master in an anti-lussian sense when the Crimean war began. As had so often been the case, the king's understanding went along with much that Bunsen wrute, and hopes were entertained that a Prussign participation in the war, containing the threat of an invasion of the northwestera frontier of hussia, would force that country into compliance with the demands of the Western poscrs. But traditional policy, apan prevailed, mixed with the king's unconquerable aversion to Napoleon III., and his growing mistrust of Lerd Palmerston's political principles. The allianse of the Western powers was declined, Prussia preserved towards her Enstern neighbour what is technically called a "berevolent aeutriity," and the king accepted Bunsen's proficred resignation of his post as minister in London in April 1854.
The remaining years of Bunsen's life were spent in: almost umbroken literary labours, first at a villa on the banks of the Neckar, near Heidelberg, and at the last in Benn. In the pulitics of the day his interest was as kcen as cver, and readily did he give his advice when edvice was asked, as happlened frequently on the part of the princo and princess of Crussia then residing at Coblentz, who have since risen to the cxalted position of cmperor and empress of Germauy. But declining lealth determined bim not to enter the Prussian Lower House, in which a ocat was offered him ky the liberal majority in the city of Magdeburg. His Siyns of the Tines, however, an elaborste paraphlct, published in 1856, acted like a frost trumpot-call
eganst $t L$, aggressive demeanour of the reactionary clquc, who were utilizing, in the interests of despotism and obscurantism, the horror of revolutionary outbreaks then felt by the quiet middle classes of Germany. Its publication prepared the way, more perhaps than any other event, fur that rise of liberal opinion io Prussia which showed its power in the next reigu.

Twice only was Bunsen tempted away from his Heidelberg retreat to show himself at Berlin,-once, at the king's desire and as his guest, in September 1857, to attend the meeting of the Evangelical Alliance, in the main objects of which he sympathized as warmly as King Frederick William IV. On that occasion, and after much confidential intercourse, the two friends parted never to meet agan on this side of the grave. One of the last papers signed by the king before bis mind gavo way 10 October of that year was that which raised Bunsen to the rank of baron, and cenferred upon hum a life peerage. In 1858 the Regent (now Emperor) William having addressed a special request to Barnn Bunsen not to fail him at the opening of his first parliament, be took his seat in the Upper House, and supported actively during a brief autumn session, but without ever makng a speech, the regent's ucw cabinet, of which several of Bunsen's political and personal friends were members.

Literary work was, huwever, the centre of his life throughout that time. Two discoveries of ancient MSS. which occurred during bis stay in London, containing, the one a sborter text of the Epstles of St Ignatius, and the other an unknown wurl On all the Heresies, by Bishop Hippolytus, bad already given him an opportunity for enlarging upon the bistory of the first centuries of the Christian Church. He now concentrated all his efforts upen producing a Bible translation with commentaries that would open the sacred volumes afresh to the understanding and the hearts of a generation gradually cstranged from them. Whilst this "Bible-work," was 10 preparation, and to pave the way fur its reception, he printed a book considered by many to contain his most matured thoughts, under the title of God in History. The progress of mankund, be contends, marches parallel to the conception of God formed within each nation by the highest expenents of its thought. At the same time he carried tbrough the press, ably assisted by Mr Birch the Egyptelogist, the concludiag velumes of his work (published in English as well as in German) Egypt's Place in Universal History-containing a reconstruction of Egyptian chronology, wegether with an attempt to determioe the relation in which the language and the religion of that country stande to the development of each among the more ancient nun-Aryan and Aryan races, between which its curnous civilizatien seems to have formed a kind of connecting link. Those who desire to know Bunsen's ideas on this subject may find them most fully developed in two volumes published in London before he quitied England-Outlines of the Philosophy of Universal History as applied to Language and Religion. It will be seen even from this brief outhno that bis "first love" had never lost its hold upon him, and that the desire "to trace the firm paid of God through the atream of ages " continued his purpose for life. ${ }^{\text {l }}$
But asthma and all other concomitants of a malady that had anneunced itself for years now began to disturb; net the meatal alacrity or the spirits of Bunsen bimself, but-the hepes of his family and those among bis friends who had imagined that he would be allowed to complete the werks undertaken. Ordered to apend his winters in a more genial climate, he repaired to Cannes in 1858 and

[^43]1859, not without a lengthened visit to Paris, where he revelled, as in younger days, in the contact witb men of learning. In May 1860 he purchased a bouse in Bonn, hoping against hope, pushing forward the publication of his Bibel-Werk, and even preparing lectures for students upon those subjects which he had most at beart. But the band of death was upon bim. He thanked God daily for teaching him how to support pain at the close of a life so eminently exempt from hodily suffering. And whenever, in the closing weeks of his existence on earth, a relaxation of asthma ensued, fervent prayer flowed from his lips, powerful attestation of his relighous belief, loving exhorta. tion to those from whom be was soon to be removed. Baron Bunsen died on November 28, 1860, and lies buried in the churchyard of Bonn, not far from the grave of his early friend and benefactor Niebuhr.
"Let us walk in the light of the Lord" (Isa. ii. 5) is the text which Baroness Bunsen placed on his tomb. One of his last requests baving been that she would write down recollections of their cummon life, she published bis Memoirs in 1868, which contain nuch of bis private correspondeace. The German translation of these Memoirs bas added extracts from unpublished documents, throwing a new light upon the political events in which he played a part. Baron Humboldt's letters to Bunsen were printed in 1869, and Ranke published in 1873 a large portion of the corrcspondence that passed between King Frederick William IV. and Buneen.
(G. v. B.)

BUNTING, a word of uncertain ongin, properly the common English name of the bird called by Linneus Emberiza miliaria, but now used in a general sense for all members of the family Emberivider, which are closely allied to the Finches (Fringillide), though, in Professor larker'a opinion, to be easily distinguished therefrom-the Emberizidse possessing what nono of the Fringillides do, an additional pair of palatal bunes, "palato maxillaries." It will prooably follow from this diagnosis that some forms of birds, particularly those of the New World, which have bitherto been commonly assigned to the latter, really belong to the former, and ameng them the genera Cardinalis and Phrygilus. The additional palatal bones just named sre also found in several other peculiarly American families, namely, Tanagridae, Icteride, and Mniotiltidx-whence it may be perhaps inferred that the Emberivide are of Transatlantic origin. The Buntings generally may be also outwardly distinguisbed from the Finches by their angular gape, the posterior pertion of which is greatly deflected; and most of the Old-World forms, together with some of those of the New World, have a bony knob on the palatea swollen out growth of the dentary edges of the bill. Correlated with this peculiarity tho maxilla usually has the tomia sinuated, and is generally concave, and smaller and narrower than the mandible, which is also concave to receive the palatal knob. In most other respects the Buatings greatly resemble the Fiaches, but their egge are gederally distinguishable by the irregular bair-like markings on the shell. In the Ritish Islands by far the commonest species of Bunting is the Yellow Hammer (E. citrinella), but the true Bunting (or Corn-Bunting, or Bunting-Lark, as it is called in some districts) is a very well-known bird, while the Reed-Buating (E. schoeniclus) frequeats marshy soils almost to the exclusion of the two former. In certain localities in the south of England the Cirl-Bunting (E. cirlus) is also a resident; and in winter vast flocks of the Snow-Buating (Plectrophanes nivalis), at once recognizabls by its pointed wings and elongated hind-clarrs, resort to our sbores and open grounds. This last is believed to breed sparingly on the bighest mountains of Scotland, but the majerity of the examples which visit us ceme from nortbern regions, for it is a species which in summer
inhabits the whole circumpolar area. ine Ortolan (E. hortulana), so highly prized for its delicate flavour, occesionally appears in England, but this island seems to lie outside its proper range. On the continent of Europe, in Africa, and throughout Asia, many other species are found, while in America the number belonging to the family cannot at preseat be computed. As already stated, the beantiful and melodions Cardinal (Cardinalis zirginianus), commonly called the Virginian Nightingale, must be included in this family, as also the Dobolink (Dolichonyx oryzivrus), a bird for sapidity perhaps surpassiag the far-famed Ortolan, and intimately connecting the Emberivide with the Icteride. Whether any species of the family inhabit the Australian Region is as yet doubtful, but it would seem possible that several gencra of Anstralian burds hitherto classed with the Fringillide may have to be assigned to the Emberizidse.
(A. N.)

BUNTING, Jabez, D.D., a distinguished Wesleyan minister, who exerted an influence in his denomination second only to that of John Wesley himself, wats bern at Manchester 13th May 1779, and died on the 16th June 1858. He was educated at the grammar sebool of his native town. At the age of nineteen he began to preach, and a year later (1799) he became a member of the Conference. He continued in the active discharge of his ministerial duties for upwards of fifty seven ycars-bis suceossive spheres of labour being Manchester, Livernool, and London. In 1834 he was sppointed president of the nowly-founded Wesleyan theological college, and in this pusition, which he held till bis death, he succeeded in materially raising the standard of education among Wesleyan ministers. He wss four times chosen to be president of the Conference, was repeatedly secretsry of the "Legal Hundred," and for eighteen years was secretary to the Wesleyan Missionary Society. In thesa and other offices be found emple scope for that great natural sagacity and power of administration which did so much for the consobidation and extension of the Wesleyan denomination. D: Bunting was a popular preacher, and an effective platform speaker. Two velumes of his sermons were published posthumously in 1862. The frst volume of a memoir, by his son, appeared in 1860.

BUNYAN, John (1628-1688), the mest popular religious writer in the English language, was born at Elstow, about a mile from Belford, in the year 1628. He may bo said to have been born a inker. The tinkers then formed s hereditary caste, which was held in no bigh estimation. They were generally vagrants and pilferers, and were often confounded with the g.psies, whom in truth they nearly resembled. Bunyan's father was more respectshlo than most of the tribe. He had a fixed residence, and was able to send bis son to a village achool where reading snd writing were taught.

The years of John's boyhood were those during which the Puritan spirit was in the highest vigour all orer Eagland; and nowhere had that spirit more influence thana in Bedfordshire. It is not wonderful, therefore, that a lad to whom nature had given a powerful imagnation ard seasibility which amounted to a disease, should bare been early haunted by religious terrors. Iefore he was ten, his sports were interrupted by fits of remorse and despair ; and bis sleep was disturbed by dreams of fiends trying to fly away with him. As he grew older, his mental conllicts became still more violent. The strong language in thich he described them has strangely misled all his biographers except Mr Southey. It has long been an ordinary practice with pious writers to cite Bunyan as an instance of the supernatural power of divine grace to rascue the human seul from the lowest depths of wickedtess. He is called in one book the most notorious of
profigates; in aruaer, the brand plucked from the burning. He is designated in Mr Ivimey's History of the. Baptists as the depraved Bunyan, the wicked tinker of Elstow. Ir Ryland. a man once of great note among the dissenters, breaks out into the following rhapsody :-"No man of common sense and common integrity can deny that Runyan was a practical athelst, a worthless contemptible infidel, a cile rebel to God and geodness, a common profigate, a soul-despising, a soul-murdering, a soul-damning, thoughtless wretch as could exist on the face of the earth. Nuw be astonished, O heavens, to eternity! and wonder, O earth aod hell! while time endures. Behold this very man become a miracle of mercy, a mirfor of wisdom, goodness, holiness, truth, and love." But whoerer tuikes the trouble to examine the evidence will find that the good neen who wrote this had becn deceived by a phraseclogy which, as they had been hearing it and using it sll their lives, they ought to bave understood better. There cannot be a greater mistake than to infer from the strong expressions in which a devout man bemoans his exceeding sinfulness, that be has led a worse life than his neighbours. Many excellent persons, whose moral character from boghood to old age has been free frum any stain discernible to their fellow-creatures, bave,- in their autobiographes and diaries, applied to themselres, and doubtless with sincerity, epithets as serere as could be applied to Titus Oates or Mrs Brownrigg. It is quite certain that Bunyan was, at eighteen, what, in any but the most austerely puritanical cireles, would bave been considered as a young man of singular gravity and innocence. Indeed, it may be remarked that he, like many other penitents who, in general terms, acknowledge themselves to have been the worst of mankind, fired up, sad stood vigorously on his defence, whenever sny particular charge was brought argainst him by others. He declares, it is true, that he bad let loose the reins on the neek of his luste, that he had delighted in all transgressions against the divine law, and that he had been the ringleader of the youth of Elstow in sll manner of vice. But when those who wished him ill accused him of licentions amours, he called on God snd the angels to attest his purity. No woman, he said, in heaven, earth, or hell, could charge him with haring ever made any improper advances to her. Not only had he been strictly faithful to his wife; but he Lad, even before his marriage, been perfectly spotless. It docs not appear from his own confessions, or from the railings of his enemies, that he erer was drunk in his life. One bad habit he contracted, that of usitg profare language; but he tells us that a single reproof cured him so cliectually that he never offended again. The werst that can be laid to the charge of this poor youth, whom it has been the f.ashion to represent as the most desperate of reprobatey, as a rillage Rochester, is, that he had a great liking for some diversions, quite harmless in themselves, but condemned by the rigid precisians anone whom he lived, and for whose opinion he had a great respect. The four chicf sins of which he was guilty were daneing, riaging the bells of the parish church, playing ai tipcat, and reading the history of Sir Bevis of Sonthampton. A rector of the school of Laud would hare held such a young man up to the whole larish as a model. But Burisun's notions of good and evil had been learned in a rery differeat school; and he was made miserable by the condict betwcen his tastes aad his scruples.

When he was atout serenteen, the ordinary course of bis hife was interrupted by an event which gave a lasting colour to his thoughts. He enlisted in the Parliamentary army, and served during, the decizive campaign of 1645. All that we know of his military career is, that ${ }_{2}$ at the siege oi Leicaster, ous of his conrades, who had
taken his post, was killed, by a shot from the town. Bunyan ever after considered himself as having been saved from death by the spccial interference of Providence. It may be observed that his imagination was strongly impressed by the glimpse which he had caught of the pomp of war. To the last he Ioved to draw his illustrations of sacred things from camps and fortresses, from guns, drums, trumpets, flags of truce, aud regiments arraged each under its own banner. His Greatheart, his Captain Boanerges, and his Captain Credence are evideatly portraits, of s.hich the originals were among, those martial eaints who fought and expounded io Fairfax's army.

In a few months Bugyan returned home, and marreed. His wife had some pions relations, and brought him as her only portion some pious books. And now his mind, exeltable by nature, very imperfectly disciplined by edueation, and exposed, without any protection, to the infectious virulenee of the enthusiasm which was then epidemie in England, began to be fearfully disordered. In outward things he soon became a strict Pbarisee. He was constant in attendagec at prayers and sermons. His favourite amusements were, one after another, relinquished, though not without many painful struggles. In the middle of a game at tipeat he paused, and stood staring wildly upwards with bis stick in his hand. He bad heard a voice askiog him whether he would leave his sins and go to hearen, or keep his sins and go to bell; and he bad seen an arful countenance frowning on him from the sky. Tho odious vice of bell-ringing he renounced; but he still for a time ventured to go to the church tower and look on while others pulled the ropes. But soon the thought struck him that, if he persisted in such wickedaess, the steeple would fall on his head; a ad he fied in terror from the accursed place. To give up daaciog on the village greea was still harder; and some months elapsed before he had the fortitude to part with his darling sia. When this last sacrifice had been made, he was, even when tried by the maxims of that austere time, faultless. All Elstow talked of him as an emioently pious youth. But his own mind was raore uaquiet than ever. Having nothing more 10 d) is the way of visible reformation, yc: finding in religion no pleasures to supply the place of the jurenile amusements which he had relioquished, be begao to apprehend that he lay under some special malediction; and he was tormented by a succossion of fantasies which seemed likely to drive him to suicide or to Bedlarn.

At one time bo took it into his bead that all nersons of Israelite blood would be saved, and tried to make out that he partook of that blood; but his hopes were specdly destroyed by bis father, who seems to have had no amhition to be regarded as a Jew.

At another time Buayan was disturbed by a strance dilemma: "If I have not faith, I am lost; if I have faith, I can work miracles." He was tempted to cry to the puddles between Elstow and Bedford, "Be ye dry;" and to stake his cternal hopes on the event.

Then be took up a notion that the day of grace for Bedford and the neighbouring villares was past; that all who were to be saved in that part of England were already converted; and that he had begun to pray and strive some months too late.

Then he was harassed by doubts mbether the Turks were not in the right, and the Christians in the wrong. Thea he was troubled by a maniacal impulse which prompted him to pray to the trees, to a broomstick, to the parish bull. As yet, however, be was only entering the vailey of the shadow of death. Soon the darkness grew thicker. Hideous forms floated before him. Sounds of cursing and wailing were in his ears. His way ras through stench and fire, close to the mouth of the bottom-
less pit. He began to be haunted by a atrange curiosity about the unpardonable sin, and by a morbid longing to commit it. But the most frightful of all the forms wiich his disease took was a propensity to utter blasplemy, and especially to renounce his share in the benefits of the redemption Night and day, in bed, at table, at work, evil spirits, as be imagioed, were repeating close to his ear the words, "Sell him, sell him." He struck at the hobgoblins; be pushed them from him; but still they were ever at his side. He cried out in answer to them, hour aiter hour, "Never, aeser; not for thousaads of worlds; not for thousands." At leagth, worn out by this long agons, he sufiered the fatal words to escape him, "Let him go if he will." Then his masery became mere fearful than ever. He had done what could not be forgivea. He had forfeited his part of the great sacrifice. Like Esau, be had sold his birthright; and there was tu longer any place for repeatance. "None," he afterwards wrute, "kaors the terrors of those days but myself." He Las describcd his sufferings with singular energy, syaiplicity, and pathos. He envied the brutes; be eavied the very stoDes on the street, aud the tiles on the houses. The sun seemed to withbold its light and warmoth from him. His body, though cast in a sturdy mould, and though still in the lighest vigour of youth, trembled whole days together with the fear of death and judgment. He fancied that this trembling was the sign set on the worst reprobates, the sign which God had put on Cain. The unhappy mas'a emotion destroyed his purver of diges. tioo. He had ouch pans that he expected to hurst asuader like Judas, whom he regarded as his protutype.
Neither the books which Bunyan read, nor the advisers whom he consulted, were likely to do much good in a case like his. His small library had recenved a most unseason. able addition, the account of the lamentable end of Fraacis Spira. One anclent man of high repute for piety, whom the aufferer consulted, gave an opinion which might well have produced fatal consequences. "I am afrald," sald Bunyan, "that I have committed the sin against the Holy Ghost." "Indeed," said the old fanatic, "I am afraid that you bave."

At length the clouds broke; the light became clearer and elearer; aad the enthusiast who had imagined that he was branded with the mark of the first murderer, and destined to the end of the areh-trator, enjoyed peace and a cheerful confidence in the mercy of God. Years elapsed, however, before his nerves, which had been so perilously overstraned, recovored therr tone. When be had jowed a Bapust society at Bedford. and was fur the first thme aimutsed to partake of the eucharist, it was with difficuliy that be could refrain from imprecating destruction on his brethren while the cup was jassing from band to band After he had been some time a meuber of the eongreganoa. he beyan to preach; and his sermons producell a powerful etiect. Ile was mdeed illiterate; but he spoke to illiterate men. The severe traming through which bo had pissed bad given bion such an expenmental knowledge of all the modes of religous melancholy as he could never bave gathered from books; and bis vgorous genms, ammated by a fervent spirit of devotion, chabled him not only to exercise a great influence over the vuigar, tur even to extort the balf-contempiuous admiration of schohars. Yet it mas long before be ceased to be tormented by an impulse which urged him to utter words of horrable impiety in the pulpit.

Counter-1rritants are oi as great use in moral as in physical diseases. It ahould seem that Bunyan was inally relieved from the internal sufferings which bad embittered his life by sharp persecution from without. Fie had been five years a preacker, when the Restoration
put it m rae power of the Cavalier gentlemen and clergymen all over the country to oppress the dissenters; god, of all the dissenters whose history is known to us, be was perhaps the most hardly treated. In November 1660 be wias flung into Bedford jall, and there be remanned. with some intervals of partial and precarious liberty, durme twelve years His persecutors tried to extort from hatn a promase that be would abstan from preachag, but be was convinced that he was divinely set apart and commissioned to be a teacher of rightemusness, and he was fully determmed to obey God rather than man. He was brougtr before several tribunals, laughed at, caressed, revied nenaced but in ram. Ho was facetiously told that the was quite right in thonking that be ought not to bude lus gift, but that his real gift was skill in reparmug old kettles. He was com. pared to Alexander the coppersmith. He was told that if he would give up preaching he should be instantly liberated. He was warned that if be persisted in disobeying the law he would be liable to bamshment, and that if be were found in England after a certain time his neck would be siretched. His anstier was, "If you let me out to-day, I will preach agam tounorrow." Year after year he lay patiently in a dungeon, compared with wheh the worst prison now to be found in the island is a palace. His fortitude is the more extraordinary because has domestic feelings were unusually strong. Indeed, he was considered by his stern brethren as somewhat too fond and molulgent a parent. He had several small children, and among them a daughter who was blind, and whom he loved with pernhar tendemess. He could not, he said, bear even to let the wand blow on her ; snd now she must sulfer culd and hunger, she must beg, she must be beaten, " yet," he added, "I must, I must do it." While he lay in prison, be could do nothing in the wsy of his old trade for the suppert of his family. He determmed, therefore, to take up a new trade. He learned to make long-tagged thread laces, and many thousands of these articles were furnished by lum to the hawkers. While bis tands were thus busted be had uther employments for his mind and bas lips. He gave religious instruction to his fellow-captives, and formed from among them a httle flock, of which he was humself the pastor. He etudied indefatrgably the few books which he possessed. His two chief companions wero the Bible and Fox's Book of Martyrs. H_{19} knowledge of the Bible was such that he might have been called a living concordance; and on the margin of his copy of the Book of Martyrs are still legible the ill epelt lines of doggrel in which he expressed his reverence for the brave sufferers, and his implacable enmity to the mystical Babylon.

At length he began to write, and though it was some time before be discovered where his strength lay, his writings were not unsuccessful. They were coarse, mdeed, but they showed a keen mother wit, a great command of the bomety mother tongue, an intimate knowladge of the Ençlish Bible, and a vast and dearly bought spiritual experience. Thoy therefore, when the corrector of the press had moproved the syntax and the spelling, were well recnived by the humbler class of dissenters

Much of Bunyan's time was spent in controversy. He wrote sharply aganst the Quakers, whom he acems always to bave held in utter abliurrence. It is, however, a remarkable fact that bo adopited one of their peculiar fashions, bis practice was to write, nut November or December, but elcventh montls and twelfth month.

Ho wroto against the liturgig of the Charch of England. No two thags, according to him, haddess affinity than the form of prayer and the spirit of prayer. Those, ho said w. h much point, who have most of the spirit of prayer
are all to be found in jan; witu zose who have most zeal for the form of prayer are all to $b \in$ found at the alehouse Tbe doctrinal Articles, on the otber hand. he warmiy prased, and defended aganat some Armiman clergy. men who had signed them. The moat acrimomous of all his works is his answer to Edward Fowler. afterwards bishop of Gloucester, an excellent man, but not free from the taint of Pelagianism.

Bungan had also a dispute with some of the chiefs of the sect to which he belonged He doubtless held with perfect smocerty the distinguishang tenet of that sect, but he did not consider that tenet as one of higb mportance, and wilhagly jouned an conamunion witt prous l'resbytertans and Independents. The sterne: Baptists, therefore, loudly pronounced bim a false brothe: A controversy arose which long survived the orignaid combatants. In our own time the cause which Buayan had defended with rude lugic and rhetorac aganst Kifin snd Danvers was pleaded by Robert Hall with an ingenuity and eloquence such as no polemical writer bas ever surpassed.

During the years which immediately followed the Restoration, Bungan's confinement secms to bave been strict. But as the passions of 1660 cooled, as the hatred whth which the Purntans had been regarded while then reign was recent gave place to pity, he was less and less harshly treated. The distress of his family, and has own patience, courage, and prety, softened the hearts of his persecutors. Like Lis own Cbristian in the cage, be found protectors even among the crowd at Vanty Fair The bishop of the diocese, Dr Barlow, is said to bave interceded for him. At length the prisoner was suffered to pass most of his time begond the walls of the jall, on condition, as it should seem, that be remsined within the town of Bedford.

He owed his complete liberation to one of the rorst acts of one of the worst governments that England bay ever seen. In 1671 the Cabal was in power Charles II. had concluded the treaty by which he bound hmselt to set op the Roman. Catholic religion in England. The first step which he took tosards that end was to anoul. by an unconstitutional exerrise of his prerogative, all the penal statutes aganst the Roman Catholacs, and in order to disguise his real design, he annulied at the same time the penal statutes agamst Protestant Nonconformists. Bunyan was consequently set at large. In the firat warmth of his gratitude be published a tract, in which he compared Charles to that humane and gencrous Persisn king, who, though not himself blessed with the light of the true religion, favoured the chosea people, and permitted them, after years of captavity, to rebulel thear belowed temple. To candid men, who consider how much Bunyan had suffered, and how little be could guess the secret designs of tase court, the unsusmanous thankfulness wath which he accepted the prectous boon of freedom will not appear to :equire any apology.

Before holeft his prison he had legun the brok which bas made his name immortal. The history of that book is remarkable. The author was, as he tells us, writing a treatase, in which be had occasion to speak of the stages of the Christian progress. He compared that progress, as many others had compared it, to a pilgrimage. Soon his quick wit discovered innumerable points of sunilarıty which had escaped his predecessors. lmages came crowd. ing on has mind faster than he could put them mito words. quagmires and pits, stcep hills, dark and bormble glens. soft vales, sunny pastures, a gloomy castle, of which the courtyard was strewn with the skulls and bones of murdered pisoners, a town all bustle and splendour, like London of the Lord Mayor's Day, and the uarrow path, straight as a
'rule could make it, running on up hill and down hill, snrough city and through wilderness, to the Black River and the Shining Gate. He had found out, as most people would bave said, by accident, as he wonld doubtless have said, by the guidance of Providence, where his powers lay. He had no suspicion, indeed, that he was producing a masterpiece. He could not guess what place his allegory would occupy in English literature ; for of Eaglish literature he knew nothing. Those who suppose him to bave studied the Faery Queen might easily be confuted, if this were the proper place for a detailed examination of the passages in which the two allegones have been thought to resemble each other. The only work of fiction, in all probability, with which he could conpare his Pilgrem was bis old favourite, the legend of Sir Bevis of Southampton. He would bave thought it a sin to borrow any time from the eerious business of his life from his expositions, his controversies, and his lace tags, for the purpose of amusing himself with what he considered merely as a trifle. It was only, he assures us, at spare moments that he returned to the House Beautiful, the Delcetable Mountains, and the Enchanted Ground. He had no assistance. Nobody but himself saw a hine till the whole was complete. He then consulted his pious friends. Some were pleased. Others were much scandalized. It was a vain story, a unce romance, about giants, and lions, and goblins, and warriors, sometimes fighting with monsters, and sometimes regaled by fair ladies in stately palaces. The loose atheistical wits at Will's might write such stuff to divert the painted Jezebels of the court; but did it become a minister of the gospel to copy the evil fashions of the world? There had been a time when the cant of such fools would have made Bunyan miserable. But that time was past ; and his mind was now in a firm and healthy state. He saw that in employing fiction to make truth clear and goodness attractive, be was only following the example which every Christian ought to propose to himself; and be determined to print.

The Pilgrim's Progress stole silently into the world. Not a single copy of the first edition is known to be in existence. ${ }^{1}$ The year of publication has not been ascertained. It is probable that during some months the little volume circulated only amorg poor and obscure sectaries. But soon the irresistible charm of a book which gratified the imagination of the reader with all the action and scenery of a fairy tale, which exercised bis ingenuity by setting him to discover a multitude of curious amalogies, which interested bis feelings for human beings, frail like himself, and struggling with temptations from within and from without, which every moment drew a smile from him by some stroke of quaint yet simple pleasantry, and nevertheless left on his mind a sentiment of reverence for God and of sympathy for man, began to produce its effect. In puritanical circles, from which plays and novels were strictly excluded; that effect was such as no work of genius, though it were superive to the lliad, to Don Quixote, or to Dthello, can ever produce on a mind accustomed to indulge a literary luxary. In 1678 came forth a second edition with additions; and then the demand became immense. In the four following years the book was reprinted six t:mes. The eighth edition, which contains the last improvernents made by the author, was published in 1682, the ninth in 1684 , the tenth in 1685 . The he!p of the engraver bad early been called 10 ; and tens of thousands of children looked with terror and delight on execrable copperplates, which represented Christian thrusting bis sword into Apollyon, or writhing in the grasp of Giant Despair. In Scotland, and in some of the colonies, the

[^44]Pilgrom was even more popular than in his native country. Bunyan has told us, with very pardonable vauity, that in New England his dream was the daily subject of the conversation of thousands, and was thought worthy to appear in the most superb binding. He had numerous admirel. in Holland, and among the Huguenots of France. Witi the pleasures, however, be experienced some of the pains of eminence. Knavish booksellers put forth volumes of trash under his name, and envious scribblers manatained it to be mupossible that the poor ignorant tiok ir should really be the author of the book which was callea his.

He took the best way to confound both those who counterfeited han and those who slandered him. He continued to work the guld-field which he had discovered, and to draw from it new treasures, not madeed with quite such ease and in quite such abundance as when the precious soil was still virgin, but yet with success, which left all competition far behind. In 1684 appeared the second part of the Pilyrum's Progress. It was suun followed by the Holy War, which if the Pilgrim's Progress did not exist, would be the best allegory that ever was writen.

Bunyan's place in suciety was now very different from what it had been. There had been a ume when many dissenting minsters, who could talk Latin and read Greei, had affected to treat him with scorn. But his fame anu influence now far exceeded theirs. He bad so great an authorty among the Baptists that he was popularly called Bishop Bunyan. His episcopal vistations were ennual From Bedford be rode every year to London, and preacheu there to large and attentuve congregations. From Londo= be went his circuit through the country, animating the zeal of his brethren, collecting and distributiug alms, and making up quarrels. The magistrates seem in general to have given hum little trouble. But there is reason to believe that, in the year 1685, he was in some danger of agau occupyng his old quarters in 1sedford jail. In that year the rash and wicked enterprise of Monmouth gave the Government a pretext for prosecuting the nonconformists, and scarcely one eminent divine of the Presbyterian Independent, or Bapitist persuasion remained unmolestea. Baxter was 1 h prison: Howe was driven into exilo: Hensy was arrested. Two emment Baptists, with whom Bunyan bad been engaged in controversy, were in great peril and distress. Danvers was in dauger of being langed; and Kiffin's grandsons were netually hanged. The tradition is that, during those evil days, Bunyan was forced to disguise bimself as a waggoner, and that he preached to bis congregation at Bedford in a smock-frock, with a cartwhip in has hand. But soon a great change took place. James the Second was at open war with the churcia, and found it necessary to court the dissenters. Some of the creatures of the Government tried to secure the nid of Bunyan. They probably knew that he had written in praise of the indulgence of 1672, and therefore hoped that he might be equally pleased with the malgence of 1687. But fiftecn years of thought, observation, and commerce with the world had made bim wiser. Nor were the cases exactly parallel. Charles was a professed Protestant; James was a professed Papist. The object of Charles's indulgence was disguised; the object of James's indulgence was patent. Bunyan was not decerved. He exhorted his hearers to prepare themselves by fasting and prayer for the danger which menaced their civil and religious hiberties, and refused even to speak to the courtier who came down to remodel the corporation of Bedford, and who, ns was supposed, had it in cbarge to offer some municipal dignty to the bishop of the Baptists.
Bungan did not live to see the Revolution. In the summer of 1688 he undertook to plead the canse of a son
with an angry, tus as tength prevailed on the old man not to disinnerit the young one. This good work cost the banevoleat natercessor his lifo. He had to rida through heary rain. He came drenched to his lodgings on Snow Hill, was eezzed with a violent fever, and died in a few days (August 31). He was buried in Bunhill Fialda; and the spot where he lies 13 still regarded by the Nonconformiats with a feeling which saems acarcely in harmoay with the stern epirit of thair theology. Many Puritans, to whom tho respect paid by Roman Catholics to the reliquee and tombs of eaints seemed childish or sinful, are said to have begged with their dying breath that their caffins might be placed as near as possible to the coffin of tha author of the Pilgrin's Progress.

The fame of Bunyan during his life, and during the rentury which followed his death, was indeed great, hut was ałnost entirely confined to religious familios of the middla and lower classes. Very saldom was he during that time meationod with respect by any writer of great literary eminence. Young coupled his prose with the poetry of the wretched D'U'rfey. In tho Spiritual Quixote, the adventures of Christian are ranked with those of fack the Giant-Killer and Join Hickathrift. Cowner ventured to praisa the great allegorist, but did not venture to name him. It is a significant circumstance toat, till a recent period, all the numerous editions of the Pilgrim's Progress were evidently meant for the cottage and the servant's hall. The paper, the printing, the plates, were all of the meanest description. In general, when the caucated minority and the common people differ about the merit of a book, the opinion of the educated minority tinally provails. The Pilgrim's Progress is perhaps the only book about which, after the lapse of a hundred jears, the educated minority has come over to the opinion of the common people.

The attempts which have been made to improve and to initate this book are not to be numbered. It has been doae into verse; it has been done into modern English. Tha Pilgrimage of Tender Conscience, the Pilgrimage of Good Intent, the Pilgrinage of Seek Truth, the Pilgrimage of Theophilus, tho Infant Pilgrim, the Hindoo Pilgrim, are among the many feeble copies of tho great original. But the peculiar glory of Bunyan is that those who most hated his doctrines have tried to borrow the help of his genius. A Catholic version of his parable may be seen with the head of the virgin in the title-pace. On the other hand, those Antinomians for whom his Calvinism is not strong eaough, may study the Pilgrimage of Hophzibah, in which nothing will bo found which can be construed into an admission of free agency and universal redemption. But the most extraordinary of all the acts of Vaadaliam by which a fino work of a:t was ever defaced was committed so lata as the year 1853. It was determined to transform the Pilgrim's Progress tuw a Tractarian book. The task was not easy; for it was necessary to make two eacraments the most prominent obiects in the allegory, and of all Christian theologians, avowed Quakers excepted, Bunyan was the one in whose system the sacraments held the least prominent place. Howerer, the Wicket Gate became a type of Baptism, and the Housa Beautiful of the Eucharist. The effect of this change is auch as assuredly the ingenious persen who made it never contemplated. For, as not a single pilgrim passes through the Wieket Gate in infancy, and as Faithful hurries past the IIouse Beautiful without stopping, the lesson which the fable in its altered shape teaches, is that none but adults ouglit to be baptized, and that tha Eucharist may safely bo neglected. Nobody would hava discovered from tho original Pigrim's Promess that the euthor was not a Predobaptist. To turn bis book jnto a
bock against Pædooaptism. Wis an achievement reserved for an Anglo-Catholic divine. Suci blunders must necessarily ba committed by every a!an who mutilates parts of a great work, without taking a comprehensive view of the whole.
(․․)
Bunyan's works were first published in a collected form in 1682 (2 vols. folio). Of mora recent editions, one of the best is that by George Offor (3 vols. 8vo, 1853). The Pilgrim's Prograss has probably passed through a larger number of editions than any other book except the Bible. Southey's edition (1830) contains a life of Bunyan, which was afterwards (1833) publisked separätely.

BUNZLAU (1.), the chief town of a circle in the government of Liegnitz in Prussian Silesia, on the righ: bank of the Bober, about 27 miles from the city of Liegnitz by the Berlin and Breslau Railway, which erosses the river by a noble viaduct. The older part of the town is atill surrounded with fortifications. Ite public institutions comprise a gymnasium, a normal college, an orphan asylum, and the provincial lunatic asylum. The house is shown where Opitz was born in 1597, and in the market-place is a cost-iron obelisk to field-marshal Kutusoff. • The Bunzlau pottery is famous; woollen and linen cloth are manufactured, and there is a considerable trade in grain and cattle. Bunzlau (Boleslavia) received its name in the 12th ceatury from Duka Boleslas, who separated it from.tha duchy of Glogau. Its importance was iocreased by numerous privileges and the possession of extensiva mining works. It was frequently captured and recaptured in the wars of the 17 th century, and in 1739 was completely destroyed by fire. In 1813 it was the scene of a battle between the French and the Allies. Population in 1871, 8812.

BUNZLAU (2.), the chief town of a circle in Bohemia, on the left bank of the Iser, in $50^{\circ} 25^{\prime} \mathrm{N}$. lat. and $14^{\circ} 54^{\circ}$ E long. It has a towa-house and castle, supposed to have been built in the 10th century-which is now used as barracks, -a military hospital, a Piaristic college, and a gymnasium. Its manufactures iaclude cotton, woollen, and linen eloth, leather, and soap. Bunzlau is frequently called Jung Bunzlau to distinguish it from Alt Bunzlau, a village on the Elbe. Population (1869), 8695.

EUONAFEDE, Appiano (1716-1793), an Italian writer on philosophy and social economy, was born at Comachio, in Ferrara, in 1716. He became professor of theelogy at Nuples in 1740 , and eatering the religious body of the Celestines in 1734, rose gradually to be geacral of the order. He died at Rome in 1793. His principal works, gencrally published under the assumed title of Agatopisto Cromaziuno, are on the history of philosophy, Della Istoria e delle Indole di onni Filosofia, 7 vols., 1772, seq.; and Della Restaurazione di ognı Filosotia ne' Secoli xvi., xvii., xviii., 3 vols., 1789 (rhich has been translated into German by Heydenreich). The second of these is of great import. ance for the estimation of the Italian philosephers of the J6th century. Mis other works are Istoria critica e flosofica del suicidio, 1761; Delle conquiste celebri csaminate col naturale diritto delle genti, 1763; Stora critica del moderno diritto di natura e delle genti, 1789; and a few. poems and dramas.

buonarroti. See Micael Avgelo.

EUOY, a floating body used as a means of denoting any desired spot in a river, channel, or other place frequented by shipping. Buoys are made of various shapes and material, auch as a small \log of wood 6 or 8 iachea diameter and about twico that length, on ordiaary cask, or a special structure either of iron or wood, varyigg in strength, shape, and size according to the duty it is required to perform. Before an anchor is let go, a buoy is generally attached to it, tho length of the buoy-rope being slightly greater than the depth of water at high tide. This is done that if for any reason it should become necessary to elip the cable, both anchor and cable may be afterwarda recorarco
the more readily, their position being denoted by the buoj, and also because it 13 of service to know the position of the anchor before attempting to weigh it! The buoys most commonly used for this purpose are of the shape of two cones brought together at their bases, and are made of sheet jron, usually galvamzed; they are ealled Nun-buoys.

Mooring-buoys are placed in convenent prsitions so that ships may make fast to them instead of dropping therr anchors, and are generally provided with large ring and eye bolts for this purpose. Such buoys are usually of a cylindrical shape, and are made either of irou or prood. They must have suficient buoyancy to support the werght of a cable of the required strength for the size of ship it is intended to moor, and at the same time be high enough out of the water to make themselves conspreuous... One of the largest and most approved moormg buoys recently made consisted of a cylinder 9 feet long and 6 feet 9 inches diameter, the edges of the ends bent rounded off; it was made of ron plates $\frac{3}{6}$ inch thick, and was divided into two water-tight compartments by an iron that passing through the axs of the cylinder; a watertight iron trunk was fitted, passing through the buoy at the centre, at right angles to the flat, for the cable to go through, so that it might be secured on the upper surface of the buoy.

Buoys are also used to mark the positions of sands and shoals. A usual shape given to them in rwers and sheltered places is that of a frustum of a cone, the smaller end bemg placed downwards, and the name of the buoy-a name which jadicates the shoal it marks-bemg panted in large letters on the upper cod. In more exposed positions the buoys have to be larger and strouger, and are usually made of an egg-shape flattened at the bottom. The largest and most approved are made of iron plates $\frac{1}{2}$ nech and $\frac{3}{8}$ inch thick, with a smaller buoy of similar shape, built wathin tho larger one, so as to divide it into two watertight compartments. The advantage of the diviston in this case, and in the case of the mooring buoy described abore, is, that the buoy is less liable to be sunk by collision with passing vessels, since if one compartment is damaged the other has sufficient buoyancy to float the whole. The largest of these buoys are about 15 feet 6 inches high, and 10 feet diameter at the widest part, the inuer bucy beng 9 feet high sod 8 feet diameter.

A bell which is frequently placed on a buoy is of great service at night or in foggy weather, the motion of the bnoy as it is tossed about by the waves causing the bell to ring.

BUPALUS and ATHENIS, Greek sculptors, about 540 b.c., lived in the ishand of Chios, which at that time had a school of sculptors who had acquired some celebrity by then works in marble, which material they had introduced as a substitute for the bronze and wood prevrously employed for sculpture. Bupalus was the more celebrated of the two brothers. Their inther was Arehermus, also a conptor; and it seems from the few notuces of them works wheh exist, that they produced only draped figures, from whichat is inferred that their art bad not yet advanced to the study of the buman Gigure itself. Tho Graces, who bits now only known as nude figures, were represented ns Iraped by Bupalus for the Temple of Nemess in Smyrna. He is said alsy to bave made a figure of Tyche (Fortuno) iur that town. They worked apparently only for the towns in Asia Mhur and the Greek 1 slands. Tet Pliny (Nat. Hist. $x \times x v i$, 11) says that acuiptures from ther hands were to be seen in the pediment of tho temple of Apollo on the Pelatine at Rome, whither they bad been brought by Augustus, whe seems to have had a taste for early Greek work. Bat if this is true, and if the figures at all fitted into the peculiar space of a temple pediment, it would follow - the they had originally been desigued for a similar. purpose, and that, therefore, these early artists were able to produce
figures for architectural decoratic:i, which hardly seems probable. There is a story that Bupalus had made a caricature portrait of the poet Hipponax, who was linown for bis ugliness, and that the poet replied by some verses, the sting of which eaused the sculptor to hang himself.

BUPLONIA, called also Difpolia a religious festival held on the 1 th of the month Skirephorion (July) at Athens, when the very ancient eeremony was gone through of sacrificing an ox to Zeus, under the following circum-stances.- The ox was driven forward to the altar, on which grain was spread, by members of the family of the Kentriade, ou whom this duty devolved hereditavily (iérepor, from which the name is derived, means a goad). When it begar to eat, one of the family of the Thaulonide advanced witb an axe, slew the ox, then immediately threw away the axe, and fled. The axe was now carried lefore the court of the Prytaneum (see Areoragus), and there charged rith having caused the death of the ox, for which it was thrown into the sea. Meantıme the sacrifice of the ox was accepted in the usual manner.

BURCNHARDT, Jonn LUdwio (1784-1817), a cele. brated Swiss traveller, was born at Kirchgarten, near Lausanne, November 24, 1784. After studying at Leipsic and Göttingen he visited England in the summer of 1806, carrying a letter of introduction from the celebrated Blumenbach to Sir Joseph Banks, who, with the other members of the African Association, accepted his offer to explore the interior of Africa. After studying in London and Cambridge, and innring himself to all hinds of hardships and privations, ho left England in April 1809 for Malta, whence he proceded, in the following October, to Aleppo. In order that he might aequire Aralic thoroughly he disguised himself as a Mussulman, under the name of Sheik Ibrahia Ibn Abdallah; and, after two years passed in that part of Asia, he bad so mastered the language as not to be distingusbed from the natives, and had acquired such accurate knowledge of the contenta of the Koran, and of the commeutares upon its religion and laws, that after a eritical exammation the most learned Mussulmans entertained no doubt of his leng really what he proiessed to be, a learned doctor of their las. During his residence in Syria bo visited Palmyra, Damascus, Lebanon, and thence repaired to Caro with the intention of joining in caravan, and travelling to Fezzau, in the north of Africa. In 1812 , whist waiting for the departure of the caravan, he undertook a journey to the Nile, as far up as Mahass; and then, in the claracter of a poor Syrian merchant, he made a journey through the Nubian desert which Bruce had traversed, passing by Berber and Shendy to Suakin, on the Red Sea, whence he performed the pilgrmage to Mecea by way of Jiddah. After enduring privations and sufferings of the severest kind, he returned to Caro in a state of great exhaustion; but in the spring of 1816 he travelled to mount Sinai, whenco he returned to Carro in June, and there made preparations for his intended journey to Fezzan, and exploration of the sources of the Niger. Several hindrances prevented his prosecuting this intention, and finally, in April 1817, when the long expected cararan prepared to depart, he was seized with an illness of which he died in October. He liad from tune to time carefully transmitted to Eugland has journals and remarks, and a very copsous series of letters, so that nothing which appeared to bim to be interesting in the varsous journeys be made has been lost. He bequeathed his collection of 800 vols , of Oriental MISS. to the library of Cambridge university.
His works were, Travels in Nubia, 1819; Travels in Syria and the Holy Land, 1822 ; Travels 2π Arabia, $182!$; Notes on the Bedouins and Wrahabys, 1830 ; Aralic Proverls, 1830.

BURDER, George, one of the founders of the London Missionary Society, was born in London, June 5, 1752,
and died there May 29, 1832. He was pastor of the Indirendent church at Lancaster from 1778 to 1783. Afterwards, be was for twenty years monster of the West Orchard chapel at Corentry. At the end of ths period be remored to London, where for twenty-nine years be offiated at the Fetter Lane chape! For many years be performed gratuitously the duties of secretary to the London Missionary Society, and edited, watb luch success, the Evangelical Magazine He is chrelly remembered now as the author of the rullage Sermons, which appeared at intervals from 1799 to 1812. and were at last completed in six volumes. They have had an extraordinarly wide arrculation, and bare passed through numerous editions He edited many works-among others the Pilgrimis Progress, Colling's Teaver's Pocket-book, or Teaving Spirthoalizei, and Hearys Bible with Improvements
burdett. ilr Francis (17:0-1814), Baronet, was born on the 25th of January 1770 The rudiments of his education be recelved at Westminster school, whence he removed is due tume to Oxtord He did not watt to graduate at that unversity, but in 1790 set out on a Continental tour, in the course of which he became strongly imbued with the revolutionary principles then dominant in France and otber countries. On his retura to Englad in 1793 he married the youngest daughter of Thomas Coutts, a London banker, witb whom be received a large fortune. In 1796, through the influence of the duke of Nexcastle, be was chosen MP for Boroughbridge, on which occasion he had as colleague John Scntt, afterwa ds Lord Eldon. In 1797 he aucceeded bis grandiather in the baronetcy, his father and elder brother having predeceased hum At the outset of bis political career be was a zealous supporter of ultra-liberal measures $\ln 1802$. after a protracted contest, ho was elected M.P for Middlesex, in opposition to the former rember, Mr Maluwaring The election, bowever, was declared void, and in the subsequent canvass be mas defeated In 1806 he again stood for Middlesex and was agand defeated, but when he stood for Westminster in the same year be was elected by a large majority In March 1810 be wrote a letter to his constituents. denyiog the right of Government to commit for libel, as thes bad recestly done. This letter was brought under the notice of the House, and the speaker 1 ssued a marrant ior the conmittal of Sir Fracis to the Tower The baronet. bow. ever, disputed the raght of the House, and had to be remored from bisomn residence by furce There was some collision in consequence between the miltary and the populace who were devoted to Sir Francis at the prorogation of parlament be was released, and lust wo tune in prosecuting the Speaker and the Sergeant-at-arms, but without success On the occasion of the Manchester riots in 1819 he wrote a jetter to ins consutuents. for mbich he was tried for libel. found guilty. and condemned to three months' imprisonment, and to pay a fine of flono In 1837 be ceased to represent Westminster, and when he was returned for Nortb Wiltshire he jomed the Conservasive party, which he supported durne the remander of his mitical career He died January 23.181

BURG, a town of Prusuan Saxony, on the Rures The and on the railway from Berlin to diagdelure. 14 miles N.E of the latter $1 t$ has long been noted for its woollen manufactures, whech afford emploument to a great part of ts population. The town formorly leinuged to the Querfurt prienpality, but was ceded th, Bratidenburg io 1687 It owes its prospenty to the large untus of iodustnous Frencb, Palatinate. and Walloon refugees, which took place 10 the end of the 1ith confurg Propulation in 1871. 15,184

BURGAGE is a form of tenure, woth in England and Scothand, ampacab to the propity conncted with the
old municipal corporations and their pravileges. The terms 13 of less practical importance in the Englush than in tife Scottish system, where it still holds an moportant place in the practice of conveyancing, real property being there generally dirided anto feudal-bolding and burgage-bolding. It ss usual to speak of the Enghsh burgage-tenure as a relic of Sason freedom ressting the shock of the Norman conquest and its feudahsm, but it is perhaps more correct to consider it a local feature of that general exemption from fendality enjoyed by the muncapra as a relic of their ancient Roman constitution The reason for the system preserming its speafically distinct form in Scottisb conveyancing is because burgage-bolding was an exception to the system of subinfeudation which remaned prevalent in Scotland when it wis suppressed in England. While other vassals might hold oi a graduated hierarchy of overlords up to the crown, the burgess always held directly of the sovereign. It as curnous that while in England the burgage-tenure was deemed a spectes of soccage, to dustingusb it from the mulary huldings, in Scotland it aras stnctly a military holding. by the service of watching and warding for the defence of the burgh In England the franchises enjoyed by burgesses. freemen, and other consuetudinary constituencies in burghs, were dependent on the character of the burgage tenure

BURGDORF (in Frenct. Bertaocd), a town in the Swiss canton of Bern. on the River Emme, about 14 miles by railway from the chief city. It is situated 1840 feet above the level of the sea. and consists of an upper and lower part. which are connected br a sparal arrangement of streets. Its bouses are substamially hualt, and it bas an ancient castle. a town-bouse, a bospital. an orphanage. and a public library. Ribbons ana damask, tobacto and chocolate are manufactured. and a large irade is carried on in the dary produce of the Emmenthal From the Lueg about $4 \frac{1}{2}$ mules to the NE a new of the whole Bernese Alps can be obtaned The castle of Burgdori was bult at a very early date, and the town became the capital of Lesser Burgundy and the residence of the duke of Zabringen. In 1270 they were succeeded by the lirds of Kyburg. who, in 1326. parned their passessions to Ulich of Signan In 138 t the inwn and countship were purchased by Bern for 37.000 forins, and the Bernese magstrates beld rule till 1798 Pestalozzi had bis educational estabhishment in the castle for a number of years. Population in 1870. 5075

BURGER. Gotrfaien Argret (lite-1:9!) a cele. brated German poet, was born on the lst of January 1348 at Wolmerswende, a millage in the principality of Halber. stadt, where bus fatber was Lutheran minister In bus chalibood he showed little inclination to srudy. The Bible was the only book which hal any aitracunn for bum. and bis first attempts in versification were amitations of the Psalms. It is to this first direction of his studies that tre are to attribute the Buhcal phrases, and the allusions to Christaanuts, which we find even in has amatory pnetry. He was fond of solituce, and indulged in all the romantic sentsments which deserts and the glonm of forests inspure. From the school of Aschersieben, where bis maternal grandfisther resiced. and which be quitsed in consequence of receling a severe chastisement for composing an epigran. be was sent to the institution at Malle But at neither of these places did be make much progress, haming a taste only for the lessons in prosedy and rersification. In 1764 Burger, who was intended for the clencal ofice, began to attend the course of lectures given by the professors of the uniremats. Kiotz, a learned classical scholar, admited bim into the select number of the young men mbose calente be took a pleasure in cultirating; but this society appears not to aave produced tite same iarourable effict on the
moral character of Bürger as ou nis genius. sis coaduet prejudiced his grandfather Bauer againat him ; and it was with difficulty that he obtained from him some further assistance, with permission, in the year 1768, to repair to Göttingen to prosecute the study of the law. This change did not make him more regular in his studies; his morals became corrupted; and his grandfather withdrew his proteetion. Bürger contraeted debts; and hes aituation would have beeome altogether desperate had not some friends interfered to assist him. An assoelation, memorable in the annals of German literature, and into which Bürger was now admitted, had just been formed at Göttıngen; it seckoned among its members Boje, Bıester, Sprengel, Hölty, Muller, Voss, the two Counts Stolberg, C. F. Cramer, and Leisewitz. All of these were persons versed in Greek aad Roman literature, and at the same.time they all idolized Shakespeare. Bürger, in a great measure, owed his style to the enthusiasm whieh he showed, in common with his literary friends, for our great dramatist. The Relaques of Ancrent English Poetry, published about this time by Dr Percy; gave an additional impulse to the direetion whieh bis mind had taken, and suggested to him some of his most armired productions. Of all his friends, Boje was the one who exereised the greatest influenee over him in the ehoice and treatmeat of his subjects; and it is to his severe observations that the poetical stanza of Bürger owes a great part of that elegance and roundness which characterize it. To the aame friend be was indebted also for some improvement in his circumstances. On the recommendation of Boje he was appointed to the collectorship of Altengleiehen, in the principatity of Calenberg. The following winter, some fragments of a ghost story, whieh he heard a peasant girl singing by moonlight, caught his imagination, and suggested his eelebrated ballad of Leonora. This remarkable production at once established his reputation as a poet. About this time be married a Hanoverian lady, named Leonhart ; but this union proved only a souree of bitterness, .as an unhappy attachment to her younger sister soon after sprung up in his heart. The loss of a sum of money, of which his grandiather had made him a present, was the first commencement of his embarrassments; the taking of a large farm, which he did not know how to manage, increased them. The dismissal from his place, in 1784, in consequence of auspicions (probably ill-founded) raised sgainst the fidelity of his aecounts, gave the finishing stroke to his misfortunes. He had a little before lost his wife, whose death was bastened by the culpable passion which Bürger cherished in his heart. Left with two children, and reduced to the inconsiderable emoluments of The Almanach of the Muses, which be had edited sinee 1779, he removed to Göttingen with a view to giving private lessons there, and in the hope of obtiining a professor's chair in the department of belles-lettres. Five years later the title was conferred on him, but without a salary; and this was the only publie recompense obtained during his whole life by s man who was one of the favourite authors of his nation, and who, while yet young, had aehicved the highest reputation. Seareely were the ashes oi his wife eold when he espoused her sister, whose name lis poems have made but too famous. She died in clnildbed in the beginning of 1786. From that moment his own life only lingered on ; and the fire of his genius seemed extinguished with the tassion which had so long nourished it. He had searcely strength enough, in the intervals of his dejeetion, to finish his Song of Songs, a sort of dithyrambie or nuptial bymn, jatended to celebrate his cecond marriage, and whieh is a strange mixture of frantic passion, religious devotion, and the most bombastic expression. It was the last production af Bürger.

Having studied the ehilosophy of Kant. he had en joien
of deriving some advantage from it at Göttingen, where it had not yet boen taught. He undertook to explaia it in a course of lectures, whieh were attended by a great number' of students. The satisfaetion whieh the university expressed to bim for two eantatas which he composed in 1787; on the oecasion of the fifty years' jubilee of this illustrious institution, and his appointment to the situation of professor extraordinary, reanimated his spirits. Fortune appearing to smile on him once more, he formed the design of laarry.ng again. During one of the moments when he was most occupied with this idea he reeeived a letter from Stuttgart, in which a young woman, whose style indicated a cultiv ted mund, and her sentiments an elevated and feeling heart, after describing to hum with enthusiasm the impression whieh his poetry bad made upon her, offered him her hand and heart. The information whieh he received respecting the ebaraeter, the fortune, and personal accomplishments of his correspondent having excited his curiosity, he took a journey to Stuttgard, and brought baek with him a wife who embittered and dishonoured the rest of his days. In less than three years he saw himself under the neeessity of obtaining a divorce from ber; and the ruin of his health aggravated the absolute disorder of his finances. Confinedto a small ehamber, the favourite poet of Germany wasted the remaiader of his strength in translations for foreign booksellers; but siekness and grief aoon deprived him even of this resouree, and he must have died in a state of the most abject poverty if the Government of Hanover bad not relieved his necessities. He died June 8, 1794, in the forty-seventh year of his age.

Bürger is only remarkable as a lyric poet; for after having tried all the different species of this class of compositions, he has succeeded eminently only in the song and the ballad. We sball perhaps charaeterize his genius sufficiently by saying that his imagination is more fresh than rieh, - that he has more sensibility than elevation, more naiveté and good nature than delicacy or taste. His style is striking from its clearness and its energy, and an eleganee which is rather the result of labour than of natural grace ; he possesses, in short, all the qualities which please the multitude. Allowing the title of poet only to those whowe writings were calculated to become popular, he early babituated himself to rejeet whatever appeared to him not sulficiently intelligible and interesting to all classes of readers. He is always clear and forcible; and if at certain times there appears a want of selection and care in the details, yet the sentiments are uniformly noble, and the moral purpose of the majority of his pieees is irreproachable. Of the first three editions of Bürger's works, published at Göttingen, tro appeared in 1778 and 1789, in 3 vols. 8vo; and the third, after his death, was published by his friend Ch. Reinhard, in 4 vols., 1796. Later editions of his poems are very numerous.

BURGERSDYK, or Burgersdicius, Francis, a celebrated Dutch logicıan, was born at Lier, near Delft, in 1590 , and died at Leyden in 1629, in the thirty-ninth year of his age. . He studied at the unversity of Leyden, and after completing his academical career there with great distinction, travelled through Germany and France. On arriving at Saumur in the latter country he began to study theology, and was so successful, that, while still a very young man. he was appointed professor of philosophy in that town. This office be held for five years, at the end of which period he returned to Leyden, where he aecepted the chan of logie and moral philosophy, and afterwards that of natural philosophy. H_{13} logic was at one time widely uscd, and is still a very valuable compendium. His treatise on ethies, entitled Idea Philosophiae Mcrales, was nublished posthumously in 1644.

BURGESS, Daniel (1645-1712), a leamed and witty assenting divine of the 17 th conturj, born at Stainos,
in Middesex, of which parish his father was minister. He was educated at Westminster school, and in 1660 was sent to Magdalen Hall, Osford, but not being able conscientiously to subscribe the necessary formula, he quitted that university without taking his degree. In 1667, after taking orders, he was appointed by Lord Orrery to the bead-mastership of a school recently established by that nobleman at Charleville in Munster, and soon after he became private chaplain to Lady Mervin, near Dublin On his return from Ireland he openly avowed his Presbyterian principles, and frequently preached in contempt of the severe laws against nonconformity. For these offences be was imprisoned, but soon regaining bis liberty he went to London, where he speedily collected a large congregation, as much by the somewhat fanatical fervour of his piety as by the ludicrons illustrations which he frequently employed in his sermons. Besides preaching, he gave in structions to private pupils, of whom the most distinguished was Henry St John, afterwards Lord Bolingbroke.

BURGesS, The Right Rev. Thomas (1756-1837), bishop of Salisbury, was born at Odiham, in Hampshire. He was educated at Winchester, and in 1775 he removed to Oxford, where he gained a scholarship at Corpus Chrısti College. Before graduating, he edited a reprint of - Burton's Pentalogia. In 1781 he brought out an edition of Dawes's Miscellanea Critica, with numerous annotations, a work so favourably received on the Continent that it was repnited verbatim at Leipsic in 1800 . In 1783 he becane a fellow of his college, and two years later undertook a journey to Holland, where he prosecuted his researches for some time On his return he was appointed chaplain to Shute Barrington, bishop of Salisbury, through whose infuence he obtained a prebendal stall in the cathedral of that town In 1789 he published his Considerations on the Abolition of Slavery, in which he advocated the pronciple of gradual emancipation. From Salisbury he removed to rurham, where he effected much good among the poorer classes, by publishing and distributing suitable religious works. In 1803 he was promoted by his old schoolfellow Addington, then prime minister, to the vacant see of St David's, which be held for twenty years, and where he gave evidence of his philanthropic disposition by establishing the Society for the Promotion of Christian Knowledge, and founding the College of Lampeter, which he liberally endowed. In 1820 he was appointed first president of the Royal Socicty of Literature recently founded; and three years later he was promoted to the see of Salisbury, over which he prosided for twelve years, prosecuting his benevolent designs with unwearied industry. One of the most important of tho many services which he rendered to the church, was the establishment of a Chureh Union Society for the assistance of infirm and distressed elcrgymen, to which he bequeathed $£ 3000$. In the midst of his useful and laborious carcer, ho was cut off ly an attack of dropsy, February 19, 1837. Ile bequeathed has library and a large sum of moncy to Lampeter College. A list of his works, which are very numcrous, will be found in his biography by J. S. IIarford, $2 d$ ecl., 18.4 ln addition to those already referred to may be mentioned his Essay on the Study of Antiqutus, The Fust Proncoles of Chorstam Knouledge; Reflections on the Controversial Wratugs of Dr Pritstley; Emendationts on S゙ulam it Mesychium a alios Lexicoyraphos Grecos, The Bibli, and nothing but the Bible, the Rilligion of the Cluarch of England.

BURGliley, Wili,iam Cech, Lord. See Cecil.
DUTRGKMAIR, llans or Jons, a celebrated engraver on wood, believed to have been a pupil of λ. Durer, was born at Augshury in 1473, and died about 1531. Professor Christ ascribes to him about 700 woodents, most of them distinguished by that spirit and frcedom which we aduire

In the works of his supposed master. His principa! work is the series of 135 prints representing the triumphs of the Emperor Maximilian I. They are of large size, executed in charoscuro, from two blocks, and convey a high idea of his powers. Burgkmair was also an excellent panter w fresco and in distemper, specimens of which are in the galleries of Munich and Vienna, carefully and solidly finshod in the style of the old German school. See Kugler's Handbook of Flemısh, Dutsh, and German Schools. by Crowe.

BURGLARY, or Nocturnal House-Breaking (burgi latronznum), which by the ancient English law was called hamesucken (a word also used in the law of Scotland, but in a somewhat different sense), has always been looked upon as a very heinous offence. The definition of a burglar, as given by Sir Edward Coke, is "he that by night breaketh and entereth in a mansion-house with intent to comast a felony." The offence and its punishment are regulateo 24 and 25 Vict. c. 96 . Night, for the purposes of that $2 \mathrm{it}(\mathrm{sec} .1)$, is deemed to commence at mine o'clock in the evening of each day, and to conclude at eix o'elock in the morning. Sec. 5l extends the definition of burglary to cases in which a person enters another's dwelling. bouse with intent to commit felony, or being in sucb house commits felony thercin, and in either case breaks out of such divelling-house by night. The punishment is penal servitude for life, or any term not less than five years, or imprisonment not exceeding two years, with or without hard labour and solitary confinement.

BURGOS, the capital formerly of the kingdom of Old Castile, and now of a separate province, stands on the slope of a hill, the base of which is skirted by the River Arlanzon, 75 miles from Madrid, in lat. $42^{\circ} 21^{\prime} \mathrm{N}^{\prime} .$, long. $3^{\circ} 43^{\prime} \mathrm{W}$. It is a considerable town, consisting of about 1400 bpuses, originally girt into the form of a segment of a circle by a wall, some portions of which still remann. On the opposite bank of the river, and connected with the more ancient part of the town by three stone bridges, are the suburbs (Barrio de la Vega), tastcfully laid out in pleasure-grounds, while lower down in the midst of the stream is an island furnished with seats and walks as a public promenade. The streets and squares are exceedingly irregular, although spacious and well built. The principal square is the Plaza Mayor, or Plaza de la Constitucion, in the centre of which is a bronze statue of Charles II. The most important public building is the cathedral, begun by Bishop Maurice, traditionally an Englishman, in 1221, but not completed till 1567. It is built in an irregular florid Gothic style, and contains eight chapels, the most famous of which is the Capilla del Condestable, containing the tombs of several of the Velasco fanily, the hereditary constables of Castile. (See View and Plan in Strect's Gothic Architecture of Spain, and history by Orcajo, Mistoriad de la Catcdral de Burgos.) Besides the cathedral there is the Ilotel de Ville, or Casa de Ayuntamiento (where the bones of the Cid and his wife are prescred in a walnut case), the Palace of Velasco, the church of St Panl, and a beautiful Doric arch, erected in honour of Fernando Gonzalez. There is a finc approach to the city through the massive gate of Smta Maria, surmounted by a statue of the Virgin and Child, and with figures of Fernando Conzalez, Charles I., the Cid, and Diego Porcelos in the niches.) The hospitals of Burgos are seven in number, and well supported; they are the Hospital San Juan (founded in 1479), the, Hospital de la Conception, San Julian, San Quirce, Del Rey, Militar, and the lIospicio y Casa do Epositos. The educational wants of the district are supplied by four primary schools, which are liberally cndowed from the municipal funds, and give gratuitous instruction to a considcrable number of purils. There is also a anrma schwol ond

Is Seminario Conciliar, in which the higher branches are taught. But the most important educational eatablishment is the Instituto Superior which has a staff, of 21 professors, and annually enrols about 250 students. The university, founded in 1550 end restored in 1776, has been loag defunct. Burgos is the see of an archbishop, who has for his suffragans the bistops of Pamplona, Palencia, Santander, and Tudela. It has several monasteries, amongst which may be mentioned Sal Pablo, built about 1415 and now occupied as a store; La Merced, converted into a hospital, the Monasterio de Fredessal, and others. About two miles distant from the torn stands the Carthusian convent of Miraflores, built in room of an earlier erection about 1480-7 ; whilst a little below the promenade of the Isla atands the Santa Maria la Real de las Hoelgas, founded by Alphonso VIII., the abbess of which was invested with almost rogal prerogatives, and held an unbimited sway over more than fifty villages. Burgos is the official residerce of a military staff, and is well provided with barracks and storehouses. The jurisdiction of its courts extends over the whole audiencra, including Alava, Guipuzcoa, Logroño, Santander, Soria, and Biscay.

Besides furnishing a mart for the agricultural produce of the neighbouring districts, Burgos carries on a considerable export trade in linen and woollen stuffs, made in imitation of English goods. The principal articles of manufacture are paper, hats, stockings, and leather goods. Its population, which is said at one time to have numbered 80,000 , amounted to $25,72 \mathrm{I}$ at the census of 1860 , which ras an increase of 10,931 since 1845 .
The history of Bargos cannot be carried back beyond the end of the 9 th century.. There is no trace of its existence during the occupation of Spain by the Romans. We find the nucleus of it existing in 884, when Diegd Porcelos, at the command of Alphonso the Grcat, built a castle on the right bank of the Arlanzon to check the progress of the Moors. From that time forward it stcadily increased in importance, reaching the height of its prosperity in the 15th century, when, alternately with Toledo, it was occupied as a royal residcnce, but rapidly declining when the court was fnally removed to Madrid. Being on one of the principal mulitary roads of the kingdon, it suffered severely during the Peninsular War. In 1808 it was the scene of the defeat of the Spansh army by the French under Marshal Soult. It was unsuccessfully besieged by Wellington in 1812, but was eurrendered to bim at the opening of the campaign of the following year. (See Waring, A rchitectural Studies in Burgos.)
BURGOYNE, Jous, an English general in the American War of Independence, was born about 1730 , and died in 1792. He $2 s$ generally supposed to havo been a natural son of Lord Bingley, but according to his latest biograpter this is not the case. He entered the army when young, and mado a runaway marriage with a daughter of the earl $\mathrm{g} f$ Derly. In 1761 he sat in parliament for Midhurst, angd in the following year he served as brigadier-gencral sn Portugal. On the outbreak of the American war he wis appointed to a command, and in 1777 be was at the head of the Brtish reinforcements designed for the invasion of the colonies from Canada. In this disastrous expedition be gained possession of Ticonderoga and Fort Edisard; but, pushing oa, was detached from his communications with Canada, and hemmed in by a superior force at Saratoga. On the 17th October his troops, about 3500 in number, laid down their arms. The success was the greatest the colonists had yet had, and it proved the turning point in the war. The indignation in England against Burgoyne was great, but perbaps nujust. The general himself resigned all his appoirtments, and dcmanded a trial, but without avail. In 1782. Lowever, ho was restored to his rank, and made
commander-in chief ia Ireland. His Draniatic and Poetical Works appeared in 2 vols., 1868. One comedy, The Heiress, Lept the stage for long. (See De Fonblanque, Political and Military Episodes from the Life and Correspondence of Right Hon. J. Burgoyne, 1876.)
burgoyne, Sir Join Fox, son of the preceding, was born in 1782, and died Octuber 7, 1871. He was àducated at Etoa and Woolwich, obtained a commission, and served in 1800 in Abercromby's expedition to the Mediterraneau. He afterwards served in the Peninsular campaigns, but before the end of them was sent with Takenbam's division to New Orleans. During the years of peace Burgoyne took an active part in promoting the movement for national defences, and in 1845 was appointed InspectorGeneral of Fortifications. He was engaged at 'Alma, Balaklava, and Inkerman, and conducted the siege of Sebastopol till his rccall in March 1855. After the conclusion of peace be received a baronetcy, and was mads general, and in 1868 was raised to the rank of field-marshal.

BURGUNDIO, an illustrious jurist of the naiversity of Pisa, sonetimes erroneously styled Burgundius. He assisted at the Lateran Council in 1179 and died at a very advanced age in 1194. He was a distinguisbed Grcek scholar, and is considered on the authority of Odofredus to have translated into Latin the various Greek fragments which occur in the Pandects, soon after the Pandects were brought to Bologna, with the exception of those in the 27 th book, the translation of which has been attributed to Modestinus. The Latin translations which bave been ascribed to Burgundio were received at Bologna as aa integral part of tho text of the Pandects, and form part of that known as The Tulgate in distinction from the Florentinc text.

BURGU NDY (French, Botrgonne) has at various periode been the name of different political and geographical areas. The Burgundians (Burgundi or Burgundiones) secm to have been a people of German race, who are first found settled between the Oder and the Vistula. At an early period thes came into conflict with the Alemanni, whun they defeated; and in the beginning of the 5th century they crossed into Roman Gaul under their leader Gundicar. The Romans not only permitted them to settle within the limits of the empire, but caused the inbabitants of the district to yield up to them one-half of their houses, two-thirds of the cultivated land, and a third of their slaves. The new-comers thus founded, in the country between the Aas and the lihone, what is usually known as the first kingdom of Burgundy, which lasted till 534, when it was incorporated in the Frankish empire. Gundicar was succeeded in 436 by Gunderic, who sonnerthat extended bis kingdow. In 4% it was parcelled out among his four sons-Chilperic, Gundibald, Goderisil, and Gondenar, who bad their headquarters respectively at Geneva, Lesangon, Lyons, and Vieme; kut it was ultimately reunited in the hands of Gundibald, who is famous for his patronage of the Catholic coclesiastics and Lis codification of the Burgundian law, which is consequenty known as Lex Gunditaldia. or Loi Gombette. Gundibadid was succected in 516 ty his son Sigismund, who in turn gave place to Gundimar, the last of the dynasty. On the disintegration of the Carloriagian cmpire, Boson, the husband of Ermencardc, the dauchter ol the Emperer Louis II., founded the kingdom of Cisjuran or Lower Burgundy, but in $8 \Sigma 2$ he recognized the overlord. ship of Caarles the Stout. His teritory included what was afterwards known as Franclec Cornté, a part of the later province of Burgundy, Dauphiné, Provence, and part of Languedoc and Savoy. In 888 Luson's example was followed, by Rudolph, a Swiss count of Guelf race, whe. supported by a large body of civil and ecclesiastical dignttarics called together by him at St Moritz in Valais, established a bingdom known as Transjuran or Crice Murgundy.

His son, Rudoiph, barcored his rights to the Italian crown for the Cisjuran kingdom, and thus united both Burgundies into what is frequently ealled the kingdom of Arles, which after various vicissitudes was finally united to the German empire by Conrad IL in 1033.

On the foundation of the Lower Purgundian kingdom by Boson, his brother Richard remaned faithful to Charles the Bald of France, and was invested with the duchy of Burgundy, which had been beld by various members of the Carlovingian family. King Robert II., however, took possession of it, and bestowed it in 1015 on his son, afterwards Henry I. On the accession of the latter to the throne of France, he gave the duchy to his brother Robert, with whose descendants it continued for a considerable period. In 1361 that elder line of dukes expired, and the duchy was seized by king John, and in 1363 presented by him to his son Philip the Bold as a reward for his bravery at the battle of Poitiers. Thus commenced that famous line of dukes which played so great a part in the history of France during the 14th and 15th centuries, and by the splendour of its achievements and the magnificence of its patronage rivalled the greatest dynasties of

Parts of Burgundy, Nivernais, sc.
the time. - Philip's marrage with Margaret of Flanders brought him the countships of Burgundy (Franche Comté), 'Flanders, Artois, Réthel, and Nevers ; and at a later petiod he purchased the countship of Charolais from the count of Armagnac. He was succecded in 1404 by John the Fcarlcss (Jean sans Peur), who was assassinated at the Bridge of Montereau in 1419, and left the duchy to his son Philip tho Good. This duke survived till 1467, and during that time had greatly extended his territory. By very questionable procecuings he obtaincd possession of Hainault and Holland Namur was purchased in I429; and in the following. ycar Brabant and Limburg alse fell into his grasp. In 1435 there were further yielded to him, by treaty with France, Macon, Auxerre, Bar-sur-Scine, and various other towns in that district. His son, Charles the Bold, followed in the same course of territorial aggrandizement, and his ambitious projects gradually extended, till ho began to aim at the founding of a great Gallo-Belgian kinglom; but his splendid plans came to an untinacly end with his own death at the battle of Nancy in 1477, when he was trying to wipe off the diacrace inflicted on his . arms by the Swiss at Morat. His daughter and beircss.

Mary, married the Archduke Maximilian, son of Frederick III. ; and with the exception of the duchy of Burgundy proper, which remained a fief of the French crown, brought with her all the vast inheritance of her father. In 1512 Maximilian incorporated the territory with the German empre under the title of the circle of Burgundy. It was gradually diminished by the encroachments of l'rance, and by the liberation of the Netherlands, so that at the Revolution it only consisted of Brabant, Limhurg, Lurerabourg, and parts of Flanders, Hainault, Namur, and Guelders.

The duchy mean while had been raised with some additions to the rank of a province, and formed a military governorship. It was bounded on the N. by Champagne E. by Franche Comte and Bresse, S. by Lyonnais anc Dauphiné, and W. by Bourbonnais and Niveruais. It was divided into eight districts-Auxerrais, the country of the Mountain, Aurais, Dijonnais, Autunais, Châlonnais, Charolais, and Mâconnais. It possessed a separate assembly of states general, which met every three years at Dijon, the capital, under the presidency most frequently of the governor of the prowince. The bishop of Autun was at the head of the clergy; the nobility and gentry had a leader of their own election; and the corresponding place in the third estate belonged to the nayor of Dijon.
See Derichsweiler's Geschichte der Burgurden, 1868 ; Barante': Histoire des ducs de Bourgogne, 10 vols. 1824; and Do' Laborde's Les dues de Bourgogne, 1871.

BURHANPUR, a town of British India in the Nimis district of the Central Provinces, situated on the north bank of the River Tapti, in $21^{\circ} 81^{\prime} \mathrm{N}$. lat. and $76^{\circ} 20^{\prime}$ E. long. at a distance of 280 miles N.E. of Bombay, and 2 miles from the Great Indien Peninsula Railway station of Lalbágh. It was founded in 1400 A.D. by a Mahometan prince of the Farukhi dynasty of Khandesh, whose successors held it for 200 years, when the Farukhi kingdom was annexed to the empire of Akbar. It formed the chief seat of the Government of the Deccan provinces of the Mughul empire till Sháh Jahán removed the capital to Aurangabad, in 1635. Burhánpur was plundered in 1685 by the Marhattás, and repeated battles were fought in its neighbourhood in the struggle betweeen that race and the Musalmáns for the supremacy of India. In $1: 39$ tho Mahometans finally yielded to the demand of the Marhattis for a fourth of the revenue, and in 1760 the Nizasm of the Deccan ceded Burhinpur to the Peshwh, who in 1778 transferred it to Sindhiá. In the Marhattí war the army under General Wellesley, afterwards the duke of Wellington, took Burhonpur (1803), but the treaty of the following yeas restored it to Sindhia. It remained a portion of Sindbia's dominions till 1860-61, when, in consequence of certain territorial arrangements, the town and surrounding estates were coded to the British Government. Under the Mughuls the city covered an arca of ahout 5 square miles, and was about $10 \frac{1}{2}$ miles in circumference. In the "Ain-1. Akbarl "it is describcd as a "large city, with many gardens, inhabited by all mations, and abounding with handicrafts. men." Sir Thomas Roc, who visited it in 1614, found that the houses in the town were "only mud cottages, excent the prince's house, the chan's, ant sone fow others." In 1865-66 the city contained 8000 houses, with a popalation of 34,137 , which had decreased to 29,303 in 1872. Burhanpur is celebrated for its muslins, flowered silks, and bro cades, which, according to Tavernicr, who wisited it in 1668 , were exported in great quantitics to Persia, Egyt, Turkey, Russia, and Poland. The gold and silver wires used in the manufacture of these fabrics are drawn with considerable care and skill ; and in order to sccure the purity of the metals cmployed for their romposition, the wire-drawing under the natire rule $\begin{aligned} & \text { as done under Government inspec- }\end{aligned}$ tion. The nown of Burhanpur and its manufactures bave
long been on the decline. The buildings of interest in the town sre a palace, built by Akbar, called the Lál Kilá or the Red Fort, and the Jumá Masjid built by Aurungzebe. A considerable number of Boras, a class of commereal Mohometans, reside here. Municipal ineome of the town in 1872, $£ 3514,10 \mathrm{~s}$.; expenditure, $£ 2321,12 \mathrm{~s}$.

BURIAL and BURIAL ACTS. The practice of burying in churches or churchyards is said to have been connected with the custom of praying for the dead, and it would appear that the earlier practice was burynng in the church itself. "In England, about the year 750, spaces of ground adjoining the clurches were carefully enclused and soleminly consecrated and appropriated to the burial of those who had been entitled to attend divine service in those churehes, and who now became entitled to render back into those places their remnants to earth, the common mother of mankind, without payment for the ground which they were to occupy, or for the pious offices which solemnized the act of interment" (Lord Stowell). The right to burial in the parish churchyard is far from being merely an ecelestastical privilege, but at the same time it is intimately bound up with the laws of the Church Establishment. It is a common law right, controlled in many points by the provisions of the law ecclesiastical. This double character rs sufficient to explan the controversy which has so long raged round the subject of burials in England. Every man, according to the common law, has a right to be buried in his own churchyard, or, as it is sometimes put, in the churchyard of the parish where he dies. But the churchyard, as well as the church itself, is the freehold of the parson, who ean in many respects deal with it as if it were a private estate. A statute of Edward I. (35, st. 2) speaks of the churchyard as the soil of the church, and the trees growing in the ehurchyard "as amongst the goods of the ehureh, the which leymen have no authority to dispose,", and probibits "the parsons from cutting down such trees unless required for repars." Notwithstanding the consecration of the church and churchyard, and the fact that they are the parson's freehold, a right of way may be elaimed through them by prescription. The right to burial may bo sabject to the payment of a fee to the incumbent, if such has been the immemorial custom of the parish, but not otherwise. The spirit of the ancient canons regarded such bural fees as of a sumomacal complexion, inasmuch as the consecrated grounds were among the res sacre-a feeling which Lord Stowell says disappeared after the Reformation. No person can be buried in a church without -the consent of the incumbent, except when the owner of a manor house prescribes for a buryng-place within the church as belonging to the manor house. In the case of Rex v. Taylor it was held that an information was grantable against a parson for opposing the burial of a parishioner; but the court woild not interpose as to the parson's refusal to read the burial service because he never was baptized-that being matter for the ecelestastical court. Strangers (or persons not dying in the parish) should not be buried. it appears, without the consent of the parishioners or churchwardens, "whose larochial right of burial is invaded thereby." Aceording to a recent case, a clergyman may be punished for refusing to read the burial service over a person who had ceased to be a parishioner, but was buried in a family vault. Wiile burial is a common-law right, the mode of burial is said to be of ecclesiastical cognizance, and a mandamus to inter a body in an iron coffin was in one case refused. Lord Stowell permitted the use of iron coffins on condition of an increased rate of payment to the parish, observing that the common cemetery is not res unius ctatis, the property of one generation now departed, but of the living and of generations yet unborn, and is subject only to temporary appropriation (Gilbert v. Buzzard, 2 Consistory Reports.
333). One of the canums of 1603 requires the clergyman under penalty of suspension for three months to bury the corpse without refusal or delay, " unless the party deceased were excommunicated majori excommunicatione, for some grievous and notorious crime, and no man able to testify of his repentance." It appears that persons dying in a state of intoxication must be buried with the funeral service of the church. On the other hand no service but that of the Church of England may be used, and no layman or unsuthorized person can read or assist in readiug a burial service over a dead body in consecrated ground. Nor, it seems, does the church recoguze "buch an indecency" as burial without service. There are probably many questions as to the common right of burial to which the law has as yet provided no speeific answer. In the meantime many attempts have been made to pass a Burials Bill, the main feature of which is the permission to use in churchyards religious services other than that ol the Church of England.
The neeessity for providing new cemeteries, eaused ly the natural increase of population, has led to a good deal of legislation, and an Act was passed (10 and 11 Vict. c. 65) to consolidate certain provisions usually contained in Acta authorizing the making of eemeteries. Sec. 23 allows the bishop to consecrate a part of any such cemetery "fon the burial of the dead according to the rites of the EstabJished Church." The 15 and 16 Vict. c. 85 , for discon. tiruing burials in the metropolis and opening new burial grounds, was extended to other torne by the 16 and 17 Vict. c. 134. The new burial ground is to be divided into conseerated and uneonsecrated portions; and provision is made for building a cemetery chapel for the use of the church, and, if neeessary, another for dissenters. By 20 and 21 Vict. e. 81, grouud may be consecrated for the burial of poor persons. The same Act allows e burial board to appeal to the archbishop when the ordinary refuses to consecrate a new burial ground, and if after the archbishop confirms the appeal the bishop still refuses to consecrate, the archbishop may licence the grave for interments as if it were consecrated. The 30 and 31 Vict. c. 133 (amended in the following year) provided facilities for cheapening the expense of consceration and for allowing limited owners to convey sites of land for churchyards.

The practice of burying suicides on a public highway, with a stake driven through the body, is prohibited by Geo. 1V. e. 52, which requires the coroner to direct their private interment, without religious rites, in the churchyard, within twenty-four hours after the inquest, and between the hours of nime and twelve at night. Bodies may not be removed from burial grounds without lieence from a Secretary of State, except when the removal is from one unconscerated place to another, and is authorized by the ordinary. A coroner may disinter the body in a case of violent death.

In Seotland the obligation of providing and maintaining the churchyard rests on the heritors of the parish. The guardianslip of the churchyard belongs to the leritors und also to the kirk-session, either by delcgation from the heritors, or in right of its ceclesiastical character. The right of burial appears to be strictly linited to parishioners, although an opinion has been expressed that any person dying in the parish bas a right to be buried in the churctr yard. The parishioners have no power of management. The presbytery mas interfere to compel the heritors to provide due accommodation, but has no further jurisdiction It is the duty of the heritors to allocate the churchyard Tie Scotch Jaw hesitates to attach the ordinary incidents of real property to the churchyard, while English law treats the ground as the parson's freelold. It would be difficult to sav who in Scotland is the legal orner of the

1V. -68
soil. Varıus opmions appear to prevail. e.g., as to grass growns on the surface and monerals found beneath. The diffeulty as to religious services does not exist. On the other band, the religious character of the ground is hostile to many of the legal raghts recognized by the English Law.
burial rites. See Funeral.
sulitats, a Mongolian race, who dwell in the vicinity of the Dakal Lake, for the most part in the gevernment of 1rkutsk and the Trans-Baikal territory. They are divided wito various tribes or elans, which generally take their tames from the locality they frequent. These tribes are subldivided aceording to kinship. In 1857 the Burats numbered 190.000, about two-thirds of whom were in the Trans-Eakal territory They bave high eheek-bones, litoad and flat noses, and sparse har on the chin. The men shave thear heads' like the Chinese, and leave a tanl at the top. In summer they dress in silk and cotton gownis, in winter in furs and sheepskins. Their principal cceupation is the rearing of cattle; and some of them possess about 500 osen and nearly 1000 horses. Sume triber, espectally the Idinese, the Kudinese, the Alarese, and the fihormese, also engage in agrieulture, -a department of activity which was totally neglected till ${ }^{\text {7 }} 996$, when the last-mentioned tribe first turned its attention to it. As early as 1802 the produce of the Irkutsk gevernment was ne less than 9800 quarters of grann; and in 1839 the Buriats \#1ad 229,500 acres under eultivation. Their soil is generally fertile, and they have an elaborate syspten of irrigatiou by canals and trenc̣hes. Their only implements are the plough and the harrow. Wheat, rye, spring corn, and oats are their prucipal éreps ; and a large quantity of hay is made fer therr cattle. A goed deal of activity is also shown in trapping and fishing. In retigion tho Burats are manly Buddhists; and their head lama (Khambo Lama) lives at the Goose Lake (Gusinoe Ozero). Other3 are Sbamansts, and their most sacred spot is the Shamanic stone at tho mouth of the River Angar. A few only, about 9000 or 10,000 , are Christians. A knowledge of reading and writing is diffused, especially among the Trums-Bakal Burats, who possess books of their own, chietly translated from the Thibetan. Their own language ${ }_{1 s}$ Mingolian, and presents three distinct dialects, of whieh the Selengese is nearest to the written form. The Iussians became acquanted with the Burats in the beginning of tho lGth century. In 1631 there was built in their territory, for the purpose of bringing them into subjection. the Bratski block-honse, whence arose the Russian desigmation of Bratski applied to the Buriats. This building was followed by the Kanski block-hense in 1640, the Verkhotensk in 1641, the Udinski in 1648, the Balaganski in 1651, and finally in 1661 by Irkutsk itself. The Buriats frequently besieged these posts and attacked the Russans, and in 1661 they even slew the Russian ambassador, Zabortatski; but in the end of the 17 th century they were finally subdued. (See Gnelin, Siberia; Pallas, Ifomgol. I'jhlarsch: Castren, V'ouch einer Buratisch. Sprachehre.)

PURIDAN, Jenv, a cetebrated philosopher who flourshed in the 14th century, was bern at Bethune in Ariois, but in what year is not known. He studied at Paris under William of Occam, and lecame an ardent nominalist. The legent which represents him as having ben involved, when a student, in the terrible drama of the Thar de Neslo has no discoverable historical basss. He long held the office of professor of philesolly in the unversity of laris; in 1397 ho was its rector; m 1345 ho was ileputel to defend its interests lecero Philip of Valois and at iome. He was alive in $135{ }^{\circ}$, hat the year of his death has not been recorded. The tradition that he was forced to flee from France along with other nominalists, and that ho settled in Yienna, and there founded the
unversity in $1 \mathbf{5 5 6}$, is unsuppiucted by evidence and in contradietion to the fact that the unversity of Vienna was founded by Frederick II. in 1237. An ordinance of Louis XI., in 1473, directed against the nominabists, probibited the reading of his works. These works treat of logic, metaphystes, physics, ethics, and politics; theology is deliberately avolded on the ground that it does not rest on reasun alone, and does net proceed exclusively by argumentation. In phrlesophy Buridan acknowledged no other authority than that of reason. He followed Occam iu resolutely denying all objective reality to universals. Ho hell that singulars or individuals alone exist, and that unversals are mere words. "Genera et species non sunt nisi termini apud anımam existentes vel tiam termin vocales aut scripti, qui non dicuntur genera aut species nisi secundum attributionem ad terminos mentales ques designant." Oceam had not gone so far. . The chef aim of his logic is commonly represented as having been the devising of rules for the easy and rapid discovery of syllogistic middle terms,- the construction of a dialectical pons asinorum,-but there is nothing in his writings to warrant this representation. The parts of logic which Le lias treated with ruost minuteness and subtility are the dectrnes of modal propositions and of medal syllogisms. In cotumentIng on Arstotle's Nicomachean Dithirs he dealt in a very independent and interesting ruanner with the question of free will. The conclusions at wheh he arrived are remarkably similar to those long aterwards reached by John Locke. The only liberty which he ascribes to the soul is a certain pewer of suspending the deliberative process and determining the direction of the intellect. Otherwise the will is entirely dependent on the vier of the mind, the last result of examination. The comparison of the will unable to act between two equally balaneed motives to a hungry ass unable to eat between two equal and equidistant bundles of hay is nut found in any of his works, and may Lave been invented by his oppenents to ridicule his determinism. His porks are-Summule de dialectica, 1487; Compendium lugicie, 1489; Questiones in viai. libros phystcorum, \&c., 1516; In Aristotlis Metaphisica, 1518; Questiones in x. libros cthicorun A'istutelis, 1489 ; Quastiones in viii. libros politicorum Aristatchis, 1500. There may bo consulted regarding bim, besides the general historics of philosophy, Eayle's Dictionary, art. "Buridan ". Prantl's Geschiche der Loyik, Uk. is. 14-33, and Stockl. Geschichte der Philusophe des Mittelatters, Ed. ii. 10201028.
(R. F.)

BURKE, Educnd, one of the greatest pames in the history of politieal literature. There hava been many more impertant statesmen, for he was never tried in a pesition of supreme responsibility. There have been many more effective oraters, for lack of imaginative suppleness prevented him from penetrating to the inncr mind of his hearers; defects in delivery weakened the intrinac persuasiveness of his reasoning; and he had not that commanding authority of character and personality which has so often been the secret of triumphant eloquience There have been many subtler, more original, and mere systematic thinkers about the conditions of the soctal union. But ne one that ever lived used the general ideas of the thimber more successfully to judge the particular prollems of the statesman. Noun has ever cone so dose to the details of practical politics, and at the same time remembered that these can only be understood and onay deat with ly the ail of the liond conceptons of pulthal philusoply. And what is mare than all for perpetaty "if fame, be was che of the great masters of the hagh and dificult art of chahmate compestion.

A certinin doubfulnees Lailys urer the circumstances of Wurbe's life previous to the orening of bis public cares:

The very date of his birth is variously stated, and bas given rise to sharper controversy than the small importance of the discrepancies can deserve. The most probable opinion is that he was born at Dublin on the 12 th of January I729, new style. Of his family we know little snore than that his father was a Protestant attorney, practising in Dublin, and that his mother was a Cathole, a member of the family of Nagle. He bad at least vue sister, from whom are descended the only existing representatives of Burke's family; and he had at feast two brothers, Garret Burke and Richard Burke, the one older and the other younger than Edmund The sister, afterwards Mrs French, was Brought up and remained throughout life in the religous faith of her mother, Edmund and his brothers followed that of therr father In 1741 the three brothers were sent to school at Ballitere in the county of Kildare. This school was kept by Abraham Shackleton, an Englishman, and a member of the Society of Friends. He appears to have been an oxcellent teacher and a good and plous man. Burke always looked back on bis own connection with the school at Ballitore as among the most fortunate circumstances of his life. Betreen hiniself and as son of his instructor there sprang up a close and affectionate friendship, and, unlike so many of the exquisite attachments of youth, this was not choked by the dust of life, nor parted by divergence of pursuit. Riehard Shackleton was endowed with a grave, pure, and tranquil nature, constant and austere, yet not mithout those gentle elements that often redeem the drier qualities of his religious persuasion. When Burke had become one of the most famous men in Europe, no ristor to his house was more welcome than the friend with whom long years befure be had tried poetic flights, and exchanged all the sanguine coofidences of boybood. And we are touched to think of the simple-minded guest seeretly praying, in tho solitude of his room iu the fine house at Beaconsfield, that the way of his ánxious and overburdened bost might be guided by a divine band.

In 1743 Burke became a student in that famous institution at Dublin whieh numbers among its suns so many of the shining names of the 18 th century in literature, politics, end lar. Oliver Goldsmith was at Trinity College at the same time as Surke. But the serious pupil of Abraham Shackleton would not be hikely to see much of the wild and squalid sizar. Henry Flond, who was two years younger than Burke, had gone to complete his education at Oxford. Burke, like Goldswith, achieved no academic distinction. His eharacter was never at any time of the academic cast. The mmor accuracies, the limitation of range, the treading and retreading of the same small patch of ground, the concentration of interest in success before a board of examiners, were all uncongemal to a nature of exuberant mutellectual curiogity and of strenuous and self-reliant origimality. His knowledge of Greek and Latin was never thorungh, nor had he any turn for critical niceties. He could quote Homer and P'indar, and he had read Aristotle. Like nthers who have gone through the conventional course of instruction, be kept a place in his memory for the vaivus charms of Viryil and Horace, of Tacitus and Ovid; but the master whose page by night and by day he turned with devont hand, was the copious, energetic, flexible, diversified, and brilliant genius of the deelamations for Archias the poet and for Milo, against Catiline and against Antony, the author of the disputations at Tusculum and the orations against Verres. Ciccro was ever to him the mightiest of the ancient names. In eur own literature Nilton seems to have been mure familiar to him than Sbakespeare, and Spenser was perhaps more of a favourite with him than either.

It is too often the case to be a mere accident that men who become eminent for wide compass of understanding and penetrating comprehension, are in their adolescenca onsettled and desultory. Of this Burke is a signal illustration. He left Trinty in 1748, with no great stock of weilordered knowledge. He nether derved the benefits nor suffered the drawbacks of systematic intellectual diseipline. It would seem that in most cases of vigorous and massive faculty, the highest powers are only thoroughly a wakened and concentrated by some stımulus that awakens personal and independent activity. Not the advantages of acquisition, but the necessity of production, are with such men the effectual incentive to the exercise of their fullest capacity.

Burke, after taking his degrce at Dublin, went in the year 1750 to London to keep terms at the Temple. The ten years that followed were passed in obscure industry. We know hardly any of the details of this pertod in lns life with satisfactory accuracy or on decisive authority. In that respect at least unlike Cicero, Burke was always extremely reserved about his private affairs. It shows a gratuitous meanness of sprit to explain this reserve by supposing that there was something discreditable or sinister to conceal. All that me know of Burke exhibits him as inspured by a resolute pride, a certain stateliness and imperious elevation of mand Such a character, whie free from any weak shame about the shabby necessities of early struggles, yet is naturally unwilling to make them prominent in after life. There is nothing dishonourable in such an inclination. "I was not swaddled and rocked and" dandled into a legislator," wrote Burke when very near the end of his days. "Nitor anadversum is the motto for a man like me. At every step of my progress in life (for in every step I was traversed and opposed), and at every turnpike I met, I was obliged to show my passport. Otherwise no rank, no toleration even, for me."

All surts of whispers have been circulated by idle or malietous gossip ahout Burke's first manhood. Ifo is saici to have been one of the too numerous lovers of his fascinating countrywoman, Margaret Wotfington. It is hintea that he made a mysterious visit to the American colonies. He was for years accused of having gone orer to the Church of Rome, and aftermards recanting. There is not a tittle of pasitive evidence fur thase or any of the other statements to Burke's diseredit. The common story that he was a candudate for Adam Smith's chair of moral philosophy at Glasgow, when Hume was rejected in favour of an obscure nobody (1751), can be shown to be wholly false. Like a great many other youths with an eminent destiny before them, Burke conceived a strony distaste for the professton of the law. His father, who was an attorney of substance, bad a distaste still stronger for so vagrant a profession as letters were an that day. Ife withurew the annial allowance, and Burke was launched on the slippery career of the literary and political adventurer. In fairer words, he set to work to win for bumself by indefatigabla industry and capability in the public nutcrest that posstion of power or pre-eminence whach his detractors acquired either by accident of birth and connections, or cise by the vile arts of political intrigue. Ile began at the bottom of the ladder, maxing with the Boheman society that baunted the Temple, practising oratory in the free and easy debating societies of Covent Garden and the Straul, and writing for the booksellers.

In 1756 he made his first mark by a satire upon Bolingbroke, entitled A Finducatoon of Natural Society. It purported to be a posthumous werk from the pen of Belingbroke, and to present a new of the miseries and evils arising to mankind from every species of artifieial society. The imitation of the fine strie of that magnificent Friter but bad patrot 19 admurable. As a satire the piece
is a faiture, for the simple reason that the substance of it might well pass for a perfectly true, no less than a very eloqnent, statement of sactal bluaders and calamitres. Such acute critics as Chestertield and Warburton thought the performance serious. Rousseau, whose famous discourse on the evils of civilization had appeared sis years before, would have read Burke's iromical vindication of natural society without a suspiciod of its arony There have indeed been found persons who masist that the Vindication was a really serious expression of the writer's own opinions. This $1 s$ absolutely incredible, for vartous reasons. Burke felt now, as he did thirty years later. that civil institutions cannot wisely or safely be measured by the tests of pure reason. His sagacity discerned that the rationalism by which Bulagbroke and the derstic school believed themeelves to have overthrown revealed religion, was equally calculated to uodermine the strncture of political gevernment. This was precisely the actual course on which epeculation was entering in France at that moment His Vindication is meant to be a rednction to an absurdity. The rising revolutionary school in France, if they had read it, would have taken it for a demonstration of the theorem to be proved The only interest of the prece for us lies in the proof which it furnishes, that at the openong of his life Burke had the same scornful antipathy to political rationalism, which flamed out in such overwhelming passion at its close.

In the same year (1756) appeared the Phitosophical Inquiry into the Origin of our Ideas on the Sublime and Beautiful, a crude and narrow performance in many respects, yet marked hy an independent use of the writer's mind, and not without fertile suggestion It attracted the attention of the rising estietic school in Germany. Lessing set about the translation and annotation of it, and Moses Mendelssohn borrowed from Burke's speculation at least one of the most fruitul and important ideas of his own infuential theories on the sentiments In England the Inquery had considerable vogue, but it has left no permanent trace in the development of æsthetic thought in this country

Burke's literary industry in town was relieved by frequent excursions to the western parts of England, in company with Willism Burke. There was a lasting inthancy between the two namesakes, and they seem to have been involved together in some important passages of ther lives; but we have Edmund Burke's authority for belicving that they were probably not kinsmen The seclusion of these rural oojourns, origimally dictated by delicate bealth, was as wholesome to the mind as to the body Few men, if any; have ever acquired a settled mental babit of surveying human affars broadly, of watching the play of passion, interest, circumstance, in all its comprchensiveness, aod of applying the instruraents of general conceptions and wide primejples to its interpretation with respectable constancy, uniess they have at some early period of thear manhood resolved the greater problems of soctety in indepeadence and isolation. By 1756 the cast of Burke's opinions was decisively fised, and they underwest no radical change.
He began a scries of Hints on the Drama. He wrote a portion of an Abridgment of the History of England, and brought it down as far as the reign of Johin. It included, as was nateral enough in a warm admirer of Montesquen, a fraguient on law, of which lie justly said that it ought to to tie leading science in every well-ordered commonsealth. Burke's early interest in America was shown by and Account * the European Settlements on that contment. Such works rere evidently a sigo that his mind was turums away from nebetract speculation to the great political and economic dields, aid to the more visille conditions of soctal stability
and the growth of nations. This interest in the wacres pheaomena of society inspired him with the idea of the Annual Reguster (1759), which he designed to preseat a broad grouping of the chief movements of each year The execution was as excellent as the conception, and if we reflect that it was begun in the midst of that momentous war which raised England to Ler chaiax of cerritorias greatuess in East and West, we may eastly realuze how the task of describing these portentous and far-reaching peuts would be likely to strengthen Burke's habits of wide and laborious observation, as well as to give him birmness and confidence in the exercise of his own judgraent. Dodsley gave him $£ 100$ for each annual volume, sad the sum was welcome enough. for towards the end of 1756 Burte had married. Hiswife was the daughter of a Dr Nugent a physician ac Bath. She is always spoken of by bis friende as a mild, reasonable, and obligiug person, whose amiability and gentle sense did much to soothe the ton nervous and exctable temperament of her husband She had been brought up, there 19 good reavon to believe, as a Catholic, and she was probably a member of that commumion at the time of her marriage. Dr Nugent eventaally took up hi. residence with his soo-ia lave in London, and became u popnlar member of that famons group of men of letters and artists, whom Boswell has made so familiar and so dear to all later geverations. Burke, bowever, bad no intebtion of beng dependent. His conserousuess of bis own powers anmated him with o nust justifiable ambition, if ever there was ouc, to play a part fo the cooduct ot natoonal affars. Friends shared thas ambition on bis bebalt one of these was Lord Charlement He introduced Burke to William Gerard Hamiton (1759), now only remembered by a nickname derived from the circumstance of his having made a single brilliant speech in the House of Commons. which was followed by years of nlmost unbroken sifence Hamilton was by no means devord of sense and acuteness. but in character he was one of the most despicable men then alive. There is not a word too many nor too strong in the description of him by one of Burkes friends ne "a sullen, vain, proud, selfish, cankered-hearted. envious reptile." The reptile's commection, however, was tor a time of cousiderable use to Burke When be was made Jrish Secretary, Burke accompanted him to Dublin, and thero learnt Oxenstern's eternal lesson, that awails all who penetrate, behind the scenes of govermment, fuam paria saptentza mindus regztur
The penal laws aganst the Catholies, the iniquitous restrictions on Irish trade and industry, the selfish tactiousness of the Parlament, the jobtury and corruption of administration, the absenteerm of the landlords, and all the other too fambar elements of that mischerous and fatal system, were then in full force. As was shown afterwards, they made an impresssion upon Burke that whe never effaced. So much iniquity and so much disorder may well have struck deep on one whose two chef political senti ments were a passion for order and a passion for justice. He may have anticipated with something of remorse the reflection of a modern historian, that the absentcesm of hei laudlords has been less of a curse to Ireland than the absenteessof of her men of genaus. At least be was never an absentce in beart. He always took the muterest of an ardent patriot in his unfortumate country, and, as we shall sce, made more than one weighty sacrifice on behalf of the pranciples which he deemed to be bound up wath ber welfare.

When Hamilton retired from his post. Burke accompanmed him back to London, with a penston of $£ 300$ a year on the Irish Establishment. This modest allowance be hardly enjoyed for more than a smgle year lis patron having discovered the value of so laborious and powerful a subalicers
wished to bind Burse permanentiy to his serviee. Burke declined to ell himself into final bondage of this kind. Whee fiamilton coatinued to press his odious pretensions they quarrelled (1765), and Burke threw up his peasien. He soon received a more important piece of preferment than aay which be could ever have preeured through Hamilton.
The accession of George III. to the throne in 1760 had been followed by the disgraee of Pitt, the dismissal of Nowcastle, and the rise of Bute. Thesa events marked the reselution of the court to change the political systern ,which had been created by the Revolution of 1688 . That eystem placed the government of the couatry in the hands of a territorial oligarchy, composed of a fer families of large possessions, fairly ealightened priaciples, and shrewd political sense. It bad been preserved by the existence of a Pretender. The two first kings of the House of Hanorer could only keep the crown on their own heads by concilisting the Revelution families and accepting Revolution principlos. By 1760 all peril to the dynasty was at an end. George III., or those about him, iasisted on aubstituting for the aristocratic division of political power a substantial concen tration of it in the hasds of the sovereign. The ministers were no longer to be the members of a great party, acting together in pursuance of a common poliey accepted by them all as a united body; they were to beeome neminees of the court, eaeh holding himself answerable not to his colleagues but to the king, separately, idividually, and by department. George III. had before his eyes the governmeat of his cousin the great Frederick; hut not every one can bend the bow of Ulysses, and, apart from differenee of personal capaeity and bistoric tradition, he forget that a territorial and commereial aristocracy caanot be dealt with in the spirit of the barrack aad the drill-ground. But he made the attempt, and resistance to that attempt supplies the keynote to the first trenty-five years of Burke's political life.
\therefore Aleng with the change in system went high-banded and absolutist tendeneies in policy. The first stage of the new experiment was very short. Bute, in a panic at the storm of uapopularity that menaced him, resigned in 1763. George Greuville and the less enlightencd section of the Whigs took his place. They proceeded to tax the American colonists, to interpose vezatiously against their trade, to threaten the liberty of the subject at home by general warrants, and to stife the liberty of public discusaion by prosecutions of the press. . Their arbitrary methods disgusted the nation, and the personal arreganee of the ministers et last disgusted the king. The system received a temporary cheek. Greavilla fell, and the king was ferced to deliver himself iato the hauds of the orthodox section of the Whigs. Tha Marquis of Reckingham (July 10, 1765) became prime minister, end he was induced to make Burke his private secretary. Before Burke had begun his duties, an incident occurred which illustrates the character of the two men. The old duke of Neweastle, probably desiring a post for some nominee of his own, conveyed to the ear of the new ninister various absurd rumours prejudicial to Burke,-that he was an Irish papist, that his real nane was O'Bourke, that he lad been a Jesuit, that he was an emissary from St Omer's. Lord Rocking. ham repeated these tales to Burke, who of eourse denied them with indignation. His chief declared himself satisfied, but Burke, from a feeling that the indispensable confidence between them was impaired, at once expressed a strong desire to resigu his post. Lord Rockingham prevailed upon him to reconsider his reselve, and from that day until Lord Roctejingham's death in 1782, thefr relations were those of the closest friendship and confidence.'.
The first Rockingham administration only lasted a year and a few days, ending in July 176́. 'The uprightaess and
good sense of its leaders dia nut cempensate for the weak. ness of their politieal connections. They were unable to stand against the coldaess of the Linz, egainst the bostility of the powerful and selfish faetion of Bedford Whigs, and, obove all, against the towering predomivance of Willium Pitt. That Pitt did not joia them is one of the many fatal misearriages of history, 23 it is one of the many serious reproaches to be vuade against that extracrdinary man's chequered and unerea course. An alliance betreen Pitt and the Rockingham party was the surest guarantee of a wise and liberal policy towards the colonies. He went further than they did, in holding, like Lord Camden, the dectrine that taxation went with representation, and tha: therefure Parliament had no right to tax the uareprestated eolonists. The ministry asserted, what no competent jurist would now thank of denying, that Parliameat is sovereign: but they went heartily with Pitt in pronouacing the exercise of the right of taxation in the case of the American colonists to be thoroughly impolitic and inexpedient. No practical difference, therefore, existed upon the important question of the hour. But Pitt's prodigiuns egoism, stimulated by the mischievous ecunsels of men of the stamp of Lord Shelburne, prevented the fusion of the only two sections of the Whig party that were at once able, enlightened, aud disiaterested enough to carry on the government efficiently, to cheek the arbitrary temper of the king, and to command the eorfidence of the nation. Such an opportunity did nut return.
The ministerial policy tomards the colonies was defended by Burke with splendid and unanswerable eloquence. He had been returned to the House of Commons for the pocket borough of Wendover, and his first speech (January 27, 1766) was felt to be the rising of a uew light. For the space of a quarter of a eentury, frem this time down to $1: 90$. Burke wasove of the chief guides and inspirers of a revived Whig party The "age of small factions" was now succeeded by an age of great prineiples, and selfish ties of mera families and persons were transformed inte a union resting on common conviction and patriotic aims. It was Burke who did more than any one else to give to the Opposition, under the first half of the reign of George III., this stamp of elevation and graadeur. Before leaving office the Rockingham Government repealed the Stamp Act ; confirmed the personal liberty of the sulject by foreing on the House of Commons one resolution against generas warrants, and another against the seizure of parers, and relieved private houses from the intrusion of officers of excise, by repealing the eider tax. Nothing so good was done in an English parliament for nearly twenty years to come. George Grenville, whom the Lieckinghams had displaced, and who was bitterly incensed at their formaz reversal of his policy, printed a pamphlet to demorstrate his own wisdom and statesmanship. Burke replied in his Observations on a late Publication on the Present State of the Nation (1769), in which he showed for the first time that he had net only as much knowledge of commerce and finance, and as firm a hand, in dealing with figures as Grenville himself, but also a broad, general, and luminous way of eonceiving and treating politics, in which neither then nor since has he had any rival among English publicists

It is une of the perplexing points in Burke's private' history to know how he lived during these long years of parliamentary opposition. It is certainly not altogether mere impertinence to ask of a public man how he gets what he lives upon, for independence of spirit, which is so brid to the man who lays his head on the debtor's pillow, is the prime virtue in such men. Probity in money is assurediv one of the keys to character, though we must be very care, ful in ascertaining and proportioning all the eireumstances. Now, in 1769 Burbe bought an estate at Beaconsfo!d in
the county of Enckingham. It was about 600 acres in extent, was worth sorLe ± 500 a year, and cost $£ 22,000$. People bave beea askiug ever since how the penniless man of letters was able to raise so large a sum in the first instance, and how be was able to keep up a respectable establighment afterwards. The suspicions of those who are never sorry to disparage the great have been of various kinds. Burke was a gambler, they bint, in Indian stock, like his binsmen, Pichard and William, and like Lord Verney, his nolitical patron at Wendover. Perhaps, again, lis activity on behalf of Iudian priaces, like the Raja of Tanjore, was not disinterested and did not go unrewarded. The answer to all these calumnions inuendoes is to be found in documents and title-deeds of decisive authority, and is simple enough. It is, in short, this. Burko inherited a small property from his elder brother, which he rcalized. Lord Rockingham advanced him a certain sum ($£ 6000$). The rcmainder, amonating to no less than'trothirds of the purchase-money, was raised on mortgage, and was never paid off during Burke's life. The rest of the story is equally simple, but nore painful. Burke made some surt of income out of his 600 acres; he was for a short time agent for New York, with a salary of $£ 700$; be continued to work at the Annual Register down to 1788. But, when all is told, he never made as mnch ns he spent; and in spite of considerable assistance from Lord RockingLasm, amuunting it is sometimes said to as moch as $£ 30,000$, Burke, like the younger Pitt, got every year deeper into debt. Pitt's debts were the result of a wasteful indifer eace to his private affairs. Burke, on the contrary, was assiduons and orderly, and had none of the vices of profusion. But he had that quality which Aristotle places high among the virtues,--the noble mean of Magnificence, standing midway between the two extremes of vulger ostentation and narrow pettiness. He was indifferent to 'Juxury, and sought to make life, not commodions nor soft, but high and dignificd in a refined way. Ilc lored art, filled his house with statues and pictures, and extended a generous patronage to the painters. He was a collector of books, and, as Crabbe and less coinspicuons men discorered, a helpful friend to their writers. Guests were ever welcome at his board; the opnlence of his mind and the fervid copiousness of. his talk naturally made the guests of such a man very namerous. N'on invideo equidem, miror magis, was Johnson's good-natured remark, when ho was taken over his friend's fine bouse and pleasant gardens. Johnson was of a very different type. There was sometbing in this external dignity which went with Burke's imperious spirit, his spacions imagination, bis turn for all things stately and imposing. We may say, if ve please, that Juhnsou had the far truer and loftie dignity of the two ; but we lave to take such men as Burke with the defects that belong to their qualities. And there was no corruption in Burle's outlay. When the litt administration was formed in 1766, he might have had office, and Lord Rookingham wished him to accept it, but he bunourably took his fate with the party. He may have spent $£ 3000$ a year, where he would have been more prudent to spend only E 2000 . But nobody was wroaged; his creditors were all phid in time, and his hands were at least clean of traflic in reversions, clerkships, tellerships, and all the rest of the rich sinecures which it was thought no slame in those d.tys for the aristocracy of the laud and the robe to wrangle for, and groge theoselres upon, with tho ficree voracity of famishing wolves. 'llhe most we can say is that Burke, like litt. was too den ly absorbed in beneficent service in the affars of his country, to have for his own affairs the solicitude that would have ineen prodent.

In the widst of intense political preoceupations, Burke Always fonos time to kecp up his intimacy with the bril-
liant group of his earlier friends. He was nue ui the cor..manding figures at the Club at the Turk's Head, with Reynolds and Garrick, Goldsinith and Johnson. The old sage who beld that the first Whig was the Devil, was yet compelled to forgive Burke's politics for the sake of bis magnificent gifts. "I would not talk to him of the Rockingham party," he used to say, " but I love his knowledge, his genins, his diffusion and afflinence of conversation." And everybudy knows Johnson's vivid acconnt of him: "Burke, Sir, is such a man that if you met him for the first time in the street, where yon were stopped by a drove of oxen, and you and he stepped aside to take shelter but for five minntes, he'd talk to you in such a manner that when you. parted you would say, 'This is an extraordinery man.'" They all grieved that public business should draw to party what was meant for mankiod. They deplored that the nice and difficult test of answering Berkeley had not been undertaken, as was once intended, by Burke, and sighed to think what an admirable display of subtlety and brilliance such a contention would have afforded then, had not politics "turned hin from active philosophy aside." There was no jealonsy' in this. Tbey did not grudge Burke being the first man in the House of Commons, for they adinitted that he would have been the first man anywhere.

With all his hatred for the book-man in politics, Burke owed much of his own distinction to that generous richness and breadth of judgment which had been ripened in him by literature and his practice in it. Like some other men in our history, he showed that books are a better preparation for statesmanship than early training in the subordinate pests and among the permanent officials of a public department. There is no copiousness of literary reference in his work, such as over-abounded in our ciril and ecclesiastical publicists of the 17 th century. Nor can we truly say that there is much, though there is certainly some, of that tact which literature is alleged to confer on those who approach it in a just spirit and with the true gift. The influence of literature on Burke lay partly in the direction of emancipation from the mecluanical formnle of practical politics; partly, in the association which it engendered, in a powerful understanding like his, between politics and the moral forces of the world, and between political maxims and the old and great sentences of morals; partly in drawing him, even when resting bis case on prudence and expediency, to appeal to the widest and highest sympathies; partly, and more than all, in opening bis thoughts, to the many conditions, possibilities, and "varieties of untried being," in humen character and situation, and so giving an incomparable Acxibility to his methois of political approach.

This flexibility is not to be found in his manner of composition. That derives its immense power from other sources; from passion, intensity, imagination, size, truth, cogency of logical reason. Those who insist on charm, on wianingness in style, on subtle harmonies and fine exquisiteness of suggestion, are disappointed in Burke: they eren find lime stiff and orcr-coloured. And there are Demishes of this kincl. His banter is nearly alrays ungainly, his wit blunt, as Jobnson $=$ said, and often noscasonable. As is nsual with a man who has not true humonr, Burke is also without trne pathos. The thought of wrong or misery mored him less to pity for the victim than to anger against the cause. Again, there aro some gratuitous and unredecmed vulgarities; some imeges thal make os shudder. But only a literary fop can be detainue by specks like these.

The varictics of Burke's literary or rbctorical mathod ase very striking. It is almost incredible that the superb imaginative omplifeation of the description of Hyde: Ali's descent upon the Carnatic sheu'd lan from the same ren as
the grave, smple, unadorned Address to the Ring itatio, where each sentence falls on the ear with the accent of sone golden-tongued oracle of the wise gods. His stride is the stride of a giant, from the sentimental beauty of the picture of Marie Antoinette at Versailles, or the red hurrur of the cale of Debi Sing in Rungpure, to the learnng, pusitiveness, and cool judicial mastery of the Report on the Lor ds' .Iournals (1794), which Philip Francis, no mean judge, declared on the whole to be the "most envituent and extraordinary " of all his productions. Bot even in the coulest and dryest of his pieces, there is the mark of greatuess, of grasp, of comprehension., In all its varietics Burke's style is nuble, earuest, deep-flowing, because his sentiment was lofly and fervid, and went wilh sincerity and ardent disciplined travail of judgment. He lad the style of his sebjects; the amplitude, the weightiness, the laboriousness, the sense, the bigh fight, the grandeur, proper to a man dealing with imperial themes, with the fortanes of great societies, widh the sacredluess of law, the frecdom of nations, the justice of rulers. Durke will always be read with delyght and edification, Leciause in the midst of discussions on the local and the accidental, he seatters apuphthegms that take us into the regions of lasting wisdum. In the midst of the torrent of bis most strenuous and passionate deliverances, he suddenly rises aluof from his immediate subject, and in all tranquillity reminds us of some permanent selation of things, some enduring truth of human life or human society. We do not hear the urgan tones of Milton, fur faith and freedom liad uther nutes in the 18 th century: There is none of the complacent and wisebrowed sagacity of Bacon, for Burke's were days of persomal strife and fie and civil division. We are not exhlarated by the cheerful ness, the polish, the fue mamers of Bulingbroke, for Danke thad an anxious conscience and was earnest and intent that the good should triumph. And yet Lurke is among the greatest of thuse who bave wrought inarvels in the Iruse of vur English tongue.
Not all the transactions in which Burke was a cumbatant could furnish an imperial theme. We ned scately tell over again the story of Wilkes and the Middlesex electim. The livekinghan m:inistry hull leen stocecded by a cumposite Guvermment, of which it was intended that D'itt, nuw made Lord Chatham and Privy Seal, should be the ieal chief. Chathan's health and mind fell into disurder ahoust immediately after the minstry had been fomed. The deke of Grafton was its numinal head, but party ties had been broken, the political comections of the ministurs were dissolved, and, in truth, the ling was now at last a king indeed, who not ouly reigned but governed. The rexival of high doctrines of presugative in the Chown was aceumpanied by a revival of high duetrines of pivilege in the House of Commons, and the ministry was su smitien with weakness and confusion as to be unablut to resist the eurrent of arbitrary policy, and nut many of them weece cven willing to resist it. The unconstitutional prosecution of Wilkes was followed by che fatal recourse to new jlans for taising taxes in the A merican celonies. These two points made the rallying ground of the new Whig opposition. Bulke helped to smooth matters for a practical union between the liockingham party and the powerful triumvirate, composed of Chathani, whose understanding had recoveled from its late disorder, and of bis brothers-in-Jaw, Lord Temple and Geurge Grenville. He was active in urging petitions from the irecholders of the comnties, protesting agaiust the unconstitutional invasion of the right of election. And he added a durable masterpicce to our political Iterature in a pamphet which he called Thoughts on the Cause of the I'resent Discontenty (1770). The immediate ubject of this escellent piece was to hold up the court scheme of weak, d.vi'ed, anI dependen! administations in the loht of its
iēal purpose and design; to aescribe tie dístempers whick bad beco engendered in palliament ty the gowth of royal influcnce and the faction of the king's friends; to show that the newly furned Whig paty hat combined for truly public enls, athl was no mete fauily kiot hike the Grenvilles and the Ledturds; and, linally, to phess for the bearty concurrence buth of public mell and of the nation at large in com: buing against "a faction ruling ly the private instructions of a cuurt against the general sense of the puple." The pamphlet was disliked by Chathan on the vie hand, on no reasouable grounds that we can discover; it was denouncent by the extreme pupular paity of the Bill of Rights, on the uther hand, fur its muleration and eviservatism. In truth, there is as strong a vein of conservalive feeling in the pamphlet of 1770 as in the mare resplendent pamplet of 1790. "Our constitution," he said, "stands on a a nico equipoise, with steef piecipices aind decp waters upon all sides of H . . In. penuving it foum a dangerons leaning tuwards me side, thele may be a mbk of uversetting it on the other. Fivery phoject of a matei ial change in a guvern. ment so complicated as ours is a matter full of dificulties; in which a considerate man will not be too sealy to decide,
 too ready to nomise." Neither nuw nor ever had Bulie any wher real conception of a pulity for England than govermant by the tearitorial alistuciacy in the interests of the mation at lage, and especially in the interests of commerce, to the vital ninfortunce of which in our economy Le was alluiys keenly and wiscly alive. The policy of Gevge 1It, and the support which it fomul among mens "ho were weary of Whig factimes, visturbed this scheric; and thenfue burke denounced buth the cunt policy and the cumt party with all his heart aml all his sthength. ${ }^{2}$

Eloquence and grod sense, however, were mumotent in the face of such futes as were at this the arrajed against is Courrment at once strong amb hewral. The court was comfident that a mion betwen Cliatham and the Roding. hanes was impossible. The uniun was in fact hiulered ly the la aywarduess and the absud pretences of Chathan, athl the want of force in Loul liokinglau. In the nation at lage, the hate vivent ferment liad been fillowal by as remakbuld a deahess and vapidity, and Burke hiniself hat to almit a yeas or two later that any revarkablo tublery at Hunsluw. Heath woudd male mone consersation than all the distmlanes of Amesica. The dulice of Graften went out, and Lond Nurth Lerame the heal of a Covernment, "lich lasted twelse yeus (1770-1782), and hrought abunt more than all the digates that Buke had fuetohd as the inevitalle issue of the tugal pulicy. Fur the first six years of this lamentabe periol blike was actively enployed in stmolating, infommen and guiding the patician chiefs of his panty. "Inatect, Bhtike," said the duke of liehnmad, "you have mue merit than any man in keeping us together." They were well meaning and patiotic men Lut it was nut always casy to get them to pefor polities to fux-humtang. When he reached his lodsings at nighe after a day in the city of a skimish in the Ilonse of Comemons, Burke used to fiml a note foon the duke of Pichmond or the marguis of Revinullam, prayg him to draw a protest to be entercd on the Jomals of the l.ords, and in fact he drew all the prineipal [mutests of his farty between 1767 and 1782. The accession of Chates James Fox to the Whig party, which tuok flare at this time, and was so infortant an event in its history, was mainly due to the teaching and mfluence of Duke. In the House of Cummons his industry was almust excessive. He was taxed with speaking tou often, and with king too forward. And he was mortified by a more scrivus charge than marmurs about superfluity of zcal. Nien said and said again that Le nas Junius. His very proper unwalngaess to stoup to
deny an accusation, that would have been so disgraceful if it had been true, made ill-natured and silly people the more convinced that it was not wholly false. And the preposterous charge has never whelly died out. But whatever the London world may have thought of him, Burke's energy and devotion of eharacter impressed the better minds in the country. In 1774 he received the great distinction of being chosen as one of its representatives by Bristol, then the second town in the kingdom.

Ia the events which ended in the emancipation of the American colonies from the monarchy, Burke's political gedius shone with an effulgence that was worthy of the great affairs over which it shed so magnificent an illumina. ion.. His speeches are almost the one monument of the struggle on which a lover of English greatness can look back with pride and a sense of worthiness, such as a churchman feels when he reads Bossuet, or an Anglican when he turns over the pages of Taylor or of Hooker. Burke's attitude in these bigh transactions is really more itopressive than Cbatham's, because be was far less theatrical than Chatham; and while be was no less nobly passionate for freedom and justice, in his passion was fused the most strenuous political nrgumentation and sterling reasun of state On the other hand he was wholly free from that quality which he ascribed to Lord George Sackville, a man " apt to take a sort of undecided, equivocal, narrow ground, that evades the substantial merits of the question, and puts the whole upon some temporary, local, accidental, or personal consideration." - He rose to the full height of that great argument. Burke bere and everywhere else displayed the rare art of filling his subject with generalities, and yet never intruding common-places. No publicist who deals as largely in general propositions has ever been as frce from truisms; no one has ever treated great themes with so much elevation, and yet been so wholly secured against the pitfalls of emptiness and the vague. And it is instructive to compare the foundation of all his pleas for the colonists with that on which they erected their own theoretic declaration of independence. The American leaders were impregnated with the metaphysical ideas of rights which had come to them from the rising revolutionary school in Fiance. Burke no more adopted the doctrines of Jefferson in 1776 than he adopted the doctrines of Robespierre in 1793. He says nothing about men being born free and equal, and on the other hand ho never denies the position of the court and the country at large, that the home legislature, being soveraign, had the right to tax the colonies. What be does say is that the cxercise of such a right was not practicable; that if it were practicable, it was inexpedient; and that, even if this had not been inexpedient, yet, after the colomes had taken to arms, to crush their resistance by military force would not be more disastrous to them than it would be unfortonate for the ancient Liberties of Great Britain. Into abstract discussion he would not enter. "Show the thing you contend for to be reason; show it to lee common sense; show it to be tho means of attaining some useful end." "The question with me is not whether you have a right to render your people miserable, but whether it is not your interest to make them happy." There is no difference in social spirit and doctrine between his protests against the maxims of the English common people as to the colonists and his protests against the maxims of the French common people as to the court and the nobles; and it is impossible to find a single principlo either asserted or implied in the specehes on the American revolation which was aiterwards repadiated in the writings on the Revolution in France.

It is one of the signs of Burke's singular and varied caninence that hardly any two people agree precisely which of his works to mark as the masterpicce. Every speech or
tract that he composed on a great subject becomes, 8 we read it, the rival of every other. But the Speech on Conciliation (1775) has, perhaps, been more universally admired than any of his other productions, partly, because its maxims are of a simpler and less disputable kind than those which adorn the pieces on France, and partly because it is most strongly characterized by that deep ethical quality which is the prime secret of Burke's great style and literury mastery. In this speech, moreover, and in the only less powerful one of the preceding year upun American taxation, ns well as in the Cetter to the Sheriffs of Bristol in 1777, we see the all-important truth conspicuonsly illustrate ${ }^{2}$ that half of his eloquence always comes of the thoroughness with which he gets up his case. No eminent man has ever done more than Burke to justify the definition of genius as the consunamation of the faculty of taking pains Labour incessant and intense, if it was not the source. wasat least an inseparable condition of his power. And magnificent rhetorician though be was, his labour wan given less to his diction than to the facts; his heart was less in the form than the matter. It is true that his manuscripts were blotted and smeared, and that be made so many alterations in the proofs that the printer found it worth while to have the whole set up in type afresh. Bus there is no polish in his style, as in that of Juaius for example, though there is something a thousand times better than polish. "Why will you not allow yourself to be per. suaded," said Francis after reading the Reflections, "that polish is material to preservation ?" Burke always accepted the rebnke, and flung himself into vindication of the sense substance, and veracity of what he had written. His writ ing is magnificent, because he knew so much, thought sa comprebensively, and felt so strongly.

The succession of failures in America, culminating in Cornwallis's surrender at York Town in October 1781, wearied the nation, and at length the persistent and powerful attacks of the opposition began to tell. "At this time," wrote Burke, in words of manly self-assertion, thirteen years afterwards, "having a momentary lead (1780-2), so aided and so encouraged, and as a feeble instrument in a mighty hand,-I do not say I saved my country,-I am sure I did my conntry important service. There were few iadeed at that time that did not acknow. ledge it. It was but one voice, that no man in the kingdom better deserved an honourable provision should be made for him." In the spring of 1782 Lord North resigned. lt seemed as if the court system which Burke had been denoumeing for a dozen years was now finally broken, and as if the party which he had been the chicf instrument in instructing, directing, and keeping together must now inevitably possess power for many years to come. Yet in a few months the whole fabric'had falleu, and the Whigs were thrown into opposition for the rest of the century. The story cannot be omitted in the nost summary account of Burke's life. Lord Rockingham came into office on the fall of North. Burke ras rewarded for services beyond price oy being made Paymaster of the Forces, with the rank of a Privy Councillor. He bad lost his seat for Bristol two years before, in consequence of his courageous advocacy of a measure of tolerance for the Catholics, and his still more conrageous exposure of the enormities of the commercial policy of England towards Ireland. He sar daring the rest of his parliamentary life (to 1704) for Malton, a pocket borough tirst of Lord Rockingham's, the $=$ of Lord Fitzwillian's. Burke's first tenure of office was very bricf. He had brought formard in 1780 a compre. bensive seleme of economical reform, with the design o: limiting the resources of jobbery and corruption which the Crown was able to use to strengthen its own sinister influence in Parliament. Administrative reform $w a b_{1}$ next
to peace with the colonies, the part of the scheme of the new ministry to. which the king most warmly objected. It was carried out with greater mederation than had been foreshadowed in opposition. But at any rate Burke's own office was not spared. While Charles Fox's father was at the pay-office (1765-1778) he realized as the interest of the cash balances which he was allowed to retain in his hands, nearly a quarter of a million of money. When Burke came to this post the salary was settled at $£ 4000$ a year. He did not enjoy the-income long. In July 1782 Lord Rockingham died ; Lerd Shelburne took his place; Fex, whe inherited from his father a belief in Lord Shelburne's duplicity, which his own experience of him as a colleague during the last three months bad made stronger, dechoed to eerve under him. Burke, though he bad not encouraged For to take this step, still with his usual loyalty followed him out of office. This may hare been a proper thing to do if their distrust' of ShelburDe was incurable, but the next atep, coalition with Lord North against him, was not only a political bluader, but a shock to party morality, which brought speedy retribution. Either they bad been wrong, and riolently wrong, for a dozen years, or else Lerd North was the guiltiest political instrument since Strafford. Burke attempted to defend the alliance on the ground of the anbstantial agreement between For and North in public aims. The defence is whelly untenable. The Rockingham Whigs were as aubstantially in agreement on public affairs with the Shelburne Whigs as they were with Lord North. The mevement was one of the werst in the history of English party. It served its immediate purpose, huwever, for Lerd Shelburne found himself (February 24, 1783) too weak to carry on the government, and was succeeded by the members of the coalition, with the duke of Portland for prime minister (April 2. 1783). Burke weat back to his old post at the pay-ofice and was soon engaged in framing and drawing the famous India Bill. This was long supposed to be the work of Foz, whe was politically respensible for it. We may be sure that neither he nor Burke would have devised any government for India which they did not honestly believe to be for the advantage both of that country and of England. But it cannot be disguised that Burke had thoroughly persuaded himself that it was indispensable in the interests of English freedom to strengthen the party bostile to the court. Λ w wo bave already asid, dread of the peril to the constitution from the new aims of George IIL was the main inspiration of Burke'a political action in home affairs for the best part of bis political life. The India Bill strengthened the anticourt party by transferring the guvernmeut of India to aeven persens named in the Bill, and neither appointed nor removable by the Crown. In other words, the Bill gave the goverament to a beard chosen directly by the House of Commona; and it had the incidental advantage of confer. ring on the ministerial party patronage valued at $£ 300,000$ a year, which would remain for a fised term of years out of reach of the king. In a word, judging the India Bill from a party poidt of view. we sec that Burke was now completing the aim of his project of economic reform. That measure had weakened the mffluence of the Crewn by limiting its patronage. The measure for India weakened the influcace of the Crown by giving a mass of patronage to the party which the king bated. But this was not to be. The India Bill was thrown out by means of a royal intrigue in the Lords, and the ministers were instantly dismissed (December 18, 1783). Young Willian Pitt, ther only in his trenty-fifth year, bad been Chancellor of the Exchequer in Lord Shelburne's short ministry, and bad refused to enter the coalition Gevernment from an honour able repugnance to join Lord North. He was now made prime minister. The country in tbe electiod of the nest
year ratifed the king's judgment against the Portland combination; and the hopes which Bulke had cherished for a political life-time were irretrievably ruined.
The six years that followed the great ront of the erthodex Whigs were years of repose for the country, but it was now that Burke engaged in the mest laborious and formid. able enterprize of his life, the impeachment of Warren Hast. ings for high crimes and misdemeanours in his gevernment of India. His interest in that country was of old date. It erose partly from the fact of William Burbe's residence there, partly from his friendship with Philip Francis, but most of all, we suspect, from the effect which he observed Indian influence to have in demoralizng the House of Commons. "Take my advice for once in your life," Francis wrote to Shee: "lay aside 40,000 rupees for a seat in Parlisment: in this country that alone makes all the difference betwesn somebody and nobody." The relations, moreorer, betreen the Ecst India Company and the Government were of the most important kind, and uccupied Burke's closest attention from the beginning of the American war down to his own India Bill add that of Pitt and Dundas. In February 1785 be delivered one of the most famous of all his speeches, that on the nabob of Arcot's debts. The real point of this superb declamation was Burke's conviction that ministers supported the claims of the fraudulent creditors in order to sccure the corrupt advantages of a sinister parliamentary interest. His proceedings against Hastings had a dceper spring. The story of Hastidgs's crimes, as Macaulay says, made the blood of Burke boil in bis veins. He had a native abhorrence of cruelty, of injustice, of disorder, of oppression, of tyranny, and all these things in all their degrees marked Hastungs's course in India. They were, morcover, concentrated in individual cases, which excrcised Burke's passionate imagination to its profoundest depths, and raised it to auch a glow of ficry intensity as has never been rivalled in our history. For it endured for iourteen ycars, and was just as burning and as terrible when Hastings was acquatted in 1795, as in the Select Committee of 1781 when Hastingg's enormities were first revealed. "If I were to call for a reward," wrote Burke, "it would be for the services in which for fourteen years, without intermission, I showed the most industry and had the least success, I mean in the affars of India; they are those on which I ralue myself the most ; most for the importance; mest for the labour ; most for the judgment; most for constancy and persererance in the pursuit." Sheridan's speech in the Honse of Commons upen the charge relative to the Begums of Oude probably escelled anything that Burke achieved, as a dazzling performance abounding in the most surprising literary and rhetorical effects. But neither Sberidan nor Fox was capable of that sustaned and overflowing indignation at outraged justice and oppressed humanity, that consuming moral fire, which burst forth agam and main from the chief manager of the impeaclment, with such seorchng might as drore even the cool and intrepnd Hastings beyond all self-contrel, and made him cry out with protests and exclamations like a criminal writhing under the scourge. Burke, ne doubt, in the course of that unparalleeded tral showed sone prejudice; made aome minor overstatements of his case; used many intemperances; and suffered himself to be provoked into expressions of heat and impatience by the eabals of the defondant and bis party, and the intolerable incompetence of the tribunal. It is one of the inscrutable perplexities of human affairs, that in the logic of practical life, in order to reach conclusions that corer enough for truth, we are coustantly driven to premises that corer too much, and that in order to secure their right we:ght to justice and reason, good men are forced to fling the two-edged sword of passiva inte the arroes scale. But these excusea were
mere trifies, and well acserse to be forgiven, when we think that though the offender was in form acquitted, yet Burke succeeded in these fourteen years of laborious effort in laying the foundations once for all of a moral, just, philanthropic, and responsible public opinion in England with reference to India, and in doing so performed perkaps the most magnificent service that any statesman has ever had it in his power to render to humanity.

Burke's first decisive step against Hastings was a motion for papers in the spring of 1786 ; the thanks of the House of Commons to the managers of the impeachment were voted in the summer of 1794. But in those eight years some of the most astonishing events in history had changed the political face of Europe. Burke was more than sixty years old when the states-general met at Versailles in the spring of 1789 . He had taken a prominent part on the side of freedom in the revolution which stripped England of ber empire in the West He had taken a prominent part on the side of justicc. humanity, and order, in dealing with the revolution which had brought to England new empire in the East. The same vehement passion for freedom, justice, bumanity, and order was roused in him at a very early stage of the third great revolution in bis bistory-the revolution which overthrew the old monarchy in France. From the first Burke looked on the erents of 1789 with doubt and misgiving. He had been in France in 1773 , where he liad not only the famons vision of Marie Antoinette at Versailles, "glittering like the morning star, full of life, and splendour, and joy," but had also supped and discussed with some of the destroyers, the encyclopedists, "the sophisters, economists, and calculators." His first specch on his return to England was a warning (March 17, 1:73) that the props of good government wero beginning to fail under the systematic attacks of unbelierers, and that principles were being propagated that would net leave to civil society any stability: The apprehension never died out in his mind; and when he knew that the principles and abstractions, the un-English dialect and destructive dialectic, of his former acquaintances were predominant in the Natienal Assembly, his suspicion that the movement Fould end in disastrous miscarriage waxed into certainty.

The secne grew still mere sinister in his eyes after the march of the mob from Paris to Versailles in October, and the vielent transport of the king and queen from Versailles to Paris. The same hatred of larlessuess and- vielence which fired him with a divine rage against the Indian malefactors was aroused by the violence and lawlessness of the Parisian insurgents. The same disgust for abstractions and naked dectrines of right that had stirred him against the pretensions of the British Parliament in 1774 and 1776, was revived in as lively a degree by political coneeptions which he judged to be identical in the Prench Assembly of 1789 . And this anger and disgust were exasperated by the dread with which certain procecdings in England had inspired him, that the aims, primeiples, methods, and language which he so misdoubted or abhorred in France were likely to infect the people of Great Britain.

In Norember 1790 the town, which had long been cagerly oxpecting o manifesto from Burke's jen, was electrified by the Reflections on the levolution in France, and on the procectings in certuin societies in London relutive to that event. Tho generous Windham made an entry in lis diary of his recention of the new book. "What shall be said," he adind, "of the state of things, when it is remembered that the writer is a man decried, persecuted, and proseribed ; not boing mueli valued even by his own party, and ly lala f the nation considered as little better than an ingeniens madman $?$ " But the mriter now ccased to be decried, persecuted, and proscribed, and his book was seized fis the expression of that new current of obinion in Europe which the more
recent events of the Revolution had slowly set flowing. Iw vogue was instant and enormous. Eleven editions wero exhausted in little more than a year, and there is probably not much exaggeration in the estimate that 30,000 copies were sold before Burke's death seven years afterwards. George III. was extraragantly delighted; Stanislans of Poland sent Burke words of thanks and high glorification and a gold medal. Catherine of Russia, the friend of Voltaire and ths benefactress of Diderot, sent her congratulations to the man who denonnced French philosophers as miscreants and wretches. "One wonders," Romilly said by-and-by, " that Burke is not ashamed at such success." Mackintosh replied to bim temperately in the Vindicis Gullica, and Tom Paine replied to bim less temperately but far more trenchantly and more shrewdly in the Righlts of Man. Arthur Young, with whom he had corresponded years before on the mystcries of deep ploughing and fattening hegs, added a cogent polemical chapter to that ever admirable work, io which be showed that he knew as much more than Burke abont the old system of France as he knew more than Burke about soils and roots. Philip. Francis, to whom he had showa the proof-sbects, had tried to dissuade Burke from publishing bis performance. The passage about Marie Antoinette, which has since become a stock piece in books of recitation, seemed to Francis a mere piece of foppery; for was she net a Messalina and a jade? "I know nothing of yeur stery of Messalina," answered Burke; "am I obliged to prove judicially the virtues of all those I shall see suffering' every kind of wrong and contumely and risk of life, before I endeavour to interest others in their sufferings ? . . Are not high rank, great splendour of descent, great personal clegance, and outrard accomplishments, ingredients of moment in forming the interest we take in the misfortunes of men ? . . I tall you again that the recollection of the manner in which 5 saw the queen of France in 1774, and the contrast betwecn -that brilliancy, splendour, and beauty, with the prostrate homage of a nation to her, and the abominable scene of 1789 which I was describing, did draw tears from me and wetted my paper. These tears came again into my eyes almest as often as I looked at the description,-they may again. Yon do not believe this fact, nor that these are my real feclings; but that the whole is affected, or as jou express it, downright foppery. My friend, I tell jou it is truth; and that it is true and will be truth when you and I are no more; and will exist as long as men with their natural feelings shall exist " (Corr. iii. 139).

Burke's conservatism was, as such a passage as this may illustrate, the result partly of strong imaginative associa tions clustering round the mere impesing symbols of social contimuty, partly of a sort of corresponding consiction in his reason that there are certain permanent elements of hnman mature out of which the European order had risen and which that order satisfied, and of whosc immense merits, as of its mighty strength, the revolutionary party in France were most fatally ignorant. When Romilly saw Diderot in 1783, the great encyclopredic chief assured him that submission to kings and belicf in God would bo at an end all over the world in a very few years. When Condorcet described the Tenth Epoch in the long development of human progress, he was sure not only that fulness of light and perfection of happiness would come to the sons of men, but that they were coming with all speed. Only those who know the incruilile rashness of the revolntionary doctrine in the mouths of its most pererful professers at that time: only those who know their absorption in ends and their inconsiderateness about means, can feel how profoundly right burke was in all this part of his conten. tion. Napolcon, who had begun life as a disciple of Roussenv, confirmed the misdum of the philosophy of

Burise when he came to make tue Coneoruar. That measure was in one sense the outcome of a mere sinister expediency, but that such a measure was expedient at all sufficed to prove that Burke's view of the present possibilities of social change was right, and the view of the Rousseauites and too sanguine Perfectibilitarians wrong. As we have seen, Burke's very first piece, the satire on Bolingbroke, sprang from his convietion that merely rationalistic or destructive criticism, applied to the vast complexities of man in the social union, is either mischievous or futile, and mischievous exactly in proportion as it is not futile.

To discuss Burke's writings on the Revolution would be so write first a volume upou the abstract theory of society, and then a second volume on the history of France. But we may make one or two further remarks. One of the most common charges against Burke was that he allowed his imagination and pity to be touched only by the sorroms of kings and queens, and forgot the thousands of oppressed and famine-strieken toilers of the land. "No tears are shed for mations," cried Francis, whose sympathy for the Revolution was as passionate as Burke's execration of it. "When the provinces are scourged to the bone by a mercenary and merciless military power, and every drop of its blood and substance extorted from it by the ediets of a royal council, the ease seems very tolerable to those who are not involved in it. When thousands after thousanos are dragooned out of their country for the sake of their religion, or sent to row in the galleys for selling salt against law,-when the liberty of every individual is at the merey of every prostitute, pimp, or parasite that has aceess to power or any of its basest substitutes, -my mind, I own, is not at once prepared to be satisfied with gentle palliatives for such disorders" (Francis to Burke, November 3, 1790). This is a very terso way of putting a crucial objection to Burke's whole view of French affairs in 1789. His answer was tolerably simple. The Revolution, though it bad made an end of the Bastille, did not bring the only real prastical liberty, that is to say, the liberty which comes with settled-courts of justice, administering settled laws, undisturbed by popular fury, independent of everything but law, and with a clear law for their direction. The people, he contended, were no worse off under the old monarchy than they will be in the long run under assemblies that are bound by tho neecessity of feeding one part of tho community at the grievous charge of other parts, as oecessitous as those who are so fed; that are obliged to tatter those who have their lives at their disposal by colcrating acts of doubtful influence on commeree and agriculture, and for the sake of precarious relief to sow the seeds of lasting want ; that will be driven to be the instruments of the violence of others from a sense of their own weakness, and, by want of nuthority to assess equal and proportioned charges upon all, will be compelled to lay a strong hand upon tho possessions of a part. As against the moderate seetion of tho Coustituent Assembly this was just.

One secret of Burke's riews of the Revolution was the contempt which he had conceived for the popular leaders in tho earlier stages of the movement. In spite of much excellence of inteation, much heroism, much energy, it is hardly to be denied that the leaders whom that movement brought to the surface were almost without esception men of the poorest political capacity. Danton, no doubt, was abler than most of the others, yet the timidity or temerity with which he allowed himself to be ranquished by Robespierre showed that even he was not a man of commanding quality. The spectacle of men so rash, and so incapable of controlling the forces whieh they secmed to have presumptuonsly summoned, excited in Burke both indignation and contempt. And the leaders of the Consti-
tuent who came first on the stage, and hoped to make a revolution with rose-rater, and hardly realized any more than Burke did how rotten was the strueture which they had undertaken to build up, almost deserved his conternpt, even if, as is certainly true, they did not deserve his andig. pation. It was only by revolutionary methods, which are in their essence and for a time as arbitrary as despotic methods, that the knot could be cut. Burke's vital eiror was his inability to see that a root and branch revolution was, under tie conditions, isevitable. His cardinal position, from which be deduced so many important conclusions, namely, that the parts and organs of the old constitution of France were sound, and only needed moderate invigorstion, is absolutely mastaken and untenable. There was not a single chamber in the old fabric that was not crumbling and tottering. The court was frivolous, vacillating, stone deaf aud stone blind; the gentry were amiable, but distinctly bent to the very last on holdiog to their privileges, and they were wholly devoid both of the political experience that only comes of practieal responsibility for public affairs, and of the political sagacity that only comes of political experience. The parliaments or tribuala were nests of faction and of the deepest social incompetence. The rery sword of the state broke short in the king's hand. If the king or queen could either bave had the political genius of Frederick the Great, or could have had the good fortune to find a minister with that genius, and the good sense and good faith to trust and stand by him against mobs of aristocrats and mobs of democrats; if the army had been sound and the states-general had been convoked at Bourges or Tours instead of at Paris, then the type of French monarchy and Frenck society might have been modernized without convulsion. But none of these conditions existed.

When he dealt with the affairs of Iodia, Burke passed over the eircumstanees of our acquisition of power in that continent. "There is a sacred veil to be drawn over the begionings of all government," he said. "The first step to empire is revolution, by which power is conferred; the next is good laws, good order, good institutions, to give that power stability." Exactly on this broad priaciple of political foree, revolution was the first step to the assumption by the people of France of their own government. Granted that the Revolution was inevitable and indispensable, how was the nation to make the best of it 1 And how were surrounding nations to make the best of it $\}$ This was the true point of riew. But Burke never placed limself at such a point. He vever conceded the postulate, because, though he knew France better that any body in England except Arthur Young, he did not know her condition well enough. "Alas!" he said, "they little know how many a weary step is to be taken before they ean form themselves into a mass which has a true, political personality." And how true this was, it will perhaps take more than a century fully to show, But then nations like individual men are often driven to travel over a weary road that has been long prepared for them by the far-reaching errors of their forcfathers and it was only by the journey of which he wisely forewarned them, that they could hape to arrive at the goal of which be unwisely despaired for them.

Burke's viem of Freneh affairs, however consistent with all his former political conceptions, put an end to more than one of his old pulitieal friendships. He had never been popular in the House of Commens, and the vehemence, sometimes amounting to fury, which he had shown in the debates on'the India Bill, on the regency, on tho impeachment of Hastings, had made him unpopular even among men on his own side. In May 1789-that memorable month of May in which tho states-general marched in
impressive array to hear a sermon at the church of Nôtrs Dame at Versailles-a vote of censure had actually been passed on him in the House of Commons for a too severe expression used agsinst Hastings. Fox, who led the party, and Sheridan, who led Fox, were the iutimates of the Prince of Wales ; and Burke would have been as much out of place in that circle of gamblers and profligates as Milton would bave been out of place in the court of the Restoration. The prince, as somebody said, was like his father in having closets within cabinets and cupboards within closets. When the debates on the regency were at their height we have Burke's word that he was not admitted to the private counsels of the party. Though Fox and he were on friendly terms in society, yet Burke admits that for a considerable period before 1790 there had been between them "distance, coaluess, and want of confidence, if not total alienation on his part." The younger Whigs bad begun to press for shorter parliaments, for the ballot, for redistribution of political power. Burke had never looked with any favour on these projects. His experience of the sentiment of the populace in the two greatest concerns of hislifo,-American affiary and Indian affairs, - had not been likely to prepossess him in favour of the popular voice as the voice of superior political wisdom. He did not absolutely object to some remedy jo the state of representation (Corr. ii. 387), still he vigorously resisted such proposals as the duke of Richnond's in 1780 for manhood suffrage. The general ground was this:-"The machine itself is well enough to answer any good purpose, provided the materials were sound. But what signifies the arrangement of rottenness ?"

Bad as the parliaments of George III. were, they contained their full share of eminent and capable men ; and, what is more, their very defects were the exact counterparts of what we now look back upon as the prevailing stupidity in the country. What Burke valued was good government. His Report on the Causes of the Duration of Mr Hastings's Trial shows how wide and sound were his views of law reform. His Thoughts on Scarcity attest bis enlightenment on the central decessities of trade and manufacture, and even furuished arguments to Cobden fifty years afterwards. Pitt's parliaments were competent to discuss, and willing to pass, all measures for which the average political intelligence of the country was ripe. Burke did not believe that altered machinery was at that time needed to improve the quality of legislation. If wiser legislation followed the great reforn1 of 1832 , Burke would have said this was because the political intelligence of the conntry had improved.

Though averse at all times to taking up parliamentary reform, ho thought all such projects dowaright crimes in the agitation of 1791-2. This was the view taken by Burke, but it was not the view of Fox, nor of Sheridan, Dor of Francis, nor of many others of his party, and difference of opinion here was naturally followed by difference of opinion upon affairs in France. Fox, Grey, Windham, Sheridan, Francis, Lord Fitzwilliam, nnd most of tho other Whig leaders, welcomed the Revolution in France. And so did Pitt, too, for some time. "How much the greatest event it is that ever happened in the world," cried Fox, with the exaggeration of a man ready to dance the carmagnule, " and how much the bestl" Tho dissension between a man who felt so passionately as Burke, and a mau who spoke so iupulsively as Charles Fox, lay in tho very nature of things. Between Sheridan and Burke there was an open breach in the House of Commens upon the Revolution so early as February 1790, and Sheridan's influence with Fox was strong. This divergence of opinion destroyed all the elation that Burke might well have felt at his compliments from kings, his gold medals, his twelve editions. But he was too fiercely in earnest in his horror of Jacobinism to allow mere party associations to gride him. In May 1791 the thundercloud
burst, and a public rupturs betreen Burse and Fox toolr place in the House of Commons.
The scene is famous in our parliamentary annals. The minister had introduced a measure for the division of the province of Canada and for the establishment of a local legislature in each division. Fox in the course of debate went out of his way to laud the Revolution, and to snees at some of the most effective passages in the Reffections. Burbe was not present, but he anuounced his determina. tion to repl: On the day when the Quebec Bill was k come on again, Fox called upon Burke, and the paul walked together from Burke's house in Duke Street dowr tn Westmiaster. The Quebec Eill was recoromitted, and Burko at once rose and soon began to talk his usual language against the Revolution, the rights of man, ana Jacobinism whether English and French. There was a call to order. Fox, who was as sharp and intolerant in the House as he was amiable out of it, interposed with some words of contemptuous irony. Pitt, Grey, Lord Sheffield, all plunged into confused and angry debate, as to whether the French Revolution was a good thing, and whether the French Revolution, good or bad, had anything to do with the Quebec Bill. At length Fox, in seconding a motion for confining the debate to its proper subject, burst into the fatal question beyond the subject, taxing Burke with inconsistency, and taunting him with baring forgotten that cver-admirable saying of his 0 wn about the insurgent colonists, that he did not know how to draw an indictment against a whole uation. Burke replied in tones of firm self-repression; complained of the attack that had been made upon him ; reviewed Fox's charges of inconsistency; enumerated the points on which they had disagreed, and remarked that such disagreements bad never broken their friendship. But whatever the risk of eninity, and however bittcr the loss of friendship, he would never cease from the warning to flee from the French constitution. 'But there is no loss of friends," said Fox in an eager under tone. "Yes," cried Burke, "there is a loss of friends. I know the penalty of my conduct. I bave done my duty at the price of my friend-our friendskip is at an end." Fox rose, but was so overcome that for some moments he could not speak. At length, bis eyes streaming with tears, and in a broken voice, he deplored the breach of a twents years' friendship on a political question. Burke was inesorable. To tim the political question was so virid, so reah, so intense, as to make all personal sentiment no more than dust in the balance. Burke confronted Jacobinism with the relentlessness of a Jacobin. The rupture was never healed, and Fox and he bad no relaticas with one another benceforth beyoud such formal interviews as took place in the manager's box in Westminster Hall in connection with the impeachment.

A few months afterwards Burke published the Appeal from the New to the Old Whigs, a grave, calm, and most cogent vindication of the perfect consistency of his criticisms upon the English Revolution of 1688 and upon the French Revolution of 1789 with the doctrines of the great Whigs who conducted and afterwards defeaded in Anne's reign the transfer of the crown from James to William and Mary. The Appeal was justly accepted as a satisfactory performanco for the purpose with which it was written. Events, however, were doing more than words could do, to confirm the: public opinion of Burke's sagacity and foresight. He had always divined by the instinct of hatred that the French moderates must gradually be swept aray by the Jacobins, and now it was all comidg true. The humiliation of the king and queen after their capture at Varennes; the compulsory acceptance of the constitution; the plain incompetence of the new Legislative Assembly; the growing violeace of the Parisiao mob, and the ascendeacy of the

Jacobina at the Common Han; the fierce day of the 20th of June (1792), when the mob flooded the Tuileries, and the bloodier day of the 10 th of August, when the S wiss gard was massacred and the royal family flung into prison ; the murders in the grisons in September; the trial and execution of the king in January (1793) ; the proseription of the Girondios in June, the execution of the queen in October-if we realize the impression likely to be made upon the sober and homely English imagination by such a heightening of horror by borror, we may easily understand how people came to listen to Burke's voice as the voice of inspiration, and to look on his burning anger as the bely fervour of a prophet of the Lord.

Fox still held to his old opinions as stoutly as be could, and condemned and opposed the war which England had declared against the French republic Burke, who was profoundly incapable of the meanness of letting persunal eatrangement blind his eyes to what was best fur the commonwealth, kept hoping against hope that each new trat of excessin France would at length bring the great Whig eader to a better mind He used to declaun by the hour in the conclares at Burlington Huase upon the necessity of aecuring Fox; upon the strength wheh has gemus would lend to the admanistration in its task of grappling With the sanguinary giant; upon the inipossibility, at least, of doing either with him or mithout him. Foxs most important political friends who had long wavered. at length, to Burke'a great satisfaction, went over to the side of the Governmeat. In Jaly 1794, the duke of Purtand, Lord Fitzwilliam, Windham, and Grenville took office under Pitt. Fox was left with a minonty which was satincally said not to bave been more than enough to fill a backney coach. "That is a calumny," said one of the party. "we should have filled two." The war was prosccuted with the aid of both the great parliamentary partues of the country. and with the approral of the great bulk of the oation. Perbaps the one man in Eogland who in his beart approved of it less than any other was Willam Pitt. The difference between Pitt and Burke was nearly as great as that between Burke and Fox. Burke would he content with nuthing short of a crusade against France. and war to the death with her rulers. "I cannot persuade myself," he said, "that this war bears any the least resemblance to any that bas erer existed in the world. I cannot persuade myself that any examples or any reasonngs drawn from other wars and other politics are at all applicable to it" (Corr. ir. 219). Pitt, on the other band. as Lord Rusaell cruly soys, treated Robespierre and Carnot as he wonld base treated any other French rulers. Those ambition was to be resisted, and whose interference in the affars of other natuns was to be checked. And be entered ujon the matter in the spirit of a man of business, by sending ships to seize some iglands belonging to France in the West Indies, sn as to make certan of repayment of the expenses of the war.

In the summer of 1794 Borke was struek to the ground by a blow to his deepest affection in life, end he oever recovered from it. His whole soul was wrapped up in bis only son, of whose abilities be bad the ruost extravagant extimate and hope. All the cridence gees to show that Kichard Burke was one of the most presumptuous and empty-headed of human beings. "He is the most mojudent and opiniative fellow I ever knew," sard Wolfe Tone. Qilbert Elliott, a very different man, gives the same account. - "Burke," be says, describing a dinder party at Lord Fitzwilliam's in 1793, "has now got such a train after bim as rould sink anybody but bimself : his son, who is quite nauseated by all mankind; his brother who is liked better than his aon, but is rather oppressire with animal spirits and brogue; and his cousin, William Burke, who is iust returned unexpectedly from India, as much ruined as
when he went years ago, and who is a rean cange on any prospects of power Burke may erer hare. Mrs Burke haa in her train Miss Freuch [Burke's mece], the most perfect She Paddy that erar was caught. Notwithstanding these disadrantages Burke is in himself a sort of power in the state. It is not too much to say that be is a sort of power in Europe, though totally without any of those means or the smallest share in them which give or maintain power in other men." Burke accepted the position of a power in Europe seriously. Though do man was ever more free from anything like the egotsm of the utellectual coxcomb, yet he abounded in that active self-confidence and self-assertion which is natural in men who are conscious of great powers, add strenuous in promoting great causes. In the summer of 1791 be despatched his son to Coblentz to give adrice to the royalist exales, thed uoder the direction of Caionne, and to report to Beaconsfield therr disposition and prospects. Richard Burbe was received with many compliments, but of course nothing came of his mission, and the colly impression that remaids with the reader of his prolix story ts has tale of the two royal brothers, who afterwards became Lous $X V[11$ and Charles X., meeting after some parting, and embracing une another with many tears on board a boat in the middle of the Rhine, rhile some of the courtiers rascd a cry of "Long live the king "--the king who had a few weeks before been carried back in triumph to bis captal with Mayor Pétion in his coach. When we think of the pass to which things had come in Paris by this time, and of the unappeasable ferment that bolled round the court, there is s certain touch of the ludicrous in the notion of poor Richard Burke writing to Lous XVI. a letter of wise advice bow to coroport himself.

At the end of the same year, with the approval of his father, he started for Ireland as the adviger of the Catholic Association He made a wretched emissary, and there was no loart to his arrogance. norsiness, and indiscretion. The Irish agitators were glad to give bim two thousand guineas and to send him home The mission is associated with a more important thang, his father's Leflers to Sir U/ercuirs Langrishe, advocating the admession of the Iresh Catholies to the franchise. This short plece abounds richly m maximes of noral asd political prudeoce. And Burke exhibitec considerable courage in writug it, for many of its maxims seem to involve a contradiction, first, to the principles on which he witbstood the mosement in France, and secoud. to bis attlude upon the subject of parliamentary reform. The contradietion is in fact only superficial. Burke reas not the man to fall unawares moto a trap of this kind. His defence of Cathalic relief, aud it had been the conviction of a life-tume, was very properly founded on proposituona which were true of Ireland, and were true neither of France nor of the quality of parliemensary representation in England Yet Burke threw sweh breadth and generality orer all be wrote that eren these propositions, relative as they were, form a short manual of statesmanship.

At the elose of the session of 1794 the impeachment of Hastrngs had come to an end, and Burke bade farewell to Parliament Richard Burke was elected in his father's place at Malton. The king was bent on making the champion of the old order of Europe a peer. His title was to be Lord Beaconsfield, and it was designed to annex to the title an income for three lires. The patent was teing made ready, when all was annsted by the sudden death of the son who was to Burke more than life. The old man's grief was agonizing and inconsolable. "The storm has gone oser me," be wrote in words which are well known, but which can hardly be repeated too often for any who bave an ear for the cadedees of noble and pathetic speech,"The storm has gone over me, and I lie like one of those old oaks which the late burricone has scat:ered about me.

I am stripped or all my inouvurs; i dm torn up by tne roots and lie prostratg on the earth. . . . I am alone. I have none to meet my enemies in the gate.
 I live in an inverted order. They who ought to have succeeded me have gone before me. They who should have been to me as posterity are in the plave of ancestors."
A pension of $\mathcal{L} 2500$ was all that Burke could now be persuaded to accept. Tho duke of Bediord and Lord Lauderdale made some remarks in Parliament upon this paltry reward to a man who, in conducting a great trial on the public behalf, had worked harder for nearly ten years than any ininister in asy cabinet of the reign. But it was not yot safe to kick up heels in face of the dying lien. The vileness of such criticism was punished, as it deserved to be, in the Letter toa Noble Lord (1796), in which Burke shoryed the usual art of all his compositions in shaking gside the insignificances of a subject. He turned mere personal defence and retaliation into an occasion for a lofty өnforce. ment of constitutional principles, and this, too, with a relevancy and pertinence of consummate skilfulness. There was to be one more great effort before the end.
In the spring of 1796 Pitt's constant anxiety for peace had become more earnest than ever. He had found out the instability of the coalition and the power of France. Like the thrifty steward he was, he saw with growing concern the waste of the national resources and the strain upon commerce, with a publì debt swollen to what then scemed the desperate sum of $£ 400,000,000$. Burke at the notion of negotiation flamed gut in the Letters on a Regicide Peace, in some respects the most splendid of all his compo. sitions. They glow with passion, and yet with all their rapidity is such steadfastuess, the fervour of imagination is ss, skilfully tempered by close and plausible reasooing. and tho whole is wrought with such strength and fire, that we hardly know where else to look either in Burke's own writings or elsevwhere for such an exhibition of the rhetorical reseurces of our language. We eannot wonder that the wholo nation was stirred to the very depths, or that they strengthened the aversion of the king, of Windham, and other important personages in the Government, against the plans of Pitt. The prudence of their drift must be settled by exterual considerations. Those who think that the French were likely to show a moderation and practical reasonableness in success, such as they had never shown in tho hour of inminent ruin, will find Burke's judgment full of error and mischief. Those, on the contrary, who think that the nation which was on the very eve of surrendering itself to the Napoleonic absollutism was not in a hopeful humour for peace and the European order, will believe that Durke's protests were as perspicacious as they were powerful, and that anything which chilled the energy of the war was as fital as be declared it to be.
When the third and most inpressive of these astonishing productions came into the hands of the public, the writer ,was no more. Burke diod on the 8th of July 1797. For, who with all his faults was never wanting in a fine and generous sensibility, proposod that there should be a public funeral, and that the body should lie among the illustrious dead in Westminster Abbey. Burke, however, had left strict injuactions that his burial should be privata; and he was laid in the little church at Beneonsfield. It was the year of Campo Formio. Se a black whirl and torment of rapine, violence, and fraud was encireling tho Western World, ex n iffo went out which, notwithstanding some occentricities and some aberrations, had mado great tides in human destiny very luminous.
(Ј. мо.)
BURKE, Robert O'Hara (1821-1861), ode of the geent explorers of the continent of Australia, was born in 1821 at St Clarams in Galway, Ireland. He left the Belgian sollege whare he had beeu cilucated to enter the military
service of Austris, dut is loty retorned to 1 reana, und obtained a post in the mounted police. He next went tc Australia, and servad for some time as pelice-inspector. first in Melbourne and then in the district of Beechworth, till the outbreak of the Crimean War induced him to return to Europe to take part in the campaign. Pesce was restored, however, before he arrived, and he accordingly went back to Australia and resumed his connection with the police force. In 1860 he was appointed one of the leaders of a Government exploring expedition, and in this capacity had the honour of being one of the first Europeans to traverse the continent from south to north. A short account of the enterprise-so brilliantly successful in its achievements and so disastrous in ita termination-is given in the article Australia, vol iii. p. 106 ; and fuller details will be found in the Journal of the Royal Geographicai Society for 1862. The remains of the explorer were interred by Howitt's relief party in $28^{\circ} 20^{\prime} \mathrm{S}$. lat. and $141^{\circ} \mathrm{E}$. long.

BURLAMAQUI, Jean Jacques (1694-1748), a celebrated writer on natural law, was born at Geneva on the 24th June 1694. He received a careful education, and while passing through his university course devoted himself with such success to the study of ethics and law of nature, that at the age of twenty-five be was designater honorary professor. Before taking possession of his chair he travelled through France and England, and made the acquaintance of the most eminent writers of the period. On his return he hegan his lectures, and soon gained a wide reputation, from the simplicity of his style and the precision of his views. He continued to lecture for fifteen years, when he was compelled to resign from ill-health. His fellow-citizens at once elected him a member of the council of state, and he gained as high a reputation for his practical sagacity as he had for his theoretical knowledge. He died at Geneva on the 3d April 1748. His works were Principes du Droit Naturel, 1747, and Principes du Dront Politique, 1751. These have passed through maby editions, and were very extensively used as text-books. The most convenient collected edition is that by Dupin, in 5 vols., 1820. Burlamaqu's style is simple and clear, and his arrangemont of the material good. His fundamental principle may be descrited as rational utilitarianism, and it in many ways resembles that of Cumberland.

BURLINGTON, a city and port of entry of tho United States, capital of Chittenden county, in Vermont, 38 miles N.W. of Montpelier, in $44^{\circ} 27^{\prime} \mathrm{N}$. lat., and $73^{\circ} 10^{\prime} \mathrm{W}$. loug. It has a fine situation on the eastern shore of Lake Champlaio, and is laid out with great regularity around a central square. Its principal buildings are the Vermont University (which occupies the summit of the slope on which the eity is built), the Vermont Episcopal Institute, the court-houses, a jail, a custom-house, and a marinehospital. The university was founded in 1791, and tas endowed by the State with 29,000 acres of land,-to which in 1865 were added 150,000 acres of national grant $\mathrm{b}_{0} \cdot$ the incorporation of the agricultural eollege. There is a medical school attached. Burlington earries on an extensivo trade in lumber, and has tho most important share in the shipping traffic of the lako. Its harbour is defended by o breakwater, and a lighthouse was crected at the mouth of the bay in 1862. To the north of the Onion River, but united to Burlington by a bridge, lies the flourishing village of Winooski, with factories and mills. The history of Burlingten only dates from 1783; its first church from 1795, and its incerporation as a city from 1864. Popula. tion in 1870, 14,387.

BURLINGTON, a city and port of entry of tho United States in Burlungton country, New Jersey, 18 wiles N.E. of Philadelphia, on the Delaware, in $40^{\circ} 5^{\circ}$ N. lat und 73°
$10^{\circ} \mathrm{W}$. 10ny. It is well bunt, nis an acandant bupply of water, and forms a farourite summer resort for the inhabitants of Philadelphia. Its educational institutions are of considerable importance, and comprise an Episcopal sollege, founded in 1846; St Mary's Hall, also under Episcopalian management; two large boarding schools; sad a number of public schools, which are well endowed. There is also a town-bitl and a valuable library. Though it has greatly declined with the rise of Philadelphia, Burlington still maintains a respectable shipping trade; in 1871 it had 131 vessels with a registered tonnage of 12,525 . The first settlement of the city dates from 1667 , and was principally due to a number of Quakers. New Beverly, as the place was onginally called, grew rapidly in importance, and was the seat of the Government of New Jersey till 1790 . It had a large trade with the West Indies, and was raised to the rank of a bisbopric, Queen Anne ondowing the church with an extensive estate. Population in 1870, 5817.

BURLINGTON, a city of the United States, the capital of the county of Des Moines in Iowa, on the right bank of the Mississippi, 207 miles by rail from Chicago. It occupies a natural amphitheatre formed by the limestone bluffs which slope backward from the river. Among the educational institutions the chief place 19 held by the Busiaess College, founded in 1865, and the Baptist University, which dates from 1854. There are about eight public echools, fifteen churches, and a public library. The commercial activity of the city is very great, and is gradually iacreasing. Its industrial establishments comprise flourmille, pork-packing warehouses, foundries, breweries, and soapworks; and the neighbourhood furnishes an abundent supply of coal, building stone, and lime. The city is also the centre of a considerable railway system. Laid out in 1834, it ranked for several years (1837-40) as the capital of Iowa. Population in 1860, 6706; in 1870, 14,933.

BURMAH. The Burman empire, or Independent Burmab, is situated in the S.E. of Asia, in the region beyond the mountaing which form the eastern frontier of Bengal. It was formerly of very coneiderable extent, but it limits have been greatly contracted by British conquest. On the W. where it is conterminous with the British territories in Iudia, the Burman empire is bounded by the province of Arakin, sursendered to the British in 1826, the petty states of Tipperah and Munnepore, and the province of Assam, from which it is separated by lofty ridges of monntaias ; on the S by the British province of Pegu, acquired in 1853 ; on the N . by Assam and Tibet; and on the E. by China and the Shan states. Its limits extend from $19^{\circ} 30^{\prime}$ to $28^{\circ} 15^{\prime} \mathrm{N}$. lat., and from $93^{\circ} 2^{\prime}$ to $100^{\circ} 40^{\circ}$ F. long., comprising a territory measuring 540 miles in length from north to south, and 420 in brcadth, with an area of 190,520 English square miles.
That portion of Asia in which the Burman empire is situated slopes from the central mountains towards the south ; and the Burmese territory is watcred by four great stresms, namely, the Irawadi and the Kyen-dwen, whach nate their courses at $21^{\circ} 50^{\circ} \mathrm{N}$. lat.. the Sittang or Pounloung, and the Salwin. The first two nvers have their sources nomewhere in the northern chain of mountains in the interior, one head stream of the Irawadi probably coming from Tibet; the Salwin furtber to the cast in Cibet; and the Sittang, which is the smallest of the four, in the bills to the S.E. of Mandalay; they all run in a sontherly course to the Indian Occan. The Irawadi and the Salwin are large rivers, which in the lower part of thatr course overflow the flat country on their banks during tris season of the rains, and in the upper force their way though magnificent defiles. The former is navigable a cunsiderable distance above Bhamo: but the lette: is
practically useless as a means of comunatcanor, wing to the frequent obstacles in its channel. The Burmese empire with its present limits contaius no maritime districts, and only isolated tracts of alluvial plain; it is in the main an upland territory, bounded at its southern extremity by a frontier line at the distance of about 200 miles from the mouths of the Irawadi, in $19^{\circ} 30^{\prime}$ N. lat. From this point the country begins to rise, and thence for about 300 miles farther it contains much rolling country intersected by occasional hill ranges; beyond this it is mild and mountainous.

Though inferior in point of fertility to the low-lying Prodad tracts of British Burmah, the upland country is far from tions. being unproductive. The chief crops are rice (of which the Burmese count 102 different sorts), maize, millet, wheat various pulses, tobacco, cotton, and indigo. The sugar. cane appears to bare been long known to the Burmese

Skétch-Map of Burmah.
bat, though the climate and soil are extremely faroumble, it is not gencrally cultivated. A cheap and conse sugar is obtancd from the juice of the Palmyra palm, which abounds in the tract sonth of the capital. The cocoa and areca palms are not common. The tea-plant, which is indigenous, is cultivated in the hills by some of the mountan tribes at the distance of about five daya' journey, and by others in still greater perfection at the distance of about ten days' journey, from the capital. It seema, howerer, to be another plant, probably the Elcoodendron persecum, which furnisbes the priocipal ingredicnt in the hlapet, or pickled tea, that forms one of tho favourite condiments of Burmah Cotton is grown in every part of the kingdom and its dependencies, but chiefly in the dry lands and climate of the upper provinces. Iadigo is indigenous, and is unirersaily cultirated, but in a very rude manner; it is still
more rudely manufactured, and is wholly unfit for exportation.

The most common fruits in Burmah are the mango, the viange, the citron, the pine, the custard apple, the jack, the papaya, and the plantain. The yam and the oweet putato are grown, but not extensively; the common potato is unknown. Onions are produced; and capsicum, which, after salt, is the most ordinary condiment used by the Burmese, is cultivated everywhere.

The forests of Burmah abound in fine trees. Among these the teak holds a conspicuous place; some of the finest teak foreats were lost to the Burmese, however, with Pegu. Almost every description of timber known in India is produced in the Burmese forests, from which also an abundant supply is obtained of the varnish employed by the Shans and the Burmese in their manufucture of lacquered ware. Sticklac of an excellent quality is obtained in the woods. ${ }^{1}$
w...arals. Burmah is rich in minerals, and produces gold, silver, copper, tin, lead, antimony, bismuth, amber, coal, petrolcum, nitre, matron, salt, limestone, and marble, the jade or yu of the Chinese, sapphires, and other precious stones. Gold is found in the sands of different rivers, and also towards the Shan territory on the eastern frontier ; but the demand is very much greater than tho native supply. Silver is got also near the Chinese frontier. The mountainous dis. tricts of the Shan territory contain almost all the other metals; but they are not worked, and the copper and tin, which are seen in the capital, are imported from China. Iron is found in several places, and is wrought especially at Poukpa, near a mountain of that name to the eastward of the old capital Pagán, and also at Maedoo, north-west of the capital; bat, owing to ignorance and the want of proper methods, about 30 or 40 per cent. of the metal is lost in the prucess. Large deposits of rich magnetic oxide, as yet untouched, exist in the ridges east of the capital near the banks of the navigable river Myit-Ngé, and the same district contains lime in great abundance and of remarkable whiteness; while statuary marble, equal to the best Italian apecimens, ia found about 15 miles north of the capital and east of the Irawadi. Mines of amber are wrought, among other placea, at Hookhong or Payendwen, near the sources of the Kyen-dwen, and their produce must be abundant if one may judge from the price of the article at the capital. Nitre, natron, and salt are found in various quarters. Sulphur also occurs in. aome places, as in the district of Silleh-Ifyo and in the neighbourhood of the petrolenm wells; bat the quantity is comparatively small, and a supply has to be obtained from China. Coal has beeu discovered in patches, but not in any quantity worth working. Petroleum, which is used by all ranks among the Burmese for burning in lamps, and also for smearing wood as a prearrvative against insects, is found near the village of Ye nang-gyoung, on the banks of the Irawadi. Here are upwards of one hundred pits or wells, with a general depth of from 210 to 240 feet; though some of them are deeper, and reach to the depth of 300 feet. The shaft is of a square form, froms 3 to 4 fect across, and lined with horizontal balks. The liquid nppeara to boil up from the bottom like an abundant spring, and is extracted in buckets, and sent to all quarters of the country. The anmual yield is calculated at 11,690 tons. A good deal is now imported into England. ${ }^{2}$

The precious stones which are produced in the Burmese territories are chiefly the sapphire and the ruby. They are found about 60 or 70 miles in a north cast dircetion from the capital, over an area of about 100 square miles, by sin!:ing pits in the gem beds. The varieties of the sanphire

[^45]found there are the blue or oriental sapphire, the red of oriental ruby, the purple or oriental amethyst, the yellows or oriental topaz, besides different varieties of chrysoberyl and spinelle. The Crown lays claim to the produce of these rivers; and all the stopes that exceed the value of $£ 10$ are sent to the treasury. ${ }^{3}$ No stranger is ever permitted to approach the apots where these precious stones are found. The yu or jade mines are situated in the Mogoung district, about 25 miles south-west of Meinkhoom. During cenain seasons no ferrer than 1000 men-Shana, Chinese, Panthays, and Kakhjens-are eugaged in the excavation of the stone, which is found in the form of rounded boulders, sometimes of considerable size. Each digger pays so much a month for the right of search, and all he finds becomes bis own. ${ }^{4}$ Momien, in Yunnan, was formerly the chief geat of the manufacture of the jade, and still produces a considerabléquantity of small articles.

The country of the Burmese, abounding in forests, affords Animaln. extensive shelter to wild animals. The elephant and the rhinoceros-both the one-horned (R. indicus) and the twoborned (R. sumatranus)-are found in the deep forests of the country. The tiger and the leoperd are numerous, as well as the wild bog, and several species of deer, soch as the Indian roe, the axis, and the barking deer (Cervus muntjac). In the Irawadi is found, as far up as Bhamo, a peculiar kind of dolphin. The rivers and lakes abound with fish, from which the inhabitants prepare their favourite condıment of ngapee. A detalled description of several of the species will be found in Day's contributions to the Proceedings of the Zoological Society, 1869, 1870. Of birds, the jungle-fowl is common, and is seen in covess in all the forests of the country; while domestic breeds, often of very large size, are kept in great numbers, not only for the sabe of the eggs or the flesh, but also to afford amasement of a barbarous kind. Aquatic birds of various kinds are very numerous, such as geese, darters (Flotus melanogaster), scissur-bills (Rhyncops nigra), adjutants (Leptoptilos argala), pelicans, cormorants, cranes (Grus antigone, in jurmese gyoja), whimbrels, plovers, and ibises. Thereare also peacocks, and varieties of pheasants, partridges, and quails. ${ }^{5}$

The domestic animala are the or, the buffalo, and the borse. Oxen are used for draught in the upper country, and buffaloea in the sonthern parts. They are of a good description, and, ranging in the luxuriant pastorea of the plains, they commonly appear in high order. The buffalo is confined to agricultural labour, and the ox alone ia used as a beast of burden or of draught. The Burman borses, which are rarely more than thirteen hands high, are never used but for riding. Elcphants mre kept for the plcasure of the king, and the tamng of those that are newly caught is one of the favounte spectacles of the people. A white elephant (apparently an albino), when found, is greatly prized, and is kept at court as a sacred appendogo of royalty. The dog is neglected, and is acen prowling about the streets, a prey to famme and disease. Cats are numer: ous; and about the capital a few goats and sbeep, of a puny race, are kept more for curiosity than for use. A few asses are also seen, which are brought from China. The camel is not known.

The Burmese in person have the Mongoioid character- Inhabt. istics, common to the Indo-Chineso races, the Tibetans, tants. and tribes of the Eastern Himalaya. They may be genc-

[^46]rally described as of a stout, active, well-proportioned torm; of a brown but never of an intensely dark complexion, with black, coarse, lank; aud abundant hair, and a little more beard than is possessed by the Siamese. The name they give their own race is Mran-ma (a3 written), generally pronounced Ba-ma, and from this the various forms of "Burmah" appear to have been taken. Besides the Burmese proper, there are numerous tribes of Paloungs, Toungthoos, Karens, and others toward the east, many of them in a state of semi-ivdepeodence; and all round the northern frontier and along the ranges that traverse the upper regions, vast hordes of Kakhyens or Singphos maintain a rough, cateran life, and come down to levy black mail on the more peaceful iababitants. The Shans constitute a great number of small principalities along the whole eastern border, subject some to Burmab, some to China, some to Siam, and in some cases owning a double allegiance, according to their position. The Sbans everywhere profess Buddism, and have seme kind of literature and the traces of culture. To their race the Siamese themselves belong. - The Kakhyens are square-faced, strong-jawed, and obliqueeyed. They are still in a low sfate of civilizaticn, are destitute of letters, and continue in paganism. Their chicfs are supported by offerings in kind,-receiving, for example, a leg of every animal that is killed. One kind of industry-the manufacture of tuddy and arrack-is extensively carried on, and the whole population are regular consumers of the produce. ${ }^{1}$ Various other tribes, as the Pwons and the Kakoos, are seattered throughout the empire; but they are not of much individual importance. The population of the country thas been variously estimated and grossly exaggerated by the ignorance of Euro. peans, who have raised it to $17,000,000,19,000,000$, and even $33,000,000$. Mr Craufurd, on the best data that he could procure, rated the inhabitants at 22 to the square mile, which, under the now contracted limits of the enpire, would give a total population of $3,090,000$, and Colonel Yule estimated, in 1855, that, within the area between the British frontier and $24^{\circ} \mathrm{N}$. lat., it probably did not exeeed $1,200,000$, while within the whole empire at its wide limits there were not more than $3,000,000$. Count Bethlen states, in 1874, that he obtained statistics of the bouses in Burmaly from a Burmese official, which made the number 700,000 , without ineludng those among the Sham: to the east of the Salwin; so that if we allow five inhab: tants to each we have $3,500,000$ for a total population, and if we include the SLans probably $4,000,000$.

The Burtese gevernment is a pure despotism, the king dispensing torture, imprisonment, or death, aceording to bis sovereigu discretion. The ehnef object of government seems to be the personal honour and aggrandizement of the monarch, and the only restraint on the exercise of his prerogative is the fear of an insurrectiou He is assisted in his administration by a public and a privy council, known respectively as the Hlot-dau and the Byadeit ; all questions, before they are submitted to the public advisers of his majesty, are debated in the privy council, which consists generally of four Atwen-woons to whons are attached deputies, secretaries and other officers (Tsaré dau-gyis, "great soyal writers;" Tban-dau-zens, "receivers of the royal roice"), who carry messages, and report from time to time the proceedings of the council to the king. The Hlot. dau also usnally consists of four ministers or Woongyis, and is presided over by the crown-prinee (Einshémen, or lord of the eastern bouse). The pasmaster-general is an officer of high importance ; and the other officers of distinetion are the king's armour-bearer and the master of the

[^47]elepnants, but the latter have no share in the administration -of public affairs. The king may order any of those great officers to be punished at his pleasure; and a minister may, by bis order, be seized by the public esecutioner, and laid at the side of the road for bours under the burning sun with a weight upon bis breast; and after undergeing this disgraceful punisbment, may continue to diseharge bis high function as before. The coustry at Jarge is ruled by proviscial governors, and is divided into provinces (or Myos), townships, districts, and villages. The civil, militaly, judicial, and fiscal administration of the prorince is vested in the governor, or Msowoon, who exercises the power of life and death, thougb in all civil cases an appeal hies from his sentence to the chief council at. the capital. In all the townships add villages there are judges with a subordinate jurisdiction. But from a mere detail of the provincial administration and judicial institutions of the Burmese, their extreme inefficiency can scarcely be known. No Burmese officer ever receives a fixed salary. The bigher class is paid by an assignment cither of laud or of the labour and industry of a given portion of the inbabitants, and the inferior magistrates by fees, perquisites, and other'emoluments; and bence extortion and bribery prevail amongst all the functionaries of the Burmese Corernment. Justice is openly exposed for sale ; and the exercise of the judicial functions is so lucrative, that the two executive couscils have by their eneroactments deprived the regular judge of the greater past of his employment.
The Burmese lars are mainly contained is the Lhammasut, a code ascribed to Manu, but quite different from the Manu's Code of the Brahnans. It is said to hare been istroduced into Eurmah from Ceylon by Buddaghosla, the traditional apostle of the Indo C'linese nations. ${ }^{\text {. }}$ The criminal code is barbarous and severe, and the punisbments are sloeking to bumanity. Garig robbery, desertion from the bing's service, robbing of temples, and sedition or treason, are coosidered the most heineus crimes, and are cruelly punished, the criminal being in some eases embowelled, or thrown to wild beasts. Decapitation is the general mode of execution, but crucifixion and fracture of the limbs are also practised, and women are usually put to death by the stroke of a bludgeon across the throat. For minor offences, fines, whipping, aud imprisonments are the punishments adjudged. In important cases torture is applied botb to priscipals and witnesses; and the jailers often torture their prisoners in order to extort money from then. The English and Ameriean prisoners during the war of 1824 were frequently tortured, and bad to pay fibes to the jailer in order to procure nilder treatment. Trial by ordeal is sometimes resorted to, as well as other superstitious modes of pracedure. The odministration of justice, however ve:atious and expensive, is far from cficient; and the police is as bad as can possibly be conceived.

There are no hereditary honours under the Rurmese Ranks of Government. All the public functionaries may be dis-society. missed from their offices, and deprived of their rank at the caprice of the sovereign; while any subject, with the excep. tion of a slave or outcast, way aspire to the first offices in the state, to which, in realits, persens of very mean origin do frequently attain. The great officers of Government bold the first rank after the kiog and the princes of the blood, and are distinguished by a chain or badge, which is the order of nobility, and of which there are different degrees, dis. tioguished by the number of strings or small chains which compose the oraament. Three of open chaid-work mark the lowest rank; three of neathe-twisted, wire the next; there are then sis, nine, twelve, and finally twent four, which the king alone is entitled to wear. Buterery article possessed

[^48]IV. - 70
by 2 Burman for use or ornament-his ear-rings, cap of cerenony, horse-furniture, the material of his drinking-cup, if it be of gold or any other metal, the colour and quality of his umbrella (an article io general use, and one of the principal insignia of rank), whether it be of browa varnished paper, red, green, gilded, or plain white, the royal colourall indicate the rank of the persen; if any of the lower orders usurp the insignia of a higher class, be may be slain with impunity by the first person who meets him ; and so exclusive is the aristocratical s_{p} init of the higher orders, that auch a usurpation would be sure of punishment.

When a merchant acquires property he is registered by a royal edict under the name of Thuthe or "rich man," which gives him a title to the protection of the court, while it exposes him also to regular extortion. The priesthood form a separate order, who are interdicted from all ather emplosment, and ara supported by voluntary contributions. They are distinguished by the yellow colours in their dress, which it would be reckoned sacrilege in any other person to wear. A formal complaint was made, during the conferences with the British previous to the peace, because some of their camp followers were seen dressed in yellow clothes. There is also an order of nuns and priestesses, who make a row of chastity, but may at any time quit their order.

The free labouring population consist of proprietors or common labourers; and they are all considered the slares of the king, who ray at all times call for their services as soldiers, artizans, or common labourers. Hence a Burman, being the property of the king, can never quit the conniry without bis especial permission, which is only granted for a limited time, and never to women on any pretence. The British and others who had childrea by Burmese women during a residence in the conntry experienced the greatest difficulty, even with the aid of heary donceurs, in taking them along with them. The Dhammasat numbers seven classes of alaves, of which the most important are prisoners of war, and those who bave mortgaged their services for a debt. The class of outcasts consists of the alaves of the pagodas, the burners of the dead, the jailers snd execntioners (who are generally condemned criminals), and the lepers and other incurables, who are held in great abhorrence, and treated with aingular caprice and cruelty. They are condemned to dwell alone, and in a state of diagrace; and any man who is infected with leprosy, however bigh his rauk, is forced, by continual bribes to the officers of justice, to purchase an exemption from the penalties which attach to him. Prostitutes are also considered as outcasts. The vomen in Burmah are not ahut up as in many other parts of the East, and excluded from the sight of men ; on tho contrary, they are suffered to appear openly in socioty, and have free access in their own name to the courts of law, where, if ill-treatment is proved, divorce is readily obtained. In many other respects, however, they are exposed to the most degrading treatment. They are sold for a time to strangers; and the practice is not considered shaneful, nor the feraale in any respect disbonoured. They are seldom nofaithful to their new master; and many of them have proved essentially useful to strangers in the Barmese dominions, being gencrally of industrious and domestic habits, aud not addicted to vice.

The taxes from which the public revenue arises are in general rude and ill-contrived expedients for extortion, and are vexatious to the people at the same time that they are little productive to the state. Tho most important is the house or family tax, which is said to be assessed by a Domeskyy Book, compiled by order of Mentaragyi in 1783. The amount varies greatly in different years, and to a remarkable extent in different districts. Next in order is the tax on agriculture, which is also very irregularly imposed. A large part of the cultirated laud of the
kiagdom is assigned to favourites of the courn ur to publie functionaries in lieu of stipends or salaries, or is appro priated to the expenses of public establishments, sueh ar war-boats, elephatats, \&c. ; and this assignment convers a right to tax the inhabitants according to the discretion of the assignee. The court favourites who receive these grants generally appoint agents to manage their estates; they pay a certain tax or quit-rent to the crown, and their agentstextort from the cultivators as much more as they can by every mode of oppression, often by torture. Besides this stated tax, extraerdinary contributions are levied by the council of the atate directly from the lords and nobles to whom the lands are assigned, who in their turn levy it from the cultivators, and generally make it a pretence for plunder and extortion. Taxes are also laid on fruit-trees, on the sugar palm, on the tobacco-land on the teak forests, on the petroleum springs, on mines of gold and precious stones, on the fisbery of ponds, lakes, rivers, and salt-water creeks, on the manufacture of salt, on the eggs of the green turtle, and on esculent. srallors' nests. As the consumption of wines, spirits, opium, and other intexieating drugs is forbidden by law, they cannot. of course, be subject to any tax.

In many of the useful arts the Burmese have not made any great adrances, while in others they are possessed of no small armount of proficienes. The arcbitecture of religions edifices erected in the Middle Ages is of striking and effective character, though ouly of brick. The general style bears evidence of an Indian origin; but numerous local modifications have been introduced. Perhaps the feature of most interest is the use of the pointed arch as well as the flat and the circular, and that at a time long saterior to its employment in India. Modern buildiugs are chiefly of wood; palaces and monasteries, carved with extroordinary richness of detail, and often gilt all over, present an aspect of barbaric splendour. The dagobas, or solid domes, which form at once the objects and the localities of Buddaist worship, are almost the only brick structures now erected; and these are often gilt all over. In carving the Burmese artisans display unusual skill and inventiveness, and give full scope to the working of a luxuriant and whimsical fancy. As in our mediæral woodwork, sometimes there is of ten displayed a large amonnt of satirical and faeetious caricature. The application of gilding is carried to an extravagant extent; as much as $£ 40,000$ is said to have been expended on this article for a single temple. The finest architectural monuments are to be found in the deserted clty of Paginn and many of the miost magnificent are greatly ahattered by earthquakes. ${ }^{2}$ *The number of religious buildings, small and great, throughout the country is enormons; at every turn the traveller finds pagodas or kyoungs (monastcries), or lesser shrines, or zayats (resting places for travellers founded by the Buddhists in order to acquire religious merit). The ordinary buildiugs are of a very slight construction, and the architeet is prevented from giring them any great height by the whimsical prejudice of the people against any one walking over their heads. The whole process of the cetton manufacture is performed by women; who use a rude but efficient species of loom, and produce an excelleat eloth, though they are mach inferior in dexterity to the Indian artisans. Silk cloths are manufactured at different places from Chinese silk.) The favourite patterus aro zigzag longitudinal stripes of different colours, and the brilliance of the cortrasts is frequently gorgeous in its results. The dyeing of the yellow robes of the priests ia effected by means of the leaves of the jacktree.
${ }^{1}$ For full details the reader ought to consult Caytain Yole': chapiear on Parag.

The commus, coarse, ungraceu earthenware is or an excellent quality; and a better deseription of pottery is also made. The art of making porcelain, however, is entirely unknown, and this ware is imported from China Iron ore, as already mentioned, is smelted; but the Burmans cannot manufacture steel, which is brought from Bengal. Bell-founding has been carried to considerable perfection; and the craftsmen take pride in the magnitude of some of their productions. Perhaps the largest specimen is that in the neighbourhood of Amarapura, which measures 16 feet across the lip and weighs about 80 tons. Coarse articles of cutlery, including swords, speara, knives, also muskets and matehlocks, seissors, and carpenters' tools, are manufactrred in the capital, and gold and silver ornaments are produced in every considerable place in the country. Embossed work in drinking cups and the like is executed with great richness of effect. North of the capital, and east of the Irawadi, as before stated, is an entire hill of pure white marble, and there are sculptured marble images of Gautama or Buddha. The marble is of the finest quality; and the workmen give it an exquisite polish by means of a pasto of pulverized fossil wood. The chief seat of the manufacture of laequered wares is at Nyoun-goo, near the ancient eity of Pagán. Since Burmah was deprived of its harbours and maritime districts, its foreign commeree has been extremely limited. The trade of the country centres chiefly in the capital. The imports are rice, pickled and dried fish, and foreign commodities ohtained from Bengal, the Asiatic Archipelago, und Europe. Petroleum, saltpetre, lime, paper, lacquer-ware, cotton and silk fabrics, iron, cutlery, some brass ware, terra japonica, sugar, and tamarinds are given in exchange. One of the most important branches of the trade of the country was formerly that maintained with the Chinese province of Yunnan; but it has been for a considerable period in abeyance owing to the disturbed state of the frontier counties. The principal marts of this trade, which was carried on at annual fairs, were Madé, near the cepital, and Bhamo. The Chinese caravan, setting out from the western province of Yunnan at the close of the periodical rains, generally reached Burmah in the beginning of December, after a journey of six meeks over difficult and mountainous roads. The prineipal fair was held at Bhamo, comparatively few traders arriving at the capital. The articles imported from China were raw silk, wrought copper, orpiment or yellow arsenic from the mines in Yunnan (of a very fine quality, which found its way into Western Asia, and into Europo through Caleutta), quicksilver, vermilion; ; iron pans, brass-wire, tin, lead, alum, eilver, gold and gold-leaf, earthenware, paints, earpets, rhubaib, tea, heney, velvets and other wrought silks, spirits, musk, verdigris, dry fruits, paper, fans, umbrellas, shoes, and wearing apparel. The metals were ehiefly produced in the province of Yunnan. The artieles sent to Chinz consisted of raw cotton, by far the mest considerable article of export; feathers, chiefly of the lluo jay, for ornamenting the dresses of ceremony of the Chinesc mandarins; esculent swallows' nests, ivory, rhinoceros' and deers horns; sapphires, used for buttons to the caps of the Chinese officera of rank, jade, and amber, with a amall quantity of British woollens. The trade of the northern part of Burmah proper is chiefly earried on at large fairs held in connection with religious festivals. One of the most important articles, in addition to European cloth goods, is salt, for their supply of which all the hilltribes are dependent on Burmah. ${ }^{\text {l }}$
Money. The eurrency used by the Burmese is of the rudest description. For the smaller paymente lead is employed;

[^49]and for the larger payments silver aumost exclusively. This is not coined into pleces of any known weight and fineness; and in every payment of any consequence the metal must be weighed and is geuerally assayed, for which a premium is paid to the bankers or money-changers of $2 \frac{1}{2}$ per cent. besides 1 per cent. which they say is lost in the operation. There are three or four different alloys of ailver in common use as money; the best is Bau, which is almost pure; next is Dain, with about 6.4 per cent. of copper; and so on through several grades. An attempt was made by King Mcntafagyi to introduce a coinage; but his plans failed because he fixed the current value of his money considerably above the real value of the silver: The high rate of interest for money-which is 25 per cent., and 60 per cent. when no security is given-is another proof of the low state of commerce among the Burmese. The Weights. seeds of the Abrus precatorius (Khyin Rhwe), a little red and black pea, scrve as the smallest weight; they ordinariiy weigh about a grain, but vary from one to two. Two of then make a rhwe-kyi, four rhwe-kyis a great pae, four great paes a mat, four mats a kyap, and 100 kyaps a pilitha (peissa) or viss, which is equal to 3.6516 Z avoirdupois, The Burmese year is dicided into thrce seasons and twitre Caleniar. months, beginning with what corresponds to our April, and every third year a month is intercalated. Every pakka or half-month consists of 15 days (ret) of 60 narih each. The ret is divided into the nay or period from sunrise to sunset, and the gnyin or period from sunset to sunrise, the 60 narih being assigned in different proportions to the two periods in cach of the twelve months, the first month baving 30 in each period, and the sceond 30 in the daytime and 28 in the night, and so on. The Burraese have borrowed their astronomy and astrology, as well as this division of the day, from the Hindus. They are ignorant of oceanic navigation; and in their voyages to Calcutta, during the fine season, they creed along the coast, never losing sight of it.
The Burmcse proper usé a monosyllabic language, spoken fanguage with distinetive tones, like the Chincse and several other ${ }^{\text {nind }}$ Indo-Chinese tongues. Its vocabulary shows distinct re. literature lation to Chinese on one side and to Tibetan on another. In contrast with Siamcse it is a very soft and fexiole language, and its monosyllabic character is somewhat modificd in pronunciation. It has no distinctly sibilant sound, the only letter approximate to "s" having a resemblance rather to the English "th." It is a literary language, and has been under cultivation for perbaps sir or seven centuries. It is written with an alphabet of "Indian origin, which probably came in with Buddhism; and most of the letters are of a more or less circular form. The Pali remaining the dialect of sacred literatnre, the Burmeso has been almost confined to sceular uses. It has dercloped a poctic diction of such complete individuality that it is unintelligible without special study. Another peculiar dialect, largely mingled with Pali elements, is spoken at court, and also recuires separate study, as it substitutes a vocabulary of elaborate artificiality subordinate to the etiquette of the courtiers. The word for "to go," for example, is different accordin; as it is said that the king gocs, or tho prince gocs, or the priest goes. Of the literary forms in which the Burmese exprese themselves, the favourite one is the drama, which arpears under the various forms of masquerades, puppet shows, ballet-opera, and farces, as well as in the more dignified character of the regular tragedy. The moral character of the plays is often of the lowest kind, the utmost licence hoth of speceh and action being allored on the stage. The scenery is of a very simple and purely suggestive kind, a single branch of a tree standing for a forest, and frequently the filling up of the dialogue is largely left to the ingenuity of the actors, little more than bints of the plot being con-
tained in many of the librettos. The popular interest in the dramatic exhibitions is intense, and, as in Siam, the same piece often drags its slow length along for days together. Specimens of the plots will be found in the appendixes to Yule's Narrative, Williams's Through Burmah, and Bastian's Reisen. The national chronicles, or chronicles of the kings (Maha-Radza Weng), go back at least in name to the early centuries of the Christian era, but their historical value is of a very dubious kind. Libraries are common throughout the country, principally in the monasteries. Though a certain kind of paper is manufactured from bamboo pulp, the nsual material of the books is the palm leaf, while for ordinary notebook purposes a kind of black tablet, called a parabeik, and a steatite pencil are employed. A dictionary of Burmese was published by Judson at Maulmejn in 1852; Schleiermacher made the language the object of a remarkable study in his Ingluence of Writing upon Language, 1835; and Bastian has contributed an cssay on the literature to the Zeitschrift der Deutschen Morgenl. Gesellschaft, 1863, and has also published an interesting sketch of the peculiarities of the language in his Sprachvergleichende Studien, Leipsic, 1870.
The Burmese are votaries of Buddha, and the rites, loctrincs, and priesthood are in their main features the same as in other countries where Buddhism prevails. Every Burman must, at some period or other of his life, spend some time in a monastery; and it is no uncommon thing for a man to retire for a longer or shorter period from the bustle of life without any intention of permanently adopting the yellow robe which is the distinctive mark of the regular monk. Dr Bastian bas supplied a great many interesting details on the religious beliefs and ceremonies of the people, but they are as yct unfortinately scattered through the pages of his Travels. Neither Cluristianity nor Mahometanism has made much progress, thrugh a certain number of Mahometans have existed, especially at the capital, for a long time, and bave mosques there. Foreigners enjoy religious toleration, but the Burmese rulers view any attempt to convert the natives to the Christian or any other foreign faith as an interference with their allegiance. An Anerican mission was settled in the country in 1815, under the conduct of Dr Judson before mentioned, who brought to this perilous service zeal and discretion; but it entirely failed of success, not from any bigotry on the part of the matives, but from the opposition of men in power. On the war breaking out with the British the missionaries were imprisoned, and narrowly escaped with their lives, and on their release they retired to prosecute their labours in the Rritish provinee of Martaban: There are now in the capital representatives of both English and French missionary agencies.

Iducation throughout the Burman empire is still in the eccecsiastical stago, but the educational statistics compare favourably with those of many portions of Europe. The first book, according to Dr Bastian, which is put into the hands of the boys in the monastery schools is the Sin$\because u " g y^{\prime}$, or Great Basket of Learning, in which the meaning of tho Burmese letters is explained. After this they leara the injunctions of religion in the Mexgalasut, and next the prayers of Gautams in the Pharitgyi, which is written in Pali, so that their study consists in mechanically comuitting it to memory. They then proceed to the Djats (torics or legends) in which the Burmese words are mingled wih Pali expressions and contractions; hater on they pass to ther study of Saddo or grammar, and finally to that of the Yo' ur general cyclopadia. l'or those who enter tho monastio profowiou there remain the Pali texts. The historical books aro then read, as well as the $P_{u-\in \in s}$ or dramatic productions. Fluency of speech and great skill in carrying on mu argument according to their own system
of dialectics are the common possessions of the educarev Burmese, and an unshaken conviction in the truth of thein religion is almost universal.

It is probable that Burmah is the Chryse Regio of Ptolemy, a name parallel in meaning to Sonaparanta, the classic Pali title assigned to the country romd the capital in Burmese documents. The royal history traces the lineago of the kings to the ancient Buddhist monarchs of India. This no doubt is fabulous, but it is bard to say how early communication with Gangetic India began From the 11 th to the 13 th century the old Burman empire was at the beight of its power, and to this period belong the splendid remains of architecture at Pagan. The city and the dynasty were destroyed by a Chinese (or rather. Mongol) invasiou (1284 A.D.) in the reign of Kublai Khan.: After that the empire fell to a low ebb, and Central Burmah was often subject to Shan dyasties. In the early part of the 16 th century the Burmese princes of Toungoo, in the north-east of Pegu, began to rise to power, and established a dynasty which at one time beld possession of Pegu, Ava, and Arayán. They made their capital at Pegu, and to this dynasty belong the gorgeous deseriptions of some of the travellers of the 16 th century. Their wars exhausted the country, and before the end of the century it was in the greatest decay. A new dynasty arose in Ara, which snbdued Pegu, and maintained their supremacy throughout the 17 th and during the frrst forty years of the 18th century. The Peguans or Taleins then revolted, and having taken the capital Ava, and made the king prisoner, reduced the whole country to submission. Alompra, left by the conqueror in charge of the village of Monchaboo, planned the deliverance of his country. He attacked the Peguans at first with small detachments; but when his forces increased, he suddenly advanced, and took possession of the capital in the autumn of 1753. In 1753^{2} the Peguans sent an armament of war-boats against Ava, but they were totally defeated by Alompra; white in the districts of Prome, Donabew, Loonzay, \&c., the Burmans revolted, and expelled all the Pegu garrisons in their towns. In 1754 Prume was besieged by the king of Pegu, who was again defeated by Alompra, and the war was transferred from the upper provinces to the mouths of the navigable rivers, and the numerous creeks and canals which intersect the lower country. In 1755 Apporaza, the king of Pegn's brother, was equaliy unsuccessful, after which the Peguans were driven from Bassein and the adjacent conntry, and were forced to withdraw to the fortress of Syriam; distant twelve miles from Rangoon Here' they enjoyed a brief repose, Alompra being called away to quell an insurrection of bis own subjects, and to repel an invasion of the Sianiese; but returning victorious, he laid siege to the fortress of Syriam and took it by surprise. In these wars the French sided with the Peguans, the English with the Burmans., Dupleix, the governor of Pondicherry, had sent two ships to the aid of the former; but the master of the first was decoved $\mathrm{u} p$, the river by Alowpra, wherc he was massacred alorg with his whole rrew. The other escaped to Pondicherry. Alompra was now master of all the navigable rivers; and the Peguans, shut out from foreign aid, were fimally subdued. In 1757 the conqueror haid siege to the city of Pegu, which capitulated, on condition that their own king should govern the country, but that he should do hornage for his kingdon, and should also surrender his danchter to the victorious monarch. Alompra never contemplated the fulfilment of the condition; anl haring eitained posesssion of the town, abandoned it to tho fury of his soldiers. In the following year the Peruans vainly endeavoured to throw off the yoke. Alomprafterwards reduced the town and district of Taroy, and thally undertonk the rongwest of
the Siamese. His army advanced to Mergul and Tenasserim, both which toms were taken; and be was hesieging the capital of Siam when he was taken ill. He immediately ordered his army to retreat, in hopes of reaching his capital slive; but he expired on the way, in 1760 , in the fiftiein year of his age, after be had reigned eight years. In the previous year he had massacred the English of the establishment of Negras, whom be suspected of assisting the Peguans. He was succeeded by his oldest son Noungdaugy, whose reign was disturbed by the rebellion of his brother Tshen-byo-yen or Shembuan, and afterwards by one of his father's generals. He died in little more than three years, leanng one son in his mfancy; and on his decease the throne was selzed by bis brother Tshen-byo-yen. The new king was intent, like his predecessors, on the conquest of the adjacent states, and accorlingly made war in 1765 on the Munnpore kingdom, and also on the Siamese, with partial success. In the following year he defeated the Siamese, and, after a long blockade, obtained possession of thear capital. Bnt while the Burmans were extending their conquests in this quarter, they were invaded by a Chinese army of 50,000 men from the province of Yunnan. This army was hemmed in by the skill of the Burmans; and, being reduced by the want of provisions, it was afterwards attacked and totally destroyed, with the exception of 2500 meo, who were sent in fetters to work in the Burmese capital at their several trades. In the mcantime the Siamese revolted, and while the.Burman army was marching aganst them, the Peguan soldiers who had been incorporated in it rose against their companions, and commencmg an indiscriminate massacre, pursued the Burnan army to the gates of Rangoon, which they besieged, but were unable to capture. In 1754 Tshen-byo-yen was engaged in reducing the marauding triber. He took the district and fort of Martaban from the revolted Peguans; and in the following year he sailed down the Irawadi with an army of 50,000 men, and, arriving at Rangoon, pot to death the aged monarch of Pegu, along with many of his nohles, who had shared with him in the offence of rebellion. He died in 1776, after a reign of twelve years, during which be had extended the Burmese dominions on every side. He was succeeded by his son, a youth of eighteen, called Tsengooraen (Chenguza of Symes), who proved himself a bloodehirsty despot, and was put to death by his uncle, Bhodauthra or Mentaragyi, in 1781, who ascended the vacant brone. In 1783 the new king cffected the conquest of Irakin. In the same year he removed bis reaidence from iva, ${ }^{1}$ which, with bricf interruptions, had been the capital for four centurics, to the new city of Amarapura, "the City of the Immortals."

The Siamese who had revolted in 1771 were never afterwards subdued by the Burmans; but the latter retained their dominion over the sea-coast as far as Mergui. In the year 1785 they attacked the island of Junkscylon with a fleet of boats and an army, but were ultimately driven back with loss; and a second attempt by the Burman monarch, who in 1786 invaded Siam with an army of $30,000 \mathrm{men}$, was attended with no better success. In 1793 peace was concluded between these tro powers, the Siamese yielding to the Burmans the entire possession of

[^50]the coast of Tenasserim on the Indian Ocean, and the two important seaports of Mergui and Tavoy.

In 1795 the Burmese were mvolved in a dispute with the British in India, in consequence of their troops, to the amount of 5000 men, entering the distract of Chittagong in pursuit of three robbers who had fled from justice across the frontier. Explanations being made and terms of accommodation offered hy General Erskine, the commanding officer, the Burmese commander retired from the British territortes, when the fugitives were restored, and alt differences for the tume amicably arranged.

But it was evident that the gradual extensiou of the British and Burmese terntories would in time bring the two powers into close contact along a more extended line of frontier, and in all probability lead to a war between them. It happened, accordingly, that the Burmese, carrying their arms into Assam and Munnipore, penetrated to the Britusb border near Sylhet, on the N.E. frontier of Bengal, beyond which were the possessons of the chiefs of Cachar, under the protection of the British Government. The Burmese leaders, arrested in their career of conquest, were mpatient to measure their strength with their new neighbonrs. It appears from the evidence of Europeans who resided in Ava, that they were entirely unacquainted with the discipline and resources of the Europeans. They magined that, like other nations, they ronld fall before thenr superior tactics and valour, and their cupudity was intlamed by the prospent of marching to Calcutia and plundering the country. At length their chefs ventured on the open violation of the British terntorics. They attacked a party of sepoys within the frontier, and seized and carried off British subjects, while at all points their troops, moving in large bodies, assumed the most menacing positions. In the bouth encroachments were made upon the British frontier of Chittagong. The island of Shaparee, at the month of the Naf river, had been occupied by a small guard of British troops. These were attacked on the 23d September 1823 by the Burmese, and driven from therr post with the loss of several lives, and to the repeated demands of the British for redress no answer was returned. Other outrages ensued, and at length, in Febrnary 1824, war was declared by the British Government.

Hostilities having comnenced, the British rulers in India resolved to carry the war into the enemy's country; an armament, under Commodore Grant end Sir Archibald Campbell, entercd the lrawadi River, and anchored off Rangoon on the 10th May 1824. After a fecble resistance this great seaport surrendered, and the troops were landed. The place was entirely deserted by its inhabitants, the provisions were carricd off or destroyed, and the invading force took possession of a complete solitude. On the 28 th May, Sir A. Campbell ordcred an attack on some of the nearest posts, which were all carried after a fceble defence. Another attack was made on the 10 th June on the stockades at the rillage of kemmendine. Some of these were battered by artillery; and the shot and shells struck such terror into the Burmese that they fled in the utmost precipitation. It soon. however, became apparent that the expedition had been undertaken with very imperfect knowledge of the country, and without adequate provision. The devastation of the conntry, which was part of the defensive system of the Burmese, was carried out with unrelenting rigour, and the invaders were soon reduced to great difficulties. The health of the men declined, and their ranks were fearfully thinned. The monarch of Ava sent large reinforcements to bis dispirited and beaten army ; and carly in July an attack was commenced on the British line, but proved unsuccessful. On the 8th the British assaulted. The enemy were beaten at all points; and their strongest stockaded works, battered to pieces by a powerfal artillery, were in general
abaunoned. With the exception ot an attack by the priuce of Sarawadi in the end of August, the enemy allowed the British to remain unmolested during the months of July and August.' This interval was employed by Sir A. Campbell in subduing the Burmese prorinces of Tavoy and Mergui, end the whole coast of Tenasserim. This was an important conquest, as the country was salubrious and afforded convalescent stations to the sick, who were now so numerous in the British army that there were scarcely 3000 soldicrs fit fur duty. An expedition was about this time sent against the old Portuguese fort and iactory of Syriam, at the mouth of the Pegu liwer, which was taken; and in October the province of Martaban was reduced under the authority of the British.

Tho rainy season terminated about the end of October; and the court of Ava, alarmed by the discomfiture of its armies, recalled the veteran legions which were employed in Arakín, under their renowned leader Maba Bandoola, in vain attempts to penetrate the British Irontier. Bandoola hastened by forced marches to the defence of his country; ard by the ead of November an army of 60,000 men had surrounded the Britist position at Rangoon and Kemmendine, for the defence of which Sir Archibald Campbell had only 5000 efficient troops. Tbe enemy in great force made repeated attacks on Kemmendine without success, and on the 7th December Bandoola was completely routed by Sir A. Camphell. The fugitives retired to a strong position on the river, which they again entrenched; and hero they were attacked by the British on the l5th, and driven in somplete confusion from the field.

Sir Arcbibald Campbell now resolved to adrance on Prome, about 100 miles higher up the Irawadi River. He moved with bis force on the 13 th February 1825 in two divisions, one proceeding by land, and the other, under General Cotton, destined for the reduction of Donabew, being embarked on the flotilla. Taking the command of the laod force be continued his advance till the l1 th March, when intelligence reached him of the failure of the attack upon Donabew. He instantly commenced a retrograde march; on the 27 th be effected a junction with General Cotton's force, and on the 2d April carried the entrenchments at Donabew with little resistance, Bandoola having been killed by the explosion of a bomb. The English general entered Prome on the 25th, and remained there during the rainy seasen. On the 17 th September an armistice was concluded for one month. In the course of the summer General Murrison had conquered the province of Aralion; in the north the Burmeso were expelled from Assam; and the British had marle some progress in Cachar, though their advance was finally impeded by the thick forests and jungle.

The armistice having expired on the 17 th October, the army of Ava, amounting to 60,000 men, advanced in three divisions against tho British position at Prome, which was defended by 3000 Europeans and 2000 native troops. But the Britieh still trumphed, and after several actions, in which the Burmese were the assailants and were partially soccessful, Sir A. Camphell, on the lst December, attacked the different divisions of their army, and successively drove them from all their positions, and dispersed them in every direction. The Burmese retired on Meaday and afterwards on Mellone, along the course of the Irawali, where they occupied, with 10,000 or 12,000 men, a series of strongly fortified heights and a formidable stockade. On tho 26 th they sent a flag of truce to the British camp; and a negotiation haring commeaced, peace was proposed to them on the following conditions :-1st. The ccsion of Arakan, together with the provinces of Mergui, Tavoy, and Yea; $2 d$, The renunciation by the Burmese sovereign of all claima upen Assuas and the contiguous petty states: $3 d$. The

Company to be paid a crore of rupeses as d. indemntication for the expenses of the war ; $4 t /$, Residents from each court to be allowed, whtb an escort of fifty men; while it was also stipulated that, British ships should no lunger be obliged to unsbip their rudders and land thear guns as formerly in the Burmese ports. Tbis treaty was agreed to and signed, but the ratification of the king was stull wanting ; and it was soon apparent that the Burmese bad ne intention to siga it, but were preparing to renew the contest On the 19th January, accordiogly, Sir A. Campbell attacked and carried the enemy's position at Mellone. Another offer of peace was here made by the Burmese, but it vias found to be insincere; and the fugitive army made at the ancient city of Pagan-Myo a final stand in defence of the capital. They were attacked and overthrown on the 9id February 1826 ; and the invading force being new within four days' march of Ava, Dr Price, ao American missionary, who with other Europeans bad been thrown into prison when the war commenced, was sent to the British camp with the treaty (known as the Treaty of Yandabo) ratified, tbe prisoners of war released, and an instalment of 25 lacs of rupees. The war was thus brought to a successful termination, and the British army evacuated the country.

For some years the relations of peace continued undisturbed. Probably the feeling of araty on the part of the Burmese Government was not very strong ; but so long as the prince by whom the treaty was concluded continued in power, no attempt was made to depart from its main stipulations. That monarch, Phagyi-dau or Noungdaugyi, however, was obliged in 1837 to yield the throne to a usurper who appeared in the person of his brother, Kounboungmen or Tharawadi. The latter, at an early period, manifested not only that hatred of British connection which was almost universal at the Burmese court, but also the estremest contempt. For several years it had become apparent that the period was approaching when war between the British and the Eurmese Governments would again become inevitable. The British resident, Major Burney; who had been appointed in 1830, finding bis presence at Ara agreeable neither to the king nor to bimself, removed in 1837 to Rangoon, and slortly afterwards retired from the country. Ultimately it became necessary to forego even the pretence of maintaining relations of friendship, and the British functionary at that time, Captain Macleod, was properly witodramn, in 1840, altogether from a country where bis continuance would have been but a mockery. The state of sullen dislike which followed was after a while succeeded by more active evidences of hostility. Acts of violence were committed on British ships and British seamen. Remonstrance was consequently made by the British Government, and its enveys were supported by a small naval force. The eficers on whom devolved the duty of representing the wrongs. of their fellow-countrymen and demanding redress, proceeded to Rangoon, the governor of which place had been a chief actor in the outrages complained of ; but so far were they from meeting with any signs of regret, that they were treated with iodignity and contempt, and compelled to retire without accomplishing anything beyond blockading the ports. A series of negotiations followed; nothing wen demanded of the Burmcse beyond a very moderate compen. sation for the injuries inflicted on the masters of two British, ressels, an apology for the insults offered by the governor of Rangoon to the representatives of the British Government, and the re-establishment of at least the appearance of friendly relations by the reception of a British agent by the Burmese Government. . But the obduracy of the kingknown as the Pagan-men, who bad succeeded bis father in 1846-led to the refusal alike of atonement for pasi wrongs, of any expression of regret for the display on
gratuitous inaolence, anu ot any adication of a desire to mantan friendship for the future. A cother Burmese war was the result, the tirst shot being fired in Jamuary $18 \bar{S}_{2}$. As in the former, 准jugh success was varying, the British fually trimmpied, and the chtef towns in the lower part of the Burmese kingdom fell to them in succession. The city of Pegu, the capital of that portion which, after havieg been captured, bad agann passed iato the hands of the enemy, was recaptured and retaraed, and the whole province of Pegu was, by proclamation of the Gorernor-Geaeral, Lord Dalhousie, declared to be annexed to the British domimons on the 20th December 185?. No treaty was obtaimed or in3isted upon,-the British Government being content with the tacit acquescence of the kiog of Burraah without such decuments; but its resolution was declared, that any actave demonstration of bosulity by bim would be followed bs retribution.

About the same time a revolution brote out which resulted in Pagán-men's dethronement. His tyrannical and barbarous conduct bad made ham obnosions at home as well as abroad, and indeed many of his actions recall the worst passages of the bistory of the later Roman emperors. The prince of Mendoon, who bad become apprehensive for his own safety, made him prisoner in February 1853, and was himself crowned king of Burmah towards the end of the year. The new monarch, known as Mendoon-men, has shown buoself sufficently arrogant in his dealings with the European powers, but bas been mse enough to keep free from any approach towards bostihty, and, indeed, bas latterly displayed a desire to live on peaceful terms with the Indian Government. The loss of Pegu was long a matter of bitter regret, and he absolutely refused to aeknowledge it by a formal treaty. In the beginning of 1855 he sent a mission of comphment to Lord Dalhousie, the Governor-Geaeral ; and in the summer of the same year Major Arthur Pbayre, de facto governor of the new prondee of Pegu, was appointed envoy to the Burmesa court. He was accompaned by Captaun (now Colonel) Henry Yulo as seeretary, and Mr Oldham as geologist, and bis mission added largely to our knowledge of the state of the country; but in its main object of obtaming a treaty it was unsuccessful. It was oot till 1862 that the kung at length grelded, and bis relations with Bntain were placed on a definite diplomatie basis. Much interest bas been taken of reeent years in the restoration of the trade between Chuna and Britah Burmah by the old routes overland, and vaneus important jourueys in elucidation of the problem have been successfully undertaken. In 1863 Dr Clement Willians, at that tume resident in the capital, received the king's permission to proceed to Bhamo, and safely accomplished his voyage to the upper defile of the Irawads beyond that town in the roonths of January and Fehruary. His recall to the capital prevented hus further adrance.
in 1867 a treaty was signed by which British steamers were permitted to narigate Burmese waters, and the apponstment of Britush agents at Bbarmo or other stations for the collection of customs was fermally authorized, and in the following year a Government expedition, consistug of Captan W:iltams us engoeer, Dr Anderson as naturalist, and Captarn Buwers and Messrs Stewart and Burn as repreacntatives of the commercial interest of Ranguon, was despatched under the leadership of Major Sladen, political resident at Mandalay. The royal steamer Yaynan-Sehia, or "The Honesty," was placed by the king at the service of the expedition, and letters of recommendation were furausbed to the Barmese officials, but in other respects scant courtesy was shown to the party. Escorted by fifty armed police, the explorers adranced in safety about 135 miles nortbeast of Bhamo to Momien or Teng-yue-Chow, a principal town of the Mabnmetan insirgents, known to the Burmee
as Panthes; but beyond this it was considerec mprudent to proceed on account of the disturbed condition of the country. In 1869 Captan Storer was appointed first Br. tish resident at Bbamo; and avout the same tume the Ira. wadı Flotilla Company started a monthly steamer sernce tc that cown, which has now become almost furtnightly. The king's interest in the commercial developarent of his country was shown by his erecting and garrisoning a serfes of guardbouses through the dangerous parts of the Kabbyed bills. In 1874 Lord Salishury sent another expedition, consisting of Colonel Horace Browne, Mr Ney Eltas, and Dr Anderson, pith instructions to proceed, if pessible, right across the country to Shangbai in Cbiea, aed to easure the anccess of the undertaking, Mr Margary, a gentleman fambiar with the Chinese language and customs, was commussioned to start from Shanghai and meet the party at Momien or the neighbourhood. The king's reception of the new massion, which arrived on December 23, 1874, at Mandalay, was farourable in the extreme. On the J5th of January 1875 the explorers reached B!amo; and tra days afterwards Mí Margary arrived from Hankow. After the mission bad proceeded to the banks of the Nampoung, a river which jorns the Tapeng some distance east of Ponline, they neard rumours of hostile preparations in front; and Mr Margary volunteered to praceed to ManWyat to find the truth of the reports. On receiring from him word that the way wns clear, his eompaniens advaneed; but on the 23d of February their camp was attacked by the Cbinese, and they were ultunately compelled to retreat with the sad knowledge that therr gallant pioncer had fallen at Manwyue by the hands of cowardly assassins. The Burmese officials stood nobly by the mio aion. though the enemy assured them that ther quarrel was not with them but with the "white devils." Some fears have been entertaned of disagrcements between the court of Mandalay and the British authorities, partly in regard to the allegrance of some liaren tribes, and partly in connection with the clam for a nght of way for British troops through the Burmese dormions in ease of active measures being required to obtain redress from the Chinese Goveroment for the murder of Mr Margary. Happly these fears bave been disapponted, the mission of Su Dhuglas Forsyth hay eome to a peaceful if not altogether a suecessful termiaatonn, and a commassiou bas been formed to settle the Karen boundary. While a eertan amount of suspicion in regard to British policy still remains in the king's mind, be seems more and more disposed to eo-operate with has European allics, and shows himself friendly to the European res.dents in his capital. His reigu has been several times disturbed by miternal dissensions, and the genemal condition of the country ean bardly te regarded as one of stability Personally he is an orthodox and devoted Buddhast, and is largely under the inthence of eeclestastical advisers In 1874 be was recrowned a: Mandalay, in complance with the requrrements of a prophecy, and he attempts to enforee stringent sumptuary laws in accordance with his creed. It is satisfactory to knew that while soma of his otitials are undonbtedly bostale to Europeas interests, the great mass of the people seem genuinely farourable.
Sue Sangermano, Eurmese Empire : Captan Hiram Coy, Journal of a Resdence in the Eurman Empire, 1821. Syme's Embassy to the Kingdom of Ava, 1800. Snodgrass, Numpateve of the Burmese War. 1827 ; Wayland, Lefe of Judsom. 1853; Masos, The Naturad Productaons of Bumuc, Mallutin, 1850 ; C. T Winter's Six Months in British Burmah. 1553 , Yute, Nierratize of the Lrassion sent by the Gov.Gen. of Indis to the C'curt of Aue 2:a 1555, 185s; Rastian, Nessen in Birma in der Jahren 1851-1802. 1066; Clemant Wullians, Through Burmah to Western Chinu, Noues of a Juurney in 1863. 1e6צ; Auderson's Expetition to E. Yunan via Bhamo, 1871, and Mandalay and Momein, 1876; Trant's Two Jears in A1a; A. ․ . M'Xtahon's The Kurens and the Golden Chersonces. 2876,

BURMAH, Britise, the country acquared by the British Indian Governmeat after the two wars with the Burman empire, is situated between 10° and 22° N. lat., and 92° and 100° E. leng. It is bounded on the N. by Inde. peodent Burmah, on the E. by Siam, on the S. by the Iodian Ocean, and on the W. Ly the Bay of Bengal and the Cbittagong division of Bengal. The prerince of British Burmah exteads along the eastern shore of the Bay of Bengal, and is geographically divided into four pertions,Arakán, extending from the Naf estuary to Cape Negrais, and consisting of a narrow strip of country between the sea and the high mountan chain called Yoma; the ralley of the irarradi, which, divided from the Sittang valley by the Pegu Yoma range, unites with it in its southera portion; the valley of the Salmin; and Tenasserim, a narrow strip, separated from Siam by a lofty chan of hills runmeng from north to sucit. For admiaistrative purposes the country is divided into three commissionerships, Arakán, Pegu, and Tenasserim, and into fifteen districts, viz., Akyab, Ramree, Sandoway, Northern Arákáa, Rangeon, Basseia, Myanoung, Prome, Thayet-myo, Toungoo, Sbregyen, Amherst, Tavoy, Mergui, and Salrin.

Physical Aspects.-The greater part of the prorince is covered with bills, forests, estuaries, and river beds. The eastern and southern part is particularly mountainous, thialy populated, and much intersected by streams. In the central part of the prorince the valley of the Irawadi unites with the valley of the Sittang at its lower end, and forms an extensive plain, stretching from Cape Negrass on the west to Martaban on the east. The more nerthern of these valleys are rugged and billy, and are so densely covered with juagle that but little cultivation can be carried on. A chaia of meuntains called the Yema range forms the boundary of the Arakan division on the east. It is the contiauation of the Pátkoi and Barail range, which shoots forth from the Himalayas at their north-esstern extremity, runs south, forms the eastera boundary of Assam and Bengal, and turning south east, gradually diminishes beth in breadth and elevation till it eads in the rocky promentory of Cape Negrais. Blue Meuntain, one of its peaks, on the nerthera boundary of the province, is said to rise 8000 feet above the sea-level ; but within the province the rage nowhere attains a beight much above 4000 feet. The same Yoma range corms the western boundary of the Irawadi valley; and the Poung Loung range, rising to a supposed height of 7000 feet, bounds the Sittang valley towards the east The Pegu Yoma range forms the watershed between these two streams. The mountains of Tenasserim rise to a beight of 5000 feet, with a breadth sarying from 10 to 40 miles; they are covered with pathless jungle, and devoid of human babitations of any kind.

Rivers. - Beginaing from the extreme west the following are the principal rivers:-The Naf estuary 18 on the western boundary. The Mroo River, an arm of the sea, about 40 miles to the eastward, is from 3 to 4 miles broad at its mouth. The Koladan or Arakan Fiver rises near the Blue Mountain in about $23^{\circ} \mathrm{N}$. lat., and is mavigable for 10 milea from its mouth ly vessels of 300 or 400 tens burden. The Talak, Aeng, Sandoway, Toungeop, and Gwa are streams of minor importance. The meuth of the last, however, forms a good port and haven for steamers or ressels of from 9 to 10 feet draught. The Irawadi rises in about 28° N. lat. and $97^{\circ} 30^{\circ} \mathrm{E}$. long., and flows for upwards of 600 miles before reaching the British nossessions, through which it has a course of 240 miles to the sea in a S.S.W. direction. As it approaches the ceast it divides into numerous branches, converting the lewer portion of the valley into a net-work of tidal creeks. Its principal branches are the Bassein River, Thekkay-theung, Yuny, Dayaybhyoo, Pgeamelon, Pyengazalıo. Dalla, Plygapoen, Donyan, Thans.
teat, and China Buckir rivers. It is nangabie for river steamers as far as Bhamo, nearly 400 miles beyond the British frontier. The river when full runs about five miles an hour. The Hleing rises close to Prome, where it is called the Myitmakut stream, and flowing in a southerly direction nearly parallel to the Irawadi, it next takes the nause of tho Hleing, and finally of the Rangoon River, and falls into the sea a few miles belor Rangoen. Its principal tributaries are the Nyoungdon, an offshoet of the Irawadi, and the Pegu and Poozoundoung rivers. It is navigable by vessels of the largest size for seme distance above kiangoon, but ewing to the Hastings shoal, formed at the junction of the Pegu, the Poezoondoung, and the Rangeon rivers, vessels of more than 6 feet draught camot ascend beyend the shoal at luw ude. The Sittang River rises far north of British telritory, which it enters just about Toungoo, and flowing southwardis falls into the Gulf of Martaban, when it widens so rapidly that it is impossible to tell where the river ends and the gulf begins. Its principal tributary is the Shwegyen River. A bore, or tidal wave, sweeps up this river, and its effect is felt as far as Shwegren town. The Buling River rises in the Poungloung bills, tiows southward, and falls into the Gulf of Martaban. The Salwin Ruver rises in Tibet, Lows south through the Shan states, and falls into the sea at Moulmein. The Attaran rises in the chain of hills which forms the boundary between the kingdom of Siam and British Burmah, and flows in a south-westerly direction through deuse teak forests and an almost uninhabited country. The Gyne bas numerous villages on its banks, and is navigable for 180 miles by country buats. The Tenasserim River falls into the sea by two mouths, the parthern of which is navigable for large ships.

There is only one canal in the prownce, conaecting the Pegu and the Sittang rivers. The lakes are the Thoo. Lahgyia, and Kandaugyee.

A large part of the proviace is covered with forests, but the state reserved area only amounts to 133 square miles. The teak plantations lie in the Rangoen division The total receipts from the forests in $1871-72$ amounted t., £ 7,240 .

Population.-The tetal area of the province is 88,556 square miles; the population was returned by the census of 1872 at 2,747.148. giving an average of 31 inhabitants to the square mile. The Buddhists numbered 2,447.831, Mahometans 99,846 , Hiadus 36,658 . Christians 52,299, and aborigines 110,514 . The villages, tuwnships, de., numbered 14,107; the inhabited houses, 535,533. Only ten towns in the province had a population exceeding 10,000 ,-Rangoon, the capital, containing $98,745$.

Productions.--Rice is the staple product of the province, and in $1871-i 21,836,021$ acres were devoted to its cultrration. Other food grains covered 4560 acres; sesamum, 25,502 acres ; sugar-enae, chicfly cultivated in the gardena around the cultrvaters' houses, 3179 acres; and cotton, principally gremn in the hill cleariags, 14,120 acres. The tibre of the indigenous cotton is shert but strong, and it adheres with great tenacity to the seed. The export of eotton is inereasing. Tobacco, grewn on sandbanks or in the dry beds of streams, inferior in quality, and wholly used for home consumption, occupied 12,806 acrea. The other crops produced in the province are indigo, vegetables, bemp,' mixed fruits, de. The system of cultiration known in Bengal as the jum, that is clearing virgin soil by burning, cultivating it for one or two years, and then leaving it again to the jungle, is bere extensively practised under the namo of torngya cultivation. Athough discouraged on account of its wasteful character it cannot be altogether prohibited, as it is the only means of subsistence for a large part of the population. Seven great embankments have been constructed in the province for the protration and cxtension
of regular cuitivation - The average rent per acre of rice land varies from 1s. to 10 s ., while the high land, on whieh other grains can be cultivated, fetches generally from 3 s . to 4 s . per acre. Of the total area of the province (88,556 square miles) only 3414 square milas are cultivated; 51,117 square miles are cultivable, and the rest uncultivable waste

Internal Communication is chiefly carried on by mater. Steamers ply on the Irawadi between Thayetmyo, Prome, Myanoung, Henzada, and Rangoon. There ia also steam communication from Calcutta, vua Akyab, to Rangoon and Moulmein, and between Tavoy and Mergui. There were, however, 814 miles of road in the province in 1871-72.

Brines - The ouly minea in the proviace are those worked for tin in the southern portion of the Tenasserim division. This mineral (a binoxide) exists over a large estent of country in the Mergui and Tavoy distriets, and is obtained by removing and washing the pebble and boulder deposits of the river beds Samples of the tin-stone, once mashed, have produced about 70 per cent. of metal, and twice washed 75 per cent. The ore is therefore very rich, and the metal produced is of excellent quality. Hithertu these deposits have been washed by Chinese and natives of the country in a very rough and unscientific manner, and the tinstone is amelted in a most primitive way, the prodece realized being 68 per cent. of metal European capitalists have now begun to torn their attention to the aubject, and arrangements are being made to lease out certain tracts. Coal exists on the banks of the Tenasserim River, and in other parts of the province, but it has never been worked to any extent. Lead has been found in Toungeo, and on Maingay'a Island in the Mergui Arehipelago, but nothing has been done towards atilizing it. This mineral also exists in the Shwegyen district, as well as gold, antimony ore, and iron-stone. The quantity of the precio is metals is, bowever, very small, and the werkers make bul a poor living Limestone exists in several parts of the prorince, and quarries are worked pretty extensively in Thayetmyo and Bassein; stone might also be escavated in Sandoway if a demand existed.

Manufactures.-Mills are employed iu the seaport towns for husking riee and for aawing timber. There were in 1871-72 twenty-six ateam rice mills in the province; five years before there were only three; and the number rapidly increases with the demand for rice for shipment to Europe, to the Straits, and to China. Silk and cotton goods are manufactured in large quantities, chiefly, however, for home use, and by small hand-looms. A loom forms a regular piece of furniture io a Burmese household; it is worked by the female members of the family. The cotton eloths thus manufactured are rough but atrong; some of the silk goods fetch a high price. A coarse description of salt is made on the sea coast, used chiefly in the preparation of Ngapee (a mess of balf-salted, balf-dccomposed fish and other ingredienta), which forms a favourite article of food among the Burmese. The manufacture of salt has lately fallen off, owing to the introduction of Liverpool salt, which undersells the local article. The other manufactures of the province consist of gold and silver bowls (of pectliar and elaborate workmanship), lacquered ware, carved and gitt worl, and dyes, especially cuteh, an extract of the Acacia Catechu.

Trade. -The total ralue of the trade of the province in 3871-7£.was $£ 10,777,705$; exports, $£ 5,452,148$; imports, $\{5,325,557$. The value of the sea-borne trade mas-exporta, $£ 4,236,997$; imports, $£ 4,220,723$-total, $£ 8,457,721$; and of the inland trade-experts, $£ 1,245,150$; imports, $£ 1,104,832$. The most important article of sea-herne exports is rice. The trade inereased from 380.009 tons in 1865 te 170,893 tons in 1873 . and made a auddris nse to 700.784
tons in 1872. Nest in importance is the timber trade, ship. meuts of which during. the year 1872 amounted to 87,545 tons, of the value of $£ 51,210$. The other articles of export are cotton, cutčb, hides, horaa, ivory, jade stone, petroleum, rice and paddy, precious stones, atick-lac, tobacco, \&c The articles of impert consist of betel-nut, cotton twist and yarn, crockery ware, cutlery, gunay bags, hardware; cotton, silk, aod woollen piece goods; raw silk, apirituous liquors wines, beers, \&c., sugar and tobaeco.
Finances.-The gress revenue from all sources in 1871-72, $£ 1,363,452$, of which $£ 1,217,053$ was from imperial taxation, $£ 37,320$ for provincial services, and $£ 109,079$ irom loeal funds. The land revenue of the province was $£ 344,523$. Owing to the sparse population and vast extent of country cultivable but uncultivated, the rates of assessment range low. No class of landed proprietors, like the zamiodare of Bengal, exists in Burmah. The cultivators themselves hold the land from Government, the extent of their holdings averaging about 5 aeres. The exceptions are, where grants of raste land have been made to Europeans or mathes of India, but sach grants are but little cultivated. The light land taz of the province is supplemented by a capitation tax, peculiar to Burmah ; and by the rice duty, which, from the cireumstances of the local trade, falls on the producer, and is equivalent to a tax of 14 per cent. ad valorem on this article of export. The capitation tax is a poll-tax on the male population of the province, from 18 to 60 years of age, with the exception of immigraats during the first five jears of their residence, religious teachers, schonlmasters, Government servants, and those unable to obtain their orn livelihood. In 1871-72 it was levied on 556,035 persons, and yiclded a revenue of $£ 226,954$. The expeaditure on the civil administration of the province in 1871-72 was £497,002. For the protection of British Burmah 5016 fighting men, Europeaus and natives, were maintained in 1871 at a total cast of $£ 276,200$. The streugth of the police in 1871 was 5319 . The prisons consist of tro great central gaols, Rangoon and Moulmein, chiefly for long-term conviets, with twelve subordinate gaols and loek-ups.
Education has not made much progress in British Burmat under the English plan of public instruction; but the people have a wide-spread-system of primary education of their own iu the monastic schools. Setting aside these monastic schools, the educational machinery of the provinee consists of seven Government sebools, educating 505 boya; fifteen aided missionary schools, teaching 1494 pupils; and twenty-two other unaided schools under Gorernment iospection, teaehing 499 pupils.

Christianity has spread largely among the Karen tribes, chielly through the work of American missions.

Climate.-The elimate of British Burmah is moist ard depressing for part of the jear, but cooler than that of India. Some of the forcst tractsduring the monsoons, and after the cold weather has set in, are impregnated with deadly malaria; but the coast and the frontier ranges are not unhealthy. The prevalent complaints amongst Europeans are fever, dysentery, and hepatic diseases, from which the patives also suffer. On the whole, however, the climate of British Burmah seems better adapted to the European constitution than any part of India, and of late the atatistics of the British troops show a very low rate of discase and mortality. The rainfall varied in 1871 from 245.85 inches at Moulmeia to 5485 inches at Thayetrayo. The agverage temperature is greatiy affected by the sea breeze,-being 80° Fabr. at the sea-coast, and 90° in the interior.

Form of Government. -The highest authority in the province of British Burmah is the chef commissioner and agent to the Governor-General of India, established unde: a resolution of the Government of India. dated January
1862. The chief commıssioner is assisted by a secretary and assistant-secretary, three commissioners of revenue and circuit. thirteen deputy-commissioner3, one superintendent of hill-tracts, twenty-two assistant-cummissioners, four collectors of sea-customs a director of public instruction, cn inspector-general of police, an-inspectorgeneral of prisons, and a conser vator of foreste. A political agent is established at the court of Mandalay, and an assistant political agent at Bhamo, for facilitating British trade with Independent Burmah and China. The judicial officers are-the recorder of Pangoon, the judicial commissioner, the judge of the own of Moulmein, the judge of the Small Cause Court, Rangoou, and three town magistrates. For history, see :he preceding article.

BURMANN, Pieter (i668-1741), a Dutch classical scholar, was born at Utrecht on the 26th June 1668. He wus educated at the publie school in his native place, and at the age of thirteen entered the university. He devoted himself particulaily to the study of the classical languages, and became unusually proficient in Latin composition. As he was intended for the legal profession he spent some years in attendance on the law classes. For about a year he studied at Leyden, paying special attention to philo sophy and Greak. On his return to Utrecht he took the degree of doctor of laws (March 1688), and after travelling through Switzerland and part of Germany, settled down to the practice of law. In December 1691 be was 3ppointed receiver of the tithes which were originally paid to the bishop of Utrecht, and five years later he was nominated to the professorship of eloquence and history. To this chair was soon added that of Greet and politics. In 1714 he paid a short visit to Paris and ransacked the libraries, bringing back a " great treasure of nseful observations." In the following year he was appointed successor to the celebrated Perizonius, who had held the chair of Listory, Greek language, and eloquence at Leyden. His aumerons editorial and critical works spread his fame as a 3cholar throughout Europe, and engaged him in many of the etormy disputes which were then so common among men of letters. He died on the 31st March 1741.
Of his cditions of classical works the following may be noted :Phatirus, 1608 ; Horace, 1699 ; Valerius Placous, 1701 ; Pétronius Artike, 1709 ; Velleius Patcreulus, 1719 ; Quintilian, 1720 ; Ovid. 1727 ; Lucan, 1740. He also published an edition of Buchanan's v:orks, continued Grevius's great work, Thesauras Antiquitatum ct Historiarum Italiue, and wrote a small manual of Ioman antiquities, \triangle atiquikatiari Romanarum Brevis Deseriptio, 1711. His poems and orations were published efter his death.

BURNES, Sir Alexander (1805-1841), a traveller in Central Asis, was born at Montrose in 1805. While serving in India, in the army of the East India Company, which be had joined in his seventeenth jear, he mado hirnself acquainted with Mindostani and Persian, and thus obtained an appointment as interpreter at Surat in 1822. Transferrod to Cutch in 1826 as assistant to the political agent, he turned his attention morc particularly to the histary aud geography of North-Western India and the adjacent conntries, which at that time were very imperfectly known. His proposal in 1829 to undertako a journey of exploration through the valley of the Indus was not caried out owing to political apprehensions; but in 1831 he was sent to Lahore with a present of horses from King Willian to the Rajnh Rungit Sing, and took advantage of the opporiunity for exteusive investigations. In tho following years his travels-were oxtended through Afgbanistan, across the Mindu Kinsb to Bokhara and Persia. The narrative which ho published on his visit to England in 1834 added immensely to our knowledge of the countries traversed, and was one of the most popular books of the time. The first edition brought the author the 50 m of $£ 800$, and his services were recognized not only
by the Royal Geograpincal Society of Luadou, but also tiv that of Paris. Soon after his return to India in 1835 be was appointed to the court of Sindh to secure a treaty for the navigation of the Indus; and in 1836 be undertook a political mission to Dost Mohammed at Cabul. On the restoration of Shah Shujah in 1839, he became regular political agent at Catul, and remained there till bis assassination in 1841 (November 2), during the heat of an jusurrection. The calnuess with which be continued at his post, long after the imminence of bis danger was apparent, gives an heroic colouring to the close of an honourable and devoted life. A narrative of his later labours was published in 1842 under the title of Cabool.

BURNET, Gilbert (1643-1715), bishop of Salisbury, was born at Ediaburgh in 1643, and was descended of an ancient family of the county of Aberdeen. His father had been bred to the law, and was at the Restoration oppointed. one of the lords of Session, with the title of Lord Crimond. Gilbert, the youngest son, was at ten jears of age sent tc Marischal College, Aberdeen, where he was admitted A.M. before he was fourteen years of age. His own inclination led him to the stady of the civil and feudal law; but he afterwards changed his riews, and, to the great satisfaction of his father, began to apply to divinity. He received ordina. tion before the age of eighteen ; and Sir Alexander Burnet, his cousin-german, offered him a benefice, which, however, he refused io accept.

In 1663, about two years after the death of his father be went to England; and aiter six months stay at Oxford and Cambridge, returned to Scotland, which he soon left again to make a tour of some months, in 1664, in Holland and France. At Amsterdam, by the help of a Jewish rabbi, he perfected himself in the Hebrew language; and likewise became acquainted with the leading men of the different persuasions tolerated in that country-Calvinists, Arminians, Lutherans, Anabaptists, Brownists, Papists, and Unitarians. In each of these-sects he used frequently to declare he met with men of such unfeigned piety and virtue that be became fixed in a strong principle of universal charity, and an invincible abhorrence of all severities on acconnt of religious dissensions.

Upon his return from his travels be was admitted minister of Saltoun, in which station he served five years in the most exomplary manner. He drew up a memorial, in which he took notice of the principal errors in the conduct of the Scottish bishops, which he observed not to be conformable to the primitive institution, and he sent a copy of it to several of them. This exposed him to their resentment; but to show he was not actuated by a spirit of ambition, he led a retired course of life for two years, which so endangered his health that he was obliged to abate hisexcessive application to study. In the year 1668 he was appointed professor of divinity in the university of Glasgow; and, according to the usual practice, he read his lectures in the Latin language. It was apparently at thiz period that he laid the chief fonndation of that theologicas learning for which he became so distinguished. In 1669 he published his Modest and Free Conference between a Conformist and Nonconformist. He became acquainted with the duchess of Hamilton, who communicated to him all the papers belonging to her father and her uacle; upon which he drew up the Memoirs of the Dukes of Hamilton, afterwards printed at Londou, in folio, in the year 1677. The duke of Lauderdale, bcaring that he was engaged in this work, invited him to London, and introduced him to Cbarles II. He returned to Scotland, and married Lady Margaret Kennedy, daughter of the earl of Cassillis, a lady of great knowledge, and bighly esteemed by the Presbyterians, to whose sentiments she was strongly inclined As there was some disparity in their ages, that it might be
sufficient:y cvic.ut that the match was wholly owing to inclination, and not to avarice or ambition, the day before their marriage he delivered to the lady a deed, by which he renounced all pretensions to ber fortune, which was very considerable, and mnst otberwise bave fallen into his hands, she herself having no intenion to secure it. His Vi:d dication of the Authority, Constitution, and Laws of the Church and State of Scotiand was printed at Glasgow, in 8 vo , in the year 1673 . This was considered so material a service to the Wovernment, that he was offered a bishopric, with a promiso of the next vacant archbishopric; but be did not accept of it, because be could not approve of the measures of the court, the great aim of which he perceived to be the advancement of popery. The publication itself was one of those which the author conld nut afterwards recollect with much satisfaction.

- His intimacy with the dukes of Hamilton and Lauderdale procnred him frequent messages from the king and the duke of York, who had conversations with him in private. But Lauderdale, who was the most unprineipled man of the age, conceiving a resentment against him on account of the freedom with which he spoke to him, represented at last to the king that Dr Burnet was engaged in an opposition to his measures; and on bis return to London be perceived that these suggestions had entirely deprived him of the king's favour, though the duke of York treated bim with greater civility than ever, and dissuaded bim from going to Scotland. He accordngly resigned his professurship at Glasgow, and setted in Londen. About this timo the living of Cripplegate being vacant, the dean and clapter of St Paul's (in whose gitt it was), hearing of his circumstances, and the hardships which he had undergone, made him an olfer of the benctice; but, as he had been informed of their first intention of conferrngg it on Dr Föwler, be generously declined it. In 1675, at the recommendation of Lord Hollis, whom he had known in France as ambassador at that court, he was appointed preacher at the Rolls chapel, by Sir Harbottle Grimstone, master of the rolls, notwithstanding the opposition of the court; and he was soon afterwards ehosen lecturer at St Clenent's, and became one of the most popular preachers in town. The first volume of his Mistory of the Reformation of the Church of England was published in folio in 1681, the second in 1683, and the third in 1715. For this great work he received the thanks of both Houses of Parliament. Of the first two volumes ho published au abridguent in the year 1683. :

In 1682, when the administration was clanged in favour of the duke of York, being muel resorted to by persons of all ranks and parties, in order to avoid returning cisits, he built a laboratory, and for above a year pursued a course of chemical experiments. Not loug after he refused a country living of $£ 300$ a year offered him by the earl of Essex on eondition that he should reside in Londun. When the inquiry concernng the popisb plot was on foot he was frequeutly ent for and consulted by the king, who offered him the bisbopric of Chichester, then vacant, if he would engage in his interests; but be refused to aceept it on these terms. He preached at the Rolls till 1684, when he was dismissed by order of the court.

On the accession of James II. tothethrone, having obtained leave te quit the kingdom, he first went to Paris, and lived in great retirement, till, contracting an acquaintance with Brigadier Stouppe, a Protestant gentleman in the French service, he made a tour with bim into Italy. He met with an agreeable reception at Rome. Pope Innocent XI. hearing of his arrival, sent the captain of the Swiss guard to acquaint bim be would give bim a private audience in bed, to avoid the ceremony of kissing his holmese's siipper: but Dr Burnet exensed himself as well as be could Here.
with more zeal than prudence, he eugagetin in some religious disputes; and, on receiving au intimation from Prince Borghese, he found it neeessary to withdraw from this stronghold of priesteraft, and pursued bis travels through Swizeriand and Germany. He afterwards came to Utrecht, with an intention to settle in some of the seven proviuces. There he received an invitation from the pronee and princess of Orange (to whom their party in England had reeommended him) to come to the Hague, and accepted the invitation. He was soon made acquainted with the secret of their councils, and advised the preparation of a fleet in Holland sufficient to support their designs and eacourage their friends. His known share in the councils of the Prince of Orange, and the pamphlets which be sent over to England, exeited a arainst him the intensest enmity of Janes. A prosecution for bigh treason was commenced a arainst him both in England and Scotland; but having reeeised the intelligence before it was announced to the States he avoided the storm by petitioning for, and obtaining withont any difficulty, a bill of naturalization, in order to bis intended marriage with Mary Scott, a Dutch lady of considerable fortune.

Deing now legally under the protection of Holland, he omitted no opportunity of supporting and promoting the design whieb the prince of Orange bad formed of delisering Great Britain; and, having accompanied him in the capaeity of chaplain, he was in the year 1659 adranced to the see of Salistury. He deelared for moderate mensures with regard to tie clergy who serupled to take the oaths, and many wero displeased with him for advocating the toleration of Noneonformists. "As my lord of Salisbury," says the earl of Shaftesbury; "has done more than any man living for the good and honour of the Church of England and the Reformed religion, so he now suffers more than any man from the tongues and slander of those ungrateful ehurchmen; who may well call themselves by that singlo term of distinction, having no clain to that of Christianity or l'rotestant, since they have thrown off all the temper of the former, and all concern or interest with the latter." The same noble writer bas elsewhere mentioned him in the following terms of commendation :-"The bishop of Salisbury's Eirposition of the Articles is, no doubt, highly worthy of your study. None can better explain the sense of the church than one who is the greatest pillar of it since the first founders, - one who best explained and asserted the Reformation itself, was chiefly instrumental in saving it from l'upery before and at the Revolution, and is now the truest example of laborious, primitive, pious, and learned equsoonacy:"
In 1693, after the publication and condemnation of Blount's anonymous pamplet, King William and Quecia Mary Conquerors (see Blount), an opportunity was taken by Burnet's enemies to briug a pastoral letter of his before the House of Communs. After a warm diseussion the. letter nias condemued to be burned by the common hangman.
In 1698 be lost his wife by the small-pox; and as ho was almost immediately after appointed preceptor to the duke of Gloncester, of whose education he took great care, this employment, and the tender age of his children, induced him the same year to supply her loss by a marriage with Mrs Berkeley, a widow, who was eldest daughter of Sir Richard Blake. In 1699 he published his Exposition of the Thirty-nine Articles, which occasioned a charge amainst him in the Lower llouse of Convocation in the year 1701, but he was vindicated in the Upper Honse. His speech in the Honse of Lords in 1704 against the Bill to present occasional conformity was severely attacked. He
formed a scheme for augmenting the small livings, which bo pressed forward with such success, that an Act of Parliament was passed in the second year of Queen Anne, for the augmentation of the livings of the poot clergy. He died in 1715, and was interred in the church: of St James's, Clerkenwell, where a monument was erected to bis memory.

Bishop Burnet's History of his Own Time, consisting of two large volumes in folio, was not published till several years after the author's death; the first volume appeared in 1724, and the second in 1734. An account of his life was added by his youngest son Sir Thomas Burnet, one of the judges of the Court of Common Pleas. The History itself was not printed without mutilations; but after an interval of nearly a century, an edition containing all the passages which had formerly been suppressed, was pubiished under the superintendence of the learned Dr Routh. (Osford, 1823, 6 vols. 8vo.) This is a work of great and iutrinsic value; without it our knowledge of the times would be exceedingly imperfect. His materials are not always very carefully digested, and the style is sometimes supposed to be too familiar; but these defects are abundantly compensated for by the copiousuess of his information, the benevolence of his sentiments, and the earnestness of tis manner. In general Burnet's statements may be sccepted with great confidence, his judgment is always sound and sober, and he possesses considerable skill in the delineation of character. The best editions of his two great works are--History of his Own Time, 6 .vols., Oxford, 1833; History of the Reformation, 7 vols., by N. Pocock, 1865.

Besides the works mentioned above the following tre worthy of notice:-Some Passages of the Lije and Death of John Earl of Rochester, ${ }^{1}$ Lond. 1680, 8vo; The Iife and Death of Sir Matthew Hale, Kt., sometime Lord Thief-Justice of his Majestie's Court of Kings Bench, Lond. 1682, 8vo; The History of the Rights of Princes in dispos. ing of Ecclesiastical Benefices and Church Lands, Lond. 1682, 8vo ; The Life of William Bedell, D.D., Bishop of Kilmore in Ireland, Lond. 1685, 8vo; Refiections on Mir Varillas's "History of the Revolutions that have happened in Europe in matters of Religion," and more particularly m his Ninth Book, that relatess to England, Amst. 1686, 12mo; A Defence of the Refoctions on the Ninth Book of the first volume of Mfr Varillas's "History of Heresies," being a Reply to his Answer, Amst. 1687, 12mo ; A Continzuation of Reflections on Mr Varillas's "History of Heresies," particularly on that which relates to English Affairs in his Third and Fourth tomes, Amst. 1687, 12 mo . He took a very conspicuous part in the continucd controversy which was in his tme maintained against the papists; and a complete eate oguc of his polemical works would occupy no small space The following translations deservo to be mentioned:-Utopia, writtor in Latin by Sir Thomas More, Chancellor of England: translated into English, Lond. 1685, 8ro; A Relation'of the Death of the Primitive Persccutors, written originally in Latin, by L. C. F. Lactantius: Englished by Gilbert Burnet, D.D., to which he hath made a large prefuce concerning Persccution, Amst. 1687, 12 mo .

BURNET, Thomas (1635-1:15), best known as the author of The Saceed Thtory of the Earth, was born at Croft in Yorkshire about the year 1635, but is supposed to have been descended of a Scottish family. He was edrucated at the free school of Northallerton, and in Junc 1651 was admitted a pensioner of Clare Hall at Cambridge, under the tuition of Tillotson, who continucd to remember

[^51]him with kindness. In iue jear 1654 be removed to Christ's College, on the election of Dr Cudworth to the mastership, and there he obtained a fellowship in the year 1657. In 1661 be became senior proctor of the university. He was successively domestic tutor to Charles duike of Bolton, and to James earl of Ossory, afterwards duke of Ormund, grandson to the first duke; snd by the interest of the latter nobleman he was chosen master of the Charterhouse in 1685. Among the electors some of the bishops opposed him on account of his wearing a lay babit ; but the duke was satisfied that be possessed the more essentisl qualifications of a life and conversation suitable to his clerical character. After this appointment be took the degree of D.D. In his capacity of master he made a noble stand against the illegal attempts to admit Andrew Popham as a pensioner of the house, strenuously opposing an order of the 26 th of December 1686, nddressed by James II. to the governors dispensing with the statutes for the occasion.
Dr Burnet published his Telluris Theoria Sacra, or Sacred Theory of the Earth, at London in 1681. This work, containing 2 fanciful theory of the carth'e siructure, attracted an unusual share of public attention, and he was afterwards et ouraged to issoe an English translation, which was printed in folio, 1684-1689. Addison commended the author in a Latin ode, hut his theory wae ettenked hy Dr Keill, Mr Whiston, and Mr Warren, to all of whom he returned answers. Hia reputation ohtained for him an introduction at court hy Archbishop Tillotson, whom be succeeded as clerk of the closet to King William. He secmed already to be on the direct road to much higher prefermegt, when he auddenly marred his prospects by the publication, in 1692, of a work entitled Archacologice Philosophice: : sive Doctrina antiqua de Rerum Originisus, in which he treated the Mosaic account of the fall of man as an allegory. The method of treatment excited a great clamonr against him; and the king was obliged to remove him from his office at court. Ot this book an English translation was executed by Mr Foxton, Lond. 1729, 8vo. Dr Burnet published several other minor works before bis death, which took place at the Charter-house on the 27th September 1715. Two posthumoua works were published several years after his death-De Fide et Of̈ciis Christianorum, 172S, and De Statu Mortuorum et Resurgentium Tractatus, 1723 ; in which be maintained the doctrine of a middle state, the millennium, and the limited duration of futare punishment. A. Life of Dr Burnel by Heathcote appeared in 1759.
burnett, James, Lord Munboddo. See Mondoddo.
burney, Cbarles, Doctor of Music (1726-1814): was born in the ancient city of Shrewsbury, the capital of Shropshire, on the 7th of April 1726. He received his earlier education at the excellent free school of that city, and was afterwards sent to the public school at Chester. His first music master was Mr Baker, organist of Chester Cathedral, and a pupil of Dr John Blow. Returning to Shrewsbury when about fifteen years old, he continued his musical studies for threo years under his half-lurother, Mr, James Burney, organist of St Mary's Church, and was then sent to London as a pupil of the celebrated Dr Arne, with whom he remaincd three years. In 1749 he was appointed organist of a church in the city, with a salary of $£ 30$ a year; and he was also engaged as conductor of a concert established at the King's Arms, Cornhill. In that year and the next he composcd the music of three drames for Drury Lane theatre-Alfred, Robin Hood, and Queen Mct. Being threatened with a pulmonary affection he went, on the advice of his physician, in 1751 to Lynn, in Norfolk, where be was elected organist, with an annual salary of $£ 100$, and where be residcd for the next nins ycars. During that time he began to entertain the idea of writing a gencral history of music. In 1760 be returned to London in good health, and with a young family; the eldest of whom, a girl of eight years of age, ,urprised the public by her attainments as a harpeichord player. In 1766 he produccd, at Drury lane, a free English version and adaptation of J. J. Rousseau's operetta Le Devin du Village, under the title of The Cunning MFan, which was favourably received. The university of Oxford conferrew
apon him, on 23d June 1769, the degrees of bachelor and doctor of music, on which occasion he presided at the performance of bis exercise for these degrees. This consisted of an anthem, with an overture, solos, recitatives, and choruses, accompanied by instruments, besides a vocal anthem in eight parts, which was not performed. His friend, C. P. E. Bach, requested a copy of this exercise, and had it performed in St Catharine's Church at Hamburg, under his own direction, in 1773. It was repeatedly performed at Oxford, "after it had fufilled its original destination," as Burney tells us (Hist. of Music, vol. iii. p. 329) ; and he apologizes as follows for saying so much about it :-" It is hoped that the reader will pardon this egotism, which has been extorted from me by occasionsl and sinister assertions, 'that I neither liked nor had studied church music.'" (Ibid). In 1769 he published An Essay towards a History of Comets. Amidst his various professional avocations, Burney never lost sight of his favourite object,--his History of 14 usic, -and therefore resolved to travel abroad for the purposs of collecting materials that could not be found in Great Britain. Accordingly, he left London in June 1itio, furaished with numerous letters of introduction, and proceeded to Paris, snd thence to Oeneva, Turin, and the principal cities of Italy. The results of his observations he published io The Present State of Music in France and Itaty (1 vol. 8vo, London, 1771). Dr Juhnson thought so well of this work, that, alluding to his own Journey to the Western Islands of Scotland, he said, "I had that clever dog Burney's Musical Tour in my eye." In July 1772 Burney again visited the Continent, to collect further materials, and, after his return to London, published his tour under the title of The Present State of Music in Germany, the Netherlands, and United Provinces (2 vols. 8vo. London, 1773). In 1773 he was chosen a Fellow of the Royal Society of London. In 1776 appeared the first volume (in 4to) of his long-projected History of Mrusic; in 1782 the second volume; and in 1789 the third and fourth. Though severely criticised by Forkel in Germany and by the Spanish ex-Jesuit, Requeno, who, in his Italian work Saggi sul Ristabilimento dell' Arte Armonica de' Greci e Romani Cantori, Parms, 1798 (2 vols. 8vo), attacks Burney's account of the ancient Greek music, and calls him 10 scompigliato Burney, the History of Arusic was generally recognized as possessing great merit. The lcast satisfactory volume is the fourth, the treatment of Handel nad Bach being quite inadequste. Burney's first Tour was translated into German by Ebeling, and printed st Hamburg in 1732; and his second Tour, translated into Germsn by Bude, was published at Hsmburg in 1773. A Dutch translation of his second Tour, with notes by J. W. Lustig, organist at Groningen, was published there in 1786 The Dissertation on the Music of the Ancients, in the first volume of Burrey's History, was translated into German by J. J. Eschenburg, and printed at Leipsic, 1781. Burney derived much aid from the first two volumes of Padre Martini's very learned Storia della Dfusica, Bologna, 1757-1770. One cannot but admire his perserering industry, and his sacrifices of time,. money and personal comfort, in collcsting and preparing materials for his History; and few will be disposed to condemn severely errors and orersights in a work of such extent and difficulty. In 1779 he wrote for the Royal Society an account of the infant Crotch, whose remarksble musical talent excited so much attention at that time In 1784 he published, with an Italian titlepage, the music annually performed in the Pope's chanel at Rome during Passion Week. In 1785 he published, for the benefit of the Musical Fund, an account of the first commemoration of Handel in Westminster Abbey in the preceding year, with an excellent life of Handel. In 1796 be publisted Memoirs and Letters of Metastasio, 3 vols.

8vo. Towards the close of his life, Burncy costributed to the Rev. Dr Rees's Cyclopodia all the musical articles not belonging to the department of Natural Pbilosophy and Mathematics. For these articles be received $£ 1000$, which seems a remarkable remuneration, considering that most of his materials were merely transcribed from his own History of Mrusic. In 1789, through the treasury infiuence of his friend Edmund Burke, he was appointed organist to the chapel of Chelsea Hospital, and he resided in the hospital for the reuainder of his life. He was made a member of the Institute of France, and nominated a correspondent in the class of the Fine Arts, in the year 1810. He died at Chelsea College on the 12th of April 1814, and was interred in the burging-ground of the college on the 20th of the same month.

Burney had a wide circle of acquaintance among the distinguished artists and literary men of his day. At one time he thought of writing a life of his friend Dr Samuel Johnson; but he retired before the crowd of biographers who rushed into that field. His character in private as well as public life appears to have beeu very amiable and exemplary. Dr Burney's eldest son, James, was a distinguished officer in the royal navy, and died a rear-adniral in 1821. He published several works of merit. A notice of his second son, the Rev. Charles Burney, D.D., an eminent Greek schoiss, will be found below, and of his second dsughter Frances (Mndame D'Arblay) under the hesding D'Abblay. The Diary and Letters of Madme D'Arblay contain many minute end interesting particulars of her father's public aud private life, and of his friends and contemporaries. A life of her father, by Madsme D'Arblay, appeared in 1832.
Besides the operatic music above mentioned, Burney's known compositions consist of -1. Six Sonatas for the harpsichord; 2. Two Sonatas for the harp or piano, with accompaniments for violin and violoncello: 3. Sonctas for two violins and a bass: two scts; 4. Siz Lessons for the harpsichord: 5. Six Duets for two German flutes; 6. Three Concertos for the harpsichord; 7. Six concert pieces with an $2 n$ troduction and fugue for the organ; 8. Six Concertos for the violin, dc., in eight parts; 9. Two Sonatas for pianoforte, violin, and violon: ceilo; 10. A Cantata, de.; 11. Anthems, \&c.; 12. XII. Cansonettia due vact in Canone, poesia dcll' Abate Mctastasio.

BURNEY, Cearles (1757-1817), son of the preceding, an eminent classical scholar, was born at Lynn, in Norfolk, in 1757. At the age of elcven be was sent to the Charterhouse in London, whence bo removed to Csius College, Cambridge. He quittcd tha university without taking his degree; but in 1791 he received the diploma of LL.D. from Aberdeen, and in 1808 that of D.D. from Cambridge. In 1783 he married the daughter of Dr Rose, the trans. lator of Sallust, and contipued for some time to assist his father-in-law in the management of his ncademy. He contributcd at this time many articles to the Monthly Revien, and afterwards edited for two or three years the Londm Magatine. Some of his contributions to the first of thess periodicals gained him much credit not only among English but among Continental scholars. In the course of time he realized a handsome fortune, great part of which he expended in the formation of his splendid library. The manuscripts and rare books collected by him were considered so valuable that at his denth, which happened in 1817, they were purchased by the nation and deposited in the British Muscum.

burney, Frances. See D'Arblay.

BURNLEY, a manufacturing town and municipal and parliamentary borough of England, 22 miles N . of Manchester, in a valley on the River Burn, from which it derives it name, and in the immediate vicinity of the Leeds and Liverpool canal Its strects are well pavce, and thene is an abundant supply of water. Among its buildings of note are tha frequently restered church of St Peter's; a market hall, erecter in 3866 ; and a litcrary institution
and exchange. It also possesses a Church oi England institute, with a considerable library, a free grammar school, and several charities. Its staple manufacture is cotton, which in 1872 gave enployment to 7972 men and 8267 women of trenty years of age and upwards. Worsted, which was formerly the chief article, is still manufactured to a considerable extent. Calico-printing, machine-making, brewing, tanning, and several other important industries are carried on in the town; and in the neighbourhood there are iron mines and stoue quarries, which gave employment in 1872 to 1376 and 360 workmen respectively. From the number of Roman remains found at various times on the spot, Burnley secms to be the site of some Roman station; and it has also been suggested that it may coincide with Prunnanburh, the famous battle-field of the Saxons. There are but few facts of importance in its history. During the cotton famine it sutfered severcly, and the operatives wero employed in an extensive system of improvements, to which the present satisfactory condition of tho town is mainly due. In 1861 it was incorporated by royal charter, the government being placed in the hands of a mayor, eight aldermen, and twenty-four councillors; and in 1867 it was entrusted with the right of electing one member of Parliament. The popuiation of the parliamentary borough in 1871 was 44,320 persons, of whom 21,368 were males and 22,952 females; the inhabited houses were 8804 , and the registered elcetors 5628 .
BURNOUF, Eugeve (1801-1852), an Oricntal scholar, was born at Paris in 1801. He was educated for the legal profession, but soon after taking his degree begen to devote himself entirely to the study of Oriental languages. In 1826 he published an Essai sur le Pali, and in the fullowing year Olservations Grammaticales sur quelques Passages de l'Essai sur le Pali. The next great work he undertook was the decipbering of the Zend manuseripts brought to France by Anquetil du Perron. By his labours a knowledge of the Persian language and religion was first brought into the scientific world of Europe. He caused the Vendidad Sadé to be lithographed with the utmost care, and published it in folio, 1829-43. The contributions he made to Oriental literature in the Journal Asiatique were numerous and important. From 1833 to 1835 de published his Commentaries sur le Yacna, l'un des livres liturgiques des Perses; in 1840 he began the publication of the Sanskrit text and French translation of the Rhagavata Purana, which was completed in three folio volumes. His last works were Introduction à l'Mistoire du Bouclllisme Indien, and a translation of Le Lotus de la Bonne Loi. The latter work was passing through the press when the author died on the 28th May 1852 lle was a member of the Academie des Inscriptions, and from 1832 had beld the post of professor of Sanskrit in the College de France. .

BURNOUF, Jean Louis (1775-1844), the father of Eugene Burnouf, was born in 1775 . During the intervals of leisuro left him by his commercial employment be prosecuted his studics in elassical literature, and in 1808 was appointed assistant-professor at the Lycée Charlomagne. He soon afterwarls obtained the chair of rhetoric at the Lyeée Imperial, which he held till 1826, when he was made the inspector of the Acalemy. In 1817 he had been appointed professor of Latin eloquence at the College de France, and from 1811 to 1822 he acted as president of the Ecole Normale. In 1830 burnouf was named inspectorgeneral of studies, and on his resignation of this post in 1836 was made librarian of the miversity. Ile died in 18.1. His most important work was the Meithode pour étudier la Lanque Grecque, 1814, which marks an epoch in the study of Greek in France. He also published a valuable edition of Sallust and some excellent trancintions of Tacitus, and of parts of Sallist and Cinere

BUPAVS, Robert (1759-1796). In e cuenpany ut German critics who were weighing the claims and estimating the rank of the poets, their contemporaries, the leader of their chorus, the genial bumorist, Jean Paul Richter, is said to have hushed his audience when the name of Gocthe was introduced, exclaiming-"We are not to sit in judgment on that sacred bead." Scotsmen are apt to attach the same half-superstitious reverenee to the name which is, more than any other, that of Scotland condensed in a personality, the representative of what is noblest and also of much that is erring in their race.

Robert Burns was born on the 25 tli of January 1759, in a cottage about two miles from Ayr, the eldest son of a small farmer, William Burness, of Kincardineshire stock, who wrought hard, practised integrity, wished to bring up Lis clildren in the fear ol God, but bad to fight all his days against the winds and tides of adversity. "The poet," says Mr Carlyle, his best biographer, "was fortunate in bis father-a man of thoughtful intense character, as the best of our peasante are, valuing knowledge, possessing some and open-minded for more, of keen insight and devout heart, friendly and fearless : a fully unfolded man seldom found in any rank in society, and worth deseending far in society to seek.

Had he been ever so little ricber, the whole might have issued otherwise. But poverty sunk the whole family even below the reach of our cheap school system, and Burns remained a hard-worked plough-boy."
'Through a series of inigrations from one unfortunate farm to another; from Alloway (where he was taught to read), to Mt . Oliphant, and then (1777) to Lochlea in Tarbolton (where be learnt the rudiments of geometry), the poct remained in the samo condition of straitened circumstanees. At the age of thirteen he thrashed the corn with his own hands, at fíteen he was the principal labourer. The family bept no servant, and for several years butchers' meat was a thing unknown in the house. "This kind of life," he rrites, "the cheerless gloom of a hermit and the uneeasing toil of a galley-slave, brought me to my sixteenth year." His naturally robust frame was overtashed, and his nervous constitution received a fatal strain. His shoulders were bowed, he became liable to headaches, palpitations, and fits of depressing melaucholy. From these bard tasks and his fiery temperament, craving in vain for synupathy in a frigid air grew the strong temptations on which Burns was largely wrecked,-the thirst for stimulants and the revolt against restraint which soon made headway and passed all bars. In the earlier portions of his earcer, a buoyant bumour bore him up; and amid thick-coming shapes of ill he bated no jot of heart or hope. He was cheered by vague stirrings of ambition, which be pathetically compares to the "blind groping of IIomer's Cyclops round the walls of his cave." Sent to school at Kirkoswald, he became, for his seant leisure, a great reader-eating at meal-times with a spoon in one hand and a book in the other,-and carrying a iew small rolumes in his pocket to study in spare moments in the fields. "The collection of songs," he tells us, " was my rade mecum. I pored over them driving my cart or walking to labour, song by song, verse by verse, carefully noting the true, tender, sublime, or fustian." He lingered over the ballads in his coll room by night: by day, "Lilst whistling at the plough, be invented new forms and was inspired by fresh ideas, "gathering round bim the memories and the traditions of his country till they became a mantle and a cruwn." It was ameng the furruws of his father's fiolds that he was inspired with the perpetually quoted wish-

> "That I for poor auld Scotland's sake
> Some useful phan or book could make, Or sing a sing at least."

An equally striking illustration of the same feeling is to be found in his cammer Sunday's ramble to the Leglen
wood,-the fabled haunt of Wallace,-which the poet confesises to have risited " with as much devont enthustasm as ever pilgrim did the ahrine of Loretto." In another reference to the ssme period he refers to the intense susreptibility to the homeliest aspects of Nature which throughout characterized his genius. "Scarcely any object gave me more-I do not know if I should call it pleasure-but comething which exalts and enraptures me-than-to walk so the sheltered side of a rood or bugh plantation in a aloudy winter day and bear the atormy wind bowling anong the trees and ranng over the plan I hatened to the birds, and frequently turned out of my path lest I should disturb their little songs or finghten them to another statron" Auroral visions were gildiag his harizon as be walked in glory. if not in joy, "behind bla plough upon the mountaio side " hut the swarm of his many-coloured fancles was agann made grey by the cura cura of unsuccessful toils

Burns had witten has first verses of note "Behind yon lulls where Stinchar (afterwards Lugar) Hows." when in 1781 be went to Irvine to learn the trade of a tlas-dresser "it was." be says, "an unlucky stfair As we were givinc. a weicome carousal to the New Year the sbop tonk bire and burned to ashes, and 1 was left. like a true poet. without a suppence." Hus own hearh tor, bad unfortunately taken fire. He was poring over mathematies till, in his own phraseology,-still affeeted in its prose by the classical pedantries caught Irom Pope by Famsay.-"the oun eatered Virgo. when a charmang fillette. who lived aext door, overset my trigonometry. and set me of at a tangent from the scene of my utudies. We need not detail the story, nor the aceessant repetitions of it which marked and sometimes marred bis career The finet was jilted, went through the usual despars and resorten to the nut unusual bources of consolation He bad tound that he was " no enemy to social hife.' and his mates had diseovered that he was the best of boon companiona in the lyric feasts, where his eloquence abed a lustre over wild ways of life, and where be was begnoning to be distiuguishod as a cbsompion of the New Lights and a satirist of the Calnaism whose waters be sound like those of Marah.

In Robert's 25 th year bis father died. Iull of sorrows and apprehensions for the gifted son who wrote les bis tomb, in Alloway kirkyard, the fine epitaph ending with the characteristic line-

' For even his failings leaned to surtue's side.

For some time longer the poet. with his brother Gilbert, lingered at Lochlea, reading agricultural books. miscalculating crops, attending markets, and in a mond of relormathon resolning, " in spite of the world, the tlesh, and tho deva, to be a wise man." Affars. bowever, went 00 better with the family; and in 1784 they migrated to Hossgiel. where he hved and wrougbt, during four years for a return scarce equal to the wage of tho cummonest labourer in our day. Meanwhils he bad become intimate with his futuro wife, Jean Armour; but the father, a master mason, discountenanced the match, and the grl being dis. posed to " sigh as a lover," as a daughter to obey, Burns, in 1786, gave up his ouit, resolved to seek refuge in exule, sod haring necepted a gituation as book-keeper to a slape estate in Jamanca, had taken his passage in a ahip for the West Iodies. His old assectations seemed to ba breaking up, men and fortupe scowled, and "hungry ruin bad him ia the wiad," when he wrote the hnes ending
"Adien, my native banks of ayr."
and addressed to the most famous of the loves. in which he reas as prolife as Catullus or Tibullus, the proposal-
" Kill ye go to the Indies, my Mary

He was witnneld 1. .ith uis 1 .- ject and, happily or udhappily, the ourrent of his life was turaed by the saccess of hus first volume, which pas published at Kilmarnock in June 1786 It contanded some of his mosi jusi.; celebrated poems, the results of his scanty leisure at Lechles snd Mossglel. among others "The Twa doge,"-a graphio idealization of Asop.-"The Author's Prajer," the "Address to the DeL." "The Viston " and "The Dream," "Halloween," "The Cottars Saturday Night." the Lines "To a Slouse" and "To a Dargy," "Ecotcb Drab," "Man was made to Mourn," the "Eplatle to Davie." and some of hus most popular songs. This epinome of a genilis so marvellous and so varied twok bis fudience by storm "The country murmured of him from sea to sea" "With his poems," says Robert Herun. "old and young, grave and gay. learned and ignorant. were alike transported I was at that time resident in Galloway, and 1 can well remember how even plough-hoys and matd-servants would bave gladly bestowed the wages they eamed the most bardly, and which they wanted to pirchase necessary clothing, if they might but procure the works of Burna Tha first edition only brought the anther $£ 20$ darect return, but it introduced hon to the luteran of Edinburgh, a hither he was invited, and where he was weleomed, feasted, admired, and patronized. He appeared as a portent amorg the sebolars of the northem capital sad its huisersity, and manfested, according to Mr Lockbart. " in the whole strpin of hes bearing, bis belief that in the society of the tanst eminent men of has nation he was where be was entitled to be, hardly delgaing to flatter them by exhibiting a symptom of beung flattered"

Sir Walter Seott buars a simular testimony to the dignafied amplienty end almost exaggerated independience of the poet. dinicg thas annus marabilus of his success. " As for Buras, "/s:oulum mile cantum, I mas a lad of fifteen When be cane to Eilmburgb, but had sense enough to be interested in his poetry, and would have given the world to know bum I saw tim one day with aeveral gentlemen of hiterary reputation, amoug whom 1 remember the celebrated Dugad Stewart. Of course wo youngsters sat silent, looked, and listened. I remember his shedding tears over a print representug a ooldier lying dead in the snow, has dog sitting in misery on one side, on the other hio widow with a chuld in her arins His person was robast, his manners rustic, not clownish His countenance was more raassive than it looks in any of the portraits. There was a strong expression of ohrewdness in his lineaments the eye slone indicated the poetic eharacter and temperament. It was large and of a dark cast, and literally glowed when he spoke mitb feehog or interest. I never saw such anotber eye in a human head. His conversation expressed perfect self-confidence. without the least intrusire forwardness. I thought bis acquantance watb Eoglish poetry was ratber limed and having twenty times the abilities of Allan Ramsay and of Ferguson he talked of them with too much bumility as bis models. He ras much caressed in Edmburgh, but the efforts made for bis relief were extremely trifling." Laudatur ct alget. Burns went from those meetings, where be bad been pooing professors (00 bard task), and turang the heads of duchesses, to share a bed in the garret of a writcr'e apprentice,-they paid together 3s. a week for the room. It was in the house of Mr Carfrae, Baxter's Close, Lawnmarket, "first scale stair on the left band in going down, first door in the staur." Durng Burns's life it was reserved for William Pitt to recoguze his place as a great poet, the more cautious critics of the North were satisfied to endorso him as a rustic prodigy, and brought upon themselves a share of his satire. Some of the frnendships contracted during this period-as for Lord Glencarn and Mrs Dunlop-are among the most pleasing and permacent in Jiterature; for genuive kind.
neso was never wastea on one who, wnotever his favits, has never been accused of ingratitude. But in the bard's city life there was an unnatural element. He stooped to beg for neither smiles nor favour, but the gnarled country uak is cut upinto cabinets in artificial prose and verse. In the letters to Mr Graham, the prologue to Mr Wood, and the epistles to Clarinda, he is daneing minuets with hobnailed shoes. When, in 1787, the second edition of the Poems came out, the proceeds of their sale realized for the author $£ 400$. On the strength of this sum hegare himself two long rambles, full of poetic material-one through the border towns into Englaad as far as Newcastle, returning by Dumfries to Mauchliae, and another a grand tonr through the East Highiands, as far as Invervess, returaing by Edinburgh, and so home to Ayrshire.

In 1788 Barns took a new farm at Ellisland on the Nith, aettled there, married, lost his little money, aud wrote, among other pieces, "Auld Lang Syne" and "Tam O' Shanter." In 1789 be obtained, through the good office of Mr Graham of Fintry, an appointment as excise-officer of the district, worth $£ 50$ per annum. In 1791 be removed to a similar post at Dumfries worth $£ 70$. In the course of the following year he was asked to edit and supply the Melodies of Scotland with Symphonies and Accompaniments for the Pianoforte and Fiolin: the poetry by Robert Burns. To this work be contributed about one hundred songs, the best of which are now ringing in the car of every Scotchman from New Zealand to San Francesco. For these, original and adapted, he received a shawl for his wife, a picture by David Allan representing the "Cottar's Saturday Night," and 551 The poet wrote an undignant'letter and never afterwards composed for money. Unfortumately the "Rock of Indepeadeace " to which he had proudly retired was but a castle of air, over which the metcors of French political enthusiasm cast a lurid gleam. In the last years of his life, exiled from polite society on account of his revolutionary opinions, he became sourer in temper and plunged more deeply anto the dissipations of the lower ranks, among whom he found his oaly companonship and sole, thongh shallow, sympathy. To have Jacobin tendencies, to rejoice st the downfall of the Bastille, was regarded as the sign of an abaadoned character, as it was twelve years ago in Scotiand to embrace the cause of the Northern States in the Amarican War.

Burns began to feel himself prematurely old. Walking with a friend who proposed to him to join a county ball. le shook his head, sayng "that's all over now," and ciding a verse of Lady Gnssel Baillie's ballad-
> " O were we young as we ance hae beed, We sud hac been galloping down on yon green, And linking it ower the lify-white lea, But were na my heart light I wad dee."

His hand ehook; his pulse and appetite failed: his opirite aunk into a uniform gloom. In April 1796 be wrote-" I fear it will be some time lefore I tune my lyre again. By Babel's strcams I have sat and wept. I nave only known existence by the pressure of sickness and counted tume by the repercussions of pan. 1 close my eyes in misery and open them without hope. I look on the vernal day nnd say with poor Ferguson-

> "Say wherefore has an all-indulgent heaved Life to the comfortless and wretched gren."

On the 4th of July he was scen to be dying. On the 12 th ho wrote to his cousin for the Jom of $£ 10$ to save lum from passing his last days in jail. On the 21 st be was no more. On the 25 th, when his last son came into the world, he was buried with local honours, the colunteers of the company to which be belonged firing three volleys over bis grave.

It has been said that "Lowlend Scotland as a distinet
nathonality came in with two warriors and went oat with two bards. It came in with William Wallace and Robert Bruce and went out with Robert Burns and Walter Scoth The first two made the history, the last t wo told the stors and sung the song." But what in the minstrel's lay was maialy a requem was in the people's poet also a prophecy. The position of Buras in the progress of our biterature may be shortly defined; he was a link between two eras, like Chaucer, the last of the old and the first of the aew-the inheritor of the traditions and the music of the past, ia some respects the berald of the future.

The volumes of our lyrist owe part of their popularity to the fact of thear being an epitome of melodies, moods, and memories that bad belonged for centuries to the national life, the best inspirations of which have passed into them. But in gathering from Lis ancestors Burns has exalted their work by asserting a new dignity for their simplest themes. He is the heir of Barbour, distilling the spirit of the old poet's epic into a battle chant, and of Dunbar, reproducing the varıous humours of a half-sceptical, half-religious philosophy of life. He is the pupil of Ramsay, but he leaves his master, to make a social protest and to lead a literary revolt. The Gentle Shepherd, still largely a court pastoral, in which "a man's a man" if born a gentleman, may be contrasted with the "Jolly Beggars"-the one is like a minuet of the ladies oi Versailles on the sward of the Swiss village near the Trianon, the other like the march of tho mænads with Theroigne de Mericourt. Ramsay adds to the rough tunes and words of the ballads the refinement of the wita who in the "Easy" and "Jobnstone" clubs talked over their cups of Prior and Pope, Addison and Gay. Burne inspires them with a fervour that thrills the most wooden of his race. We may clench the contrast by a representative example. This is from Ramsay's version of perbaps the best known of our songs, -
" Methinks around us on each bougl. A thousand Cupids play;
Whilst through the groves I walk with yon Each object makes me gay.
Since your return - the suo and moon With brighter teams do shioe.
Streams murtour soft notes while they rus. As they did lang syne."
Compare the verses in Buras-.
"We twa hae rud about the hraes And pou't the gowans fine;
But we ve मandered mony a weary loc: Sin auld lang syne.
We twa hae paidl'd in the born, Frae morning sun till dine: But seas between us.braid hae roard Sio auld lang syne."
Eums as a poet of the inanimate world doubtless deriven hints from Thomson (i.e., the poet, not his correspondent). but in bis power of tuning its manifestations to the moods of the and be is more properly ranked as a foremaner of Wordsworth. He never follows the fashons of his century, cxcept in his failures-in his efforts at set panegync or fine letter.writiog. His highest work knows pothing of "Damon" or "Musidora." Ihe leares the atmosphero of draning-rooms for the ingle or the ale-house or the mountain brceze.

The affectatons of his style are insignificant and rare. His prevailing characterntic is an absolute suncerity. A love for the lower forms at: :asl life nas las besertingsia, Nature was his heahng lower. Burns compares himself to an Aollan harp, strung to every wind of heaven. His genius flows over all hwing and lifcless thags with a sympathy that finds nothing mean or insignificant. An uprouted dasy becomes in his pages on endunng emblem of the fate of artless maid and sumple bard. Ho disturhe
a mouse's nest ancin ind in the "tim'rous beastie "a fellowmortal dowined like himself to "thole the winter's sleety dribble," and draws his oft-repeated moral. He walks abroad and, in a verse that glints with the light of its own rising sun before the fierce sarcasm of the "Holy Fair," describes the melodies of a "simmer Sunday morn." He loiters by Afton Water and "murmurs by the running brook a music sweeter than its own." He stands by a roolless tower, where " the howlet mouns in her dewy bower," and " sets the wild echoes flying," and adds to a perfect picture of the scene his famous vision of "Libertie." In a single stanza he concentrates the sentiment of many Night Thoughts-

> "The pale moon is setting beyond the white wave, mad Time is setting wi' me, 0 ."

For other examples of the eame graphic porser we may refer to the course of bis stream-

> "Whiles ow'r a linn the burnie plays As throngh the glen it wimpled," sc.,
or to the "Birks of Aberfeldy" or the "spate" in the dialogue of the "Brigs of Ayr." The poct is as much at bome in the presence of this tlood as by his "trottin' burn's meander." Familiar with all the seasons, be represents the phases of a northern winter with a frequency characteristic of his clime and of his fortunes; her tempests become anthems in his verse, and the sounding woods "raise his thoughts to Him that walketh on the wings of the mind ;" full of pity for the sbelterless poor, the "ourie cattle," the "silly sheep," and the "belpless birds," he yet reflects that the bitter blast is not " 60 unkind as man's ingratitude." Thas constant tendency to nscend above the fair or wild features of outward things, or to penetrate beneath them, to make them symbols, to endow them with a roice to speak fer Lumanity, distinguisbes Burns as a deseriptive poet from the rest of his countrymen. As a painter he is rivalled by Dunbar and James I., more rarely by Thomson and Ramsay. The "lilt" of Tannahill's finest verse is even more charming. But these writers rest in their art; their main care is for their own genius. The same is true 311 a minor degree of some of his great English successors. Keats has a palette of richer colours, but be seldom condescends to "human nature's daily food" Shelley floats in a thiv anr to stars and mountain tops, and vanssbes from our gaze like his skylark. Byron, in the midst of his revolutionary fervour, never forgets that he himself belongs to the "caste of Vere de Vere" Wordsworth's placid afection and magnanimity stretch beyond mankind, and, as in "Hart-lcap-well" and the "Cuckoo." extend to bird and beast, be moralzes grandly on the vicissitudes of common life, but he does not enter into, because by right of superior virtue be places himself above them. "From the Lyrical Ballads," it bas been said. "it does not appear that men eat or drink, marry or are given in marriage." We revere the monitor who, consciously good and great, gives us the dry light of truth, but we love the bard, nostre delicere, who 14 all fire-fire from heaven and Ayrshire earth mugling in the outburst of passion and of power, which is his noctry and the inheritance of his race. He had certainly neither culture nor philosophy enough to have written the "Ode on the Recollections of Child. hood," but to appreciate that ode requires an education. The sympathies of Burns, as broad as Wordsworth's, are more intense ; in turning his pages we feel ourselves more decidedly in the presence of one who joys with those who rejoice and mourns with those who mourn. He is never shallow, ever plan. and the expression of his fecling is so terse that it is always memorable. Of the poople he speaks moro directly for the people than any of our more nomsiderabla poets. Cbaucer bas a perfect bold of the
homeliest phases of life, but he mants the lyric element, and the charm of his language has largely faded from untutored ears. Shakespeare, indeed, has at once a loftier vision and a wider grasp; for he sings of "Thebes and Pelops line," of Agincourt and Philippi, as of Falstaff, and Smug the joiner, and the "meanest flower that blows." But not even Shakespeare bas put more thought iuto poetry which the most prosaic must appreciate than Burns has done. The latter moves in a narrower sphere add wants the strictly dramatic faculty, but its place is partly supplied by the vividness of bis narrative. His realization of ineident and character is manfested in the sketches in which the manners and prevalhng fancics of his countrymen are immortalized in connction with local scenery. Amoog those almost every rariety of disposition finds its favourite. The quiet houscholds of the knytcm bave received a sort of apotheosis in the "Cuttar's Saturday Night." It has been objected that the subject dues not afford scope for the more daring forms of the author's genius; but bad be written no other poem, this heartful rendering of a good week's close in a God-fearing home, sincarcly devout, and yet relieved from all suspicion of sermonizing by its humorous touches, would have secured a permanent place in our literature. It transcends Thomsor, and Beattic at their best, and will smell sweet like the actions of the just for generations to come. Lovers of rustic festivity may agree with Professer Craik in holding that the poet's grcatest performance is his narrative of "Hallowenn," which for easy vigour, fulness of rollicking life, blended truth and fancy, is unsurpassed in its kind. Campbell, Wilson, Hazlitt, Montgonacry, Burns himsclf, and the majority of his erities, have recorded their preference for "Tam 'O Shanter," where the weird superstitious clement that has playcd so great a part in the imaginative work of this F art of our island is brought more prominently formard. Few passages of description are finer than that of the roaring Doon and Alloway Kirk glimmering through the groaning trees; but the unique excellence of the piece consists in its variety, and a perfectly original combination of the terrible and the ludicrous. Like Gocthe's Walpurgis Nacht, brought into closer contact with real hife, it stretches from the drunken bumours of Caristopher Sly to a world of fantasies almost as brilliant as those of the Midsummer Night's Dream, half solemnized by the severer atmosphere of a sterner clime. The contrast between the lines "Kings may be blest," \&c., and those which follow, begraning "But pleasures are like poppies sprend," is typical of the perpetual antithesis of the author's thought and life, in which, at the back of every revelry, he sees the shadow of a warning hand, and reads on the wall the writing, Omnia mutantur. With cqual or greater confidence other judges lave pronounced Burns's masterppece to be "The Jolly Beggars." Certainly no other single producton 60 illustrates his power of cxalting what is insignificant, glorifying what is mean, and elevating the lowest detals by the force of his genius. "The form of the prece," says Mr Carlyle, "is a mere cantata, the theme the balf-drunken snatches of a joyous band of vagabonds, while the grey.leaves are fluating on the gusts of the wind in the autumn of the year. Sut the whole is compacted, refined, and poured forth in one flood of liquid harmony. It is light, airy, and suft of movement, yet sharp and precise in its details; cvery face is a portrait, and the whole a group in clear photography. 'The blanket of the night is drawn aside; in full ruddy gleaming light these rough tatterdemalions are scen at their boisterons revel wringing from Fate another hour of wassail and good cheer." Over the whole is flung a half-bumorous, halfsarage satire-aimed, like a two-cdged sword, at the iaws and the law-breakers, in the acme of which the graceless crew are raised above the level of ordinary gipsies, footpeds,
and rogues, and are made to sit"on the hills like gods together, careless of mankind," and to launch their Titan thunders of rebellion against the world.

> "A fig for those by law protected; fiberty's a plonous feast
> Courts for rowards were erected Churches built to please the prost "

A simutar mixture of drollery and defiance appears in the justly-celebrated "Address th the Deil." which mannly whimsical. is relieved by touches of pation cumously quant "The cffect of contrast." it has heen observed, " was nover more bappuly displayad than in the conceptioo of such a being straying in lonelv places and lotering among trees, or in the familarity with which the poet lectures so awfiul a personage,' -we may add. than in the imimitable outbreak, anticipatory of Professor Maurice, at the close-

> "O wonld you tak a thought an meu "

Mr Carlyle, in reference to this passage. cannot resist the suggestion of a parallel from Sterne "He is the father of curses and hes, said Dr Slop, aud is cursed and damned already. I am sorry for it, quoth my Uncle Toby "

Burns fared ill at the hands of those who were not sorry for it, and who repeated with glib complacency every terrible belief of the system on which they had been traned. The most scathing of his Satures, under which head tall many of bis minor and frequent passages m his major preces, are directed aganst the false pride of burth, and what be conceived to be the false pretences of religion The apologue of " Death and Dr Hornbook," "The Ordination," the song "No churchman am 1 for to rat and to write," the "Address to the Unco Guid." "Holy Wille," and aboveall "The Holy Farr," with its savage caricature of an gnorant ranter of the time called Moodie, and others of like stamp, not unnaturally provoked offence. As regards the poet's attitude towards some phases of Calvinism prevalent during his life, it has to be remarked that from the days of Dunbar till now there has been a degree of antagomsm between Scotch verse and the more rigid forms of Scotch theology.

It must be admitted that in protesting against hypocrisy he has occasionally been led beyond the limits preseribed by good taste. He is at times abusive of those who differ from him. This, with other offences egainst decoram, which here and there disfigure his pages, can only be condoned by an appeal to the general tone of his writing, which is reverential. Burns had a firm faith in a Supreme Being, not as a vague mysterious Power, but as the Arbster of human life. Amid the vicissitudes of his career be responds to the cottar's summons, "Let us worship God."

> "An atheist's laugh's a poor exchange For Deity offended "
'is the moral of all lis verse, which treats sermously of religious matters His prayers in rhyme give him a high place among secular Psalmists.

Like Chaucer, Burus was a great moralist, though a rough one. In the moments of his most intense rerolt against conventional prejudice and sanctımomous affectation, be is faithful to the great laws which underlie change, loyal in his veneration for the cardinal virtues-Truth, Tustice, and Charity, -and consistent in the warnings, to which his experience gives an unhappy force, against transgressions of Temperance. In the "Epistle to a Young Fricad," tho shrewdest advice is hended with cxhortations appealing to the highest motive, that which transcends the calculation of consequences, and bids us walk in the straight path from the feeling of personal honour, and "for the florious privilege of being indcpendent." Burns, like Dante, "loved well because bo bated, hated wiekedness that linders
loving," and this feeling, as in the lines-" Daelter u gon dungeon dark." sometumes breaks bounds; but bis calmer moods are better represented by the well-known passages in the "Epistle to Davie." in which be preaches acquescence in our lot, and a cheerful acceptance of our duties in the sphere where we are placed. This phzlosophze douce, never better sung by Horace. is the prevailing refrain of our authrr's Sinas. On these there are few words to add to the acclam of a century They have passed into the aur we breathe they are so real that they seem thongs rathes than urards, or nearer still. living heings They have taken all hearts. becanse they are the breath of his own, ont pohshed cadences, but utterances as direct as laughter or tear- Siuce Sappho loved and sung, there has been no such national lyrist as Burns Fine ballads. mostly anongmons. existed in Scotland previous in his time, and shortly before a lew authors had produced a few songs equal to some of his best Such are Alexander Ross's "Wooed and unarried." Lowe's "Mary's Dream." "Auld Robin Cray." "The Land o' the Leal," and the two rersions of "The Flowers o' the Forsst." From these and rany of the older preces in Ramsay's collection. Burns admits to have derived coprous suggestions and impulses. He fad on the past literature of his country as Chaucer on the old fields of Enghsh thought, and-

> "Still the clementa o' sang, In formiless jumble, nght and wrang, Went floating in his brain."

But he gave more than be received; be brought forth ar hundred-fold, he summed up the stray material of the past, and added so much of his own that one of the most conspicuous features of his lyrical gemus is its vanety in new paths. Between the first of war songs, composed in : storm on a moor, and the pathos of "Mary in Heaven," he has made every chord in our northern life to vibrate The distance from "Duncan Gray " to "Auld Lang Syne" is nearly as great as that from Falstaff to Ariel. There is the vehemence of battle, the wail of woe, the march of veterans "red-wat-shod," the smiles of meeting, the tears of parting friends, the gurgle of brown burns, the roar of the wind through pines, the rustle of barley ngs, the thunder on the hill-all Scotland is in his verse. Let who will make her laws. Burns has made the songs, which her emigrants recall "by the long wash of Australasinn seas." in which mandens are wooed, by which mothers lull ther infants, which return "through open casements unto dying ears "-they are the links, the watchwords, the masonic symbols of our race.

In his "Vision " the poet imagines his Muse (probably as real to him as to Homer) descending to address her votary beside the plough After payng through her lips a generous tribute to bis predecessors, he draws, as usual, a lesson from his own career, "by passion druven." The godrless counsels hum to "prescree the dignity of man" and "trust the universal plan," and leaving a meath of green holly to deck his brows, passes "in light aray"

The poet passed away in darkness. but his name will never disappear from our hiterature. He stands belore us as a feature of Nature, and the tact that he cannot be moved from the bearts of lis countrymen, that they recogmze and respect a man who has refused to mutilate human nsture, and who at once celebrates and struves to ha monize its ethnical and Christian clements, marks a guls still fixcd between Scotiand and the Spann with which Mp Buckle has associated it. "He generous rerse of Burns,". sa;s Dr Craik, "springs out of the ron-bound Calrinism of the land like flowing watcr from Horeb'a rock."

The first adition of Burns's Cocms was published at Kilmarnock in 1 rol. 8 ro, in 1786; the second edition was published in Edinborgh in 1787 (2 vols. 8 ro) ; tbe third edition appeared at Damfries in
1793. After the poet's death Dr Currie of Liverpool issued a collected edition of his works, with a Life, tor the benetit of his widow and family (4 vols. 8 vo, Lond. 1800). This included letters as well as poems, but was far from being complete. The edition of Alau Cunniugham (8 vols. 8 vo. Lond. 1834) contains a large number of preces that are not to be found in Currie's edition. The Life and Works of Burns, by Dr Robert Chambers (Edin. 1851-2), has the distinctive feature that the youms are arranged in chronological order, and interwoven with the narrative of the poet"s life, which is, perhaps, the fullest and most precise in its details that has appcared. 'The Lilmarnock Popular Edition (2 vols. Kilmanoock, 1871) possesses special iutcrest from the fact that the first volume coutains an exact reprint, with fac-simile title-page, of the orghat edition of 1786 It deserves notice that within a year of the publication of the first Edinburgh edition, wo separate editicns of the poeme were issued in Amcrica, at New York, and Philedelphia, 1788.

The Life of Burns, by J. Gibson Lockhart (1828), has passed through several editions. Among the numerous`critical estimates of the poet the foremost place is given by universal consent to the essay oi Carlyle, which first appeaved in the Edinburgh Revicw (1828), and is reprinted among his miscellancous essays.
(J. N.)

BURNTISLAND, a parliamentary burgh and seaport of Scotland, in the county of Fife. It possesses a good pier, a dry dock, and a commodious barbour. Distilling and the herring-fishery are carried on, and a good deal of conl and pig-iron is exported. It as the northern station of the ferry across the Firth of Forth in connection with the North British Railway from Granton, from which it is about five miles distant. The burgh unites with Kirkcaldy, Kinghorn, and Dysart in sending one member to Parliament. The population in 1871 was 3422 .
BURSLEM, a town of England, in the county of Staffordshire, 18 miles south of Macelesfield, and 150 miles from Loudon. It stands on a gentle eminence near the Trent and Mersey canal, and is the principal town of the potteries' district. It contains a towa-hall, erected in 1865, a market-house, a news room, and a mechanics' institute; but its most interesting building is the Wedgwood Institute, founded in 1863 in honour of the great manufacturer, who was born in the town in 1730. It comprises a sehool of art, a free library, and a museum ; and the exterior is richly and peculiarly ornamented, to show the progress of fictile art.' The tower of the parish church is of some antiquity, though the building itself is of modern date. The town is mentioned in Domesday Book as Barcardeslim, and it appears at an early period as a seat of the pottery trade. Its prosperity was greatly increased in the end of the 18 th century by the opening of the Grand Trunk canal. Population of township in $1872,20,97 \mathrm{I}$.

BURTON, ROBERT ($1576-1640$), author of the Anatomy of Melanckoly, was born at Lindley, Leicestershire, on the 8th February 1576. He attended the grammar schools of Nuneaton and Suttoa Coldfields, and at the age of serenteen entered Brasenose College, Oxford. In 1590 he was elected student of Christ Churcb, and in 1614 took the degree of B.D. In 1616 he was presented to the vicarage of St Thomas, and in 1636 to the rectory of Segrave. He died on the 25th January 1639-40. The Anatomy of Melancholy, what it is, with all the kinds, causcs, symptoms, prognostics, and several cures of it: In three partitions, with their several sections, members, and sub-sections, philosophically, medicinally, historically opened and cut up: By Democritus Junior, with a satyrical preface conducing to the following discourse, was published in 1621. Our information with regard to the strauge author of this strange book is very scanty. Anthony Wood's account of him bas often been quoted; it represents what anust have been his contemporarics' opinion of him. A very curious anecdote is told of the method he adopted to dissipate the morbid neenancholy which weighed upon him. He used to go to the bridge foot and hear the ribaldry of the bargemen, which rarely failed to throw him juto a violent fit of laughter. His book is tunly a
marvellous production, and proves at least one thing, that the anthor was a thorough classical scholar. Indeed the work is a cento of quotations, and, like the Intellectual Systeni of Cudworth, has served as a storchouse of learned material. Sterne is not the only one who has borrowed from the author of the Anatomy. The book atself is essentally unsystematic, but has a fine flavour of thoroughgoing ill-humour about 1 t . This world was a dreary farce, and life was something to be laughed at. With a certain elass of readers it bas always been a favourte. Charles Lamb is a typral instance of a reader 14 Burton. The introductory puens has some curous analogies of style and thought to the Allegro and Penseroso of Milton.

BURTON-ON-TRENT, an English towu, in the north--east part of the hundred of Offlow, and the eastern diviston of the county of Stafiord. It is stuated on the west bank of the Rwer Trent, and is distant from Stafiord 25 mles, from Derby 11 miles, and about 126 miles from London. The parish comprises over 9625 acres, and is divided into the townships of Burton-on-Trent, Burton Extra, Brauston, Horninglow, and Stretton on the Stuffordslure side of the river, and Stapenhill and Winshill on the Derbyshare side.

The history of the town may be said to begin with the erection of a church or monastery by the river side towards the elose of the $9 t h$ century. But from that time we learn little concerning the place or its progress for about a hundred years. In 1002, the Burtoit abbey was founded by Wulfric, carl of Mercia, and substantially endowed. In 1540 it was surrendered to llenry V1M., who, in 1549 , made a grant of it with all its lands and properties to his secretary Sir William Paget, the ancestor of the present lord of the manor, the marguis of Anglesey. In the time preceding the fonndation of the abbey, the importance of the town was probably equal to that of the majority of Saxon boroughs, but it secms subsequently to bave made but little progress, and even to the close of the 16th century to have had its character and condition mainly determined by the fact of its being the centre of an important ecelesiastical district. Notwithstanding the situation of the town being such as to have made it always the key to one of the great high roads between the Midland Counties, it does not seem to have been at any time fortified. It was the scenc, however, of many frays. Especially notable is the battle which was fought at the Old Bridge on the 18th of March 1321, between the forces of Edward 1I. and Thomas carl of Lancaster, in which the latter was defeated.

During the civil war of the 17 th century, Burton was repeatedly taken and re-taken. The consequences to the town were serious, entailing permanent injury to the interests in trade. Previons to the ontbreak of the war the woollen trade bad been the staple of the town, although it had also long been noted for its alabastar works, but the frequent plunderings of that unguset time all but ruined these industrics.

In the year 1255 the greater part of the town was destroyed by fre, and in 1514 it was nearly swept away by floods. The latter form of disaster lias frequently recurred. In 1771, in 1792, in 1795, in 1852, and twice in 1875 the town was visited by heavy floods, which inundated the greater part of it, aud inflicted considerable damage. In 1875 the depth of water in several streeto was from 4 to 5 feet, and the current strong and dangerous.
In the year 1698 an Act of Parliament was obtained for making the Trent navigable as far as Burton, and for many years the " Burton Boat Company," as it was called, did good service as carrying-agents for the trade of the town. The opening of the Midland laillway in Augnst 1839 was followed by results more marked even tharu such as have commonly attended the introduction of railways. The progress of the town since that date bas been zonstant and
for the last twenty years remarkably and increasingly rapid.

During the earlier years of the present century the cotton mills of Burton were so extensive as to give employment to several hundred hands, but since 1849 the cotton trade has been discontinued. The demands of the brewing trade of late years, both as regards space and labour, scem to have made it diffcult for any competing industry to exist. At any rate it must be admitted that at the present time the town derives all its commercial prosperity from the manufacturo of ale, the recognized superiority of which is in a great measure due to the fact that the water used in its production, and obtained from wells sunk in the neighbourhood of the breweries, is impregnated with sulphate of lime derived from the gypseous deposits of the district. The brewing trade of Burton is comparatively of recent develop. ment, although the brewing of superior ale within the town was undoubtedly knowa as one of the features of the place in the days whee the abbey flourished. The trade, as distinguished from private brewing, is reckoned to have commenced about the ycar 1703, and forty years later it had so extended as to have found a market at St Petersburg and the Baltic ports. In the year 1796, so flourishing had the trade become that there were then in the town no fewer than nine brewing firms. That most famous of Burton ale products known as "India Pale," or "Bitter Beer," was first manufactured, as a beverage suited to the climate of the East, about the year 1823, and for some years India was its only market. The favour it bas since obtsined at home it owes to accident. A vessel carrying come hogsheads of Iadia pale ale was lost in the channel, and its cargo sold for the benefit of the underwriters. In this way it was that bitter beer first became known as a beverage in this country, and so rapid was its popularity, that sioce 1828 the pale ale trade has taken the lead in the commercial transactions of the town. The development of the Burton brewing trade gencrally from that date to the present time bas been marvelleus, but especially so since 1862 The magnitude which it has now attained may be inferred from the following facts and statistics. There are in all some thirty breweries in the town, the largest of which are those of Messrs Bass \& Co and of Samuel Allsopp \& Sons. Last year (1875) the quantily of malt mashed in the several breweries together was 737,190 quarters, to contain which in the form of ale would require 2,948,761 barrels of 36 gallons each. The average price per barrel being 48s., we are cnabled to sct down the amount of brewiog business done in the toma, in one year alone, at $£ 7,000,000$. A calculation has been made by which it has been found that if all the barrels ($2,948,761$) of ale brewed in twelve months were put end to end iu a struight line, that line weuld measure no less than 1535 miles. The Messrs Bass d Co. alone brew 250,000 quarters per annum; S. Allsopp \& Sons alone 200,000 quarters. The business premises of the former firm cover 50 acres of freehold and 100 acres of leasehold property. Traversing these premises they have six miles of railway and six locomotives their own exclusive property. They employ over 2000 men and boys, and pay in wages to employis in Burton alone about $£^{2} 000$ por week. S. Allsopp \& Sons have also private lines of railmay, extending over 10 miles. These lines, Allsopp's and Bass's and others, as they connect with the outer railway system, interscct the town at many points. The amount paid to the several railway compenies (Midland, North Staffordshire, and London and Norlh Western) by the several brewing firms for carriage of ale in the course of 1875 for that year alone was $£ 517,665$.
The sanitary conditions of the town has been greatly improved since the passing of "Burten-upon-Trent Act, 1853." Under this Act, the town is divided into three
wards, the Burtoo-upon-Trent Ward, the Burton Extra Ward, and the Hominglow Ward; and ihe local government is vested in a board of commissioners, twenty-seven in number, elected by the wards. Of public works in Burton the most notable is the New Bridge over the Trent, which was erected at a cost of $£ 20,000$, and was opened for trafic on the 22 d June 1864. It is 469 yards in leagth, and bas twenty-nine arches, supported by light but solid buttresses. The old bridge, which this one superseded, was of a curved form and extremely darrow. It kad thirty. four arches, and is said to bave been the longest bridge in the kingdom. The new cemetery, which occupies a plot of land 12 acres in extent, is situated in the township of Stagenhill, and was constructed at a cost of $£ 13,000$. It is divided into three parts, devoted to the separate burial of members of the Church of Eogland, of nencenforming churches, and of the Church of Rome. It contains two mortuary chapels, and the house of the registrar.

Although, in some old recerds, Burten is styled a borough, it is ccrtain it was not possessed of a charter of incorporation, ner has it yet obtained one. The police are those of the county. About five years ago the Burton Infirmary was opened, and has since been considerably enlarged. A new post-office is being erected, of dimensions suitable to the increasing growth of the town. There are three local newspapers publishled weekly. On the Derbyshire side of the river, and skirting its bank is the pubbic recreation ground. The principal banking firm is the "Burton, Uttosetcr, and Ashbourne Union Bank," established 1839.

Burton is included in the diocese of Lichfield. Besides the Church of England, which has seven places of worship, there are the following denominations represented,-Presbyterian, Congregatioanl, Wesleyan, Baptist, Free Church Methodist, Primitive Methodist, and Roman Catholic. The educational interests of the town are well cared for, there being, besides board schools, a grammar school, an endowed school, and three other schools of a voluntary character.

Cummensurate with the increase of trade has been the increase of population. In 1801, when the first census was taken, it was a very little over 6000 . From that year on wards to 1851 it steadily but very gradually increased. The ten years ending 1861 show the first great adrance, the population being then 17,358 . In 1871 it had grown to 23,748 , and as the increase since then has been at the rate of over 1000 per annum, the population cannot now (1876) be less than 30,000 .
burtscheid, or Borcette, a town of Prussia, in the government of Aix-la-Chapelle (Aachen), and immediately to the S.E. of that city, with which it is connected by lines of houses. It occupics the slopes of a hill on the Wormfuss, and, like Ais-la-chapelle, is fameus for its mincral springs. One of these, known as the Mill-bath spring, is the hottest of Central Europe, having a temperature of $155^{\circ} \mathrm{Fahr}$. The water is employed both externally and internally, and the establishments for its use are extensive and cunvenient. The town carrics on the manufacturo of woollen yarn and cloth, castiron goods, and machinery, and possesses an important trade. Purtscheid grew up round a Benedictine menastcry, founded probably in the $10 t h$ century by Gregory, son of the Greek emperor Nicephorus Phocas, and brother-in-law of Otto II. of Germany, and is said to have taken its name of Porctume from the number of wild swine in the neighbourhood. In the 13th century tho Bencdictines became defunct, and a number of nuns from the convent of St Salvatorberg, near Aix-la-Chapelle, entered into possessien. Their estaiblishment continued till 1802 , when it was broken up by the French. Population in 1872, 10,081.
buru, bezro, or Bocro, an island of the East Indiad Archipelagn, belouging to the residency of Amboyna, and
situated about 250 miles E. of Celebes. According to Melvill von Carnbée it has an area of 3487 square miles, and extends from $3^{\circ} 18^{\prime}$ to $3^{\circ} 50^{\prime} \mathrm{S}$. lat. Its surface is for the most part very mountainous, though the seaboard district is frequently alluvial and marshy from the deposits of the numerous rivers by which the isiand is traversed. - Of theae, estimated at no less than 125, comparatively few are navigable except the Kayeli or Wai Apoe, which is the largest of all. The principal peaks are the Tomaboe (Kapala-Lemadang, Saniane or Buru-dome), 8529 feet in height, the Filehet, and the Palamatta. In the middle of the western portion of the island lies the large lake of Wakaholo, with a circumference of 37 miles, and a depth of ubout 100 feet. By far the larger part of the country is covered with natural forest and prairie land, but such portions as have been brought into cultivation are highly fertile. Coffee, rice, and a variety of fruits, such as the lemon, orange, banana, pine-apple, and cocoa-dut are readdy grown, as well as sago, red-pepper, tobacco, and cotton. The only important export, however, is cajeput oil, a sudorific distilled from the leaves of the Melaleuca Cajuputi, or white-wood tree, of which about 8000 bettles are manufactured annually and sent to Java and other parts of the archipelago. The native flora is very rich, and the teak, ebony, and canari trees aro especially ubundant. Among the animals are buffaloes, hogs, deer, crocodiles, lizards, and snakes ; and ducks, doves, cockatoos, and birds of paradise are the chief representatives of the feathered ${ }^{2}$ pecies. According to Mr Wallace, the inhabitants are nainly of two partially amalgamated races-Malays on the sea-coast like those of Celebes, and Alfuros in the interior skin to those in Ceram. The latter are still completely pagan, live in scattered bamlets, and have come very little in contact with any civilization. Among the maritime populatio a small number of Chinese, Arabs, and other races ure also to be found. The island is divided by the Duteh iato the regeacies of Kayeli, Ilat, Lumsëteh, Waaisama, Massareteh, Foggi, Bara, Licella, Talisa, Marulat, and Leliali. The villago of kaycli is inhabited by eleven Mahometan tribes, who were compelled by Aroold de Vlaming in 1657 to gather together from the different parts of the island, while all tho clove-trees were mercilessly exterminated. Before the errival of tho Dutch the islanders were under the dominion of the sultan of Ternate; and it was their rebellion against him that gave the Europeans the opportunity of effecting. their subjugation. In 1854 the port of Kayeli was declared free to all nations without customs on cither ship or cargo.

See T. J. Willer, Het eiland Boeroe, zïne exploitatie en Halfocrsche Instellingen, Amsterdam, 1853; Wallace's Indian Archipclago; Veth's Woordenboek: van Neditl. Indie.

BURY, a manufacturing town and parliamentary borough of England, in the county of Lancaster, on the Irwell, 8 miles N.N.W. of Manchester. The woollen-trade, introduced in the 14th century, and of such importanco in tho reign of Elizabeth that she appointed an officer to stamp the cloth, still gives employment to 1000 of the population, but it has been greatly surpassed in extent by the cotton manufacture, which with its various branches gave employ. ment in 1872 to 16,256 men and women of the ago of twenty years or upwards. The auxiliary and supplemental trades of engine-making, spindle-making, calico-printing, bleaching, and dyeing are also largely carried on; the paper manufacture employs about 600 people; upwards of 1000 miners find work in the neighbouring coal-pits; 1200 workmen are engaged in the iron manufacture, and nearly 200 in the stone quarries. The town has been not only greatly extended butalso greatly improved since the middle of the century ; it is well drained, and has a good supply of water. It contains a town-hall, an athenæum (including
a museum), a free grammar school, founded uy the Rev. Roger Kay, a mechanics' institute, and several pablic libraries. The parish church of St Mary's was rebuilt in 1776. The government, which was at one time in the hands of three constables, appointed by the earl of Derby, the lord of the manor, was aftermards entrusted to a board of commissioners under a local Act; but the town bas applied for municipal incorporation. Bury is a place of considerable antiquity, and was formerly the seat of a baronial castle, which was destroyed by the Parliamentary forces in 1644. Sir Robert Peel was born at Chamber Hall in the deighbourhood, and his father did much for the prosperity of the town by the establishment of extensive printworks. A monument to the statesman now adorns the market-place. The parliamentary borough, which comprises the townships of Bury and Elton, has returaed one member to Parliament since the Reform Bill of 1832. Its population in 1871 was 41,344 , of whom 19,849 were males, and 21,495 females; the inhabited houses numbered 8279 . and the registered electors 5518.
bURY, Richard de. See Aungervyle, vol. iii. p. 85.
BUYY ST EDMUNDS, a market-town and municipal and p.liamentary borough of England, in the cuunty of Suffolk, on the Lark, 26 miles N.W. of Ipswich, and 71 miles from London. It is goverued by a mayor, six aldermen, and eighteen councillors, and returns two members to Parliament. The town is pleasantly situated on a gentle eminence, in a fertile and richly cultivated district, is clean and well built, and has a good drainage system. It is supposed to be the Villa Faustini of the Romans, and numerous Roman remains have been dug up on the spot. It was the Beodericsworth of the Saxons, and by them was made a royal town of East Anglia. Its present name is derived from St Edmuad, the king nud martyr, who was taken prisoncr and put to death by the Danes in 870 . In 1020 a monastery was founded thero by Canute, which for mag. nificenco and splendour surpassed every other establishment of the kind in Britain, with the exception of that of Glastonbury. It was 505 feet long and 212 wide; and contained twelve chapels. The abbot had a seat in Parliament, with the power to inflict capital puaishment, and judged in all civil causes within the liberty. The privilege of coining was granted to the abbot by Edward the Confessor, and both Edward I. and Edward II. laad mints in the town. In 1327 the pcople of the town and neighbourhood attacked the monastery nond reduced a large part of it to ashes. The tower or church-gate, one of the finest specimens of Norman architecture in the kingdom, and the western gate, erccted about the middle of the 14 th century, with a small portion of the walls, are all that now remaing of that magnificent structure. St Mary's church, a fine Gothic edifice, with a beautifully carved roof, was erected in the earlier part of the 15 th century, and contains tha tomb of Mary Tudor, Queen of Louis X1I: of France. St James's church is also a very fine buildngg, containing several handsome monuments. The free grammar achool, founded by Edward VI., has two scholarships at Cambridge, and six exhibitions to each university. The town has a shire-hall where assizes for the county and liberty are held, a handsome and commodious corn exchange, a guildhall, news and assembly rooms, a theatre, a savings-bank, botanic gardens, :a cônnty jail, a general hospital, and nbout 100 almshouses.: The market-days are Weduesday and Saturday. Wedpesday's market is very importent, both for corn and cattle, but particularly for the latter, being second only to that of Norwicn, which is tho largest in the Eastern counties. About a mile below the town the river becomea navigable for barges to Lynn, whence coals and other commodities were tormenly brought, but of late years, aince the formation of the railway, the river has been butlittlo used.

There are four lines of rarrway,-in connection with London and Cambridgeshire for the north, Thetiord to Norwich and West Norfolk, Ipswich and East Suffiolk, and Colchester for Essex. In the vicinty is Ickworth, the magnificent seat of the marquis of Eristol. The town was the birthplace of Bishop Gardiner, and gives the title of viscount to the Keppel farmly (Earls of Albemarle). Population in 1871, 14,928.

BUSBECQ, Augier Gatslen de (1522-1592), a Flemish diplomatist and traveller, was born at Commenes in 1522, und was educated at the universities of Louvan, Paris, Venice, Belogna, and Padua. IIe was engarcd in several important employments and nerotiations, and in particular was twice sent as ambassador by the Emperor Ferdinand I. to the court of Soliman IJ. He made a collection of surious inscriptions and manuscripts; and in his second journey to Constadinople be carried with bim an artist to make drawings of the rarest plants and animals. In 1562 be returned to Vienna, and was appointed tutor to the sons of the Emperor Maximilian If. Busbecq died at St Germain, dear Rouen, Octeber 28, 1592. He wrote a Discourse of the State of the Oltoman Empure, and ? Relation of his Two Journeys to Turkey A trauslation of the Travels in Turkey was published in Clasgow by liobert Urie in 1761.

BUSBY, Richard (1606-1695), D C.L., head-master of Westminster school, was bern at Lutten in Lincelnsaire in 1606. He was educated at the school which be afterwards superintended for so long a peried, and first sigualized himself by gaining a king's scholarship. From Westminster he removed to Christ Church College, Oxford, where be graduated in 1628. In his thirty-tbird year he had already become renewned fur the obstinate zeal with which he supported the falling dynasty of the Stuarts, and was rewarded for his services with the prebend and rectery of Cudworth, with the chapel of Knowle andesed, in Somersetshire. Next year he becane head-master of Westminster school. His reputation as a teacher seon became se great that many of the noblest families entrusted their children to his care. He himself once boasted that sixteen of the bishops who then occupied the bench had been birched with his "little red." No school in England has on the whole produced so many eminent men as Westminster did uder the régime of Busby. Ameng the more illustrious of his pupils may be mentioned South, Dryden, Locke, Prier, and Bisbop Atterbury. He wrote and edited many works for the use of his scholars. His original treatises (tho best of which are his (reek and Latin grammars), as well as those which he editcd, have, hewcver, long since fallen into disuse. Busby died in 1695, in his ninctieth year, and was buried in Westmiuster Abbey, where his effigy is still to be seen.

BUSCA, a town of Italy, iu the province of Cunce, 9 miles from the city of that name, on the left bauk of the Macra, a confluent of the Po. It contains a college, a hospital, and twe betanic gardens. The inhabitants are engaged in the culture of the silkwerm and the manufacture of leather and ironwares; and there are marble and alabaster rquarries. It is the site of some Roman entiquities. Pupulation, 9533.
búschint, Anton Friedrica (1724-1793), one of the founders of modern scientific gcography, was born at Stadtbagen ia Schaumburg-Lippe, on the 27 th September 1724. In his youth he was harshly treated by his father; but a clergyman of the name of Hauber, pleascd with his talents, undertook to give him gratuiteus instruction, aud afterwards cnabled him to continue his studies at Halle. There, by application and good condoct, he acquircd numerous friends, and in 1748 was appointed tuter in the family of the Connt de Lynars, who was then going as ambassader to St Petersburg. On this journey he became
sensible of the defective state or geographical science, ana resolved to devote bis life to its improvement. Withdrawing as soon as possible from the count's family, he went io reside at Copenhagen, and devoted himself entırely to this new pursuit. In 1752 be published a Description of the Coventies of Schlesweq and Hoistein, a work that was much approved. In 1754 he removed to Gottmgen, aud married Christana Dilthey, a young lady of some temporary reputathon as a poetess. Here a wark in which he dissented from some of the Lutheran tencts lost bitn the apponiment in 1757 to the theological chair, for which he bad verome a candidate. Two years later be was appointed professor of philosophy; but in 1761 he accepted an incitation to the Gernan congregation at St Petersburg. There be organzed a school, which, under his auspices, soon became one of the most flourishing in the North of Europe, but a disagrecment with Marshal Munich led bim, in spite of the empress's offers of bigh advancement, to return to Germany in 1765. He first went to live at Altuna; but next year he was called to superintend an extensive educatıonal establishment, known as the Greyfriars Gymnasıum (Gymnusium zum Grauen Filoster), which had been formed at Eerlin by Frederick the Gıeat. Here he superintended the progress of every pupil, and inspected the minutest details connected with the prosperity of the institution, besides givang lectures on the history of the arts and sciences. He contmued to prosecuts bis rarious labours till a drepsy, under which be lad long suffered, terminated his life on the 28 th May 1793. His writiags and example gave a new impulse to education throughout Prussia, and the Goverament was so sensible of the value of his services that they allowed his extensive correspondence to pass free of postage.

Few authors, eren in Germany, have been more prolific than Busching. As enumerated by Neusel in his Lexicon of Geiman Aluthors, his works amonnt to more than a hundred. They may be classed under tlie heads of Geograply and History, Education, Religion, and Biography. The first class compretiends those upon which his fame chiefly rests ; for although he did not possess the geographical genius of D'Anville, he may be regarded as the creator of modern Statistics. His magnam opus is the Niue Erdbesehreibung, (New Description of the Globe). The first four juts, which compre. hend Europe, were published in four volumes (1754-1761), and liave been translated into many of the European languages. They appeared in English with a preface by Murdoch, in six volumes 4to, London, 1762. In 1768 tha fift part was publisbed, being the first volume upon Asia, containing Asiatic Turkey and Arabia. If displays an immense extent of research, and is generally considered as his masterpiece. Busching was also the cditor of a valuable collection entitled Magazin fïr Historic whd Giographic, 2 vols. 4to, 1767-93; also of Wochentl. Nachrichten ron weuen Landikarten, Berlin, 1773-87.

Ilis elementary works on education long lald a distinguished phace in this branch of literature, but his theological writings are not mach estecmed. In hiography he wrote a momber of articles for the above inentioned Magazin, and a valuable collection of Beitrage zer Lebensgeschichle merhwürdiger Personcn, 6 vols. 1783-9, includiag a very clahorate life of Frederick the Great.

BUSIIIRE, or AbUScaenr, a town of Persia, in the provioce of Fars, situated in the Tersian Gulf. The surrounding country is a parched nod barren desert, consisting of brown sand or grey clay and rock, unenlivened by any kind of regetation. The town, which is of a triangular form, occupies the extremity of a peninsula eleven miles long and four broad, and is encircled by the sea on all sides cexcept the south. It is fortified on the land side by a mud wall with round towers. The houses being mostly built of white stone gives the city, when vicwed from a distance, a rather clean and handsome appearance, but on closer inspection the strects are found to be narrow, irregular, ill-paved, and filthy. Almost the only handsome buildings are the shoikh's palace and the British residency. Ships of 300 tons are obliged to lie in the roads six miles from the town. The water immediately east of the town
is deep, but its navigation is impeded by a bar, which can only be passed by vessels drawing not more than 8 or 9 feet of water, except at spring-tides, when there is a rise of from 8 or 10 feet. Eushire carnes on a considerable trade. particularly with Calcutta, Bombay, and Java. Its 1 m ports are indigo, sugar, rice, spices, steel, cotton and woollen goods, coffee, \&c.; and its principal exports are raw silk, opum, Kerman wool, shawls, silk goods. carpets, borses, dried fruits, wine, grain, copper. turquoises, pearls, asafœetida, and gall-nuts. The climate is excessively hot. particularly in the monibs of June, July, and August. The water is very bad, that fit for drinking requires to ${ }^{\circ}$ be brought in goat-skins from wells, distant $1 \frac{1}{2}$ nule from the city walls The population is variously estumated at from 10,000 to 20,000

Theimportance of Bushire has much increased of late years It is now not only the headquarters of the English naval squadron in the Persian Gulf, and the land termaras of the Indo-European line of telegraph, but it alsc forms the chicf station in these seas of the British Indian Steam Navigation Company, which runs its vessels weekly between Rombayand Bussorah, and it is inrther expected that. if our ForcignJurisdiction Act should be applied to Persia, an appellate court will be formed at Bushire. In the meantime several European mercantile bouses have been established in the town, and there can be no doubt that if the means of cummunication with the interior were improved, trade would rapidly increase. Notwithstanding, indeed the drawbacks of bad roads, insufficient means of transport (wheeled carriages being unknown and beasts of burthen being few and dear), waot of security, and illegal exactions, the annual value of the Bushire trade is now estimated at $£ 600,000$, of which one-quarter represents the exports aud three quarters the imports, the balance of trade against Persia at this single port thus amounting to about $\pm^{2} 300,000$ a year, which is met by a constant drain of the precious metals to Iudia. During the lato war with Persia (1856-57) Bushire surrendered to a British force, and remained in our occupation for some months. The tomn yields a yearly revenue of about $£ 15,000$, mainly derived from customs, and is the chief place of a district, extending for 300 miles along the sea-coast from Dilem to Congoon, which is assessed in the Shiráz register at about $£ 25,000$ per annum. At Rishire, in the vicinity of Bushire, there are extensive ruins, among which bricks stamped with cuneiform legends lave been found, showing that the place was a very old Elamite settlement under the kings of Susa. It continued also to flourish under the name of Riv-Ardeshir, during the Sassanian period, and only fell iato decay after the Arab conquest, its place as the great emporium of trade heing successively taken by Siráf (the modern Táhiri), Keis, and Ormuz. The British commercial factory was transferred from Gombroon (modern Bander Abbass) in Bashire during the last century : but tine duties of the Bishire resident at prosent are exclusively political.
(H. C. R.)

BUSEMEN, or Bosjesmans, so aamucd by the Eritish and Dutch colonists of the Cape, but calling themselves Saab or Saan, are an aboriginal race of South Africa, allied in some respects to the Hotteatots, but differing from them in several essential points, and along with these baring nothing whatever in common with the Kaffre or the Negro. The area in which they are found in nomadic familics may be described as extending from the inner ranges of the mountains of Cape Colony, through the central Kalabari desert to near Lake Ngami, and thence north-westward to the districts about the Ovambo River north of Damara Land. in about $18^{\circ} \mathrm{S}$. lat., or only over the must barren pertions of the South African deserts, into which they bave been pressed by the encreachments of the Kaffre, Hottentots, and Europens. a few also remaining in the mest inaccessible
clefts of the Drakenberg rarge about the sources of the Vaal. They rank with the savages of Australia as the lowest existing type of mankind, human nature being nowhere seen in a more destitute or degraded condition. The Bushmen with whom the colonists of the sonth have come nost in contact are of very small stature, of a dirty yellow colour, and generally repulsive countenance. In type they scmewhat resemble the Mongclians; the check. bones are large and prominent, the eyes deeply set and crafty in expression. the nose small and depressed; the bair appears in small woolly tufts with spaces betreen. Among 150 of their aumber measured by the traveller Barrow, the tallest man was 4 feet 9 inches, the tallest woman 4 feet 4 inches. A hollowed back and protruding stomach, with thick hinder parts and swall limbs, are freguent characteristics of their figure, but many of them are well-proportioned. all being active and capable of enduring great privations and fatigne. Northward the Bushmen appear to improve both in general condition and in stature. Those mel with towards Lake Ngami by Dr Livingstone are described by him as differing from those of the thirsty plains of the Kalabari, being of darker colour and of good proportions; some of those seen by the traveller Baines in this region are also noticed as being taller, some 5 fcet 6 inches in height. Their clothing consists of a mautlo of skins, termed a laross; but they are fond of ornament, and decorate the arms and legs with beads and iron or copper rings, and the women sometimes stain their faces with red colour. For dwellings in the plains they bave low huts formed of reed mats, or may simply occupy a bole in the earth; in the mountain districts they make a shelter among the rocks by hanging mats on the windward side. Tbey do not possess cattle, and heve no animals of any sort excepting a ferw half-rild dogs, nor have they the smallest rudiments of agriculture. Living ly buntiog, they are thoroughly acquainted with the Labits and movements of every kind of wild animals, following the antelope berds in thear migrations. Their weapon is a amall bow, strung with twisted sinew, used with arrows, which are neatly madc of a recd with a barbed head of bnne, sometimes tipped with a triangular piece of iron, and always coated withag gummy poisonous compound,' which is variously made in different localities. The chief sources of the poison are the milky juice of the Amaryllis poxicaria, which is abundant in South Africa, or of the Euphorbia arborescens, gencrally mixed with the venom of suakes or of a large black spider of the genus Afygale; or the entrails of a very deadly caterpillar, ealled N'gsa or 'Kaa, are used alone. From their use of these poisons the Bushmen are held in great dread by the neighbouring races. A rude implement, called the graaf stock or digging-stick by the boers,-censisting of a sharpened spikc of lardwood over which a stone, ground to a circular form and perforated, is passed and secured by a redge,is used by the Bushmen in uprooting the succulent tuberous roots of the scretal species of creeping plants of the descrt. These perforaced stones have a special iaterest in indicating the former extension of the race of the Euslimen, since they are found far beyond the area now occupied by their familics.

There docs not appear to be the least approach to any tribal unity in the wandering groups of the Busbmen; they bave no chiefs, bodily strength alone forming a distinction among them. Their language, which exists in several dialects, is not intelligible to the Hottentots, but has in commen with it the uasal, snapping, hissing, or grunting sounds, only used more numerously. The Hottentot language is more agglutinative, the Eushman's more monosyllabic; the former recngnizes a gender in nameo, the latter does not ; the IJottentots form the plural by a sufix.
the Bushmen by repetition of the name; the tormer count up to twenty, the latter can only number two, all above that being "many." The Bushmen possess a remarkable faculty which is not known in any other South African natives, that of graphic illustration; the rocks of the mountains of Cape Colony and of the Drakenberg have everywhere examples of Bushman drawings of men, women, children, and animals characteristically sketched. Riegs, crosses, and otber signs drawn in blue pigmeot on some of the rocks, and believed to be some .centuries old, have given rise to the speculation that these may be remains of a hieroglyphic writing; and the discovery of drawings of men and women, with antelope heads, in the recesses of the Drakenberg in 1873 (Orpen in Cape Monthly Magazine, Jaly 1874), also very ancient, recalls the mythological figures of Egypt. The Bushmen are not deficient in a certaia intelligence, and are calued as servants by the boers, being much more cnergetic than the Hottentots; of all the South African races they have the greatest aptitude for music and the dance. A regularly planned and wholesale destruction of this race on the borders of the colony in the earlier years, reduced their numbers to a great extent; and though this cruel huating of the Bushmen has ceased, their children are still captured by the boers as servants. In retaliation, the Bushmea bave long been, the scourge of the farms on the outer borders of the colonies, making raids on the cattle and driving them off in large numbers. On the western side of the deserts they are generally at eamity with the Koranna Hottentots, but on the eastern border of the Kalahari they have to some extent become tributary to the Bechwana Kaffres. Formerly occupying a much larger area, it appears probable that the Bushmen are the earliest remaieing aborigines of South Africa, and that they existed there before the Kaffres, and perbaps also anterior to the Hottentots. The discoveries of the dwarf race of the Akba by Dr Schweinfurth beyond the Upper Nile basia, of the little Bushman-like Obongo on the western equatorial coastland by Du Chaillu, and of the Okota, an undersized people leading a miserable existence in bark huts on a branch of the Ogow' River, by De Compiegne in 1874, point to a iormer more general distribution of this primitive race.
Barrow's South Africt, 1801-3 ; Burchell's Travels, 1822; Jivingstone's Missionary Travels, 1857; Baineg's Explorations, 1804; Derensky's Süd-Afrika, 1875.
BUSIINELL, Horace, D.D. (1802-1876), an American theologian, was born at Litchficld in Connecticut, in April 1802, and died on the 17 th of February 1876. He studied at Yale College, where he graduated in 1827, after which be was for cleven months editor of the Journal of Commerce, and then teacher in a school in Norwich (Connecticut). In 1829 he became tutor in Yale College. His first study was law, but in 1831 he resolved to devote himself to theology, and in 1833 he was chosen pastor of the North Congregational Church in 1 Lartford (Connecticut), where he remained twenty-tour years. During the remainder of his life he had no settled charge, but he contibued to be diligently employed both as a preacher and as an suthor. He jook an active part in the establishment of the university of California, and was asked to become its president. Having determined to value truth more highly than peace or consistency, Busbnell thought, and expressed his conclusions, with such freedom as to bring on himself a charge of false doctrine. In 1849 he published God in Christ, with an introductory Dissertation on Language as related to Thought, in which, it was said, he expressed beretical views as to the Trinity. He was aequitted by seventeen votes to three, but his influeace with his chureb was such that it withdrew from the "Consociation" by which he had beea tried, and thenceforward stood slone, a true "cengregational" church,

Whose minister was amenable to no external antifority: Bushnell formally replied by writing Christ in Theology, in which be employs the important argument that spiritual facts can only be expressed in approximative and poetical language, and concludes that an adequate dogmatic theology cannot exist. That he did not deny the divieity of Christ he proved in The Character of Jesus, forbidding his possible classification with Mer. He has also published Christian Nurture, (1847); Sermons for the New Lije, (1858); Nature and the Supernatural, (1858); Christ and his Salvation, (1864); Work and Play, (1864); The Vicarious Sacrifice, grounded on Principles of Universal Obligation, (1865) ; Moral Uses of Dark Things, (1868); Sermon on Living Suljects; Tomen's Suffage, the Reform against Nature, (1869) ; and Forgiveness and Law, (1874).

BUSIRIS, the name of a mythical king of Egypt not found either on the monuments or in the chronological lists, but mentioned by the later Greek writers and mythologists. By Apollodorus be was made the son of Fgyptus, and an Egyptian king, or else the son of Poseidon and Lyssianassa. After Egypt had been afflicted for nine years with famine Pbrasius, a seer of Cyprus, arrived in Egypt and announced that the cessation of the famine would not take place until a forcigner was yearly sacrificed to Zeus or Jupiter. Busiris commenced by sacrificing the prophet, and continued the custom by offering a foreigner on the altar of the ged. It is here that Busiris enters into the circle of the myths and parerga of Heracles, who had arrived in Egypt from Libya, and was seized and bound ready to be killed and offered at the altar of Zeus. Heracles burst the bonds which bound him, and, seizing his club, slew Busiris with his son Amphidamas, and his herald Cbalbes. This exploit is often represented on rase paintings, the Egyptian monarch aed his companions being represented as negroes. Althongh some of the Greez writers made Busiris an Egyptian ling and a successor of Menes, about the sixtieth of the series, and the builder of Thebes, those better informed by the Egyptians rejected him altogether; they do not even admit that he was he lieutenant of Osirit set over the lands opposite Phœnicia and the Mediterranean, nor do they recognize him as living two centuries after Perseus and later than Heracles. Various esoterical explanations were given of the myth, and the name not found as a king is recognized in that of one or more cities of the same name in Northera Egypt. The legend was uuknown beth to Homer and to Hesiod, and appears after the Greeks were more istimately acquainted with Egypt, and had seen the wall-paintings, or imperfectly understood the popular tales and traditions of the people, for there is no solid reason to believe that buman sacrifices were ever offered in the country.
.BUSIRIS, the name of an Egyptian tomn, the capital of the Busirites nomos, or Busirite nome, called in the bieroglyphs Pa-osiri, or Place of Osiris, the eponymons deity of the place. It is the modern Abusir, and lay, according to Herodotus, in the middle of the Delta. It was supposed to be close to the entrance of the gates of the Aahhu, or Elysium, and the nome to be that called in the hieroglyphs Kahels; and Busiris itself may have been the Egyptian Tattu. - Close to the torn, which lay on the Phatnitish or Pathmitish arm of the Nile, was the pyramid of the king Sahura, the successor of Uskafan, a king of the 4th dynasty; this was ealled the Sa-lu, or pyramid of the "Rising Sual," and some supposed that the name Pa-sakura, or "city of Sahura," may have beea the origin of the name Busiris instead of Pa-osivi. The later Greek authors gare many diferent versions of the name mixed up with their own mythology; such as that Isis hsd there interred Busiris in the wooden figure of a cow, and that the place was bence called Bousosiris, or that the goddess had there buried

Osiris, whea killea by Typhou, in the budy of the same animal enveloped in bandages-legends evidently confused with the burial of the Apis in the Serapeum which lay in the vicinity. The shrine of the goddess Isis was situated in it, and a great anmual festival and lamentation of Osiris beld there, which appears from an inscription of the temple of Denderah to have taken place on the 14th day of the month Choiak. At the time of the privilege, conferred on the nomes of Egypt by the Emperer Hadrian, of coining the money struck at the time of his visit to that conntry, and dated in the 11 th year of his reign 117 A.D., the Busirite nome issued small brenze pieces on which is the goddess Isis standing holding a cow or goat in one hand and a serpent in the other. Demetrins of Phalerum, the philosopher, exiled by Ptolemy Philadelphus. is said to have died at Busiris 284 b.c., having put an end to his life by the bite of an asp. The city was destroyed by the Emperor Diocletian in the 3d century A.D., but the Copts and Arabs have preserved its name in Bousiri and Abusir. Another village of the same name is supposed to have existed in the Letopolite nome.

Herodotus, ii. 59, 61, 165 ; Apollodorus, ii. 1. 5 ; Diodorus. i. 17 ; Isocrates, Orat., ii.; Hyginus, Fab., ii. 45 ; Schol. A pollon. Rhod., iv. 13, 96 : Gerhard, Trinkschalen. 8 s 9 ; Tochon D'Annecy,' Recicreries sur les Medailies aes nomes, p. 190.

BUSSORAH, Bassora, Balsora, ir Basra, a celebrated city of Asia, in the government of Baghdad, situated in $47^{\circ} 34^{\prime}$ E. long., $30^{\circ} 32^{\prime} \mathrm{N}$. lat., on the western banks of the Shatt-el-Arab. It is about 70 miles from the mouth of that noble stream, which is navigable to the eity for ships of $j 00$ tons burden after passing the bar at its mouth ; this, however, they can only conveniently do at spring-tides. Bussorah is surrounded by walls, which are kept in a tolerable state of repair. They bave five gates, and are at the lowest computation abont seven miles in circuit. Two canals, cut from the river, surround the town on either side, and uniting beyond it on the western side, form a complete ditch to the fortifications. The houses are meanly built, partly of sun-dried and partly of burnt bricks, with flat roofs surrouaded by a parapet; and the bazaars, though atocked with the richest merchandise, are miserable structures, not arched as in Baghdad and the Persian towns, but covered with mats laid on rafters of date trees, which hardly afford protection from the seorching rays of the sun. The streets are irregular, narrow, and unpaved, and the towa itself is disgustingly filthy. Of the vast area within the walls, the greater proportion is occupied with gardens and plantations of palm trees, intersected by a number of little canals, cleansed twiee daily by the ebb and flow of the tide, which rises here about 9 feet. The largest of these canals, which approaches tho old English factory and the palace of the governor, situated about two miles from the river, is continnally crowded with amall vessels. The town has scarcely any public buildings that deserve notice. It has khans and coffee-honses without number, a wretched Lummam (or bath), and npwards of forty mosques, of whieh one only is worthy of the name ; and this, with the palaee of the governor, and the old English factory, which are all contiguous to one another, are the only decent buildings in the place. The old English faetory, which was established at Bussorah by the East India Company, about the middle of the last century, ceased to exist with the expiration of the trading priviieges of the company. The building has now passed into private hands, and the British vice-eonsul, who protects our trading interests, resides at the modern village of Maghil, which has been built in a healthy position on the right bank of the river a few miles from the Turkish town. The popnlation of Bnssorah is a heterogeneons mixture of all the nations in the East, and consists of Turks, Araks, Indiana, Persians, Armenians, Jacobites, and Jewa.

The Arabs coustatute toe prinerpal class; and the Tnrks, though they are masters of the town. are almost the least numerous.

Bussorah is a great emporium of Iadian commerce. Sia or eight English ships arrive in the course of a year from India; but the chief part of the traffid is earried on in Arabian bottoms; and the merchants of Muscat possess some of the finest vessels that navigate the Indian seas. From varions parts of Hindustan Bussorah receives silk, muslin, linen, white and blue cloths for the clothing of the Arabians, gold and silver stufts, rarious metals, sandalwood, and indige; pearls from Bahrein, and coffee from Mocha; shawls, fruit, and the precious metals from Persia; spices from Java; and European commodities, which are searce and dear, from different parts. The trade with the interior is conducted by means of caravans to Aleppo aind Baghdad, whence the goods are conveyed to Constantinople. The returns are made in Indian goods, bullion, pearls, dates, copper, raw silk, gall-nuts; and the horses, which are rery strong and beautiful, are exported in large numbers by the English.

The situation of the town is unhealthy, owing to the inuadations of the river, from which noxious exhalations arise; and straugers are commonly attacked by fever after a short residence. The adjuining country is fertile, producing, besidea rice, wheat, barles, and dates of different species, a rariety of fruits and regetables, sueh as apricots, apples, figs, olives, pomegranates, and grapes ; and cabbages, broceoli, lettnce, onioas, jease, beans, and truftles, in vast quantities. There are whole fields of roses, which tho inhabitants cultivate for the purpose of making attar. The liquorice plant also grows amidst the palm groves on the borders of the river.

The city of Bussorah mas originally founded by Onar, 636 a.d., on a canal eight miles S.W. from its present site, where the town of Zobeir norr stands; and ita situation was so favonrable for commerce that in a few years it beeame a large and flourishing city. The canal, however, soon became useless, and the city was abandoned. The present city was conquered by the Turks in 1668, and since that period has been the scene of many revolutions. It was taken in 1777, after a siege of eight months, by the Persians nuder Sadiek Khan. In abont a year it fell again into the hands of the Turks, who were again deprived of it by the sheikh of the Montefle Arabs. The town was in the October following recovered by Soliman Pasha, who encountered the sheikh on the banks of the Euphrates, and pnt him to flight ; and it has since remained in the hands of the Turks.

Under the government of the Turks Bussorab has dwindled down to a mere aceond-rate town, the permanent population at preseat (1876) being certainly under 10,000 . In the river thero is perhaps a greater show of, activity just now than in past times, as the Turks employ a considerable naval force in the Persian Gulf to support their land operations against the Arabs, and the Bussorah roads form the headquarte; of the squadron, while two or three Turkish steamers also ply i pon the river, and have their depots upon its bank. There are two steamers also belonging to the Tigris and Euphrates Navigation Company (besidea a war steamer maintained by the British Government in virtue of a speeial firman), whieh convey merchandise and passengers between Baghdad and Bussorah; and, lasily, the vessels of the British India Stenm Navigation Company visit Bussorah every week from Bombay and Bushire; but as the trade fostered by these means is entirely one of transit, it confers little benefit on the town or its inhabitants. The village of Maghil, however, on the banks of the Euphrates, at the distance of three or fonr miles from Bussorah, where the wharves and store-honse of the European
companies are situated, is becoming a consulerable place, and may be expected ultimately to supersede the Torkisb town The terminus of the Constantiuople line of telegraph, which furnsbes an alternative means of communication between England and India, is at Fan, near the mouth of the Euphrates, and at the distance of abour 60 miles below Bussorah a good deal of attention bas of late years been directed to Bussurab in cunnecton with the proposal for a railway to unte the Mediterranean with the Persian Gulf. either by way of the Pigrs or Euphrates valley In no case, bowever would it he destrable to estabhst the termuns of such a rallway at Bussorab, where the clinute would prove most destructive to European lite The most eligible site for the terminus would be eatber at Kowat on the sea-coast. 50 mules south of Bussurab, or at the Persian town of Mobamreb, where the Karun River disembogues 1nto the Euphrates Quate recently the Turkish Govern. ment bas decided to dissociate the Bussorab district. with its dependenetes, from Baghdad, and to attach it to the newly-created province of Arabra, the headquarters of the pashalic being established at El Hassa; but such an arrangement is not likely to be permanent. (I C r.)

BUSTARD (corrupted from the Latin Ains tarda, though the application of the epithet ${ }^{1}$ is not easily understoud), the largest British land-fowl, and the Otes tarda of Linnæus, which formerly frequented the champaign parts of Great Britain from East Lothan to Dorsetshire, but of which the native race is now extirpated Its existence m the northern locality just named rests upon Sibbald's authority (circa 1684), and though Hector Boethius (1526) unmistakably described it as an inbabitant of the Merse, no later writer than the former has adduced any evidence in favour of its Scottish domicile. The last examples of the native race were probably two killed in 1838 near Swaffhan, in Norfolk, a district in which for some years previunsly a few benbirds of the species, the remmant of a plentiful stock, bad maintaned therr eastence, though no cock-bird bad latterly been koown to bear them company In Sutfolk, where the nerghbourbood of Icklingham formed its cbicf baunt, an end came to the race in 1832, on the wolds of Yorkshire about 1826. or perbaps a little later, and on those of Lincolnshire about the same time Of Wiltsbire, Montagu, writing in 1813. says that none had been seen in their favourite haunts on Salisbury Plann for the last two or three years. In Dorsetshire there is uo evidence of an indigenous example having occurred since that date, nor in 'Hampshire nor Sussex within tho present century. From other English counties, as Cambridgeshire, Hertfordshire, and Berkshire, it disappeared without note being taken of the event, and the direct cause or causes of its extermination can only be inferred from what. on teatimony cited by Mr Stovenson (Breds of Forfolk; ii Pp. 1-42), is known to bavo led to the same result in Norfolk and Suffolk. In the latter the extension of plantations rendered the country unfitted for a bird whose shy naturo could not brook the growth of covert that wight shelter a foe, and in the former the introduction of improved agricultural implements, notably the corn-drill and the horse-hue, led to the discovery and generally the destruction of every nest, for the bird's chosen breeding-place was in wide fields-"brecks," as they are locally called, -of winter-corn. Since tho extirpation of the native race the Eustard is known to Great Britain only by occasional wanderers, straying most likely from the open country of Champagne or Saxmy, aud occurring in one part or another of the United Kingdom some two or thrce times every three or four years, and chieby in midwinter.

An adult male will moasure nearly four feet from tho
It may bo open to doubt whether tarda is bero an adiective. - voral of the mediaval naturalists uged it as a substintive.
tip of the bill to the end of the tail, and its wings have an expanse of elght feet or more,-its weight varying (possibily through age) from 22 to 32 pounds. This last was that of one which occurred to the younger Naumann, the best brographer of the bird (Vögel Deutschlands. vii. p. 12). who, however, stated in 1834 that he was assured of the formet existence of examples winch had attained the mass of 35 ol 38 pounds The feruale $1 s$ considerablysmaller Com frated witb most ather birds frequenting open places the Bustard bas disproportionately short legs, yet the bulk of ita budy renders it a conspicuous and stately object, and when on the wing, to which it readily takes, its flight is not mfenor in majesty to that of an Eagle. The bill 13 of moderate length, but, owing to the exceedingly flat bead of the burd, appears longer than it really 19 . The neek. especially of the male in the breeding-season, is thick, aod the tath. in the same sex at that time of year 19 generally carried in an upright position, beug, however. in the paroxysins of courtship turned forwards, while the bead and neck are simultaneously reverted aloug the back. tho wings are lowered, and their sborter feathers erected In thas posture, whicb has been admarably portrayed by Mr Woll (Zool. Sketches, pl 45), the bird presents a very strange appearance, for the tail, bead, and neck are alnost buried amsd the upstanding feathers before named. and the breasta are protruded to a remarkable extent The Bustard is of a pale grey on the neck and white beneath, but the back is beantifully barred with russet and black. while in the male a band of deep tawny-brown-in some examples approaching a claret-coluur-descends from either shoulder and forms a broad gorget on the breast. The secondaries and greater wing coverts are white, contrasting vividly, as the bird ties, with the black primaries. Bath sexes have the ear-coverts somewhat elongatedwhence doubtless is derived the name Otis (Gi wirts)-and the male 1 s adorned with a tuft of long, white. bristly plumes, springing from each side of the base of the mandible. The fond of tho Bustard consists of almost any of the plants natural to the open country it loves, but in winter it wlll readily forage on those which are grown by man, and especialiy coleseed and similar green crope. To this vegetable diet mueb ammal matter is added when occasion ofters, and from an earth-worm to a field-mouse littie that lives and moves seems to come amiss to its alpetite.

Though not many birds have bad more writted about them than the Bustard, much remains to be determined with regarll to its economy. A moot point, which will most likely always remain undecided, is whether the Britist race mas mugratory or not, though that such is the hebit of the species in most parts of the European continent is beyond dispute. Equally uncertain as yet is the question whether it is poiygamous or not-the evidence being perhaps in favour of its having that uature. But one of the most singular properties of the bird is the presence in some of the fully-grown males of a pouch or gular sack, opening under the tongue. This extraordinary feature, first discovered by James Douglas, a Scotcb physician, and made known by Albin in 1740, though its existence mas hinted by Sir Thomas Browne sixty years before, if not by the Emperor Frederici II., has beea found waoting in examples that, from the exhibition of all the outward marks of virility, were believed to be thoroughly mature ; and as to its function and mode of development judgnent had best be suspended, with the understanding that the old supposition of it serving as a receptacle whenco the bira might supply itself or its companions with water in dry places must be decmed to be wholly untenable. The structure of this pouch-the existence of which in some cxammles has been well established,-is, howerer, rariable;
and though there is reason to believe that in one form or another it is more or less common to several exotic species of the family. Otidido, it would seem to be as inconstant in its occurrence as in its capacity. As might be expected, this remarkable feature has attracted a good deal of attention (Toưn."für Ornith. 1861, p. 153; Ibis, 1862, p. 107; 1865,-p. 143 ; Proc. Zool. Soc. 1865, p. 747 ; 1868, p. 741 ; 1869, p. 140; 1874, p. 471), and the restarehes of Professor Garrod, the latest investigator of the matter, shew that in an example of the Australian Bustard (Otis australis) examined by him there was, instead of a pouch or sack, sumply a highly dilated eesophagus-the distention of which, at the bird's wall, produced much the same appearance and effect as that of the undoubted sack found at times in the O. tarda.

The distribution of the Bustards is confined to the Old World-the bird so ealled in the Far-Countries of North America, and thus giving its name to a lake, river, snd cape, being the Canada Goose (Bernicla canadensis). In the Palearetic Region we have the O. tarda already mentioned, extending from Spain to Mesopotamia at least, and from Scanis to Moroceo, as well es a smaller speeies, O. tetrax, which oftea occurs as a straggler in, but .was ncver an inhabitant of, the Britisb Islands. Two species, knewn indifferently by the name of Houbara (derived from the Arabic), frequent the more southers portions of the Region, and one of them, O. macqueeni, though having the more eastern range and reaching India, has geveral tinies occurred in North-western Europe, and onee even in Eogland. In the east of Siberia the place of O. tarda is taken by the searly-allied, but apparently distinct, O. dybovskii, which wouid seem to occur also in Northern China. Africa is the chief stronghold of the family, nearly a acore of well-marked epecies being peculiar to that continent, all of which bave been by later systematists separated from the genus Otis. India, too, has three peculiar species, the smaller of which are there known as Flericans, and, like some of their African and one of their European cousins, are reraarkabla for the ornamental plumage they assume at the brecding-season. Neither in Madagasear nor is the Malay Archipelago is there say form of this fomily, but Australia possesses one large species already nsmed. Fron Xenophon's dajs ($\mathbf{A n a b}$. i. 5) to our own, the flesh of Bustards has been esteemed as of the highest flavour. The Bustard has long been protected by the game-laws in Great Britain; but, as will bave been seen, to litile purpose. A fertattempts have been made to reinstate it as a denizan of this country, but none on any scals that would ensure suceess. Msor of the older suthors considered the Bustards allied to the Ostrieh, a most mistakea viem, their affinity pointing apparently tewards the Cranes in one direction and the Plovers in another.
(A. ल.)

BUSTO ARSLZIO, a town of Ytaly, is the prorince of Milan and distriet of Gallarate, about 19 miles N.W. of the city of Milan by rail. Its church of Santa Maria was planned by Bramante, and centains frescoes by Gaudenzio Ferrari ; and St John'a is also a noble buildiag. Cotton is manufaetured in the town, and the vine is cultivated in the neighbourboed. Pepalation in 1870, 12,909.

BUTADES, wroogly ealled DibuTades, a Greek modeller in clay, whom fable deseribes as the first who modelled the humsn face in that material. Thastory is that his daughter, smittea with love for a youth at Corinth where they lived, drew upon the wall the outline of his shadow, and that upon this outlina her father modelled a face of the youth in clay, sud baked the model along with the clay tiles which it was his trade to make. This model was preserved in Corinth till Mummius sacked that town. This incident led Butades to orament the ends of roof-tiles with human faces. a practice which is attested by numerous existing
examples. He was a native of Sicyon, aod probably lived about 600 b.c., at whieh date Corinth seems to have been a flourishing centre of morking in clay.
BUTCEER-BIRD, a name- frequently given to the Slrike family of Birds (Laniada), and particularly to the Great Grey Slrike (Lanius exculitor). See Surage.

BUTE, Cousty of, is composed of three groups of islands which lis in the Firth of Clyde, betwixt the cousts of Ayrshire on the east, and Arcyllshire on the north and west, viz., Bute, from which the county takes its name, with Inchmarnoch, 3 nuile to westward; the two Cmubraes, less than a mile apart; and Arran, with the Holy Isle and Pladda islet, separated from caeb other by about a mile; the groups themselves being divided by channels from five to eight or ten miles in width. The area of the county is about 225 square miles. Before the application of steam to navigation and the introduction of the railway system, the voyage from Glasgow to Bute, Cumbrae, or Arran was always tedious and disargeeable, and sonetimes fraught with peril, being performed in small and generally open sail-beats, often occupying days, and occasionally even weeks; nuw, by rail and steamer, the several islands can be reached in an hour and a half or two hours from Glasger. In consequcuce of those fasilities, and their acknowledged salubrity of elimate, benuty and sublimity of scenery, and scientific and listoric interest, the chief islands of Buteshire have for years attracted increasing numbers of tourists, artists, and men of science from all parts of the world. Buteshire, with the execption of aome balf-dozen small cstates, is in the hands of four great proprietors. Arran, IIoly Iele, and Pladda Lelong to tho duke of Harailton, and Bute nnd Inchmarnoch to tho noble marquis whe derives his title from the former. The Larger Cumbrae is the property of the earl of Glasgow and Lerd Bute; and tho Lesser Cumbrae, with its single farm, belongs to the earl of Eglinton. The proprictors of Bute and the Larger Cumbrae,-whose residences are respectively Mount Stuart, a few miles from Rothesay, and the Garrison, a handsome marine villa in the beart of Mil!-port,--have given every eneouragement to feuing and to all public improvements ; consequently the beautiful water-ing-places in their vicinity bave grown rapidly in population and importance. The cenisus of 1871 gircs the resident population of Euteshire at $16,974,7623$ males and 9354 females. Of these 10,094 were in Bute, 5259 in Arran, and 1624 in the Cumbraes. Since then the numbers aro known to bave largeiy increased, snd in summer the population must be vastly greater. The electoral roll, which grows of course with the growth of the better class of feuars and householdcrs, numbers at present 1150 voters. Prior to 1832 Buteshire, alternately with Caithness-shire, bent a member to Parliament,-Rothesay enjoying at the aame time the privilege of sharing a rcpresentative with Ayr, Campbelton, Inveraray, and lrvine. On the passing of the Reforra Bill of 1832, Rothesay was morgod in tha county, which since then has had a member to itself. Buteshira and Penfrewshire form one aherifdon, with a sheriff-substitute resident in Rothesay, where are also situated the county buildings, including the court house, prisnn, and public offices. The circuit courts are held at Inveraray.

Bute, the most important of the several islands in the Firth of Clyde which censtitute the county of the same name, is situated abont 18 milcs mest of Greenock, and 40 by water from Clasgow. It is about 15 miles in length, estending from the pieturesque "Kyles"-the narrow winding strait which separates the island on the north from the distriet of Cowal-to the Sound of Bute, about 8 miles in width, which separates it on the south from Arran. In broadth the island is ungqual, from the deen indentations,
on both sides, of its numerous bays, but it averages from 3 to 5 milcs, having ou the east the Cumbraes 5 miles and the Ayrshire coast 8 miles off, and on the west Inchmarnoch (with an area of 675 acres) close at hand, and Ardrishaig, the bighway to the Hebrides, within little more than two bours' aail of Rothesay.

The island bas an area of 31,161 acres, two-thirde of which are arable, the remainder cousisting of bill-pesture, plantinga, moors, and abeets of water. Of the latter there are six. The largest, Loch Fad, 3 miles frons Rotbesay, is nearly 3 miles in lefigth and about mile in breadth. From this copious bource the Rothesay cotton-spinming inill, the first establishment of the sort erected in Scotland, derived by gravitation its propelling puwer. The mill continued in active operation, giving employment to some loundreds of people, until a few years ago, when, from the machinery having become antiquated and other causes, it ceased to be remunerative, and was closed. Tbere are still two factories in the neighbourbood, with more inodern machinery, for the weaving of eloth, but they are driven by steam-power. Loch Fad bas a peculiar iuterest attaching to it, from baving, on its western bank, the cottage built in 1827 by Edmund Kean, the great tragedian, who there found it "glorious through the loopholes of retreat to peep on auch a world." The cottagc, after Kean's death, fell into the hands of Mr J. 1. Neilson, the ingenious inventer of "the bot-blast," and is now the property of Lord Bute. Notwithstanding the change of hands, the drawing-roem is atill retained precisely as kean left it. Loch Ascog, within two miles of Rothesay, is less than Loch Fad, but quite as useful. It covers an area of 72 acres, and aupplies the inbabitants of Rothesay witb excellent water for domestic purposes. Quien Loch covers 54 acres, Greenan Loch 12, Loch Dhu 9, and Lochantarb 5 acres. The climate of Bute is mild, genial, and healthful, and is likened, not unfrequently, to that of Devonshire or of Montpellier. The mountains of Argyll and the peaks of Arran breaking the clouds as they pass from the Western Ocean. less rain falls on Bute than on any other part of the west coast; and the rea-breeze, generally blowing from the west aad south, keeps the air cool in summer, and prevents anow from remaining or frost from continuing long in winter. The aoil of Bute, for the most part light and gravelly, produces, under skilful treatment, excellent crons, partieularly of potatoes, which, being readily disposed of by the acre while growing, are conveyed in barrels day by day to the Glasgow market. The farmers are a respectable class of men, intelligent, able-bodied, and long-lised Coal bas been found in the island, but of inferior quality aad doubtful quantity. Supplies of this indispensalile mineral are therefore brought from the bields of Ayrsbire and Lanarkshire. Native limestune has beeo burned and used, but of late years it has given way almost entirely to Irish lime, which is catensisely imported for bulding and maduring purposes. Of soft red sandstone, slate, and Whinstone there is no lack, but they are cbiefly used in the building of dykes and the gables and back walls of tene. ments, white sandstone and slates being largely imported for the front elevations and roofing of the better class of bouses, which are now rapidly iocreasing in number. At Kilchattan there is an abundance of auperior clay, and a thriving brick and tile work. Granite of a grey complexion, susceptible of a high polish, is alao fouvd at Kilchattan.

The islands of Bute and Inchmarnoeb, excepting the amall estates of Ascog and Ardbeg, the burgh ladds, and one or two trifling holdings adjoining the town, belong to the marquis of Bute, whose favourite seat, Mount Stuart, is four miles from Rothesay on the eastern shore. The bouse, for which a much better site, commanding a
vew all round the island, might have been found, "as begun in 1719 by the aecond earl, and finished after bis death, in 1723, by Lady Bute, a daughter of the first duke of Argyll. It is a plain unpretentious mansion of moderate dimensions, reccntly much improved internally by the present marquis.

To the geologist, Bute offers little attraction as compared with Arran ; yet the masses of conglomerate on the beach and forming the bold cliffs at Craigmore; the dykes of trap which crop up stribingly through the red sandstone and conglemerate at Ascog, and which may be traced shoreward towards Bugany Point and across the island to Ettrick Bay; and the vitrified forts at Dunnagoil (Garrochbead) and Island-bui (Kyles), Whether the result of volcanic action or only of beacon fires is doubtful,will not be found unwortby of his notice. To the antiquary and the student of medreval history Bute offers ample scope. The Druidical monuments, and the barruws, cairns, and cists are numerous tbroughout the island, as are also the remains of ancient chapels. For an account of Rothesay. Castle and its deeply interesting bistorical associations, see Rotafsay. Anotber- ibject of interest is St Plane's chapel, picturesquely sttuated in a sheltered nouk in the parssb of Kingarth. It is believed to lave been founded in the reign of Dalcolm Canmore, towards the close of the 11th century, on the site of a much older edifice. This seems nut improbable, as St Dlane, whe is said to bave been a nephew of St Cattan, lived in the latter half of the Gth century. At all events, the names of both saints have been perpetuated in connection with the chajel and the neighbouring Lay of Kilehattan. In the year 1204, Walter, Steward of Scutlaud, auxious "for the souls of. kings David and Majcolm, and the souls of bis own father and mother," as well as for "the salvation of binself and beirs," granted a charter conveying St Blane's, with all its valuable Belongings in Bute, "to the monastery at Paisley, and the monks serving God therein." Time out of mind the chapel has been a ruin, surrounded by numerous graves of the forgotten dead; and baving passed long ago from the costody of the church, it again belongs, with the lands attached to it, to a Stuart, Lord Bute.

There are still extant and habitatle several old mansions in Bute, one or two of which may be ponted out. The most considerable is Names Castle, three miles north-west of Rethesay. It stands in an extensive well-wouded park oploste the fine Lay of the same name. It was long the residence of the Lannatyde famly, a member of u Lich, Lord Bannatyne, a judge of ithe Court of Session, projected the Highland Society in 1784, and founded tho vilhage of Port-Rannatyue, an abode of hardy fisbermen, and now also a flourishing wate:mgryace. Кames estate and castle are now the property of Lord Bute. Ascog llouse, about three miles from Nothesay in the opposite direction cuastwise, is another old mansion in the Scottish baronial style. Standing on a richlywooded beight, it commands extensive riews of the firth, and whether regarded from the road or the water contributes largely to enhance the beanty of permaps the finest landscape in the island. The estate of Ascug belunged at one time to a branch of the Bute fanily. In 1815 it was purchased by the late Mr Robert Thom, C.E., of the Rothesay spinning. mill, who acquired celelirity by successfully engineering the introduction of water to the town of Greenock.

The island is divided inte four parisbes,-Rothesny, New Rothesay, Kingarth, and North Bute.

Rothesay, with its population of 7760 souls, bas two Established churches, with a Gaelic chapel, two Free churches, with a Gaelic chapel, one United Presbytcrian church, and three clapels - Episcopalian, Baptist, and Roman Catholic; while at Kingarth there are two
churches, Established and Free; at Aseog one, a Free church ; and in North Bute an Established and a Free church. The school accommodation is likewise ample, both in towu and country.

Touching the origin of the name of Bute, there is considerable doubt. It has been aritten Both, Bote, Boot, and Betis, and may thus be derived from "Both," which is the Irish for " a cell," St Brendaa, an Irish abbot, haviag, it is said, cansed a cell to be ereted in the island in the 6th century; or it may have been derised from the old British words "Ey Budh," or the Gaelie words "Ey Bhiod," signifying the "island of corn," or "istand of food," from its fertility as compared with the neighbouring islaads and Highland districts. Although now all but obsolete, Gaelie was formerly the current language spokea. The Butemen io fighting tines were called Brandanes, a distinction which they prized; and the numerous small landed proprietors, in virtue of a charter granted them in 1506 by James IV., took the title of baron, which became hereditary in their families. The title is now all but extinct, the lands which conferred it having passed by purchase from time to time, with one or two trifling exceptions, into possession of the Bute family. The descendants of the Brandanes were among the earliest to take part is the voluateer movement, by furnishing a couple of batteries to Lord Lorne's battalion of Argyll and Bute Artillery Volunteers, as well as a company to the Renfrewshire Ritles.

Great improvements bave been recently made and are now (1876) in pregress in Bute. The renovation, all but completed, of the grand old castle, and the formation of the esplanades of Rothesay,-together with the erection of an aquarium, and of an iroo pier, where the accommodation was wabted, at the entrance to the bay, will tend, with other appreciated adrantages, to give the island and shores of Bute a higher place than ever among th. attractions of the Clyde.
(R. п.)
bute, Joan Stuart, tbird Earl of (1713-1;92), fer a brief time prime minister of Eagland, was born ie 1713, and was educated at Etos. Ilorace Walpole, whe was one of his contemporaries there, tells us that Bute "studied simples in the hedges about Twickenham." For many years he resided in the remote island of Bute, where he appears to have diligently studied mathematics, mechanies, and natural science. He married the daughter of Mr and the celebrated Lady Mary Wortley Montagu, ab alliance which aubsequently brought the large Wortley estates into his family. A mere aceident introduesd him at court; a ahower of rain interrupted a cricket mateh at Cliefden, and led to his services being required by the Prince of Wales. He received a bedchamber appointment in the housetold of the prince. Prince Frederick died, however, next year, and Lerd Bute lived in retirement. On the formation of a separate lousehold for the princess and the young princes, he received the appointment of grean of the atele, somewhat to the dissatisfaction of the old king, George II., who gave han the gold key of office in an ungracious way. In the household of the Prince of Wales Lord Bute acquired great influence over the mind of the youthful heir of the throne and his mother. The scandal of the last century associated his name mest intimately with tha; of the princess, but fer this cruel and persistent rumour here appears to be no feundation either in contemporary literature or in the large inedited Bnte MSS.

Lord Bute does not appear to have had much to do with the education of the future king and his brothers, which was ehiefy left in episcopal hands. Ho took however, some part in the direction of bisstudies, and is known to have read Blackstone's Commentaries, whes still in MS., with him. He seems also to have inculeated him with the aritings of Bolingbroke, whose theory was that a ling
shoud not only reign but govern, and who had sketched out the ideal of a patriot king. The constant language of the Princess Dowager, re-echoed by the groom of the stole, was "George, be king!" In 1760 George If. died, and the goung king proceeded to put in practice the teachings he had received. This marked an impertant era in constitutional histery. Then begas the era of the "king's friends;" the royal will was to be supreme; the ministers were simply to act ministerially, giving expressioe to and carrying out the sorereign's pleasure. It is manifest that this doctrine weakebed the responsibility of ministers and the authority of parliament, and invited dangers in the direction both of absolutism and of anareby. Bute, however, nas prepared to carry out a scheme very like Strafturd's "Thorough" with zeal and energy. The day after the accession Bute mas made a privy counciller. A little later he was made secretary of state. Afterwards he was made Knight of the Garter. The king told the ministers, 'Lord Bute is my very good friend;" and the royal will was espressed through him. The extraordinary spectacle was witdessed, on the meeting of parliament, of a man with no political connection, who had never been in the cabinet, and who had never served in ony ministerial office, being practically prime minister. What he was in reality be soon became in name. In the Shellurue Corresponilence we find him asserting that thore was nothing which lie could not do. The ministers at the time of the accession, who beth in the Eastern and the Western World were maintanaing the war with France with the greatest glory and auccess, were William Pitt, the duke of Nemeastle, and Mr Legge. The last, Mr Legge, was ignomiaiously dismissed. Pitt could not carry the auppert of the cabinet in his proposal to declare war against Spain, and therefore resigned, -a resignation which probably prevented a dismissal. Such insulta were heaped upon the duke of Nercastle that, although he long clung to office, ho was at last compelled to resige.

As premier, Bute showed considerable ability. Lerd Mansfield said he never k new eny man come to business so late who did it so well, and he proved an estremely good speaker. He also gave cenaiderable patrenage to literature and art. He had several distinct points of policy. He wished to close the cra of war and make peace with France. He wisbed to aever the political conbection between England and Hanover. He wished to humble the dominant Whig families, and to make the king supreme. In all these objects he was to a considerable extent successful. 'The popular feeling against the peace was iotense. Still the minister had seeured a large majority in the House of Commess; but although be had spoken much of purity of election, it is not to bo denied that there had been estensive bribery in the elections. Confident of the royal support and a parliamentary majority, be seemed secure of a long lease of power.

Aiter being premier for eleven menths, to the astonisbment of all, be suddenly resigned. He was anable to face the black tide of personal unpopularity which set in se Learily against him. Wilkes's publication of the North Briton had buth expressed end intensified his unpepularity. He was in danger of being impeached; he was in danger of beieg torn in pieces by the mob. He went about disguised. He attempted to conciliate popularity by recalling Pitt to office; but Pitt would only return with his Whig friends, to which the king would not censent. Thes Lord Bute's courage gave way. His own explanation was, "The ground I atand upon is so hollow that I am afraid, pot only of ialling myself, but of involving my royal master in myown ruin." But although be resigned office, lis influence with the king was hardly impaired. It was the king's cuatom, at least for some time, to write a minute daily journal of
socnts and transmit it to Lord Bute. Both Grenvile who succeeder hin, and Rockingham who succeeded Grenville, regarded him with the utmest jealousy. Grenville made it an absolute condition that Bute should retire from the presence and counsels of the young king. He retired to Luton; hu afterwards travelled on the Continent under the name of Sir John Stuart He complaned bitterly that the was not allowed "to cnjoy that peace, that liberty, which is the birthright of the meanest Briton, but which has beeu long denied me."
The influence of Lord Bute over the king was great for e time, hut it has been much exaggerated. After a few ycars it seems to bave declined altogether. Beth the king and Lord Buto soon disclatmed its existence, and there is no lack of corroboratory evidence But it was impessible to eradicate the notion that there was a back-stars influenco personified in Lord Bute. He was denounced in popular addresses before the king himself as a betrajer of the constitution, and mebs regularly broke his windors. Wilkes reviled hiin ; Junus thuodered against him. Lord Chathan declamed aganst him as one bebind the throne greater than the throne itself. For twenty years be was regarded with invncible bestility and suspicion, yet we find him complaining that be had not the influence of an alderman in obtaining a position for his son. Horace Walpole gives a curious account of an offer being made to Chatham shortly before his denth of making him premier with a dukedom, he bimself beng a secretary of state. The facts are not well ascertained, but Lord Mountstuart, afterwards first marquis of Bute, wrote to assert upen his honour that his father, Lord Bute, assured him that he had not theught of coming into place again
Lord Bute bad purchased an estate at Lutoo io Bedfordshire, where Adams, the Scettish architect, had built him a magnificent residence. Here he formed an immense library, a superb collection of astronomical aud philosophical instruments, and an admirable gallery of pictures, which are preserved in a large house appropristed to them in Warwick Square, London. On the summit of a plain Tuscan pillar in the grounds is an inscription in honour of his great friend and benefactress the Princess Dowager. He took great delight in architceture, and among other edifices built himself a marine villa on the edge of the chaf, in Hampshire, overloekiag the Needles and the Isle of Wight. He is said to have been an admirable tutor and father to his children, and to have taken a greater pleasure in simple, natural delights than te could have found in courts. His death was occasioned tarough that intense love of uatural scicace which had followed him through life. Seeing a new plant on the cliff be climbed towards it, and received a severe fall, which brought on an illness of which he dicd.

The eleven menths' premiership, during which he was mayor of the palace, was a singular cpisode in his prolonged life, -a remarkable and uncenstitutional experiment in pelitice which has never been repeated. Lord Bute posseased great virtucs, great energy and ability, and was as able a premier as Newcastle, Grenville, or Rackingham. But the royal favourtism on which he relied proved the greatest bar to his political success, and has left a slur, exaggerated, but not altogether ill-deserved, on his memory. (F, A.)

BUTLER, Alban (1710-1773), a bagiologist, was born in Northampton in 1710. After completiug his education at the Roman Catholic college at Douas, he was appointed professor of philosopbs, and afterwards professor of divinity, In 1745 he travelled through Frauce and laty in company with the earl of Shrewsbury and seme other gentlemen. On his return he was eent as momber of a mission to Stafforashire, but was soon afterwards appointed clayplain to the duke of Norfolk, whose nepher he educated and
ascompanitd ou a Contineatal tour. After returaing tc England be was made president of the English college at St Omers, where he remained till his deatb in 1773 . His great work, the Lives of the Saints, was first published in 5 vels. 4 to, 1745 , and has passed through many editions. It exhibits great industry and research, with considerable power of expression, and is in all respects the best work of its kind in English litcrature.
BUTLER, Charles (1750-1832), nephew of the preceding, a miscellaneous writer, was born at London in 1750. He was educated at Douay, and iu 1775 entered at Lincoln's Inn. He had considerable practice as a conveyancer, and after the passing of the Act Geo. III. c. 32 was called to the bar in 1791. In 1832 he received the silk gown, aud was made a bencher of Linceln's Inn. He died on the 2d June in the same year. His literary activity was enormeus, and the number of his published works is very great. The most mportuut of them are the Reminuscences, 1821-1827; Horce Bithicce, 1797, which has passed through several editons, Horce Jurdicce Subseciva, 1804; Book of the Roman Catholic Church, which was directed against Southey and excited some controversy; lives of Erasmus, Grotius, and some others. He also edited his uncle's Lives of the Sannts and Fearne's Essay on Contzngent Remainders, and completed Hargrave's edition of Coke upon Littleton.
butler, James, Dure of Opmond. See Ormond.
BUTLER. Josepy, Bishop of Durham, one of the most distngusbed writers on theology and ethics, and perhsps the man of greatest intellectual pewer in the English church during the 18th century, was born at Wantage, in Berkslire, on the 18th May 1592. His father was a respectable livendraper of that to Nn, who bad retired from business some time before the birth of Joseph, his youngest son. The family belenged to the Presbyterian community, and it was their wish that young Butler should be educated for the ministry in that church. The boy was placed under the care of the Rev. Philip Barton, master of the grammar echool at Wantage, and remained there for some years. He was theu sent to a dissenting academy at Gloucester which was afterward removed to Tewkesbury. The beadmaster was Mr Samuel Jones, a man of considerable abilities, several of whose pupils afterwards attained to eminence in the church. Butler's fellow-student and most intimate friend was Secker, who aftermards became archbishop of Canterbary.

While at this academy tro important events occurred in Butler's Lifo. He gradually became dissatisfied with the principles of Presbyterianism, and after nuuch deliberation resolved to join the Church of England. In this resolation his father reluctantly acquiesced. About the same time he began to study with care Clarke's celebrated Demonstration of the Being and Attributes of G ou, which had been published a few years previously. With great modesty and secrecy Dutier, who was then in his twenty-secend year, wrote to the author propounding certain difficulties with regard to the proofs of the unity and omnipresence of the Divine Being. Clarke anssered his unknown opponent with a gravity and care that showed his high opinion of the metaphysical acutencss displayed in the objections, and published the correspondence in later editions of the Demonstration. Buther acknowledged that Clarke's reply satisfied him on ono of the points, and he subsequently gave his adbesion to the other.

In March 1714 he was cutered at Oriel College, Oxford Little is known of his life tht the university, his most attached fricud was Edward Talhot, son of Dr William Thabot, afterwards Fishop of Durham. In 1718, on the recommendation of Tathoi and Clarke, he was neninsted preacher at the Chapel of the Rolis, and continued there till 1726. In 1721 he lial been oppointed by Dishop

Tallot to the living of Houghton; and in 1725 bis kind patron presented him to the wealthy rectory of Stanhope. In the following year be resigned his preachership at the Rolls, and published the first edition of the Sermons.
For nearly eight years be remained in perfect seclusion at Stanhope, and our information as to his gencral mode of life is exceeding!y scanty. He was only remembered in the neighbourbood as a man much loved and respected, who irsed to ride a black pony very fast, and whose knomn benevolence was much practised upon by beggars. In 1733 he was made chaplain to Lord Chancellor Talbot, and in 1736 prebendary of Rochester. In the sarue year he was appointed clerk of the closet to Queen Caroline, and began to take part in the brilliant netapbysical society which she loved to gather round her. He met Berkeley frequently, but in bis writings does not refer to hum.
In 1736 appeared the Analogy, which at once took its place as the completest answer to the general deistical reasoners of the times, and as the best defence of rcrealed religion.
In 1736 Queen Caroline died; on her deathbed she recommended Butler to the favour of her husband. George, howeser, had not his consort's partiality for metaphysics, and seemed to think bis obligation sufticiently discharged by appointing Butler in 1738 to the bishopric of Bristel, the poorest see in the kingdom. The severe but dignified detter in which P ::tler signified his acceptance of the preferment, must bave shown him that the slight was fejt and resented. "wo gears later the bishop was presented to the rick deaviery of St Paul's, and in 1746 mas made clerk of the closet to the king. In 1747 it is said tho primacy was offered to 3utler, who declined to accept it, saying that "it wes too la etor bim to try to support a faling church." The story has not the best authority, and though the desponding tone of sone of Butler's writings may give it colour, it is not in harmony with the rest of his life; for in 1750 be accepted the see of Durhan, vacant by the death of Dr Edward Chandler. His charge to the clergy of the diocese, the only charge of his known to us, is a weighty and valuable address on the importance of external forme in religion. It gare rise to a most absurd rumour that the bishop had too great a leaning towards Romanism.

Of his life at Durbam few incidents are known. He was very cbaritable, and expended large sums in buitding and decorating his cluucch and residence. His private expenses were exceedingly small. He did not long survive his promotion. Shartly after the change to Durban his constitution began to break up, and be died on the 16th June 1752, at Bath, whither he bad removed for his health. He was 'Juried in the cathedral of Bristol, and over his grate a monument was crected in 183.1, with an epitajh by Southey. According to his express orders, all his MSS. were burned after bis death.

Butler was never married. His personal appearance has been sketched in a iew lines by Hutchinson:-" He was of a most revereud aspect; his face thin and pale; but there was a divine placidness which inspired rencration, and expressed the most benevelent mind. His white hair bung gracefully on bis shoulders, and his whole figure was patriarchal"

Underneath the meagre facts of his life, cked out by the few letters left by him or anecdotes told about him, there can be traced the outlines of a great but somerbat serere spirit. He was on eariest and deep thinking Christian, melanctoly by tem perament, and grieved by what seemed to him the bopelessly irreligious condition of his age. Ilis intellect was profound and comprebensive, thoroughly qualified to grapt the with the deepest problems of metathyaics, but by nat ural preference occupying itself mainly with the practical and moral. Man's conduct in life. not
his theory of the universe, was what ieterested bim. \#is style bas frequently been blamed for its obscurity and difficulty. These qualities, bowever, belong not so much to the form as to the matter of his works. The argumente are invariably compressed, aud can never be taken individually. All are parts of one orgatic whole. Constant attention is thus required in order to grasp the relations of each isolated piece of reasoning. Above all, Lowever, the special obscurity of the Analogy results from the diffenlty of keeping constantly in mind the exact issue involved. Eutler bimsels resulutely restricts his argument within the narrow limits prescribed for it, but it is dificult for any ordinary reader to keep this constantly in miod.

His great work, The Analugy of lieligion, Natural and Revealed, to the Course and C'onstitution of Nature, cannot be adequately appreciated unless taken in counection with tive circumstances of the period at which it appeared. It was intended as a defence against the great tide of deistical speculation, which in the apprekension of good men seemed Likely to sweep away the restraints of religion, and make way for a general rcign of liceace. Deism, as a fact in English thougbt, takes its rise manly from Locke, though traces of it are not wanting in Herbert of Cherbury. Whether or not the Essay on the Human Uniterstunding should be beld responsibie for its results is a dispoted question; but there can be no doubt that from the positions there laid down the general principles of the deists were drawn. Knowledge, in the strict sense of the word, bad been restricted by Locke to the perception of the relations among ideas; reason was defined as the faculty which compared and componded such ideas; and though with regard to God, faith was still admitted, the only part of the divine nature withdrawn from the province of knowledge was the inscrutable essence, which was equally unknown in the case of all real beinga. The whole ceurse of nature, including man's moral porers, was therefore suhjected to reason; Lifo must be regulated by reason. If, therefore, religion were to enter as ε factor into the conduct of man, it irust eshibit to reason the title deceds of its existence; Cbristianity must be reasonable. But with such a view of knowledge it was easy for the deists to make a successful nttack upon at least one portion of the Christian scheme. A msstery by its very definition involred eleanents not capable of ticing represented in clear ideas; it was thercfore unreasonable, and must bo absolutely rejected. Christianity not J ysterious is the title of Toland's manst famous work.

The conrse of their argument soun carried the deists farther. They were willing to grant the fact of God's existence; it was a dictate of reason. Bot they were not prepared to go beyond that, and the necessary deductions from it. The truths of natural religion thus tonk the form of inferences drawn from certaio premises ; they were displayed in a conerent, perfectly rational systcm. Revealcd religion, on the other hand, was confessedly imperfect, contained things not in arcordance with natural reason, inculcated duties on grounds of mere autbority, was not universally and completely known, and must therefore be rejected. As Tindal puts it, "No religion can come from a Being of infinite wisdom and perfection but what is absolutely perfect. A religion absolutely perfect can admit of no alteration, and can be capable of no aldition or diminution. If Ged bas givee mankind sucb a law, he must likewisc hare given them suficient means of koowing it; be would otherwise have defeatcd his own intent in giving it, since a law, so far as it is uninteligible, ceases to be a lar." It was against this whole tendency of thought that Butler directed his Analogy. The method and course of his argument will apnear more plainly when it has been considered what were the premises on which he proceeded, and what the objecs he had in riew.

Butler is a typical instance of the English philosophical mind. He will admit no speculative theory of things. To him the universe is no realization of intelligence, which $1 s$ to be deciphered by human thought ; it is a constitution or system, made up of undividual facts, through which we thread our way slowly and inductively. Complete knowledge is impossible; nay, what we call knowledgo of any part of the system is inherently imperfect. "We cannot have a thorough knowledge of any part without knowing the whole." So far as experience goes, "to us probability is the very guide of life." Reason is certainly to be accepted; it is our natural light, and the only facult: whereby we can judge of things. But it gives no completed system of knowledge, and in matters of fact affords only probable conclusions. In this emphatic declaration, that knowledge of the course of nature is merely probable, Butler is at oue with Hurne, and somo of has expressions are exactly paralleled in tho writiugs of the great sceptic, who was a most diligent student of the bishop's works. What can come nearer Hume's celebrated raaxim,-"Anything may be the cause of anything else," than Butler's conclusion, "so that any one thing whatever may, for aught we know to the contrary, be a necessary condition to any other?"

It is this strong grasp of the imperfect character of our knowledge of nature and of the grounds fur its limitation that makes Butler so formidable an opponent to his deistical conternporaries. He will permit no anticipations of nature, no a priori construction of experience. "The constatution of nature is as it is," and no system of abstract principles can be allowed to take its place. He is willing with Hume to take the course of experience as the basis of his reasoning, seeing that it is common ground for himself and his antugonists. In one esseutial respect, however, he goes beyond Hume. The course of naturo is for him an unmoaning expression, uuless it be referred to some anthor; and be therefore makes extensive use of the telcological method. This position is assumed throughout the treatise, and as against the deists with justice, for their whole argument rested upon the presupposition of the existence of God, the perfect Ruler of the world.

The premises, then, with which Butler starts are the eaistence of God, the known course of nature, and the necessary limitation of our knowledge. What does ho wish to prove? It is not his intention to prove God's perfect moral government over the world or the truth of religion. His work is in no sense a philosophy of religion. His purpose is entirely defensive; he wishes to answer objections that have becn brought against religion, and to examine certain difficulties that have been alleged as insuperable. And this is to be effected in the first place by showing that from the obscurities and inexplicabilities we meet with in nature we may reasonably expect to find similar difficultics in the ocheme of relgion. If difficulties bo found in the course arid constitution of nature, whose author is admitted to be God, surely the existenco of simitar difficulties in the plan of religion can be no valid objection agunst its truth and divine origin. That this is at least in great part Butler's object is plain from the slightest inspection of his work. It has reemed to many to be an l.nsatisfactory mode of arguing and but a poor defence of religion; and so much the author is willing to allow. - But in the general course of his argument a somexhat witer issue appeare He seeks to show not only that the difficultios in the systems of natural and revealed relgion have counterparts in nature, but also that tho facts of nature, far from being adserse to the prineiples of religion. are a distinct ground for inferring their probable truth. He endeavours to show that the balance of probability is entirely in favour of the scheme of religion, that this probability is the natural conclusion from an inspection of nature, and that, na religion is a matter of nactice, wo are
bound to adopt the course of action which is even probably the right one. If, we may imagine him saying, the precepts of religion are entirely analogous in their partial obscurity and apparent difficulty to the ordinary course of nature dis. closed to us by experience, then it is credible that these precepts are true; not only can no objections be drawn against them from experience, but the balance of probability is in their favour. This mode of reasoning fram what 19 known of nature to the probable truth of what is contained in religion is the celebrated method of analogy.

Although Eutler's wort is peculiarly one of those which ought not to be exhibited in outline, for its strength lies in the organic completeness with which the details are wrought into the whole argument, yet a summary of his results will throw more light on the method than any description can.

Keeping clearly in view his premises-the existence of God and the limited nature of knowledge,--Butler begins by inquiring into the fundamental prerequisite of all natural religion-the immortality of the soul. Evidently the stress of the whole question is here. Were man not imenortal, religion monld be of little value. Now, Butler does not attempt to prore the trath of the doctrine; that proof comes from another quarter. The only questions ho asks are-Does experience forbid us to admit immortality as a possibility? Does experience furnish any probable reason for inferring that immortality is a fact $\}$ To the first of these a negative, to the second an affirmative answer is returned. All the analoges of our life here lead us to conclude that we shall continue to live after death; and neither from experience nor from the reason of the thing can any argument against the possibility of thas be drawn. Immortality, then, is not unreasonable; it is probable. If, he continues, we are to live after death, it is of importance for us to consider on what our future state may depend; for we may be sither happy or miserable. Now, whatever speculation may say as to God's purpose being necessarily universal benevolence, experience plainly shows us that our present happiness and misery depend upon our conduct. and are not distributed indiscriminately. Therefore no argument can be brought from experience against the possibility of our future happiness and misery likewise depending upon conduct. The whole analogy of nature is in favour of such a dispensation; it is therefore reasonable or probable. Further, we are not only under a government in which actions considered simply as such are rewarded and punished, but it is known from experience that virtue and vice are followed by their natural consequents-happiness and misery. And though the distribution of these rewards is not perfect, all hindrances are plainly temporary or accidental. It may therefore be concluded that the balance of probabulity is in favour of God's government in general being a moral scheme, where virtue and vice are respectively rewarded and punished. It need not be objected to the justice of this arrangement that men are sorely tempted, and may very easily be brought to neglect that on which therr future welfare depends, for the very same holds good in mature. Experience shows man to be in a state of trial so far as regards the present; it cannot, therefore, be unreasonable to suppose that we are in a similar state as regarcis the future. Finally, it can surely néver be advanced as an argument against the truth of religion that there are many things in it which we do not comprehend, when experience cxhibits to us such a copious stock of incomprebensibilities in the ordinary course and constitution of nature.

It cannot hare escaperi observation, that in the foregoing course of argument the conclusion is invarably from experience of the present order of things to the reasonableness or probability of some other system-of a future state Thu inference in nill cases passes beyond the field of
experience ; that it does so may be and as been advanced as a conclusire objection against it. The following sentences, from one of Hume's Essays, set forth this argument in a clear and forcible manner :--"What must a philosopher think oi those vain reasoners who, instead of regarding the present scene as the sole object of their contemplation, so far reverse the whole course of nature, es to reader this life merely a passage to something further?
Whence, do you think, can such philosophers derive their idea of the gods? From their own conceit and imagination aurely. For if they derise it from the present phenomena, it would never point to anything further, but must be exactly adjusted to them. That the divinity may possilly be endowed with attributes which we have never seen eserted, may be foverned by principles of action which we cannot discover to be satisfied,-all this will freely be allowed. But still this is mere possibility and bypothesis. We nerer can bave reason to infer any attritutes or any praciples of action in him, but so far as we Fnaw them to have been exerted and satisfied.... Are there any marks of distributave justice in the world? If you answer in the atirmative, I conclude that since justice here exerts itself, at is satisfied. If you reply in the negatire, I conclude that you bave then no reason to ascribe justice in our sense of th to the gods. If you bold a medium between affirmation and negation, by saying that the justice of the gods at present exerts itself in part, but not in its full extent, I answer, that you have no reason to give it any particular extent, but only so far as you see at at present exert itself." (Work3, ed. 1854, iv. 161-2, cf. p. 160.) In short no argument from experience can ever carry us beyond experience itself. However well grounded this reasoning may be, it altogether misses the point at which Butler aumed, and $2 s$ indeed a misconception of the nature of analogical argument. Butler never attempts to ρ, rove that a future life regulated according to the requirements of ethical law as a reality; be only desires to show that the conteption of such a life is not irreconcilable with what we know of the course of nature, and that consequently it is not unreasonable to suppose that there is such a life. Hume, it will be observed, readily grants as much, though be hints at a formidable difficulty which the plan of the Analogy prevented Butler from facing, the proof of the existence of God. Butler seems willing to rest satisfied with his opponents' admission that the being of God is proved by reason, but it would be hard to discorer how, upon his own conception of the nature and limits of reason, such a proof could ever be given. It has been sald that it is no flaw in Butler's argument that he has left atheism as a possible mode of vering the universe, because his work was not directed aganst the atheists. It is, however, in some degree a defect; for his defence of religıon against the deists rests on a view of reason which would for ever preclude a demonstrative proof of God's existence.

If, howerer, his premises be granted, and the narrow issue bept in view, the argument may be admitted as perfectly satisfactory. From what we know of the present order of things, it is not unreasonable to suppose that there will be a future state of rewards and punishments, distributed according to ethical law. When the argument from analogy seems to go berond this, a peculiar difficulty starts up. Let it be granted that our happiness and misery in this life depend upon our conduct,-are, in fact, the rewards and punishments attached by God to certain modes of action, the natural conclusion from analogy would seem to be that our futare happiness or the reverse will probably depend upon our actions in the future state. Butler, on the other hand, secks to show that analogy leads us to beliere that our future state mill depend upon our present sonduct. _His argument, that the nunishment of an
imprudent act often follows after a long interral may be admitted, but does not advance a single step towards the conclusion that imprudent acts will be punished hereafter. So, too, with the attempt to show that from the analogy of the present life we may not unreasonably infer that pirtue and vice will receive their respective rewards and punishments liereafter; it may be admitted that virtuous and vicions acts are naturally looked upon as ohjects of reward or punishment, and treated accordingly, but we may refuse to allow the argument to go further, and to infer a perfect distribution of justice dependent upon our conduct here. Butler could strengthen his argument only by bringing forward prominently the absolute reguirements of the ethical consciousness, in which case he would have approximated to Kant's position with regard to this very problem. That he did not do so is, perhaps, due to his strong desire to use only such premises as his adversaries the deists were milling to allor.

As against the deists, however, he mar be allowed to have made out his point, that the substantial doctrines of natural religion are not oprosed to reason and experience, and ray be looked upon as crelible. The positive proof of them is to be found in revealed religion, which has disclosed to us not only these truths, but alzo a further scheme not discorerable by the natural light. Here, again, Butler joins issue with his opponents. Revealed religion had been declared to be notlining but a republication of the truths of natural religion (Tindal, Christianity as Old as the Creation), and all revelation bad been objected to as impossible. To show that such ohjections are invalid, and that a rerelation is at least not inpossible, Butler makes use mainly of his doctrine of human ignorance. Revelation had been rejected because it lay altogether beyond the sphere of reasun and could not therefore be grasped by human intelligence. But the same is true of nature; there are in the ordinary course of things inexplicabilities; indeed we may be said with truth to know nothing, for there is no medium between perfect and completed comprefiension of the whole system of things, which we manifestly lave not, and mere faith grounded on probability. Is it unreasonable to suppose that in a revealed system there should be the same superiority to our intelligence? lf we cannot explain or foretell by reason what the exact course of erents in nature will be, is it to be expected that we can do so with regard to the wider scheme of God's revealed providence? Is it not probable that there will be many things not explicable by us From our experience of the course of nature it would appear that no argument can be brought against the possibllity of a revelation. Further, though it is the province of reason to test this revealed system, and theugh it be granted that, should it contain anything jimzuoral, it must be rejected, yet a careful examination of the particulars will show that there is no incomprehensibility or difficulty in thens which has not a counterpart in nature. The whole scheme of revcaled principles is, therefore, not unreasonable, and the analogy of nature and natural religion would lead us to infer its truth. If, finally, it be asked, how a system professing to be revealed can substantiate its claim, the answer 1s, hy means of the historical cridences, such as miracles and fulfiment of prophecy.

It would be unfair to Butler's argument to demand from it asswers to problems which had not in lis time arisen, and to which. even if they had then cxisted, the plan of his work would not hare extended. Yet it is at least important to ask how far, and in what sense, the Analogy can be regarded as a positive and raluable contribution to theology. What that work has done is to prove to the consistent deist that no objections can be drawn from reason or experience against natural or revealed religion, and, consequently, tbat the thinge objeated to are not incredible
and may be proved by esternal evidenee. But the deisa of the 17 th century is a phase of thought that bas no living reality now, and the whole aspcct of the religious problem has been completely changed. To a generation that bas been moulded by the philosophy of Kant and Hegel, and by the historical criticism of Strauss and the later German theology, the argument of the Analogy cannot but appear to lie quite outside the field of controversy. To Butler the Christian religion, and by that he meant the orthodox Church of England system, was a moral scheme revealed by a special act of the divine providence, the truth of which was to bo judged by the ordinary canons of evidence. The whola stood or fell on historical grounds. A speculative construction of religion was a thing abhorrent to him, a thing of which be seems to bave thought the buman mind naburally incapable. The religions consciousuess dres not receive from him the slightest consideration, whereas it is with its nature and functions that the scientific theology of the present time is almost entirely occupied. The Aralogy, it would appear, has and can bave but little influence on the present state of theology; it was not a book for all time, but was limited to the controsersics and questions of the period at which it appeared
Thiroughout the whole of the Analogy, it is maniest that the interest which lay closest to Butler's heart was the ethical. His whole cast of thinking was practical. The moral nature of man, his conduct in life, is that on account of which alone an inquiry into religion 18 of importance. The systematic account of this moral nature is to bo fonnd in tho famons Sermons preached ut the Chapel of the Rolls, especially in tho first three. In theso sermons Butler has mado substantial contributions to cthical science, and it may be said with confidence, that in their own department nothing superior in value appeared during the long interval between Aristotlo and Kant. To both of these great thinkers he has certain analogies. Ho resembles the first in his method of investigating the end which human nature is intended to realize; be reminds of the other by the consistency with which he urholds the absoluto supremacy of moral law.
In his ethics, as in his thealogy, Butler had constantly in view a certain class of adversaries, enssisting partly of the philosophic few, partly of the fashionably-cducated many, who all participated in ouc common soode of thinking. The koy-note of this tendency had been struck by Hobbes, in whose philosophy man was regarded as a mere sensitive machine, moved solely by pleasures aml pains. Human nature had come to be looked upon as essentially selfish; disinterested actions were sucered at as impussibilities by the many, and were explained away into modifications of selfishness by tho scientific moralists. Cudworth and Clarke, it is true, lad tried to phace ethics on a nobler footing, but their speculations had leen of the abstract kind, which was always distasteful to Butler. They were not practical enough, were not sufficiently "applicable to the several particular relations and circminstances of life." lla desired to baso cthical law mot on abstract theory, but on the actual facts of human nature.
The fundamental view of things from which he starts in bis inquiry may be called the tolendugical. "Every wom, both of nature and art, is a system : bud as every particular thing both natural and artitiona is for sone use or purpose out of or beyond itself, one may ald to what has heen already brought into the idea of a system its conduciveness to this ono or more cnds." Ultimately this view of nature, as tho sphere of tho realization of final causes, rests on a theological basis; but Butler does not introduce prominently into his ctbics the specifically theological groundwork, and may be thought willing to ground his principle on experionce. The ethical question then is, as with Aristutle,
what is the relos of man i He is placed in the world with many courses of action open to him. What is that line of activity which is correspondent to, or is the realization of, his true nature 3 The answer to this question is to be obtained by an analysis of the facts of human nature; whence, Dutler thinks, "it will as fully appear that this our nature, i.e., constitution, is adapted to virtue, as from the idea of a watch it appears that its nature, i.e., constitution or system, is adapted to measure tinae." Such analysis had been already attempted by Hobbes, and the result he came to was that man naturally is adapted only for a life of selfishness,-his end is the procuring of ploasuro and the avoidance of pan. A closer examintion, buwever, shows that this at last is false. The truth of
 rally social, and that the full development of his beng is impossible apart from society, becomes marsfesi on the slightest examination of the facts. For whle self-love plays a most important $p^{\text {art }}$ in the human economy, tbere is no less evidently a natural principlo of benevolence, prompting actions which bave for their end the good of others. Moreover, among the particular passions, appetites, and desires there are somo whose tendency is as clearly tomards the general good as that of others is towards our own satisfaction. Finally, that principle in man which reflects upon actions and the springs of actions, which approves some and disapprores others, unmistabably sets the stamp of its approbation uron conduct that tends towards the general good. It is ilear, therefore, that wo wero made for soctely; man is ễor mo入ertoóv, and from this point of vies the sum of practical morals might be given in Butler's own words, - "that mankind is a community, that we all stand in a relation to caci chacr, that there is a public end and interest of society, which each particular is obliged to promote." But deeper guestions remain.

The thrcefold division into passions and afections, selflovo and benevolence, and conscience, is Butler's celebrated analysis of human nature. In the landling of the sereral parts he shows remarkable psychological power, and succeeds in obviating many of the difficulties drawn from the principles of the selfish theory of etbies. Ho is especially concerned to show that selfilove and benevolonce are ir no sense opposed to one another. This he does by examining the function of sclf-love and the relation it bears to the passions. The special desjres or affections are the expressions of wants in our nature which are to be satisfied by the possession of definite things. The objects of the desires are therefore the things anturally adapted to satisfy them, and not the pleazure which is the ac companiment of satisfaction. The passions tend towards their objects as ultimate ends, and are consequently unselfisl: or disinterested. On the other hand, self-love aims at procuring happiness for the individual; and happiness means the gencral satasiacion of desires. Selfluse is therefore distinet from ib" partichar desirws, but is completely dependent on them. Its end is the attainment of pleasure, and it desires external things only as means fowards this. In itself it las monalual content; it only directs the particular passions towards their ends, anu frequently, by fixing its attention too much upon its own mai, personal happiness, is in danger of defeating its own cmdeavours. Selflove is therefore distinct from and in no way opposed to tho particular affections which are themselves disinterested. Just as little opposition is there between self-love and disimerested benerolence. An atfection which finds its gratitication in some externa! object and resis in it as a final end, is in no sense opposec to self-love. This is one of the most important parts of. Butler's cthical psychology.
up to this point be has merely analyzed the various parts of human nature, and has pointed out the course of action corresponding to cach., But in a system or organism the parts do not exist for themseives but for the whole. The idea of human nature is not completely expressed by saying that it consists of reason and the several passions. "Whoever thinks it worth while to consider this matter thoroughly should begin by stating to hinself exactly the idea of a system, economy, or constitution of any particular nature ; and he will, I suppose, find that it is one or a vhole, made up of several parts, but jet that the several parts, ever cossidered as a whole, do not complete the idea, ucless in the uotion of a whole you include the relations and respects which these parts have to each other." This fruitful conception of man's ethical nature as an organic unity Butler ewes directly to Shaftesbury and indirectly to Aristetle; it is ite strongth and clearness with which be bas grasped it that gives peeuliar value to his system.

The special relation among the parts of our nature to whieb Butler alludes is the subordination of the particular passions to the universal principle of reflection or conscience. This relation is the pecubarity, the cross, of man; and when it is said that virtue consists in following nature, we mean that it consists in purswing the course of conduct dietated by this superior faculty. Man's function is not fulfilled by obeying the passions, or esen cool selflove, but by obeying conscience. That conscience has a natural supremacy, that it is superior in kind, is evident from the part it plays in the moral constitution. We judge a man to have acted wrongly, i.e., ennaturally, xhen he allows the gratificat:on of a passion to injure his happiness, i.e., when he acts in accordanee with passion and arainst self-love. It would be impossitle to pass this judgment if self-love were not regarded as superior ia kind to the passions, and this superiority results from the faet that it is tho peculiar provinee of self-love to take a view of the several passions and decide as to their relativo importance. But there is in man a faculty which takes into consideration all the springs of action, iucluding selflovo, and passes judguent upon them, approving some and condemning others. From its very nature this faculty is supreme in suthority, if not in power ; it reflects upon all the other active powers, aud pronounces abselutely upon their moral quality. Superintendency and authority are constituent parts of its very idea. We are under obligation to obey the law rovealed in the judgraents of this faculty, for it is the law of our nature. And to this a religious sanction may be added, for "consciousness of a rule or guide of action, in creatures capablo of considering it as given them by their Maker, not only raises immediately a sense of duty, but also a sense of seeurity in following it, and a sense of danger in deviating from it." Virtue then consists in following the true law of our nature, that is, conscience. Butler, however, is by no means very explicit in his analysis of the funetions to be ascribed to conscience. He calls it the Prineiple of Refesion, the Redex Principle of Approbation, and assifgns to it as its province the motives or propensions to action. It takes a view of these, approves or disapproves, impels to or restrains from action. But at tines ho uses language that almost compels one to attribute to bins tho popular visw of conseience as passing its judgments with unerring certainty on individual aets. Indeed his theory is weakest exactly at the point where the real dificulty begins. We get from lim no satisfactory enswer to the inquiry, What course of action is approved ing conscience? Everyone, he seems to think, knows what virtue is, and a philosophy of ethies is complete if it can be shown that such a course of aetion harmonizes with human nature. When pressed still furtier, ho points to justice, veracity, and the common grod as cumprelons: ee chice:
ends. His whole view of the morat goreroment led him to louk upon human nature and rirtue as connected by a sort of pre-established harmony. His ethical principle has in it no possibility of development into a system of aetuas duties; it has no content: Even on the formal side it is a little difficult to see what part conscience plays. It seems merely to set the stamp of its approbation on certain courses of action to which we are led by the various passions and alfections; it has in itelf no originating power. How or why it approves of some and not of others is left unexplained. Butler's moral theory, like those of his English contemporaries and successers, is defective frox not pereeiving that the notion of duty can only bave rea; siguifeance when connected with the will or praetical reason, and that only in reason which wills itself have we a principle capable of development into an ethieal system.

It has frequently been made the ground of objection th Butler's philosophy' of nan's raora! nature that he did no earry his analysis far enough, and that he accepted as ultimate facts what are really compounded of simple elements. His distiuction between self-love and the passions has in partieular been rejected on the plea that the end of appetite or desire is not tho oiject suited to satisfy it, but pleasure, or at least the removal of uneasi ness This last, however, is fairly ineluded under Butter: espression, "gratification of the passions." The remowh" of uneasiness no doubt results in pleasure, but it is 101 the pleasure that removes the unersiness. What is really sought is the olject that will satisfy us, that will fill up the want in our existenee, and with which we, so to speak, identify ourselves. With regard to the general oljection, even were it granted that self-love and benevolence aro developments from the passions, the relations between them would none the less bold good. Self-love is not superion to the passions, leecause it has been eriginally created their superior, but because under the sphero of its inspeetion and decision the particular desires are ineluded ; it stands aboyo them because they form the ohjects upon which it works. Further, growth or development, ieeply considered, does not invalidate authority or superiority in kind. The ethical consciousness, like all other parts of our nature, grows; it is only by degrees and slowiy than man eomes to the full recegnition of the reason that hies in him and forms his true personality. He is moral at first only $\delta_{i v a \mu c,}$ and the varying conditions of experience are requisite in ordes to afford the means of development from this mere poten. tiality. The customary observances and legal precepts, in whieh tho eommon ethical consciousness of humanity las given expression to itself, are being continually tested by comparison with the formal requirements of the inaer law of duty, and change gradually as they aro found at wariwns epoelis to be imperfect realizations of reason. The ulti. mate goal of all such progress is that state of ethical observance in which rights and duties come to be receg. nized as the outeome of buman personality, and the realiza, tion of true frecdom.
Bartect, Memoirs of Dutier, 1839. The best edition of Butler's works is that in 2 vols. Oxford. Editions of the Ahatogy are very nurnerous; that by Fitzgerald, 1849, contains a valuable Life and Notes. Whewell has published an edition of the Three Sermons, with 1niroduction. Tlie analyees of the Analogy by Duke (1847) and Wilkiason (1847), Chalmers's Prelcetions, (rosthumous works, ix.), Naptur's Lectures, (1864), and Swainson's Handbook way be cousulled with advantage. For the history of the religions work: contemporary with the Analog, see Lechler, Ges. d. Engl. Deis. mus: Fistison, in Essays and Revicus; Hinnt's Retigiove Thought in Einghand, vols. ii. nud iii.; A. S. Fmror, Critical Hisloisy of Fra Thought. For Butler's ethies see Mackiutosh, Whewell, and Jouff, roy. It is quite surprising that German historians of ethics should igaore Butler. Feuerieig, Fichte, Wutke, and Trendelenburg totally omit mention of lis natne ; Vorlander, in his Ges. d. Phic, Moral, Rechls- und Sluats-lei.te d. Engländer u. Pranzosm, de rotes three pagea to Butier and fitteen to Bo:ingbroke. (R. AD.;

BUTLER, SAMOEL (1612-1680), whose name appears to have been spelt Boteler in official documents to the end of his life, was born at Strensham on the Avon in Worcestersuire. He was haptized on the 8th of February 1612. His father, who was of the same name and was then churchwarden, is variously represented as a substantial farmer (owning a amall freebold, and leasing from Sir William Russel a considerable farm valued at $£ 300$ a year), and as "a man of but slender fortune," who was barcly able to cducate his son at a free school. The anthor of Hudibras was apparontly educated at the college (or cathedral) school, Worcester, and the house in which he was born was pulled down (being considered incapable of repair) about 1873. Hardly any other particulars of his youth are recorded, and his later education (if he recelved any) is equally uncertain. He has been loosely asserted (as is the case with many other distinguished persons of his century) to have studied at both Cambridge and Oxford, but the balance of testmony aeems to be aganst his having belonged to either univeraity. The time between the completion of his education (circa 1630) and the Restoration, a period of fully therty years, appears to have been spent by him in three different households, with Mr Jeffertes ef Earl's Croome in Worcestershire, with the countess of Kent at Wrest in Bedfordshire, and with Sir Samuel Luke nt Woodend or Cople Hoo in the same county. He served Mr Jefferies in the capacity of justice's clerk, and is supposed to have thus laid the foundation of his remarkable knowledge of law and law terms. He also ethployed himself at Earl's Croome in general study, and particularly in panting, which he is said to have thought of adopting as a profession. It is probable, however, that art has not lost by his change of mind, for, according to one of his editors, in 1774 his pletures "served to stop windows and save the tax; indecd they were not fit for much else." At Wrest, where he is said to bave been gentleman to the countess, he pursued his studies in painting, drawing, and music; probably, also, in other directions, for Wrest contained a good library. Here be met and worked for Selden. But his third sojourn, that at Cople Hoo, was not only apparentiy the longest, but also much the nost important in its effects on his career and Borks.

We are nowhere informed, nor is it at all clear, in what capacity Butler served Sir Samuel Luke, or how one who was not only in temper and aympathies, but also from early associations, a decided royalist, came to reside in the house of a noted Puritan and Parliament man. In the fanily of this "valiant Mamaluke," who, whether he was or was not the original of Hudibras, was certainly a rigid PresQyterin, "a colonel in the army of the Parliament, scoutmaster-general for Bedfordshire and governor of Newport Pagnell," Butler must have bad the most abundent opportunities of studying from the lifo those who were to be the vietims of his great future satire. But we know not how long he hetd lus situation (whatever it was) under the knight of Cople, and wo bear nothing positive of him till the Restoration, immediately after which he was appointed secretary to Lord Carbery (then President of Waleg) nnd steward of Ludlow Castic. Contradictory documents exist respecting his tenure of the latter office, one speaking of him as "late stewarl" in January 1662, the othar' (a protection against arrest) addressed to him as steward is: September 1667. About this time he married a Mrs Herbert, according to Aubrey a widow with a good jointuro, on whose means he lived comfortably. Aubrey kucw him well nad could hardly be wrong on such a point, especially as his testimony as to Butler's hiving in comparative comfort is confirmed by another authority to be afterwards mentioued. It should, however, te observed that other nercunts etate that Mra Merbert': fortune was lost through
bad seraritues. Late in 1662 the first part of Hudibra* was published. On the 26th of December Pepys bought it, and though neither then nor afterwards sould he see the wit of it, be repeatedly testifies to its extraordinary popularity. This popularity is most clearly proved by the issuc of a pirated edition within a month, and by the appearance of a spurious second part within the year. This latter compliment (which it will be remembered was also paid to Butler's spiritual ancestor Cervantes) determined the poet to bring out the second part, which was licensed on Novenber 7, 1663, and which if possible exceeded the frst in popularity. From thas time till $16 \mathbf{7 8}$, the date of the publication of the third part, we hear nothing certain and hardly anything at all of Butler. He appears at some period to have risited France. He is said to have received a gift of $£ 300$ from Charles II., and to have been secretary to Buckingham when the latter was Chancellor of the University of Cambradge. Most of his biographers, in their cagerness to prove the ill-treatment which Butler is supposed to have received, disbeleve both these stories, perhaps without sufficient reason. It must be allowed that it is acarcely a valid argument that Butler, if he had been secretary to Buckingham, would not have spoken 60 severely of that nobleman in his Characters (Remains, 1754), when it is remembered that he satirized Sir Samuel Luke, to whom he held nearly the aame relation, with certainly equal virulence. Two years after the publication of the third part he died (September 25, 1680), and was buried by his friend Mr William Longueville (a benchar of the Middle Temple) in the churchyard of St Paul's, Covent Garden. He was, we are told, " of a leonine-coloured hair, sanguioe, choleric, niddle-sized, strong." Portraits exist at Oxford and elsewhere which represent him as aomewhat bard-featured. Two personal anecdotes, and perhaps two only, are recorded of him. One is the well-known story which tells how Wycberly laboured hard to secure for the neglected poet the patronage of Buckingham, how an interview was at last arranged, from which the duke was, alas! called off by the passage of "a brace of ladies," and how the opportunity was lost. The other bears suspicious marks of having been made up as setting for a witticism of Lord Dorset's. Dorset, it seems, was anxions to know the anthor of Hudibras, and prevailed on a common friend to bring him to a tavern. At the first bottle Butler was quiet and reserved, at the second full of wit and spirits, at the third dull and stupid,-upon which Dorset's comment was that Butler was "like a nine-pin. little at both ends, but great in the middle." Of these stories it may be said, as of most such, that they may be true and camot be proved to be false.

Of the neglect of Butler by the Court something must be said. It most be remembered that the complaints on the subject supposed to have been uttered by the poet all occur in the apurious posthumous works, that men of letters have been at all times but too prone to complain of lack of patronage (a fact which nakes it probable that Dryden, Otway, Oldham, sc., in alluding to Butler, spoke as the proverb of that day went, "one word for him and two for themselres"), that the actual service rendered by Butler was rendered when the day, was already woin, and that the pathetic stories of the poet starring and dying in want are contradicted by the best authority-Mr C. Longueville (son of the poet's friend)-who asserted that Butter, though often disappointed, was never reduced to anything like want or beggars, and did not die in any person's debt. But the most aignificant story on the aubject is Aubrey's, that "he might hare had preferments at first, but would not accept any but very good, and so got none."
Three monuments bave been at different times and place9 erected to the poot's memory,--the frot in 1721 by

Llderwan Earber in Westminster Abbey. This was the occasion of some rather misplaced wit from Pope and others. In 1786 a tablet was placed in St Paul's, Covent Garden, by some inlabitants of that parish: This was destroyed in 1845. Some thirty or forty years ago another was set up at Strensham by a Mr Taylor of that place. Perbaps the happiest epitaph on him is one by Dennis, which (boirowing, indeed, its most striking expression from Cowley) sets forth that Butler "was a whole species of poets in one."

Butler's published works during his life consisted of the three parts of Hudibras (the second and third were repubiished together in 1674, with notes by the author); of an Ode on Duval (the famons highrayman); and of two paiaphlets attributed to Prynne. In 1715 three volumes, entitled Posthumous Wiorks of MrS. Butler, were pnblished with great success. Their contents, however, are all spurions except one or two short pieces. The poet's papers remained in the bands of his friend Mr Longueville, and were not published till 1759, when Mr Thyer, librarian at Manchester, edited two volumes of verse and prose under the title of Genuine Remains. The most remarkable of the prose writings are characters of the kind popular in the 17 th century, and partaking largely of the faults asual in such pieces. To this some additional fragments were added in 1822; a fraginent of a tragedy on Nero is also spoken of. In 1726 Hogarth executed some illustrations to Ifudibras, which are among his earliest but not, perhaps, happiest productions. In 1744 Dr Zachary Grey published an edition of Huditras, which has been repeatedly reprinted, and has formed (with that of Nash in 1793) the basis of all subsequent editions. It contans an enormous mass of notes, displaying little critical or literary power, but abonnding in curious information. A wurthy edition is still to seek; but that of the late Mr R. Bell is convenient, and suppliss much information, which is generally accurite. Mr Bohn's (of Ihudibras only) is also nseful. Putler's lesser works would of thernselves fairly sustain, thongh perbaps they would hardly ereate, a great reputation. Abundance of happy thought, of ingenious expression, and of vigorous verse, may be found in the Miscellaneous Thoughts, the Ode on Duval, and the Soteres on the Royal Society (The Elephant in the Mons) and on Crotice. But the splendour of Hudibras has somewhat paled their fire.

Hudibras itself, though probably quoted as often as ever, has perbaps dropped into the elass of books which are more quoted than talked of, and more talked of than read. In reading it, it is of the ntmost importance to comprehend cle.rly and to bear constantly in mind the purpose of the auther in composing it. This purpose is evidently not artistiz but polemic, to show in the most umistakable characters the vileness and folly of the anti-royalist party. Auything like a regular plot-the absence of which las often been deplored or exensed-would hare been for this end not merely a superfuity but a mistake, as likèly to divert the attention and perbaps even enlist some sympathy for the heroes. Anything like regular charaeter-drawing would have been equally unneeessary and dangerons-for to represent anything but monsters, some alleviating strokes must have been introduced. The problem, therefore, was to produce characters just sufficiently unlike lay-figures to excite and maintain a moderate interest, and to set them in motion by dint of a few incidents not absolutely uneon-nected,-meanwhile to subject the principles and manners of which these characters were the inearnation to ceaseless satire and raillery. The triumplant solution of the problem is undeniable, when it has once been enonciated and understood. Upon a canras thus prepared and outlined, Batler bas embroidered a collection of flowers of wit, which
only the utmost fertility or imagination conld devise, and the utmost patience of industry elaborate. In the union of these two qualities be $1 s$ certainly without a parallel, and their combination hes produced a work which is unique. The poem is of cousiderab!e length, extending to more than ten thousand verses, yet Hazlitt hardly exaggerates when he says that "bali the lines are got by heari;" indeed a diligent student of later. English literatare lias read great part of Huthibras though he may never have opened its pages. The tableans or situations, thengh few and simple in construetion, are ludicrons enongh. The knight and squire setting forth on therr journey; the ruuting of tho bear-baiters; the disastrous renewal of thie contest; IIndibras and Ralph in ta.e stoeks; the lady's release and conditional acceptance of the unlocky knight ; the latter's deliberations on the means of eluding his vow; the Skimmington ; the visit to Sidrophel, the astrologer; the attempt to eajole the lady, with its woeful consequences; the consultation with the lawyer, and the immortal pair of letters to which this gives rise complete the argument of the whole poom. But the story is as nothing; thronghout we havelittle really kept before us but the sordid vices of the sectaries, their hypocrisy, their chanlish ungraeiousness, their greed of money and authority, their fast and loose morality, their inordmate pride. The extraordinary felicity of the means taken to place all these things in the most ridienlous light has never been questionecl. The doggrel metre, neve heavy or coarse, but framel so as to be the rery voice of mooking laughter, the astounding similes and disparatel, the rhymes which seem to chuckle and to sneer of thenselyes, the wonderful learning with which the abuse of learning is rebuked, the subticty with which subtle easnistry is set at nought can never be missed. Keys like those of L'Estrange are therefore of little use. It signifies nothing whether Hudibras was Sir Samuel Luke of Ledfordshire or Sir Henry losewell of Devonshire, still less whether Ralph's name in the flesh was Robinson or Penale, least of all that Orsin was perhaps Mr Gosling, or Trulla possibly Miss Spencer. Butler was probably as hittle indebted to mere eopying for his elaracters as for his ideas and style. These lateer are in the highest degree original. The first notion of the book, and only the first notion, Butler undoubtedly received from Don Quixate. Hiz obligations to the Satyre Menippie lave been noticed by Voltaire, and though English writers bave sometimes ignored or questioned them, are not to be doubted by any student of the two books. The art (perhaps the most terrible of all the weapons of satire) of making eharacters without any great violation of probability represent themselves in the most atrocious and despicable light was never perhap's possessed in perfection except by Pithou and his colleagues and by Butler Against these great merits somo defects must certainly be set. Aз a whole, the poem is no doubt tedions, if only on aceount of the very blaze of wit, which at length almost wearies us by its ceaseless demands on our attention. It should, however, be remembered that it was originally issued in parts, and therefore (it may be supposed) intended to be read in parts, for there can be little doubt that the seeond part was written before the first vas published, A more real defect, but one which Butler shares with all his contemporaries from Jonson downwards, is the tendency to delineate humours instead of characters, and to draw from the outside rather than from within. This also may be partially palliated by some remarks made above.
Atterapts have been made without mueh success to trace the manner and versification of Hudibras, especially in Clevelund and in the Musarum Deliciee (lately reprinted) of Sir John Mennis (Pepys's Minnes) and Dr Smith. . But if it lad few ancestors it had an abundant offspring. As.
list of seventeen direct imitations of Mudibras in the course of a century was given in the Retrospective Review, and may te found in Mitford's Butler. Portions of it have beerr at different times translated into Latin with no great success. Complete translatious of considerable excellence have been mado into French by John Townley (London, 1757, 3 vols.), and into German by D. W. Soltan (Riga, 1787) ; specimens of both may be found in llell's edition. Voltaire tried bis hand at a compressed version, but not happily. (c. sa.)

BUTLER, William Archer (1814-1848), a brilliant writer on theology and the history of philosophy, was born at Anuerville, near Clonmel, probably in 1814 . His father was a Protestant, his mother a Roman Catholic, and he was brought up in the Romish faith. At the age of nue be was sent to Clonmel school, where he distingurshed himself not so much by rigid attention to his class work as by general brilliancy and power. Even when a boy he was strongly drawn towards the imaginative and poctical, and sowe of his early verses show au astonishing precacity. After leaving Clommel school he entered Trinity College, Dublin. Two years before he had joined the Protestant church. His career at college was remarkably brilliaut. The studies to which he specially devoted bimself were the literary and metaphyical ; and he was particularly noted for the extreme beauty of his style, buth in speaking and in written exercises. In l $83+$ he ga ned the ethical moderatorship, newly ustituted by Provost Lloyd, and continned in residence at college, pursuing his favourite studies. Many papers were about this time contributed by him to the Dublin Universty Magazine; it is to be regretted that these have not been collected. In 1837 be made up his mind to enter the church, and in the same year be was elected to the professorship of moral philosopby, specially founded for him throngh the exertions of Provost Llayd. About the same time he was presented to the prebend of Clondehorka, in Donegal, and resided there when not called ty his professorial duties to Dublin. In $18 \frac{4}{4} 2$ he was promoted to the rectory of Raymoghy. His lectures and his sermons were equally admired for their etrength of thought and richly imaginative stylc. In 1845 appeared in the Irish Ecclesiastical Journal his Letters on Development, written under a great press of business, but ia every way worthy of the author, and the best reply made to the famous essay of Newman which had called them forth. Butier's life was but short. Ho caught cold When returning one day' from public service; the cold terminated in fever, which proved fatal in a few days. Ho died on the 5th July 1848. His Sermons, published in two vols. by Woodward and Jeremie, have been fiversally recognized as among tho most important rccen contributions to theology. They are remarkable not only for rare brilliancy of style, but for subtilty and force of thought. The diction is at times too ornate and rherorical, but it is ont to bo forgotten that the sermons were hurriedly written, were never revised, and were all the work of a young man. Tbeir uncommon excellence decpens the regret at the early death of the author. The Lectures on the History of Aucient Philosophy, edited in a masterly manner by W. Hepworth Thompson (2 vols. 1856 ; 2d ed., 1 vol. 1875), have taken their place as the best among the few British works on the history of philosophy. The introductory lectures, and those on the esrly Greek thinkere, are not of the highest value, and though they evidence wide reading, do not show the completo mastery over the matcrial that is found in Schwegler or Zeller. The lcctures on Mato, bowever, are of great value, and furmish a most admirable and cnthueiastically conceived exposition of the Platovic aystom. Butler was evidently attracted by the lofty spirit of Flatonism, and eets forth its main features with the 4. rmest admiration. In details be is not altogether to be
trusted, but any defects in his echolarship are amply suf. plied in the valuable notes of his editor.
See Memoir of W. A. Euller, prefiled by Rev. J. Woodmard t first series of Sermons.

BUTO, an Egyptian goddess, called in the language Uat or Catiu, the eponymous goddess of the town Bato in Northern Egypt, supposed to be modern Kum el Amian and Kum el gir, on the western banks of the Damietta branch of the Nile. The groddess herself personified Lower Egype, and as such wore the tesir or red crown, whether in her human form, or typified as a valture, or uræus, in which respect she resembled Nat or Neith. She presided over fire, and resided in it or the solar eye, and was identified with the goddesses Bast and Sexet or Merienptah, of which she may have becn another type. Buto was also considered to represent the Greek Latona, and the uræus Mahur, and this again connected ber with Lower Egypt or the Delta. She was considered to be the regent and mistress of the lands Pe and Tep, districts of ber nome, of the land of Hantbu or the Greeks, and of Taneter, the divine land or Arabia, also of Anhu the capital of Nrut, another of the nomes of Lower Egypt. The ideas of the Greeks that she personified darkness, and that the mypale or shrewmouse was sacred to her, are incorrect; for, as already stated, Uat presided over the clement of fire, and the shrew-mouse appears from the inscriptions on the base of figures of this little animal to have been dedicated to Horus, Jike, the Apollo Smintheus of the Greeks. The name was also given to the capital of a nome ruled over by the deities Har or Horus and Uat or Buto. The Greeks supposed that Buto was the capital of Chemmites or Phthenotes close to the Boutike Lake, the present Burullos, near the old Sebennytic branch of the Nile. It contained several temples, and in that of Buto oracles were delivered, and the temple was 10 orgyici or fathoms high. The most remarkable object, however, in it was the monolith shrine 40 cubits or about 60 feet square, with a roof of stone, 4 cubits or about 6 feet thick, and 5000 tons weight. It was brought from Elephantina. It appears from an inseription found at Cairo that, during the Persian occupation of Egypt, Khabash, then the ruler of Egypt, had given the domos Pbthenotes to the state of Buto, but that this arrangement was not recognized by Xerxes. Sabsequently the older arrangement was restored by Ptolemy Lagus about 313 в.c.

Herodotus. ii. 155; Reinisch, Denkmäler in Miramir, s. 201; Wilkinson, Mann. and Cust., jii. 330, 331, iv. 271-3, v.40;'Brugsch,' Qeographic, i. s. 55 ; Jeblonski, Panth. EEgypt, iii. 8i-110; Zeitschrift für agyptische Sprache, 1871, p. 1 and foll.

BUTRINTO, a fortified town of Eurepean Turkey on the cosst of Albania, in the sandjak of Delvino, directly opposite the island of Corfu, and situated at the mouth of a stream which connects the Lake of Vatzindro with the bay. It has a small harhour, and is the seat of a Greek bishop. In the neighbourhood are the ruins of the ancient Buthrotum, consisting of a Roman wall, abont a mile in circumference, and some remains of both later and Hellenic work. Buthrotum was a Roman crloay in the time of Strabe, but makes littlo figure in ancient history. The modern city belonged to the Venctians till 1797, when it was scized by the French, who in 1799 had to yield to the Russians and Turke. Population, 1500.

BUTIER, is the fatty portion of the milk of mammalian animals. The miilk of all mammals contains such fatty constituents, and butter from the milk of goats, sheop, and other animals has been and may be used; but that yielded by cow's milk is the most savoury, and it alone really constitutes the butter of commerce. The milk of the various breeds of cattle varies widely in the proportion of fatty matter it contains; its richness in this respect being
greatly ioftuenced by season, nature of fcod, state of the animals' health, and other considerations. 'While the proportion of cream to milk in the case of most breeds ranges from one-twentieth to one-tenth, in the case of the celebrated Alderney cattle it amounts to as much as from three to four-tenths. Dr Parkes (Practical Hygiene) gives the following as the average composition of unskimmed milk having a sp. gr. of 1.030 :-
Casein 4.0
$5 \cdot 0$Lactin (Sugar of Milk)
SaltsTotal Solids$13 \cdot 3$
Water. 86.7

On a low average each pint of milk ought to yield a full half-ounce of butter. The fat or butter is dissemioated through freshly-drawn milk in mmute, clear globules, each of which is enclosed in a thin membranous sac or bas ; and being specifically lighter than the mass of the fluid, the globules gradually rise to the surface, bringing muxed with them a proportion of milky matter, and forme cream. Usually the cream is skimmed of the surface of the milk for making butter, but by some the churning is performed on the mailk itself without waiting for the separation of the cream. The operation of churning causes the rupture of the oil saes, and by the coaleseence of the fat so liberated butter is formed. Details regarding elinruing and the preparation of butter generally will be found under Diiry.

Fresh or unsalted butter of good quality should present a rich straw-yellow colour. At ordinary temperatures it has a firm uniform consistency, while it is soft enongh to cut and spread easily under the knife without breaking or crumbling. It should possess a faint sweet odour, and a bland, soft, delicate flavour, metting in the meuth without any indication of grittiness. Pure butter is a complex chemical compound, consisting in large part of fats or glycerides of the non-volatile acids, palmitic netd, and butyroleic acid, with oecasionally stearic acid. With these there oceur small proportions of glycerides of the vulatile acids, butyric, capronie, caprylic, and caprinic acid, to which the butter owes its distinguishing flavour and characteristies, as it has the non-volatile acids in common with other fats, though in different proportions. Butter when unadulterated and prepared with ordinary care should contain at least 85 per cent. of pure fat, the reraminder consisting of casein, water, and salt. The casein is derived from milk, which is never perfectly washed ont, but in botter of good quality this ought not to amount to more than from 3 to 5 per cent. Water may be present to the extent of from 5 to 10 per cent. without the butter being subject to a charge of adulteration; and a small propertion of salt is commonly worked into the butter in its preparation, but in what is sold as fresh or sweet this should only be froin $\frac{1}{2}$ to 2 per cent. of the whole weight.

When butter is exposed to the air for some time, especially in warm weather, or in hot, confined situations, it quickly becomes rancid, acquiring thereby a distinct disagreeable odour and a biting taste, owing to the development of a volatile fatty acid under the ithnence of a species of fermentation, which is doubtless caused by the nitrogeuous substance, casein, it contains. The more completely, therefore, all milky and curdy matter is washed out of butter the less will be the tendency to set upand develop fermentation. The preservation or curing of butter depends for îts efficacy on the employment of some agency by which fermentative action may be prevented; but there are also several ways by which its development may be retarded and the msterial kept sweet for a considerable period. Rancidity may be corrected to some extent by melting the affeeted butter and pouring it into ice cold water. As a
means also of retarding rancidity, butter is in some parte of France and the East melted up and beated till the water it may contain is evaporated, when the cascin which rises as a scum to the suriace is carefully skimmed of ; but butter camot be so melted without injuriously affectug ats delicate davour. By kecping fresh butter in a very cool place covered with pure water renewed daily, it will remain sweet for a considerable time. A still betcer method, recommended by M. Payen (Substances Alimentures) is to use water acidulated with either tartaric acid or vinegar. It is also said that sugar in the form of a syrup poured over the butter is an excellent mediun for retarding ranch fermentation. Butter, however, which is to be kept for a considerable length of time is "cured," or preserved by incorporating with it some substance or substances wheh act upon the nitrogenous material it contarns, and thus provent fermentation; and for this purpose cormmon salt is the agent chiefly relich on. The salt used should be pure, dry, and fincly powdered. About 5 per cent. of salt is suticient for the purgose of curng; and when the quantity exceeds $\$$ per cent. it ought to be regarded as an adulteration. Dutter very lighty salted for keopng only a short time is said to be powdered. A maxture much used for curing butter in Contmental daries is thus prepared:One part each of sugar and nitre are mixed up with two parts of common salt and reduced to a very fine powder. This misture is thoroughly kneaded into the butter in the Iroportion of about 1 oz. to every b . After standing over for a fortnight butter so prepared will be ready for use and hare a soft, agrecable taste, which it will retain a long time. In the preservation of all butter, the exclusion of air, as much as mossible, is of the utmost consequence. It is, therefore, facked for sale in oaken kegs or glazed earthenware jars, filled quite full, and covered with a cleau linen cloth on which sale is sprinkled. When in use the kegs should also be closely covered over, and the surface of the butter kept under brine.

Butter of good quality is a most digestible form of fat, white its flavour is so dellicate and little pronomeed that It is ahways acceptable to the palate. It is used most extensively by all elasses, not only in the direct form with bread at nearly every meal, but also as entering very largely into the preparation of pastry, puchungs, sauces, fancy cakes, and hiscouts. Taking into acconat the daily consumption of this article, it is evident that the amount used in a year by a popmation such as that of Great Britain must be very great, an inference horne out by the fact that in 1875 the imports wcro $1,619,808$ cwits., valued at $£ 9,050,025$, and, though no means exist of accurately estimating the bome produce, it may safely be regarded as equal to the whole imports. The comeries whence butter is imported into Great Britain are chicfly Germany, Helland, Dennark. and especially Prance. A large proportion of the French butter cones from the department of Calvados-Isigny beng the centre of the best butter-making district. The value of the total profluce of France in 1807 was estimated at 250 millions of francs.

Butter is a substance which affords great seope for adulteration, and its cumpusition makes accurate detection of certain foreign matters a matter of considerable labour and difficulty: Other animal fats, such as lard, beef and mutton dripping, and tallow, with certain vegetable fats, are the chief adulterants. Such adulterations may be susplected by their characteristic smell, and detected by their differeat melting points, by microscopical examination, and by their ethereal solutions. Messrs Angell and Hehner have proposed a convenient method of estimating the fusing points of fat by placing a given weight of definite size on the fst, and obserying the temperature at which it sinks into the substance. They find that the einking-point for genuine butter,
ts remarkably constant, and that it is affected in pro pertion to the amount and sumking point of any adulterant fats uscd. Their analyais of butter depends upon the much smaller proportion of non-volatile, insoluble fatty acids it contains, as compared with fats used as adulterants.

Under the na:me of butterine an artificial substitute for butter has been motruduced in America, and imported into England from New York. It is the game as the artificial butter or "margarine-mouries," which has been for some years manufactured in Paris according to a method made public by the emonent chemist M. Mege-Mouries. Having surmsed that the formation of butter contained in milk was due to the absorption of fat contained in the anmal tissues, M. Mouries was led to experiment on the oplitting up of anmal fat. The process he ultimately adopted cousssted in heating finely-minced beef suet with water, carbonate of potash, and freah shecp's stomachs cut up into small fragments. The muxture he raised to a cemperature of $45^{\circ} \mathrm{C}$. ($113^{\circ} \mathrm{Fahr}$.) The influence of the pepsine of the sheep's stomach whit the heat separated the fat from the cellular tissue, he removed the fatty matter, and aubmitted it when cool to powerful hydraulic pressure, esparating it into ateann and oleomargarin, which last alone he used for butter-makiog. Of this fat about the proportions of 10 Bb with 4 pints of milk and 3 pints of water were placed in a churn, to which a smell quantity of arnotto was added for colonring, and the whole churned together. The compound so obtained when well washed was in general appearance, taste, and consistency like ordinary butter, and when well freed from water it was found to keep a longer time Accurding to French official reports artificial butter goes much further as food than the genuinc article, and forms a perfectly wholesome dietetic material. The Parisian octroa officials have recognized the efficiency of the substitute by imposing ou it the same duties which are chargeable on ordinary butter. The company established for the manufacture in France had in 1874 seven manufactories, in which four hundred men were employed. There can be no doubt that a pure, sweet fat, such as is nanufactured by the process of M Mege-Mouriea is a safer and more wholesome articie than the unsavoury rancid butter which is sold so frcely among the poorer classes. Soe Dairy.

BUTTERFLIES AND MOTHS, the common English namee applied respectively to the two groups of Insects which together form the order Lepudoptera (Gr. $\lambda \epsilon \pi i s$, a scale, and mrefóv, a wing), an order characterized by the constant presence, in a greater or less degree, of seales on the wings. The two groups may, as a rule, be readily distinguished from each other, although, so far as our present knowledge goes, there is nothing in the structure or habits of either group which divides it entircly irom the other. All buttertica aro diurnal in therr flight, while moths, with many exccptions, are crepuscular or nocturnal.

The bodies of butterfiea and moths, liko those of all other insects, consist of three distinct parts-the head, bearing the organs of sense; the thorax, the organa of locomotion; and the abdomen, the organs of gencration. On the head are placed (1) tho antennæ, composed of numerous articulations, and supposed to be organs of hearıng. They differ greatly in form among the Lepidop. tera, those of butterfies, however, agreeing generally in having their ends knobbed or clubbed, hence the term Rhopalocers (fómalov, a club ; ќ́pas, a born), ofteı applied $^{\text {a }}$ to this group. The entenno of moths assume a great varisty of Corms-prismatic, serrate, pectinate, moniliform, and filiform,-and are often beautifully feathered, especially in the males, whose antennæ are usually ampler than those of the females; but in no case are they knobbed, as
in the great majority of butierlliés. Owing to this varicts in the form of their antenna, moths have been termed Heterocera ($\mathrm{c} \tau \epsilon \rho o s$, various; ќ́pas, a horn). In butterflies these organs are also straight, and stand out rigidly in front of the head, while in moths they are usually curved and can generally be folded back on the body. (2) The eyes in the Lepidoptera consist of two masses of hexagonal facets, placed one on each side of the head, and forming what are known as compound eyes. These contain in some cases no fewer than 16,000 facets each, while in many specics a pair of ocelli, or simple eycs, are found concealed among the scales and placed between the compound organs. The hary appearance of the eyes in many of the Nymphalida is owing to the presence of minute hairs planted at the angles of the numerous facets. Compound eyes are not found among the larva of butterflies and moths, but they are in most cases provided with aix ocelli on each side of the head. (3) The mouth, the parts of which in insecta are considered by comparative anatomists to be typically developed in the masticatory mouth of beetles (Coleortera), assumes in butterfies and inoths the suctorial form-the latter being merely a modification of the former; thus the mandibles, labium, and labrum, which are fully developed when the nature of the food renders mastication necessary, are in a rudimentary condition in the Lepidoptera, whose chief food is the nectar of flowers, while the maxille, on the other haud, are enormously developed, being concave on their inver sides, these by approxinating form a tube krown as the proboscis or tongue. This when at rest is coiled up info a ball in front of the head, and is partly concealed by the palpi projecting on both sides. In the moths belonging to the family bombycide, the organs of the mouth are rudimentary, so that these insects after entering upon the imago state are incapable of feediug.

The thurax bears the organs of locomotion, consisting of Thoras. three pairs of legs and two pairs of wings. . The former are covered with hairs and scales, and terminate in hooks modified to suit the habits of the various species. Butterflies use the legs almost entirely for resting, very rarely for walking, and in some groups, as the Nymphalida, the front pair is rudimentary. The wings consist of a Wings. dutible layer of colourless membrane traversed by numerous nervures (Plate XXVII. fig. 1), and covered with minute scales implanted in the wing membrane by a short stalk, and placed together like tiles on a roof. The scales vary in form in differcnt species and in different portions of the winga of the same spccics, while under a high power of the microscope they are seen to be minutely corrugated; andit is to these corrugations acting upon the colourless raya of light, and producing the phenomena of "interference," that many of the loveliest butterflies owe the brilliancy of their wings. The splendour of those organs in the majority of butterflics, and in some moths, is sometimes equally shared by both sexes, but more usually the females are less couspicuously coloured than the malcs. This difference, amounting often to total dissimilarity, Darwin, in eccordance with hia descenttheory, attributes in great part to the action of sexual selection. "Several males," he says, " may be seen pursuing the same female." The latter he supposes selects the most gaily-colourcd, and thus the plainercoloured unales bave bcen gradually eliminated; but there is no proof whatever that the female showa aoy such discrimination in selecting a mate, while many known facts seem to point in an opposite direction. Mr A. R. Wallace maintains, on the other hand, that the duller colours of the females have been acquired for protective purposee, the femalca requiring euch protection more than the males owing to their generally alower flight, and to the foct that after impregns;

Satume Baldo.

Pogommats Thoe

ELepera sabuaius

BUTTERFLIES \& MOTHS.

MOTHS

Temato of?

tion they take several days to deposit their eggs, during which the life of the male is of no further consequence to the perpetuation of the spectes. Whaterer may be the crae interpretation of this phenomenon, it is certain that many butterflies and moths of both seses are so coloured as to be to a greater or less extent protected thereby. Many moths, which rest by day elingug to the trunks of trees, so exactly resemble in the colour of their upper wings the bark ou which they rest as only to be distinguished on close examinstion ; while many small species which habitually rest on leaves are often mistakee for the droppings of birds. The upper surfaces of the wings of butterfies are in almost al cases the more gaily coloured, and when at rest, these are raised perpendicularly over the back, so as only to expose the under surfaces, which are often dull coloured, and in some cases have been shown to be directly initative of eurrounding objects. The best example of this is to be found in the Malayan butterity, Kallima paralekta, and its Indian slly, Kallma inachus, both brilliant and conspicuous insects on the whog, but which no sooner alight than they become invisible. The under surfaces of their wings, though varying greathy, Fet form in every case a perfect representation of a leaf in some stage or other of decay, the butterly at the same time disposing of the rest of its body so as to bear out the deception. How this is effected is best told by Mr Wallace, who was the first to observe it, in his valusble work on the Malay Archipelago.
"The habit of the epecies is almays to rest on atwig and among dead or dried leaves, and in this position, with the wings ctosely pressed together, their sutline is exactly that of a moderately s:zed leaf shigitlly corved or shrivelled. The tail of the hiad wiugs forms a perfect stalk and toucbes the stick, while the insect is anpported by the middle pair of lers, which are not noticed among the twigs and fibres that-surround it. The head and antenne aro drawo back between the wiags so as to be quite concealed, and there is a littie notch hollowed out at the very base of the wings, which alluwe the bead to be retracted sufficiently."

Moths, when at rest, have the hind wings folded eloso to the body, while the fore wings cover all, and it is the latter that usually show an assimilation in colour to surrounding nature. Many butterflies and moths, there seems good resson to believe, are coloured in imitation of other and often widely differeat species possessing some special means of protection, as sting or nauscous juices, the mimetic forms, it is supposed, sharing with their models in immunity from the attacks of insectivorous animals. The phenomena of mimickry were first observed by Bates among the Heliconida, a family of South American butterflies, remarkable for their great numbers, the gaudiness of their colouring in both sexes and on both surfaces of their wings, and for their comparative elowness of flight. It was found that, owing to the nauseous nature of their juices, those brilliant sutterllies were left namolested by insect-eaters. It was also observed that several enecies of a genus closely allied to our Cabbage Butterflies, totally different both in the colour and form of the wings from the Heliconida, so closely resembled particular apecies of the latter as not to be distinguishable from them on the wing. Exactly similar phenomena have been observed in the tropical regions of Asis and Africa, whore the similarly protected Lanaïda and Acraides find imitators among the otherwise unpro. tected Papilios and Diademas. There are two families of day-flying moths, Sesidor and EEgeriuda, with clear transparent mings, the ocales being confined majoly to the margins and nerrures, which in their wings and in the form and colour of their bodies might be readily mistaken for bees or trasps, a simılarity recogaized in such specific names as bombiciformis, apiformis, vespiformis, \&c., applied to different species of these moths. Other opecies of the sanue "clear wing" group have onaoue wings closely resembling
those of certan species of Colenptera found in the same neighbourbood, and these have their wings when at rest clused over their bodies like the eljtra of beetles.

Butterflies and moths undergo complete metamorphosis, Iis:3mor that is, after emerging from the egg, and before attaining pros, 3 the full development of the mago, they pass through the larva and pupa stages-the latter being one of total inactimity 1 n so far as the outward manfestations of life are concerned. The eggs vary greatly in shape, sud are deposited in a great variety of situations-on the under sudes of leaves, on the outside of the cocoon, as sa the Vapourer Moth (Orgyza antequa), the female of which is wingless, glued together 10 rings rouad the smaller branches of frut trees, as in Clwiocampa neustria, or in the interior of hives, the larve afterwards feeding on the wax, as in the Honey-comb Moth (Galleraa cerclla). They thus show a remartable instinct in depositing their eggs in situations where the larve may afterwards obtann their appropriate food, although they themselves can bave no knowledge of that food. The caterpillar emerges from the Cator. egg usually in a week or ten days. Unlike the perfect piliar. insect it is pronded with a masticatory mouth. It has three pairs of legs on the anteriur segments of its body, corresponding to the six legs of the future imago, bessdes which it is provided with a variable number of conical feet or prolegs placed posteriorly, and which are merely processes of the external covering of the caterpillar. Goossens, a Continental naturalist, has recently observed that the uumber of prolegs iv some species differs at different ages, and gives a case in which a catcrpillar with origually six prolegs acquired two additional pars after the thard moult. The body cavity is almost entirely occupued with the diges. tive system, and with that concerned in the production of the silky material used in forming the cocoon. Silk 3 secreted as a riscous fluid in tubes, which after many convolutions widen into a large reservoir filled with the yellow liquid, narrowing agan into a tube extending to the mouth, where it communicates with the outside by means of a eonical and jointed papilla known as the spinneret. Through this organ the riscous fluid is forced in two esceedingly delicate streams, which coalesce, and on exposure to the atmosphere hardeninto a single continuou:thread. The silky material is not completely formed till the caterpillar reaches maturity. Caterpillars are either smooth skunued or more or less covered with hairs; in the former case they are a favourite food of insectivorous saimals, while in the latter they are almost universally rejected,-recent investigations on this subject going to -prove that the hairs on certain species of caterpillars hare a power of stinging, somewhat aadogous to that possessed by the hairs on the surface of a nettle.

No sooner does the caterpillar emerge from the egg than it begins to eat voraciously, and in a few days has grown so large that a change of slin becomes necessary. The old shin is cast off, and with it the entire internal lining of the alimentary canal, and in the majority of butterflies and moths five such changes take place before the eaterpillar has attained its full growth, while the Tiger Mo!ts (Aretia caja) is said to cast its skio at least ten titues Those moultings do not usually affect the appearance of the caterpillar, except in eolarging it; but in the case of Samia cecropia, a species of Bombycide, the larve are said to pass from black to various shades of green and azureblue in the course of their moultings. The larvo of the family Psychida-the larger members of which are found in America and Australia-have the eurious habit of constructing cases which they carry about with them, and within which they afterwards undergo transformation. Each larva has but a single case, and when this gets too narrow it splits longitudinally and is enarged by interpos
ing a new portion between. Muths and buttertlies remain in the lareal condition for periods varying from three years, as in the Guat Moth (Cossus ligniperda), to a few weeks, as in the Cabbage Butterlly (Iieris brassicce), which usually has two broods in the season, while many species whose larvo leave the egg in antumn, as the Blue Butterfly (Polyommatus alexis), remain torpid throughout winter at this stage, and waken up to resume feeding in spring. During this period they increase enormously in weight; thus the larva of the Privet Hawk Moth (Sphinx ligustri) which casts its sixth and last skin on the twenty-second day after emerging from the egg, attains its greatest size ted days aiter, laving in the meantime increased to 11,312 times its original weight; while the Goat Moth (Cossus liguperda), which remains in the larval condition for three years, bas grown in that period 72,000 times heavier. llaving attanced its full growth the instincts of the catersillar undergo a change; it ceases to eat and begins to ?iveave a :ouch or cucoun by which it is more or less enclosed. lt theu throws off its skin add appears as a pupr or charysalis incapable of eating or of locomotion, the only appareut sign of life which it manifests being a convulsive tivitchag when irritated. Examined more closely, however, Life is geen to be exerted in very great intensty in this stage of apparent quiescence. The immense digestive system of the caterpillar dwindles greatly, the rudiments of wings begin to show thenselves, forming slight prominences on each side of the chrysalis stell, while the organs of the masticatory mouth are being transformed into those of the suctorial. In assuming the pupa condition caterpillars dispose of themselves in a great variety of ways. Dlany, like the common Cabbage Butterfy, ascend walls and palings, to which they attach themselves by a silken belt, others, as silkworms, spmaround them a solid cocoon of pure silk; whilo the majority of Sjhinx Moths form burrows in the ground, which they line with silk and afterwards va:nish to keep out the moisture,-one of these (Sphinx ligustri) remainug thus buried from August till June. Those larve which feed on the wood of trees, as Cossus lignzperda, generally form tough cocoons of chips of wood and of silk mathin the tunnels which they have bored in the tree, and their pupx have the power of forcing themselves along these passages till they reach the bark, where they remain until about to emerge from the egg, when they pierce it also. The cocoon of the Puss Moth (Cerura vinula), composed of the same materials as in the precediug instance, is usually placed in a crevice of the bark of a tree, where by exposure to the atmosphere it becomes bard as Lorn, the moth only making its escape after discharging a liquid by which one end of the cocoon is softened. Hairy caterpillars are usually defeient in silk, and in forming their cocoons mix what they bave of this with the bairs of their body. A beautiful net-like cocoon is woven by a South American motls belonging to the Bombycide, which it suspends from the top of an outstand. iag leaf. "When the caterpillar," say's Bates," begins itswork it lets itself down from the tup of the leaf which it has chosen ly spuning a thread of silt, the thachness of which slowly increases as it descends Having given the proper length to the cord (about 6 mebes) it proceods to weave its elegant bag, placing itself in the centre and slaming rings of silk at regular intervals, connecting them at the same time by means of cross threats, so that the whole when finished forms a loose web wath quadrangular meshes of nearly cqual size throughont." The duration of the pupa stage varies from a few weeks to several months ; in varies also in the same species accordmg to the scasen at whach it becomes encased ; thus the jupat of Fanesser urtace at the boginning of summer usually develops in fourteen e $\because s$, and at midsummer in eight or nane days, while if
it becomes encased in autumn it remains a pupa during the winter. By applying beat the process can be accelerated, and it can be equally retarded by refrigeration. When lase mature the pupa case cracks towards the anterior end, and the butterly or moth crawls forth with wings which, though at first small and crumpled up, in a few hours attain their full aize. The male iusect goes in search of the femalc, and when the latter has deposited her eggs the maln object in the life of the imago is attaned and both sexes die. Among the Bombycides this occurs in two or three days, owing t" the atrophied condition of the organs of the mouth. With butterflies courtship is generally a more prolonged affarr. several males pursuing the same female, and breaking eacls others wings in the conficts that thus frequently ensue. Butterfies appear in many cases to be gregarious, Hying in great tlocks. Bates states that at one place in South America he noticed eighty different specas flying about in enormous numbers in the sunshine, and these, with few exceptions, were males, the females remanuing within the forest ahedes. Darwin also describes a "butterfly shower," which he obscrved ten miles ofl the Couth American coast, extending as far as the eyo could mach; "even by the aid of the telescope," he adds," it was not possibie, io see a space free from burtertlies. That they are occasionally migratory as well as gregarious is borne out by the obser. vations of Sir J. Emerson Tennent, who witnessed in Ceylon a mighty host of butterfies of a white or pale yellow hue, "apparently miles in breadth and of such prodigious extension as to occupy bours and even days uninterruptedly in their passage."

The food of Lepidopterous insects consista chiefly of Fool the swect liquids drawn from the nectaries of Howers, which they reach by means of their long proboscis or tongue. Many of the Sphingidee are said to do this without settling on, the flowers, and one of these, the Ilumming Bird Hawk Noth of South America (Macroglossa (henn), in its mode of flight and of poising itself before a flumer while extracting the juice, bears such close resemblance to certain of the smaller liumming birds inhabiting the same district, that Bates of ten shot it for one of the latter, and it was only after considerable experieoce that be learnt to distinguish the bird from the moth when on the wug. Although their food is thus usually the sweetest liquids drawn from loveliest vessols, still some of the most brilliant species seen to prefer more vulgar fare. Thus the showy Purple Emperor (Apatura iris) prefers above all things to suck the juicos of putrid animal substances, and the surest way to secure specimens of this butterly is by setting such baite near its baunts. Mr Wallace states that in Malacca be caught a large and brilliant butterfly which had scitled on the dung of some carnivorous animal, where be had alse observed it on the previous day, and be adds that it is a babit of many of the finest buttertles to suct up the liquid from muddy spots on the roadside.

Buttertles and moths are widely distributed all over the $\mathrm{I}_{\text {actreb }}$. globe, occurriog, horrever, in greatest varicty and abundance trom. in tropacal lands. They are found as far north as Spizzergen, on the Alps to a height of 9000 feet, and to double that height on the Andes. In Britan there are only 66, and in the whole of Europe 390 spectes of butterlies; while within one hour's walk of Para in Brazil, Bates found ne fewer than 700 spectes. There are 1910 species of British moths, the majority of which are nocturnal and crepusenlar; while in tropical America day-flyng moths seem to be most common, and may be scen in company with the aunsbine sceking buttorties. This pacity of nocturnal moths has been attributed to the great number of night-flying or crepuscular insectivorous bats and birds which lanat those regions. Many species both of moths and of butterflés have a very wile distribntion, the Painted Lady (Vanese
cardui), a common British species, being found in every quarter of the globe; and our finest butterfly, the Swallow Tail (Papilio machaon), occurring throughout Europe, Asia as far as the' Himalayas, and South Africa Other species are extremely local, asthe Scotch Argus (Lyccena artaxerxes), confined to a few Scottish hillsides. Kefersten estımates the total number of Leprdoplera at 66,000 species- 6000 butterflies and 60,000 moths. That such estimates, how ever, are not to be relied on is sufficiently proved by the fact that Bates gives the number of species as above 200,000 . The geographical distribution of certain groups of Lepidoptera has been well wrought out by Mr Wallace and other naturalists who have atudied them in thenr native homes; but the division of this great order into geographical zones has atill to be satisfactorlly accomplished. Koch has recently proposed to place them in five auch groups-(1) the European or Western fauna, including Northern Asia, the North of Africa (a region exceedingly poor in Lepri doptera, owng probably to the want of great forests, and to the marshy nature of vast tracts of land), and the worthern parts of North America, (2) the African fauna, allied to the preceding; (3) the South Assatic or Indian; (4) the Australian and Polynesian, allied to the Indian ; and (5) the American fauna, distiugaished by its exceeding richness.

Butterflefs.-Linnæus included all butterflies under the aıngle genus Papilio, but later writers bave divided them into aeveral well-defined fanntics, and into numerous § geners. Thelargest and most magnificent species belong so the Ornithopecra or "Bird-winged Butterflies," a genus of Papulionida, whose wings, measuring fully 7 inches across, are of a velvety black and brilliant green colour, the latter in such apecies as Omuthoptera crosus being replaced by fiery orange, while the body 19 golden, and the breast cramson. They are distributed over the islands of the Malay Archipelago, reaching, according to Mr Wallace, their maximun of size and beauty in the Moluccas. The Papilios are a closely alľed group, smaller in size but equally brilliant in the colour and form of their wings. They are exceedingly numerous and are widely distributed over both hemispheres. One species only is found in Britan, the bandsome Swallow Tail (Papilio machaon) (Plate XXVII. figs. 1, 2), formerly abundant in many parts of England, but now confined to the fen districts of Cambridgesbire, Norfolk, and Huntingdon. When alarmed the larva of this and of other species of Papilios protrude from the upper part of the neck a soft forked horn that usually diffuses a penetrating and unplensant odour. One of the most elegant of exotic apecies is tha Malagan Papilio memnon, with black and blue wings, 6 inches in expanse, and with the edgea of the hind pair gracefully ecalloped. This butterfly, though common enuugh in collections, has recently gained additional interest from the fact, discovered by Mr Wallace, of the remarkable variety in the form of the females, a variety which has led to their being described under aeveral opecilic names. In one group the females rescmble the malcs in shape, though differing greatly-as many female battertlies do-in colour. In another group they differ both in colour and in the form of the hind-wings. These, Mr Wallace aays, are "lengthened out into large spoonahaped tails, no rudiment of which is ever to be perceived in the males or in the ordinary form of the femalcs." He also found that in ahape and colouring those tailed females when on the wing, closely resembled another butterfly belonging to a different section of the same genus, Papilio coön, which he considers is thas mimiched by the erratic females of Papilio memnon. Strange to say both forms of female are produced from the eggs of either form. The genas Parnassius, which seems peculiar to the Alpine or subalpine countries of Earope and the North of As:n,
belongs also to the Paptionider. One species, Parinassius apollo (Plate XXVII, fig. 3), has semi-transparent wings, spotted with black and vermilion, and is common in most of the mountan ranges of Europa, whene it forms a very striking object. The Brimstones (Gonepteryx), the Clouded Yellows (Coluas, Plate XXVII. fig. 4), and the White Satterflies (Piers, Plate XXVII. fig. 6), many of which are abundant in Britain, and the larvæ of which in most cases make great havoc among gerden vegetables, belong to tho famly Ruerudo. That the caterpillars of this gronp are not fatal to the very existerce of certain of our most useful vegetables is due solely to the ravages of the ichneumon fles, the larvæ of which are parasitic upon these caterpillars, to such an extent that in every hundred larvas of the common Cabbage Butterfly, there are probably not more than two or three entirely free from the achneumon fly (Microgaster glomerata), and few caterpillars so attacked ever reach maturity. The species belonging to the family Nymphalides have only four legs fitted for walking, the anterior pair being rudimentary. They include the majority of the sbowy butterdies of temperate regions, as the Peacock Butterfly (Vanessa io, Plate XXVIL. fig. 9), conspicuous from the "eyes" on the upper aurface of its wings. The brilliant colouring of the upper surface is in marked contrast to the aombre hucs of the under, which give it when resting on the branch of a tree the appcarance of a dried leaf, and so is to a considerable degree protective. The Fritillaries (Argynnes, Plate XXVIII. fig. 2) have the under surfaces of the wings ornamented with shining silvery disks, and, except a few tropical specics, are the only butterflies which bave the under surface more gaily coloured than the upper. The Purple Emperor (Apatura iris) ${ }^{1 / 4}$ one of the largest and moat atriking of Britisb species. It is a powerful flyer, frequenting the tops of the lighest trees, and is thus difficult of capture unlcss when brought near the ground by the attraction of some putrid carcase. To the same family belongs Nymphalis jasius (Plate XXVIII. figs. 7 and 9), one of the most beautiful of European species. The Heliconida (Plate XXVII. fig. 7) are a family of South American butterfies, so uumervas both in species and in individuals, and of such showy colours on both surfaces of the wings, as to form, says Bates, "n feature in the pbysiognomy of the forest compcusating for the abscuce of tlowers." Their wings are long and narrow, they fly lazily, and might thus be supposed to be epecially liable to the attacks of insectivorous aniinals. As already stated, such is not the case, these insects being apparcntly protected by the naussous cbaracter of their juices. It is this group which is chiefly mimicked in South America, finding imitators in several species of Leptalis, a genua of butterties belonging to the family Pierida, also in several species of Erycinidre, and in no fewer tban three genera of day-flying moths all belonging to edible groups. The family Morphidoe (Plate XXVIII. Gg. 8) contains the largest and most aplendid of the South American buttertliea. Their wings, often 7 inches in expanse, are gencrally of a brilliant metallic blue, which, as the insect flies, floshes in the sunlight ao as to be visible, it is said, a quarter of a mile off. They are found most abuadantly in forest glades, through which they sail, only flapping their winge at considerable intervals at a great height, "seldom," aays Bates, "descending nearer the ground than 20 feet." The Satyridae (Plate XXIX fig. 6) are found in every quarter of the globe, and seem equally at home on open piains, in forests, and on the slopes of mountains. Their larva feed chiefly on grass, and have the almost unique habit of remaining concealed by day and of coming forth at night to feed. The Marbled White (Arge galathea) is the species oftenest met with in Britain. The Hetairae of Brazil, the wings of which are partly transparent, belong to this
famuy. One of these, Hetaira csmeralla, says Bates, "has one spot only of opaque colouring on its wings, which is of a violet and rose lue; this is the only part visible when the insect is flying low over dead leares in the gloomy sbades where alone it is found, and it then looks like the wandering petal of a flower." The Mesperida or Skippers (Plate XXIX. fige. 13 and 15), so called from their jerks liesitating mode of hight, show, in the thiekaness of their bodies, the only partially erect way in which they hold their wings when at rest, and the enclosure of their pupa in a cocoon, a distinct approach to the other great division of the Lepidoptera-the moths.

Motis.-The vast collection of species included under liis term form eight principal groups, divided into numerous families.

1. The Sphingina or Sphinx Moths (Plate XXX. figs. 5 and 6), so called from the curious habit which the larve have of raising the anterior segments of their bodies, and remaining motionless in this position for hours, athus bearing a fanciful resemblance to the fabled Sphinx, are for the most part crepuscular and day-flying. They are also known in the type family as Hawk Moths from the strength and velocity of their flight. In common with the vast majority of moths they are furnished with a spine or strong bristle on the anterior margin of the inferior wings, which being received by a process of the under surface of the superior pair, maintains them in a horizontal or somewhat inclined position in repose. They are also usually provided with a greatly elongated tongue, with which they sip their food from flowers, and some species bave the power of producing a humming sound. To this group belong the clear-wingel inotlis, Sesüdae (Plate XXX. fig. 12) and Aigeriide, all day fiers, and looking more like the bees. wasps, and ichneumons which they are supposed to imitate, than moths; also the family Uranicda (Plate XXIX. figs. 9 and 14), the species of which are among the most brillinnt of Lepidoptera, -their wings being of velvety black, relieved by numerous bars of golden green, and the inferior pair prolonged into an elegant tail, closely resembling the same appendage in many of the Papilios. They are all day-fliers, and this, together with their gay colouring and airy forms, led to their being at first classed among butterfics, a position which fuller nequaintance with them in the larer and pupa stages showed to be untenable. The typical species occur in cropical America, where they fly with amazing rapidity rad perform aunua! migrations. The Death's-Head Moth (Acherontia atropos) is the largest of European Sphinges, and owing to tho peculiar squeaking sound which it utters when alarmed, the death's-head-like markings on the upper surface of its thorax, and its sudden appearauce in districts where it may not have been noticed for years, it has for centuries been an object of superstitious dread to the uneducated. Its beautifully marked larve feed upon the leaves of the potato. and bury themselves in tho ground preparatory 10 undergoing metamorphosis. The Death's-Head is fond of honey, in search of which its instinct leads it to coter bives, the inmates of which do not attempt to drivo it out by means of their stings, but make every endeavour to raise a waxen wall between the moth and their food stores. It is widely distributed over Europe, Asia, and Africa, while closely allied, but still larger forms ocenr in Australia.
2. The Bombycina (Pnte XXX. figs. 14, 20-25) are nocturnal moths, with the organs of the mouth in many cases so atrophied as to be unfit for use. 'Jhase live but a few days, during which tho mate secks the female and tho latter deposits her eggs. They include the silkworm mothe, so important to man from the silken cocoons in which they encloso their pupae. The silk-producing species are very numerous, but only n fow of then lave as yet been turned
to useful accoudt. The chief of these are the common Silksorm Moth (bombyx mort), a native of Clina, where its cocoons appear to have been utilized by man from time immemorial. During the 6th century it was introduced into Europe, where it soon flourished wherever the mulberry tree, the leases of which are the sole food of the silkworm, abounded. On these the larve feed for thirty days, after which they begin to spin an oval cocoon of a close tissue of the finest silk, usually of a golden yellow colour, but sometimes white, and which when unravelled forms a, continuous thread 1100 yards long. In order to obtain a fresh supply of eggs, the silkworm breeder allows a few of the pupa $t 3$ develop into moths; and such is the change wrought upon this species by centuries of domestication that, it is said, they rarely if ever attempt to use their wings. They pair, and the female at ence settles on the leaves provided for her, where she deposits ber eggs and dies. The Arriudy Silkworm (Attacus cynthia), so called from the native name of the castor-oil plant on which its larva feed, is a nativo of India. The cocoon is rery large, but the thread is too fine to be readily wound off, and it is therefore usually carded, the yarn being woven into a coarse silk cloth of great durability. The Tusseb or Tussur Moth (Anthercea mylitta) is also a native of Uper India, occurring abundantly in the jungles, where its cocoons, so concealed by the leaves as only to be detected by the presence of the dung of the larre on the ground, are collected. The Tussch silk is darker and coarser than that of the common silkworm, but rescmbles it in being readily wound off. In China there are two oak silk worms from which a coarse silk is obtained, used for the clothing of the Chinese poorer classes; but the most important of the oak-fceding species is the Yama-maï (Authcreea yamcemai) of Japan, tle silk produced from whieh was, at least until lately, reserved for the use of the Japanese imperial family. This moth is a beautiful insect. about 6 inclies across the wings, of a brihliant golden-yelluw colour, with a transparent spot or "eye" near the centre of each wing. Its cocoon is nearly as large as a pigeon's egg, and is of a silvery white within, although externally of a yellowish green. In 1861 it was introduced into France, where it now flourishes, and there is good reason to believe, from the nature of its food and its lardiness, that the Yamamaï may yet be probitably reared in Great Britain. I'ropaca luna, which feeds upon the liquidambar trees in the southern parts of the United States, with witigs of a lemon colour, each with a "transparent cye," and the hind pair prolonged into an elegant tail, is one of the loveliest species of bombycing. Its cocoon is formed of the finest silk. Other well-known forms are the Eggars (Lasiocampa, Plate XXX. Gig. 26); the l'rocessional Moth (Cnethocampa mocessionea), so called from the labit its caterpillars have of congregating in companies of several hundreds, and of marching to their feeding.erounds in regular columns; the Vapourers (Orqyia, Mate XXXI figs. 2, 3, 4), whose females being almost wingless depusit their eggs on the uutside of their cocoons, and the Psyches (rsychida), whose fomales in many cases have neither wings, legs, nor antenne, and never leave the tubes in which they lave passed the larva and pupa stages.
3. The Noctuina (Mate XXX. figs. 3 and 14) form an exceedingly large group of nocturnal moths, although eveu here there are a few exceptional instanees of day-Aying species. They are distinguished by their stout bodies and narrow forewings, under which when reposing they conceal the inferior and in many cases more brightly-coloured pair 'lhe majority of the specics are small and dull in their colours, whide a few are among the largest of known insects-the Great Owl Moth of Brazil (Ercbus strix) measuring nearly a foot from tip to tip of its wings.
4. The Gcometrina (l'late XXXI. figs. 23 and 15) in the
antral condition have only four prolegs, the usual number heing ten, and in moving these are brought close up to the last pair of thoracie limbs, thus giving the eaterpillar a looped appearance, heace the tervi" loopers" usually applied to these moths; they then hold on by the prolegs, and releasing those in front carry the body forward until the areled appearance is gene. They thus move by an alternate process of looping and straightening their bodies. The larve of Geometers have also the curious habit of fixing themselves by their bind feet to the branch of a slirnh, throwing the remainder of their bodies out, and remaining motionless in this position for bours, thus exhibiting an enormous amount of muscular energy.' Tbey are all protectively coloured, and in the attitude just described so resemble the surrounding twigs as to be readily mistaken for them. Geometers are to be fonnd in sunshine and by night, in midsunmer and at midwinter, the Early Moth (Hybernia rupicapraria) being caught in January.
5. The Pyralidina (Plate XXXI. figs. 17, 19, 20, 23) are a group of small moths readily distinguished by their long slender bodies and large forewings. One of these, Pyralis vitis, is very destructive to vines, and another, Pyratis farinalis, feeds upon meal and flour. The Calleride, a family of Pyralidine moths, deposit their eggs in the bives of bees, where the caterpillars, enelosed in silken eases, devour tbe wax; but the IIydrocampide (Ilate XXXI. fig. 12), which also belong to this section, are probably the inost wonderful of all Lepidepterous insects, their larve being aquatie, living and feeding in the mater, and many of them breathing by gills similar to those of caddisworms.
6. The Tovtricina (Plate XXXI. Gg. 16) inclule a great number of small moths exceedingly injurious to orchard and other trees. They are known as "leaf-rollers" from the habit whieh inost of their larve linve of rolling up the leaves on which they feed, and thus forming a shelter for themselves. The Green Tortrix (Tortrix viridana) ocenrs in the larva state on the oak, to which it often does great injury by stripining the trees of their leaves in the month of Jume. Throughout Southern Europe the vine is liable to the ravages of another species, Einectra pillariana, while few of our fruit trees are exempt from the occasional attacks of some species or other of the Carpocapsidue, the fruit-eating family of this group.
7. The Tineina (Plate XXXI. figs. 21, 24, 25) contain tho smallest of the Lepidoptera, and are best known as clothes moths. These clothe themselves at our expense in the warmest woollen garments, which they traverse in ull directions, leaving belind a gnawed and worn-out path, so thin and bare as to yicld to the slightest pressure. They also destroy furs, bair, feathers, and nany other artieles of domestic economy; and are the exterminating pests of ziological museums. To them we no doubt owe the destruction of the mast perfect specimen of the Dodo known, which was onee preserved in the Ashmulean Museum of Oxford. By means of their maxille these little larve shear down the surface of various substances, and uniting the particles by means of their glotinous silk, they thus form protecting habitations, which partake of the nature of the woolleu or other stuffs on which the foresight of their parents bas placed them. When they themselves increase in bulk, so as to find their abodes as ineonsenient as a strait waistecat, they split them down the middle, and interpose a piece proportioned, no doult, to their expected as well as actual increase. They add to the length also by fresh materials to the anteriur cod. The Tinea granellia !ives in granarics, where it forms an abode for itself by enveloping several grains in a silken web. Thesc it afterwards eats.
8. The inscets of the remaining groun, Iterophorina, are
remarkable from the peculiar couformation of their wings. Each of these organs is split longitudinally iato severial branches, all of them delicately fringed. In the genus Pterophora (Plate XXXI. 6ig. 26) the fore wings are divided into two, and the hind wings into three branches; while in Orneodes (Platc XXXI. fig. 27) each wing is split into six, apd these when the insect is at rest are folded together after the manner of a fan.

Collection and Preservation of Lepidoptera. - Culiectiop Eutterfics affeet special localities with which it is well for and prethe collector to make bimself acquainted. A suitable sacsation bunting ground having been selected, the following apparatus is necessary:-a bag-net made of gauze or sume equally light material, with a wooden or metal ring and a handle, whieh nay also be used as a walking-stick, jor capturing the specimens; pill boxes into which to transter them from the net; and a wice-mouthed glass stoppered bottle, into whiel about forty leaves of the common laurel, bruised and cat into shreds, bave been previously put. Exposure for a sbort time to the fonics arising from these shreds will cause the death of the inmates of the pill boxes. They may also be readily killed by pressing the thumb-nail against their thorax. For "setting" Lepidoptera, which if possible should be done before the insect stiflens, entomolugieal pins are required, and these should be gilt in order to prevent the appearance of verdigris at the point where, the pin enters the specimen; also a setting-koard, with an upper layer of cork, and having a groove in which to lay the body of the insect; and small triangular strips of cardboard known as braces with which to set the wings. The process of drying should not be artificially hastened, as by exposure to leat the wings are certain to warp and the body to shrivel. Should the insect have stiflened before setting, or have been badly set, it can readily be softened again by placing it, as is done in the British Musemm, in a shallow carthen vessel containing a layer of damp sand, and coveriug it with a close-fitting lid until sufficiently soft fur rescting. Day-fying moths must be sought for in much the same way as butterflies, wh: - nocturnal species may be regularly met with on the sallow, the honeysucke, the limetree, and the iry, when these are in flower; and when these and similar natural sources fail, the moth-cellector las ir. sugar and light two admirable devices for sccoring specimens. A quantity of the coarsest brown sugar reduced by the addition of beer and water to a syrup, and to which a little rum is added as required, is apphed with a brush to the sheltered aspect of the trunks of trees on the outskirts of woods or in the neigbbourhood oi beaths. At niglit fall the colleetor, lamp in hand, visits the sugared loeality, and if the evening be favourable, that is, if it bo warm and dull, he is almost certain to bave his pains rewarded by an abundance of specimens, chiefly belouging to the Noctuina. Moths, it is well known, are readily attracted by light, and in a country or suburban house, in the vicinity of trees, a lamp placed outside an open window., which is sheltered from the wind, with another lamp in the interior of the room, will, if the night be close and dark, be almost certain to attract numbers of moths. Mr Wallace adopted this plan while collecting in Borneo, and he states that in twenty-six nights he collected 1386 moths, "but that more than 800 of these were collected on four very wet and dark nights." In towns moths may often be caught flying about lamp-posts. In preservieg the larger moths, especially the Sphingina, it is necessary to slit up their stout bodics and remeve the contents, replacing these with wadding or paper. The drawers of cabinets coritaining Lepidoptera should be provided with' layer- of cork and then papered, with a small bag of camphor attached to a corner to ward off the attacks of the dust-lice, or "mites" as they arc usualls, but incorrectly, called, the
presence of which is made known by the appearance of a fine powder lying underneath the infected specimens. Insects in this condition should be thoroughly soaked in a solution of spirits of wose and carphor. The appearance of grease on thick-bodied moths is by no means uncommon, but may be removed by dippong the insect in spirits of iurpentive and embedding it in calcined magnesia till dry The collector should be careful to keep a register of all his specimens, giviog the localities where they were found, and recordiag apy observatious that may have been rade at the time on their food, habits, \& c A small ticket attached to the pin of each specimen, and bearing its number in the register, is the best way of connecting the specimens in the cabinet with the entries in the register
(J. GI.)

BUTTMANN, Philipp Karl (1764-1829), a German philologist, was born at Frankfort-on-the-Main in 1764 He was educated at the gymnasium in his native town and at the unversity of Guttungen. In 1789 be obtained an appointment in the library at Berlin, and for some years be edited Spener's Journal. In 1796 be became professor at the Joachimsthal Gymnasum, a post which he held for twelve years. In 1806 be was admitted to the Academy of Sciences, and in 181! was made secretary of the HistoricoPhilological Section. He died 101829 . Buttmann's writings gave a great impetus to the scientifie study of the Greek language, and bis grammar is still a work of value. The first edition of the Griechische Grammatik appeared in 1792, and in 1863 the book was in its 21st edition. It has been translated into English The Lexilogus, a valuable study on some words of difficulty occurring principally in the poems of Homer and Hesiud, was published in 2 vols., 1818-25. The English translation by Fishlake has passed though five editions Buttmann's other works were Ausfïhrliche Griechische Sprachtehre, 2 vols., 1819-27; Mythologus, a collection of essays, 1828-9; and editions of some classical authors. Of these last the nost im. portant are Demostherres in Midiam, 1823, and the continuation of Spalding's Quintilian.

BUTTON, from the French bouton, a small piece of metal or otber material used to connect different parts of a farment together by means of a button bole, and also used for ornamentation. These apparently insignificant articles have produced a great alteration in our style of dress, for without them it would bave been impossible to have redured the flowing robes of our forefathers into our present simple costume. By this process we have lost the picturesque, as far as our garments are concerned, but have gained in compactness and atility. Indeed, the occupations of the present age conld not be carried on in the togas and dresses of ancicut times. The button manufacture did not assume any special form until towards the close of the reign of Elizabeth. ln paintings, commencing with the 14th century, studs or buttons appear as ornaments on the dresses of both sexes; but they were ornaments merely, being drawn without button-holes, and placed where they conld serve no practical purpose. They are in general 'represented as of gold or ivory. At the commencenent of the 17 th century the trade had greatly increased, ant the making of buttons by the needle seens to have been the principal method.

Matthew Doulton, who became the senior partner in the afterwards celebrated firm of Poulton and Watt, is early as 3745, introduced great improvements in the manufacture of huttons, particularly inkaid and stee]. When the Soho Works were established near lirmingham, one of the departments was occupied in making steel buttons with facets, that produced a lumdred and forty guineas the gross. Gilt buttons came into fasbion shombly after the accession of George IIL. A large shipping trade in luttons wes then carried on with the Continent and Amerien, and the
workonen's waces at Lirmingharu averaged from $£ 2$ to $£ 4$ fer week. John Taylor, originally a cabinetmaker, appeara to have had a principal haud is promoting improvements in this industry at that time, as far as gilt, plated, and lacquered buttons are conccrned. The vatue of those turoed out weekly in his establishment is said to have been about £800. Ralph Heaton improved the making of shanks, a separate branch, shortly before the commencement of the present ceatury.

The metal button trade was in a very flourıshing condition, when, indirectly, Lord Nelson may be sard to have been the means of overtbrowing it. The late B. Sanders was in easy circumstances in Denmark when he was ruined by the bombardment of Copenbagen under our great naval commander. Sanders then came to Dirmanghan to seek such competence as energy and perseverance could afford. He started in the button manufacture, at tirst in a small way, introducing a covered button made of cleths or lasting, with an iron shank. His son, of the same name. invented a flcxible shank button, that 1s, one with a tuft of canvas protruding from the back instead of a shank, througb . which tie needle could pass un uny direction. It was patented in 1825 and bad an enorrucus sale. The Sanders took out another patent for a simila: button covered with silk A fancy silk button with a central ornament was patented by William Elhott in 1837. which bad a great run, so much so that sisty looms were employed in London in making the special materal required; and Elliott secured a fortune, although his patent was contested and many imitations nere started But all these kinds of buttons were found to wear on the edges, to remedy which John Chatwin patented a corded edge button. It is said that horn buttons were used as early as 1801, but we find from old Birminghara directories that there were born-button makers as far back as 1777. At the former period the commonest qualities were $5 \frac{1}{2} \mathrm{~d}$. per gross. Huttou in his History of Birmingham refers to "our granamothers" wearing bori buttons nearly the size of a crown piece. The hoof or horn button is cut into form and dyed and pressed into beautiful designs. This great improvement, however, appears to have been effected by M. Emile Bassot of Paris, who introduced important changes resulting in material progress The manufacture is still prosecuted in England, but it is of secondary importance.

The materials of which buttons are made are as various as their forms. Gold, silver, and other metals, glass, porcelain, born, bone, india-rubber, mother-of-pearl, and other nacreous productions of shell-bsh, ${ }^{1}$ various woods, vegetable ivory, \&c., ${ }^{2}$ are employed; and for covered buttons, lasting, brocade, twist, volvet, silk, mohair. de. The Birmingham Directory for 1784 mentions paper buttons: and, according to the same anthority, a button was iroduced by "an artist of emmence," which was inlaid with divers other metals; it was first attempted about sixty years"previously; and then, "though in no respect so complete as nt present, met with great and merited encouragement." Buttons have been often expensively jewelled, and the gold and silver are plain or ornamented, sometimes rescmbling drops in filigree-work. There was one in use in England about the middle of the last century

[^52]formed of polished brass ana ruled with such fine lines that light was reflected in prismatic colours. Some buttons have fetched enormous prices, even when made of what is now a common material. Mother-of-pearl buttons have been sold at a guinea each. In 1790 Hienry Clay of Birmingham patented a method of manufacturing buttons of alate or slit stone ; and, in 1800, Joseph Barnett introduced a button with two shanks or other fastenings on one button.

Such was the origin of the button industry in Englard, and other nations bave not been behind. The Scientific American gives the following account of its commencement in the United States:-
"The first manufacturer of buttons in this country was Samuel Wittiston. White he was dragging along as a country atorekeeper, -his eyes having failed him while studying for the ministry,-his wife bethought her that she could cover by hand the wooden buttons of the time, and thus earn an honest penny. From this the couple advanced in thacir ambition until they had perfected machinery for covering buttons, the first employed in this country. From this sprang an inmense factory, and then others, until Samuel Williston made half the buttons of the world. His factorics are still ruaning at Easthampton, coining wealth for the proprietors. . He is now (1871) between seventy and eighty years of age, is worth five or six mitlions, and has given four hundred thousand dollars to Easthampton for a seminary and for churches; two hundred thonsard dollars to South Hanley Fermale seminary; and two nundred thousand dollars to Arnherst Coliege, besides lesser gifts."

The factories of Samuel Williston \& Co., above referred to, at Easthampton, Massaohusetts, were established abouc the year 1848 , and give employment to about 250 operativee. The annual cost of the materials used is estimated at $\$ 75,000$, and the value of the produce exceeds $\$ 200,000$. The button manufacture is also carsied on extenaively in New York and Philadelphia, and at Waterbury (Conn.). Buttons are also imported extensively. There are five importers in New York (1876). Joel Hayden of Haydenville began to make flexible buttons in the States in the year 1834.

Other countries have not been backward in this branch of industry. Bohemia, particularly at Prague and the meighbouring towns, is the great seat of the glase button manufacture, and great numbers are made in France. The porcelain button manufacture has been taken possession of by France, Minton and Co., the celebrated Statordshire lirm, who worked the invention of R. Prosser of Birmingham, having beed driven out of the field by the good work, attended by greater cheapness, of the foreign makers. There is one factory at Milan, and great numbers of the cheaper kinds of buttons are made in the lhenish provinces of Prussia Vienna has suppressed the competition of Saglish makera in some kinds of pearl buttons. Its operat.ons in this branch are of a mest extensive character, quite rivalling those of Birmingham.
"Button making," says tho Birmingham Directory for 1777, "was originally a very tedious and expensive process. The button consisted of one solid piece of metal; and the ornaments upon the face of it were the work of an engraver. To obviate this, the press, stamp, - and engine for turning the moulds were invented. This led to other improvements, the bones and hoofs of animals were introduced into the 'manufacture ; by these various means the prices of buttons were reduced."

In the manufacture of covered buttons the sbeet-irnn is first scaled by the use of acids, and then eut into proper shape and size by a machine. The neck or collet of the button is japanied after having been atamped and cut. The holluw between the neck and shell is filled in with brown paper or button board. When the parts are put together they are pressed, which brings them into shape and coneolidates thom.

Is would be impossible in the space that could be devoted
to the subject nere, to descrive in datal the various modes in which the oumerjus forms of buttons are manu-factured,-especially as it would require elaborate illustration. We must, therefore, confine ourselves to noticing some of the special and more recent patents, referring the reader to works where he can obtain such further information as he may require. In 1840 Joseph Parkes took out a patent for improvements in the manufacture of covered buttons made by dies and pressure, by the application of horn as a covering material. Harris's patent for improvements in horn buttons and their dies was obtained in April 1841. This invention related to applying flexible shanks to horn buttons, a mode of ornamentation by inlaying the front aurfaces, and also gilding or silvering their surfaces, and to a mode of constructing dies so as to facilitate the process of engraving, the die being also so frrmed that the liorn or hoof employed could not be expressed outside the circumference of the button. Hugh Willoch's patent, dated 5th May 1874 , related to a button with a removable head to enable the shank to pass through the button hole. The head is hollow and is partly filled with caoutchonc. It is perforated to admit tho shank top, a short transverse bar which, on being turned one-fourth round, falls into an internal groove in the material of the button head, aud is retained in that position by the elasticity of the india-rubber. Empson and Palmer's patent, dated 4th July 1874, refers to improvements in Linen buttons, and is aiso applicable to buttons covered with other fabrics. They are composed of a front and back shell, with a bar formed across the face of a raised concentric circle from tho back shell (which is all the metal that need be visible in the finished button), the shells permitting ample room for the covering fabrics to be gathered in and held between them. They are considered to resist the injury common to linen buttons during the processes of washing, maugling, and ironing. Tylor's patent, of 13 th July 1874, relates to polishing ivory, bone, and similar buttons in a revolving drum with revolving brushes inside. Harrison's inveution (8th September 1874) consists in arranging the piereing tools, so that the thread holes for the buttons aro made in the piereed matal in front of the shaping and cuttling. ont tools, and the metal around the groups of piereings is shaped or "domed," and cut out. The result is that at each descent of the compound tonl three or more groups of the thread holes are pierced in the sheet metal, and threa or more finished buttons are made. The piercings in the sheet metal made by the last descent of the compound tuol form the thread holes of the buttons made by the next deseent of the said compound tool. When the threarlboles of tho button are made in a central depression, a shaping tool for making the said depression is placed between each piercirg tool and cutting-out tool. This invention is also applicable to the manufacture of washer, rings, links for chains, and other like articles from sheetmetal. The patent of G. F. Champorez of Berlin, Prussia, relates to improvements in the manufacture of etcel or irou and ateel dies, and to certain contrivances for producing the same, the said dics being in depression or relief, withont recourae to the hitherto universally employed engraving tool. Ccle's patent (10th Fcbruary 1875) relates to a composition for dress-fastenings enerally, consisting of black composition of equal prats by weight of gas tar or tar varnish, whiting or chalk or clay, and larap black or regetable black. For a coloured compesition transparent varnish, or the raste refuse of it, is substituted for gas tar or tar varnish, and a powdered pigment of the renuirel colour is added. The matarinls should be thoroughly mixed and converted into a plastic, pasty mass, which is curalidated and hariesed by rilifigand drying. To give
vughaess short pieces of fibrous material may be introduced. The articies are shaped from the composition by stamping in stamps or presses, and then varnished and pulished.

Messrs Green, Cadbury, \& Jichards, Birmingham, manufactures linenbutton called "The very Button"(Shakespeare), in addition to others of innumerable kinds, and studs for shirts, collars, and wristbands, not only of plain materials but of gold and silver and jewelled. They employ about 400 tands, and turn ont weekly from 10,000 to 15,000 gross (12 dozen to the gross) of therr linen buttons. The proprietors of this establishment take great interest 10 the welfare of ther workpeople, and.few of the adults have keen in their employment less than from eight to eighteen y ars. There is a sack club in conacction with the works, ead a library containung at present about 1000 volumes. Fines are inflicted for certain irregularities, these, howrver, are not appropriated by the hrm, but are expended. ralf in the purchase of books, and half as a contribution to the sick club.

The following is a comparative statement of the number "f button manufactories at the localities where these articles are furincipally made, taken from the Ducctories of 1875 -

London, 58 ; Birmingham, Jfi : Parıs, 140 ; Berlıa, 49 IIamburg, 5 ; Darmstadt, 3 ; Offenbach un the Mande. 3. I, n!eck, 2 ; Darmen (Prussia), 27, Elberfeld, 9 Breslau. 2; Judenschied (West phalia), 14 ; Stuttgart, $1 ;$ Viemnametal, 15 , porcelain, 5 , shirt, 6, silk, 11, Brussels, 5 :New York city, 19, Brooklyn (N Y), 3, Philadelphia, 13 ; Waterbury (Coan.), 3. Boston (Mass), 3 Attleborough (Mass.), 3, Springtield (Mass.), 2. Neuark (N Jersey), 4.
Abstractsof Specifucations of Patents(Patent office); Ure's Dichonary of Arts and Manufactures, Resourceq, Products, \&ec., vf Burminghan nad Midland Harlbcare Destrect; Struttis Habus if thr Englash. Newton's London Journal, Birmingham IIrectorirs. 1777. dic Jintton's Mistory of Eirmingham; Great ludustrues of the Inited Siater. (J.J L.).

BUXTON, a markettown and fashionable watering. [lace of England, ia the county of Derby, 31 mules N.W of Derby, and 160 from London. conuected with Derby hy the Buxtor and Rowsley extension line, and with Manchester by the Stockport, Disley, and Buxton Railway. It occupies a high position, being 900 feet above the sea-level, ia an open bollow, surrounded at a distance by hills of considerable clevation, except on the S E. side, where the

Plan of Buxtun.
Wye, which rises about half a mile off, makes its exit. The old town (Iigh Buxton) is rather higher than the new, and consists of one wide strect, and a considerable market phace with an old cross. With the exccption of some good inns and lodging-houses, the buldings in this part are commonplace. she new town io of a more elegant char-
acter, and has been greaily extended within the last $t w \in \Delta t y$ or thirty years. The crescent is a fine range of buildings in the Doric style, erected by the duke of Devonshire in 1759-86, at a cost of $\pm 120,000$. It contains hotels, a ballromm, a bank, a library, and other establishments, and the surrounding open grounds have been laid out in terraces and gardens under the control of the Buxten Improvements Company. The Old Hall Hotel at the west cad of tho crescent is remarkable as the site of the mansion bult by the earl of Shrewsbury an the reign of Queen Elizabeth, which was the residence of Queen Mary of Scotland when she visited the town. The new church was erected in 181: by the dake of Devonshire; the edifice which it superscded bas since been restored. The mineral waters of Buxton, the most noted in England, are particularly efficacious in cascs of rheumatism and gout. There are aumerous pubhc and private baths, the most important of which are those in the new and spacious estatblishment at the eastera end of the crescent. The springs supply hot and cold water st a very short distance of each other, flowing at the rate of 60 gallons a minute. The former possesses a uniform temperature of 82° Fabr., and the principal substances in solution are, according to the analysis of Dr Muspratt in 1860-carbonate of hme, carbonate of magnesia, chloride of sodium, chlonde of calcum, and silica. There is also a chalybeate spring known as St Anne's well, situated at the S.W. corner of the crescent, the water of which when mixed with that of the other springs proves purgative. The Devonshire Hospital, formerly known as the Bath Charity, is a beaevoleat mstitution, supported entirely by voluntary subscriptions, for the reception and free treatment of poor patients from any part of the country. About 900 or 1000 persons are amually indebted to ats founders. The Buxton season extends from June to October, and during that period the town is visted by thousands anoually. The public walks are tastefully laid out. The Cavendish Terrace, 500 yards long, forms a line promenade, there are excelleat dnves in the park, which occuples more than 100 acres, and the neaghbourhood of the town is rich in objects of interest. Of these the chief are-Poole's Hole, a rast stalactite cave, about hall a mule distant, now lighted with gas Ior the conventeace of vistors, Diamund Hill, which owes its name to the quartz crystals which are not unirequent in its rocks, and Chee Tor, a remarkable cliff, on the banks nf the Wye, 300 feet high. Ornaments are manufactured by the inlabitants from alabaster and spar; and excellent line is burned at the quarries near Poole's Hole. Other places of interest, but more distant, are the cavern and mices of Castleton, Haddon Hall, and Chatsworth, the seat of the duke of Devoashire. The population it 1871 mithin the jurisdiction of the Local Board of Health was 3717 ; but the fluctnating population duriag summer varies from 4000 to 5000 at a time.

To judge from the remains of baths and other stmuctures which have at varous tumes been discovered, aud tbe fact llast they are situated near the crossing of two military roids, it seems alnost certain that the mineral springs of Buxion were known to the Rorans: but by what name they were then desiguated has not been ascertaned. We find them a favounte resort in the penod before the Reformation, when the patients were su the habit of offenng their cratches or articles of attire to the amage of St Anne, the tutelar sant, in token of their gratatude for benefit denved from the springs. Sir Wilham Basset, at the command of Henry V'lll., destroyed the " tabernacle" and prolibited the practice ; but the wells neem to hare lost none of their reputation by the loss of their saint, and conmmed to be a favonrite resolt in the lasb parb of the centur: There prases were sunded in 1502 by John Jones, "Phisition at the Kiva's Mede, nuar Lharby," in The Renefiss of the Ancient Baths of Buchistomes, and at a later period they were celebrated hy Hobles and Cotion in their respective accounts of the wonders of the Peak. Scealso Thomas Brown's Tour in Derbyshire, and among modern works, Sur Charles Scudanore's Terrid Smmonos of Buxion, 1839;

BUXTON, Jedediah, a prodigy of skill in numbers, was born in 1704, at Elmton, near Chesterfield in Derbyshire. Although his father was schoolmaster of the parish, and his grandfather had been the vicar, his education bad been ao neglected that he could not write ; and his knowledge, except of numbers, was extremely limited. How he came first to know the relative proportions of numbers, and their progressive denominations, he did not remember; but on such matters his attention was so constantly rivetted, that he frequently took no cognizance of external objects, and when he did, it was only with reference to their numbers. He worked out every question after his own method, without any external and, and without understandmg the common rules of arthmetic. He would stride over a prece of land or a field, and tell the contents of it almost as exactly as if it had been measured by the chain. In this manoer he measured the whole lordship of Elmton, congrsing of some thousand acres, and gave the contents not only in acres, roods, and perches, hut even in square uches. After this, for his own amusement, he reduced them ioto square harrs'-breadths, reckoning forty-elght m each side of tha inch. His memory was so great, that in resolving a question he could leave off and resuras the "peration agran at the aame point after the lapse of a week, or even of several months. His perpetual application to 'igures prevented the smallest acquisition of any other knowledge. Da his return from church it never appeared that he bad trought away one sentence, his mind having bean busied in his favourite ocrupation. His wonderful laculty was tosted in 1754 by the Royal Socicty of London, who acknowledged their satisfaction by presenting him with a hancisome gratuity. During his visit to the metropolis he was taken to aee the tragedy of Ruchard III. performed at Drury Lanc thearre, but his whole mind was given to the counting of the words uttered by Garrick Similarly, he set himself to count the steps of the dancers, and he declared that the innumerable sounds produced by the musical instruments had perplexed him beyond measure. He lived till about the age of seventy, aud died at the place of his birth.
buXton, Sir Thomas Fowell (1786-1845), a dis. tiuguished philanthropist, whose name is inseparably associated with that of Wilberforce in the abolition of slavery, was born in Essex, April 1, 1786. He was not educated at any of the public schools, and at about the age of eighteen be entered Trinty College, Dubha, with a very slender stock of acquircments. But he was aware of his defects, and laboured so earriestly that he came ont one of the first men of his time, and with on extraordinarily high reputa tion as a spcaker. In 1809 he married Harriet Gurney, eister of the celebrated Mrs Fry. As his own means were not of themselves aufficient to support his family, be entered in 1808 tha brewery establishment of Truman, Hanbury, and Co., of whieh his uncles, the Hanhurys, were partners. He devoted inimself to business with characteristie enthusiasm, became a partner in 1811, and soon had the whole coneern in his bands. In 1816 he brought himself into notice by his speech in belalf of the Sputaltields weavera, and in 1818 he published hes able Inquary into Prison Discipline. The same year he was elected member for Weymouth, a borough for which he continued to sit till 1837. In the House of Commons be had a high reputation as an able and straightforward speaker, devoted to philanthropic schemes. Of these plans the most important was that for the abolition of slavery in the British colonics. Buston devoted his life to this object, and through defeat and oipposition, despite the attacks of enemies and the remonstrances of faint-hearted friends, he remained true to i!. Not till 1833 was he successful, and even then only partially, for he was compalled to admit some clausea
against which his better judgment had decided. Ir 1837 he ceased to sit in the House of Commons. He truvelled on the Continent in 1839 to recrut his health, which had given way, and took the opportunity of inspecting Con tinental prisons. 'He was made a baronet in 1840, and then devoted himself to a plan for amelhorating the condition of the African negroes. The failure of the Niger expedition was a blow from which be never recovered. He died on the 19th February 1845. (Seg Memorr and Correspondeice of Sir T F Buxton, edited by his son, Charles Buston, 1848.)

BUXTORF, or Buxtorff, John (1564-1629), the first of a line of distinguished scholars, whuse Hebrew and rabbinical learning shed lustre upon the university of Basel durng the 17th century, was born at Camen in Westphalia on the 25th December 1564. The orginal form of the name was Bockstrop, or Boxtrop, from which was derived the family crest or insigna, which bore the figure of a goat (Bock in German signifying "he.goat") H1s early education was received at the schools of Hamm and Dortmund. After the death of his father. who was munster of Camen, Buxtorf resumed his studies, which had been interrupted for a short time by that event, at Marburg, and the newlyfounded unversity of Herborn, at the latter of which Olevian and Piscator had been recently appointed professors of theology. It was under the teaching of Piscator that Buxtorf Grst imbibed a love for the Hebrew language and hiterature, that department iu which he was destined afterwards to become so famons. So great was his pro. gress in these studics, that Pascator acknowledged that be was far surpassed by his pupa at a later date Yiscator recested the assistance of Buxtorf in the preparation of his Latin translation of the Old Testament, which was published at Herborn in 1602-3. From Herborn Buxtorf repared to Heidelberg, and thence to Bascl, to which latter umversity be was attracted by the reputation of Jobn James Grynxis and llospinian. After a residence of some tume at Easel, Buxtori proceeded to Zurieh, for the purpose of attendiog the lectures of Bullinger, and after that to Geneva, where he emjoyed for a short time the instructions of Beza. On his return to Basel, Grynens, a ho had been greatly umpressed by the character, talents, industry, and grent learnang of the youtb, and was desirous that the sernces of one who promised to become a acholar of great distuctoon should be sccored to the umversity, procured him a situation as tutor in the family of Leo Curio, son of Coelius Secundus Curio, so celebrated for has sufferiges on account of the Reformed faith. This arrangement exercised a decisive influence upon the future life, public and private, of Buxtorf. At the instance of Gryixu:, Bustorf undertook the duties of the Hebrew char in the university, and discharged them for two years with such atiluty and acceptance. that at the end of that time he way unanimously appointed to the vacant office. From this date (1590) to has death a 1629 , a perood of thisty mine years, Bustorf remaned ia Basel, and devoted himself to the study of Hebrem and rabbiucal hterature with. an energy and zeal that have rarely been paralleled in the bistory of any scholar. He is said never to have devoted fewer than elght or ten hours daily to study. Not satisfied with pernsing the works of the rabbins, be received into his own house many learned Jews, that be might discuss with them the more difficult and abstruse points treated of in the writungs of their countrymen. So great, indeed, became his reputation for profound and extensive knowledge of rabbinical books, that he was frequently consulted by Jers themselves on matters relating to their ceremonial law. Probably no Protestant acholar ever possessed so complete a knowledge o the contents of the rebbinical writings as Bustori, and Lo
v- 26
seems to have well deserved the utle which was conferred upon him of "Master of the Rabbins." His partiality for Jewish society exposed him, indeed, on one occasion to considerable annoyance. He had reccived a Jew named Abraham into bis loouse in order to assist him in the editing of his great Rabbinical Bible. Abraham's wife was confined of a boy, whose circumcision, agreeably to Hebrew usage, had to toke place on the eighth day after lirth, and it was necessary that at least two Jewish witnesses shonld be present at the cercmony. Buxtorf obtained permission from the chief officer of the town council to allow two Jews from a distance to assist on the occasion, while he himself, his son-in-law, and two citizens of Bascl, were also present. This procceding, however, gave grcat offence to the authorities of the city, the laws agaiast the Jews being at this time exceedingly stringent. The rcsult was that Buxterf and bis son-in-law were each fined 100 florins, the father of the boy 400 florins, while the officer of the municipality and the two citizens were punished with three days' imprisonment. Notwithstandiag this occurrence, however, Buxtorf's relations with the city of Basel were of a friendly kind. He remaiaed firmly attached to tbe university which first recogaized his merits, and declined two invitations which were offered him, from Leyden and Saumur successively, to fild the Hebrew chair in these famous schools. His correspondence with the most distinguished scholars of the day was very extensive, and in the rich collection of letters preserved in the library of the nniversity of Basel, are contained materials for a literary history of the time which it is hoped may be one day utilized.
The works which Buxtorf published during his life are too numerous to be all enumerated in this brief notice, and for a complete list of them the reader is referred to the anthorities cited at the close of the article. The followiog, however, may be mentioned. In 1602 appeared his Minnuale Hcbraicum et Chaldaicum, which reached a seventh edition in the year 1658. In the following year was published his Synagoga Judaica, which appeared first in German and was afterwards translated into Latin in an enlarged form, and which constitutes a valusble repertory of information regarding the opinions and ceremonies of the Jews. In 1607 he published his iexicon Hebraicum et Chaldaicum cum brevi Lexico Rabbrinico Philosophico, which was reprinted at Glasgow so recently as 1824 . In 2618 there appeared in two folio volumes his sreat Rabbinical Bible, sontainiog, in addition to the Hebrew text, the Chaldee Paraphrases or Targums, which he punctuated after the analogy of the Chaldee passages in Ezra and Danicl (a proceeding which hae been condemned by Richard Simon and others), and the Commentaries of the more celchrated Rabbins, with various other treatises. Of this work it may be said that Rosanmuller's judgment will approve itself to most Hebrew scholars, - that " this edition is indispensable to every one who desires thoroughly to study the criticism and exposition of the Old Testament."-(Rosenmuller, Hambuch für die Literatur der Biblischen Kritik und Exegese, rol. i. p. 259). The Bible was followed by his Tiberias, sive Commentarius Afusorcticus, no named from the grent school of Jewish criticism which had its seat in the town of Tiherias. It was in this work that Burtorf controverted the views of Elias Levita regarding the late origin of the Hebrew vowel points, a subject which gave risa to the faonous controversy between Cappellus and his sou Jokn Juxtorf, which will be referred to in the following article. Luxtorf did not live to complete the two vorks on which his reputation chinfly rests, viz., his great Lexicon Chaldaicum, Talmudicum, ct Falthinicum, and the Concorduntioc Bibliorum ITebraicorum, bo'h of which were edited by his вon. They are monaments of untiring labour and industry, and possess an onduring value. Tbe former work has been rcceotly (1869) repablished at Leipsic with some additions hy Dernard Fischer, Th. D.; and the latter was assumed by Furst as the lasis of his great Hebrew concordance, which appeared in 1840 . For additional information regarding his writings the reader is referred to Athence Raurica, 1p. 444-448; to the article "Pustori" in Ersch and Gruber's Fncycloperdia; to the Theological C'rlopardias of Herzag. and of Wetzer and De Welte, sub roce "Ruxtor""; to Niceron's Mempires, vol. xxxi. Pp. 206-215; to Schrokh's Kirchingeschichec, vol. v. (Postleformation period) pp. 72 s 7 ., Leipsic, 1805 ; and to Meyer's Ge. schiche dor S'hrift-Ertlarung, vol. iii., Guttingen, 1804. (F C.)

BUXTORF, or Ruxtorfy, Johs (1599-1664), comwonly called "gunor," to datiaguish him from his fother,
the snbject of the preceling nutice. He was born at Basel on the 13th August 1599, and at a very early age displayed remarkable aptitude for the acquisition of languages. When only four years old he was sent to school, at which age be is said to have been able to read Latin, Greek, and Hebrew, in which he had been instructed by his father. At the age of twelve he entered the university, where he speedily distinguished himself above not only bis equals, but his seniors in years, to so great a degree that wben only sixteen he received the diploma of master of arts from the hands of his own father. From this time he devoted himself to the study of theology, turning his attention especially to the Hebrew language and its cognate dialects, and then proceeding to the study of rabbinical Hebrew, in which he soon attained such proficiency, that be is said, while still a young man, to have read through not only the Mishna, bnt also the Jernsalem and Babylonian Gemaras, or commentaries upon the text of the Talmud. In conformity with the excellent custom, so long prevalent on the Continent, of visiting several universities before finally settling down to life-long professional work, Bustorf proceeded to Heidelberg in 1617, where he listened to the prelections of the theologians Pareus, Scultetus, and the elder Alting. In 1619 he repaired to Dort, while the famous Synod was still sitting, and there made the acquaintance of many of the divines who took part in its proceedings. At the close of the Synod he made a short journey in company with the deputies from Basel, through the Netherlands and England, and thence through France back to Basel. On his return be found that his father's great Rabbinical Bible was in course of publication, and as there was no lexicon suitable for the study of the Chaldee Targums, comprised in the work, he undertook the compilation of such a lexicon, which appeared at Basel in 1622 under the title of Lexicon Chaldaicum et Syriacum, with a recommendatory preface from his father, detailing the circumstances under which the work had been executed. Still thirsting for knowledge, be repaired in 1623 to Geneva, to enjoy the instructions of the elder Turretin, Diodati, and Tronchin; while in return Turretin and Dar. Clericus did not disdain to avail themselves as pupils of his pre-minent knowledge of Hebrew and of the rabbinical dialect. So great by this time had become his reputation as a scholar, that be was offered by the authorities of the city of Beru the chair of logic at Lausanne, which be declincd, preferring to return to Basel, where in 1624, he was appainted general deacon to the charch of Basel (Commuris Ecclesic Basileensis Diaconus), and three years later deacon of St Peter's church. On the death of his father in 1629. Buxtorf was unanimously designated as the fittest person to succeed so distinguished a Hebraist; and by the adrice of his physicians, who were of opinion that the labours involved in the discharge of the duties of a public preacher wonld be injurious to one whose constitution was feeble, he finally accepted the offico. From this date until his death he remained at Basel, declining tro offers which were mado to him from Groningen and Leyden, to accept the Hebrew chair in these two celebrated schools. To mark their appreciation of his patriotic conduct, the gorerning body of the university founded in 1647, specially for his behoof, a thind theological professorship, that of "Commonplaces and Controversies," the duties of which Buxtorf discharged for seven years along with those of the Hebrew chair. When, however, the professership of the Old Testament becams vacant in 1654 by the death of Theodore Zuinger, Buxtorf resigned the chair of theology, and accepted that of the Old Testament instead, holding both oftices, and for some time that also of chicf librarian to the university, until his death in 1664 The course of his private life was chequered by many domestic beresversints. Iio was four times married,
his three first wives dying shortly arter marriage, and the fourth predeceasing ber husband by seven years. His cbuldren also all died young, with the exception of two bors, the younger of whom, John James, became first his father's enlleague, and shortly after his successor in the char of Hebrew.

A considerable portion of his public life was spent in controversy regar ding disputed points in Biblical criticism, in refereace to which the had to defend the views advanced by his father. The attitude of the Reformed churches at that time, as opposed to the Church of Rome, led them to take up and maintain many opinions in regard to Biblical questions, which were not only erroneous in poiot of fact, but which were allogether unnecessary tor the stability of their position. Haviog renonnced the dogma of as infallible church, it was deemed necessary to maintain as a counterpoise, not only that of an infallible Bible, but, as the necessary foundation of this, of a Bible which had been handed down from the earliest ages to the present time without the slightest alteration or clange in its text. The letters in which the Old Testament was written, were, it was asserted, the same as those in which the two tables of the lar had been written; the rowel points and accents which accompanied them had been given by divine inspiration; and the words themselves had not undergone the slightest change from the tirne they had nowed from the pens of the respective writers. The hasoretic text of the Old Testament, therefore, as compared either with that of the recently discovered Samaritan Pentateuch, or of the Septuagint, or of the Vnlgate, was alone the "Hebrew Verity," wherein the true words af the sacred writers were to be found. Althongh many of the Reformers, as well as Icamed Jews, had long seen that these assertions could not be made good, there had been as yet no formal controversy upon the subject. It was reserved for a learned and acnte Frenchman, Ludovicns Cappellus the younger, professor of Hebrew at Saumur, to eater the feld, and by a series of controrergial writings effectually to dispel the illusions wbich had long prevailed in many miods As early as 1622 or 1623 , Cappellus had sobmitted in manuscript to the elder Buxtorf a Fork on the modern erigin of the rowel points and accents, which he had Leen led to uadertake in consequence of the statements made by the Swiss professor in his Tiberias, or Commentary on the Masma, in which he hal cantroverted the viers of Elias levita on tha late origin of the points. Buxtorf saw the force of the arguments employed by Cappellus, but counselled him not to publish his work, pointing ou: the injury which it would de to the Protestant cause, and the advanuge which it would afford to Romish controversialists on the queslion of the infallible accuracy of the text of Scripture. Capptllos, however, was not to be deterred by fear of conscquences. Ile sent his MS. to Thomas Erpenius of Leyden, the most learned Orientalist of his day, by whom it was published 111624 , under the title Arcanum Punctationis revelatuin, with a laudatory jreface, but without the author's namo In this work Cappellus adduced those mgaments and considerations which hare astisfied most scholars snce his day that the rowels and accents are the invention of the Mesoretcs, end that they are not older than the fifth century of the Christian era It is wortb noting that although the elder Buxtorf Gved five years after the publication of the work, he made no public reply to it, and it was not until 1648 , nearly a quarter of a century sfterwards, that Buxtorf, juvior, published his Tractalus dc punciorum origine, astiquitate, et authorita!e, oppositus Arcano puncta. tionis revelato Ludovici Cappelli. In this treatise he eadcavoured to prove by copioua citations from the rabbinical writers, and by ryoments of various kinds, that the points, if not so socient as the situs of Moses, wers at least as old as that of Ezra, and thus pos*ased the suthority of divine inspiration. In the course of the work he allowed himself frequently to employ contemptuous cpithets towards Cappellus, such as "innovator," "prophet," "revealer," "a seer of visions," "drcama," \&c. Cappellus was aot the man io reman silent ia such circumstances. He speedily prepared a meond edition of his work, in which, besides replying to the argusoeots of his opponent, aad fortifying bis position with new ones, lie retorted his contwelious epithets with interest. Oring to various canses, however, among which may be mentioned the distrust with which Cappellus was coming to be regarded on account of his antical opinions among Protestants themselpes, this second edition fid not see the light until thirty years after his death, whea it was published ot Amsterdam in 1685, in the edition of his collected aorks. Besides this controversy, Buxtorf engaged in three others sitb the same antagonist, on the subject of the integrity of the Masoretic text of the Old Testament, on the antiquity of the present Hebrew characters, and on the Lord's Supper. loto the details or these, however, our space does not allow us to enter. In the two former Boxtorf supported tha untenable position that the text of the Old Testament had been transmitted to us without any errors or alteration, and that the present square or so-called Chadea rtaracters were coepal with the original composition of the various ismisi. Theae views were triumphantly refuted by his great oppo-
neut in his Ciftica Sacra, and in bis Diatriba de veris et antignas Ebraicorim literis. Hesides the woiks which have been alnediy mentioned in the course of this article, Buxtorf edited the grait Lexicon Chaldaicum, Talmudicum, et Rabbinicum, on which his father had spent the labour of twenty years, and to the completion of which he himself gave ten years of additional stirly, and tho great Hebrew Concordance, which his father had little more thau Ligun. In addition to these, ha published new editions of many of his father's works, as well as others of his own, complete lists ut which may be seen in the Athence Raurica, and other works enu. merated at the close of the preceding article.
(F.C.)

BUZZARD, a word derived from the Latin Buteo, through the Freach Busard, and used in a general sense for a large group of Diurnal Birds-of prey, which cootains, amoag many others, the speeses usually known as the Common Buzzard (Buteo vulgarts, Leaeb), thongh the English epithet is new-a-days bardly applicable. The name Buzzard, however, belongs quite as rightfolly to the burds called in books " Harriers," which form a distinet subfamily of Falcundee uader the title Circince, and by $1 t$ one species, the Moor-Buzzard (Circus aruginosus), is atill known in such places as it inhabits. "Puttock" is also another name used ia some parts of the country, but perhaps is rather a aynonym of the Kite (Milums ictinus). Though ordithelogical writers are almest uaanimeus in distinguishing the Buzzards as a group from the Eagles, tho grouads usually assigned fer their separation are but slight, aad the diagnestic character that can be best trusted is probably that in the former the bill is decurred from the base, while in the latter it is for about a third ol its length straight. The head, too, ia the Buzzards 18 short and rquad, while in the Eagles it is elongated. In a general way Buzzards are smaller than Eagles, theugh there are several exceptious to this statement, and have their phumage more mottled. Furthermere, mest if net all of the Buzzards, about which anything of the kind 18 with certainty kuown, assume their adult drcss at the first meult, while the Eagles take a lenger time to reach maturity. The Buzzards are fine-looking birds, but are slow and heavy of flight, se that in the old days of falconry they were regarded with iofinite scorn, and bence in cemmon English to call a man "a buzzard" is to denounce hinn as stupid. Their food consists of small mammals, young birds, reptiles, amphibians, and insects,-particularly beetles,-and thus they never could bave been very injurious to the gamepreserver, theugh they have fallen under has ban, if indeed they were not really bis friends, but at be present day they are so scarce that in this country their effect, whatever it may be, is inappreciable. Buzzards are fouad over the whole world with the exceptioa of the Anstralian regioa, and have been split into many genera by aystematists. In the British Islands we have two species, one resident (the B. vulgaris already mentioned), and now almost confined to a few wooded distriets; the other the Reugh-legged Bnzzard (Archibuteo lagopus), an irregular winter-visitant, sometimes arriving in large bands from the nerth of Europe, and readily distiaguishable from the former by being feathered down to the tees. The HoneyBuzzard (Pernis apivorus), a aummer-visiter from the south, and breeding, or attempting to breed, yearly in the New Forest, does net come into the subfamily Buteonince, but is probably the type of a distinct greup, Pernince, of which there are other examples in Africa and Asia. (A. N.)

BYNG, George (1663-1733), Viscount Torington, a distinguisbed English admiral, was bern at Wrotham, Kent, and at the age of fifteen went to sea as a volunteer. After being several times advanced, he was in 1702 raised to the command of the "Nassau," a third rate, and was at the taking and burning of the French fleet at Vigo ; and the neat year be was made rear-admiral of the red. In 1704 he served in the grand fleet sent to the Mediterraneaa, uader Sir Cloudesley Shovel, as rear-admiral
of the red, and reduced Gibraltar. Be was in the battle of Malaga, which followed aoon afterwards, and for his gallaatry in that action received the honour of kinghtbood. In 1718 be was made admiral aod commander-in-chief of the fleet, and was sent with a squadron into the Mediterranean for the protection of Italy. This commission be executed so well that the king made him a handsome present, and aent bim full powers to negotiate with the princes and states of Italy, as there should be occasion. He procured the emperor's troops free access into the fortresses which still held ont in Sicity, aailed afterwards to Malta, and brought out the Sicilian galleys, and a ship belonging to the Turkey Company. By his advice and assistance the Germans retook the city of Messina in 1719, and destroyed the ahips which lay in the basin-an achievemeat which cocopleted the ruin of the naval power of Spain. The Spaniards being mnch distressed offered to quit Sieily ; but the admiral declared that the troops abould never be vufered to depart from the island till the king of Spain had ecceded to the quadruple alliance, and to his coaduct it rese eatirely owing that Sicily was anbdued, and the king forced to accept the terms prescribed him by the alliance. On his return to England be was made rear-admiral of Graat Britain, a member of the privy council, Baron Byng of Southill, in the county of Bedford, and Viscoant Torrington in Devoushire. He was also made one of the Kinights Companions of the Bath npon the revival of that order in 1725. In 1727 George II., on his accossion to the crown, placed him at the head of naval affairs as first lord of the Admiralty. He died January 15, 1733, in the eventieth year of his age, and was buried at Southill, in Derifordshire.

BYNG, The Hon. John (1704-1757), British admiral, fourth son of the subject of the precediag notice, entered the navy at an early age, became eaptaio in 1727 , and in 1745 was made rear-admiral of the red. In the year 1755 the British Government received intimation that the French were fittiog out a naval expedition ia Toulon, aad it behoved them to atteud to the defences of Gibraltar and Minorca. Nothing, however, was done uatil the intentions of the Fronch were too apparent, and Byng was then catrusted with ten miserably equipped ships of war, and set axil from Spithead ou the 7 th Auril 1756. He put in at Gibraltar to receive stores, and there learnt that the Freach bad made good their descent upon Minorea. On the 19 th May he carne in sight of St I'hilip's, still held by the British, but failed to establish commonications with the governor. On the following day bo eogaged with the French fleet, wbich was inferior in number of vessels, but vastly surerior in armaruent and equipment. There scems no doub, that the division under Byng's charge did not secood with saficiont eagerness the bold attack mado by Admiral West. Tho action was indecisive, ard next morning Byag salled a military couacil, and it was resolved that, uuder the circumstances, it was hopeless to attempt aaythiag fa ther; nod that Ninorca must be left to its fate. The fleet returned to Gibraltar. The indignation of the Eaghesh at tho transaction was inteasc, and tho Government took advantage of it to avert from themselves the charge of incapacity. Byng was at once superseded and brought bome vinder arrest. A euurt-mertial on his conduct sat during December 1756 and Javuary 1757, asd found tbat the aodmiral bad not done bis utmost to relieve St Fhilip'a, or to defeat tha Freach floet, though they fully aequitted him of cowardiee or treachery. The only pmishment open to them to inflict was that of death, and they passed their nentonee with the utoost reluctatico, coupling to with an earnest recommendation to maercy. No attantion vas paid to this or to otbor attompts to mitigato what wes fils to be an undny: cuece punishment for mora iumarat?

The unfortunate admirai mas slot on the 14th March 1757.

BYNKERSHOEK, Corneluus Yan (1673-1743), a dis. tinguished Dutch jurıst, was born at Middleburg in Zeeland. In the prosecution of bis legal studies, and while bolding the offices tirst of member and afterwards of presideat of the supreme court, he found the common law of his country so defective as to be nearly useless for pracical purposes. This abuse he resolved to reform, and took as the basis of a new aystem the principles of the ancieot Roman law. His works are very voluminous. The most important of them are the Observationes Juris Romant, published in 1710 . of which a coatinuation in four books appeared io 1753 ; the treatise, De Dominto Maris, published ia 1721; aud the Qurestiones Juris Publict, published in 1737. Complete editions of his works were publisbed after bis death; one in folio at Geneva in 1761, and another in two volumes folio at Leyden in 1766.

BYROM, JonN (1691-I763), a poet and miscellaneous writer, was bord at Kersall; near Manchester, and educated at Trinity College, Cambridge. His first poetical essay, the well-known Colin and Phabe, appeared in the Spectator, No. 603. After leaving the university be studied medie:ae at Montpellier, and beeame a convert to the mystical theology of Bourigoon and Boehme. He was elected a member of the Royal Society in 1723. Having redoced himself to narrow circumstaaces by a precipitate marriage, he supported himself by teaching a new method of shorthaad writing, of bis own ioveation, till he succeeded to an estate on the death of an elder brother. He was a man of lively wit, of which, as opportuaty offered, he gave many specimens. A collection of has miscellaneous poems was priated at Manchester, in two vols. 8vo, 1773, and repriated at Leeds in 1814, with a life of Byrom by an anonymous writer. Byrom's Private Journal azul Correipondence have appeared among the publications of the Chetham Society (vols. xxxiv. and xliv.)
Byfion, George Noel Gordon Byron, Lord (17831824). The portrait of the most remarkable figure in the literature of this century is still too often made up on the principle of putting ia all the shadows and leaving out all the lights. Not only the facto of his own life, but even the records and traditions of his ancestry, are partially selectex in this way. It is true, no doubt, that a man's immediato ancestors must be aupposed to have most influeace on his character, and that Byron's immediate ancestors were far from being quiet, respectable people. His father, Captain Byron, was a profligate officer, whose first wife was a divorced lady with whom he had eloped to France, wno married a second time only to find the means for paying his debts, and who left his wife ns soon as her fortuae was exhausted. IIs mother, Catherine Gordon, heiress of Gight in Zberdecnshire, was a fifful and passionate woman, who knew no stable halting.place between tho extremes of iodulgent fondness and viodictive disfavour. Ilis grand-uncle, whor he succeeded io the title, had killed his neighbour and relative, Mr Chaworth, in a drunken brawl, had been tried before the House of Lords on the charge of murder and acquitted, but had been so wrcught upon by remorso and the ecruse of publie opprobrinm, that he shut limself up at Newstead, let the placa cro to ruin, and aequired such o bad repute by his aolitary excesses that he was nown as the "wicked Lord Byron." Evea iu this wild ancestry it is easy to detect the corruption of goed things. In other pats of the family line the nobler elements are seen runuing clear and pare. The poet's grandfather, Admiral Byron, "'roulweather Jack," who had is littlo rest on sea us the poct on laud, bad the virtues without the vices of the race. Farther dova the family tree we nind the Iiyrens distinguishing themsisea in the field. Seven brothers fought in tho
battle of Edgehill. None of the famuly would seem to bave been stirred by the poetic impulse in the brightest period of Euglish song, but later on, uader Charles IL., thère was a Lord Byron who patronized literature, and himself wrote some verses in which he professed-

> "My whole ambition only doth extend
> To gain the name of Stedman's faithful friend."

Sir Egerton Brydges, however, has found a poetic ancestry for Byron by conoecting the Byrons of the 17th ceatury with the fismily of Sydney.
The poverty into which Byron was born, and from which his accession to high rank did not free him, had mack to to in determining his future career. That he would have written verses in whatever eireumstances he had been bora we may safely believe; but if he had been born in afluepce we may bo certain that, with his impressionable disposition, he would never bave been the poet of the Revolution-the most powerful expenent of the modern spirit. By the time of his birth (at Holles Street, London, January 22, 1788), bis father had " aquandered the lands o' Gight awa," and his mother was on her way back from the Contineat with a small remnant of her wrecked fortuae. Mrs Byron took up her resideuce in Aberdeen; and her "lame brat," as she called him in her fits, was sent for a year to a private school at 5s. a qusrter, and ofterwards to the grammar school of the town. Many little stories are told of the boy's affectionate gratitude and venturesome chivalry, as well as of his exacting snd passionate temper. The sisters Gray, who were his successive nurses, found him tractable enough under kind treatmeut. His mother, whose notions of discipline consisted in hurling things at him when be was disobedient, had no authority over bim, he met her violeace sometimes with sullen resistance, sometimes with defiant mockery; snd once, he tells us, they had to wreach from him a knife which be was raising to his breast. At school he passed from the irst to the fourth class, but with 11 his ambition to excel be was toe self-willed to lake kindly to prescribed tasks, too emotional for dry intellectual work; and he probably learned more from Mary Gray, who taught him the Psalms and the Bible, than he did from his achoolmaster. Befure he left Aberdeen, which he did'on the death of his grand-nncle and his accession to the peerage in May 1798, he gave a remarkable proof of the precocious intensity of his affeetions by falling in love with his cousin Mary Duff. Su atrong a hold did this passion take of him, that aix years afterwards he dearly went into convulsions on hearing of ber marriage.
When Byron's name was first called in achool with the prefix "Dominus," the tradition is that he burst into teare,from pride, M. Taine conjectures,-from pain at the gulf thus placed between him sad his school-fellows, the Counters Guiccioli. Soon after, bis mother, who had frequently taken advics for the cure of his lame foot, went with biw to Nottiagham, and placed him under the cure of an empiric, whe tortured him to no purpose. Tho torture was renewed under the advice of a Londoi physician at Dr Glennie's school at Dulwich, at which he was entered in the summer of 1799 ; and at last the foot, as he wrote to his old Scotch nurse, was so far restored that ho was able to put on a common boot. He was two ycars with Dr Glennie, and though be made little progress in his elassical studies, be bad the ruc of his master's library, and added greatly to his general information. Before he left for Harrow he had contractod another passion for his cousin Margaret Parker, eo iatense that he could not sleep nor cat when he was inoking forwa:d to meeting her. He went to Harrow in 1801, "a widd northern colt," as the head-master said of jim, very moch bebind his agg in Latin and Greek. This reficiancy be never quite orercame, though in woized caough to ges into the same form with boys of jis owa age.

Antiquarian atudies never had any ebarm for him. But though, according to his own account, he. was always ericketing, rebelling, and getting into mischief, his brauk was not idle. Partly to keep up his school repute for "general inforination," he read every history he could lay hands on, and not without system either, for he set himself deliberately to know something about every country. He also went through all the British classics, both in Johnson and in Anderson, and most of the living poets. Few boys left Harrow with such a store of useful learning. Many anecdotes are told of the warmth of his friendships at Harrow, and his chivalry in defending his juniors. In the vacation of 1803. he again fell in love-this time more seriously-with Miss Chaworth, whose grandfather "the wicked Lord Byron" had Eilled. In the melancholy moods of his after life her rejection of him was often a subject of passinuate regret.

Byroa's residence at Cambridge (Trinity College, I805 to 1808, with interval of a year) added little to bis knuw. ledge of academical leareing. The arts in which be qualified himself to graduate were ammmiug, riding, fencing, boxing, drinking, gaming, and the other occupations of idle undergraduates. When he went up to Cambridge he was wretched, he tells us, partly frem leaving Harrow, partly "from some private domestic circumstances of different kinds," chiefly, it may bo presumed, the wast of money; but his friend Scrope Davies lont him large sums, and he lived with a certain reckless happinéss which had a great deal more to do with his moodiness and melancholy than the libertine excesses with which be is popularly credited. Much -more important than his resideace in Cambridge, as bearing on his mental development, was his year's residence at Southwell. From that happy period, which saw the serious dawn of his genius, M. Taine has pieked out only the unhappy violent quarrel with his mother, which was the cause of its termioation. His intimacy with the Pigotts, and the expansion of his poetic impulses under their genial eacouragement, are much more worthy of notice than this culmination of miserabte bickenugs which he was now strong enough to laugh at, when the domestic storn "was over. He had ecribbled many verses at Harrow, but had been too shy to show them to bls roystering friends; and - now finding for the first tume an admiring audience, he put forth his powers in earnest, as he could do only under the infuence of love or defiance. The result came befora the public in the Hours of Idleness, published by Ridge of Newark in March 1807.2 The poems in that collection have somethieg of the insipidity of the circumstances that gave them birth, but the fact of publication bound him to his vocation to a degree of which he was not at all aware. Hitherto his ambition had ponted towards politics as his natural field, and ba asid us much in the somewhat disdainful preface to his poems. Putting his ambition into verse, he characteristically compared himself to a slumbering voleano, and longed to burst ou the world as a Fox or a Chatham. But the Hours of Idleness decided his career for him. When he weat back to Trinity College he could not help eagerly watching their effect. Again and agrain Lo wrote to the fricndly 1 iliss Pigott to hear how they were succeeding. He was prejared for defeat, he said, and he promised to tsine vengeanco on sdverse crities. He was ruade a zeve man by the publication; he had tasted public applause and hungered for more of it. It was then that he careiully examined himself, and took stock of Lis acçurements in the very remarbable document dated

[^53]November 30, 1807, to which we are radebted for our Enowledge of the extent of Lis studies. In the midst of his rollicking set at Cambridge be was secretly girding up his loias, and collecting bis powers to make a grand struggle for fame. Perhaps no poet was ever drawn out so directly hy the thirst for public hooour; no poet ever appealed so directly to the public eye and heart. He launched himself bodily before the world, almost ravenous for sympathy and hoinace.

It is generally said that but for the savage attack of the Fdinuuroh Review in the spring of 1808 Byron might ucver have returned to poctry. But the fact is that the eview did not appear till a year after the publication of 'Hours of Idleness, and in the interval Byron, for all his farewoll to poctry, was "scribbling," as he called it, more furiously than ever. "I bare written," he wrote to Miss Pigott, six months before the Edinburgh attack, "214 pages of a novel; one poem of 380 lines, to be published (without my name) in a few weeks with notes; 560 lines of Rosworth Field, and 250 lines of another poem in rhyme, besides half a dozen smaller pieces. The poem to be published is a satire." This satire was the poem which he afterwards converted into a reply to the Edinfurgh Review. He anticipated censure, and fore armed himself-always as cager to defy reproof as he was to win applause. Apparently he fut off publishing his satire till all has critics should have had them say, and be should know clearly where to hit. When the attack came it wounded him bitterly; but a friend who called on him at the time thought from the fierce light 10 his eye that he had received a challenge. He was in no hurry to publish; he worked at leisure, with a confident consciousness of Lis powers, and Englash Bards and Scotch Reviewers did not ambe its appearance till the spriag of 1809 . When it did appear the authorship was soon discovcred, and it was the talk of the town. To us who look back upon it dispassionately, and compare its somewhat heavy and mechanical couplets with the exquisite lightness and fitting.pont of its antitype the Dumerad, the satire appears to possess no great force, but the persomalities told at the time, when there was a vague unrest in the literary world at the outspoken severity and sometimes truculeat malice of the Scotch review, and the injured poet had his revenge in a geacral acknowledgment that the objects of his wrath deserved castigation, and that the lash was well laid on.

Suon after the publication of his satire, Byron, in June 1809, left for has travels on the Continent; and one would have expected that the young lord, with the wreath of trumph still fresh on has head after his first literary battle, would have gone on his journey with satisfactiou and hopefal cariosity. Ile saled in deep dejection, wath all the butterness of a man who feels limself friendless and sulitary, and he returnad after two years' wandermg in Spana, Albana, Grecec. Turkey, and Asia Minor, sadder than before. Why was this? Those who identify has with has own Chille Harold, are ready with the answer thar he bad lived a lafe of dissolute pleasure, and was already, at tho age of twenty-one, experiencing the pains of satiety and exhaustion. But thas as not borne out by sueh scanty light as he and has friends have thrown on his ine at thas period. He bunself always protested, botly in nublic and private, against leing identilied with Childe Harold Childc Harold's manor was an oid monastic residence, he left has country in bitter sadmess; in the original MS. has name was Clilde Furun, he left bebind him a mother and a sister, and he passod through the scenes of Dyron's travels. But there tho resemblance ends. The resemblance is really confined, as the author alleged, a) local detanls. There is no reasn to disbelieve what the Buthor affirued, that Childe Haruld was a purdy fictitious
character, "introduced for the sake of giving some conneotion to the piece." To make him what be intended-" A modera Timon, perhaps a poetical Zeluco,"-the poet drew, no doubt, upon his own gloomicr moods; he felt occasionally as he makes Harold feel babitually, but the proces ras much more dmamatic than the world, in spite of his protests, took for granted. Byron, with all his bitter moods of forlorn despondeacy, was too susceptible a sprit to "stalk in joyless reverie" through the south of Europe, as his letters home testify. And we know that his picture of the Bacchanalian feasts in the monastery, with "Pophran girls," and "flatterers and parasites," is not at all like what actually occurred at Newstead Abbey. There wero, no "laughing dames"'there, except the domestics, and the flatmerers and parasites were his bosom friends whom he loved with a romantic ardour. They held "high jinks" there as any young men might have done, masqueraded about in monkish habits to be in whimsical conformuty with the place, practised pistol-shooting in the old ball. had a wolf and a bear chaned at the entrance, had the garden dug up in search of concealed treasure, fouad a skoull there, had it made into a cup, and passed this cup round after dinner, with the conceit that their mouths did It less karm than the worms, and that when its wit had ceased to sparkle, it had better be filled with Burgundy to make other wits sparkle than lie rotting in the earth. Byron himself was too poor, as Moore has remarked, to keep a harem, had such beea has wish. He is known to have had a romantic passion for a girl who used to travel with him in England in boy's clothes; but whoever thinks be was satiated with this poor cresture's devotion to him. should read the concluding stanzas of the second canto o! Childe Harold, where the poet speaks in his own person, and laments her death in language utterly out of keeping with the dark unfeeling mood of his "modern Timon." One can then understand why he should have said that " he would not for worlds be a man like his hero." There is really very little of the personage Childe Harold in the poem, the poet sumply has him by his side as a coneecting link. while he describes the scenes through which he passed. In the two last cantos, indeed, Byron, angry that the public had identified him with Childe Harold, and thea more defiant of public opiaion, hardly cared to keep up the separation between his own character and the pilgrim's, and in the last canto be avowedly makes them coalesce.

To look for the causes of moodiacss and melancholy in material circumstances is a very foolish quest; but we may be certan that usufficiency of this world's money, and the daily vexations and msults to which his rank was thereby exposed, had-much more to do with Byron's youthful gloom than satiety of thas world's pleasures. His embarrassed fimances, aad the impossibility of securing the respect due to his title, formed a constant source of amoyance, put bis whole system intoa morbid combition, in which every little slight and repulse festered and rankled with exaggerated virolence. From the dally humiliations and inpertinences to which his false position exposed him, aggravated by his jealous and suspicious irritability, he may lave turned sometimes to Chhde Marold's consolations-" the barlot and the bow," but his nature prompted him rather to forget his vexations is purer and worthier objects Unfortunately for him, sucin impetuons and passionate affections as his conld rarely find the respoase for which he craved. In those few cases where devotion was repaid with devotion. the warmth of his gratutule was unbounded; he loaded poor Thyrza's memory with caresses, carcless of what thr work might say, remembering only that the poor girl clung to him with unselfish love; and he returned his sister's tember regard widn as archour and constancy that shewed how bughly he prized aud kow eagerly ho reciprocstad
sumere afection.- Circuinstances that prourd have fallen lightly on a less sensitive man preyed upon his self. torturing spirit. In his dejection he had taken pleasure in the romantic notion of collecting the portraits of his friends, and one of.them refused to sit on the ground that be could not afford it. Another friend, invited to say good-bye, excused himself on the ground that he had to go shoppiag with his mother. Anotber prop on wlich he lesned also precipitated bim into the Slough of Despond. His ambition pointed to political distinction, and haring given fair youthful proof of the power be felt to be in him, bis pride taught him to look for a warm welcome from his party chiefs when he came of age, but on the contrary, there was a haggle over his admission. Lord Carlisle held coldly aloof, and he had to wait with savage indignation till the marriage certificste of his graadfather was fished up in Cornwall before be could take his sest. This cold but perfectly correct and formal indifference added another pang to the bitterness with which he took leave of his country. When after two yeara' absence he returned, still dogged by impecuniosity and the incivilities, real and imagined, that follow in its train, he "found fresh cause to roam." Nursed as he had been in auperstitions, be could hardly keep from crying out that the stars had combined against him, when in the months followng his return friend after friend went to the grave. Matthews wes drowned in the Cam; Wingfield died of fever at Coimbra; and he beard of both deaths on the same day. His mother died in the esme month, and in spite of all their quarrels, he felt the bereavement bitterly.

But the death which most deeply wounded lim came later. Nothing ever racked him with sharper anguish than the death of her whom be mourned under the name of Thyraa. To know the bitterness of his struggle with this sorrow, we have only to look at what he wrote on the day that the news reached him (October 11, 1811); some of his wildest and most fiercely misanthropical verse, as well as some of hie sweetest and saddest, belongs to that blackest of dates in his calendar. It is time that something were done to trace this attachment, which has been strangely overlooked by the essayists and biographers, because it furnishes an important clue to Byron's character, and is, indeed, of hardly less importance than his later attachment to the Countess Guiccioli. Mr John Morley, in an essay which ought to be read by everybody who wishes to form a clear idea of Byron'e poetry as a revolutionary force ia itself and an index to the movement of the time, remarke upon the respect which Byron, with all his raillery of the married state in modern society, still shows for the domestic idea. It is against the artificial union, the marriage of conveaience, that Byron's raillery is directed ; he always upholds singleness of attachment as an ideal, however cynically or mournfully be laments its infrequeace, and points with laughter or with tears at the way in which it is crossed and cut ehort by circumstances wheo it does exist. Byron is not a railer against matrimony, except as n counterfeit of the natural union of hearts. His attach. uneot to Thyrza shows that in this, as in other matters, he was transparently sincere. It is commonly taken for granted that his youth before, and, indeed, after his marriage with Miss Milbanke, was a featureless level of promiscuous debauchery; lut those who look more narrowly into the facts canoot fail to eee that, whatever may have been the number of his "light of loves,"-his fugitive passions were innumerable,-and however often he may bave lapsed into vulgar rakery in bitter despair or reckless wantonoess, ho was olways pining for some constant love, and cursing the fate that had denied it to him. This purer sentiment was always enshrined in bis beart of heart, from his boyhood to the ead oi his days. Who Thyrza wes cad probably never
be known, but in trying to curnoy the irupiession that she was merely imagiuary, probably with the intention of shelding bis friend's memory, by declarng him innocent of a relationship unsanctioned by society, Moore really dad Byron an injustice. The poor girl, whoever she was, and however much she was dcifed after her death by his imagination, would really seem to have been his grand passion. Her "dear sacred name" his hand, he says years afterwards, would have trembled to write; he wished it to "rest ever unrevealed;" and when be was questioned by the Countess Guiccioli, he was deeply agitated, and begged her not to recur to the subject. We find him in his Journal, with her in his memory, writing with contempt of the amours of some of his acquaintances, and scoffing at the idea of their applying the name of love to favours that could be purchased. She is the presiding geaius of his series of Eastern Tales; be has recorded the fact that when he drew the portrsit of Zuleiks his whole soul was full of her memory, and her image was again before him when be described the relationship between Zara and the disguised Gulnaro. Conrad, with all his conscious villany, bad one redeeming passion-" love unchangeable, unchanged." The Giaour, too, loved but one ; he learnt that lesson, he said, from the birds; he despised "the fool atill prone to range," and "envied not his varied joys." All these portraitures of single-hearted devotion are tributes to the memory of Thyrza, the "more than friend," commemorated in the eecond canto of Childe Marold. Medora's song in the Corsair, "Deep in my soul that teader secret dwells," though not flawless as a lyric, is one of his most beautiful expressions of this mournful seatiment in a subdued lecy. When we realize bow bitterly be lamented her death, and how be could not even bear to write her name, there seems some reason for believing that the mysterious object of Manfred's love and remorse is another of the forms that she took in his insgination. Whoever cares to look into the matter will find many little corroborative particulars. It is quite in keeping with the morbid self-accusing tendency, the exaggerated moral sensibility, which Byron showed all his life through, that he should bave been consumed with remorse at a recolicction which colder-hearted men of the world bear about with them every day without a pang.

For some months after his return to England, Byron lived at Newstead very uohappily. He wrote that be was growing nervous, "really, wretchedly, ridiculously, fioeladically nervous." He could not arrange his thoughts; be feared his brain was giving way, and it would end in madaess. He felt at times a strange tendency to mirth. Sometimes be thought of seeking relief in a warfare agaiost society, and he besought one of his friends, wheo he beard of his deepening crimes, to remember the cause. The iaconsisteacy between this hunger for sympathy and the reckless ferocity of the resolution, thows how distempercd his mind was by care and sorrow, "like sweet bells jaogled, harsh, and out of tuae." At other times be thought more suberly of parliament as a diversion. All his life through, however, " most of his convulsions ended in verse." He found occupation in correcting the proof. shects of Childe Harold. He went up to London, not to plunge into a lawless and pitiless coursc of crime, but to enter upon a political carecr. He spoke two or three times in the House of Lords on the House-Breaker's Bill, sad a petition for Roman Catholic Emancipation, but the publication of Childe Harold put. an end at once to bis parliamentary ambitions. "When Childe Harold was published," be says, "nobody thought of my prose afterwards, nor indeed did L"

It has often been asked what was the cause of the instantaneous and vide spread ponularity of Childe Harol. . $_{\text {r }}$
which Byron buerself so well expresoed in the saying, "I awoke one morning and found myself fanous." Chief among the secondary zauses was the warm sympathy between the poet and his readers, the direct interest of his theme for the time. In the spring of 1812 England was in tho very crisis of a struggle for existence. It was just before Napoleon set out for Moscow. An English army way standing on the defensive in Portugal, with difficulty holding its own ; the nation was trembling for its safety. The dreaded Bonaparte's next movement was uncertain; it was feared that it might be against our own shores. Rumour was busy with alarms. All through the country men were arming and drilling for self-defence. The heart of England was beating high with patriotic resolution.

What were our poets doing in the midst of all this? Scott, thon at the head of the tuneful brotherhood in popular favour, was celebrating the exploits of William of Deloraine and Marmion. Coleridge's Christabel was lying in manuscript. His poetic power was, as be said himself, "in a atate of suspended animation." Southcy was foundering in the dim sea of Hindu mythology. Rogers was content with his Pleasures of Memory. Wordsworth took a certain meditative interest in public affairs, but his poems, " dedicated to hiberty," though fine as compositions, have not the fire and sinew, the ardent directness of popular verse. In the carlier stages of the war Campbell had electrified the country with his heart-stirring songs; but by 1812 he had retired from the post of Tyrtreus to become the poet of Gertrude of Wyoming. Moorc confined himself to political squibs and wanton little lays for the boudoir. It was no wonder that, when at last a poet did appear whose impulses were not merely literary, who felt in what century he was living, whose artistic crentions were throbbing with the life of his own age, a crowd at once gathered to hear the new singer. There was not a parish of Great Britain in which there was not some houseliold that had a direct personal interest in the sceme of the pilgrim's travels-"some friend, some brother there." The effect was not confined to England; Byron at once had all Europe as his audience, because he spoke to them on a theme in which they were all deeply concerned. He spoke to them, too, in language which was not merely a naked expression of their most intense feelings ; the spel, by which he held them was all tho stronger that he lifted them with the irresistible power of his song above the passing anxicties of the motwent. Loose and rambling as Childe Harold is, it yet had for the time an unconscious art ; it entered the absorbing tumult of a bot and feverish strugs!e, and opened a way in the dark clouds gathering over the combatants through which they could see the blue vault and the shining stars. If the young poet bad only thrown himself forward to ridicule the vanity of their struggles, he would most certainly have been spurned aside in the heat of the fight with anger and contempt; but he was far from leing n heartless cynic ; his sympathy with the Spanish peasant, his worship of the scenic wonders of the country, his ndmiration of the beroism of the women. his ardent battle-cry of freedom, burst through his thin pretence of cynicism, The pulse of heroismheroism conscious of the worst that couid happen, and undismayed by the prospect-beat beneath the garb of the cynic. It may have been by unconscious art, but it was not without dramatic propriety, that lByron turned in his second canto from the battlefields of Spain and the tremendous figure of war-

> "With blood-red tresses deepening in the sun. And death-shot glowing in his fuety hands-"

* August Athens." "ancient of days," and the "vanished hers'a lofty mound." In that terrible time of change, when
every state in Europe was snaken to its foundation, ther was a profound menning in placing before men's eyes the departed greatness of Greece; it rounded off the troublea scene with dramatic propriety. Even the mournfui scepticism of Childe Harold was not resented at a time when it lay at the root of every beart to ask, ls there a God in heaven to see such desolation, and withhold His band ?

The attention of the public once caught by his sympathy with them, it was rivetted by the theatrical fascination of the character of the pilgrim, whom they perssted in identifying with himself. Young, a man of genius, a lord, and unhappy-unhappy with a sorrow that could not be repressed,-here was a mystery over which speculation could never tire. On Byron himself the first effect of his fame was almost to endanger his puetic gift. He kecarne acquainted with Moore, and went into the fashionable world as a "lion." He bad never been in "society" before, and he took to gay life with all the impressionable facility ot his character. He was even caught one evening by M. Dallas in full coust dress, and though he repented and did not go, this contemplated breach of his democratic principles, in gratitude for some kind words from the regent, shows how ductile his character was, and how easily he might have been lost to serious poetry if circumstances had not in his youth excluded him from the society of his rank. His docility under new influences was shown is the frank way in which he retracted hard saying after hard saying of bis English Bards, and in the fact that though he was sufficiently scornful of the gay world to write the Wraltz (1813), he strenously denied the authorship. Yet he soon began to tire of fashoonable gaieties and to long for solitude.

Byron's poetic power did not advance in strength during the four years of his connection with bigh life. As he hac been led to employ the Spenserian stanza by Campbell's Gertrude of IVyoming, which reached his hands just as he was setting out on his travels, be began now to try the metres in which Scott had made has fame. Ile produced in rapid succession the Giaour (May 1813), the Brade of Abydos (December 1813), Corsair (January 1814), Lam (August 1814), Siege of Corinth (January 1816), Parisna (February 1816). The best of these is the first ; but thes were received with an enthusiasm which rose higher and bigher with each successive publication. It is quite clear that it was against his intention that he had been identified with Childe Harold, but it is equally clear that though the self-restrained, stern, dark-browed herocs are personifica tions of only one side of his character, one series of moods. and are as unlike as possible to the complete Byron, he was not unwilling that they should be accepted as typer of bimself. There was nnother reason for this than a morbid desire to represent bimsclf as worse than be really wns All Byron's friends from his boyhood upwards declare him to have been of a very shy disposition. Never having been in the fashionable world before the spring of 1812, be was far from being at lis ease in it; and he masked his shyness under a haugbty and reserved manner. How severe a restraint this was on his natural manner may be inferred from the delight with which le escaped from it in the society of his boon companions. It galled has vanity to bo thus constrained by people for whom he had no great respect; and it is impossible to help conjecturing tbat he courted identification with his silent heroes, with their "vital scorn of all," and "clilling mystery of mien," in order to supply a romantic explanation of a reserve which was really due to unconquabrable shyness. The influence of personal vanity on Lord Byron's actions, comiterbalanced as it was and concealed by an equal warmth of generous feeling, is all but incredible. It wos part of that amaingg
censitiveness ω the ampressions of the present which was the secret of much of the weakness of his character and much of the power of his poetry.

In November 1813 Byron proposed for the hand of Miss Milbanke, only daughter of Sir Ralph Milbanke, a wealthy baronet, and granddaughter and heiress of Lord Wentivorth, "an eligible party," he owned in a letter to Moore, though lie "did not address her with these views." His sult was rejected, but she expressed a desire to correspoad with him. In September 1814 he made another proposal, which was accepted, and the marriage took place on January 2, 1815. On 10th December a daughter, named Augusta Ida, was born. On 15th January 1 Slo Lady Byron left her husband's house in London on a visit to ber father at Kirkby Mallary. On the way she wrote an affectionate letter to Byron, beginming " Dear Duck," and signed "Your Pippin." A few days after he heard from her father that she had resolved never to return to him, and this intelligence was soon confirmed by a letter from herself. In the course of next moath a formal deed of separation was drawn up and signed. This is Moore's account of the affair. Lady Byron's account, published on the appearance of Moore's Life, differs chiefly as regards the part taken by her parents in bringing about the separation. Byron suspected her mother's influence. Lady Byron took the whole responsibility on herself. Before she left town she thought Byron mad, and consulted Dr Baillie. Dr Baillie persuaded her that this was an illusion. She then told her parents that she desired a separation. The grounds on which she desired this were submitted by lier mother to Dr Lushington, who wrote that they justified a separation, but advised a reconciliation. Then Lady Byron had an interview with Dr Lushington, and communicated certain facts, after which he declared a reconciliation impossible. A celebrated living antharess, who was slightly acquainted with Lady Byron, has, it is well known, made a definite statement on this subject, implicating a member of Lord Byron's owe family. It is enough, however, to say that there is no evidence in support of the statement, nnd that it is virtually contradicted by Lady Byron's own behaviour, as she remained on intimate terms with the relative referred to after the separation from her husband.

The real causes of the separation between Byren and his wife must always remain more or less matter of debate, no absolute proof being possible, and disputants reasoaing on the presumptioas according to temperament and jrepossession. Byron's own statement that "the causes were too simple ever to be found out," probably comes nearest the truth. That their tempers were incompatible, that without treating ber with deliberate cruelty he tried her forbearance ia many ways, and behaved as no busband ought to do, that for her own happiaess she had every reason to demand a separation, will readily be believed. After his marriage a buge accumulation of debters began to press their claims; no less than nine executions were put in force in his house during the year; and Byrou, under the indignities to which he had daily to submit, acted with an insane violence which might bave justified any womar in beliering that she was not safe under the same roof with him. It, would bave required a very peculiar temper to be compatible with his under tine circumstances. A placid, goedtempered woman, with strong good sense, and a boundless affection, which could forget and forgive his most unreasonable outbreaks, nuight have lived with him happily enough, finding in his sunny moods of playfulness and endearment ample compensation for his fits of gloommess and violence. But Lady Byron was very far from being a woman of that mould. A wife who could coldly ask Byron "when be meant to give up his bad habit of ruaking rerses," possessed a terrible perver of annoying such a man; uer perfect self-
commaud and imperturbable outwaru serenity, her power of never forgetting an injury and taking revenge with angelic sweetness and apparent innocence of vindictive intention, must have been maddening. The serene way in which she clung to and promoted the maid, Mrs Clermont, in the face of Byron's intolerable dislice to the woman, was gall and wormwood to him. An even-tempered man might have lived with such a person comicrtably on terms of mutual politeness ; but for a Laughty-tempered, violent. fitful, moody man it would have been impossible to find a more incompatible partner.

Why, at the time of the separation, did not the public look upon Byron and his wife as simply an ill-assorted pair who ceuld not agree, and were better to separate $?$ From the first it was tumoured that Lady Byron refused to tell the cause of their separation, whence the public naturally inferred that it must be too terrible to be revealed, and busted themselves inventing and circulating crimes of suitable magaitude. Retribution fell upen Byron for his identifyag himself with crime-stamed buccaneers. The publication, by an indiscreet friend, of his Fareucell to Lady Byron, and the verses cututled A Sketch, let loose the flood-gates of popular indiguation in the press. On the Farewell indeed, there was some difference of opinion. A lady correspondent of the Courier declared that "if her husband had bidden her such a farewell she could not have helped running iuto his arms and being reconciled immediately." If Lady Byron bad becn such a womanwe bave no right to blame her because she was not-the separation, in all probability, would never have taken place. The vast majority in English suciely resented the publication of the Farewell as au unwort:y attempt to put his wife in the wrong, by holding up her unforgivag temper fer public reprobation. We now know that the Farewell was written in all sincerity and bitterness of heart, with the tears falliag on the paper as be wrote, and that it was published by the indiscreet zeal of a friend to whom be had sent the verses. The fierce allack upon Mrs Clermont in the Sketch was universally condemned as unmanly. The two poems are chiefly interesting now as showing the poet's ungoveraable incontinence, his passionate cravng for sympathy, and the utter distemper of his mind in the bewilderment of misfortuae.

Byron took final leave of England in April 1816. From that date the cxteraal events of his Life, down to his memorable interference in the cause of Greck independence present comparatively little variety, andexcite comparatively little interest. Nothing occurred after this to give a new turn or a new colour to his poetic career; the pewerful influences which bad conspired to torture music out of him were modified by the lapse of time, but very little, if at all, by the incidents of bis life. The bitter icelings with which he left Eagland, the angry sense of injustice and spirit of proud and revengeful defiance, alternating hysterically with huable self-repreach and generous forgiveness, passed iato lighter torms, but they never ceased to rankle. Like Maufred, he asked in vain for oblivion.

In the thick of his troubles, before leaving England, Byron conccived that he had never been "in a situation so completely uprooting of present pleasure, or rational life for the future." But his going abroad was really a most fortunate step both for his happiness and for the exercise of his genius. Abroad he consented to the sale of Newstead, and his income enabled him to live without being subject to the constant indignities which were such a torture to lim at home. There also be found the solitude which he had always desired. "Society," he wrote in a letter to Moore, "as now constituted, is fatal to all great original undertarings of every kind," and in his case certainly this was true. His grst place of residence abrond was Diodati,
a villa in the neighbourbood of Gencra. He spent the summer there, making two exeursions to Switzerland, 一one with Hobhouse, a shorter one with Shelley, who also was living at Geneva ot the time. His travels through Flanders past the field of Waterloo appear in the third eanto of Childe Harold (May to July 1816); the idea of writing Manfred on his way to Geneva (begun September 1816, finished February 1817) occurred to him on the Jungfrau, where the scene $1 s$ latd In November 1816 he remered to Vemec, and lived there, with the exception of short visits to Ferrara and Rome, till December 1819, writng fourth eanto of Childe Marold (Juae 1817), Beppo (Oetober 1817), Ode to Vence (July 1818), first canto of Don Juan (Sejtember 1818), Mazeppa (October 1818), second canto of Donk Juan (Decomber 1818), third and fourth cantos (finshed November 1819). The bare catalogue of his literary work shows that the reports of the dobauchery in which Le lived at Venice, and from which he is said to have been rescued by the Countess Guicetoli, must be taken with a qualification. His acquantance with this lady began in April 1819, and a mutual attachment sprang up at once. In December 1819 be removed to Ravenna In the following month the Countess Guiccioli, baving separated from her husband, occupled, under her father Count Gamba's presence and sanction, a suite of rooms in the same bouse with Byron at Ravenna; and though the families were formally separate, the unon was not brekea till Byron's departure for Greece. When, two years later, in 1821, the Gambas, in consequcace of their connection with revolutionary movements, were ordered to quit Ravenna, Byron removed to Pisa and lived with them under the same roof as before. Leigh Hunt, who also was received inte Byrun's house with his wife and children, has given us a somewhat ill-natured but sufficiently faithful picture of bis life bere, which was simply that of a busy dqmesticated literary man, with a taste fur riding, swimming, and marksmanship. During Byron's residence here Shelley was dröwned in the Gulf of Spezzia. In September 1822, the Gambas were ordered by the Tuscan Goverament to quit Pisa, and Byron removed with them to Genea. His life at Genoa bas been described with traces of airy malice, but with much vivacity and abundance of detail, by Lady Blessington.

While he lived with the Countess Guiccioli Byron's literary iadustry was predigious. The following is the list :-Translation of the first canto of Morgante Maggiore, February 1820; the Prophecy of Dante, March 1820; translation of Francesca de Rimini, Mareb 1820 ; Mfarmo Faliero, Ayril te July, 1820; fiftb canto of Don Juan, Octeber to November 1820, The Blues, November 1820; Sardanapalus, January to May 1821 ; Letters on Bowles, February and March 1821; The Two Foscari, June to July 1821; Cain, July to September 1821; Visoot of Judgment, September 1821; Heaven and Earth, October 1821; Werner, November 1821 to January 1822; Deformed Transformed, begun November 1821, finishod August 1822, Don Juan, sixth, seventh, and eighth enatos, February 1822 ; ninth, tenth, and eleventh cantos, August 1822; The Age of Bronze, Jannary 1823, The filand, February 1823. Don Juan, twelfth and thirteenth cantos, February 1823.

This quiet industrious life, however did not cure him of Lis eonstitutional melancholy and restlessness. The curse of his nature was that be exbansted his pleasures too quickly. He too soon became dissatisfied with past triumples. Much as be eajoyed the success of the works which poured with such rapidaty from his pen, ho began to harp on what he might have done, began to think that the tide was turning against him in England, and to kunger for new distinction. In this spirit, towards the end of

1821 he conmenced those negotiations for the publication of a journal in England in conjunction with Shelley and Leigh Hunt, which ended in the abortive Liberal. The lision of Judgnont, the greatest of modern satires, appeared in the first number of the Liberal, in the summer of 1822 , only tbree more numbers were published. According to Moore, the sign of an intention to take an active part in alliance with English Radicalism did more to make Byron unpopular in Eng'and than the most shocking of his poems. It was fortunate for his popularity that a more glarious enterprise offered itsclf to bim in the Greek struggle for independence. He was brought into conaection with this through the London Greek committee, of which he was appornted a member in May 1823. He at once decided to take action, raised 50,000 crowns, bought an English brig of 120 tens, and salled from Genoa with arus and anmunition 10 July The high hopes with which he set ont were soon broken down; the Greeks had no plans, and he was compelled to spend five months of inglorious delay at Ccphalonia. Reaching Massolonghi in December, after a ebase by Turkish crusers, he found dissension amiong the Greek chefs and insubordination among their fullowers. He was appointed commander-in-chief of an expedition against Lepante, but before anything could be dene be was seized with fever, and died on the 19th April 1824.

It is yet, perhaps, too soon to bazard a speculation as to the permanenee of Byrun's fame. That be holds a lower place in the opinion of the present generation than of his own, sofar at least as concernshis own country, is undeniable. and is probably due to the fact that poets now are tried by more strictly artistio standards, verses are judged, proportions measured, rare and precious excellences apprecated with the jealous scrutiny and skilled recognition of professional workmen. Tried by such standards, Coleridge, Keats, and Shelley must be pronounced Byron's superiors. The greatest modera authonty on verse, Mr Swinburne. comments justly on Byren's amperfect mastery of his materials :-" One native and iocurable defect gre: up and strengthened side by side with has neblest qualities-a fceble and faulty sense of metre. No poet of equal or inferior rank ever bad so bad an ear. His smoother cadences are often vulgar and facile; has fresher notes are often incomplete and inharmomous. His verse stumbles and jingles, stammers and balts, where is most need for a swift and cven pace of musical sound The reugh soaorous changes of the songs in The Deformed Transformed rise far higher in harmony, and strike far deeper into the memory than the lax, easy lines in whech he at first indulged, but they slip too readily into notes as rude and weak as the rhymeless, tuneless verse in which they are so loosely set, as in a cheap and casual frame. The magnificent lyrie measures of Heaven and Earth are defaced by the coarso obtrusion of short lines with jagged edges-ne emall offence in a writer of verse." In point of metre, tee, Byron showed none of the originality which we should expect 10 a poet who delighted in his materials for therr own sake. The god of his idelatry was Pope, towards whom his sympathics were drawn chietly ly the elder poet's modern and practical point of view, and quick interest in passung affars, and he began by imitatng witl :ery mudferent success Pope's satiric couplet but his successes we:o achieved in more popular measures. He was the least possible of an antiquarian ${ }^{\text {neet, whether in matter or in }}$ form. His way was to take up any measure that struck hum as effective, and try has band on it. Campbell's example suggested the Spenserian stanza: Scott and Coleridge the rapid octosyllables of his Eastern Talks; and be wonld never have thought of the atara rama of Beppe and Don Juan but for Froce's Whistlccraft. Whistlecraft appeared in 1817, and the moment it fell into his bands B_{y} ron
recognized the value of the instrument, and lost no time in making it his own.

It was not on the artistic side that Byron's strength lay. Words were far from niggardly in their supplies to him; they flowed in upon him with sufficient readiness for frce and direct expression ; his thoughts were not blunted, bis conceptions were not turred awry by hopeless struggling with stubborn material, bet language was not pliant in his hands for the finer achievements of art. The truth is, he felt too deeply to be a poet of the very highest rank; thes feeling of the moment touk too large and embarrassing a hold of him to leave bis hand free for triumphs of execition. This interfered both with the perfecting of details, and with the severe order ng of parts into an artistic whole. In Byron we are always struck more with the matter than with the form. It is his theme that absorbs attention, and the impetuous vehemence and stormy play of passion with which he hurries it on. This is, doubtless, an iasecure foundation for lasting fame. The work of a man so keenly alive to the impressions of the hour, so closely bound up with his generation as Byron, runs a.risk of perishing when the things that most deeply stir that zeneration have ceased to stir mankind. The secret of his tremendous power was his passionate sympathy with bis own time. By the accidents of birth and circumatances, he was placed in opposition to the existing order of things, and his daring temper made him the exponent of the spirit of revolution. He is the greatest modern preacher of " liberty, equality, and fraternity." His little aristocratic issumptions were as auperficial as bis professions of antiquarian poetic loyalty. Nothing irritated him more than 10 deny bin any of the privileges of his rank, but be never used the advantage of his social superiority in eny of the contests in which be was involved, and in his loves and bis friendshipg be showed regard only for the individual. He was a warm champion of the established fame of Pope against innovators, t ut he practised the innovations bimself aith auch effect that he has been called-a foolish enough plirase, certainly, but intelligible-" the interpreter of Wordaworth to the multitude." Abroad, Byron's inf uence was, from the apps rance of Childe Marold, no leas conpicious than at bome. It has even been sand that he was :he first Englishmal who made Englisb literature known throughout Europe Even such men as Lamartire, who deplored Byron as an incarnation of Satan, acknonledged bia power, Lamartine says that Byron was "a second Ossian to him," anc tells us that he was afraid to read bim in his youth lest be should be perverted to his beliefs. Heine invited the compliment of being called "the German Byron." He is believed to have largely influer ced the revolutionary movement io Germany, and he gave a direct stimulus to the liberators of Italy. Byron is the avourite poet of our English speaking fellow subjects in In ja, the educated Bengalee knows him by heart. On the Continent his influence has ratber increased than diminished Only the other year a glowing eulogy of his genius wa三 written by Castelar, the literary leader of republicanism : a Spans. At home of late we bave been accused of a glecting Byron, and the fact is sigaificant. Such stori ful and melancholy poetry as bis must always be at the beight of its popularity in times of conflict. The disturbed state of the Continent is more favourable to its spirit than the piping times of peace which have'prevailed for a generation in England. Mea who are conteat with the od things, and men who reoounce old things with a light heart, can bave little affinity with his deep-rooted saducss, his pride of defiant struggle, his flashes of defiant merriment; all this seems bysterical, affected, and unreal, -and unreal it no doubt is, in the sense that the feelings of men uader the tension of conflict must appear full of false cotes to men
who look on out of a normal condition of settled tranquillity.

The most bopeful circumstance for the permanence of Byron's name is that be stands at the opening of a new era as its largest literary figure. Sooner or later, as new phases of thought and sentiment supervene upon the okd, his writings must pass out of the catalogue of popular literature, but his personality will always fascinate. He is like Hamlet in this respect. It may safely be predicted that Byron will rot cease to be read till Hamlet has ceased to be studied. There is not a little in common between the characters, in spite of superficial difference. In the desolation of his youth, in his moodiness, in bis distempered mobility between the extremes of laughter and tears, in his yearniag for sympathy, his inteasity of friendship, his dark fits of misanthropy, his habit of brooding over the mysteries of life, Byron unconsciously played the character of Hamlet with the world for his stage, and left a kindred problem for the wonder of mankind,-a problem which na amalyzis can make clear, and which every one may pray that it be not given them to understand.

It has often been said that Byron could draw bat one character, and that his own. This is not more than a hall truth. It is true that Byron's genius was more lyrical than dranatic "Many people," be said himself, "think my talent essentially undramatic, and I am not clear that they are not in the right." But he also said that while he, "like all jmaginative men, embodied himself with the character while he drew it," be did so "not a moment after the pen was from off the paper." The difference between saying that Byron loved to picture himself io varigus circumstances, and that he could not set himself to the artistic portraiture. of any character in which he was not interested, may not be great, but it is the difference between a true view nad a false vicw of his artistic method He was undramatic in this sense, that his imagination dir not enter freely and selfdelightedly into varions forms of life. When Moore thought he had foand a beautiful subject for Byron's genius. and wrote the details to him, Byron could not enter inta the situation. His Monody on Sheridan is weak, because it was not spontaneous. But when he.found a situation or a cbaracter which naturally attracted him, and which be was able to nnderstand, bis method was not, as is implied by the language in which bis want of dramatic faculty is often expressed, to bring the situation or the character nearer to his own experience, but he tried to identify himself with the life of his subject, and laboured at details with almost pre-Raphaclitic monteness. We do right to call him undramatic still, because a dramatic genius is doing constantly and by the law of his nature what Byron could. only do rarely and with a limuted range. But it is wrong to say that he was always drawing hinself There are considerable intervals between Sardanapalus, Marino Faliero, Alp, Lara, and Manfred, although in those and in all his leading characters we are more arruck with what they have in common with their author, the allinity that led him to deal with their fortunes, than we are with thers separate individualities. The Conntess Quiccioli las girer: in the case of Darino Faliero a good example of the way in which he prepared himself for has work. Ile was struck w'th the tradition of Faluero's conspiracy in has old age against the state which he had served so well in youth and middle age, immediately after his arrival in Venice, bat at first he was unable to satisfy hinuself as to the motive. Tie ordinary histories, which he searched through with care, ascribed it to an old man's jealonsy of a young wife, b it this Byron's instinct rejected. He passed hours in the $h: l l$ of the great council, stared at the record of Faliero's d:capitation, lingered aboat the tomb, and called up aud realized every recorded circumatance of his life. keenly
studied the characters of hying Venice. It was not till four jears afterwards that he satistied himself as to the motive, and the discovery of an old ducument afterwards proved thit bis reading of bistory was correct. In other cases be siowed the same studious care for accuracy, the very opposite of rash and dashing identification of characters with himself. In most of his tales and dramas there is an historical bass, and the basis is scrupulously ascertained. He particularly prided himself upon the truth of his local coleuring.

The most interesting and complete portrait of Byron is perbaps that drawn by Lady Blessington, who sav him at Genea a few menths before his departure for Crece. It 13 not so favourable as some, but it is peculiarly valuable because taken from a definite peint of view, that of a clever woman of the world and practised critic of appearance and manner. "I had fancied him," she says, "taller, with a more dignified and commanding arr, and I looked in van for the hero-looking sort of person with whom I had so long identified him in imagination. His appearance 1s, however, highly prepossessing, his head is finely sbaped, and the forehead open, high, and noble, bis eyes are grey and fnll of expression, but oue is visibly larger than the other, his mouth is the most remarisable feature in his face, the upper lip of Grecian sloortness, and the corners descending, the lips full and finely-cut. In speaking be shows his teeth very mach, and they are white and even, but I observed that even in his smile-and be smiles frequently-there is something of a scernfnl expression in his mouth that is evidently natural, and not, as many suppose, affected.
His countenance ss full of expression, and changes with the subject of conversation ; it gans on the beholder the niore it is seen, and leaves an agreeable impression.

He 1 s very slightly lame, and the deformity of his feot is so little remarkable that I am not now aware which foot it is. His vorce and accent are peculiarly agreeable, but effems-nate-clear, harmomons, and so distinct that, though his general tone in speaking ts rather low than high, not a worl is lost.

I had expected to find bim a dignified, cold, reserved, and haughty person, resembling those mysterious personages he so loves to paint in his works, and with whom be has been so often identified by the gond natured world, but nething can be more different; for were I to point out the prominent defeet of Lerd Byron, I shoukd say it was flippancy, and a total want of that natural self possession and dignty whicb ought to characterize a man of birth and education." Such, judged by the soctal standard of has own country, was the look and personal manner of the greatest literary power of this century.

The best edition of Byron's works is that published by Burray. with illustrative extracts from has letters and daanes, and from the criticisms of his contemporaries. A selection from his works, thited and prefaced by Mr A C. Swinburne, is yublished by Moxon The facts of his life may he studied in Moore's Life, Letters, and Journal of Lord Byron, supplemented by Leigh Hunt's Lord Byron and has Contemporarirs, Iady Blessington's Conmersatzons with Lord buron, Trelawney's hecollections of Whelly and Duron, and the Countess Guiccioli's Lord Byron yuge par les temons de sa ne (translated under the tulle of Recollctims of Lord Byrom. Numerons allusions to Byron occurin the pablished menoms of hascentwmprames, anch as the Shelley Memornts and Crabh Kobuson's Inary. Kiarl E'lee's biography (Iranstated), although often mastaken in th conception of his character, is valuable as a collection of facts. (W. M.)

BYRON, Ilon. John (1723-1786), admiral and circummavigator, second son of the fourth Lord Byron, and grandfather of the poet, was born Nuvember 8, 1725. Whilo still very young accompmed dusen in has voyage of discovery romul the world. During many sucees. suve yeara he sam a great doal of hard service, and so constantly had he to contend, on lus varias expeditans, with adverse gales and dangermus stume, that he was aptly nicknamed by the sanlors, "Foulwonther lack." It is
to this that Lord Byron alludes in his famous Epriste iv Augusta:-
"A strange doom is thy father's son's, and past Recalling as it lies beyond redress.
Itversed for him our grandsire's fiste of rore. He had no rest at sea, nor I on shore.
In 1769 he was appointed governor of Newforndland. In 1775 be attained bis flag rank, and in the jollowing year became a vice-admiral. In 1778 be was despatched with a fleet to watch the movements of the Count d'Estaing, and in July 1:79 fought an indecisive engagement with hion off Greuada. He soon after returned to England, retaring into private life, and died April 10, 1786.

BYSTROMl, Jorann Nicolaus (1783-184b), Swedish sculpter, was born December 18, 1783, at Philipstad. At the age of twenty he procecded to Stockholm and studied for three years under Sergell. In 1809 he gainel the academy proe, and in the following year visited Rome. He sent heme a beantiful work, The Reclining Bacchante, in half life size, which rased him at once to the first rank among Swedish sculptors. Oh his return to Stockbolm in 1810 he presented the crown prince with a colossal stitue of himself, and was entrusted with several important works. Although be was appointed professer of sculpture at the academy, he soon returned to Italy; and with the exception of the years from 1838 to 1844 continued to reside there. He died at Rome in 1848. Amoag Bystrom's numerons productions the best are his representations of the female form, such as Hebe, Pandora, Juno suckling Hercules, and the Girl entering the Bath. His colossal statues of Swedisb kings are also much admired.

BfZantine EMPIRE. See Grpek Empire.

BIZANTINE HISTORIANS. The historians woo have related the transactions under the Eastern, Greek, of Byzantıne empire, for the millennium intervening between the death of Theodosius and the Turkish conquest of Constantinople, are collectively classed together under the above designation. Until, however, the middle of the 6th century, they are, with one conspicuous exception, too merely frag. mentary to deserve special notice. This exception is Procorius, the Polybius of his age, whose histories are of such importance as to demand a separate article. We shall arragge his successors in chronological order, distinguishing between the histerians properly so called and the chronologers.

Historians.-I. Agathias of Myrina in Etelia, kas born under Justinian, about 536 A.D., and is believed to have died under Tiberius the Second, about 580. His character as an epigrammatist and an editor of poetry has been already considered under the head Antnology. We are ivdebted to him in his historical capacity for an extremely valuable narrative of six of the most eventful years of the Greek empire, 553-558. The first book details the couquest of Italy from the Goths by Justiman's general Narses; the remainder describe, along with other aneidents, the Persian war of $554-556$, the two great earthquakes of 554 and 557 , the great plague, the rebuiading of St Sophia, and Belisarms's last explots agamst the Dulgarians. The bistory termanates abruptly, and was probably left unfinished. As a narrator, Agathias is scusible and impartial. but deficient in general knowledge, and far below the standard of a philosophic historian. llisstyle is rletorical, but not unpleasing. II. Mexander Protector, the farinfenor amtator of Agathins, livel under Manricins, whose reign hegan in 581, and contimed the history of Agathias to the date of the accession of that emperor. His work was comprised in eight books, when are entirely lost, with the exception of numerous extracts relating to embassies preserved in the collection $H_{\epsilon} \rho \boldsymbol{\pi} \rho \in \sigma \beta$ esur-the 27 th and only exsstug hook of the extenvive compilation of historical excurts made by tho Im:eror Constantine Porphyrogenitua

IIL. Teeofhylactus of Simocatta, a sophist and civilian of Egyptian extraction, wrote the history of the Emperor Mauricius (582-602) in eight books, all of which are preserved. The work seems to have been completed under Heraclius. Theophylactus lived until 628 or 629 . He is an accurate and not inelegant writer, but frequently trivial and frigid. IV. Joannes of Epiphaneia, a contemporary of Theophylactus, wrote the bistory of the wars of the Greeks and Persians irom the latter part of Justinian's reign until the restoration of Chosroes II. by Mauricius (591). His history has never been printed, but is said to exist in MS. at Heidelberg. V The Emperor Constantine Porphyrogenitus (reigned 911-959). Among the many services rendered to literature by this learned sovereign is to be enumerated his history of his grandfather Basil the Macedonian, emperor from 867 to 886 . VI. Genesius, who lived in the tima of Constantine Porphyrogenitus, wrote by his ordel the bistory of Basil II. and of his four immediate predecessors (813-886). The work is brief and meagre, but is almost the only authority we possess for a portion of the period described. VII. Joannes Canesjata, a native of Thessalomea, and cross-bearer to the archbishop, wrote an account, which has been preserved, of the sack of that wealthy city by the Saracens in 904. Cameniata lumself was one of the captives, and his narrative is very lively and-valuable. VIII. Leo Diaconus, an ceclesiastie in the latter half of the 10 th century, is the author of an indifferently written, but honest and instructive, narrative of the remarkable period of national recovery under the emperors Romanus II., Nicephorus Phocas, and John Zimisces, when Crete was reconquered, Syria invaded, and the Russians driven out of Bulgaria (959-975). Leo wrote at least as late as 993. IX. Niceprorus Bryensius, the son-in-law of the Emperor Alexius Comnenus, and one of the first statesmen and generals of his time, wrote in four books the history of the empire under the Comneni from 1057 to 1081. X. His still more celebrated wife, Aswa Comsena, daughter of the Emperor Alexius, and the marvel of her sex at that extremely low period of female education, wrote (1148) the bistory of her father in fifteen boaks. The period of Alexins is peculiarly interesting as that in wheh the harrier of Byzantine isolation was broken down, and the Fast and West brought into contact by the encroachments of the Normans on the Eastern empire and by the Crusades. We cannot be too grateful to the Princess Anna for her vivid sketch of the arrival of the Crusaders at Constantinople, and the relations between them and the Byzantino court. Her work, however, must be used with great caution. Gibbon's employment of it as an example of his usual discernment. XI. Her history was continued by Joakves Cinvamus, one of the inset eminent of all the Byzantine historians. He was one of the imperial notarics under the reign of Manuel Comnenus (1143-1180), an office nearly corresponding to that of a modern secretary of state. He harl, consequently, great adminstrative experience, and a thorough knowlelge of the relations of the empire with foragn states, and of the internal affairs of the latter. He is thus in an excellent position for writing history, besides which his own judgment and sagacity are of a very superior order, and his style is commonly terse and clear. Like most writers who bave themselves participated in the transactions they describe, he is not altogether exempt from partiality. His history comprehends the period from the death of Alexius Comnenus in 1118 to the siege of Iconium by Manuel Comnenus in 1176, four jears before the death of that emperor. There is little doubt that Cinnamus brought bis work down to the close of Manuel's reign, and that the conclusion is lost. XII. Nicetas acosinatus, or Ceoniates, a patrician and bolder of
many umportant public offices under the emperor lsaac Angelars at the beginang of the 13 th century, described the sarne period as Cinnamus, but continued his narrative to 1206 . The latter books of Nicetas's history possess especial importance, masmuch as they contain the Byzantide account of the taking of Constantincple by the Latins in the fourth crusade (1204). Nicetas's own palace was burned and plundered, and be escaped with difficulty to Nicæn, where he composed his history under the protection of the emperor Theodore Lascaris. His narrative, though too rbetorical, is striking and pathetic, it necessarily requires careful comparison with the Latin accounts. The remainder of his bistory is also valuable. He is also said to be the auther of an account of the statues destroyed by the Latins, which, bowever, is thought to have been interpolated by a later writer. It bas been published by Wilken (Leipsic, 1830). Xill. Georgius Acropolita, an eminent scholar and diplomatist, who lived from 1290-1282, wrote the history of the Eastern empire during its subjugation by the Latins ($1204-1261$; The work is so bricf that it has been regarded as merely an epitome of Acropolita's onginal history. XIV. Geoncius Pachymeres, a pricst and ecclesiastical jurist under Michael and Andronicus Palæologus, wrote the history of these emperors (1258-1308) in thirteen books. Pachyneres is one of the best of the Byzantine bistorians; his style as singularly good for his age, and his tone dignified and impartal XV. Nicephorus Gregoras, a man of great learming, tul passionate and untrustworthy as an historian, wrote the history of his country from 1204-1358, in thirty-eight books, the last fourteen of which remaned unpublished until 1855, when they were edited at Bonn by lmmanuel Bekker. After the recovery of Constantinople by the Greeks in 1261, Byzantine politics entered into a new phase; the feeble and distracted empire, unable to make head against the Turks, was compelled to lean for support upon the European powers, which it sought to obtain by patching up the long standing religious schism. Greek's and Latins, however, were equally resolved to concede nothing save in appearance, and the bistory of the time is to a great extent that of hollow negotiations, meant only to decerve. In these Gregeris had a considerable share: be also tonk an active part in the internal relighous controversies of his church, and bis personal knowledge of affairs. imparts considerable value to his history. He was at one timie a favourite of the Emperor Cantacuzenus, but was subsequently persecuted by him. ITe possessed extensive attainments, and 18 especially celebrated for having anticpated the astronomers of Pope Gregory XIII. in the correction of the Julian Calendar. XVI. The Emperor Jonn Cantacuzenus, after his abrlication, wtote the history of has times from 1320-1357, including the fifteen years of bis own eventful reign. This "is written," as Dr Plate observes, "with elegance and dignty, and shows that the author was a man of superior intelligence, filly able to understand and judge of the great events of bistory ; " but Gibbon's remark is no less just that Cantacuzenus " iresents, not a confession, but an apology of the life of an ambitious statesman. Instead of unfolding the true counsels and characters of men, be displays the smooth and specious surface of events, highly varnished with his own p:ases and those of his friends." The truth is arrived at by a comparison of Cantacuzenus with the rival and inimical narrative of Nicephorus Gregoras, so far as they cover the same ground. XVIl. Joannes Cananus wrote an account of the siege of Constantinople Ly Amurath II. in 1422; and XVIII. Joannes Anagnostes described tho capture of Thessalonica by the same Sultan in 1430 . XIX. Michael Ducas, the chief historian of the fall of the Greek empire. escaned from the sack of Constantinople

HISTORIANS

to Lesbos, where be entered into the service of the prince of that island, and wrote his history after the reduction of Lestos by the Turks in 1462. It commences in 1342, and goes down to the conquest of Lesbos. Ducas is the most difficult and barbarous of all the Byzantine kistorians, and the only one who appcars entirely unacquainted with classical modcls. At the same time he is among the most intelligent, impartial, and sagacious. The ruin of the Greek enipire has also been recorded by XX. Georgius Phrantzfs and* XXI. Laonicus Chalcocondyles Bobly of these were eminent among the statesmon of their disastrous period, and Phrantzes in parncular played a very important part in diplomacy. Broken hearfed at the capture of his native city and the death of his \sin and daughter in slavery, he retired to a monastery in Corlu, where he wrote bis Chronicon about 1477, to which year it extends. It commences at the year 1259, but by far the most valuable portion is that which records the tratsactions of the author's lifetime, and the value of this is very great, Chalcocondyles, beginning at 1298, brings his history down to the invasion of the Morez by the Turks in 1463. Ho also is an accomplished man, of much experience in public business; and although his duressions respecting the affairs and manners of other nations are irrelevant, and betray ignorance, they are interesting as an index to the knowledge possessed by his sountrymen at his time.
II. Cironiclers and Curonologers.-The chronofogers usually published in the Byzantine collection are \{requently very valuable, but neither their lives nor their writings need detain us long. They are I. Georgius Syncelous, the attendant (syncellus) upon the patriarch Tarasius, abourt the beginning of the 9th century. His unfinished chronicle extends from Adam to Diocletion, and was continued to 813 a.d. by II. Theormanes Isaurus, a martyr in the cause of image worship. III. Leo Grammaticus and IV. Georgius Monachus continued Theophanes to 948 and 944 respectively. V. The chronicle of the Syrian Joannes Malalas extends from the leginning of the world to the year 566 Malalas is usually supposed to have lived in the 9 th century, and to bave left his work incomplete, but some regard him as contemporary of Justinian. VI. Nicephorus Patriarcha, I'atriarch of Constantinople under Leo the Armenian, carly in the 9th century, compiled a chronological history from the murder of the Emperor Mauricius to his own times, and an abridged chronological manual of events from the Creation. VII. Julius Pollux, a writer of the 10 th century, compiled a cbronology, chiefly of ecclesiastical occurrences, to the year 963, which has only been printed as far as the death of Valens (377). VI\&I. The contemporary chronicle of Hiprolytus of Thebes is of little value. IX. The valuable Chronicon Paschale, which extends to 1042, is the work of three anonymous writers. There has been considerable difficulty in settling the respective chams to origimality of X . Joannes Scylatza and XI. Geomius Cedrenus, but the latter was probably the conyist. The contrary opinion has prevented the pululication of Scylitan's work, with the exception of the portions not transcribed by Cedrenus. These extend from 1057 to 1080 . The chronicle of Cedrenus reaches from the Creation to the former of these dates. Xil. The chronicle of Coxstantine Manasses is written in political verses, and extends from the beginning of the world to the accession of Λ lexius Comnenus in 1281. Xill. Michael Glycas, a writer of uncertain date, pullished a general chronology down to the year 1118 . XIV. The abbreviated chronicle of Jofl reaches the capture of Cunstantinople by the Latins in 1204 XV . Tlic chronicle of Georontes Codints, a writer of the lath contury, comes down to the captire of Coustnntinople, and
is associated with a compilation respecting the antiquities of the city, which is of much greater value.

The contribution of the Byzantine historians to literature may be compared with the part enacted by the Byzantine empire in the history of the world. That empire added nothing to the treasures of civilization, but it preserved much. Like the earth in winter, it seemed barren and unlorely, but it kept the good seed hidden in its bosom for better days. Had it perished before the intellectual revival of Western Europe, the solution of continuity between ancient and modern culture would have been irreparable. In like manner the Byzontine historians preserved the traditions of historical composition, while their brethren of the West were merely cbroniclers and annalists. They have safely embalmed in their generally unattractive pages a vast mass of most valuable information, for which we are in most cases solely dependent upon them, and tbey aid us to reconstruct the polity, and to some extent tho social life, of what was for several centuries the only really civilized Cbrislian state in the world. They are undoubtedly for the most part perfectly ignorant of the significance of their own limes; they have postponed wbat was really interesting to barren details of battles and court infrigues, and lave wasted opportunities which would bave been invaluable to a philosophic historian. Cinnamus and Ducas aro the only two with any claim to this character, and Anna Comnena is the only artist. When, howeser, all their disadvantages are taken into cunsideration, it will probably be deemed that they are much better than might bave been expected. They were isolated from all the rest of the known world by prejudice, policy, and religious batred. There was no sctentific or other intellectual movement in their times, no aspiration for liberty, no conception of a more liberal cultore; they were crushed by a rigid despotism, and enthralled by an abject superstition. Under these circumstances the good sense and sagacity of many among then are very remarkable, and are cliefly to be explained by the large proportion among them of men accustomed to practical life and public affairs. Their roll includes sovereigns, gencrals, prime ministers, secretaries of state, diplomatists, and other important public officers ; even the ceclesiastics among them are not recluses but men versed in business. The Byzantine civil scrvice was the strong point of the empire, and its solid if prosaic qualities are admirably reflected by its literary representatives.

The first collective edition of the Byzantine historians was pobIished at Paris, 1648-1702, in 27 volumes, with a preface by Labbe, and notes and traaslations by Fabrotus, Combefsius, and others. It was reprioted, with additions, at Venice, 3729-33. These editions are superseded by the great edition of Boan, $1828-55$, in 48 volurnes. undertaken at the recommendation and uoder the superinteodenco of Niebubr, and continned after his death under the patronege of the Royal Prussian Academy. The separate volumes are ediced by Bekker, Dindorf, Hase, and other distinguishad scholars; neverthe. less, according to Brupet, "de bons textes des historiens hyzantina estent encore A donner." Like former collections it contrins several works of value not strictly belonging to Byzantine history, bat illustrative of it. No guide to Byantine listory is comparable to Gibbon, whose narrative of this perious is an uoparalleled literary fent of masterly and impartial condensation. See likewise lebeau, Mistoire du Fias Empire, I'aris, 1524-36. Mr Finlay's rolumes are also invaluable companious to the lyyzantine historians. Of special works on the snlyect, the most important is Hankins, De Eysantinarum rerum scriptoribus Gracis, 1 cipsie, 16i7, a book distinguislied by extensive and accurate erudition, but necessarily deficient as respects the writers not $p^{\text {mblished in the author's day. It containa notices }}$ of Byzantine ccelesiastical writers also. Special points of interest are discussed in Von llammer's essay in the Guttingea Anrals, (vol. b) on the correction of tho Byrantine historians from Ottomat somecs; in lleyne"s Antiquataics Blaantina (1808-11) ; and in Hullman's Geschichtedes IVyantinisihin Jcndels(1808). Sabatier's creat work on, Byzantine mumismatics also aflords moch illustiative matter. and there is a lively sketch of the general sociat condition of the Eastern Empire io Augustin Marras de Equirse Eyrantines (Paris, 18, \mathbf{T}^{4}.)
R. G.)

BYZANTIUM, an ancient Greek city on tue sho.es of the Bosphorus, occupied the most easterly of the seven bills on which the modern Constantinople bas been built. It is said to have been founded by a band of Megarians, 067 s.c., but the original settlement having been destroyed in the reign of Darius Hystaspes by the Satrap Otanes, it was recolonized by Pausanias, whe wrested it from the hands of the Medes after the battle of Platea (479 B.c.)a circumstance which has led several ancient chroniclers to ascribe its foundation to him. Its situation, said to have been Gxed by the oracle of Apollo, was remarkable for heauty and security:" Its position on the Bosphorus gave it complete control over the extensive corn-trade carried on by the merchants of the West with the nortbern shores of the Enxane; the abseace of tides and the depth of its barbour rendered its quays accessible to ressels of large burden; while the tunny and other fisheries at the mouth of the Lycus were so lucrative as to procure for the deeply-curved bay into which that river fell the appellation of the Golden Hora. The greatest hindrance to its continued prosperity consisted ia the miscellaneous character of the population, partly Lacedæmonian and partly Athenian, whe flocked to it under Pausanias. From this circumstance it was a subject of dispute between those states, and was alternately in the possession of each, till it achieved its independence of both only to fall into the hands of the Macedonians ; and from the saune cause arose the violent contests of its intestine factions, which ended in theestablishrent of a rude and turbuleat democracy. About seven yeary ofter its second colonization, Cimon wrested it from the Lacedæmonians; but in 440 B.c., it revelted and returned to its former allegiance. Alcibiades, after a severe blockade (408 в.c.), gained posscssion of the city through the treachery of the Athenian party; and it continued an ally of Athens until 405 B.c., when it was retaken by Lysander after the battle of Egos-potami, and placed ander a Spartan harmost. It was under the Lacedxmonian power when the Ten Thousand, exasperated by the conduct of the gevernor, made themselves masters of the city, and would have pillaged it bad they not been repressed by the firmaess and promptitude of Xenophon. In 390 b.c. Thrasybulus, with the assistance of Heraelides and Arebe. bias, succeeded in expelling the Lacedæmonian oligarchy, and in restoring demecracy and the Athenian influence both ia Byzantium and Chalcedon. After baving withstood an attempt under Epamiondas to restere it to the Lacedæmonians, Byzantium joined with Rhodes, Chios, Cos, and Mausolus, king of Caria, in throwing off the yote of Athens, but soon after sought Athenian assistance when Pbilip of Macedon, having overiun Thrace, advanced againgt it. The succours which were sent from Athens uader Chares, on their arrival suffered a severe defeat from Amyntas, the Sacedonian admiral, but in the following year gained a decisive victery under Phocion, and compelled Philip to raise the siege. The deliverance of the besieged from a surprise, by means of a flash of light which revealed the adranciug masses of the Macedonian army, has rendered this siege peeuliarly memorable. As a meworial of the miraculons interferenee the Byzantines erected au altar to Terch-bearing Heeate, and stamped a creseent on tneir soins as a symbol of the pertent, a de viee which is reta:ned by the Turks to this day. They also granted the Athenians extraordinary privileges, and ereeted a monument in honour of the event in a public part of the city. During the reign of Alexander, Byzantium was compelled to acknowledge the Macedonisn supremacy; after the decay of the Maredonian power, it regained its independence, but suffered from the repeated incursions of the Seythians. The losses which they sustained by land roused the Byzatines to indemnify theneelves on the vessels which
still crowdeu the harbour, and the merchantmen which cleared the straits; but this had the effect of provoking a r.ar with the neighbouring naval powers. The exchequer being drained by the payment of 10,000 pieces of gold to buy off the Gauls who had invaded their territories about 279 b.c., and by the imposition of an annual tribute which was ultimately raised to 80 talents, they were compelled to exact a toll ou all the ships which passed the Bospherus,a measure which the Rhedians resented and avenged by a war, wherein the Byzantines were defeated. Tte retreat of the Gauls enabled Byzantiam to render considerable services to Rome in the contests with Philip II., Antiochus, and Mitbridates. Duriag the first years of its alliance with Rone it held the rank of a free and confederate city; but baving sought the arbitration of the capital on some of its domestic disputes, it was subjeeted to the imperial jurisdiction, and gradually stripped of its privileges, until reduced to the status of au ordinary Roman colony. In recollection of its former services, the Eapcrer Clandius remitted the heavy tribute which had been imposed on it; but the last remnant of its independence was taken away by Vespasian, who, in answer to a remenstrance from Apollonius of Tyana, taunted the inhabitants with hating "forgotten to be fee." During the civil mars, it espoused the party of Pescenaius Niger; and theugh skilfully defended by the engineer Periscus, it was besieged and taken (196 A.D.) by Severus, who destroyed the city, demolished the famous wall, which was built of massive stones so closely rivetted together as to appear one block, put the priacipal inhabitants to the sword, and subjected the remainder to the Perinthians. This overthrew of Byzantium was a great loss to the empire, snce it might have served as an effective protection against the Gotus, who afterwards sailed past it inte the Mediterranean. Sererus, however, afterwards relented, and, rebuilding a large portion of the tew, gave it the name of August: Antonia. He ornamented the city with baths, and surrounded the hippodrome with porticoes; but it was not till the time of Caraealla that it was restored to its former political privileges. It had seareely begun to recover itg former flourishing position when, from the caprieious resentment of Gallienus, the inlabitants were once more put to the sword, and the town given up to be pillaged. From this disaster the inhabitants recovered so far as to be abie to give an effectual check to an measion of the Goths in the reign of Claudius II., and its fortitieations were greatly strengthened durifig the civil wars which follewed the abdication of Diocletion. Licinius, after his defeat before Adrianople, retired to Byzantium, where he was besieged by Constantine, and compelled to surrender. To check the inroads of the barbarians on the north of the Black Sea, Diecletian lad resolved to trausfer his capital to. Nicomedia; but Constantine, struck with the advantages which the situation of Byzantiun presented, resolved to build a new city there on the stte of the old, and transfer the scat of govornment to it The design was quickly put into execution, and the new capital was inangurated with special ceremonics 330 a.d. See Constantinople.

The anetent historians invarably note the profligacy of the inhabitants of Byzantium. They are deseribed as an idle and depraved people, spending their time for the mant part in lot:ering about the harbour, or carousing over the fine wine of Marenea. - In war they trembled at the seund of a trumpet, in peace they quakcd before the shouting of their own demagogies; and durng the assault of Philip II. they could only be prevailed on to man the walls by the savour of cxtempore cook-shops distributed along the ramparts. The modern Greeks attribute the introduction of Christianity into Byzantium to St Andrew; and it certainly had some hold there in the time of Severus.

Cis the third letter of the Engtish alphabet and of the other alphabets derived from the Latin its history bas been singutar It was the same in form as the Greek r, but ancliged at a dificrent angle, thus, \& (see under Alphabet), and by degrees it was rounded into C It occupied the same place in the alphabet, and had the eame phonetic value,--that of the sonant guttural g, the corresponding surd teing represented. as in Greek. by K (See under B for the distinction between sonants and surds.) These two sounds became confused at Rome at an early time-before 450 Bc ., and perhaps much earher The k sound was lost and the symbol C represented both the 7 -sound, as in macster. lecio, and the onginal k-sound, is in rensor, consul The symbol K, however, was not entrely lost; it is found irregularly in inscriptions of all dates down to the times of the ompire, and regularly as as ratial abbreviation of Falendie, Karthago, Kaso (the projer name). In the 3 d century b.c., the distinction between the two sounds was renved, but the symbol K was not replaced in ordmary use. C remaned as the representative of the surd, losing its onginal somant value, while a modification of it (G) was iatroduced to represent the sonant. The symbol retained its old value osly when as the intial letter it represented the names Gavus and Gincus, -which, in consequence, are often erroneously written and sounded Calus and Cnceus With this changed value the symbol C passed into the languages which are represcnted by the Latin alphabet In some of them it has undergone yet further change Beiore e and i in ltahan, though still written, it is sounded as ch Thas change from the guttural to the palatal is the result of assimitation, due to the followng vowels There is no evidence to show that it was established before the 7 th century a.d In France (as commonly in Esgland) c before e and i has the sound of s. This is only a further change in the same direction as the Italian, and before a in French an origisal c has the sound sh, and is spelt ch as in champ (campus), chambre (camera). Fisceptions to thas rule are generally words incorporated mio classical French (i.e., the descendant of the old dialect of the Isle de France) frotn other dialects, as those of Normandy or Ficardy. or are introduced from the Itahan, as cavalier, \&c Our English ch (pronounced tch) for orignal c (as in chin for Old English cin, child for cild) is due probably to Norman influence, but here, as often, it is difficult to differentiate the results of the many disturbing causes which have nperated upon our language.

As a numeral, C (for centum) denotes 100 In music, placed after the clef. it indicates that the measure is of the value of four crotchets

CaABA. See Kabba and Mecca
CABAGAN. a town of Luzod, one of the Philippine fslands, in the provnece of Cagayan, situated on the N.E. coast it is the eecond Jargest caty 19 the pronnce, and has a jopulation of 11,100 .

CabANis, Pierre Jean Georoe (1757-1808), a distneursted French physiologist, was born at Cosnac in 1757 Hes father was a lawyer of emmence, and chief magstrate of a district in tho Lower Limousin. Ilis education was at first entrusted to the priests, but at the age of ten he was transferred to the Cullege of Brives. He ohowed \&reat aptitude for study, but his independence of epart was so excessive that he was aimost constantly in in state of rebellion aganst has teachers, and was finally dismossod from tho schoel. After a year's residence at bome he was taken to Paris by hes father andi left to carry
on his studies at his own discretion He attended clusie at the unversity, aod read with particular delight Lockes essay On the Human Understanding Twu years had beeo spent in cluse and assiduous study, when in 1733 the recessed the offer of the post of secretary th the pracebishop of Wilna. He accepted it aod passed two years at Warsaw viewing with disgust und contempt the petty intrigues and jealousies that accompaned the tirst partituon of Potand.

On bis return to Paris be devated humselt mainly to poetry, for which he had always a strong inclination He was intimate with the poet Roucher, and was introducea by Turgot to the society of Mme. Helvetius where he met such men as Diderot, D'Alembert. D'Holbach, Condillac Franklin, and Jefferson. About this time he ventured to send 19 to the Academy a translation of the passage from Homer proposed for their prize, and though his attemps passed mithout notice, he received so much encouragement from his friends that be contemplated translating the whole of the Iliad.

At the earnest desire of his father he relinquashed these pleasant hiterary employments, aod resolved to engage in some settled professian. After deliberation he fixcd upon that of medicine, and began his studies under Dubrcual In 1789 his Observations sur les Hopztaux procured him as appointmest as admunistrator of hospitals in Pans. Froro unclination and from weak health be never engaged much in practice as a physician His interest lay entirely in the deeper problems of medical and physwolugical science, and these he investigated with ususual closeness and minutencss Nor had he quite given up his fondness for literary society, his residence at Auteuil on the outskirts of the capital enabled him still to continue his intercourse witt. Diderot, Condillac, and othery He had even the pleasure of reading to Voltare part of his transiation of the llued and ol receiving warm commendation from the veterar critic But he had long ceased to occupy humself with that work, and in his Serment dun Médectn. which appeared u. 1789, he bade a formal adieu to poetry

In the great political struggle of the tume Cabans espoused with enthusiasm the cause of the Revolution to which he was attached from principle, and of which the opening prospects were congental to his active and ardens mind During the two last years of Mirabeaus hife te was intinately connected with that extraordinary man who had the singular art of pressing into his service the peus of all his litcrary friends Cabams unted bunself with tho disinterested assoctation of labourers, and contributed the Travall sur l'Educaloon Publique a tract which was found among the papers of Mirabeau at his death. and was edited by the real auther soon afterwards in 1791 During the illiness which terminated his hife. Mirabeau confided himself entirely to the professional skill of Cabaves Of the progress of the malady, and the circurnstances attending the death of Mrabeau. Cabans drew up a very detalled narrative, which is not calculated, however to impress us with ang high idca of his skili in the treatment of an acute intammatory disease Condorcet was another distrnguished character with whom Cabans was intimate, and whom he cndeavourcd, though without success, to eare from the destiny in which he aiterwards becarne involved by the calamitons events of the Revolution Shortly afte: the he married Charlotte Grouchy, sister to Madame Cundorces and to Gencral Grouchy,-a umon which was a great source of happiness to hin during the renainder of his lite.

A:ter the subversion of the Government of the terrorisis, Cabanis, on the establisinnent of central schools, was named professor of Hygiene in the medical'schools of the metropolis. Next year he was chosen member of the National Institute, and was subsequently appointed elinical professor. He was afterwards member of the Council of Five Hundred, and then of the Conserrative Senate. The dissolution of the Directory was the result of a motion which he made to that effect. But his political career was not of long continuance. A foe to tyranny in every shape, he was decidedly hostile to the policy of Bonaparte, and constantly rejected every solicitation to accept a place under his Government.

For some years before his death his health became gredually more impaired, and he retired from the laborious duties of his profession, spending the greatest part of his sime at the chateau of his father-in-law at Meulan. Here he so aced himself with reading his favourite poets, and even had it in contemplation to resume that translation of the Iliad which had been the first effort of his youthful muse. The rest of his time was devoted to acts of kindness and beneficence, especially towards the poor, who flocked from all parts to consult him on their complaints. Cabanis died Mas 5 1803, leaving a widow and a daughter.

A complete edition of Cabanis'a works was begun in 1:55, and five Tolumes were published. One of his minor works, Coup dacil sur les revolutions et les reformes de la midecin, has been tanslated into Eoglish. His principal work, Rapports du physigm a du suoral de l'toonme, consists in part of memoirs, read in $1 ; 96$ and 1797 to the Institute, and printed among their Transactions. It is an admirable sketch of physiological psycholngy, and is replete with mformatioo. Psychology is with Cabanis directly linked on to biology, for sensibility, the fuadamental fact, is the highest grade of life and the lowest of iatelligence. All the intellectual processes are evolved from eensibility, and ecosibility itself is a property of the nervous sygtem. The soul is not an entity, but a faculty; thought is the function of the brain. Juat as the stemach and intestines receive food and digest it, so the brain receives impressioos, digests them, and has as its organic secretion, thought. Alongside of this harsh materialism Cabanis beld another principle, the application of which altogether changes his theory. He belonged in biology to the school of Stabl, the vitalist or animist, and in the posthumous pork, Lettre sur les causes premitres, the consequences of this opinion hecame clear. Life is something added to the organism; over and above the universally diffused aensibility there is some living and productive power to which we give the name of Nature. But it is impossible to avnid ascribing to this power both intelligence and wifl. In us this liviag power constitutee the ego, which pe truly immaterial and immortal. These results Cabanis did not think out of barmony with his earlier theory, and it is possible that a point of view may be attained wheoce both appcar justified. The Lellec was not published till 1824, when it appeared with notes by F. Bérard.

CABARRUS, Feançots'(1752-1810), conspicuous in Spanish history as a financier, was born at Bayonne, where hia fsther was a merehant. Being aent into Spsin on buainesa he fell in love with a Spanish lady, and marrying her, settled in Madrid. Ifere his privete business was the manufacture of soap; but he soon began to interest himself in the public questions which were ventilated even at the conrt of Spsin. The enlightenment of the 18 th century Lad penetrated as far as Madrid; the king, Charles ILI., was favourable to reform; and a circle of men animated by the new spirit were trying to infuse fresh vigour into an enfoebled atate. Among these Cabarrus became conspicuous, especially in finance. He originated a bank, and a company to trade with the Philippine Islands; and as one of the council of finance he had planned many reforms in that department of the administration, when Charles III. died (1788), and the reactionary Government of Charles IV. arrested every kind of enlightened progiess. The men who bad taken an active part in reform were suspected and prosecuted. Cabarrus himself was accused of embezzlement, and thrown ints prison. After a confinement of
two years be was released, created a count, and employed in many honourable missions; he would even have been sent to Paris as Spanish ambasaador, had not the Directory objected to him as being of French birth. Cabarrus took no part in the transactiona by which Charles IV. was obliged to abdicate and make way for Joseph, brother of Napoleon, but his French birth, and intimate knowledge of Spanish affairs recommended him to the Emperor as the fittest person for the difficult post of minister of linance In this capacity Cabarrus died (1810). His beautiful daughter Thérése, under the name of Madame Tallied (afterwarda Princess of Chimay), played an interesting part in the later stages of the French Revolution.

CABATUAN, a town of the Philippine Islands, in the province of Ilolo, in Panay, situated on the banks of the River Tiguin, which ehanges from an almost empty channel to an impetuous torrent, so that navigation is frequently impossible. The town, which was founded in 1732 , has about 23,000 inhabitants, who are principally engaged in the cultivation of rice and the manufacture of cocoa-nut oil. See Bowring's Philippine Islands.

CABAZERA, a town of the I'bilippine Islands, capital of the province of Cagayan in Luzon, with a population of about 15,000 . Tobacco-growing is the most important occupation of the district.

CABBAGE. The parent form of the variety of useful culinary vegetables ineluded under this bead is geuerally aupposed to be the wild or sea cabbage (Brassica oleracea), a plant found near the sea coast of various parts of England and continental Europe, although Alph. de Candolle considers it to be really deacended from the two or three allied species which are get found growing wild on the Mediterranean coast. In any case the cultivated varietie: have departed very widely from the original type, and thes present very marked and striking dissimilaritiea among themselves. The wild cabbage is a comparatively insignificant plant, growing from 1 to 2 feet high, in appcarance very similar to the corn mustard or charlock (Sinapis arvensis), but differing from it in having amiooth leaves. The wild plant has fleshy, shining, waved, and lobed leeves (the uppermost being undivided but toothed), large yellow flowers, elongated seed pod, and seeds with conduplicate cotyledons. Notwithstanding the fect that the cultivated forms differ in habit so widely, it is remarkable that the flower, seed-pods, and seeds of tho varicties present no appreciable difference.

The late Dr Lindley proposed the following classification for the various forms, which includes all yet cultivated :1. All the leaf-buds active and open, as in wild cabbage and kale or greens; 2. All the leaf-budsactive, but forming heads, as in Brussels sprouts; 3. Terminal leaf-buds slone active, forming a head, as in common cabbage, savoys, \&c.; 4. Terminal leaf-bud alone active and open, with moat of the flowers abortive and succulent, as in cauliflower and broccoli ; 5 . All the leaf-buds active and open, with most of the flowers aburtive and succulent, as in sprouting broccoli. The lenst variety bears the same relation to common broccoli as Brussels sprouts do to the common cabbage. Of all these forms there are numerous gardeners' rarieties; all of which reproduce faithfully enough their parent form by proper and separate cultivation. Under Dr Lindley's first class, common or Scotch kale is a variety which formerly was in extensive cultivation, and is still found in the cottage "kail-yards" or gardens of the Scottiah peasantry. It sends up a atout central stem, growing upright to a height of about 2 feet, with close-set, large thick plain leaves of a light red or purplish hue. The lower leaves are atripped off for use as the plants grow up, and used for the preparation of broth or "Scotch ksil," a diah at one time in great repute in the north-eastern IV. -7^{8}
districts of Scotland. Tall or German greens, which grow to the beight of 4 fect, with bright green very much corled leaves, have largely superseded kale in cultivation. A very remarkable variety of open-leaved cabbage is cultivated in the Channel Islands under the name of the Jersey or branching calbbage. It grows to a height of 8 feet, but has been known to attain double that altitude. It throws out brauches from the central stem, which is sutficiently firm and woody to be fashioned into walking-sticks; and the stems are even uscd by the islaoders as rafters for bearing the thatch on their cottage-roofs. Several vaneties are cultivated as oroaraental plaots on account of therr beautifully coloured, frizzled, aud lacimated leaves. Brussels sprouts, which represent .Dr Liudley's second class, are miniature cabbare-heads, about an inch in diameter, which form in the axils of tho leaves. They form a tender and delicate table vegetable. The third class is chotly repre. sented by the common or drumhead cabbage, the varseties of which are distingushed by difference in suze, form, and colour. In Germany it is converted into a popular article of diet under the name of Sauerkraut by placing in a tub alternate layers of salt and cabbage. An acid fermentatiou ots in, which after a few days is complete, when the vessel is tightly covered over and the product kept for use with eximal food. Cabbages contain a large percentage of nitrogenous compounds as compared with must other articles of food. Their percentage comp sition is-water, $93 \cdot 4$; albumen, I-8; starch and dextrin, 33 ; woody fibre, 0.5 ; and mineral asli, 0.8. Red cabbage is chielly used for pickling, and the Savoy is a hardy green variety, characterized by its very wrinkled leaves. The Portugal cabbage, or Couve Trouchuda, is a variety, the tops of which form an excellent cabbage, while the midribs of the large leaves are cooked like sea-kale. Cauliflower, which is the chief representative of class four, consists of the inflorescence of the plant modified so as to form a compact succulent white mass or head; this is upon the whole the most highly prized cultivated form of the plant, and has been in use from very remoto times. Broccoli is merely a variety of canliflower differing from tho other in the form and colour of its inforescence aud its Lardiness. Broccoli sprouts, the representative of the fifth class, is a form of recent introduction, and consists of flowering sprouts sprioging from the axils of the leaves. Kohl-rabi is a peculiar and cxceptional varicty of cabbage in which the stem, just above ground, swells into a fleshy turnip-like mass. It is much cultivated in certain districts as a food for cattle. The varietics of cabbage, like maoy other Cruciferons plants, are possessed of anti-scorbutic properties, but uoless eaten when very fresh and tender they are difficult of digestion, and have a very decided tendeacy to produce Ratulence.

Several species of palm, from the fact of yielding large sapid central buds which aro cooked as regetables, are known as Cabbage Palms. The proncual of these is Areca oleracea, but other sirecies, such as the Coco Palm, the Maximiliana rega, Arenga saccharijera, \&c., yield similar ediblo leaf-buds.

CabBaLa and CabBalists. Sec Kabbala.
CABENDA, or Cabinds, a seaport tuwn of Westera Africa, in Lower Gumea, 40 milcs north of the mouth of the Zaire, on the right bank of the Bele, in $5^{\circ} 33^{\prime} \mathrm{S}$. Jat., $15^{\circ} 40^{\prime} \mathrm{E}$. long. From the great beanty of its situation, and the fertility of tho adjacent country, it bas been called the paradise of the coast. The harbour is well sheltered and commodious, and tho trade is considerable. Population about 16,000 .

Cabe'r, Etiense (1788-1856), ad active Freach Communist, was born, the son of a cooper, at Dijon in 1788. Ho choso the profession of ulvocate without
succeeding in it, but erelong became notable as the persevering apostle of republicanism and communsm. He assisted io a secondary way 1 m the Fevolution of $1=\because 0$, and obtaned a legal appointment in Corsica uuder the Guvernment of Louis Philippe; but, being dissatisfied wath the moderation of the new rule, he began to attack it even m public, and was dismssed. Elected, notwithstarding. to the Chamber of Deputies, he was prosecuted for his bitcer criticism of the Goveroment, and oblaged to go into exile in England. On the amuesty of 1839 , be returned to France, and attracted some notice by the publication of a badly-written and fiercely democratic history of the Revolution of 1789 (4 vols., 1840), and of a social romanee. loyage en Icarre, in which be set forth has peculiar views i These works met with some success among the radical working-men of Paris An opportuvity at length occurred of realizing bis schemes. Pressed by his friends, be made arrangements for an experiment an communism on American soil. In his journal, Le Populaire, be announced the purchase of a considerable trect of land on the Red River, Texas, and a treaty by which Cabet was made the dictator of an intending colony, and the depositary of all the funds, community of property belog the disturctive principle of the sooiety. Accordingly, in 1848. an expedition of 150 sailed to America; but unexpected dificulties arose and the complaints of the disenchanted settlers soon reached Europe. Cabet, who had remaned in France, bad more than one judicial investigation to undergo in consequence. but was honourably acquitted. In 1849 he went out in person to America, but on his arrual, finding that the Normons had been expelled from therr city Nauvoo, in Illinois, be transferred has settlement thither There, aith the exception of a journey to France, where be returned to defend bimself successfully before the tribunals, he remained, the dictator of his little society In 1856. however, he was expelled, and died the same year at St Louls. He had not the advantages of either birth or eloquence. or even of ability. The little success he obtaioed was due entirely to the singularity of his opinions, and the straightforward persistency with which he advocated them.

CABEZA DEL IUUEY (a.e., bullock's head), a town of Spain, in Estremadura, in the province of Badajoz, and S6 miles E.S.E. from the city of that name. It manufactures woollen cloth, and has a population of 6500 .

CABINET, a conventional, but not a legal, tern: employed to describe those members of the Privy Counch who fill the highest exccutive oflices in the State, and who. by their concerted policy, direct the Goverament, and are responsible for all the acts of the Crown The Cabnet now always ancludes the persons flling the following offices, who are therefore called Cabinet Mimsters, viz:-The Firgt Lord of the Treasury, the Lord Chancellor, the Lord President of the Council, the Lord Prary Seal, the five Sccretaries of State, the Cbancellor of the Exchequer, aud the First Lord of the Admaralty. The Chancellor of the Duchy of Lancaster, the Postmaster General, the Furst Commissioner of Works, the President of the Board of Trade, the Cbief Sccretary for Ireland, the President of the Poor Law Board. and the Vice-F'resident of the Education Conumittee are sometumes members of the Cabinet, but not accessarily so. Hence the Cabmet bust consist of at least eleven members, aud it has sometmes included as many as seventcen. But the better opidion appears to be that a large Cabınet is an evil. Mr Disraeli in 1874 acted wisely in restricting the numbers of his colleagues to eleren besides the Prime 1 linister. Whea Lord Greaville in 1806 brought Lord Chief Justice Ellenborough iuto the Cabinet. ly combmeng bis judiciul ottice with that of Lord President, the appointment was etrongly reprobated, and the experinent bas never licen rep ated. The Master-General of the

Ordnance used to have a seat in the Cabinet, and the duke of Wellington sat there for a short time as Commander-inChief Of late years thers bas been no military officer in the Cabinet, a thing much to be regretted. In a few instances privy councillors of very ligh atanding, as the duke of Wellington, Lord Sidmouth the marques of Lansdowne and Lurd Ruasell. have been aummoned to the Cabinet without office. There is no constitutional objection to gummoning any privg councillor to the Cabinet by command of the sovereign.

The word "Cabinet," or "Cabinet Council." was ongmally employed as a term of reproach. Thus Lord Bacon says. to his essay Of Counsel (xx.), "The doctrine of Italy and practice of France, in some kings' times, bath introduced Cabioet Councils-a remedy worse than the disease 'and. again." As for Cabinet Councils. it may be their motto Plenus rimarum sum" Lord Clarendun-after stating that. in 1640 when the great Council of Peers was cunvened by the king at York, the burden of allairs rested principally on Laud. Strafford, and Cottington with five or sis others added to them on account of their otficial position and ability-adds." Theae persons made up the Committee of State which was reproachfully after called the Jumiso, and enviously then in Court the Cabinet Counct' And in the Second Retoonstrance in January 1642, Parhament complaned "of the managing ot the great atfars of the realm in Cabinet Councils by men unknown and not publicly trusted" But thas use of the term, though historically cunous. has in truth nothing in oommon with the modern upplication of it It meant. at that time, the employment of a aelect body of favourites by the king. who wera aupposed to possess a larger share of his confideuce than the Prify Councal at large ${ }^{\text {: Under }}$ the Tudors, at least trom tha later yeurs of Henry V1Il. and under the Stuarts. the Privy Cuuncil was the Council of State or Governinent During the Common-wealth it assumed that name

The Cabinet Council, properly so called, dates from the reign of Wilham III and trom the year 1693. for it was not until some years alier the Revoluturn that tha kang discovered and adopted the two fundamental principles of a constitutional Execunve Govermment. namely, that a manstry should consist ol statesmen bolding the same politieal pranciples and identhed with each other. and. secondly, that the momstry sbuald stand upun a parhamentary basts. that 1s. thut it raust command and retan the majority of votes in the Legislature It was lune before these principles were thoroughly worked out and understood and the pertection tu which they tave been brought in modern times is the result of thue. experience. and in part of accident But the result is that the Ciabset Council for the tame benge es the Government of Grat Bratam that all the powers vested in the soverengu with one or two excepthons are practically exercised by the memters of thas body that all the members of the Cabisel are pontly und severally responsible for all its measures for at ditferences of opmion arise their existence is unkuow as long as the Cabinet lasts.-when publiclv manifested the Cabiuet is at an eno and lastly that the Cabiset beng responsible to the sovereagn fur the conduct ol executive business. is also collectivelo respunsible to Parhament both for its executiva cunduct and for its legislative measures. the same men being as members of the Cabinet the servants ol the Crown and as Members of Parhament and leaders of the

[^54]majority responsible to those who support them by their votes and may challenge in debate every one of their actions. In this latter senso the Cabinat has sometimes. beeu described as a Standing Committee of both Houses of Parliament.
This in reality is the form to which the active governing machinery of the British Constitution bas now beed. brought It has been ingeniously argued by Mr Bagehot, in his Essays on the Constutution, that "the Cabicet is a board of control. chosen by the Legislature, out of the persons whom it trusts and knows. to rule the nation." and that the chosce of the Crown and of the Prime Minister who frawes the list of Cabinet Ministers to be land before the sovereign. is 10 lact circumscribed and predetermined by the pusition v. ach a small number of men in each party have acquired in Parhament. No man can long remain a Cabinet Minister isbo is nut in Pariamedt : and of those who sit ic either lluuse of Parliament ${ }_{\text {. }}$ but a small proportion have uttamed to the rank or inltoence that tits a man to be a Cabinet Ministet This if especially the case in the House of Commons. largely cumposed of men engaged in various protessiona for it is. easter to tind men of high senatorial rank and experiencein the House of Peers than in the otber House, because in: England ine:abers of the Peerage are trequently tramed and educated Irom early hle lor high othce and tha public aervice The Cabinet. theretore. really unginates io the Legistature. though its functions are the functions of executive government, and although it disposes on behalt of the Crown of a vast amount of power, patronage. honours. dc., to which the authority of the Legislacure does. not extend The Cabinet bas, moreuver, one nust mportant power, whinch it derives entirely fram the Crown, namely. that of dissulving the Legislature to which it uwey uts own existence-though thas is iu lact no more than un appeal to the nanon: at large, whose representative the Legislan ture $1 s$ The power of dissulvitg larhament is une usually. though not almays unreservedly, entrusted by the sovereige. to the Prime Minister but if witbheld whet subited. the minister rould resign

Instances are not wanting in our history in whach the direct action of the soveregol has overthrown a Cabnot or prevented a Cabnet from bemp lormed In 1784 George IlI dismassed the Coalition Mimstry In 1807 the king also dismissed Lord (irenville's Cabinet. In. the teeth of Lord Erskine's declamtion of the thigh Whig. doctrme. that the kang had handed over every power of governauent. and eved bis own conscience, to bis responsible advisers In these instances the Crown succeeded. und the new Parnament ratified the change Notso in 1834 whes Willam IV dismassed Lord Melbournes Cabinet, placed the duke of Wellmgton fur sume weck it sule pussessmes of all the Cabmet uthees, and calted Sil Roters Peel to power. In lele Lurd Mura was deleated in the uttempt to torm a Cabuet be the relusal of the regent to consent to a change in the bousethold and in 1839 a sambar reason was alleged by Quecu Victona to prevent the aeces sion to ottice of Sir Robert Peel Bot though thas seef was detended und satictioned toy a minute of the Whig. Cabuet of the day if is now geturally regarded as uncosstitutional. and the ubjection was never repeated

Oue of the consequences of the close connection of the Cabinet with the Legislature is that it as desirable to divice the strcngth of the mimstry between the two Houses of Parhament Mr Pitt's Cabinct of 1783 consisted of bimself in the House of Commons and seven peers. But as anstocratic a Government would now be impracticable. In Mr Gladstone's large Cabinet of 1868 . eight, and afterwarde. nine, ministers were in the House of Commons and sux in the House of Pecrs. Great efforta were mada to atrongthem
the ministerial bench in the Commons, and a new principle was introduced, that the representatives of what are called the spending departments-that 1 s , the Secretary ot State for War and the First Jord of the Admaralty should, if possible, be members of the House which votes the supplies. Mr Disraeli followed this precedent.

Although the Government of this country is one of extreme publicity, it is to the credit of the good sense and good faith of Englishmen that the deliberations and proceedings of the Executive Goverament are veiled in impene. trable secrecy, until the moment when the result of them is made known. Peyond the meagre announcement in the Court Circular of the bare fact that a Cabinet has been beld, and that certain manisters were present, nothing is communicated to the public. Cabinets are usually con. voked by a summons addiressed to "Her Majesty's Confidential Servants," by direction of the Prime Minister; and the ordinary place of meeting is the Foreign Office, but they may be beld anywhere. No secretary or other officer $1 s$ presert at the deliberations of this council. No offical secord is kept of iss proceedings, and it is even consulered a breach of mmsterial confidence to keep a private record of what passed in the Cabinet, inasmuch as such memoranda may fall into other hands. But on some amportant occasions, as is known from the Memoirs of Lord Sudmouth, the Correspondence of Earl Grey with King Willuam II', and from Sir Robert Peel's Memours, published by jermission of the Queen, Cabinet minutes are drawn up and submitted to the sovereign, as the most formal manmer in which the advice of the ministry can be tendered to the Crown and placed upornrecord. More commonly, it is the duty of the Prime Minister to lay the collectave opinion of bis colleagues befors the sovereagn, and take his or her pleasure on publie measures and appointments. The sovereign never presides at a Cabinet, and at the meetings of the Privy Council, where the sovereign does preside, the busmess is purely formal. It has been laid down by some writers as a principle of the British Coustitution that the sovereign is never present at a discussion between the advisers of the Crown ; and this 1s, no doubt, an established fact and practice. But like many other political usages of this country it orginated in a bappy accident. King William and Queen Anne always presided at weekly Cabinet Councils. But when the Hanoverian princes ascended the throne, they knew no English, and were barely able to converse at all with their ministers; for Georgo I. or George II. to take part in, or even to listen to, a debate in council was inipossible. When George III. mounted the tarone the.practice of the independent deliberations of the Cabinet was well established, and it has never been departed from. In no other country has this practice been introduced, and perhaps this is one reasen why in many instances constitutinnal government has failed to take root.

Differences of oparinn, of course, occur in all bodies of men, and arguments are frequently presented with greater ability and temper in private than in public debate. These differences are decided in the Cabinet, as in all committees of council, by the majority of votes, and the rule holds gond in all of thera that "no man shall make publication of bow the minority voted" The vote once taken and the question decided, every member of the Cabinet becomes equally responsuble for the decision, and is equally bound to support and defend it. A decided difference of opinion cannot be persisted in or publicly expressed without withdrawing from the Cabinet, as when Mr Gladstone quitted Sir Kobert Peel's alministration upon the proposal to endow Maynooth. llence it arises that resignations, or threats of resignation, are much more common than the public imagine; and a good deal of tact and management is continually exercised

In reconsiling these differences. A serious "division in the Cabunt" is, as 18 well known, an infallible sign of its approaching dissolution. There are cases in which a minister has been dismissed for a departure from the concerted aetion of in colleagues. Thus, in 1851, Lord Palmerstoo baving expressed to the French ambassador in London his uaqualified approbation of the coup d'ctat of Lous Napoleon aganst the Assembly, when the Cabinet bad resolved on observing a strict neutrality on the subject, Lord Russell adnsed Her Majesty to witbdraw from Lord Palmerston the seals oi the Foreign Department, and bis lordship never agan filled that office.

A clause was introduced into the Act of Settlement of 1705 requiring all Acts of State to be transacted in the Privy Comenil and signed by all the nembers present. This provasion was found to be mconrenient, and was repealed two years afterwards. According to modern usage only one kind of public document is signed by all the mem. bers of the Cabinet, as privy councillors, and that is the order for general reprisals which constitutes a declaration of war. Such an order was issued aganst Russa in 1854, and was signed by all the members of Lord Aberdeen's Cabinet.

Upon the resignation or dissolution of a ministry, the sovereign exeresses tho undoubted prerogative of selecting the person who may be thought by the Court most fit to form a new Cabinet. In several instances the statesmen selected by the Crown have found themselves unable to accomplish the task confided to then. But in more favourable eases the minster chosen for this supreme office by tho Crown has the power of distributing all the pulitical offices of the Government as may seem best to himself, sulyect only to the ultmate approval of the sovereagn. The Firss Minister is therefore in reality the author and constructor of the Cabinet; be holds it together; and in the event of his retirement, from whatever cause, the Cabinet is really dissolved, even though its members are agam umited under another bead, as was the case when Lord Melbourne succeeded Lord Grey in 1834, and when Mr Disraeh sueceeded Lord Derby in February 1868. Each member of the Cabinet, in fact, holds office under the First Lord of the Treasury, and in the event of resignation 1t is in hum that the announcement of such an intention should be made.

The best account of the Cabinet council and of the other expentive machinery of the constitution is to be found in Mr Alphens Todd's Essay on Parhamentary Gocetnment in England (2 vols swo. 1867-69), where all the authorities are collected-Hallam, May. John Austin, Lord Macaulay-and a vast quantuty of political infrir. mation, compiled from debates and hearing on this subject. Atr Bagehot's Essay or the Engish Constitutaon contans an ingenours comparison, or rather conerast. brtween the Bratish Cabinet and the administratue mechanısm of tbe United States of Amenca. (11. R.)

CABIRI (Kaßcepoi), in Mythology, usually dentified with the Dioscurl (Castor and Pollux), in common with whow they were styled $\mu \varepsilon y$ iador Geoi (maqua Dii), and had the power of protecting life agamst storms at sea, the symbol of their presence being the St Elmo fire. The rorship of the Cabin was local and peenliar to the islands of Leminos, Imbros, and Samothrace, extending also to the neighbouring coast of Troy, in which places it appears to have been inherited from a prinitive Pelasgic population. It was, however, in Samothrace that this worship attained its chief importance, coming first into notice apparently after tho Persian war, and from that time extending its innuenco down into the Roman period. The point of attraction was in the religious Mysteries, mitiation into which was aought for, not only by large numbers of pilgrms, but also by such persons of distinction as IMilip and Olympias- the parents of Alexander, his successor iysimachus, Arsmoë, and those Roman commanders where divies led them to that quarter.

That the rites were in which the Mysteries consisted is unknown, and it is therefore impossible to say how far they may have been organized on the model of the Mysteries of Eleusis, though it is clear that Athens took a considerable part in being the first to externd the influence of the Samothracian Mysteries. Initiation included also an asylum or refuge, if required, within the strong walls of Samothrace, for which purpose it was used among others by Arsinoë, who afterwards cansed to be erected there ($276-247$ B.C.), to record ber gratitude, a monument, the ruins of whieh were explored in 1874 by an Austrian archeological expedition (Untersuchungen auf Samothrake, by Conze, Hauser, and Niemann, Vienna, 1875)
In Lemnos an annual festival was held, lasting pine days, during which all the fires in the island were extinguished and fresh fire brought from Delos. From this and from the statement of Strabo (x. 437), that the father of the Cabiri was Camillus, a son of the god Hephrestus, it bas been thought that the Cabiri must have been, like the Curetes, Corybantes, and Dactyls, dxemons of volcanic fire. But this is very uncertain. In Lemnos they fostered the growth of the vine and fruits of the field, and from their connection with Hermes in Samothraec, it would seem that they had also aided the fertility of cattle. Both the names and the number of the Cabiri are doubtful. On late authority theyare given as Axperos, Axiokersa, and Axiokersos, with a fourth called Kadmilos or Kasmilos, but in the usual tradition they were Dardinos, Jasion, and Harmonia. Jasion, who was a favourte of the goddess Demeter, instituted the Mysteries. Harmonaa married Cadmus of Thebes, whose name is to be recognized in Kadmilos, one of the Cabirı On the otber hand it has been argued that there were only two Cabiri, Dardanus and Jasion, corresponding as deities to the Greek Poseidon and Apollo, or Uranus and Gæa, i.e., sky and earth. On these points, the statements of ancient writers are not only few but generally arreconeilable with eaco other On Etrusean bronze mirrors representations of what are called the Cabiri frequently oecur, consisting of two youthiful figures, sometimes with the addition of a female figure, apparently therr sister, sometimes there aro three brothers This subyect is dealt with in detail by Gerbard in his Eerushische Metall. Spiegel

CABLE, a rope or chain used for connecting a ship with ber anchor. Chain cables are generally used, but on account of their wetght they are unsuitable for moorang in very decp water, when several lengths of cable would be hanging at the "hawse pipe;" and they eannot be used, also on account of their weight, when it is required to lay an anchor out at some distanee from the ship. liempen cables are, therefore, supplied to all ships as well as chain eables For suzes, number, and lengths of cables carried by ships of the Royal Navy and required by Lloyd's rules to be supplied to merchant ships, sce article Anceor.

The length of a chain cable is 100 iathoms, and that of a hempen cable 101 fathoms. The term "a cable's length," by which the distance of vessels from each other is usually given in nautical parlance, is understood to mean 100 fathoms. or 200 yard 3 Cables are sometimes made of common chain, but the best and most approved are made of stud-link chana, as shown in fig. 1 , which gives the relative proportions of thé various parts. Cables are made in lengths of $12 \frac{1}{\frac{1}{2}}$ fathoms, connected together by "joining shacklos," as shown at D Each length is " marked" by a piece of 1 ron-wire being twisted round the stud of one of the links, the wire being placed on the first stud inside the Grst shackle,- - e.e, the stud nearest to the shackle oo the side remote from the anchor.-on the second stud inside the second shackle, and so on, so that the length of cable
which is ont may always de Lnown. For instance, if the mark is on the sixth stud unside the first inboard shaekle, it is known that six lengths, or $7 \overline{5}$ fathoras, of cable are out, measuring from that shackle. In joining the lengths together the round end of the shackle should be placed towards the anehor. The end links of each length C, C are made without studs in order to receive the shackles, and it is necessary to make them of iron of greater diameter than that used for the stad links. in order to keep them of equal strength. The stud keeps the link from collapsings and inereases its strength considerably.

Fio. 1.-Stud-link Chain:
The next links B, B in their turn have to be cnlarged to enable them to take the mereased size given to the links C. C. It will be observed from the sketeb of the shackle D that the pin is mado oval, its greater diameter being in the direction of the stran. The pin of the abachle which attaches the cable to the anchor, and is called the "anchor sbacklo" in distinetion from the "joinıng shackles," may project and be secured lyy a forclock; but as any projection would be detrimental when the chan is ruming out (sometimes with great rapidity) through the hawse pipes, the pins of the joining shackles are made as shown, and aro secured by a small pin d. This small pin is kept from coming out by being made a little short, so that a lead pellet may be driven in at either cud to fill up the holes in the shackle, which are made with a groove, so that as the pellets are driven in they expand or dovetail, and thus beep the small pin secure in its place.

The cables are stowed in the echain lockers, the inner ends being firmly seanred to the ship by a "slip." This is done to render it impussible for the cable to ron out and be lost aecidentally, the slip being provided so that the cable may be let go without difticulty if stress of weather or any other cause renders such a procecding imperative. It is necessary to fit one or two swivels in each cable to avoid turns being taken in it as the ship swings. When a ship is moored with two anchors the cables are attached to a moaring swivel (fy. 2); If this is not dono the cables get entwined around each other, forming what is termed a "foul hawse," whieh is a troublesome thing to clear.
The cable is hovo up in large vessels by a capstan, and in small ones by a windlass. It is brought directly to the capstan, the imucr end passing to the deck pipe, and thence to the chan lockers; or it is brought in by means of a messenger, which is an endless chain passing round the capstan and a rollec on each sido of the deek near the hawso pipes The cable is stoppered to the mesaenger by rope or iron nippers, and as the messenger goes round rith the capstan the cable is brought in, the nippers being shifted as required Messengers ine now alnonst entirely superseded by the improved make of capstans.
Varions means for checking the cable as it is running out, and for holding it, hare beer. derised. The old-

[^55]iashioned plan is to fit a strong iroa lever called a " compresser" under the deck pipe, fixed at one end in euch a position that when the other end is hove round by a tackle the cable will be jammed between the compresser and the lower edge of the pipe. In place of compressers, or to act in conjunction with them, several kinds of stoppers have been used, fitted either at the deck pipes, or just inside the hawse pipes; those patented by Harfield and Co. find the most favour in the Royal Navy, but the compressers' are

Fta. 2.-Mooring Swivel.
elmost invariably fitted with them. Ships are generally beld when "riding at anchor" by one or two tams of the sable being taken round the "riding bitts," which are strong structures of iron or wood, placed for this purpose near the hawse pipes. "Stopper bolts"-i.e., ring-and-eye bolts, placed in the deck forward-are also fitted, to which the cable may be sécured while the turns are being put on or saken off the riding bitt, while the mooring swivel is being sttached, or at other times.
(т. M.)

CABOT, Sebastian, ${ }^{1}$ the renowned navigator, and contemporary of Columbus, was the son of John Cabot, a Venetian merchant, and was born in Bristol, England, while his father was a resident of that city. On the disputed question of his birthplace, Richard Eden (Decades of the New World, fol. 255) says Sebastian told him that, when four years old, he was taken by his father to Venice, snd returned to England while still very young, "whereby be was thougint to have been born in Venice." Stow, in his Annals, under the year 1498 , styles "Sebastian Gisboto a Genoas sonne, barne in Bristow." Gatrano and Herrera also give to England the honour of his nativity. Neither the year of his birth nor that of his death can be stated with precision; conjecture fixes the former event in sbout 1476. No instructive details of his early life, until he had passed his twentieth year, can now be recovered.

The discoveries of Columbus infused into young Sebastian in ardent desire to emulate his brilliant achevements. Henry VII. resolved to enter the new field of maritime discovery, which had already rewarded Spain with the Antilles; and the Cabots baving proposed to the king the project of shortening the veyage to India by sailing rest, to them was confided. its execution.

The first patent was granted March 5, 1496 (11th Henry VII.), to "John Gabote, ritizen of Venice; to Lewes, Sebastian, and Santius, sonnes of the said John." It empowered them to seek out, subdue, and occupy, at their own charges, any regions which before had "been unknown to all Christians." They were authorized to set up the royal banner, and possess the territories discovered by them as

[^56]the king's vassals. Bristol ras the only port to which tios. were permitted to return ; and a fifth part of the gans \because the voyage was reserved to the Crown. The discove:en were vested with exclusive privilege of resort and traffic.

With respect to Lewes and Santius, the chronicles are silent. John and Sebastian sailed from Bristol in the "Matthew" in the following year (1497), and. as now seems probable, returned to England after the first discovery bad been made (see Bristol, p. 350). There is in the account of the Prisy Purse expenses of Henry VII. the following entry:-" 10th August 1497. To him that found the New Isle, $£ 10$."

Although it is probable that the Island of Newfoundland was discovered in this voyage, a careful scrutiny of the various maps and chronicles sustains the belief that the Csbots saw the mainland of America before any other,-the term Terra primum visa having been used to distingaish the continent, or what was believed to form a part of it. The relation of Sebastian (see Hakluyt, 111, p. 7) does not warrant the inference that the first land seen was an island.

The most precise account of the discovery is from a map drawn by Sebastian Cabot, and engraved in 1549 bs Clement Adams, which is known to have hang in Quees. Elizabeth's gallery st Whitehall. The notice runs as follows:-" In the year of our Lord 1497, John Cabot, a Venetian, and his son Sebastian, discovered that country which no one before his tume had ventured to approach, on the 24 th of June, about five o'clock in the morning. Fie called the land Terra promum rusa, because, as I conjecture. this was the place that first met his eye in looking from the sea. On the contrary, the island which lies opposite the land he called the island of St John,-as I suppose, because it was discorered on the festival of St John the Bapust."

On Sebastian Cabot's map of 1544 , the original of which is in the Geographical Cabinet of the Imperial Library at Paris(see fac-simile in Jomard's Monuments de la Geographie), nothing is designated above the sixtieth parallel. Prma tierra vista is felineated between 45° and 50°, with the island St Juan (corresponding with Prince Edward). within the grest gulf at the embouchure of what is plainly the St Lawrence. The authenticity of the map being accepted, the "land first seen" could be no other than the coast of Nova Scotia, or island of Cape Breton.

A second "prtent" to Johp Cabot, dated 3d Febraary 1498, anthorizerl him to take six English ships, of not more than 200 tons, in any port in the realm, "and them convey and lede to the lande and isles of lste found by the said John in oure name and by oure commandment." Before the expedition was ready, John Cabot died, and Sebastian, with a fleet of five vessels, salled from Bristol in May 1498. It is believed that this is the voyage referred to by Peter Martyr, Gomara, Fabyan, and by Sebastian himself in his letter to Ramusio. Cabot, upon falling in with the coast, ascended it as high as latitude 67 $\frac{1}{2}^{\circ}$, probsbly passing into Hudson's Bay. He persevered in the effort to find an open channel to Iada, until has sailors, apialled by the danger of narigating the ship among icebergs, brgke out in open mutiny and compelled him to turn back. He then retraced his course, pausing at Baccalsos to refit ; and, after examining the coast as far south as 38°, returned to England. Sebastian took with him in this royage three hundred men, with the purpose, as Gomara states, of colosizing the newly-found regions. Thevet, Freach cosmographer, relates that Cabot landed these emigrapts where the cold was so intense that ncarly the whole company perished, although it was in July. Cabot brought to England tbree native inhabitants of the countries he had risited; his great achievement was the discorery of cighteen hundred miles of bes-coast of the North American continent.

Except the rague report of a voyage undertaken by hin in 1499, nuthing more appears relative to Sebastian uutil 1512 , when he is found living at Seville, engaged in revising the Spanish king's maps aud charts. The death of Ferdinand put an eud to a design to renew the search for a north-west passage to Cathay, and Cabot, who was to bave commanded, returned to England. In 1517 he undertook, with Sir Thomas Perte, aaother voyage, whether of discovery or conquest in Spanish America is uncertain. In 1518 Sebastian revisited Spain, and was appointed pilot-major. After the cunference of Badajos, a squadron was. fitted out under Cabot to pursue Spanish discovery in the Pacific. It set sail in August 15?6, but sone of his chief officers having spread disaffection in the fleet, Cabot abandoned the original plan as impracticable, and put into the La Plata. He sailcd up this niver 350 leagues, built a fort at one of the mouths of the Parana, which stream be ascended in boats. and also penetrated some distance up the Paraguay. Failing to obtan the aid Jto solicited, and weakened by the assaults of the uatives, Sebastian was forced to leave the coast for Sparn.

Ho uow, for the second time, returned to England, and notwithstanding a demand by the emperor that "be might be sent over to Spann," settled at Bristol. Edward VI., in 1549, granted the now aged seaman a pension of two hundred and fifty marks. Ifabluyt states that the office of Grand Pilot of Eughand was created for him. It was at this perrod that he explained to the king the phenomenon of the variation of the nedic. He was active in promoting the expedition of 1553 to Russia, the success of which gave hims the life appointneat of Governor of the Muscovy Company.

Cabot is supposed to have died in London, in 1557, sixty-one years subsequent to the date of his first cummms. sion from Henry VII., and not far fron elghty years old. The place of his bural is unknown, and we are andebted to Eden for the death bed scene of this merepid navigator, who saw the American continent before Columbus of Amerigo Vespucci. His character is, extulled by comenporanes, and was distingusbed for lofty courage and millageng perseverance in the execution of his destgns. Few hes exlibit such incessant actuvity in the pursule of an iden. The maps and discourses drawn and written by himself would, if in existence, have shed much light on an illustrions carecr ; but, with the exception of a map sad ro have been recovered in Germany, and another exisung in France, no traco of them remans. The memorr by Ricbard Biddle, London and Philadelphia, 1831, though faulty in arrangement, is still the best

CABIA, a town of iSpain, in the province of Cordova, about 28 miles S.E. of that city, stuated in a fertile valley near the source of the river of the same name. It contans a cathedral church (de la Asuncion) which was formerly a mosque, and bas also a theatre, a hospital, a college, and several monasteries. There still remans a part of its old castlo called the Tower of Homage; and the abyss into which Don Quixote's Kinght del Bosque precipitated hanself is pointed out. The fields of clay in the neaghour. bood afford materials for a considerable trade in bricks and pottery; and there is an abundant supply of wine, trnegar, onl, and flour fron the surrounding districts. The manufacture of coarse linen, woollen, and hempen stufs is considerable. There are some interesting Moorsh remams to be seen in the town and suburbs. Cabra is a town of great antiquity and is identified with the Biebro or жgabro of Pliny, which was probably of Punic origin. It was delivered from the Moors by Ferdiand III. in 1240, and entrusted to the order of Calatrava, but in 1331 it was recaptured by the kıng of Gramada. In the reign of Heary iV. it was bestowed on the count of Baena. For several wenturies it was the scat of a bishop. Population 11.076 .

CABUL, or KÂbul, in modern days the capital of Afghanistan (q.v.) The city stands ou the right bank of the river called after it, on the furis made by the juaction of the Loghar River, where the productive plaia, which extends uuth to the foot of Hindu Kush, narrows rapidly into the gorges from which the streams issue. The city stáads an $34^{\circ} 30 \frac{2^{\prime}}{}$ N. lat., $69^{\circ} 6^{\prime}$ E. long., at an altitude of 6396 feet above the sea

Cabul is about 3 miles in circuit; it was formerly walled, but now is aot so. The mountains surround it precty closely except where the plain opens to the N.E. It is triangular in furm, the Bâlâ-Hissir or Acropolis, in whach the Amir resides, formung the S.E. angle, and rising about 150 feet above the plain. The old wall had seven gates, of which two alone remain, viz., the Laburi and the Sirdar.
The city is divided into six mahulas or quarters, and these again into kuchas or sections, which are eaclosed and have gates. In tumult these enclosures form small separate fortresses. The strects hardly morit the name, and nowherē could admit wheel carrages, they are narrow passages, frightfully dirty after rain. The houses aro of sun-dried brick and wood, seldon noore than two stories in beight. There are no public buildings of any moment; some mosques are spacious, but none bave any magnficence. There are thirtcen or fourteen sarais for foreign traders, but they bear no comparison with those of Persta. The public baths lack cleanliness, and the orour of the filth which is used as fuel is most offensive. The greatest ornament of the city was the arcaded and roofed bazaar called Chihar Chata, ascribed to Ali Mardin Khan, a noble of the 17th century, who bas left Lebind hum many monuments of his munificent public spirit both in Cabul and in Hindustan. Its four arms bad an aggregate lcngth of about $C 00$ feet, with a breadith of 30 . The display of goods was remarkable, and in the evening it was mununated. This cdifice was destroyed by Sir G. Pollock on eractiating Cibul, us a memento of the treachery of the city. The several craits, such as saddlers, drapers, braziers, armourers, congregate together, as is usual in the East and to some extent in the south of Europe. Itmerant traders also parade the bazaars, each with bis peculiar cry. The oll-clutheman of London is represented by the Moghul of CaLul, with his cry of " Old bullion, old clothes!"
Including the Bala Ifissar, Cabul contains about 9000 houses, gring a probable population of 50,000 to 60,000 . In suatuer the population ta more dense. Without the himits of the old city to the west ward is the fortafid quarter of Chandol, once a detached village, now a harge suburb occupied by the Kizilbashes (sec Afcinanistan), and containing 1500 to 2000 bouses. It has mdependent bazaars, baths, znosques, \&.c.

The river of Cabul is traditionally said to have severa! tumes flooded or swept away the city. There is but one bridge within the cuty himits, but there are uthers above and below in the vacmity. The city $1 s$ well supphed with water, chiefly by canals drawn from the two rivers, and the streets are frequently intersected by covered aqueducts. There are also many wells, water beng found at moderate depth throughout the valley.
Though there is some malarious influence in autumn from the marshy ground north of the caty, Cabul is on the whole bealthy. In addition to good water it bas at most seasons a fine atmosphere, and an excellent suryly of food. The children are chubby and ruddy. Vast supplies of frult of fine quality are brought into the markets from the gardens of the Kob-daman and adjoinng valleys. And the shops for the sale of fruit, fresh and dried, are a notable feature in the bazaars.

Cemeteries are numerous in the vicinity, including places

 gi Jewish and common burial. One of the graveyards pearthe abrine called Sháh Shahîd contains a tomb bearing in Roman characters the following inscription:-" Here lyes the body of Joaeph Hicks, the son of Thomas Hicks and Fdith, who departed this lyfe the eleventh of October 1656." An annual day in spring is appropriated to visiting the tombs, as in continental Europe. The graves are sprinkled, garlands placed, and smal! repairs executed.

Many aacred shrincs are interspersed among the vemeteries and gardens. The gardens are often on acclivities, formed into terraces, supplied with springs, and abounding in song-birds. Roth abrines and gardens are greatly resorted to by the Cabulis, who are passionately ind of this kiod of recreation. Most of the roads are bordered by running waters, and sbadowed by mulberry, willow, or poplar trees. The tomb of the illustrious Sultan Baber stands about a mile to the west of the city in a singularly charming spot, on a slope spreading before the sun. The grave is narked by two erect slabs of white marble. Near him lie several of his wives and ehildren; the garden has been formerly enclosed by a marble wall; a clear stream waters the flower-beds. From the hill that rises behind the tomb there is a noble prospect of his beloved city, and of the sll-fruitful plain atretching to the north of it.

The geographical position of Cabul, in a tolerably open country intervening between the passes which lead to India on the ono aide, and those which lead to Turkestan on the other, is bighly favourable to trade. Baber exalts the importance of its traffic in his dny, saying that the products of Khorasan, Rum (Turkey), Babylonia, and China were all to be found there. People in easy circumstances are numerous. The presence of a conrt and a considerable military force contributes to the bustle of the place, and imparts animation to many trades. But the people do not sxeel in any bandicraft or manufactnre.

Cabul is believed to be the Ortospanum or Ortospana of the geographies of Alesander's march, a name conjectured to be a corruption of Urddhasthuna, "higb place." But the actual nmme is perhapa also found as that of a people in thia position (Ptoleny's K^{\prime} abolite), if not in the name of a city apparently identical with Ortospana, Carura, in some copies read Cabura. It was invaded by the Arabs ts early as the thirty-fifth year of the Hegira, but it was long before the Mahometana effected any lasting settlement. In the sarly Mahometan historics and geographies we find (aecording to a favourito Arabic love of jingle) Kabul and Zabul constantly associatcd. Zatbol appears to have been the country about Ghazni. Cabul first became a capital when Baber made himself master of it in 1504, and here bẹ reigned for fifteen years before bis invasion of Hịdustan. In modern tines it became a capital again, under Timur Shah (see Afohanistan), and so hns continued both to the and of the Durrani dynasty, and under the Barakzais, who now reign.
(н. у.)

Cazel (Kabul), is also the name of the province including the city ao called. It may be considered to embrace the whole of tbe plains called Koh-daman and Beghram, sc., to the LIindu Kush northward, with the Kohestan or hill convtry adjoiniug ao far as it is in actual subjection to the Amir's authority. Eastward it extends to the border of Jalalabad et Jagdelak; southward it includes the Loghar histrict, and extends to the border of Ghazni ; north-westward it includes the Faghman hills, and tho valley of the apper Kâbul River, and so to the Koh-i-Baba. Roughly it snibraces a territory of nbout 100 miles square. Wheat snd barlcy are the ataple products of the arable tracts. Artificial grasses are also much cultivated, and fruits largely, especially in the Koh-daman. A cousiderable part of the population spends the summer in tents. The villages are nut enclosed. by fortificationa, but contain amnll
privice castles or fortalices. The revenue of Cabul provioce bas been atated at $£ 180,000$.

For the Cabul River, see fully under Afgiasistan. Cacao. See Cocoa.
CACERES, the capital of the province of the same name in Estremadura, in Spain, 20 miles sonth of the Tagus, and 24 miles mest of Truxillo, on a ridge of hills which stretch from east to west. It is the residence of the bishop of Corias, and contains a handsome episcopal palace, as rell as a public school, a college, and several cbaritable institutior.s. The monastery and college of the Jesuits was one of the finest in the kingdom, but has been secularized and converte into a hospital. In the neighbourhood are large gardens, well-cultivated fields, and extensive pasture grounds; while in the town are oil and fulling mills, soap-works, tanneries, and lime-kilns. There is also some trade 10 wool. Caceres occupies the site of the ancient Castra Cacilia, and was a place of some importance both under the Romans and under the Mcors. There are several fine specimens of the domestic architecture of the Middle Ages, such as the houses of the duke of Abrantes, the count de la Torre, and the count de los Carbajales. The bull-ring, a modern structure of granite, is one of the most remarkable buildings of its kind in Spain. Population, 13,466.

CACHAO, or, as it is variously spelled, Касно, Кесно, Heceo, or Kesho, formerly known as Donk-king and now officially as Bacthian or Bac-king, is the largest eity of Anam, and the capital of the province of Tonquin. It is aituated on the west side of the Tonquin River, about eighty miles from the sea, in $105^{\circ} 35^{\prime} \mathrm{E}$. long., $21^{\circ} \mathrm{N}$. lat. It is of great extent. The principal streets are wide and airy, and for the most part are paved with tricks and small atones, but the others are narrow and ill paved. Most of the houses are constrncted of mud or sun-burned bricks and timber, and thatched with leaves, straw, or reeds, and are generally one story in height. The public edifices are spacions, particularly the royal palace, which is several miles in circuit, and is surrounded by high walls. Besides this palace there are to be seen the ruins of one still more magnificent, said to have been six miles in circumference. Cachao is a place of some commercial rezort; its importe are long cloths, chintz, arms, pepper, and other articles, which are cschanged for gold and manafactured goods, namely, beautiful silks and lackered. ware, which last ie generally reckoned superior to any in the East. The English factory, which stood on the banks of the river north of the city, and that of the Dutch, south of it, have long been withdrawn. Cachao is peculiarly liable to fires; and to prevent or extinguish these, the city is governed by a rigid police, and divided into wards. Fires for domestic use are only permitted during certain honrs of the day. About the middle of the 18th century the city was ncarly burnt to the ground by a condagration, which was the work of incerdiaries. In $18 \pi 3$ Françis Garnier, the famous Freach explorer, with an expedition of tro hundred men and two ahips, having come into collision with the authorities, took possession of the city after capturing the fort of Hanoi, which was constructed on European principles and defended by a large garrison. Not long after he was assassinated by the natives; bnt his victory led to a treaty between the French Government and the Anameat: by which the port is declared open to the flags of all nations.
Cacheo, or Caclato, a town of Weatera Africa in Senegambia, in the land of the Papels, a few miles inlann from the month of the River Cachao or San Domingo. It is a fortificd post of the Portnguese, and carries on a trade in gold dust and ivory. Population 15,000.

CACHOEILA, a town of Brazil, in the province of Bahia, and 62 miles N.W. from the city of that name, in gituated on the River Paraguassu, which is subject to
heary floods. It contains a town-house, a prison, a convent of. Carmelites, and some fiye or six churches, and carries on an active trade in tobacco. coffee, and sugar. Population 15,000.

CACONGO, a small kingdom of Western Africa, separated from Congo by the river Zaire. The surface is mountainous but fruitful, the climste bealthy though unonited for Europeans. A strong tendency to adopt European customs and conveniences is displayed by the inbabitants, who carry on a considerable trade at the seaport towns of Mallemba and Cabinda. The eapital is Kinguela.

CACTUS. This word, spplied in the form of кáктоs by the ancient Greeks to some prickly plant, was adopted by Linnæus as the family title of a group of curious sueculent or fleshy-stemmed plants, most of them prickly and leafless, some of which produce beautiful flowers, and are now so popular in our gerdens that the name has become familiar. As applied by Linnarus, the name Cactus is alinost conterminous with what is now regarded as the natural order Cactacee, which embraces several modern genera. It is one of the fcw Linuæan generie terms which have been entirely set aside by the names adopted for the modern divisous of the group.

The Cactı may be described in general terms as plants having a woody axis, overlaid with thiek masses of cellular tissue forming the fleshy stems. These are extremely various in character and form, being globose, cylindrical, columnar, or flattened into leafy expausions or thick joint-like divisions, the surfaee being e:ther ribbed like a melon, or developed into mpple-like protuberances, or variously angular, but in the greater number of the species furnshed copiously with tufts of horny spines, some of which are exceedingly keen and powerful. These tufts shuw the position of buds, of which, however, comparatively few are developed. The stems are in most cases leafless, using the term in a popular sense; the leaves, if present at all, being generally reduced to minute scales. In one genus, however, that of Pereskia, the stems are less succulent, and the leaves, though rather fleshy, are developed in the usual form. The flowers are frequently large and showy, and are generallyattractive from their high colouring. In one group, represented by Cereus, they consist of a tube, more or less elongated, on the outer surface of which, towards the base, are developed small and at first inconspicuous seesles, which graduslly nerease in size upwards, and at length become crowded, numerous, snd petaloid, forming a funnel-shaped blossom, the beauty of which is much enhanced by the multitude of conspicuous stamens which with the pistil occupy the centre. In another group, represented by Opunta, the flowers are rotato, that is to say, the long tube is replsced by a very short one. At the baso of the tube, in both groups, the ovary becomes developed into a fleshy (often edible) fruit, that produced by the Opunta being known as the prickly pear or Indian tig.

The principal modern genem are rauged under two subdivisions, which are separated by the differences in the qower-tube just explained. Those with long-tubed flowera, the Cactces tubulosix, form the genera Melocactus, Mammillaria, Echinocactus, Cereus, Pilocereus, Echinopss, Phyllocactus, Epiphyllum, de., while those with sho:t. tubed flowers, the Cactece rotato, aro referred to Rhipsalis, Opuntia, Pereskia, and one or two of minor importauce. These plants, whether viewed as the Cactus family or the natural order Cactecs or Cactacea, belong almost entirelf, if not exclusively, io the New World; but some of the Opuntias have been so long distributed over certain parts of Europe, especially on the shores of the Mediterranean and the voicanic soil of Italy, that they appear in seme places to have taken posscssion of the soil. and to be
distinguished with difficuity from the aboriginal regetation. The habitats whieh they affect are the hot dry regions of tropical America, the aridity of which they are enabled to withstand in consequence of the thickness of their akin, and the paucity of evaporating pores or stomates with which they are furnished,-these conditions not permittung the moisture they contan to be carried off too rapidly. Occurring thus as they do in situations where ordinery vegetation could not exist, they may be considered as one of the means which nature bas provided for the support of man and animals where other means of subsistenee fail. The stems are filled with wholesome though insipid fluid, and the succulent frut are not only edible but agreeable. In fevers the fruits are freely administered as a cooling drink, and when brused are regarded as a valuabli remedy for the cure of ulcers. The Spanish American: plant the Opuntias around their houses, where they serve as impenetrable fences.

Melocactes, the family of Melod-tbistle or Turk's-cap Cactuses contains, sccording to Labouret, a monographer of the order, sbous thirty species, which inhabit ehielly the West Indie日, Mexico, anc Brazil, s few extending into New Grands. The typical species, M. communis, forms a auceulent mass of roundish or ovste form: from 1 foot to 2 feet high, the surface divided into numerows furrows like the ribs of a melon, with projecting angles, which a." set with a regular senes of stellated spines. - each bundle consisting of abont five larger spines, accumpraied $\mathrm{l} y$ snaller but sharl aculei or bristles, -and the tip of the plant being surmounted by : cylindrical crown called a cephalium, $3^{\prime 2}$ o 5 inches high, compose of reddish-brown acicular bristles, closely packed with cottony to mentum. At the sumnit of this crown the small rosy- pink flowerr are produced, half protrnding from the mass of wool, and these are succeeded by small-sed berries. These strange plants usually grom in rocky places with little or no earth to sulport them; and it is said that in times of drought the cattle resort to them to all y their thirst, first ripping them np with their borns and tearin! off the outer skin, aud then devouring the moist succulent parts. The fruit, which has an agreeably acid flavour, is frequently eatis. in the West lndies. 'The Melocacti are distinguished by the distinct cephnliun or crown which bears the flowers.

Mammilamba.-This group, which comprises ncarly 300 species. mostly Mexican, with a few Erazilian nud West Indian, is called Nipple Cactus, sad consists of globular or cylindrical succulent plants, whose surface instead of being cut up into ridges with alternate furrows, as in Melocactus, is lroken up into teat-like cylindrical or angular tubercles, spirally arringed, and terminating in a radiating turt of spues which spring from a little wnolly cushion. The flowers issue from between the mammilla, towards the nppu part of the stem; often disposed in a zone just below the aper, and are either purple, rose-pink, white, or yellow, and of moderate size. The sprnes are variously coloured, white and yellow tints predominating, and from the symmetrical srrangement of the areol, e or tufts of spines they are very pretty objects, and are bence fre. quently kept in drawing-room plant cases.

Echinocactus is the name giren to the group besring the populan name of Hedgehog Cactus. It comprises some 200 species, of which more than half are natives of Mexico, and the rest are scattered through South America, extending ns far south as Buenos Ayres. They have the fleshy atems chsracteristic of the order, these being either globose, oblong, or cylindrical, and either ribbed 88 is Melocactus, or broken up into distinct tuberclee, and most of thern armed with stiff sharp spiner, set in little roolly cusbions occupy. ing the place of the bude. The flowers, produced near the npex of the plant, are genemilly large snd showy, yellow and rose being the pressiling colours. They sre succeeded by succulcnt fruits, which are ezserted, and frequently scaly or spiny, in which respects this genus difers both from Melocaitus and Mammillaria, which have the fruita immersed and smooth. One of the most interesting specics is the E. Visnaga, of which some viry large plants have teen from time to time irported. A specimen weighing ons tor, ano measunng 9 feet high, and 3 feet in diameter, was received at Kent some years suce, bpt owing to injuries received during transit, it did not long aurvive. These large plants have from forts to fifty ridges, on which the buds and clustera of spines ara anak at intervals, the aggregate number of the spines haring been in some coses computed at upwards of 50,000 on 2 single plant. These spinee are used by the Ifexicans as toothpicks, whence the name Visniga.

Cerects. This group bears the trivisl name oi Torch Thistle. It comprises abont 150 specica, scattered through South America e:d the West Iudies. In one seriea; numbering between twenty ard thity species, sometimes separatcd under the name of Echinowrizs, t! stems are short, branched or simple, divided into fer or : ?

Fises, all armed with sharp formidable spines; but in tbe greeter number of spucius the sterusate colammar or elogated, some of the latter creeping on the ground or climbiag up the truaks of trees, rooting as they grow. One of the lormer gloup, C: pectinatus, produces a purphish fuit usembling a gooselemry, which is very good eating; and the fleshy part of the stem atself, which is called Cabera del Viego by the Mexicas-, is eaten by then as a vegetable after removing the spues. To the latter groap belongs C. gigantous, the lingest and most striking species of the genus, a mative of hot and desert regions of Nuw Mexico, growiag there io rocky valleys and on mountain shifs, where the tall stems with their erect banches have the appoatance of telegraph poles. The stems grow to a height of foon 50 feect to 50 feet, and have a diatueter of from 1 foot to 2 feet, ofter unbranched, but sometimes furnislied with branches which grow ont at right angles form the main stem, sod then curve upwards and continue their growth parallel to it ; these stems have foom twelve to twenty ribs, on which at intervals of about an anch are the buds with their thick yellow eushions, from which issue five or six large and nomerous smaller spines. The thuits of this plant, which are green oval hodies from 2 to 3 unches long, coutain a erimson pulp from which the Pimos and J'apagos Indians prepare an exvellent. presmee; and they also use the ripe fruit as an article of food, githemg it by means of a forked stick attached to a long pole. The Cereuses fuclude some of our most interestingand beautiful hothouse plants.

Pilocerevs, the Old Man Cactus, forms a small group with tallish erect fleshy angulate stems, on which, with the tolts of spines, are developed hair-like bodies, which, though rather coarse, bear some resemblance to the hoary locks ol an aged man. The plants are vearly allied to Cercus, differing chiefly in the foriforous gortion tevelopiug these longer and more attenuated hair-like spines, which vurround the base of the flowers, and form a dense woully head or cephalium. The most faniliar species is B. senilis, a Mexican plant, which though seldom seem more than a foot or two in height an greenhouses, reaches from 20 feet to 30 feet in its native country.

Echinopsis is another small group of species, separated by some authors from Cerius. They are dwarf, ribled, globose, or cylindrical plants; and the flowers, which are produced from the side instead of the apex of the stem, are large, and in some cases very buatiful, being lemarkable for the lergth of the tube, which is more or less covered with bristly hairs. There are about thirty species known, thear geographical range extending from Mexico and leas to Brazil, Eulivia, and Chili.

Phyclecagtos, the Leaf Cactus family, consists of about a dezen - pecies, found in Mexico and Brazil. They differ from all the forms wready noticed in being shrobly and epiphytal in habit, and in laving the branches compressed and dilated so as to resemble thick Heshy leaves, with a strong median axis, and terete woody base. The margias of these leaf-like branches are more or leas crenately notched, the notches representing huds, as to the spine-clusters in the spiny genera; and from these crenatures the large showy flowers are produced. As garden plants the Phyllocacti are amongst the most ornamental of the whole fituily, being of easy culture, free bloonnag, and remarkably showy, the rolour of the fowers rangSug from rich crimson, through rose-pink, to ereany white. They arc eften called Epiphylum, which name is, however, properly restricted to the group next to be mentioned.

Ephriyblem. - Thas name is now restricted to two or three dwart branching Brazilian epiphytal plats of extreme beaty, which acree with Phyllocactus in liaving the branches dilated into the form of Beshy leaves, but difier in having theon divided iato short truncate leaf-like portions, which are articulated, that is to say, provided with s joint by which they seprate spontancously; the margins are crenate oi deatate, and the (lowers, which are large and showy, magenta or crisuson, appar at the apex of the terminal joints. In E. lruncatam the fowers have a vely different aspect from that of other Cactea, from the month of tha tube being oblique and the segments all reflexed at the tip. The short separnte gieces of which these plants are mado up grow olat of each other, so that the branches may be asid to reseable leaves joinud together endwise.

Rumpalis, a genus of about thinty tropical American species, con'ains some of the phants once reforred to Cactus. It is a very heterogeneous group, heing fleshy-stemmed with a woody axis, the branches beiug angular, widgerl, flattened', or cyliudrical, and the flowers mall, short-tubed, squceeded by small, round, jea-shaped berries. Rhipalis Cassytha, wheo seen Iaden with its white berries, bears po incoosiderable resemblance to a branch of mistleto All the

Tpuntia, the l'rickly l'ear, or Indion $1 . j$ Cactus, is a arge Goval groon, comprising sone I50 species, found in North Autric, the West ludies, and warmer parts of Sonth Amurica, a=abuiag as far ar Chili. lu aspect they aro rery distinet f_{1} an any of tho other froupe. Thry are tleshy shrubs, with tetu:0 troody stems, add nurnerous succulent branches, composed in most of tho species of seprate joints or parts, which are wu is 'prossed, often olliptie ur sabubbicular, dotted over in spinal
paceu the areoles or tutts of glochiniate or inooked suine of ing forms. The flowers are mostly gelluw or leddish-yellow, anl they are succeeded by pear-shaped or egg.shaped fruits, having a broad scar at the top, furbished on , their solt fleshy rind with tuifts of small spines. The sweet juicy fivits of O. vulyaris aul O. T'um are much euten under the name of prickly pears, aud are greatly esteemed for their cooling properties. Both these species are extonsively eultivated for their fruit in Sonthen Einrope, the Canaries, and Nouthern-Africa; and the fruits are not unfrefuently to be seen in Covent Gatden Market and in the shops of the lo: diog fruiterers of the metropolis.

The cochinazal insect is nortured on a species of Opmotic (O. coccinelheferal, separated by some anthors under the name of Nopolen, and sometimes also on O Frna. Plantations of tlie nopnl and the tuna, which are called nopaleries, are establisheal for the majrose of waring this raseet, the Cocerts Cactr, and these often coutatn at many as 50,000 plants. The females are placed on the plants about August, and in four months the first croy of coclomeal in gathered, iwo more beiag produced in the comse of the yeas 'Ilut bative country of the insect is Mexico, and it is there riote or less culls. vated; but the greater part of our supply contes from New Granado and the Canary Islands.

Pereskia aculeata, or Barbados Goosebeny, the Cocius Peteshzu of Lindxus, is the only remainog genenc type; noll this differs from the rest in laving woody stems aud leaf-beanng branches, the leaves beiag somewhat fleshy, but otherwise of the ordinary lammate character. The flowers are subpanculate, white or cllowish. This speeies is Crequently used as a stock on which to gratt other Cach. There are about a dozen species known.
(T. М1O.)

CADAHALSO, Jose dé (1741-1782), a Spanish pret and writer, was born at Cadiz in 1741. He was educated at Paris, and before completing his twentieth year had travelled through Italy, Ciermany, England, and Portugal, and had studied with care the languages and literatures of these countrics. On his return to Span he entered the army, and rose to the rank of colonel. He was killed at the siege of Gibraltar, 27th February 1782. His first pablished work was a tragedy after the French model, Dor Sancho Garcia, printed in 1771. In the following year he published his Erudios a la Fiodeta (Fashionahle Learning), a satire on superficial knowledge, which was very successtul. In 1773 appeared a volume of miscellaneous poems, aud after his death there was found among h.s MSS. a series of fictitious Ietters, somewhat after the style of the Leltres Persanes, or the Citizen of the Forld, which were published as Moorish Lecters, and have been frequenty reprinted. The complete edition of his works, whth life by Narartete, appeared at Madric, in 3 vols., 1818.

CADIZ (in Latin Guites, and formerly called Cales by the English), the capital of a provnce of the same name in Spain, is built on the estremity of a tongue of lond projecting about five milesinto the sea, in a direction N W. from the Ista de Leon, in $36^{\circ} 31^{\prime}$ N: lat., $6^{\circ} 18^{\prime} \mathrm{W}$. long., 94 miles by rail south of Seville, and 13 from Xeres. The city, which is sax or seven miles in circumference, 18 surrounded by a wall with five gates, one of which communieates with the isthmus. Seen from a distance off the coast, it presents a magnificent display of snow-white turrete rising majestieally from the sea; ; and for the uniformity and eleganee of its buildings, it must certainly be ranked is one of the finest cities of Spain, although, being bemmed in on all sides, its streets and squares are necessarily contracted. Every bouse in the city annually receives a coating of whitewash, which, when it is new, produces a disagree. ahe glare in the streets. 'the most characteristic feature of Cadiz is the marine promencdes, f.arging the eity all round between the ramparts and the sec, especially that called the Cilameda on the eastern side, commanding a vien of the shipping in the bay and the ports on the apposite shore The prineipal square is the Plaza de San Antonio, sur rounded by handsume houses with deegant facades, the eentre pleasantly shaded with trees, and furnished with numerous seats of marble. Commonicating nith it is the principal street (Calle Aneba). ia which are the exchango rad houses of the nobility. The houser sic generaliy lofy
s.: weli-built, with open central courts, surmounted by turrets and flat roofs in the Moorish style. The principal public buildings are the two cathedrals (one built in the 13th century, the other begur in 1720, but net completed till 1840); the Hospicio or Cass de Misericordia, adorned with a marble portico, and having an interior court with Doric colonnades; the bull-ring, with room for 12,000 spectators; the two theatres, the prison, the custom-house, and the lighthouse of San Sebastian on the western side, zising 172 feet from the rock on which it stands. Besides the Hospicio already mentioned, which sometimes contains 1000 inmates, there are numerous other charitable institutions, anch as the women's hospital, the foundling institution, the admirable Hospicio de San Juan de Dios for men, and the lunatic asylum. Gratuitous instruction is

Plan of Cadiz and its envirous.

by the isthmus and the headlands which lie to the N.E., has principally contributed to its commercial impertance. The outer bay stretches from the promontory and town of Rota to the mouth of the Gnadalete; and the iniet bay, protected by the forts of Matagorda and Pnitales, affords generally good anchorage, and contains a harbour formed by a projecting mole, where vessels of amall burden may discharge. The entrance to the bays is rendered somewhat dangerous by the low shelving rocks (Cochin s and Las Puercas), which encumber the passage, and by the shifting banks of mud deposited by the Guadalete and the Rio Santi Petri. On the mainland, at the mouth of tho latter river, is the village of Caracca, which contains about 6000 inhabitants, and possesses a naval arsenal and dockyard; and on the istlumus are situated the welfrcquented sea-bathing estabiishments.
The commercisa greatness of Cadiz is no longer what it was in the 17 th and 18th centuries. At one time it was the great focus of intercourse between Spain and the Spanish colonies; and from 1720 to 1765 it enjoyed a monopoly of the traffic with Spanish America, which had previously been in the hands of Seville. Its prosperity began to decline when the trade of San Domingo, Cuba, Porto Rico, and the other islands was opened np to the greater ports of Spain, and decayed almost entirely in the beginning of the present century, when the colonies achieved their independence. An attempt was made ly the Spanish Government in 1828 to restore its fermer greatness, by making it a free warehoosing port, but this valuable privilege was withdrawn in 1832. Since the opening of the railway to Seville and the improvements effected in the harbour, the commercial activity has greatly increascd; and in spite of the disturbing influences of political revolutions, Cadiz is still one of the most important ports in Spain. It is the Eurepean terminus of many of the principal mail-lines from the colonies both in the east and west. Besides the Xeres wine, for which it received in 1872 no less than $£ 2,458,487$ from Britain alone, it exports quicksilver, brandy, oil, provisions, flour, and wool. The salt trade, which was formerly of considerable extent, is almost extinct. The imports censist chiefly of sugar and coffee from Havana and Porto Rico, English coal from Cardiff, cocos, hemp, flar, Jinens, dricd fish, hides, cotton and woollen manufacturcs, rice, spices, indigo, staves, and timber. The total number of vessels that entered in 1872 was 1[40, of which 494 were steamships; and the total tonnage was 287,850 . Of the sailing vesscls 179 were British and 136 Italian, of the steamships 127 British and 281 Spanish. The manufactures of Cadiz are unimportant, though a considcrable stimulus to industry is given by the Sociedad economica de Amigos del Pais, which introdueed the cochineal plant, and grants medals for improvements in manufactures.

Cadiz is strongly fortified with ramparts and bastiona and defended by the forts of San Sebastian, Santa Catalina, Matagorda, and Puntales Castle: On the neighbouring cossi the isthmus is protected by an intrenchment called the Cortadura, or Fort San Fernando.

From its almost insular position it enjoys a mild and sercne climate, the mean annual temperature being about 64° Falir., while the mean summer and winter tempcratures vary only about 10° above and below this point. From the same canse it labours under a great deficicncy of water, which must either be collected in cisterns from the tops of the houses or brought at great expense from Santa Maric on the opposite coast. Population in $1845,53,922$, and in 1860, 71,52].

Cadiz is identical with the ancient Agadir, Cailit, or Caddir (in Greek Gazeirc), which was a flonrishing Pbernician ooleny long before the berinning of classical history, and continnod in the bends of the Cerithaninians, though somewhat dissficctant ts them,
till after the Punic ware, uen Spain becanie a Roman province. C. Julius Cxsar conferred the civitas of Rome on all its citizeus in 49 b.c.; and not long after L. Cornelius Balbus Minor built what was called the "New City," constructed the harbour which is now known as Puerto Real, and erected tice bridge across the strait of Santi Petri, which nnites the Isla de Leon with the mainland, and is now known as the Puente de Znazo, after Juan Sanchez de Zuazo, who restored it in the 15 th century. Under Augastus, when it was the ressdence of no fewer than 500 cquiks, it was mado a municipium with the name of Augusta Urus Gaditana, and its citizens ranked next to those of Rome. Some remains of the ancient city, and particulaly of the temple of Hercules, are said to be visible below the sea. After the fall of Rome it was destroyed by the Goths, and remained in obscority under the Moors, from whom it was etaken ly Alphonso the Wise in 1262, but it emerged again when the discovery of Ancrica made it valuable as a market for colonial proluce. In more recent contests Caliz has been subjected to seypral disasters. It was taken and pillaged in 1596 by the British fieet, under Essex and Howard, in reven ${ }^{\circ}$ e for the Spanish Armarn. It was attacked, but withont success, by Lord Wimbledon in 1626, and by the duke of Ormond and Sir George Rooke in 1702. It was bomlarded by Nelson in 1800. In 1808 the S_{p} anish patriots in Codiz brought the French Qeet, which lay in the boy blockaded by Admial Collingwool, to a surrender; and they were in turn subjected to a protracted sige of two years ly Marshal Victor, from which they were relieved by the successes of Wellington in the Peninsula. It was once more reduced by the Duke dangouleme in 1823, and remained in thi hands of the French till 1828 . In 1808 the city was the centre of the revoiution which eflected the dethronement of Queen Isabelia.

CADMIUM, a metal closely allied to zinc. It was discovered in 1817 by Stromeyer and Hermann, iadependently, but in a similar manner. The former chemist, in the execution of his duties as inspector of pharmaceutical products in Hanover, found a substance, sold as oxide, to be really carbonate of zine, and, applying to the manufactuser for explanation of the reason of the substitution of the latter product for the former was mformed that, althongh the best zine, in which no iron could be detected, was employed, the oxide conld not be produced without a slight discoioration from oxide of irun. On investigation by Stromeycr, it was found that the discoloration was due not to iron but to the oxide of a acw metal, which he succeeded in solating, and named cadmium, from the old chemical name for zinc oxide (Calmia fossilis). About the same time, the salc of an oxide of zinc supplied by Herman, a chemicai manufacturer, who produced it from the waste of the Silesian zinc furnaces, was stopped in Prussia as being contaminated with arsenie;-the reason obviously being that the acid solution of the substance in question gave a bright yellow precipitate when heated with sulphuretted hydrogen. The crroneous character of this inference was, however, soon demonstrated by llermann, who made a careful investigation of the subject, and discovercd the nature of the new metal, but not before Stroneycr had published the results of his observations.

Cahmium does not occur in the metallic state in mature, and there is only one definite miacral known which contains it in quantity, namely, the sulphide, or gremockite, which occurs at Rishopstown, in Renfrewshire, in small isolated crystals of a bright orange-yeliow colour, belonging to the hexagomal system, in a doleritic rock associated with prelnite. This contains 77.7 per cent. of cadmium and 223 por cent, of sulphur, wresponding to the formula CAS, and is isomorphous with voltzite, the rhombohtedral form of sulphide of zinc. Although an extennely rare mineral in the pure state, heing confined to the single locality mentioned atow: sulphate of cadminn is often present in anc ilande, the sichest varieties containing 3 per cent. of calminm. Anoms these are the yeliow radinted Dende of l'rabram in Bohemia. Eaton in New ITamphive, and Euriv and Corlali in Melgium. It is also formi in the can?wontes and silicates of zine from most of the lacalities podacing these ores, hut in what tate of connbuation is dunitful, as it is not generally fomel in quataty bunticient to be appociatesi by the analysis of sumples. -
being only discoverable when the ore is treatid for zme a:the large scale, in the first products of the reducug procesesCadmimm is a white metal with a slight bluish tuge by reflected light; it is whiter than lead or zinc, but less so than silver, has a high lustre when pohshed, and breakunder a gradually increasing strain, whth the fibrous or scaly fracture characteristic of a soft tough metal. It may be readily crystallized in octobedia, dilfering in thirespect from the allied metal zinc which is rhombuhedral. It is somerwat harder thau tin, but less so than zinc. and like the former metal it emits a poculiar cracking solun when lent. It is malleable, and may be rolled into thia sbeets. The specific gravity after fusion is $8 \cdot 604$, which is increased by hamwering to 8694 . The specific heat is 0.05669 (Regaault), or 0.0 .576 (Dulong aud Yetit). The electric conductivity is $22 \cdot 10$, or somewhat lower than that of ziac; the thermal ronductivity does not aplrar to have been determined. It melts at a temperature below reducs $\left(315^{\circ}\right.$ to $\left.320^{\circ} \mathrm{C}.\right)$, and boils at the temperatur of $860^{\circ} \mathrm{C}$., giving off a vapour of an arange-yellow that. The prinopal coloured lines with their relative intensity obscrved in the spectrom of cadmium vapour are, accordiag to Huggins's notation, $502^{4}, 639^{1}, 656,809^{\circ} \cdot 5915^{4}, 953^{1}, 956^{1}, 1473^{10}$. $1517^{10}, 1530^{2}, 1747^{1}, 1043^{10}, 2315^{5}, 25020^{\circ} .3239^{4}$. The most brilliant of these are chiefly in the grecn and bluc ficld.

Chemically cadmiam belongs to the diatomic group of elements; its symbol is Cd, and its equivalent 58 . It unites readily with most of the licary metals, forming alloys, which with gold, copper, and platinum, are brittle. while those with lead and tin are ualleable and ductile. The alloy of $\frac{2}{3}$ silver and $\frac{1}{3}$ cadminn is very tenacions; but that, in the reverse proportion, of $\frac{1}{3}$ silver and $\frac{3}{3}$ cadnium is brittle. An alloy of tro parts of cadminn, two of lead, and four of tin, known as llood's fusible metal, melts at a somewhat lower poiat than the similar alloy where bismuth takes the place of cadmium, or Darcet's fusible metal (sce Dismutu). It forms several amalgams, anong which those contaming equal parts of mercury and cadmium and two of mercury to one of cadnium are remarkahle for their colenive power mad malleability; whereas that containing $\because 2$ per ceat. of cadmium is hand and lorittle. The analgams of the former class have been proposed at different times for use in stop-ping tceth, but are not wow so employed. When exposel to damp air cadminn becomes rapidy covered with a duli film of suboxide, but as with zinc the oxilation is only superficial, the crust formed protecting the metal below from further change. When heated to a redness in air it burn-, forming a yellowish brown oxide. It also, when in a state of vaponr, decomposes mater at a ral beat, with the formation of oxide of cadmimm, hydrogen leing evolved. It is somblo with evolution of bydrogen, in sulphuric, bydrochloric, nitric, and even acetic acid, forming eolourless salts. When treated with an anpeous solution of sulphurous acht. it dissolves withont crolution of b,drogen. sulphite and sulpuide of cadmim being found in the linuid.
Oxide of cadmium, CalO, is a yellowish brown ponsler of the specific gravity 6.95 , varying in Nepts of tint accord. ing to thi" temperature at which it is premacd. It anay be produced by buming the metal in air (or loy calcining the mitrate or canmate. It is reatily redncille by hydregen or cartwon, at a high temperature, but beluw that necessary for the reathetion of zinc oxide. If a mixture of the oxides of the two metals lie heated in a current of hydrocers in a ghess tube, the oxide of cadminm is redtacd, volatilizes, and combenses we die comber pat of the tube, while tle oxide of zinc remans unchanged. Oxide of eadmium is a strong base, foming salts similar in coastitution to those formal byoxide of rinc, and those of the cartby and alkaline metals. The moat impritare of tarse is the suiflate,

CiSO ${ }_{4}$, which is produced when the metal or its oxade is dissolved in sulphuric acid, forming crystals contaning either one or four atoms of water, the former being deposited from a boilng solution, and the latter at the ordinary temperature of the arr. The uses of cadmum salts are very limited; the sulphate is employed to a small extent as a lotion in inflammation of the eyes, smilarly to the sulphate of zinc, and the iodide in photography and in medicine for the same purpozes as iodide of potassum. The only compound of any real importance is the sulphide, C'S, which produces several brilliant yellow and orange colours. Thase are quite permanent, unlike the yellow produced by lead, chromium, or other metals, which are all more or less subject to disceloration when exposed to the action of sulphuretted bydrogen in the atmosphere. It is produced when sulphuretted hydrogen, or an alkaline sulphide, is added to the solution of any cadmium salt, as an orange-red powder, whech becomes carmuc-red when beated. At a white heat it melts, and solidifies on coolung in lemon-yellow scales of a micaecous structure. When the precipitated sulphide is heated in hydrogen it 13 desomposed, forming cadmium vapour and sulphuretted hydrogen, which reunite th the corler part of the tabe, prodncing crystals exactly simalar to the natuve moneral g'reenockite.

The best test for codminm is afforded by the colour of the deposit formed on charcoal when it is volatilized and axidized before the blownpe tlame. This is of a reddish brown colour, and usua!! shows the colours of thon plates from the tenuity of the film: whereas me under the same conditions gives a deposit which is bright yellow while hot, tut becomes white on cooling. The preciptation as a yellow sulphide from an actd soluthon is another distm. gruishing character, as sulpbude of zuc does not separatc except from neutrai or alkaline solutions. In quentatative analysis it is always estamated as oxide, being seprated from solution as carbonate by precspitation with carbonate of sodium, which is coneverted ntu ozide by calcination. Cadmom, hike lead, may also be separated from its solution on acids by means of zinc, whol precipitates it in a dendritic form, like the well-known lead tree.

The production of cadmum is restricted to a very few loca. dities. At Engis in Belgium it occurs in ane liende to the extent of about 02 per cent. The oxule forised. turether with oxide of zine in the calcination of the blende, is in the subsequent reducing process in the ordinary Ficlgian zinc furnace (see Zinc), reduced and volatilized m the lirst period. of the operation, before the heat is rased sutliciently to produce much zine vaponr, and the vapour, on coming in contact with the ajr, burns with a characteristic brown flamo as distinguished from that of zinc, which is bloish green. The deposit formed in the condensing tubes, and io the nozzles (allonges) in front of the retorts, durng this part of the proness is comparatively rich in cadmium oxide, averaging about $1 \frac{1}{2}$ per cent. It $1 s$ put aside until a suficiency is collected, when it is cnriched by a sccond distillation up to about 6 per cent., this second product being finally reluced by a third distilution with carbon at a dull red hear. The furnace contains fifteen retorts, four of which are rescrved for the reduction of the enriched oxide. Castiron tubes are nsed, as the rapour of the metal readily prnetrates clay reterts. The loss on the process is very considerable, only $30 \cdot 12$ per cent. of the whole amount of cadmium contained in the material treated being recovered; 21.17 per cent. is left in the residues, ard 43.7 I per cent. sacapes condensation. The toalal praduce of cadmium is very small; about onehalf of the amount is produced at Engis, and the remainder in Silesia. In 1874 the production of eadmium in Lower Silesia amovisied to $2 \overline{0}$ cit., valned at $£ 900$ or abont n800 per ten; but oxiag
th the small demand mayy works had given uy the wanu, facture.
(ㅌ. B.)
CADMUS, in Greek Legend, was the founder of the town of Thebes origimally called Cadmera, and according to the tradition was a son of Agenor, ling of Phoenicia, whesce be had proceeded to Greece in search of his sister Europa, unt failing to find her hat, in obedience to an oracle, settled at Thebes. He there fuunded a town over which be in time became king, receved from the gods Harmona, a danghter of Ares and Aphrodite, as lus wife, by her had a family on whom fell beavy misfortunes, and finally retired with her to Illyra, where they both died in peace, and were transformed uto snakes which watched the tomb while therr spirits were translated to Elysium. At the marriage all the gods were present, and the muses sang. Harmonia recesved a dress (pequos) worked by Athena, and a necklace made by Hephastus. Their otfiprng were Semele, ino, Autonoe, Agase, a:d a son Polydorus. On his first settlement at Theles, Cadmus bat slan a dmgon, which guarded a spring, aod at the orders of Athema hav sown its teeth in the ground, from which there spang a race of fierce armed men (Spartui). By throwing a stone among them Calmus caused them tu fall upon each other till only five survived, and they became the founders of the notlest families of Thebes. Cadmus, bowever, because of thas bloodshed, had to do penance for a long year (i.e., eight years). Such is the legend. When Greek writers came to explain it they identified Cadmus as a Phonician hero who had intraduced into Greece the l'homean writing, mining, and other arts or institutions of civilization. But his name is Greek ratber than llemnician, and like Cadmelus in Samothrace appears to mean "order," and to indicate a ferson aho has instituted order in a state. He may have alnpted mueh from the early Mmenician traders; but from the fact of Thebes having been one of the seats of the promstive Pelasgi, and from the occurrence of Cadmilus in Samotbrace, also a seat of the Pelasgi, it is very probable that Cadmus was originally a purely Greek hero.

CADUCEUS (anpueciov), the symbol of office carried by publicheralds, by Nercury (IIermes), as heruld or messenger of the gods, and Ly Iris, Victory, and Eirenc. It consisted of a stati round which two sorjents were twined in a knot, then heads meeting at the top of the staff. Mcreury, it was sad, had secn two serments firhtiry and knit together so, and had chosen this as a symbol af the quarrels which it was his duty to assist in settling. Sometimes a pair of winga are attacl:ed to the staff to indicate the apeed of Mereury as a divme meseenger. In the liritish. Musemm there is a bronze caducous, found in a tomb in Sicily, which appears, from the inserption engraved on it in early Greek letters, to have belonged to a public herahd of the town of Longena.

CAEDMON, or Cenmos (the former way of spelling is that of Bede, the latter that of Florence of Worcester), is the amme of the carliest Anglo.Saxon or Old English poet of whom we have any knowludge. The meaning of the name has been mach disputed. Sir Francis Palgrave, desparing of funding a nativederivation, suggested (Archaologre, vol. xxir.) that the poet might have beei so calle I from the Chaldaic mane for the book of Genesis, which is "b' Cadmin," in the beginning, or "Cadmon," leginninc, from the opening words of the fist chapter of Cenesis. U, thought that he might eren have been an "Lasten visito", who had arrived in Pritain from the East, mostered tis language, and come out as a rernacular poct. A hypr. thesis so fanciful as this last may be at once rejected. Another suggestion of the same bively writer connects the name with the Adam Cadmon (the primitive and iden! man) of the Cabalists. It is true that Cabalistic sfrocul tions cannot be traced lack with certainty beyone the $9 t^{\prime}$: cuotury, but it is quite possible that the word may five
een rocogmazed as an important word in the East, and as beanng a distinct philosophe ir thensophic meaning at a far earlier date On the othorliand, in tavour of the view which gives to the name a native origin, it may be urged that Bede, though he only cmploys the word once. says in that passage that the poct's nocturnal visitant "called bim I y his name," and said, "Cedmon, de" Does not this laok as if the name had a homely and nortb country somend m Bede's ears? If so. What did it mean? Sir Francos Palgrave mantains that monglo-Sixon derivation can he found for the first part of the name Dr Boutermek. how(ver (in a work on Cardmon. published at Elberfeld in 1845), together with Professer Sundras. explauns ced as meaning a boat in Anglo-Saxon, whence the former translates the name "pirate." the latter "boat-man." This rould be satisfactory if it rested on any ground of fact. tat unfortunately this word "red" is a pure invention of Irofessor Bouterwek's; nether the Anglo Sixon language, ay known to us, nor the Old English of the first three enturies after the Conquest, nor any local dialect contains tay such word. On the whole. Sir Francis Palgrare's first - ugctestion seems to involve the least difficulty. "Cadmon" means "beginning " in the Targum of Onkelos, the Chaldee version of the Scriptures, which was in popular use among the Jews from the lst century b c lownwards, and some learned ecclesinstic at Whitby who had visited the Holy dand may have given to the poet the name Caduon (which in Anglo Saron mouths became Ciedmon), because lie was to sing of the "begiming" of things.

The few particulars that are known of the life of Cadmon are all to be found in Bede's Eoclesiastical. Mistory, a book so well known that an abridgement of ther is all that will be necessary bere. Cowdmon was probably a ceorl, eroployed under the " rillicus" or bathef of the lands belonge ing to the monastery of St HIda at Whitby He had urrived at mature age. and had embraced Christianity at the eall of the devoted Irislmen whe from Joma and from Lindisfarne. through two thirds of the 7th century, spread the light of faith through the regions of northern England IIe used to attend festive meetings, but when the song went round, and the harp was passed into his banis. Cadmon, ignorant of the rough old battle-songz of the beathen thare cubld sing nothing. On one sust occasion te is said to have loft the feast and gone to the statles. ohere it was his turn that nught to attend to the horses and Fouch-osen Ho fell aslecp, and dreamed that a person pppeared to him, who, calling him hy bis name, sand, "Cædmon. sing me somethong." On his replying that be could not sing, and that on this account he had left the revellers, the other replied. "Nevertheless thou shalt sing for me" "Wbat." sail Cerdmon," must J sing?" "Sing," he answered. "of the hremaning of created heings" (fmom. ropium crethuraram) Thereupon Cadmon began to sing verses which be had never beard or learned, praising and magnifyng the Croator whon had mado heaven and earth for the children of men. Awaking from his sleep be rememberal the verses which had come to him in bis dream, and added others to them

In the morning he went to the bailif who was over hitu and told him what had happened ; the bailiff took him to the abbesa St Hilda assembed a company of pious and arned persons, and beiore them trial was made of Cædmon's 4 ft. We told his story, and rephated the verses, and they al judged that he had received an inspiration from above. They explained to him then and there a prasage from boly , rit, and desired him to rersify it. He went away and - aturned the next morning with his task most excellently nerformel The abless then received him"cum omnitus mis" (it is not easy to detormine whether this plows

into the momastery, and there be lived as a morin for abe renainder of has hife, employing dhigently lis leisuro hoers in the cultivation of the gift which he bad received. The English piets who, up to the time when Bede wrote. had attemptel to write rehgrous poems in imitation of Cadmon, bad. in the historian's opimon, fallen far short of lum. Honv long he lived in the monastery we are not informed l'he narrative of bis death, beautiful in its piety and simplicity, relates how, after an ilhess of fonrteen days, he deared to bé removed to the infirmary. where, on the sams mght, after receiving the Eucharist by way of veticurw. and " sugning bimself with the sign of the holy cross." Ho sank into a peaceful slumber from which he never woke

Florence of Worcester speaks of him, under the year (800 . as that celebrated monk of St Hilda's Abbey who had recerved from beaven the free gift of poetic inspratarn Wilham of Malmesbury, in the Gesta Pontuficum (lih iis § 116), says that his rehes had been diseovered at Whithy shortly before he wrote (carly in the 12th century). and had been, according to pupular report, the occasion of miracles

An impertant question remains - whether Ciedmen was really the auther of the metrical paraphrase of Geness, Exodus, part of the book of Dantel, de., ribich usually goes by his name. The unique MS. containng this paraplirase came into the hands of Archbishop Usher in the 17th century, and was by him giren to the French scholar. Francis Dujon, better known as "Junius." who bequentlod it to the Bodleian Library It is in a hand of the lattrr part of the 10th century, and contains no indication of autborship The poem opens as follows:-

Us is riht micel thxt we rodera weard, Wereda waldor-cining, wordum herigen,

(For us it is very right that we shouid praise with out words the Guardian of the beavens, the glorious King of hosts) A number of very curious illustrations, etcheng: heightonel with green and red colour, sre in the earlser portion of the MS, ; engravings of them may be seen in the $24 t h$ volume of the Archrologia Obviously the only means of identifying this anonymons puem as the work of Coedmon is to compare it, as to its opeming and contents. whth the nuen described by Bede. The substance of Cedmon's rpemng, according to Bede, was thes: "Now we ought to prase the author of the beaventy kingdom, the power of the Crestor and His counsel, the deeds ni the Father of elory How Ile. since He is eternal God. is the author of all wonders, who, the Almighty Guardian of the human race. first created for the sons of men the heaven to be the ronf of their abode, and afterwards the earth " The opening of the fraphase, though more dittise, agrevs with that lure described pretty well as to ats genera! meaning. except that the heavens are represented in it as erentel for the ancels rather than for the children of men, who du not come upon the scese till later. Were there no ather evidence, it mint seem not unreasonable to identify the paraphase with the poeu of Codmon But here a new difficully meets us. King Alfred tramslated Bede's Eccle. siastical llistory, and when he comes to this passage he giver us a metrical version of Bedes Latin description of the opening, which he seems to intend his bearers to take for the ipsissima verba of Cedmon. Of this there are two indications :-first, he renders Bede's words, "quorum [se versuum] iste est sensus." into "thara endebytdnes this is," "tbeir order is this," secondly, be omits a long sentence immediately following the description of the opening, in which Bede explains that from the difficulty of translating verses literally from one language into another be has merely given the sense and not the "ordo ipse verborum." Now Alfred tells us that he does give the order (endebrodnes) of the words, and he leaves untranshaten the passage mbict
affirms that only the general sense is given '1'le verses which he inserts begin thus :-

Nu we aceolon herian heofon-rices weara,
Metodes mihte and his mod-gethonc, -
(Now most we praise the Warder of the heavenly kingdom, the might of the Creator, and the thought of His mind.) In short, Bede's description is turned with great literaluess into Anglo-Saxon verses But are these Cwdinon's? If they are, then the paraphrase is not the work of Cædmon, for not one line ut the opening as given by Alfred agrees with the paraphrast's opening However, in spute of the circumstances mentioned above, the judgment of criticism will not identify Alfred's verses with the true work of Cedmon. They are so bald, so literal, that the conviction forces itself upon us that Alfred is here inerely translating from Bede's Latin, and amusing bimself with making his version metrical On the other hand the paraphrast is a genume poet; variety, force, and colnur are the ever-present attributes of his poetie diction : his unagination is bold and fertile; his moral purpose clear and pervading-in fact he is fust such a man as we should concenve the real Cadmon (1) have been

The other point of comparison between the paraphraso and Bede's descripuon relaten to the rmuents of Cadnumis prem. "IIe sang," says the finstorian, " the ereathon of the world, the origin of man, and all the bistory of (ienesis, and made many verses in the departure ot the chalifern of Israel ont of Egypt, and thear entembento the land of promise, wath many other historses from holy writ; the atorarnatoon, passion, resurrection of our Lurd, and His ascenston mote heaven: the oming of the Holy Ghost, and the preaching of the agomets, also the terror of funure judyitent, the horror of the pans of hall and the delights of teaven." With this account the contents of the praphase which we have agree, up to a certan promt, remarkably well. It may bo sad, generally, to enthrace the whole history of Genesis, except that portion wheh telates to events postersor to the time of lsarc. It then passes to the history of Moses and has statutes. "Morses dimas," Urielly giving the thread of events tull it arrwos at tie passage through the Red Sea, on whuth the writer - warges with evident enjoyment. An abrupt trimsitun is then mate to the trook of Damel the stury of the thite -hidren saveal out of the fiery furnice is ind Dimbl's dream-wisdom is set forth, and the doom denomnced agimat Belshazzar. Then what is callerl the serond lank it the paraphrase, the begmung of whel connenles with a change of handwritug in the MS, conumences, and now the resemblance in Peale's alescription ceases Thas thook ajeme with the complants on the fallen angels in hell and the famentations of the sods retaned a the lambons Patrum the descent of Christ alter has passion to herate these souls is deseribed, the resurrectum is baroly mentioned. lomt the interemarse of Clarist with his apusiles provious in has ascension, and the asceusun itsell are wid at some sength The bouk concludes wath a dessripton il the terrors of the Day of ludgnent. such a prem eannot te satut to eorres. pond with Bede's deseription, but then of must be remembered that, partly on accomut of the chauge of hand and $n f$ sulypect, partly on acemunt of the presence in it of later lingustic forms, the ascriptinn of this second bouk of the paraphrase to the autbor of the first has always heen held problematueal On the whele, although the grounds - \& a confident judgment do not exist, the analysis of the evidence here attempted perats to the coriclusion that the frst book of the paraphrase, though not the sceond, may with considerable probability be assigned to Cædmon.

Some writers have assigned other extant prems to Cædmon, e.g., the Halga Rûd (Holy Rood) of the Vercelii conlex, a passage an wheh has been found to tally with tho

Kunse anscription on the Rurpa u Cross, and also tae frasment called Judith, in the MS. volume contaning Beownti: But the evidence in favour of either supposition may be set down as nil; nor does the style in fuduth, still less in tho Halga Rod, agree with that of the Paraphrast. (т. \&.)

CAEN, or, as it is called in the old chromeles, Cadon, Cathim, CaHes, or Casa, the capital of an arrondissement in the department of Calvados in France. It standa about 80 or 90 feet above the level of the sea, in an estensive valley, on the leit bank of the Orne, at the intlux of the Odon, iJ miles trom the Englash Channel, and 122 west of Paris, $1049^{\circ} 11^{\prime} 14^{\prime} \mathrm{N}$ lat., $0^{2} 21^{\prime} 15^{\prime \prime} \mathrm{W}$. long The town is handsome and well built, the streets, of whech the most important is the lioe St Jean, are generally wide, straybt, and clean, and the houses, being of freestone, have a very good appearadce. Hardly any remams of its once extensive ramparts and towers are now to be seen, but the castle, fonnded by Willian the Conqueror and completed by Henry I, is stll employed as barracks, though in a greatly altered conditum The eity contans several anement churches and other louddings, atfording fine specimens of the Norman style of archatecture. Among these are the chureh of St Plerre, dating from the 14 th century and surmounted by a bandsulue stone spire, the finest it Normandy, 242 feet in heshat; the mangicent churches of the Abluaye Aux Hommes, or St Etienne, and the Abbaye dux Dames, or Trimity. hoth founded in 1066.the former by William the Conyueror, where a plang greg marble slab in the pavement fun marks hos long suco desecrated tomb, and the lattor hy his queen Matilda, who was merred there. The ohd comiont of the Capuchms is now ocemped by the socsety uf Le Bon Sauvear, whach, founded by wo poor grts athout 1730, has grown mito a most impertant mstutheon, and mantans an asylom for the msane of both sexes, a charatable dispensary, a school for the education and industras tranang of deaf and dumh chuldret, and varous munor estabhahents Caen ts the scat of a louh court of apreal fur the departments of Cal. radis, Manche, and Orme. and has trabunals of promary matance and cummeroc. a chamber of commerce, a conserl the prud'hommes, a unversity (touvdad in 1431 by Henry S'L of Englaml) a royal college. a sohnol of hydrography. a publac tibrars of thanm whames an extensive botanc girvert is musemu helonghes to the soedety of Nomman antlyuaries and a theatre There in a local Anademue dea

 cattle, harfuart band maure umber from Norway, coal,
 of comparstacly small mportance with the exception if rape and colta on, thand there is a certain turnut of caps. cable haw. cothon batres. beather, earthenware, and cutlerv treweries, dye works, amd shup hulding yarde art atso in operatom The mamfactare of lace, formerly of
 stune in ereat labour as a bimiding material, is quarried in the vemborurbood several large fars are beld aunu. ally At high water, vessels of 150 or 160 tons can cothe of to the harbour, whach constist of a part of the river bed and a tasin 1896 feet in length by 164 in breadth, and has communcation with the sea rut only by the river, but also by a cana! debouching at Onistreham. A canal to connect it with the sea is in course of construction, which will render it accessible to large vessels. The town is situated on the man line of railway frow Paris to Cherbourg, and is conoected by branch lines with Courseniles on the coast, and with Laval infand.

Though Cacn is not a town of great antiquity, the date of its foundition is erbrowa. It existed as étly cos
the 9 th century, and when, in 912 , Neustria was ceded to the Normans by Cbarles the Simple, it was a large and important city. Under the dukes of Normandy, and par tioularly under William the Conqueror, it rapidly increased. It became the capital of Lower Normandy, and in 1346 was besieged and takon by Edward 1II. of England. It was again taken by the English in 1417, and was retained by them till 1459, when it capitulated to the French, in whose possession it has since contmued. In 1703 the city was the focus of the Girondist movement against the Convention. Among the numerous celebrities to whom Caen has given birth may be mentioned Nalherbe, Boisrobert, Huet bishop of Avraches, and Tannegui Lefebvre. Population in 1872 , 39,415 in the city, and 41,210 in the commone.

See L'Abbé de la Rue, Essais historiques sur la ville de Ciren, 189042; Miancel, Mistoire de la ville de Caen, 1844; Vauthier, ditto, 1543; L'Abbé Daniel, Embellissements de ia ville de Caen, 1842 ; Froman's Jorman Conquest, vol. iii.; Macquoid"s Normandy, 1874.

CARE (Kaip $)$, called by the Greeks Agy!!a (AyuAn), which is probably an Etruscan name, a city of Sorathem Etruria, near the coast of the Tyrrhenian Sca. Its site is accupicd by the modern Cervetri (Care vetus), situated in the district of Civita Vecchia, about 32 miles from Rome. In the Virgilian legend of Aneas, Cære appears as the seat of the Etruscan king Mezentius; but the earliest fact in its genuine annals is its participation in an attacis on the city of Alalia in Corsica. It afforded a refuge to the Tarquins on their expulsion from Rome, and it was afterwards chosen by the Romans as the securest hiding-place of their treasures during the Gallic occupation of their city. In the time of Strabo the city had become of little importance, and was even outgrown by the neighbouring village of Aque Cieretance It continued, however, to rank as a municipium, and in the 4 th century of tho Christian era had a "bishop" of its own; but in 1250 it was deserted by c. large part of its inhabitants, who removed to what is now the village of Ceri. The chicf building of modern date in Cervetri is the eastle of the Ruspoli fanily, who are in possession of the seigniory from the iuhabitants heing admitted to the privilege of Roman eitizenship, but without the right of suffrage, the "Cierite franchise" came tu be a proverbial expression denoting disfranchisement. A large number of interesting Etruscan remains have been Found in the tombs of Care, among which may be specially mentioned paintings of high antiquity and inscriptions showing one of the sepulehres to have belonged to tha Tarcuin or Tarchnas family.
See Demnis, Citios and Cemetcrios of Etreria, vol. ii.; Visconti, Antichi monumenti disconrrti nel ducato di Cere, 183世; Canina, lescrizione di Cerre Antica, 1839: Grifii, Monumentidi Ceri Antica, 1841; Transactims of the Rom? Soriety of Literuture, vol. ii.; Nógel dos Vergera, L'Étrurue et los Etrusurtes, "2-vols. $1862-4$: Auc. j. Hate, Days near Kome 1875, vol. iii.; Jourmal des Sovants, $343,8 c$; and varions artixles in the Annali and Bullatino deli' Ynstituto di Corriop. A chool. di Roma, especially 186?, 1873, and 1374.

CAERLEON, the Isce Silurum of the Romans, is etuated upon the right bank of the riger Usk, about $3 \frac{1}{3}$ miles N. of Nemport in Mommouthlise. Its name appeary to bo a cormption of tho Latin C'astrain Legionis, and thers can be no loubt that the place was the station of the secoud Augustan legion, and ranked as a colony and capital of Britannia Secunda in the period of Lowan domivion. The existing remains of ancient Cacrleon still in situ aré unimportant, consisting only of fragments of the city walls \therefore and egrass-grown kimphitheatro (comprising an area of 222 foot by 192 feet), in which the tiers of saats are indistinctly visible. Tho hamlet on the opposite bank of the river

[^57]preserves its Roman name or Ultra Pontem, and it is probable that the connecting bridge was a pontoon similar in character to that which survived to the close of the las: century. The local mosenm is rich in objects of interest, collected (chiefly through the zeal of Mr J. E. Lee, tine anthor of Isca Silurum), either in Caorleon or its immediate neighbourhood. It includes a tesselated pavement of much beauty brought from Caerwent, four Tuscan pillars which are thought to have supported a temple of Diana, a largo number of inscribed and sepulchral stenes,-z series of coins from the time of Otho to that of Honorius, stone cofns, amphorce, antefixa, amulets, enamels, and Sainian ware of home and foreign manufacture. It is remarkable that on two inscriptions the name of-Geta (the younger son of Severus) has been mutilated and partially effaced-evidence of the hatred in which the civil governor was held by his brother Caracalla. In the recent restoration of the Parish church (in style Early English, with traces of rude Norman) a good deal of Roman masonry was brought to light, and upon the hiul side, which formed the burial place of the ancient city, fragments of urns and memorial slaos are even now often exhnmed. Enough has been discovered to prove. that Caerleon was a place of great importance in Roman times, but not enough to support the hyperbolical language of GiraIdus Cambrensis (borrowed from Geoffrey of Monmouth) that its "splendid palaces, with their gilded roofs, once emulated the grandeur of Rome" (bk. ix. c. 12).

Although the chief bistoric interest attaching to Caerleon is derived from the impress left upon it by Roman occupation, it has also a less substantial claim to notice in comnection with the romance of Arthur and the Round Table. It was bither the "blameless king" carpe at Pentecost to bz crewned, and made high festival with the chieftains from Lothian and Orkney, froms Gower and Carados. Here, too. if we follow the laureate's version, Arthur took counsel wht " Dubric, the high saint " and Guinevere climbed-

> "The giant tower, from whose high crest, they say, Men saw the goodly hills of Somerset, And white sails tlying on the yellow sen. (Idylls of the King, Enid.)

The lofty monnd upon which this tower is said to have stood is close to the Roman anphitheatre, to which the name of Artlur's Round Table has been given. The tumulus is evidently artificial, and may perhaps have supported the keep of the castle mentioned in Domesday, the ruins of which, now limited to a solitary bastion on the river side, were very extensive aven in Leland's time. . \quad..

The grantce of Caerleon at the Norman Conquest was William de Scohies, and the lordship was subsequently enjoyed by the Crown and the great familics of Clare and Mortimer. From the latter it devolved to King Edward IV., and in later times has been held ly the Morgans of Llantarnam and the Howes, Lords Chedworth. The chicf proprietor at the present time is Sir Digby Mackworth, Bart.

The ecclesiastical bistory oi Cacrleon reaches back to the first introduction of Christianty into Britain, when it was constituted the seat of an archbishopric. It scnta representative to the councils of Sardis ($3 \cdot 1 \overline{4}$ A.D.) and R:mini (359); aud in the perscention of Diocletan during the previous centory two of its citizens, Aaron and Julios, are said to have suffered martyrdom. The see was transferred to St David's in the 1lth century, and at the present time Cacrlcon is included within the diocese of Inlandaff. Some remains of a Cisterciau priory may still be traced, but even the memory of Dubricius, the stout opponent of the Pelagian heresy, has perished with his dwelling place.
(C. J. K.)

CAERMARTIFN See Carmarthen.
CAFRNARYOX Sce Carnatroas

CexSALPINUS, ANDREAS ($3515-1603$), one of the $r_{\text {tose }}$ ost distinguished of the Italian natural philosophers of :le Renaissance, was born at Arezzo in Tuscany in 1519. Cil his family nothing is recorded, nor does he appear to have left any progeny, or to have been married.

We have no account of his life till we find him seated in the botanical chair of the university of Pisa, where also he studied, if he did not teach, anatomy and medicine. His frst publication was entitled Speculum Artis Medicee Hippocraticum, in whinh it were too much to expect ho should have released himself from the shackles of his venerable guide; but be has left evident proofs, in a passage of ten quoted, of his baving a clear idea of the circulation of the blood, at least through the lungs. In botany his inquiries were conducted on a more orignal plan, and their result was one of the most philosophical works in that science, issued from the press at Florence in 1583, in one volume quarto. The title-page is sufficiently arrogant in tone, - De Plantis libri XVI. Andree Cresalpini Aretini, Medici clarissini doctissimıque, atque Philosophi celeberrimı ac subtilissimi; yet Cxsalpiuus a p pears to have been the editor, and prefixed, in bis own name, an elegant and learned epistle dedicitory to Francis de' Medici, grand duke of Tuscauy. This book, now rarely to be met with, is not only the unacknowledged source from which various subsequent writers, and especially Merison, derived their ideas of botanical arrangement, but it was a mine of science to which Linnæus himself gratefully avowed his ebligations. Linnæus's copy of the book evinces the great assiduity with which be studied it; he bas laboured throughout to remedy the defect of which Haller complains of the want of synonyns, laas subjoined bis owa generic names to nearly every species, and has particulsrly indieated these reurarkable passages, at prages 13 and 15 , where the germination of plante and their sexual distinctions are explained. In the former we trace the first rudiments of a natural classification of plants by the differences in their cetyledons, or, in other words, we find the origin of the natural systems of Jinneus and Jussien ; in the latter passage we detect the fundamental prineiple of the Linnean artificial system. Nor were these merely incoidental suggestions of the author. He prisued his inquiries to a conclusion on which the existence of botany as a science depends, and which the no less eminent Courad Gesner detected about the same time, though his ideas respecting it were not then made public. The principle to which we allude is the classificatien of plants by their parts of fructification alone. This was afterwards extended, by the greatest writers on the subject, as Ray and Tonrnefort, and more completely by Linneus, to the discrimination of their geuera by the same parts, more particularly confidered and contrasted. To this mere extensive conclusion, indced, the principle directly and inevitably leads. Cesalpinus used it bimself with such success as to develop some of the mest important characters for generic distinctions, such as the flower being superior or inferior with respect to the fruit ; the heart of the seed situated at its sumnit or base; the seeds, or the cells of the seedvessels, solitary or otherwise; the paritions of certain pericarps parallel or contrary to their valves. Linnæus retnarks that Cesalpinus, though the first systematical hotanist, found out as many natural classes, or orders, as Lis fallowers. He did not indeed define well the philosophical limits of genera in the vegetable kingdom, and therefore his werk cannet be regularly quoted threughout for generic synonyms. The want of plates of his own, and of references to other authers, renders, as we have already binted, some of his names and descriptiens unintelligible. Yet Linnæus has in manuscript filled up many Lanks which he had heen obliged to leave in his own

Classes Plantarum, where the system of Cissalpinus first assumed a synoptical form. The latter might probably have adopted a more clear and methodical mode of srrang. ing and explainng the botaoncal part of his subject, had he not had in vew the vague and desultory manner of Pliny, whom he elosely imitates in the materials of his numerons chapters, as well as in his style of description. A small and unimportant Appendix to this work, of mineteen pages, appeared at Rome in 1603, which is of very rare occurrence, but may be fomnd reprinted io Boccone's Mfuseo dz Paante Rare, p. 125 The herlariun of over 760 plants which he left is said to be still preserved at Elorence.

Cesalpinus having been settled at Pisa when the great Galileo first presumed to doubt the infallibility of the Aristotelian philosophy, and, mast likely, at the time when that rising philosopher became professor of mathematics in the same university, we can hardly magiue him to have been free from the party-sprit which so disgracefully manifested itself there He seems to have retained his professorship till 1592, when he removed to Rome in attendance on Pope Clement Vili. He dicd in 1603 at the age of eighty-four.

Casalpinus printed at Rome, in 1596, a quarto volume of abore two hundred jages, entitled De Metallicis, dedicated to Pope Cle. ment V111. which, like his botanical publications, is now extremely rare. In the philosoply of this work Aristotle is his guide; in its method and composition, Pliny. A prefatory address to the pope declares it r bave been undertaken in opposition to a certain treatise on the same subject, which, though written with diligence and clecrance, contained many things inconsistent with the principles of phitosophy, aud subversive of the Peripatetic noctrines and with the author of which, as being excommunicated by the holy church of Rome, no measures were to he kept.
The Quastionum Peripatelicarum libri quinque, pulhlished at Rome in 1603, diverge considerably from the pure doctrine of Aris. totle, and by the enaphasis laid on the universal and common intel. licence inherent in matter, approximate rather to the pantheism of the Stoics.

Cesar, Caics Julies, was barn July 12, 100 b.c., according to others in 102 b.c., of a family who for many years bad held high offices in the state. He was the greatest man of the Roman or perbaps of all the ancient world. It is not witheut rcason that his name has remained among ns as the title of sovereignty, or that his memory survives as the standaril of commanding greatness; yet the very completeness of his character makes it difficult to obtain a clear grasp of his indiciduality. In every relation of life he attained apparently without effort to the bighest excellence, as a citizen, a politician, an orstor, a general, a compamon, a man of letters, and a far-scivg organizing statesman. Ict sturdy will make it clear to us that his greatness has net leen overrated, and the mere we contemplate his position and bis work, the less opportunity we shall find for blame or criticism. He étered into active life at a great crisis of bis country's history A etrong national individuality, firnness and unity of clar. acter and purpose bad gradually non for liome the supremacy of Latium, of Italy, and of the world. But the qualities which were able to acquire an cmpire nere not able to govern it. The time was now passed when the senate presented an example of dignity and magnanimity, when a sense of law and justice and persistency of aim and object suffieed to extenuate a cruelty which knew no limit but the realization of its will. It was truer now than in the time of Horace that Rome was falling by the weight of its own greatness. The long struggle between the patriciane and plebeians for pelitical equality served rather to strengthen than loosen the cobesion of the state. But the rations which lay outside the city could not ke, assimilated without severe struggles. The equality c : Latins and Italians with the citizens of Reme micht tie
won by the eturts of a demagogue, but could ony ae assured by an entire change of government. Failure to effect the purposes of government had diminished the sense of responsibility in the ruling class. Jugurtha had been able to discover that Roman virtue was accessible to bribes. The direction of provinces at once gratified and stimulated the avarice of statesmed. The riches of the world which were beginning to flow into the imperial city exsited the desire for more. There existed at the same time the demoralization which accompanies the breakiay up and abandonment of old principles of conduct, and an unsettle 1 yearning for the adjustment of pressing difficultics. We may credit the Gracchi with a far-sceing grasp of the wants of their country, bit they could not but appear to their contemporaries as mischievous revolutionists. Sulla attempted to give new strencth and power to a system which had sunk into hopeless decay. Marius was inspired rather with a rouch contempt for expedients which could never be successful, than with a patriotic desire to clevate the people front whon he sprung. The inpotedee of statesman to understand or to regulate the age led to the employment of violence and bloolshed. 1 domestic enemy had forced the gates of Rome, and each political victory was sealed with the blood of the va:aquished. Tho senate which had conquered the world was unable to defend itself; it could neither recover its former power nor bring into being a new constitution. It could not exercise the ordinary function of government without entrusting to a citizen pawers which might bo turned arainst its own existence. It is difficult to imagine what wonld have been the destiny of a world from which the cohesive foree which bound it together might at any time be removed. If Rome had prished in this crisis she would have left but a faint impress upon the nations who owned her sovereignty. .The long reign of law and order, from which we derive the chief legacies which Rome has left'to the modern world, wis yet to come. That the newly-founded empire did not fall before the onslaught of an easteru despot, or break up into separate provinces governed by rebellious citizens, is due, as far as we can see, to Jutius Cæsar alone. It is dificult to seo how such a man could have been produced by the wants of any age, but there is no doubt that the course of future history was marked out in no slight degree by the genius and foresight of this single individual.
Cessar displayed at the very outset of his career the same versatility, encrgy, and courage which distinguished him till its close. When ordered by Sulla to put away his wife, who was connected with the Marian party, he refused to obey, although he lost by the refusal his wife's dower, his presthood, and his fortune. Although compelled to quit Rome to avoid the dictator's anger, he did not deprive bis country of his services. His diplomacy served to obtain from Nicomodes, king of Pithyma, a thect, which was used in the reduction of Mitylene, and by his personal bravery in the siage be won from Murens Thermus the reward of a civic crown. ILe served in Cilicia against the pirates, whose extinction was to be the groat glory of his rival, and either at this or at a later tume (for authorities ditter ou this point) had an adventure with then, which displays his subtlety and resource. Taken prisoner by them at the island of Pharmacussa be sent the main body of his couspraions and atteadants to seek his ransom. During his stay of forty days, he ingratiated himself with his captors, and promised thent ir. jest that when once set free be wonld return and crucify then, and he kept his word. When be was released he armel some vessels of Miletus, found the pirates in the anchorigo where he had left them, took them into Pergmus, and handed then over to the civil arm. When a student under Apollonius Molo at riodis, on the outbreak of the Vithridatic war, he passed,
ut ais uwa accord, to the contineot, drove the king's genera! from the province, and restored the shaken allegiance of the subject towns. A Roman citizen of birth was expecteu not only to be a general and a statesman but an orator. He must be practised in every branch of the art of governmont. Cesar attained distinotion in the forum with the same ease as he had won it in the ficld. He accused Dolabella of extortion in the provinces in 77 B.c., and Antonius of a similar offence in 76 e.c. In neither pro secution was he successful, but be gained in both a reputation for eloquence and public spirit. To perfect himself in: oratory he sought the instruction of Apollonius betore men. tioned, under whom Cicero had also studied, and who had striven with little success to corb the extravagance of his redundant diction. Perhaps it is to him that we owe tho massive and monnmental eloquence, the pure and chastenec taste of the Commentaries. The chronology of these ecento is uneertain, but is 74 b.c. Cesar returned to Rome, and was elected pontiff and military tribune. Not untried in waı and in affairs, tinged with Greek culture but not weakened by it, in the prime of youth and the fulness of fascination, he was fitted in every way to gain the favour of his countryincn, and to play his part in the game of politics, whicb required then, if ever, an open brow and secret thoughts.
For the next twelve years Casar, with the exception of a short absence in Spain as questor, remained at Rome. During the whole of this time he lent his assistance to the taisk of strengthening and reviving the democratic party, which bad sunk very low after the death of Marius. ITe was thus brought constantly into connection with Pompoius, and it is difficult for us to determine whether Cesar supported Pompeius because be perceived that his cuds were those which ho himself wished to gain, or whether Pompeius courted the democratic party for the purpose of his own aggrandizement. In 70 b.c. Pompcius, in conjunction with Crassus, repealed the Sullan constitution, and in the measures which were necessary for this purposo he bad the full approval and support of Cessar. The power of the tribuncs was restored, that of the senate diminished. The control of the law courts, which Sulla had given back tc the senate, and which bad been abused to shield from punishment high-born plunderers of the prorinces, was now divided among the senate, the equites, who were the great eapitalists, and the tribuni æraril, who represented a still more popular element. Cessar in this couduct was true to the principles which animated his whole career, a desire to give equality to the citizens, and recognition to the sabjects of Rome, and to obliterate as far as possible the scars of civil dissension. In 68 b.c. he lost his anut and his wife, one the widow of Marius, the other the daughter of Cinna. In the orations which he pronounced over them in the formm, he was able to rebabilitate the reputation of the leaders of his party. At his aunt's funcral ho caused busts of Marius to be carried in the procession, and the people were roused to recall at once the greatuess of their general, whoso memory had been so long proscribod, and tho generous courago of bis kinsman in restoring it. As the porer of the senate hecame weakened, respect for the old safeguards of the constitution became less strong. It mas therefure not unnatural, when Rome was suffering from the attacks of enemies whom she could not quell, that she shoald invest her former gencral with an extraordinary command, and seck in Dem expedients a remedy which the coastitution had failed to supply. Such was the origin of the Gabinian and Manilian laws, the firs: of which conferred on Pompeius a command against the pirates of the Mediterranean, while the second gave him control of the Mithridatic war. Never had such pewer been concentrated in the hands of a single citizen. He mas invested with absolute control for three pears orer the whole
of the Mediterranean Sea, from the Strats of Gibrattar to the innermost bays of the Levant, and over the coasts for fifty miles inland. Under him were twenty-five protors of senatorial rank chosen by himself. He had ample authority for levying troops and raising money. By the Manilian law he obtained in addition command ever the whole of the East, "so that there remained scarcely a spot of land withiu the wide Roman dominions that had not obeyed him." 'These laws were opposed by the friends of the senate and by those who still cherished respect for the old constitution of the city. They were supported by Casar and by Cicero; and were carried by the public voice. We need not see in this action of Casar's a desiree either to. get rid of Pompeius as a rival, or to earn future favour by present support; we may rather conclude that he saw more clearly than the.statesmen of his time the growth of a new order and the decay of the old, and the necessity of fresh and even periloussexpedients to meet wants which had not before arisen.

After the departure of Pompeius, Cæsar held the redileship with Bibulus. His business in this office was to take charge of the public buildings, to repair the old, to furnish such new ones as were required, and to beep, the multitude in good temper by a due magniticence in their mational games. This office was to Ciesar the occasion of fresh triumphs. Bibulus supplied the moncy, but Cæsar showed Low it might best be spent, and gained the whole credit of the generosity displayed. He decorated the forum,-that small space under the Capitoline hill, on which every successive master of Tome has for good or for evil left his mark. He built, either at this or at a later time, the basilica Julia, which has again come to light in our generation, the first of those inperial erections which were imitated by his successors, and which extended the long live oi culonuades and halls of justice far beyond the narrow limits of the Septimontium. He built porticues under the Capitol for the recepticu of works of art, the plunder of Grecian cities ; and be struck a decper chord in tho hearts of his countrymen when by his order the trophics won hy Marius from barbaric kings and peoples glitterd one moming freshly adurned and gilded in the place from which they had been removed by Sulla The defenceless city was terribed at the number of gladintore which he proyosed to exhibit in the Great Games, and restricted hini to three hundred and tweuty pairs, but he made amends by arming them with accoutrements of silver, an act of magnificence remembered even in times when the city was sated with profusion.

In the fellowing year, 64 b.c., he was concerned in measures which show the eonsistency of his political clazmacter. He supported the agrarian law of hullus. (which, as far as we know its provisions, proposed to settle the poorer citizens in the waste lands of Campania and else"here), because, nlthough its provisions might be defective, its principles were good, and calculated to lessen the inequality between the different members of the state Cicero may, with the responsibility which attached to him as consul, have been right in procuring its rejection as ill-digested and premature. Cæsar's support of the inipeachment of Thabirius for the murder of Saturninus thirty-seven years l, fore, was perhaps inteuded to show that party feeling should never be suffered to cover the commission of a crime, to assert again the principles of democracy which had been long unpopular, and alse to deter young aristocrats from imitating the excesses of Sulla. These principles ance asserted, there was no need to carry the prosecution to extremities. In the year following, 63 b.c., he was elected Pontifex Maximus, a signal mark of his popularity. This ofice placed him at the head of the state religion. Although he did not obtain it without bribery, yet we connot jeliere that he would have been flerted unless the
prople had felt coufdence in the dighity and integrity of his coaracter, and if he had been the frivolous and abandoned libertine which some historians represent him to havo been at this time. De Quincey bas remarked tha: we are presented with a touching picture of his home life on the morning of his candidature. His mother Aurelia accompanied him to the portico of the bouse, with a mingled feeling of hope for his suscess and fear for his safety, and be answered to her ex!ressed anxieties that he would return a conqueror or a corpse. We may beliere that to his mother he owed many of his most commanding qualities. Throughout her life he ireated her witls deep attection and respect, and we bare abundant preof that Cæsar possessed to the full that strong family affection which almays accompanies a noble nature, and which the Romans of that day bave by some writers been so strangely sapposed to have been without.

An erent was at hand of sufficient seriousness to try the mettle of the strongest. The conspiracy of Catiline has perhaps been exaggerated by the ranity of Cicero; but allowing for this exaggeration, it threatened serious danger to the state, and it affords a conclusive proof of the impotence of the Roman gevernment at this time. We shall find the closest parallel in the military pronunciamientos of modern Spaiu. Catiline had probably little design beyond obtaining the best places of government for himself and his friends at nny cost. If Casar bad joined this mevement he might have mastered it and directed it to his own purposes; had he been an unprincipled adventurer he might have framed for himself combinations more likely to succecd. There is no proof that Cesar was an accomplice in this villany. Probability is against it. What we do know is that on December 5th be speke against the execution of the conspirators. In this we have evidence of bis strong common sense and pelitical foresight. He saw that it was bad policy to break the laws in order to punish their violation. He knew also that the dead nlone come back to Launt the living. "If an adequate punishment," he said, "can be devised for these men's offences let it be inflicted; if their offence transcends all 1 unishment, let us punish them by the laws of our country." It would have been well for Cicero if he had follored this advice. Such language wea thoroughly consistent in the mouth of a man who had donu his best to remedy the excesses of Sulla, from which h, himself had suffered, and who bad lost no opportunity ei inculaating political moderation. The next year, 62 sc ., ('esar was prator. At the close of it Pompeius returne from the conquest of Mithridates, and quiétly disbanded his army. The time had not arrived for Cxsar to lay aside the toga. In 61 b.c., at the age of forty, he assumed at propretur his first important military command, and land the foundation of a reputation as the greatest of genera!s, which should never be allowed to overshadow his high : r merit as a statesman and the regenerator of his country.

Before Ciezar could leave Home for his province it wes necessary that he should clear hiniself. from the load of debt which oppressed him, and this he was enabled to d, by the assistauce of Crassus. A charge of insolvency has Leea allowed to weigh too heavily upon the claracter of Cosar, and has received too much inportance as a motive for his actions. It can bo accounted for ty supposing a: over-recklessuess of means to gain important puthe ends, and a culpable carelessness in his private interusts, whichare not without a parallel.in statesmen of modern cimes, whese character is above suspicion. We have little positiry information about his campaign in the Peninsula, the ma:a operations of which were carried on in Calicis and Portuge? Cæsar appears to have exhibited on a small feld the sam, qualities which distinguished him in a large sphere. E: was prcclsimed imperatcr by his soldiers, riss retec a
triuniph by the senate, and while be aided to the reches (I the state, was careful te render his own fortune more ezcure. He was a candidate for the consulship in the following ycar, aud would gladly have conducted his canvass by proxy, while he kept his army outside the gates in radiness for his promiserl triumph. But Cato and the senate would not permit this violation of the law. Cæsar at once obeyed, surrendered his triumph, and obtained the consulship. He formed at this time an alliance with Pompeius and Crassus, which is generally known as the first triumvirate. It was mereiy a political uniou for cemmon purposes, and was not, like the second trimusirate, an organized form of geverument. Porapeius and Crassus had been enemies, and were now reconciled by Cæsar. Cato, the charapion oi the semate, could not be included in this alliance, and Cicere was too vacillating in his policy and too weak in character to command the cenfidence of either of his former friends. The objects of the coalition were not se much to secure the persenal aggrandizement of its members, as to form a strong and united front against those whe wished to maintain a form of government which had become impossible, and was therciore hurtful to the state. It is possible that both Pompeius and Cæsar forcsaw that under a new constitution Rome would be subject to a single bead, while Crassus was not reluctant to join himself to two men, one of whom must be the ruler of the future. The democracy which raised Cæsar to power wished to obtain for its favourte the command of an army which would ensure the preponderance of his counsel in coming changes. Cesar himself, conscious of the pressing need of important measures, and the inability of the senate to provide them, was ready with the frankest generosity to work with any one whose ideas were on this point comedent with his own. The alliance was cemented by the marrage of Pompens to Julia, Cesar's danghter, while Casar narried Calpurnia, the daughter of Piso.

Ceear's colleague in the consulship was M. Bibulus, the devoted servant of the senate, who both as edile and pratur had submited as a foil to set oft the greatiness of this companion. He offercd a vain opposition to Cresar's measures, and when he found that he could not prevent their being carried by the use of the political machinery in thes power, he retired to his house and announced his intention of "observang the hearens" during the rest of his consulsip, a process which ought technically to have rendered mvalid ail acts passed during that time. Wie do not possess a full accomit of the laws carried by Cosar while he stood at the head of the state, but we know cneugh io show us that he used bis opportunities to enforce the same political princples which he had always conmastently professed. He ordered the proceediugs of the senate to be published, and so rendered its deliberations amenable to pubhe opmon. He passed an agrarian law similar to that of Rinllus, but withont the defeets which had procured its rejection. He csrried a measure of just reluf for the cquites or capitalists, not so much with a view of gaining then support as to make a fair concession to an important class of the community. He declared Ptulemy, king of Egypt, and Ariovistus, the German, friencis of the Roman people. He made regulations for the better Fovernment of the provinces, and remedied the worst a uses under which the provinces groaned. He was the a thor of a great measure for the suppression of bribery f. Ad corruption amengst pullic functonarses, which were at that time a stigma on the state. Other resources of a similar tendency were carred by his subordinates. The reante had intended tha: Ciesar, on laying fown. his office, should be rendered as harmless as possible, aud for that tasen had aqsioned to the const:s the charce of woods and forat: in laly the peoule, l:..ccor, wers able to
protest successfully against the injustice. The tribune Vatinius obtained the passing of a law which give in Cxsar the province of Cisalpine Gaul or Northern ltaly Ier five years, with three legions; and the senate of its own aecord added the charge of Gaul and the Alps with an additional legion. Cæsar thus obtained a ficld of action worthy of his gemins. He stayed near the city just long ellough to secure the election of his friends as consuls, and to provide against the repeal of the measures which he had passed, and then set out for the country which has ever since been identified with his name.

It is not our object to describe in detail the marvellons work which occupied Cæsar for the next eight years.. Bio part of his life has been written with greater fulness, nor is there any for which we possess more abundant material. It must suffice to give a shert sketch of the master!y campaigns by which a free and chivalrous people were reduced to abselute obedience, new countries were opened up to the knowledge and enterprize of Rome, and a form was given to the development of the civilization of France, of which she has preserved the main features to the preseut day. In his first campaign (5S b.c.) Casar gained two iraportant victories. He defeated at Autun the Helvetii who were leaving Switzerland with the intention of settling themselves on the fertile seaboard of the Atlantic, and forced the greater number of them to return to the homes which they had left. He attacked a noller foe in the Germans under Ariovistus, the friend of the Reman people, and in the neighbourhood of Muhlbausen cut them to pieces, and drove the few surrivors across the Rhine. This mighty stream now became tie boundary of the Roman empire. All central Gaul was quelled by his bold attack, and the Germans were cowed into quietude. lut the Belgæ, a mixed race of warlike qualities, remainej unsubilued. In the next year (57 b.c.) Casar marchec against them, and seattered their confederacy to the winds. The Nervii made a better stand, and Crasar was forced to expose his life, and to fight like a common soldier. But they, too, sustained a crushing deteat, and the submission of the Vencti and the const cantons to Publius Crassus left only the northerntribes, such as the Morini and Menapii, indenendent of the Roman rule. The work of Crassus had been imperiectly performe.t, and in the following sear (5y B.c.) the Veneti threw off the yoke. The whole cuast from the Lore to the Rume joined the insurrection. Casar hurried from Italy, and taking measures for the security of the north and seuth, prepared to attack the Vereti by sea. Victorious by sea as by laind by new and shalfu! dericu: be disabled their puwerful fleet, and suld the defeated captives into slavery to a man. The ilurmi and Menapa alone remand unconqucred, protectel more than any thag. else by the natural strength of their country. Casar wimed against then, but was forcell to desist from the attach. With this excepton, the whole of Giall lad been redaced to obedience in three campangs. Cwar mow turned his arms against the Germans. He cut to piects the Usipetes and Tenchteri, who had crossed the bower Jhine, after treacherously depriving them of fluir leaders, who had come of their own free will into his carnd. There is no excuse for this violation of international law, which was very propenly rebuked by Cato in the sevate; but Casar might have replied that the precedents of Roman history had not inculcated a spirit of fairness or forbearance towards alien enemies. He buitt a bridge across the Rhine, and remained eighteca days on the other kank. The same year (55 e.c.) witnessed his List expedition to Britain, whither he was led partly from curiosity, and partly by a desire to detah from the Ciltic confederacy a land which was?'e sure asylum of political refugees. The islanders made 3 hrave resistance, and Coser was compelled to retrez: Die
dias so much dissatisfied with the result of the campaign, that lic made great preparations for renewing the attack in 54 b.c. On this oceasion he penetrated further into the interior and crossed the Thames, but Cassirellaunus, to whom the dofence of his country lad been entrusted, followed the Roman army with his war chariots, and successfully sumeded their operations. Cæsar, before he left, imposed a tribute and demanded hostages, but it was difficult to conceal that he retired discomfited from a land which he bad to all appearance serionsly intended to subdue. The in :xt two years witnessed the final struggle of the Gauls so regain their freedom. Inspirited by the resistance of ino Germans and the Britons, and intlamed by the death of Dumnoris, they determined to make a sunultaneous ditack on the Poman garrisons, which this winter were sciatered more widely than usual. Q. Titurius Sabinus and L. Aurelius Cotta mere the first assailed. Deceived by Ambiorix, king of the Ebnrones, their whole division was annibilated. A similar attack was made upon Q. Cicero in the territory of the Nervii, but Cesar was near enough to bring assistance. The insurrection was checked and a terrible vengeance exacted from the Elurones. Aceo, prince of the Carnutes, was executed by tho vietors. His death spurred his tribesinen to greater exertions. In the winter of 53-52 B.c. they roused the spirit of their countrymen. The post of honour was held by the Arverni, under their prince Vereingetorix, an beroic leader, whose name casts lustre on this last.vigorous but hopless struggle. A new plan of dafence was adopted. Instead of defending every town against the Romans. it was determined to burn those places which could not be held, and to coneentrate their forees in those strong positions which gave a good hope of success. Thus the campaign elusters round the names of Avaricum, Gergovia, and Alesia. The first of these towns (Bourges) was taken in the spring of 52 b.c. The second, the-capital of the Λ rverni, was attacked by Cessar in vain, and an attempt to remedy the disaster led to a moro decisive defeat. The star of Cosir began to palc. The liredui, who had. before hesitated to join the insurrecfion, now avowed their hostility, and the whole nation rose liko one man to east off the yoko of the invader. The final strugglo.was concentrated round the hill-town of Alesia. Vereingetorix, faithful to his taeties, took refege leere with S0,000 infantry and 25,000 horse. Casar had been able to join his forces with Labienus, and invested the hill on every.side. The mighty masses of the Gallic landeturm crowded from all quarters to release their champion. Casar was at once besieger and besieged. In this supreme crisis his genius triumphed. The provisions of Alesia were exhausted. Cxsar repulsed the double attack on both his lines, and Vereingetorix, disdaining to fly, delivered himself into the power of his ennqueror. Had the result been otherwise, it is possible that Cossar might have been driven irom Gall, and the flods of barbarians pouring down over Italy would bave anticipated history by five hundred years. The following year (5l r.c.) saw the final pacification of the country. In eight ycars Cæsar had done bis work .most thoroughly. Gaul never afterwards attempted to revolt, but reruained a rich and contented member of tho Roman cmpiro. On no subject-country was impressed more completely the language, lars, and eivilization of its masters. If it had been possible so gradually to extend the bounds of Roman dominion as to convert dangerous hordes of undisciplined tribes into contented allies, Cesar shows us how it might have been done. Even the patriotism of an emperor of the French cannot but admit that it was better for his country that Cecsar should conquer than Vercingetorix.

Whilst Ciesar had been engaged in the conquest of Gaul, the bands which held the triumsirate together bad gradually become loosened. The three members of the coalition had
met ait Lucea in 50 k.c., and had arranged that Cexsar's command in Gaul should be cantinued for another nive years ; that Pompeius and Crizsus should be elected consuls for 55 b.c.; and that on the expiration of their'office Crassus should have Syria, for his prorince and Porapeius the-two Spains. - These arrangements were carried out, 'but in September 54 e.c. Julia, the danghter of Cæsar and the wite of Pompeius, died. A project for a double alliance of a similar hind was rejected by Pompeins. In 53 b.c. Crassus was slain in Parthia. In 52 e.c. jt became elear that Pompeius was asserting his indejcadence, was drawing nearer to Cato as an ally, and was becoming moro dispued to aet as the champion of the senate. From this time till the outbreak of the elvil war, it was more and more ovident that a collision betreen the two great rivals was inevituble, although Casar did his best to avert the catastrophe. The details of the final quarrel are complieated and difficult to understand. By the law of Vatinius Casar's command expired in 54 b.c., by that of Trebonius it was continued till 49 b.c. It is comparatively unimportant whether bis imperium would determine at the end of February or the end of Deecmber in that year. It had been arranged among tho triumvirs that Casar should bo consul in 48 b.c. Aecording to striet lioman law he must announce.bimself personally as a candidate. which he could not do whilst he was still in command of an army. Pompeius had, in in b.c., seeured to Cesar exemption from tho restriction'by a tribunician law, but there was some doubt whether this had not been rendered invalid by a subsequent enactment. In the samo year it had been deereed that no one should hold a governorshil until fire years had elasped from his laying down the office of consul or senator. In 51 b.c. the question of appointing a suecessor to Casar camo before the senate, and it was finally determined that his command shonld come to an end on the Ides of November, 49 b.c. The object of the senate was that some interval should elapse betreen Cæsar's consulship and proconsulship. - Casar knew that he could not trust bimself to the power of his enemies, but he displayed his usual morleration. He give up the two legions which were demanded from lim for the Parthian war, and by meíns of Curio, whom he had wou over to his side, be proposed to the scrate that Pompeius and himself should simultaneously disarm. To the surprise of the aristocratic party the motion was carried. Narcellus refused to accept the decision on the plea that Casar was bringing his army into Northern Italy. Ho called on Ponpeius to put bimself at the head of the legion in Campania, and declare war against the invader. Cesar made one moro ineffectual attempt at compromise. Tho propositions brought by Curio to the new consuls on January 1, 49 B.c., were contemptuously rejected, and Casar was peremptorily ordered to resign his command. Although le had only one legion with him at Mavenna L . conld not liesitate. Ile crossed the frontier of Italy, an arrived at Ariminum.

Casar crossed the Rubicon in the middle of January; 49 p.c., and he was murdered on the Ides of March, 44 e.c. During this space of a little over five years bo crushed in cvery part of Europe tho armies of his enemies, and lair? deep and strong the foundations of ihe imperisl power of his successors. He spent bsrely fifteen months of this time in Rome. He did not now, as his enemies ba! capected, march at oneo upon. the capital. He observed that a surer way lay open to bim of securing the possession of laly by scizing the central heart of the peainsula, whiej, in ancient as in modern times has held out delusire hopeto patiot people and rebclious kings of taming tho proar tyranny of the Tiber city. Here the solitary churci of s. Pelino marks the site of Corfinium, once the destined.

If Latia independence, and the city of Aquila languistus under the snows of the Gran Sasso d'Italia, a monument of the vain but chivalrous stingrgle of the emperors against the popes. Into these upland valleys, lying midway between the two seas, Cæsar dashed with irresistible force; and town after town fell before him and his lieutenants. Pompeius moved slewly towards Brundusium, whither he was followed oy the conqueror. Ciesar was unable to prevent the embarkation of his troeps for Greece, but when by the end of March he reached IRome he was already the undisputed master of Italy.

In his next operations Ceesar displayed to a marvellous legree his ability and resources; and showed how the success of his projects depended entirely upon his persenal exertions. His lieutcnants were seldem fortunate; but, like Napoleon, his presence was worth an army, and, like !rederick the Great, he knew how to spring at once from the deepest embarrassments to the triumph of victorg. At Ilerda his army was coeped up between two rivers, and all cummunication with Rome cut off. By a clever stratagem he surrounded Afranius and Petreius, and compelled thern to surrender. At Dyrrachium he was in a worse position, encamped on a barren ridge, encompassel by a far superior arry on the land side, and cut oft from the sea, which was in the power of his enemies. Even when be bad received bis reinforcements he could not hold his own against greater sumbers. Yet ho was able to take adrantage of the first mistake of Pompcius, and the victory of Yharsalus was crushing and complete. At Alexandria, where his stay is difficult to account for even by the attractions of Cleopatra, be nearly fell a victim to a popular tumult, yet be was no sooner extricated from his difficulties than be marched inte Asia, saw and conquered the son of the great Mithridates, and placed the affairs of the East on a basis of security. In Africa he had allowed the Pompeians to attain a dangerous efficiency of organization by his delay at Alexandria, and it was only through the extremest caution that he was enabled to assemble his tardy forces. But the battle of Thapsus deprived the senate of their last and noblest champion, and loft Cosar the master of the Roman world. The capitulation of Ilerda took place in August 49 b.c., tho winter of $49-48$ b.c. was passed on the coast of Illyria, the battle of Pharsalus was fought on August 9 , 48 b.c., and Pharnaces was defeated at Zela on August 2 , 47 b.c. Ciesar's stay at Fome was chequered by the mutiny of the legions in Campania, and the difticulty of assombling his troops; yet he was able to land in Africa before the end of 47 B.c., and he won the victory of 'Thapsus on April G, 46 b.c. In July of that year he entered Rome as conqueror, and could now find leisure to govern the world which lee had subined.

During four separate days he celcbrated four trimmphs over Gaul, Egypt, I'ontus, and Africa. Vercingetorix, who strucgled in vain to save his country, Arsinoe the sister of Cleopatra, and the son of Juba, king of Mauretania, followed his trimmphal car. The citizens were publicly feasted at the dictatior's expense, a distribution of money was made to the 1 oor and the strango magnificence of the games celebrated in memory of his daughter Julia fulfilled the promise of the splendone of his adileship. One more :truggle was necessary hefore peace was finally secured. The sons of Pompeius, Cnerus and Sestus, had cullected a large army in Spain, whicb had always been the stronghuld of their cange. The battle of Alandi, fought on March 17, 45 e.c., resulted in their cutire deleat, but Cicsar was compelled to te absent from the capital from the end of 46 B.C. tull September 45 e.c.

It may be questioned whether Ciesar was himself anxious to seccive the tithe of king, which his ahminers were mithout doult desirons tu fore unon him Such a titlo wenld
have added but little to his real power over every depart ment of the state. After the expuision of the kings the Roman constitution came eventually into such a form tha:, while every interest was represented, the whole power could never cume into the hands of one individual. The two consuls were a check upon each other, and they were themselves subordinate to the senate. The tribunes occupied an entirely different position to the other magistrates, and defended the interests of the mass of the citizens. The senate itself was controlled by the censor, and the working of the political machine was so ordered that a single magistrate could, either ly bis personal ohjection, or by a skilful use of divine sanctions, obstruct any measure of a rash or unusual character. The chief otticera of the state were occasionally suspended by the appointment of a dictator for estraordinary emergencies, but it. had probably never occurred to any statesman that the whole of these well-balanced and often conflicting authorities migbt come to he concentrated in the person of one man. let it was by these means that the republic became a monarchy, and that Ciesar became emperer. He was five times consul and four times dictator, and at his deatb was dictater elect for life. He had the tribunician pewer conferred upon him, which, among other advantages, rendered his person inviolable. Instead of the censorstip he was invested with the new office of prafectus morum, which he used to curb the luxury and extravagance induced by the influx of conquercd wealth. His opinion was, as priaceps senutus, asked first in the senate; bis cffgy was struck upon the coins. The exaggerated and half-divine honours which the servility of the senate invested added but little to his power, but the title of imperator, with which many a successful general bad been saluted on the field of battle, was now prefixed to his name as a permanent addition, and has remained, togcther with the family name of him who first bore it, as the title of higlest sovereignty throughout the civilized world.
The complex of anthorities thus placed in his bands he used. in a manner to justify the confidence of those who entrusted them to him. It is difficult to give an accurate account. of his administration. Nommsen, in the brilliant chapter which at present closes his history of Rome, has scarcely distinguished with sufficient care between Cæsar's intentions and his acts, and between his measures and those of his successors. Yet we have ample evdence that much was done and much more conceived. If we follow the authority of Suetonius we find that he reformed the calendar ly intercalating threc months in the year 46 , and making arrangements for the fature, which lasted unchanged till the 16 th century. He increased the number of the senate to nine hundred, and wade it nore theroughly representative of all classes and all parts of the empire. He increased the number of the magistrates, did his bust to heal the wounds left by the civil war, and reformed the conrts of justice. He confined donations of corn to the poorer citizens, and while by the rebuidding of Carthage and Curinth he found a refuge for many who wonld have starved at bonc, be did his best to prohibit absentecism, and to discourage the tillage of the soil of Italy ly slaves. He gave the rights of citizenship to men of science and to profesars" of hiberal arts, enforced the laws without favonr, and attempted with bittle success to restrain the lusury of the age. He proparcd the way for the work of his sucecssor, who fomd home of brick and left it of marble. Ho intinded to. colify the law, and to provide public libraties of Greck and Latin works, the care of which he entrusted to Varro, the most learned of tho Somans. He is credited with the design of draining the Pontine marshes, a work yet to be performed; of cenverting the Fucine late into a fertile plain, an enterprise begun by Clambins and completai by I'riuce Torlonia: of
pleanding the isthmus ot Corioth; of inaning a road from the Adriatic to the Tiber; and further, of subduing the Parthians, and returaing through Seythia and Germany into Italy, after extending the lixits of the empire to the stream of the ocean.
However this may be, it is certain that at the time of his death he was preparing an expedition against the l'arthians. It is useless to speculate whether his absence from the eity would bave been siort or long. There is evidence that he did not feel at bis ease in the capital, that be considered bis personal work to be accomplished, and that his plans could be better carried ont by his suceessor. Yet nothing can excuse the shortsighted wickedn niss and folly of those who murdered bim. We need not repeat the well-known story, how in the -Ides of Mareb, 44 в.c., Cæsar was murdered in a meeting of the senate, and fell at the feet of the statue of Pompeins, piereed with wounds from head to foot, only one of which was fatal. There is no reason to believe that the conspiracy had been long in preparation, or that it was motived on the one baud by a desire for personal aggrandizement, or still less, on the other, by a devoted patriotism. It began in spite, and continued in folly. A very slight degree of political furesight might bave coarinced those who assented to the plot that the people would not be on their side, and that they would precipitate the very conclusion which they desired to arert. Those who deified Brutus in the French Revolution kners but little of Roman history, or confounded him with the expeller of the Tarquins. Dante is a better judge, whose ardent love of liberty did nat blind hirn to the neeessity of a strong and united government for his native land. The dirine poet relates to us with an appalling realism, that in the centre of the earth, in the bottom of the pit of hell, Lucifer holds in his three months the three greatest malefactors tho world has ever seen,-Brutus and Cassius, who betrayed their sorereign and their country, and Judas Iseariot, who betrayed his Master with a kiss.

Under differeat circungistances Cæsar might have won as great a reputation as a man of letters as he has arquired as a general and a statesman. He was fully aware that a clange in the literary language of his countrymen was as necessary as in their governntent and constitution. The rude though vigorous dialect of Plautus, or even of Varro, was not snited to be the organ of civilization throughout a subject world. A widespread knowledge of Greek had made the Romans aware of their own deficiencies, and the united efforts of all men of culture to give form and refinement to the Latin tongue culooinated in the glories of the Augustan age. Cicoro and Livy, Virgil and Horace, have remained as examples of Latin style during the whole of the Clristian em. The language in which they wrote must have differed widely from anything which was spoken by their ronst cultivated contemporaries. It is not unreasonable to feel some regret that the cultivated language did not follow a course of developwoent more suited to its inherent character, and that Lucretius and Cessar were not adopted by the rhetorieians of the empire as models for precept and imitation. The exeellence of the Latin language lies in its colidity and precision; its defects lie in a want of lightness and tlesibility. Lucretius found it sufficient to express with admirablo clearness very complex philosophical reasoning, and Cæsar exhibited its excellencies in their purest and chastest form. It is a misfortune that tho Commentaries are not more often studied as a masterpiece of literature, that are relegated liy the irony of fortune to tho lower forms of schools. Their stylo is faultess, not a word is thrown nway or used with a donbtful meaning, every expression is in its place, and each touch serves to enhance the effect of
the whole Had Cxsar been writing history ustead of military memoirs, he might bave allowed bimself greater freedom of ornament. We know, from his treatise on grammar (De Analogia), oftea quoted by grammarians, that his success in literature was the result of careful study and meditation. As an orator he was acknowledged to be second to Cicero alone, and he is one of the few men in history who have quelled a rebellion by a speech.

In this sketch of Ciesar's life we have found but little to blame, and hare been able to add few shadows to the picture. The stories which the jealousy of contemporaries have preserved against him are too frivolous to be recorded, while the dignity, sweetness, and nobleness of bis character cannot be concealed. We bave preferred rather to attempt to construet from very imperfect materials some faint resemblance of the marvellous personality of him whom the genius of Shakespeare rightly recognized as "the foromost man of all this world."
The principal ancicot anthorities for the life of Cemar are the biographies of Plutarch and Suetonius, the letters and orations of Civero, and the Commentaries on the Gallic and Civil Wars written by or ascribed to Cxsar himself. To these may be added Appian's Civil IV'ar, Diod Cassius, Velleius Paterculus, Sallust's Catiline, the Epitomes of Liry, and Lucan's Pharsalta. His life has been perpetually narrated in ancient and modern times, and has been the battle-fietd of imperialists and republicans. For English readers, the account given by Merivale, looth in his Mistory of tho Romans under the Empire, and in the Full of the Roman Frpublic, is readable and adequate ; the fullest and furest examimation of the original suthorities is in Long's Dectine of the Romon Republic, rols. iiii.-v. The article in Smith's Bioyraphical Dictionary is excellent, but by far the most brilliant picture of Cesar's character and work is to be found in Mommsth's History of Rome (published 1856, translated into English 1566). Momusen is extremely favourable te Cersar, but unfair to lis opponents. The Histoire de Cesar of Nappleon 111, Which extends only to the outbreak of the civil war, is eqpecially valuable from the maps and plans which accompany it. The diermate student will find a full and ratisfactory repertory of all that is knowu about the subject in Dramsna, Geschichte Roms.
(0. B.)

C,ESAR, Sir Julus (1557-1636), a learned civilian, descended by the female lino from the Dukes do' Cesarini in Italy, was born near Tottenham in Middlesex. Ho was educated at Oxford, and afterwards studied at tho university of Paris, where in the year 1581 he was created doctor of the civil law. Two years later ho was admitted to the same degree at Oxford, and also became doctor nf the canon law. IHe held many high offices during the reigna of Elizabeth and James I., and for the last twenty years of lis life was master of the rolls. IIo was so remarkatle for his bounty and charity to all persons of worth, that it was said of him that be seemed to be the almonergeneml of the nation. Ilis manuscripts, many of which are now in the British Museum, were solla by auction in 1757 for 1 p , wards of $£ 500$. Ste E. Lodge, Life of Sir Julius Casar, 1510.

CASAREA, the namo of two towns in Palestine:-

1. Cesurea Palestina, notv Kaisaryah, tho Foman metropolis of Palestine, 30 miles north of Joppa, and about the same distance north-west of Jerusalem. It was built about 22 e.c. by IIerod, on the site of an earlier town called Turris Stratonis. Vast sums of money were spent in the erection of its more important buildings, among which were a temple dedicated to Casar, a theatre, and an amphitheatre. The most stupendous work, however, was the semicircular mole, constructed of tiamerise blocks of stone brought from a great distance, and sunk to the deptb of treuty fathoms in the sea. It protected the port on the south and west, leaving only a sufficient opening for vessels to enter from the north, so that within the enclosed space (which, according to Lieuterant Conder, measures 300 yards across) a fleet might ride in all weathers in perfect security The site of the citr is now marked by an extensire mass of ruins, among which mas still be traced the sulstructions of all the aborementional huildings, as will as thos re?
tho cathedral built by the Crusuacers, an old fortress on the site. it is supposed, of Herod's "Drusns tower," two aqueducts, and a variety of minor struetures. The line of the walls of the medieval town can still be made out, and is some parts that of the more exieasive Roman works. The southern part of the mole is also intact. Cessarea was made the seat of a colony by Veapasian, and took for a time the title of Flavia, but its carlier name was maintained to the time of its complete decay. In the 4th century it was the see of Eusebius, the church historian, and during the crusading period was one of the chief posts of the invaders.
II. Cesasre. Pehlippi, 95 miles north of Jerusalem, and sboat 35 south-west of Damascus, situated at the southern base of Mount Hermon, near one of the sources of the Jordan. It has been identified with Baalgad or Beth-Rehob, and was certainly known for a long time as Pauium or Panias, the cave at the font of the mountain being dedicated to Pan. Eerod erected a temple to Augustus in the neighbourhood; and the town was much enlarged and beautified by Philip the Tetrarch, who named it Cæsarea in hoaour of Tiberius the emperor, adding the cognomen of Philippi to distinguish it from the town last noticed. It continued to be a place of some importance till after the time of the Crusades, and wes successively the seat of a Greek and a Latin bishopric. Its aite is occupied by the modern Bâniâs or Panias, a paltry and insignificant village, with numerous ruins in the vicinity. On the top of a conical hill above the village atands the castle of Subeibeh, which possibly dates from the time of the Phœnicians, and has been one of the most remarkable fortresses in Palestine from that day to this.

CESAREA, or Kalsarien, a city in Asiatic Turkey, formerly one of the most important places in Cappadoeia, and at prosent the chief town of a sanjak in the province of Karaman, situated on the Kara-su, between two spurs of the Mons Argæus, in $38^{\circ} 42^{\circ} \mathrm{N}$. lat. and $35^{\circ} 20^{\prime}$ E. long. It is the oeat of an Armenian bishop, and the commercial centre of an oxtensive and highly populous district; its markets aro well supplied with European goods, and its inhabitants noted for their enterprise. Its principal manufactures are cotton and morocco leather. Recently it has become the scene of a considerable Protestant movement, and a girls' school, the first in the city, has been established. The ruins of an carlier Mahometan town are immediately contiguoue, and a little to the south are the ruins of the ancient city. The latter was known origiaally as Mazaca, and afterwards as Eusebia; and only received ite present name from the Emperor Tiberius. It was for a time the seat of the Cappadocian kings; but it suffered greatiy at the hands of Tigranes, who carried off its ininabitants to his now eity of Tigranocerta Under the later Roman empire it recovered to such an extent that it was supposed to contain 400,000 inhabitants when it was captured by Sapor in the reign of Valerian. The present population, of which about two-thirds are Turks and the rast mainly Armonians nond Greeks, is estimated at about 10,000.

Caffraria Soo Arrica (vol. i p.' 263) and Kaffrabia.

CAOLI (the ancient Calles); a walled town of Ttaly, in tha proviaco of Pesaro o. Urbino, at the couflucace of the Cantiano and Busso, the former of which is crossed there by an ancient Roman bridge It is the seat of a bishop, and has a cathedral and several churchas and monasteries, in one of which, Santo Domenico, is preserved a famnus fresco by Giovanni Santi, the father of Raffaelle. The prineipal occupation of the town is the manufacture of Ic.e.ser. Population 10,213.

CAGLIARI, the capital of the ishand of Sardinia, and shiei town of its southern prozince, is sitiated in the recess of the bay to which it gives its :ame, not far fren the
mouth of the Raver Mulargia, in $39^{\circ} 33^{\prime} 14^{\prime \prime}$ - $\mathrm{F} . \mathrm{lat}$. and $9^{\circ} 7^{\prime} 48^{\prime \prime}$ E. long. It has a spiendid appearaiice trom the sea, occupying as it does the slope and summit of a hill, which is crowned by a noble castle. This building gives the name of Castello, or, in Sardinian, Casteddu, to the district containing the vice-regal palace, the cathedral, the university, the theatre, the chief mansions of the nobility, and the public seminaries. To the west of the Castello lies the district of Stampace, with the Corso, and to the east that of Villanuova with its pleasant promenades, -both eonsisting for the most part of narrow, irregular, and in! pared streets, but the former inhabited by the wealthier citizens. The slope between the eastle and the bay is oecupied by the Marina, a well-built quarter, containing the residences of the merchants and consuls, the bonded warehouses, and the lazaretto; while to the west of the town is the spacious buburb of St Avandrace, nearly a mile in length. The university; which possesses tho four faculties of theology, law, medicine, and arts, was founded in 1596 by Philip of Spain, was restored in 1720 , nnd was remodelled in 1764. It has a library of 'upwards of 22,000 volumes, and numbers from 100 to 200 students. Besides the cathedral, which was built by the Pisans during the I4th century (though the present front only dates from 1703), Cagliari contains about thirty churches and tweaty convents, of which the Capuchin monastery is interesting for remains of Roman reservoirs. There is a considcrable museum both of antiquities and natural history, as well aq a recently erected observatory; and the benevolent institutions comprise an orphanage, and a large civil hospital, under the superintendence of a medical board and the sisters of mercy, with a separate wing set apart for the necommodation of lunatic patients. There are also in the town a mint, an extensive custom-house, and barracks. Cagliari is the see of an archbishop, and the eeat of the Sardinian Certes, and of the jndicial court for the eenthern division of the island. The bay, formed by the projection of Cape Carbonara, and Cape Pula, and stretching inland for a distance of 12 miles, with an extreme width of 24 miles, contributes greatly to the commercial inportance of the city; and the harbour, situated at the south angle of the wall of the Marins quarter, is one of the safest in the Mediterranean, being well aheltered from crery wind except the south. Frequent proposals have been made to extend the area by the construction of a breakwater, but this has not as yet been effected. Cagliari is the chief port of Sardinia, and possesses by far the greatest part of the export trade, which principally consists of corn, fruits, oil, wine, cork, lead, and a few native manufactures. Most important of the last class is salt, procured, at the rate of 683,000 quintals per annum, from the salt-pans to the west of the town. In 1873 the total value of exports from the province, most of which pass through the port, was £519,23.; while the imports of the same year were of the value of $£ 368,028$. There is regular steam communication with Naples, Leghorn, and Genoa, as well as less frequently with other ports. The railway from Caglinri to Iglesias, a distanco of $33 \frac{2}{2}$ miles, opens up the most important lead mines at present in operation, and a lina of $58 \frac{1}{2}$ miles leads to Oristaro. There is a submarine telegraph to Malta and arother to Bone in Algeria. The climato of the torn, in spite of the proximity of the ealt swamp already mentioned, is excellent; and water, the want of which was formerly severely felt, is now supplied by an English company. Population in 1871, 33,039 .
The modern city oecupies the site of the ancient Carales or Caralis, whieh was founded by the Carthaginisns, and pussed into the hands of the Romazs after the first Pnnie war. Of the huildings crected by the latter people there are several exteasive remains, - those of an anphitheatre cut ont in great part from the rock, a Iuge aque. duct, a circular to:ngle, ts.; while io the subu b of St ivandrace are
 cf atiliz Ponptilla is the civil war between Caser and Pompey, and durag the empre, Cagliari wasan mporant naral station; and, thoagb it never obtaned the status of a Koman colony, its inumbitants recsured the ne't of citmenshan Under Tiberius its mopulation sis augmented by the ustroduction of 4000 Jews, whose descendants were on!y expelied by the Spaniards 121392 . Atter the fall of the Westera emfure the ate continued under the Ven. dals io be the eapital of top ishand, end retained its importance daring the Middle Ages In 1353 i上e Genoese rere duzstrouy'y beaten in the veighbourng sea by the Aragonesg and the Venetigns. In 1708 the town was bownarded by the English ander Adnural Lake; un 171 it was captared hy the Sraniards; in 1779 it sutiered from a great famine; and in 1793 it ras bombarded by the French. From 1799 to 1815, while Saroy was in tie hands of the Frencin, Cushari afforded a residence to the :ang of Sardinia.

CAGLIARI, Paolo. See Veronese.
CaGLiOSTRO, Alessavoro, Coust (1743-1795), the arch-impostor of modern times, was born at Palermo in 1743. Joseoh Balsamo-for such was the count's real same-gare enrly indications of those talents which afterratds gained for him so wide a notoriety. He receired the rudiments of his education at the consent of Cartarirone; where, being employed to read to the mon's during dinner, be scandalized the good fathers by repeating the names and. Cetailing the adventures of the most notoriously profligate :emales of his nativo tumn . For these and similar misdeeds he was expelled from the convent and disowned by his rela. tions. He now signalized himself by the ingenuity with which he contrived to perpetrate crimes without exposing himself to the risk of detection. He began by forging tickets for the theatres; then he iorged a will; he next robbed his own uncle, and ultimatsly committed a murder. For the last affence he was imprisoned and brought to trial; but through a defect in the evidence, he esmaped with bis life. On his release he engaged a goldsmith, by name Xarano, to essist him un searching for a bidden treasure, Marano payng 60 oz . of gold in advance to defray cxpenses. On arriving at the cave where Joseph declared the treasuro to be, six devils, prepared beforchand, rusbed out upon the goldsmith, beat hin soundly, ani leit him insensible. Dreading the rengeance of Marano, Balsamo quitted Sicily, and risited in sriccession Grecee, Eyypt, Arabia, Persia, Rhodes (where be took lessons in alchemy and the cognate selences from the Greek Althotas), Malta, Naples, Viome, and Vensee. At Rome he married a beautsful but unprincipled woman, with whom he trarelled, minder a variety of names, through the rarious countries of Eurone. It is unnecessary to recount the varicus infamous means which he emploged to support himself during his travels. It Strasburg he reaped an abundant harvest by protessing the art of makiag old people young; in which pretension he was seconded by his wife Lorenza Felinani, who, though only twenty years of are, declared that she was sixty, and that she hid a son a reteran in the Dutch sermee. In Paris he was implicated in the affair of the dramond neeklace; and thourg he escaped conviction by the matchiess :mpudence of his defence, he was imprisoned for other reasons in the Bastille. On bis liberation he visited Engiand, where he succeeded well at first; but be was ultirnatels outwitted by some English lawyers, and mas confined for is while in the Fleet. Leaving England, be trarelled througl Europe till be arrived at Rome, where he mas arreoted in 1789. He was tried axd condemmed to death fo- benge a Rreemason, but the sentence was afterwards commuted to perpetual imprisonment. He died in the fortrese pmson of San Leo in 1795. The best account of the life, adventnrea, and character of Joseph Ealsamo is contanned in Carlyle's Miscellanies. Dumas's novel. Memonrs of a Piysician, is founded on his adrentires. Sce also a series of papers io the Dublin Cniversity siasazine, vols. Ixxviii. and Ixxix.

CA(BNOLA. LUIGI. MAPQTis 1762-1833). a celebrated architec: : : atre of Milar be age of
fourteen to the Clementine Coliece at Fiome, and astormand.? studied at the university of Puvia. He was intended fur the-legal profession, but his passion for architecture wes too strcng, and after holding some Guvernment posts at Milan, he eatered as a competitor for the construction af the Poria Oricntaln. His designs were commended, but sere act selected on accenme of the expeuse their adoption would hare insolved. From that time Cagnola dovoted tamself eatirely to architecture. After the deat'a of his father he spent two years in Verona and Vencee, studying the architectural structures of these cities. In Is06 he was called apon to crect a triumphal arch on the cccasion of Engene Beanharnas's marriage with the prineess of Bararia. The areh was of wood, but was of such beauty that it was resolved to carry it out in marble. The rusult weas the magaificent Areo delis Pace us Midan, one of ina grandest ercetions of modera architeciure, surpassed in linensions only by the Are de l"Étuile at Paris. Amonir other works exeuntec by Cibunda are the Porta di Marengo at Milan, the Companile at Lrgnano, and the chapel of Santa Mar. cellina m Milan. Ihe ated on the 14 th of August 1833.

C:ICOIS, a people found in the Basque provinces, Bearn, and Gascony. Duriag the Middle Ages they were popularly loobed upon as crétins, lepers, hereties, and oren as cannibals. Entirely excluded from all political and social rights, they were not even allowed to enter a clureh but by u epccial door. or to remain except in a part where they were carefully secluded from the rest of the worshippers. To partake of the mass was never permitted them. They were compelled to wear a distinctive dress, to which, in some places, was attached the foot of a goose or dnck (wheace they were sometmes called Canards).. And so restilential was thear touch considered that it was a erime for them to walk the common road barefooted. The only trades allowed them were those of butcher aud earpenter, and their ordinary ocenpation was wood-cutting. Their daognage is merely a co rupt form of that spoken around theut but a Teutonic orign seems to be indicated by their far complexions and blue eyes. Their erania bave a normal development ; then cheek-bones are high; their noses promment, with large nostrils; then lips straiglat, and they are marked by the absence of the auricular lobules. Lpun the last peculiarity great siress is laid by ant hropologista, aud it is hald to pent to a Gotbic origin. The common opmion of authorities is that this people are descendants of the Visigoths, and M. Michel derives the name from cacw (dog) and Goth. But opposed to this etymoligy is the fact that the word cagot is first found in the for of Béarn not carher than 155l, while the older MSS. call these neoples Chrithens. or Chrestiaas, a term whicb, on the lypothesis, would have its orign from the fact that these Visigoths, left behand in Dybitane, were Chistians, while the Gascons mere still I'agons. On the contrary, M. Darca, in his Huslozre de Dearn, helds that the word sigoities "hunters of the Goths," and that the Cigots are descendaots of the Saracens. Again, some mould make them descendants of the Albigenses; others of crétins (they are sometimes called Crétins) ; and others of lepers, declarlog ther ame to be connected with the Celtic caccod and the Spanish gafo. In the laws of Navarre (1704) ther are indeed styled gaffos, and treated as lepers; but in those of Bearn, they are clearly distinguished from Phom.

Small commonities, believed to he of the same race, and existing in a similar sacial condition, being classed with them as "les races moudites," are to be found in Maine, Anjou, Foitou, and Aums, under the name of Colliberts (a frord said by Dueange to be derited from cam and ikprotis, and signifying "neither free nor sleve"; ; in Britaly. under the names Cahets Caqueux, Cacous,

Laquins, or C'acvas; in Auvergae, uncer that of Drarrons. Considerable numbers of the Colliberts atall live in the Marais mouillés de la Sevre; and the Cagots may be found round Jaca, in Guipuzcoa, in Navarre, at Cherbitua d'Anhauze in the valley of Azun, near Saint-Jean-Pied-dePort and Saint-Jean-le-Vieux, and in the villages of Agotetchiac, Tailhapé, and Ainchicharburu, but in largest aumbers in Labour, in the Basque arrondissement of Bayonne.
See Michel, IIstoire des raccs maudites; L'Abbé Venuti, Reeherches sur les Cahets de Bordeaux, 1754; Bulletins de la Sociéte Anthropologique, 1861, 1867, 1868, 1871; Annales medico-psychologiques, Jan 1867 ; M. Lagoeau, Questionnaire sur l'ethnologic de la Franca
CAHORS, a town in the south of France, formerly the capital of Cahourcin or Upper Quercy, and now of the department of Lot, on the high road between Paris and Toulouse, 358 miles S.IV. from Paris, and 60 miles north of Toulouse, in $44^{\circ} 27^{\prime}$ N. lat., $1^{\circ} 24^{\prime}$ E. long. It stands on the right bank of the River Lot, on a rocky peninsula formed by a bend in the stream, and communicates with the opposite shore by three bridges,-one, the Pont Valendre, built in the 13th century, and surnounted by three massive towers. In the more ancient part of the town the streets are narrow and the bouses antique; but in the modern and more elevated quarter there are many bandsome buildings, with terraces which command an extensive view. The most remarkable building is the cathedral, built in the 11th or 12th century, and occupying the site, if not actually consisting of the remains, of an ancient Roman temple. Besides it, there is the theological seminary, the prcfecturo (formerly an episcopal palace), an academy, a theatre, a public library, and a monument crected to Fenelon in front of the cathedral. Cahors is the see of a bishon, and the seat of judicial and commercial tribunals of the first class. Its university, founded by Pope John XXII. in 1332, was incorporated with that of Toulouse in 1751. The principal articles of manufacture are stoneware, cotton-jarn, woollen stuffs, and paper; and it bas a considerable traffic in oil, hemp, flax, hides, truftles, and a strong deeply-coloured wine, which is made in the neighbouring districts. PopuIntion of the town in 1872, 13,061, and of the commune 14,593.

Cahors is the ancient Divona, afterwards called Civitas Cadurcorum, from the Celtic tribe of which it was the capital, and still ex. hibits traces of its greatness during the Roman sway. The most conspicuous remains are those of an immense aqueduct, which conveyed the water to the city from a distance of about 19 miles by a precipitous route along the mountain sides, and crossed the valley of Larroque-des-ares on a bridge 180 feet high. There are also remains of baths and a theatre, a marble nltar in front of the prefecture (erected, according to the inscription, in hononr of Lucterius Leo); and a celebrated fountain, supposed to be the fountain Divona, and now called Des Chartreux; from the Carthusian convent to which it has been attached.
After the decline of the Roman empire Cahors passed in succession into the hands of the Goths tho Franks, the Saracens, and the Normans; and in the 12 th century it was the subject of severe fighting between the English and French. In 1572 the Protestant party io the town were strong enough to prevent their fellow-citizens following the example of Pars; and yet a few years later, in 1580, ree find the opposition to Henry of Navarte so violent that he only made himself master of the place after aeveral days of conflict. The lishops of Cahors, who date from the 4th century, had formerly also the title of count, and uscal to lay their sword and gauntets on the altar when about to officate. During the Middle Ages the town is maid to have been agreat seat of the Caorsini (Casertschen or CauderWalsche), who preceded tho Lnmbards as usurers and moneychangers,

See Chaudrue de Crazannes, Coup d'eil sur les monuments histor. iques the departement du Lot; Dufour, La communc di Cahors au noyon age, 1846.

Callle, Nicolas Louis de la. Sce lā Cailde.
CAILLlA, or Calllé, René (1799-1838), a French waveller in Africa, was horn in 1793 at Mauze, and died in 1838. TTis schend cducation extended no farther thar
reading and writing; and at the age of sixteen be commenced his career by a voyage to Senegal. Dut already Robinson Crusoe had kindled within him an enthusiastic admiration for the life of the discoverer; and in 1827, having collected 2000 francs by toiling on an indigo play. tation, he set out on his most important mission. From Kakundy he travelled east by Cambaya, Kankan, Time, and Tangrera, and nortb-east by Donasso as far as Galia, through a hitherto unvisited district; and from Galia be passed through the country explored by Mungo Park to Timbuctoo, which be reached on April 20, 1828. He thus won the prize of 10,000 francs offered by the Geographical Society of Paris to the first traveller who should gaia exact information of Timbuctoo, to be compared with that given by Mungo Park. He also received the order of the Legion of Honour, a pension, and otber distinctions, and it was at the public expense that his Journal d'un Foyage a Tembouctou et Jenné dans l'Afrique Centrale, dec, was published in 1830 .

CAIN, the eldest son of Adam and Eve according to the narrative of the Jehovist (Oten. iv.) Various derivations of the name bave been suggested, the most probable being from π ה, ${ }_{1}$, " to obtain," the word used in Gen. iv. L: "Eve bare Cain, and said, I have gotten a man from the Lord." According to the Biblical narrative (Gen. iv.) Cain was a tiller of the ground, while bis younger brother, Abel, was a kceper of sheep. Enraged at the acceptance- of Abel's offering by the Lord, and the rejection of his omn, be slew bis brother in the field. For this a curse was pronounced upon him, and he was condemned to be a "fugitive and a vagabond" on the earth, a mark being set upon him "lest any finding him should kill him." He took up his aborle in the land of Nod, on the east of Eden, where be built a city, which he named after his son Enoch. The narrative presents a number of difficultics, which commentators have sought to solve with more ingenuity than success. On the reason for the preference of Abel's offering to Cain's some light is thrown by the references in the New Testament (Heb. xi. $4 ; 1$ John iii. 12). The phrase "the Lord set a mark upon Cain" is pcrbaps more aecurately rendered "the Lord gave a sign to Cain," and bas been variously explained as referring to some pledge of safety given to Cain personally, or to some sign of warning and prohibition to mankind in general. There is an apparent contradiction between the condemnation of Cain to lead a nomadic life (ver. 12) and his subsequent settlement in a city, which it has been sought to reconcile by making the doom refer to the natural restlessness of the criminal and estrangement from the Adamic bome. The endeavours that have been made to fix the precise locality of the land of Nod are based upon mere conjecture. The implicd existence of a considerable population on the earth (ver. 14) furnishes another difficulty, of which no explanation that has been offerd seems completely satisfactory. The parallelism between the list of Cain's descendants (Gen. iv. 18) and the list of the descendants of Seth (Gen. v.) has led several crities to identify the tro, though it is denied by others that the mere similarity of the names gives any reasonable ground for doing so. ${ }^{\text {on }}$

A Gnostic sect of the 2d century were known by the name of Cainites. They are first mentioned by Irenaus, who connects them with the Valentinians. They beliered that Cain derived his existeace from the superior power, and Abel from the inferior power, and that in this respect be was the first of a line which included Esau, liorah, the Sodomites, and Judas Iscariot.

CAIRN (in Welsh, Carne), a heap of stones piled up in a conical form. In medern times cairns are often crected as landmarks. In anciont times they were cerceted as scpulchral monuments or tribal and family cemetanics.

The Duan Eireanach, an ancieat Irish poem, describes the erection of a family cairn; and the Seichus Mor, a collection of Irish laws ascribed to the 5 th century, prescribes a fios of three three-year-old heifers "for not erecting the comb of thy chief." Meetings of the tribes were held at them, and the inauguration of a new chief took place on the cairn of one of his predecessors. It is mentioned in the Annals of the Four MAasters that, in 1225, the O'Connor was inaugurated on the cairn of Fraech, the son of Fiodhach, of the red hair. In mediæval times cairna are often referred is as boundary marks, though probably not originally raised ior that purpose. In a charter by King Alexander II. (1221), grantiag the lands of Burgyn to the monks of Kinloss, the boundary is described as passing "from the great oak in Malevin as far as the Rune Pictorum," which is explained as "the Carae of the Pecht's fieldis." In Highland districts small cairns used to be erected, even in recent times, at places where the coffin of a distinguished person was "rested" on its way to the churchyard. Mcmorial cairns are still occasionally erected, as, for instance, the cairn raised in memory of the Priace Consort at Balmoral, and "Maule's Cairn," in Clenesk, erected by the earl of Dalhousie in 1866, in memory of himself and certain friends specified by oame in the inscription placed upon it. See Barrows.

Cairnes, Jorn Elliott, a distinguished political economist, was born at Drogheda in 1824, and died on the 8 th July 1875. After leavirg school he spent some years in the counting-house of his father, who was an extensive brewer. His tastes, however, lay altogether in the direction of study, and he was permitted to enter Trinity College, Dublin. .He took the degree of B.A. in 1848, and six years later commenced as M.A. After passing through the curriculum of arts be engaged in the study of law and was called to the Irish bar. But he docs not appear to have felt any very strong inclination for the legal profession, and during some years he occupied himself to a large extent with coatributions to the daily press, treating of the social and economical questions that affected Ireland. The subject to which at this time he devoted most attention was political econony, which he studied with great theroughncss and care. While residing in Dublin be made the acquaintance of Archbishop Whately, who conceived a very bigh respect for his character and abilities. In 1856 a vacancy occurred in the chair of Political Economy at Dublin founded by Whately, and Cairnes reccived the appointuent. In accordaace with the regulations of the foundation, the Icctures of his first year's course were published. The book appeared in I857, with the title Character and Loyical Method of Political Economy, and did not, perhaps, reccive so much attention as it deserved. It follows up and cxpands J . S . Mill's treatnent in the Essays on some Urasettled Questions in Political Economy, and forms a most admirable introductien to the study of economics as a science. In it the author's peculiar porecrs of thought and expression are displayed to the best advantage. Logical exactucss, precision of language, and firm grasp of the true nature of cconomic facts, are the qualities characteristic of this as of all his other works. If the book had done nothiag more, it would still have conferred inestimable bencfit on political economists by its clear exposition of the true nature and aneaning of the ambigueus term law. To the view of the province and method of political economy expounded in this early work the author always remained true, and several of his later essays, such as those on Political Leonomy and Land, Political Economy and Laisse-Faire, are but reiterations of the same doctrine.

His next contribution to economical science was a series of articles on the gold question, published partly in Fraser's Magazine in which the probible eonsequences of the in-
creased supply of gold attendant on the Australian ar.,? Californian gold discoveries are analyzed with great skill and ability. The general conclusions arrived at in these papers with regard to the effects of the depreciation of gold-that finished manufactures would be on the average least altered ia price; that raw produce, particularly the portion derived from the animal kingdom, would be most seriously affected; and that, on the whole, the section of the popalation most nearly concerned in the movement would be the class of labourers or artisans-are highly interestiog, and have been confirmcd to a remarkable extent by recent statistical researches. The further inferences drawn as to the international results Likely to follow on the introduction into the several currencies of so large a mass of gold have not been borne out to the sanie extent. The facts were too comples to admit of accurate prediction. The articles attracted much attention at the time, and were highly commended by the most competent judges. A critical article on M. Chevalier's work On the Probable Fall in the Value of Gold, which appeared in the Elinburgh Revieco for July 1860, may be regarded as the scquel to these papers.
In 1861 Cairues was appointed to the professorship of political economy and jurisprudence in Queen's College, Galway, and in the following ycar he published his admirable work The Slave Pouver, one of the finest specimens of applied cconomical philosephy. The inherent disadvantages of the employment of slave labour are exposed with great fulness and ability, and the conclusions arrived at have taken their place among the recognized doctrines of political economy. 'To a very large extent the opinions expressed by Cairnes as to the probable issue of the war in America were verificd by the actual course of events.

During the remainder of his residence at Galway Professor Cairnes published nothing beyond some fragments and pamphlets, mainly upon Irish questions in which ho was decply interested. The most valuable of these papers are the series devoted to the consideration of university education in Ireland. His health, at no time vcry good, was still further weakened in 1865 b ; a fall from his horse, which inflicted sevcre injury on one of his legs. He was ever afterwards incapacitated from active exertion, and was constantly liable to have his work interfered with by attacks of illness. In 1866 he was apnointed professor of pelitical economy in University College, Londun. He was compelled to spend the session 1868-69 in Italy, but on his return continucd to lecture till 1872 . During his last session he conducted a mixed class, ladies being admitted to his lectures. His bealth soon rendered it impossible for him to discharge his public duties; he resigncd his post in 1872, and retired with the honorary title of Erueritus Professor of Political Economy. In 1873 his own unisersity conferred on bim the degree of LL.D.

The last yeats of has life were spent in the collection and publication of some seattcred papers contributed to various reviews and cuagazines, and in the preparation of his most extensive and important work. The Political Essays, published in 1873, comprise all the palers relating to Ireland and its university system, togethor with some other articles of a sunewhat similar nature. The Essays in Political Economy, Theoretical and Ayplied, which appeared in the same year, contain the essays towards a solution of the gold question, brought up to date and tested by comparison with statistics of prices. Among the coler articles in the volume the more important are the criticisms on Eastiat and Comte, and the Essays on Political Economy and Land, and on Political Economy and Laissez: Faire, which have been refcrred to above. In 1874 appeared bis largest work, Some Leadivg Principles of P'olitical Fcrnom", veolu Exrmunderd, which is beyond doubt a
worthy successor to the great treatises of Smith, Maltaus, R:cardo, and Mill. It does not expound a completed aystem of political economy, many unportant doctrines are left uatouched; and in general the treatment of problems is not such as would be suuted for a systematuc manual. The work is essentally a conmentary on some of the priacipal doctraes of the English school of economists, such ay ralue, cest of production wages, labour and capital, and international values, and is replete with keen criticism and lucid illustration While in fundamental harmong with Mill, espectally as regards the geaeral coaception of the ecience, Cairnes differs from him to a greater or less extent ou nearly all the cardiaal doctriacs, subjects his opinions to a searching examination, and gencrally succeeds in goving to the truth that is common to both a firmer basis and a more precise statement. The last labour to which be devoted bumself was a republication of bis first wark on the Logrcal Method of Political Economy, which hal long been out of print. The secoad edition appeared io April, a few months before the sutbor's untimely death.

Taken as a whote the works of Cairnes form the most is portant contribution to economical science made by the English school snace the publication of J. S. Mill's Principles. As bas been siready pointed out, they possess espectal value by reason of the writer's firm graspof the nature, method, and limits of the science he is engaged in expounding It is not possible to indicate more than geverelly the special adrances in economic doctrine effected by him, but the following points may be woted as establishiag for bim a claim to a place alongaide of Ricardo and Mill :-(1.) His expesition of the province and method of political economy. He never suffers it to be forgotten that political economy is a scence, and coasequently that its results are entirely neutral with respect to social facts or systems. It has simply to trace the uecessary connections among the phenomena of wealth, and dictates no rules for practice. Further, be is distiactly opposed both to those who would treat political economy as an integral part of social philosophy, and to those who have attempted to express economic facts in quantitative formulw, and to make ecooomy a branch of applied mathematics. According to him political economy is a mized 6 cieace, its field being partly mental, partly pbysical. It may be called a positive science, because its premises are facts, but it is hypothetical in so far as the laws it leys down are only approximately true, i.e., are only ralid in the abseace of counteracting agencies. From this view of the aarure of the science, it follows at once that the method to be pursued must be that called by Mill the Phyaical or Concrete Deductive, which starts from sertain known causes, investigates their consequeuces, and verifies or tests the result by comparison with facts of experience. It may, perhaps, be thought that Carnes gives too little sttcation to the effects of the organism of society on economic facts, bad that he is disposed to wverlook what have recently been called by Mr Bagehot the postulates of political economy (2) His analysis of cost of production in its relation to value. Accordiag to Mill, the universal elements is cost of production are the wages of labour and the profits of capital. To this theory Cairaes objects that wages, being remuneration, can ta no seare be considered as cost, and could only have come to be regarded as cost in consequence of the whele problem being treated from the pont of view of the capitalist. to whom, no doubt, the wages paid represent cost. The real elements of cost of production he looks upon as labour, abstinence, and risk, tho second of these falling mainly, though not necessarily, upon tho mpitalist. In this analysis he to a considerable estent follows and improves upon Senior, who had previously defined cost of proAnation as the sum of the labiur and abstincnce neces.
sary tu production (3) His axym of the ataral or social hmit to free cumpentisis, dul of its veangg on the theory of value He punsis out that in any organzed soclety there can hardly be the ready transierence of capital from one employment to asother, which is the indaspensable coadition of free compention; whle class distinctious render it impiossible for labour to transfer itself readily to vnew occupations. Society may thas be regarded as consisting of a series of not-competing industral groups, with free competition among the members of any one group or class. Now the only condition under which cost of production will regulate value is perfect compention. It follows that the gormal value of comenodites-the value which gives to the producers the average and usial remuneration-wil depead upon cost of production only when the exchange ts contined to the members of one class, among whom there is free competition. In exchange betwèen classes, or noncompeting industrial groups, the normal value ts eumply a case of iaternational value, and depeads upon reciprocal demand, that 15 to say, ls buch as will satisfy the equation of demand. This theory is a substantial contribution to economical science, sad throws great light upon the genera! problem of value. At the same time. it may be thought that Cairnes has overlooked a poist brought forward promineatly by Sentor, who also had called attention to the bearing of competition on the relation between cost of production and value. The cost to the prodacer fixes the limit below which the price cannot fall without the oupply being affected; but it is the desire of the consumer-z.e., what ho is willing to give up rather than be compelled to produce the commodity for humself-that fixes the maximum value of the article. To treat the whele problem of natural or normal value from the point of vew of the producer is to give but a one-sided theory of the facts. (4.) His defence of the wages fund doctrine. This doctrine, expounded by Mill in his Princeples, has not been universblly accepted even by British economusts, and has recently been assauled with great vigour by Thernton and F. D. Longe. In consequeuce of these attacks it has been relinquished $\mathrm{l} ; \mathrm{F}$ Mill, but Cairnes still undertakes to defend tt. He certainly succeeds in remoring from the theory much that bis tended to obscure its real meaning, and is placing it in its very best aspect. He has also shoma the sense in which, when treatug the problem of wages, we must refer to some fund devoted to the payment of wages, and has pointed out the conditions uader which the wages fund may increase or decrease. But be has aot, it seems to us, been successful in showing that the theory is frutful, or gives any satisfactory explanation of the many complicated questions connected with the varying rates of wages.

These points, of course, do not comprehead all or nearly all that Cairaes has handled in his peculiarly frest and sutractive manner. The Leading Principles, for inssance, contain admurable discussions on trades unions and protection, together with a clear snalysis of the difficult theory of international trade and ralue, in which there is much that is both novel and valuable, while numerous minor topics are treated throughout the volume. The Logical Method coataras the best exposition and defence known to us of Rucardo's theory of reat; and the Essays contain whet is probably the most complete and successful criticism of Bastiat's economic dectrines.
(R, A. .)
Callngorm, or Cairngorum, a name popularly applied to a wine-gellow or browa variety of rock crystal found, among other localities, on the Grampian Mountains is the south-cast of Bantishire, Scotland, the central peak being called Carrugorm. The colour of the crystals, which is duc to a manute proportion of iroa oxide, varies, passin: through those above noted as belonging properly to cairngorras. wto a dull grey. stinkv quartz, nud to a blaciz.

Friety, called morion. The same stone is found in commeree passing under the mames of false topaz, Brazilian topaz, occidental topaz, and cinuamon stone (pierre de cannelle of the Freneh). It is found in many parts of the world, Brazil producing the finest deep brown varieties; but fine stones also come from India, Bohemia, Mexico, and Yennsylvania. It is also found at the Carnbrae Mines, in Cornwall. In the cairngorm district masses weighing as much as 25 th have been obtained, and an Edinburgh lapidary eut uearly $£ 400$ worth of ornamental stoues out of a single crystal. The eairngorm is ehietly used for Seotch jewellery, the mounting of gold and silver plandbrooches, setting in the lids of snufi-mulls, the handles of dirks, ice., and the oruamentation of other artieles connected with the Highland costume. The stones are most effeetively set by covering the undersets entirely with oblong facets arranged in regular rows, surrounding the table with triangular faeets and keeping the stone as thick as possible. By this means great brilliancy combined with depth of colour, is secured
CAIRO (in Arabic, Mist-al-Kahira, or, as the lower classes of the population call it, simply Masr), the modern capital of Egypt, oceupies the natural centre of the country,

Ground-Pian of Cairo.

1. Rarameydan (Place Mebenet All
 . Rosctti Gardeus
 Post-Otice

ง. French Thestro
3. Opera llomar.
6. Eqgish and German Cburchea.
being situated on the east bank of the Nile, 12 niles above the apes of its delta, 150 miles by rail from Alexandria, and 80 west from Suez, in $30^{\circ} 2^{\prime} 4^{\prime \prime}$ N. lat. and $31^{\circ} 15^{\prime}$ $26^{\prime \prime}$ E. long. It is built partly on the phain and partly on the lower slopes of the roeky range of Mlokatem, on a spur of whieh stands the citadel, 250 feet above the lerel of the town. The prospeet from the ranplarts of this fortress is one of great magnificence and beauty. Below lies the city with its strongly-huilt walls and lofty towers, its gardens and squares, jts pahaces, and its mosques, in all the beanty of their delicately-earred domes and minarets covered with fantnstic tracery, the port of Bulak, the gardens and palace of Shubra, the liroad river studded with islands, the valley of the Nile dutted with groups of trees, with the pyramids
on the north horizon, the fietds, gardens, and villas on tho west, and on the east the barren eliffs, backed by an ocean of sand.
As far as the portion within the walls is concerned, Cairo oceupies a site of about seven miles in eircumference; but during the reign of the khedive (properly hidiv), whe was born in the city in 1830, it has extended, especially towards the river, so as to have a circuit of at least 8 or 9 miles. Its impro:ement has kept pace with its extension, and it ean no longer be altogether deseribed as little better than a labyrinth of tortuous lanes, narrow, unpaved, and continually swept with clouds of dust blown from huga mounds of rubbish outside the walls. New streets have been cut through the more crowded districts; and the Ezbekeeyah, the principal square of the city, which was forinerly allowed to lie waste, has been transformed inte publie gardens with a lake in the centre, while houses and shops of considerable pretensions bave sprung up in the neighbourhood. Most important of the new streets is the Boulevard Mehemet Ali, which traverses the eity in aio almost tortherly direction from the Citadel to the Ezbe. keeyal. Detween the western side of the older eity and the river most of the ground has been laid out in building lots, and in various parts, as particularly in the direction of Bulak, it is already covered with regular rows of houses, and forms the district of Ismalleeyah. Bublk, in fact, is not so much a distinct town as a nere suburb of the larger city. Gas Las been laid down in all the pincipal streets, and water is supplied by a company to the houses of all those who comply with the necessary regulations. In spite of all these innovatious, however, the city largely retains its Oriental character, and in a hundred of its nanrow streets it is easy to forget that any ehange at all has taken place.

The most of the houses of the poorer classes consist of miserable mud bovels, with filthy courts, dilapidated windows, and tatered awmeng. In marked contrast to these ore the lhouses of the wealthijer citizens, tuilt generally in a style of elaborate arabesque, the windows sladed with projecting cornices of graeeful woodwork, and ornamented with stained glass. A winting prassnge leads through the ornamented doorway into the comit, in the centre of which is a fountain shaded with palm-trees. The principal apartuent is generally paved with marble; in the centre as decorated lantern is suspended over a fountain, what round the sides are richly inlaid cabinets and windows of stained glass; and in a recess is the diven, a low, narrow cushioned seat ruuning round the walls. The basement story is generally built of the soft calcareous stone of the neighbouring hills, and the nalper story, which coutains the harem, of painted brick.

The town is walled off into quarters, deriving their names from the character or condition of therr occupants, and is intersected in its whole breadth ty a canal whinch conveys the waters of the Nile from Oll Caire to the df. ferent parts of the eity. The citadel or El-Kalah was Luit by Saladin about 1166 , but it has since undergene frequest alteration, and now contains a palace erected by Nelenet Ali, and a mosque of Oriental alabaster founded by the sarme. pasha on the site of "Joseph's Hall." In the centre as a well ealled Josepl's Well, sunk in the solid roek to the level of the Nile. Nest to the eitadel in importance are the mosques, 400 in number, ineluding, however, many that are falling to ruins. The most magnificent is the Mosque of Sultan Hasan, standing in the immediate vicinity of the citadel. It dates from 1357, and is celebrated for the grandear of its porch and corniec, and the delicate honeycomb trucery which adorns them. Besides it there is the Mosque of Tulun (founded 879 A. D^{\prime}), exhibiting very ancient speeimens of the pointed arch; the Mastie of Sultan th

Hakem, the fanatical patron of the Druzes, founded in 1003, the Mosque Al Azhar ("The Splendid"), which $1 s$ priacipally famous as the seat of a Mahometan university, in which gratuitous instruction is given in the Kuran; and the Mosque of Sultan Kalaoon, attached by its founder to the great Mooristan or madhouse, whicl he established in 1287. The Mooristan is no longer used for its original purpose, having beea superseded by an asylum at Bulak. There is also a large general hospital situated between Bulak and Old Cairo, under the charge of uative doctors.
On the east of the city are the splendid structures erroneously known to Eurepeans as the tombs of the caliphs, they really beleng to the Circassiaa or Borgite Mamelukes, a race extinguished by Mebemet Ali. Their lofty gilt domes and fanciful network of arabsque tracery are falling to ruins, and the mosques attached to them are the baunts of a few solitary sheikbs, and of bordes of Arab beggars.
Among the buildings which owe their existence to modern European influence, the Italian opera, the French theatre, and the hippodrome may be mentioned. In Bulak is situated the Government printing-press, established by Mehemet Ali, from which numerous Oriental works and translations of French originals are issued from time to time ; and in a building by the river side is accommodated the unrivalled collection of Egyptian antiquities made by M. Mariette for the khedive. The manuscripts which were formerly scattered among the various mosques and other institutions were recently collected to form a public library in the palace of the Darb Algamâmîz or Sycamore Street. The eatalogue already occupies 333 pages, and the collection is especially rich in copies of the Koran and works of grammatical exegesis. In 1875 a geographical society was founded by the khedive for purposes of African discovery. A few periodicals are published in the city, but in this respect Cairo is muct bebind Alexandria. The sohemo of public instruction is mainly that which was organized by Pfehemet Ali, and embraces primary, preparatory, and special schools. In 1872 there were 1025 students and 141 teachers in the Government colleges, and the national schools were attended by 4721 pupils, while in the Mosque Al Azhar 6774 were enrolled. The higher scholastic institutions comprise a commercial and a juridical school at the Darb Algamamiz, a school of arts and industry at Bulak, and military achonls at the Abbasseeyab. There are several Christian churches and missionary stations in the city, and most of these maintain some educational machinery, so that there are Armenian, Greek, Coptic, Roman Catholic, and Protestant schools. Of special interest to Englishmen is Miss Whately's institution in the Abbasseeyab read.
The commerce of Cairo is of considerable extent and variety, but consists mainly in the transit of goods. Gum, ivory, hides, and ostrich feathers from the interior, cutton and sugar from Upper Egypt, indigo and shawls from Iadia and Persia, sheep and tobacco from Asiatic Turkey, and European manufactures, such as machinery, hardware, cutlery, glass, and woollen goods, are the more important articles. The traffic in slaves, which was at one tine so striking a feature of the place, is still carried on to a certain extent. In Bulak are several factories founded by Mebemet Ali for spinuing, weaving, and printing cotton, and a paper-mill established by the khedive in 1870 at a cost of about $£ 80,000$. Various kinds of paper are manufactured, and especially a fine quality for use in the Goveroment offices. In the island of Rhoda, or Roudah, there is a sugar-refinery of considerable estent, founded in 1859, and principally managed by Englishmen. Silk goods, saltpetre, gunpowder, leather, \&c., are also manufactured. An iron bridge has been erected over the Nile be'ween the Vasr ed Dubbara on the right bank and

Gezirah on the leit; and new carriage toads, bardered by aciacias and syeamore trees, have been constructed ic Helopolis and the pyranids of Gizeh reapectively. Tir terminus of the rallway lines of the delta and isthmus is situated to the north of the city, but the Upper Egypt liut stops short on the left bank of the river at Embabab oppositu Bulak, and the trans have to be taken across by 5 ferry.

From the central situation of Cairo, and its proximity te the but sandy deserts, the temperature is much higher there than near the coast; but the diseases which infest it, auck as the plague, ophthalmia, and malignant fevers, seem to originate in its "stifled filth," and other local causes, whicb advancing civilization will greatly remove, rather than in the unbealthiness of its situation. Its death-rate is greater than that of any European capital, but this is partly to bo accounted for by the fact that numbers of natives come to the eity in order that their last hours may be spent withis its walls. The greatest mortality is during winter, and a larger proportion of deaths is caused by consumption than by any other disease. The average temperature throughout the year is $71^{\circ} 16$ Filhr.; but the mean of the separate months varies from 54° in January to 86° in August. The temperature by night is sometimes 40° below the higbes: point reached during the day, more especially in March and April, when the south and south-west winds prevail, and the thermoneter frcquently rises to upwards of 100° in the shade. In 1811 the number of rainy days was only 9. and the total duration of the fall was 9 bours 8 minutes. .
The population of Cairo is of a very mangled description, and presents a very picturesque and interesting appearanse, About the beginning of this century it was estimated u. a mount to about 200,000 , which was supposed to compriso 121,000 Mahometans, 60,000 Copts, 4060 Jews, and y number of Franks, Greeks, and Armenians. It now numbers about 350,000 , which may be distributed in the fol, lowing proportions :- 285,000 natives, 25,000 Nubians ane natives of the Soudan, 10,000 Turks, 30,000 Jews and Levantines, and upwards of 19,000 Europeans. The Getman and English colonies are both prefty numerous, anc possess each its own church.
Ahout $2 \frac{1}{2}$ miles S W. of the citadel, and 13 from the S, W. angle of the cits, lies the town of Disr-al 'Atibah, or Chu Caro, situbted on the Nile near the meuth of the canal wbich now flows througb Cairo, and opposite to the famous Nilometer at the south end of the island of Raudab. It occupies the site of the ancient Roman city or fortress of Babylon, of wbese origin varions stories of apparently little value are told by Diodorus and others. The place appesrs in Ptolem's Tablcy, and Strabo mentions that it was the headquarters of oue of the three Roman legions that garrisoned Egypt. Reman masonrv survives as part of a convent enclosure. which is known by the names Kasr-es-Shama (" Palace of this Candle ") and Dair-en-Nassarah ("Convent of Christians").
The name Babylon of Egypt, or Babylon aimply, is frequentlo employed in medieval writings as syoenymous with Cairo, or as denoting the successive Mahometan dynasties of Egypt This us may have been influenced by the assocaluoll of the other Babylon, as represented by Baghdad, with the power of 1slam. but at the same time it was a real survisal from the ancient name, for Babylon on the Nite is mentioned by Gregory of Tours (circa 580 A. . .), in connection with the Granaries of Joseph-i.e., the Fyramids. Here Amiru the famous conquerer of Egypt for tho Culinh Omar (638) founded a city to which was given the name or Fostàt, it is said fron Amru's skin tent (so called in Arabic). Thi。 captinued to be the capital of Egyth for upwards of 330 yeara In 973 it was superseded by a new city tounded ehortly before by Jauher (Gorher), captaio of the first Fatimite caliph, Al Moez, whose army had conquered Egypt in 969 . It is said that the new city was originally the camp of Jauhar whilst besieging Fostiat "lich gradually grew inte a town, and got the mame of All líhirat. ("Victrix"), whence our Cairo. In 1176 the city was attacked by the Franks; and slourtly afterwarda it was fortifed by Saladin. It was the capital of the "Turkish province of Egypt from 1507 til' 1793, when it ras captured by the French, who were driven ont in 1 sol by the Turkish and English ferces. Mehemet Ali secureo lis position by the massacre of the Mamelukes in the citadel in 1311, and laid the Fasic of the indeplendence of EEspt

CAIKO, a city of the Unated States, capitar or Nexander county, Illinois, situated betweeu the Obio and Mississippi, at the extreme south of the State, 147 miles from St Lonis by rail. Od account of its low situation It has often auffered from inundations, especially in the summer of 1858, when it was nearly destroyed, but it is now better protected by embankmeuts. Steamers ply bet reen the city and the Ohio and Mississippi ports, and it is an important depot for the produce of the neighbouring States. Large warehouses have recently been huilt, and beth city and trade are ateadily nocreasing. Carro possesses a fine custom-house and connty buildıngs. Population in 1860, 2188, and in 1870, 6267 .
CAISSON, in engineering work, is a chamber of iron or wood which is used in the construction of subaqueous foundations, -such ns those required for the piers of bridges, dc. Its objeet is the same as that of a coffer-dam, viz., to allow the work to be carned on below the water-level,-but it is used in places where either the water or the permeable aoil is too deep to allow a dam to be erected. In cases where the bridge piers are bollow cylinders of uron, they not unfrequently form their own caissons, their own weight, or that of ballast placed upon them, foreng their lower edges into the ground. The material left within them is dredged up or excavated as they descend. Where, however, the goil is not so aoft, or is muxed with stones, this aelf-lowenng becomes impossible. The lower part of the caissou is then commenly formed into an air chamber, open at the bottom, and resting upou the bed of the river Air is pumped into this at a pressure corresponding to ts depth below the aurface of the water, and the excavation is carried on by men working in the compressed air as in a large diving-bell. In some cases the masonry of the pier is built within the caisson on the top of the chamber as it descends, the chamber itself being eventually $\hat{l l l e d}$ up with masonry or concrete, and left to form the permanent base of the structure; in others the caisson is lowered (as the excavation goes on) by weights; and when the required depth has been reached, the masonry is commenced within the air-chamber, and the whole caisson raised again as the building proceeds. Probably the largest caissons ever used are those of the East River Suspension Bridge (a strueture atill unfinished) at New York, of which one was 172 feet long by 102 feet wide. See Bridges. For military caissons see Fortification

CAITHNESS, the most northers county of the Scottish mainland, bounded W. and S. by Sutherlandshire, and L. and N . by the Northern Ocean, is aituated between $58^{\circ} 8^{\circ}$ and $58^{\circ} 40^{\circ} \mathrm{N}$. lat., $3^{\circ} 0^{\prime}$ and $3^{\circ} 55^{\circ} \mathrm{W}$. long., and has an extrome length of 53 milea, an extreme breadth of 33, a coast line of 105 miles, and an area of 455,708 acres or 712 square miles. The form of Caithness resembles an irregular triangle, having as its greatest aide the line of coast on the S.E., atretching from the Ord of Caithness to Duncansby Head. Tha surface of the county generally is flat and tame, consisting for the most part of barren moors, and being almest entirely destitute of tices. It presents a gradual slope from the north and east upwards to the ridge of bills on the west and south; which aeparates it from Sutherlandshire, and on the aouthern boundary, where it is bifurcated, attains considerable elevation. The one branch, called the Maiden Paps, contains the peak of Morven, 2334 above the level of the sea; the other, continuing in the line of the main ridge, juts into the sea, and terminates in the buge granitic precipice of the Ord. In the ceatre of the county, bemmed in by the bills on the wostern boundary, the ridge of the Maiden Paps, and the sea, is a large undulating plain comprising nearly four-fifths of the whole extent. On its southern aide it is broken up by weveral detached hills, and in the interior contains a con-
suctable number of small lakes. The most depressed yas: of the county lies, to the peninsula formed in the northeast corner by the indentation of Dunnet Bay and Sinclair Bay. The more elevated protion presents a light sandy soil, which admits of considerable cultivation, but the low grounds are covered with extensive merasses, producing only heath and rough grass.

The geologieal formation consists ehiefly of sandstone, sandstone llag, and occasionally limestone, but granite and gness are also found in the west. On the east Caithness presents a precipitous coast, with scarcely a creek in which a vessel, even of small size, can find shelter. Ou the northern coast, where the Pentland Firth separates it from the Orkuey slands, stand at the distance of 13 miles from each other the two bold headlands of Duncansby Head on the north-east and Dunnet Head on the north-west. The latter, the most northern point of Scotland, is situated in $58^{\circ} 40^{\circ} \mathrm{N}$ lat. and $3^{\circ} 21^{\prime} \mathrm{W}$. long., and is erowned by a lighthouse, with a fixed light, built on the rock 346 feet above the level of the sea, while the former is marked by the white stecple of Cannisby ou the west. The navigatior of the Pentland Firth 15 attended with considerable danger. from tho strength and eddies of the current. Off the island of Stroma, which is separated from the mainland by a strait three miles broad, is a small vortex called the Swalchie; while nearer the shore are the "Merry Men of Mey," a group of breakers caused by eddies between projecting beadlands. On the east coast, in addition to the harbour of Wick, erected in 1831, at a cost of above $£ 40,000$, and since improved at further expense, there is a small harbour at Sarelett and another at Staxigoe, a small pier at Clyth and another at Lybster. On the northern eonat Scrabster roads in Thurso Bay affurd tolerably good anchorage, while at Thurso and Sandside Bay are commodious harbours for larger vessels.

The climate of Caithness is variable, but not unhealthy; and though the winter storms fall wath great severity on the unsheltered coast, yet from its proxiuity to a large expanse of aca the cold is not monene and snow seldom lies many days contiouously. In winter and spiring the northern abore is subject to frequent and disastrous galca from the N. and N.W. The waters of Forss, Thurso, and Wick, are the irincipal streams which traverse the county, but nono of them are of any particular importance. The largest locbs, are those of Watten and Cathel; there are numerous sm:- 11 ones well stocked with trout.

A great chuge bas been effected in the agricultural pocition of Canthness, chictly by the late James Traill, Es, of latter. The farms along the coast are still mostly in tho, hands of small farmers, who cultivate the soil only during the intervals of the fishing-season; but inland, in the more elevated districts, and along the banka of the principas streams, the land is let ont into large farms, with ieases long enongh to encourage the holder to improve the 8onl and practise a rotation of erops. The average extant c! land held by each occupier, in 1874, was 39 acres, much larger than the average in Sutherlandshire, which only amounted to 10 acres in the same year. In the pasturage ground, black cattle and sheep, chiefly of the Leicester and Cheviot breeds, are reared for the southern markets; and, independently of the weekly corn-markets at Thurso and Wick, the rapidity of communication with tho south is opening up a valuable market for the produce of the dairy and farmyard.

The principal crops mised are oats, beans, potatoes, n r d turnips; wheat can be grown only where draining lias beet carried to considerable perfection. In 1874 there were only 87 acres in wheat, 1845 in barley, 70 in rye, und 27 in pens; while oats oceupied $33,07 \mathrm{~J}$ acres, turnips 14.0 .5 and potatoes 219 C . In the same ycar there were $21,0 \mathrm{u} 7$
acre in permanent pasture, and 6222 in tomporary graes, while only 440 were covered with rood. The number of cattle of all kinds in the county was 22,616 , sheep 108,829 , horses 4969 , and pigs 1789 . But the great source of profit to the inhabitants is to be found in the fisheries of cod, ling, loustecs, and berring, which abound all around the coast. The most important is the herring-fislery, though it bas considerably lessened in value during the last tweuty or thirty yoars. Beginning about the ent of July the season lasts for about six weeks, the centre of operations heing at Wiek and the surrounding districts. The number of fishermen employed in 1874 was 4304 ; and the value of buats, nets, lines, de., for the same year, was estimated at $£ 112,270$. Besiles those more immediately engaged in manning the boats, the fisheries give employment to a large number of coopers, curers, packers, and others. The salmon-fisheries on the coast and at the monsbs of rivers were formerly very productive, and are still let at high prices. At intervals along the coast are valuable quarries of freestone and slate, and of excellent flag for pavements; but the county is far from rich in other minerals. Slight traces of lead and iron bave been found in the mountaimous districts; and indications of coal, or rather of bituminous shale, have been noticed at Caunishy. The only article of manufacture is woollen clotb. The Highland Railway, opecued in 1873 , enters the county from Sntherlandshire, and curves through the centre to Wick, passing Altnabreac, Scotscalder, Halkirk, Georgemas, Bower, Watten, and Bilbster; while a branch line runs from the Georgemas junction to Thurso.

The carly history of Caithness may, to some extent, he traced in the various claracter of the remains and the diversity of its local nomenclature. Picts' houses, Norwegian nanes, and Danish mounds aitest that the Celts were successively displaced by these diflerent tribes; and the number and strength of its fortifed keeps leave us to infer that its annals present the usual record of feuds, ::ssautis, and reprisals. Circles of erect stones, as at Steinster Loek and Bower, and the ruins of Romanist chapels and phaces of pigtimage in almest every district, illustrate the changes which hare come over its ecclesiastical condition. The most inportant remains are those of Bucholic C'astle, Girnigo Castle, and the tower of Keiss; and on the S.E. coast the castles of Clyth, Swiney, Forss, Latheron, Kaockinam, Berridale, Achastle, and Dunbeath,-of which the last is romantically sitnated on one of the detached pillars of sandstone rock that are frequent along the Caithness coast. About six milos from Thurso stand the ruins, of Braal Castle, the residence of the ancient bisheps of Caithness, and on the shores of the Fentand is situated the mythical site of John o' Groats' House. The tetal number of landowners in 1872-3 was 1030,-amons the most important being the duke of Porthand, with 81, 61. acres; Sir John Sinclair of Tollemache. with 78,053 ; Mrs Thomson Sinclair of Penswick, with 57.754 ; Sir Fobert Anstruther of Baleaskio in Fife, with 30,537 : and the carl of Caitoness, with 14,460 .

Caithness is divided into ten civil and twelve proad sacre parishes, and contains twelve churehes and iwo chapels of ease belonging to the Establishment (in four of which there is service in (Gadis) ; seventeen belonging to the Free Charch (in soven of which there is service in Caclic) ; ono United Iresbyterm, and one Roman Catholic at Wick.

Tho county relurns one uember to the imperia! parliament. The parliamentary constitueney in $1875-76$ was 1172. The principal towus are Wick and Thurso; the rust important villages are Broadhaven, Castletown, Louisℓ uroh, sumett, and Staxigoe. The popmation in 1831 was 34.525 ; in 1811, 36,343; iu 1851, 38,709; and in 1871,

30, 002 . In the last jear the male numbered 18,937 , and the females $: 1,055$; and there were in the county at the sane date 747 inhabited houses, 203 racant, and 431 building.

CAILS, Kaye, or Keye, Dr Johe (1510-1573), the founder of Caius College in Cambidge, was born at Norwich in 1.510 . He was admitted while very joung a student at Conville Hall, Cambridge. From his exerciscs performed thers it seems probable that he intended to prosecute the stuly of divinity. He visited Italy, where lie studied under the celebrated Montanus at Padna; andis 1541 be took his degree in physic at Bologna. In 1543 Le visited several parts of Italy, Cermany, and France; and returning to England, he began to practise first at Cam. bridge, then at Sbrewsbury, and afterwards at Norsich. He remored to London in 1547, and was admitted fellow of the College of Pbysicians, of which be was for many years president. In 1557 , being then physician to Queen Mary, be obtained a licence to advance Gonville Hall into a college, and he endowed it with several considerable estates, adding an entire nets spuare at the expense of $£ 1834$. Of this college he accepted the mastership, which he held till within a short prosiod of his death. He was physician to Ldward VI., Queen Mary, and Quee Elizabeth. Towards the end of his life he retired to his own college at Cambridge, where haring resigned the mastership to Dr Leggie of Norwich, he speut the remainder of his life as a fellow commoner. He died in July 1573, and was buried in the college chapel. Dr Caius was a learned, active, and benevolent man. In 1557 be erected a monument in St Paul's to the memory of Linacre. In 1563 be obtained a grant for the College of Physicians to take the bodies of two male fuctors annually for dissection : and he was the inventor of the insignia which distinguish the president from the resi of the felloms.
His works are-1. Annals of the College from 1555 to 1572. 21 Translation of several of Galcris morks, pinted at different times alroat. 3. Fippecrates de Madicanentls, first discorered and putlished by Dr Caius; also De inatione Trictus, Lov. 1556, Svo. 4. De Mentti Methodn, Basel, 1554; Lond. 1556, 8vo. 5. Account of the Surating siciness in England, Lond. 1556, 1721. It is entitled INe Ephencra Eritunnica. ©. Hictory of the Unitersity of
 Erimaruicis; but it is doubtin whether this wolk was ever printed. 8. Of some Nare Plants and Animals, Lond. 1550. 9. De Canibus Britariaicis, 1570, 1729. 10. De Pronunciatzone Grace et Latina Linguc, Lond. 15\% ${ }^{5}$. 11. De Libris propris, Lond. 15i0. He also wrote nuacruas other works which were never printad.

CA.tazzo, ur Calazzo, a town of Italy, in the province of Terra di Lavoro, and district of Piedimonte, situated on a beight on the north bank of the Viciturno, about 11 miles from Capia, It pussesses a finn cathedral, and is defended y aceste of Lonband origin; bet is principally int vesting for ha ruins of the Roman Celatia, which are still found in the fown and neighbourhood. These consist chiety of remains of the outer walls, and a cistern, which stilt affurde a good supply of vater. Vamous inscriptions are also extam, and the inhaldants point out a tomb which thes mannen to be that of A . Atilius Calatinns. Culatio was originaly a Samnite town, and is frequently mentioned in the earlier wars of the Komans. At a later date it became a municipal city of some importance, but makee no appearance in history. The population oi the present toran is 5892 .

CAJEPU? OLL, a rolatile oil obtained by distillation from the leares of Wchataca loucadoatendrow, and probably wher species. The trees richling the oil are found throughout tho Indian Archipelago, the Malay peninsula. and over the hotier parts of the Amstralian continent: but the greater portion of the oil is procured from Celebes Island. The name Cajoput is derived from the mative ragu-puti or white wood. The oil is prepared from leaves
collected in a bot dry day, which are maceratea in water, and distilled after fermenting for a night. As imported into Europe it has a $\mathrm{g}^{\text {reenish coluur owing to the presence of a }}$ minute proportion of coppe1, which can be separated, leaving the oil perfectly colourless. This oil is extremely pungent to the taste, and bas the odour of a mixture of turpentine and camphor. Wben dropped in water, it diffuses itself over the surface, and then entirely evaporates. Chemically, the oil consists in large part of the bihydrate of cajputene, from which cajpntene having z hyacinthine odour can be ohsained by distillation from anhydrous phosphoric acid. Like other velatile oils, the cajeput is a powerful stimulant, and is used mediciually where such medicines are required. Some practitioners hare given it a high character as a remedy for cholera; but it does not appear to have any claim as a specific in the treatment of that disease. The dose taken internally as a stimulant, antispasmodic, and diaphoretic, is ahout five'drops. It is used exteroally as a rubefacient, and is also resorted to occasionally with advantage in toothache. The oil from some species of Eucalyptus bears a close resemblance in odour and properties to cajeput.

CAJETAN, Cardinal (1469-1534; was born at Cajeta in the kingdom of Naples in 1469. His proper name was Thomas de Vio, but be adopted that of Cajetan from his birthplace. He entered the ordcr of the Dominicnos at the age of sixteen, was for some time professor of divinity, and in 1508 became general of the order. For his zeal in defending the Papal pretensions, in a work entitled Of the Pisecr of the Popt, he obtained the bishopric of Cajeta. He was afterwards raised to the archiepiscopal see of Palermo, end in 1517 was made a cardinal by Leo X. The year following he went es legate into Germany, to quiet the commotions raised by Luther against indnggences; but the Reformer, under protection of Frederick elector of Saxony, set him at defiance; for though he obeyed the cardinal'e summons in repairing to Augsburg, yet he rendered all his procerdings ineffectual. Cajeten was employed in scyeral other negotiations and transactions, being as ablo in business as in letters. He died In 1534. He wrote commentarics upon portions of Aristut!e, and upon the Summa of Aqui:3s, and made a careful translation of the OId and New Tearaments, excepting Solomon's Song, the Prophets. and the Revelation of St John.

CALABAR is a district of eomewhat indefinite beunderies, sitnated on the West Coast of Africa, in the Bight of Eiafra, betreen $4^{\circ} 20^{\prime}$ and 6° N. lat., and between $6^{\circ} 30^{\circ}$ and 9° E. long. The name corrcsuonds to no geographical or political unity, but is couvenient as provisionally comprehending a sircten of country of considerable commercial importance. The coast line is frequently regarded as extending ficm the Nun month of the Niger, ta the neighbonrlicod of the Cameroon Mountaias, and thus iacludes the estuaries of the Brass River or Tuwon-Toro, the San Nicholas or Kols Toro, the New Calabar, and the Bonny, which are all deltaic branches of the Niger, as well as the San Pedro or Kan Toro, and the important embouchare of the anited streama of the Cross River, the Old Calabar, and the Great Qua River. The interior of the country is still unexplored, and the inlend boundary is left completely vague. The soil of the whole country, for 150 miles or further from the sea, is purely alluvial; and the surface is literally covered with bush except in the very lianited areas under cultivation. Further inland, especially in the dircction of the Cameroon Mountains, the clevation inereases, the soil becomes more varied and decidedly rocky, and the forest grows clearcr of underwood. This higher region is rich in natural productions, furnishing-besides the pala-oil which forms the main article of forcign trade oon the coast-elony, bamboos, sugar, nepper. yams. Indian -aw, piantains, and a variety of wooda

Leaving the western portion which belongs to the delta of the Niger for treatmeat in the article on that river, we will confine our attention here to the district watered by the Old Calabar, the Cross River, and the Que, which more particularly deserves the name of Calabar. The common estuary of these three rivers enters the ocean about $5^{\circ} \mathrm{N}$. lat. and $8^{\circ} 20^{\prime} \mathrm{E}$ long. It is about 10 or 12 miles wide at its mouth, and maintains nearly the same width for abunt thirty miles above the bar. At the junction with the Cross River the Old Calabar forms quite a labyrinth of clannels and islands, and it is also united with the Qua by a number of creels.

The exact position of the sources of these nuers has never been ascertained, but, according to netive report, that of the Old Calabar is situated in the.neighbourhood of Iko, which is not very far teyond Uyanga, the furthest point inland reached by Captain Hoplins and the Rev. Samuel Edgerley in their journey of exploration in 1872. The truth of this report is rendered almost certain oy the diminished size of the stream in the vicinity of Uyanga and it is thus probable that the mountains in which both it aod its sister strcams take their rise are the Rinsby range, forming a western extension of the Camcroons. The Qua River is comparatively small, and navigation is impeded, at no great distance up, by sand-banle and fallen trees. Further inland its course is also broken by rapids and several cataracts.

The country watered by these rivers is occupied by a great number of separate tribes, such as the Efik, the Ekoi, the Ibami, the Oköyöng, and the Aqua, who are politically indepenJent of each other and speak separate languages. Of these the most important are the Eff, or people of Calabar in the strictest sense of that vord, which was originally applicd by the Portuguese discoverers to the tribes on the coast at the time of their arrival, when as yet the present inhabitants were unknown in the district. It was not till the early part of the 18 th century that the Efik, owing to civil war with their kindred tho Ibibio, migrated from the neighbourhood of the Niger to the shores of the Old Calabar, and cstablished themselves ε : Ikoritungho or Creck Town. In order to get a better zhare in the Enropean trade at the mouth of the river a bady of colonists from this city migrated further down aud built Obutöng or Old Town, and shorly afterwards a rival colony established itself at dqua Akpa or Duke Town.

For a time it sceased as if Creck Town would disappeas before its younger competitors, but it was again raised to power by King Eyo Evo, who deficd the interference of his rivals. The only political bond of uninn between the various towns is the E.gbo, a Eind of secret society into which admittance is obtained on the payment of a cortain fee to each of the existing members. The power of this association is almost unlimited, and is used principaly for the benelit of its members. Fornerly it was one of the greatest curses of the country, from the barbarous curtoms mingled with its sites; but it is, under Europeandirection, being turned into a means of promulgating a more civilized code of laws thronge the various towns, and it forms a kind of constitutional defence against the despotism of individual kings. However unsatisfactory the cowdition of the country still is, there is no doubt European infuence of a beneficial hind is gradually making itself felt. The universal belief in the most terrible hinds of witcheraft is slowly being shaken; the use of the ciaro or Calabar bean as an ordeal, and for purposes of religious purgation, is becoming much less frequent; the murder of twin children is no longer a national custom; and the massacre of his slaves on the death of a king las been abolished. The present king of Creck Town is at least nominally a Christian; and. according to fonsul Livingstone, "hundreds
IV. -8 z
of decently-dressed natives of both seses regularly attend Civine service" at the mission stations. These number five or six, and are supported by the United Presbyterian Church of Scotland, which began its labours here in 1846.

The predominant language, not only among the people of Calabar proper, but also of the various tribas on both sides of the Cross River, is Effk, which bids fair to be the common commercial speech of the whole district. It is roally a modified Ibibio, and presents traces of what is known as alliterative concord, though this is by no means a universal characteristic. It has been reduced to writing by the missionaries, who have employed the ordinary Linglish alphabet. Considerable progress has been made in the formation of an initiatory literature; no fewer than 65 volumes having proceeded from the massion press. Most important of these are the Efik translation of the New Testament by H Goldie (1862), the translation of the Old Teatament by Dr A. Robb (1868), and a Dictionary of the Eik by H. Goldie, published in 1862. Captain James I'room Walker of Dake Town, who has explored varions firts of the country, presented several churts to the hoyal Geographical Society, which are reproduced in the Vinited Presbyterian Missionary Record for 1872 and 1875.

See Hope MI. Waddell, Twenty-nine Years in the West Indirs and Cultral Africa, 1866 ; "Detaila of Explorations of the Old Calabar Kiver," by Captain Becroft in Journ. Roy Gcogr Soc., 1841; W Nicholns Thomas in Procecd. of Ros" Geogr Soc on "The Oil Rivers of West Africa," 1873.

CALABAR BEAN, the seed of a leguminous plant. Plysostigma venenosum, a native of tropical Africa. The | lant bas a climbing habit like the scarlet runner, and attains a height of about 50 feet, with a stem an inch or two in thickness. The seed pods, which contain two or three seeds or beans, are 6 or 7 inches in length; and the beans are 4,bout the size of an ordinary borse bean but much thicker, with a deep chocolate browo colour. They constitute the E-ser-e or ordeal beans of the negroes of Old Calabar, being aciministered to persons accused of witcheraft or other crimes. In cases where the posonous material- did its deadly work it. was held at once to indicate and rightly to punish guilt ; but when it mas rejected by the stomach of the accused, innocence was bold to be satisfactorily established. A form of duelling with the seeds is also known among the natives, in which the tro opponents divide a bean, each eating one-lalf; that quantity has been known to kill buth adversaries. Although thus highly poisonous, the bean has nothing in external aspect, taste, or smell to distinguish it from any barmless leguminous seed, aod very disastrous effects bave resulted from its heing incautiously left in the way of chilhren. The beans were first introduced into England in the year 1840 ; but the plant was not accurately descrihed till 1861, and its physiological effects were iuvestigated in 1863 by Dr Thomas R. Praser. In that year an alkaluid was isolated from the seeds to which the name physostignume was applied; and under the ame eserine another alkaloid was prepared from them; but it is not yet quite certain that the tro substances are essentially different. Dr Fraser's investigations, which were conducted with an alcoholic extract of the seeds, showed that the active principles exerted a remarkable influence in contracting the pupil of the cye, and in comnteracting the influence of atropine. The antagonism of physostigmine add atropine and its relations to many other alkalouds have ubsequently been the snbject of very numerous iuvestigaions. A committee of the British Medical Association under Professor Hughes Bennett found that the antagonism setween aulphate of atropine and extract of Calabar bean exists only within narrow limits, so that for practical purposos atropine is useless as an antidoto to Calabar bean. The investigation of the same committee into the relations
of hydrate of chlural and Calabar bean, however. pro:es that they are mutually antagonistic, but as the toxic influenee of the Calabar bean is very rapid, it is necessary to auminister the chloral as soon as possible after the Calabar bean is taken. Calabar bean in the form of powder and extract is used in medical practice. It kas been chiefly employed by ophthalmists to produce contraction of the pupil, but it is also used in tetanus, neuralgia, and rheumatic diseases.

CALABOZO, or Calaboso, a town of Venezuela. formerly capital of the province of Caracas, but now of that of Guarico, is situated 120 miles S.S.W. of the city of Caracas on the left tank of the River Guarico. It lies so low that during the raing season it is frequently surrounded by the floods; and in the summer it is exposed to extreme heat, the average temperature being $88^{\circ} \mathrm{Fabr}$ It is well built, with streets running at right angles, and it has several tine churches, a college, and public schools Its situation on the main road from Aragua to Apure makes it the seat of a considerable trade. and the surrounding country affords extensire pasture for cattle. There are thermal springs in the neighbourhood. Originally a small Indian village, Calabuzo owes its existence as a town to the Compania Guipuzcoana, who made it the seat of one of their mercantile stations io the beginning of the 18 tb century. In 1820 it was the scene of a battic in which Bolivar and Paez beat the Spanish general Morales. Population in 1873, 5618.

CALABRIA, the name giren by the Romans to the peninsnla at the south-eastern extrenity of Italy, and now given to the peninsula at the south-western extremity. The former district was called by the Grecks Iapygia and Messapia, though these terms were rariously used, and sometimes also included all the south-east of Italy, from Lucania to the Garganian promontory. In the time of Augustus, Calabria was the district south and east of a line drawn from the neighbuurhood of Tarentum to that of Brundisium, corresponding to the modern Terra d' Otranto. The principal cities were Tarentum (Taranto), Drundisinm (Brindisi), and Hydruntum (Otranto), all of which are ports. The inhalitants were Sallentines and Calabrians or Mcssapians, both probably of Pre-Hellenic or Pclasgie race ; Niebular, however, consilered the Calabrians to be Oscan intruders distinet from the other tribes.

Ancient Calabria was a country of low hills with very gentle ascents, baring a soil of Tertiary hmestone formation, no rivers, and scarcely any snall streams, sud, during summer, a climate of intolerable heat, but axceedingly fertile, producing the olive and vine.

Owing to the position Cakbria was long defended by the Greeks against the Gotbs, Lombards, and Saracens, atd was the last portiou of Italy lost by the liyantine emperors In the time of the Norman monarchy, in the llth century, there took place a curious chango in the application of the name, the cause and exact date of which are not known wath any certainty. An explanation possessing some prolabili'y is, however, giren. The Byzantines, it a likely, extended the namo Calabria to all their possessions in Sonthern ltaly; and when heir possessions in the south. eastern peninsula became greatly interior in importance to that in the south-western (Bratiom) they ajplied the name to the latter instead of the former it was nut, however, till after the Norman Conquest that the nawo was universally employed in this the modern sense.
In modern times Calabria, until the consolidation of the Italian kingdon, was the name of one of the four provioces into which the continental part of the kingdom of Naples, or of the Two Sicilies, was formerly divided; and it is now the name given to three out of the sixty-nine provinces of the present division of Italy. It is the moost soutbern part
of Itat_{j}, being bounded on the N . by the province of Iasilctata, on the E. by the Gulf of Taranto, on the W. l.y the Tyrrheman Sea, and on the S. by the Ionjan. It extends from Cape Spartivento ($37^{\circ} 56^{\prime} \mathrm{N}$ lat.) to Monte Pollino on the southern border of Basilicata ($40^{\circ} 0^{\circ} \mathrm{N}$. lat.)
The terntory is well watered, and exceedingly rugged and mountainous; but the summits of the fills are covered witl extensive forests of oak, beech, elm, and pine, and t. Wards the ceast the branches of the Apennmes open up into fertile valleys. Earthquases and viulent storms are very common; and there is extremo heat during the summer senson, on the approach of which the wealthier inhabitants migrate annually to the lufty table-land of La Sila, where therr flocks are fattened in the extensive μ istures. The agriculture of Calabria is in a very rude and barbarous condition, a circumstance which is partly bucributable to the extreme tertility of the soil. The puneipal productions are corn, wine, raw silk, olive oil of au inferior quality, cottun, rice, liquonice, and saffron. Manna, collected from the manna-ash (Ornes rotundefolia), n 23 at one time a somewhat important article of com iserce, but very little is now collected. Oranges, lemous, figs, mulberries, honey, and tobacco are also prolluced the borses of Calabria are remarkable for their high spirit and compact form. There are considerable fisheries of the tunny, the swordfish, the anchovy, and mullet.

The three provinces into which Calabria is now divided are Calabria Citeriore. Calabria Ulteriore Seconda, and Calabria Ulteriore Prima.

Calabria Citeriore, or Cosenza, is the most northern of the tbree provinces, and has an area of 2613 square miles, with a population in 1871 of 440,468 . The southern and eentral districts are covered by the vast forests of La Sila, which furmshed timber for the navies of antiquity. The rincipal rivers are the Crati, which after a course of 60 bules falls into the Gulf of Taranto, and the Neto, "bich r :ses in the heart of La Sila, ond falls into the Adriatic the principal towns are Cosenza, Rossano, Paola, and Crastrovillari.

Calabraa Ulteriore Seconda, or Catanzwo, on the sonth d Celabna Citra, hoving a const lme from the Punta dell Alace to the Callipari on the east, and from the Savuto to the mouth of the Bessina on the west, has on area of 2100 - fuare miles. Population (1871) 412,226. At Catamate 1: a manufactory of ailk, at Blaida there are some seams of coal, antimpny, and alabaster, which nugbt be made avalabla for exports. The promerpal towns are Catanzaro, Uotrone, Nicastre, and Monteleone.

Calabria Ultenore Prima, or Reggio the most southerly province of Italy, contairs an arca of 1250 square miles, with a population (1871) of 353,608 . On the northern frontier are the mines of Lo Stilo, from which the iron is obtained for the Government foundries. The primeipal towns are Reggio, Gerace, and Palmı. A railway line now runs from Reggio to Taranto, along the coast of the loman Sea and the Gulf of Taranto.

CALAHORIRA, the capital of the judicial district and tiocese of the same name, in the province of Logroño, Spain, 24 niles S. E. of Logroño, $1442^{\circ} 12^{\prime} \mathrm{N}$. lat., $2^{\circ} .0^{\prime} \mathrm{W}$. long. It occopies an elevated site on the left bank of the River Cidacos, near its junction with the Ebro, and contains 3 cathedral in the mixed Gothic style, dating mainly from the 15 th century, an episcopal palace, and several conveutual and other scbools. The climate is cold and damp, but the soil in the neighbourbood produces in abundance grain, pulse, flax, wine, and oll. Population in 1860, 7106. Calaborra is the ancient Calagurris Nassica, celebrated for its extraordinary fidelity to Sertorius in his war with Pompey and Metellus: and in the suburbs niny still be traced the remous of an ancient Roman carcus an aqueduct, and a
naumachia. Under the emplete it was a munapionn, and enjoyed the rights of Roman citizenship. It was the birthplace of Quintalian.

CALAIS, a town of France, capital of a canton of the same name, in the arrondissement of Boulogne and the department of Pas de Calas, 26 miles E.S.E of Dover, and 185 miles by rall from Paris, in $50^{\circ} 57^{\prime} 45^{\prime \prime} \mathrm{N}$. lat., ! ${ }^{\circ}$ 51^{\prime} E. long. Calats is a fortress of the first class, and wiss formerly a place of great strength, but it would nuw probably not be able to dcfend itself Jong against modern nitillery. It is built in a rectangular form, baving one of jts lunger sides towards the sea, white on the E . and S . it is surrounded by low and marshy ground which can be flooded to strengthen its defences. Orethooking the town on the W. is the eltadel, erected in 1641 by Cardimal

Richelien. In the centre of the town is the great market. place, in which stands the ILôtel de Ville (rebuilt in 1740, restored in 1S67), with busts of Eustache de St Pierre, the Due de Guise, and Cardinal Richelieu. Near the Huted de Ville is the Tour duquet. or watch-tower, used as a lighthouse until 1848. 'The Church of Nütre Dane was alunost enturely rebait at the end of the 15 th century, during the English occupancy of Calais; its lufty toner serves as a landmark for salors. At the end of the Rue de la l'rison 13 the llutel de Guise, buitt as a guildhall for the English woolstaplers. It was given to the Duc de Guise as a reward for the recapture of Calas, and hence its name. The bulding which was formorly the lhitel Dessin, ammortalized by Sterne in the Sentomertal Joumey, is now used as a museum. The harbour of Calars is shallow, admitting vessels of from 400 to 500 tons only at ligh water. The French Government contemplates the construction of a large harbour of refuge near Calais. There are two lighthouses at the entrance to the larbour, and a still larger one on the fortifications, with a revolving light visible 20 miles off. The principal institutions are the schools of design, hydrography, and artillery, a public litrary with 10,000 volumes, and public kaths. The imports are cbiefly from Great Britain, and consist of coal, iron, woollen and cotton fabrics, linen, skins, macbinery, and colonial produce. Of late years the importation of timber
fron Norway has greatly increased. The exports eomprise corn, wine and sparits, egiss, salk, frust, vegelables, glass, and sagar. The fisheries are much less muportant than those 0 E Foulogne. The manufacture of culle or boltin-net was introduced from Nottingham by the Eaglish m 1818, aad is one of the main sources of the prosperity of the town and suburbs. Calais commumieates wath Great Britain by submarine telegraph, laid down in 1851. Steamers carrying the mails eross twice a day to Dover and back. lt is the prineipal landing-place for English travellers on the Continent. The number of passengers who erossed both ways was $208, \frac{1}{2} 32$ in 1875 , being an increase of 66 per cent. in the last ten years. - The termans of the proposed tunnel beneath the channel is near Sangatte, a village six iniles west of Calais. The project has received the sanetion of the French and English Governments. Population (in 1872) 12,843; the adjoining manufacturing suburb of St Pierre les Calais had 20,409 inhabitants in 1872 , more than 1800 of whom were Eaglish.

Calais was a petty fishing-village, with a natural harbour at the moath of a strean, till the end of the loth century. It was first improved by Baldwin [V., count of Flar. lers, in 937, and afterwards, in 1224, was regularly for ified by Phillip of France, count of Boulogne. It was besieged in 1346, after the battle of Crécy, by Edward IlI., and beld out resolutely by the bravery of Jean de Vienne, its governor, till farame foreed it to sarrender. Its inhabitants were saved from the eruel fate with which Edward menaced them by the devotion of Eustache de St Pierre and six of the chief citizens, who were themselves spared at the prayer of Queen Pbilippa. The city remained in the hands of the English till 1558, when it was taken by the duke of Guise at the head of 30,000 men, from the ill-provided Eaglish garrison only 800 strong, after a siege of seven days. It was held by the Spaniards from 1595 to 1598 , but was restored to France by the treaty of Vervins.

Calamis. See Archeology, vol. ii. p. 354.
CALAMY, Edmund (1600-1666), a Presbyterian divine, was born at London in February 1600 , and educated at Pembroke Hall, Cambridge, where his opposition to the Arminian party, then powerful in that soe:ety, excluded him from a fellowship. Dr Felton, bishop of Ely, however, made him his chaplain, and gave him a living which be held till 1626. He then removed to Bury St Edmunds, where he acted as lecturer for ten years. In 1636 he was appointed to the rectory of Rochford in Essex, which was so unhealthy that he had soon to leare it ; and in 1639 be was ehosen minister of St Mary Aldermanbury in London. Upon the opening of the Long Parliament be distinguished himself in defeuce of the Presbyterian cause, and had a priucipal share in writing the work commonly koown under the appellation Smectymmues, against Epis. copacy. The initials of the names of the seseral contributors formed the name under which it was published, riz., S. Marshal, E. Calamy, T. Young, M. Newcomen, and W, Spurstow. Calamy was afterwards an aetive member in the assembly of disines, and a strenuous opposer of sectaries. In Cromwell's time he lived privately, but was assiduous in promoting the king's return; for this he was afterwards offered a bishoprie, but dectined it. He was, however, rade one of Charles's ehaplains. He was ejected for nonconformity in 1662, and was so affected by the sight of the devastation cansed by the great fire of Joudon that he died shortly afterwards, October 29, 1066.

CaLAMY, Edmond (1671-1732), grandson of the precelling, was born in London, April 5, 1671. He was edscated at a private aeademy, and studied at the university of Uurecht. While there, he declined an offer of a profesqor's ebair in the miversity of Edinburgh made to bim
by Principal Carstairs, who had gone uver on purpose to bad a person properly qualified for such an office. After his return to England in 1691 he began to study divinity ; and having joined the Nonconformists, he was in 1692 unamimously ehosen assistant to Matthew Sylvester at Blackfriara In $169 \frac{1}{2}$ he was ordaned at Annesley's meeting-house in Little St Helen's, and soon afterwards was invited to become assistant to Daniel Walliams in Hand-Alley. In 1702 be was chosen one of the lecturers in Salters' Hall, and in 1703 he succeeded Fincent Alsop as pastor of a large congregation in Westminster. He drew up the table of contents to Baxter's History of his Life and Times, which was sent to the press in 1696 ; made some remarts on thework itself, and added to it an index; and, reflecting on the usefulness of the book, he saw the expediency of contiauing it, as Baxter's history came no farther than the year 1684. Accordingly, he composed an abridgment of it, with an account of many other ministers who were ejected after the restoration of Charles II. ; their apology, containing the grounds of their nonconformity and practice as to stated and occasional commanion with the Chureh of England; and a contincation of their bistory until the year 1691. This work was published in 1702. He afterwards prblished a moderate defence of nonconformity, in three tracts, in answer to some tracta of Dr Hoadly. In 1709 Calamy made a tour to Scotland, and had the degree of doctor of diviaty conferaed on him by the universities of Edinburgh, Aberdeen, and Glasgow. In 1713 be published a second edition of his Abridgment of Baxter's IIstory of his Lije and Times, in whieh, among rarious additions, there is a continuation of the history through the reigas of William and Anne, down to the passing of the Occasional Bill. At the end is subjoined the reformed litargy, which was drawn up and preseated to the bishops in 1661. In $1 / 18$ he wrote a vindication of bis grandfather and several other persons against certain reflections cast upon them by Archdeacon Eehard in his History of England; and in 1728 appeared his cantinua. tion of the account of the ministers, lecturers, masters, and fellows of colleges, and schoolmasters, who were ejected. after the Restoration in 1060 , by or before the Act of Uniformity. He died June 3, 1732 . Besides the pieces already mentioned, he published many oceasional sermons.
C.iLaS, Jean (1698-1762), a Protestant merehant at Tonlouse, who was barbarously murdered under forms of law which were employed to shelter the sangurnary dictates of ignorant and fanatical zeal. He mas born at La Caparede, in Languedoc, in 1698 , and had lived forty years at Toulouse. His wife was an Englishfoman of French estraction. They had three soas and three daughters. His son Louis bad embraced the Roraan Catholic faith through the persuasions of a female domestie who had lived thirty years in the family. In Oetober 1761 the family consisted of Calas, his wifc, Mare-Antoine their son, who had been educated for the bar, Pierre their seeond son, and this domestic. Antoine being of a melancholy turn of mind, was continually dwelling on passages from authors on the subject of suicide, and onn night in that month he hanged himself in his father's warchonse. The crowd, which collected on so sbocking a diseovery, took up the idea that he had been strangled by the family to prevent him from chauging his religion, and that this wis a common practice among Protestants. The offeers of justice adopted the popalar tale, and were supplied by the mob with what they aecepted as conclusive evidence of the fact. The fraternity of White Penitents buried the body with great ceremony, and performed a solemn service for the deceased as a nartyr; the Franciscans followed their example; and these formalities led to the popular belief in the guilt of the unhappy fanntr
tuing all condemned to the rack in order to extort conression, they appealed to the parliament; but this body, being as weak as the subordinate magistrates, sentenced the father to the torture, ordinary and extraordinary, to bc broken alive upon the wheel, and then to be burnt to ashes; which diabolical decree was carried into execution on the 9 th of March 1762. . Pierre Calas, the surviving son, was banished for life; the rest were acquittcd The distracted widow, however, found some friends, and among them Voltaire, who laid her case before the council of state at Versalles; and the parliament of Toulouse was ordered. to transmit the proceedings. These the king and council unsaimously agreed to annul ; the chief magistrate of Toulouse was degraded and fined; old Calas was declared to have been innocent ; and every imputation of guilt was removed from the family. See Causes Célèbres, tom. iv.
Calasio, Mario de (1550-1620), a Franciscan, and professor of the Hebrew language at Rome, was bora in 1550 at a small town in Abruzzo, from ${ }^{\circ}$ which he took his name. His Concordance of the Bible (which occupied bim forty years) was published at Rome in 1621, the year after his death. This work has been highly approved and commended both by Protestants and Roman Catholics, and is indeed an admirable work; for, besides the Hebrew words of the Bible, which compose the body of the book, with the Latin version over against them, there are in the margin the differences between the Septuagint version and the Vulgate; so that at one view may be seen wheren the three Bibles agree, and wherein they differ. At the beginning of every article there is a bind of dictionary, which gives the signification of each Hebrew word, affords an opportunity of comparing it with other Oriental languages (Syriac, Arabic, and Chaldee), and is extremely useful for determining more exactly the true meaning of the Hebrew words. It Has been several times reprinted; but the original edition is the best.

CALATAFIMI, a town of Sicily, in the province of Trapani and district of Alcamo, about 30 miles from Palermo. It lies between two hills in a fine corn country, and is celebrated for its cattle and its cheeso. In one of its churches, Sants Croce, there is a fine altar of mosaic work; and in the neighbourhood are the extensive and well-preserved ruins of Segesta. On the hill above the town stands the Saracenic castle of Kalat-al-Fimi, from which it derives its narae, and about four miles distant is the battle-field on which Garibaldi won his first victury over the Neapolitans on May 15, 1860. Population, 9414.
CALATAYUD, a town of Spain, in the proviace of Saragossa in Aragon, 45 miles S.W. of the city of that name, in $41^{\circ} 24^{\prime} \mathrm{N}$. lat., $1^{\circ} 35^{\prime} \mathrm{W}$. leng. It stands on the left bank of the River Jalon, near its confluence with the Jiloca, partly on the plain and partly on a rocky slope, which is covered with remains of ancient Moorish fortifications. It is generally spacious and well built, and contains several squares, the largest of which is used as the marketplace, numerons convents, three hospitals, a fort, a proviucial and municipal hall, an episcopal palace, a•college, barracks, a theatre, and a bull-arena; there are also two collegiatas, or collegiste churches, both of them handsome edifices, and eleven other parish churches. The principal articles of manufacture are coarse brown paper, Icather, and woollen staffs. The soil of the neighbourhood is fertile and well cultivated. Calistayud is a Moorish city, and recerves its thame (Job's Castle) from Job the nepher of Musa; but it stands near the site of the ancient Bilbilis, the birthplace of the poet Martial, and was for the most part built out of its rains. Population, 9830 .

CalCar, or Kalcker, Join de ${ }^{-1}$ (1499-1545), an eminent painter, born at Calcar, in the duchy of Clèves, in 1499. He wag a disciple of Titian at Venjce, and
partected amself by stuaysog riaffecie. de imitated thoso masters with such success as to deceive the most skilful critics. Among his various preces is a Nativity, representing the angels around the infant Christ, which he arranged so that the light emanated wholly from the child. He dieá at Naples in 1546.

CALC-SPAR, or Calcareous Spar, is the popular namo for certain of the crystalline forms of carbonate of lime or calcite $\left(\mathrm{CaCO}_{3}\right)$, containing in 100 parts 56 of lime and 44 of carbonc acid. The name includes only the varieties of calcite which belong to the rhombohedral or hexagonal order, to the exclnsion of aragonite, which, having the sams composition, belongs to the rbombic or right prismatio system, the two mincrals forming a striking example of dimorphism. Calc-spar is also the same in chemical composition as marble, limestone, chalk, stalagmitic deposits, \$c., which are among the most abundant ingredients in the rocky masses of the earth. The primary form of calc-spar is an obtuse rhomboledron, the faces of which are inclined to each other in the terminal edges at an angle of $105^{\circ} 5$, and all secondary crystals, however various they may be, tend to break or split up into that primary form. The vamety of crystalline forms assumed by the mineral is exceedingly great, upwards of 800 being cnumerated, of which 700 have been figured by Count Bournon in his treatise on carbonate of lime. The forms, although thns numerous, fall chielly under the two hesds of rhombo. hedrons, of which Iceland spar is a trpe, and scalenobedrons, which rasy be represented by the variety known as dog's. tooth spar. (See Mineralogy.) Pure calc-spar is a transparent, colourless mineral with a vitreous lustre; its specific gravity is about 2.721 ; and in harduess it is intermediate between gypsum and fluor-spar, occupying the third place in the standard scale. It is frequently tinted in red, yellow, green, brown, and grey, from the presence of foreign matter. Pure, transparcnt rhombohedral crystals, obtained by cleavage or otherwise, are distinguished as Iceland spar, on account of the largest and fincst crystals being found in that island, or as donbly-refracting spar (German, Doppelspath), from their exhibiting in the highest degree the double refraction of light. Before the blow-pipe it is reduced to caustic lime, and moistened with hydrochloric or other acid it displays a brisk effervescence. It occura abundantly in almost all parts of the world,-Andreasberg in the Hartz and the Derbyshire lead mines being noted localities for large fine crystals. Magnificent cleavage rhombohedrons are obtained from Iceland, one having been noted which exceeded 6 yards long and 3 yards bigh. Professor Dama notices one nearly transparent crystal, weighing 165 ID , now in the cabinet of Yale College, found in the Rossie Lead Mine, New York State, and he cites a large number of other localities in the United States where crystals occur. Iecland spar, on account of its high double refracting property, 19 very extensively emplayed in optical research. It is most conveniently used in the form of a Nicol's prism, which consists of a long rhemboidal crystal cut obliquely into two equal portions in a plane perpendicular to the plane of the longer diagonal of the base. The two halves are cemented together in thear origimal position with Canada balsam; and in this condition the ordmary ray undergoes total reflection from the prism, whilst the extraordinary ray passes through.

CALCHIS, the most fanous soothsayer among the Grecks at the time of the Trojan war, was the son of Thestor. He foretold to the Greeks the length of time they would be engagcd in the slege of Troy, and when tho flcet was dctained by adverse winds, at Aulis, be explained the cause and demanded the sacrifice of Iphigenia. When the Grecks were visited with pestilence on account of Cluryseis, be disclosed in them the reasons of dy.loa
anger. After the return of the Greeks from Troy he is said to have retired to Colophon. According to the story, his death was due to chagrin at being surpassed in a trial of soothsaying skill by one Mopsus. It bad long been predicted that he should die whemever he net his superior in divination.

CALCULATING MACIIINES. Mathematicians and astronomers have felt in all ages the irksomeness of the labour of making necessary calculations, and this has led to the invention of variuus devices for shortening it. Sume of these, such as the Abacus, Napier's Bones (invented by the father of logarithms), and the modern Sliding Rule, are rather aids to calculation than calculating machmes. Pascal is believed to have been the original inventor of a calculating machine, its use was lumted to addition, multiplication, \&c., of sums of money, and as it required the constant interventioo of a human operator the results were subject to the ordinary errors of manipulation. After him came the celebrated Lelbatz, Dr Silunderson, who, blind from his childhood, became professor of mathematics in Cambridge, and others. But all their machines were completely cast into the shade by the wonderful inventions of the late Charles Babbage. He knew well the immense value that absolutely correct tables possess for the astroanmer and the navigator, and that a machine which could produce them with speed was a very great desideratum. The first calculating machine he invented he called a difference engine, because it was to calculate tables of numbers by the rethod of differences. By setting at the outset a few figures the attendant would obtaio by a mechanical speration a long series of numbers absolutely correct. The difference engine was not intended to answer special questions, but to calculate and then priut numerical tables, such as logarithm tables, tables for the Neatical Almanac, dic. An intercsting account of some of the errors which are found in what are considered reliable tables is given in a praper by Batbage io the Memoirs of the Astronomical Society, 182 ?.

Every numerical table coasiats of a series of numbers which continuously increase or diminish. As an example take the squares of the uatural numbers, $1,4,9,16,25,36, \& \mathrm{c}$. Designate this series by N. If we subtract each term from the oce following it we get a new series, 3, 5. 7, 9, \&c., which is called the series of Srst differences : designate this by Δ^{\prime}. If in the same way we subtract each term of this series from the succeeding term, we get what is called the serice of secoud differences, every term of which is in this instance 2. Designate this series by Δ^{2}. As the different series were

Table of Squire Nambers. N	Firs: Differ ences. Δ^{1}	Serond Liffer- ences. Δ^{2}
1	3	2
4	5	2
9	7	2
16	9	
25		

The maia characteristics of the difference engine, deaigned and partially constructed by Bahbage, are these:if consinted af qeveral vertied calmons of figure-wheds
like large "draught men" one above onother, to tho number of six in each column. The natural numbers from 0 to 9 were cut on the rams of the figure wheets, hence each figure-wheel in a column could represedt a digit. Thus the lowest wheel gave the unts digit, the second wheel the tens digut. The number 5703 would be represented on the wheels of a column as in the nargin. The different columns were to represent the succissive series of diferences abuve relerred to, and were called the table column, the first difference column, \&c.
"The mechansm was so contrived that whatever might be the nuinbers placed respectively on the figure wheels of each of the different columms, the followng succession of operations took place as long as the handle was mored Whatever number was tound upen the column of lirst differences, would be added to the number found upon tho table column. The same first difference remaining upon its own columm, the number found upon the column of secoud differences would be added to that first difference." Similarly for all the other coltmos For example, suppose we are calculating the cubes of the natural numbers. At a certain stage of the work we would find 125 shown by the wheels of the table column, 91 by those of the first difference coluinn, 36 by those of the second difference column, and 6 on the lowest wheel of the third differance columu. On making a turn of the bandle the 91 would be added to the 125, which wond then show 216; at the

		$\begin{array}{\|c\|} \text { First } \\ \text { Ohfierence } \\ \text { Columin } \end{array}$	$\begin{aligned} & \text { Scond } \\ & \text { riminatice } \\ & \text { Coluinn. } \end{aligned}$	$\begin{aligned} & \text { Thid } \\ & \text { ofference } \\ & \text { cotumas. } \end{aligned}$
	1 2 5	0	3	6
after ode Tura	2 1 6	1 2 7	4	6
After two Turas..	3 4 4	1 8 9	4	6

same time 36 would be added to thie 91 , so that the first difference column would then show 127 ; moreover 6 would be simultaneously added to the 36 , which would this become 42 , and the 6 would remain unaltered. Another turn and we would get $343,169,48,6$ on the different columns. Had the engine been completed it would bave had columns for six orders of differences, each of twenty places of figures, whilst the first three columns would each have had half a dozen additional figures.

It was about 1822 that Babbage baviug constructed a small model of bis engine sent an account of it to Sir Humphrey Davy, then president of the Royal Society of London. Government leard of the invention, and, having recelved from the Royal Socicty a favourable report on the merits and utility of the engine, advanced money towards its construction. Sums of mone; were at irregular intervals voted for this purpose, but so great were the difficulties to be overcome, so entirely new even were many of the tools necessary, so much time was occupred in testing the value of each proposed contrivanec, that in 1834 only a portion was completed. The construction of the machice bers stopped, although the Rosal Society had again, in 1829 , reported most favourably on the eugive as regards its practicability, immense utility, and the pregress it hai made. The Govermment had already advaneed £17,000 (over and above what Babbage had spent, besides guving his personal superintendeuce without any remaneration), and they saw ar rlefinita limit to the amount it world and
and Babonge had a delicaey in pressing for the completion of the differenee engine, as he had recently designed a new maehine, the analytical engine, which, if completed, would entirely superseda it. The portion completed is in Siug's College, London.

It will be noticed that the use of the differenee engine was limited to the wnikiog of such problems as can be solved by successive additions or subtractions. The analytical engine, on the other band, was designed to work out any problem that the superintendent knew how to solve. It consists of two parts, each of a number of vertical columns of figure wheels, similar to those of the difference engine; on the one set called the "variables," which we shall designate by $\mathrm{V}_{1}, \mathrm{~V}_{3}$, \&c., the numbers of the special problem or formula are plaeed; the other set is called the "mill," and performs the required operations of multiplication, division, addition, or subtraction. Its working was direeted by means of two sets of cards-"operation" cards, which instructed the mill whether to multiply, divide, add, or subtract, and "variable" cards, which indicated to the mill the partienlar columng, i.e., numbers on which it was to perform this operation. An example will make this clear. Suppose we wish to aolve the equations

$$
\begin{aligned}
& a x+b y=c \\
& d x+f y=g
\end{aligned}
$$

On the wheels of V_{1}, the first colucon of the variables, the number a is placed, b on V_{2}, c on V_{3}, and so on. Six columna in all are required for this. It is evident that $z=\frac{f c-b g}{f a-b d}$. Hence, to get x, we require the products of f and c, b and g, $\& c$. To get these the superinbendent intimates to the mill by means of an "operation" card that a multiplication is to be performed, then points out by a "variable" card what are the two numbers, i.e., the two columns to be multiplied, and on what column the result is ω be placed. In the first cass the columns indicated would be V_{5}, V_{3}, and V_{7} respeetively. By another operation eard and another variable card, the mill would then be instrueted to multiply the numbers on V_{2} and V_{6}, and to place the result on V_{8}. Similarly $c a$ and $b d$ would be obtained on V_{9} and V_{30}. The superintendent would then instruct the mill to subtract the number on V_{8} from that on V_{7}, to plaee the result $\left(f c-b g\right.$) on V_{11}, and similarly, $j a$ id would be placed on V_{12}. By a new operation card the mill would now be put into a "dividing" state, and a variable eard would tell it that V_{1} was to be divided by V_{12}, and the result given on V_{13}. This would be the value of x. Similarly for y. The number of cards can be greatly diminished. Thus, for the four multiplieations one card would suffice. The cards are of pasteboard (say) and have zules punched in them,-a "multiplication" eard having a certain number of holes bored in it and arranged in a particular way, a "division" card a different arrangement of holes, \&c. The cards are so placed in the machine that certain levers drop through these boles, while others are unaffected, and the maehinery in connection with the levers is put out of gear or not as is desired. In this way the mill is put into a condition in which it multiplies (say) the numbers indicated to it.: The variable eards act in a similar manner. When an operation card and a variable card are given to the engine, the numbers on the nssigned columns are transferred to the mill, the operation is periorined, and the numbers and the result are placed on the proper eolumns. The series of cards used for any one problem would enable the maekine to solve any other similar problem. Babbage says of the enginc, "The analytical engine is therefore a machine of the most general natare. Whateve: formula it is required to develop, the how of its davelopment must ho commanicated to it he tro sets of
cards. When these have been placed the engine is sprecial for that partieular formula. The numerical constants mist then bo put on the wheels, aud on setting the engine in motion it will calculate and priut the numerical resuits of that formula." In the construction of this engine be overcame one of the greatest diticulties in such an mstrument, that of effecting the carrying of tens. The engine was designed so as to foresee these carringes, and act upon that foresight, and thus a great reduction of the time necessary to make a given caleulation was at once obtained by effecting all carriages simultaneously instead of in succession. He says of it, "The analytieal engine will contain- l°, apparatus for printing on paper, one, or if required, two cupies of its results; 2°, means for producins a stereotype mould of the table or results it computes. The engine would compute all the tables it would itseli require. It would have the power of expressing every number to fifty places of figures." It would multiply two numbers of fifty figures each, and print the result in one minute. Its consfruction was never begua, but Babbage left complete plans of every part of it.

In the Edinburgh Rerrew for July 1834 appeared an aecount of the principles of Babbage's difference engine. Herr George Scheutz, a printer at Stockholm, read it, and shortly afterwards he and his son Edward set about eonstrueting a caleulating machine. By 1843 they produced one capable of ealeulating series with terms of five figures, with three orders of differences, also of Give figures each, and of printing its results. Provided with a certificate to this effect from the Royal Swedish Acadeny of Seiences, they endeavoured unsuceessfully to get orders for their machine. In 1853, with the sid of grants from the Swedish Government, the Messrs Seleutz finished a second machine which was exbibited in England, and at the Paris exlibition of 1855 . It eventually went to America. It was about the size of a small square pianofortc. It could calculate series with four orders of differences each of fifteen figures. It printed the results to cight figures, the last of which was capable of an automatie correction where neces. sary for those omitted. "It eould caleulate and stereotype without a ebauce of crror $\mathfrak{t w o}$ and a half pages of figures in the same time that a skilful compositor would take to set up the types for one single page."

A new machine by the Messrs Scheutz was eonstrueted about 1860 by Messrs Donkin for the Registrar-General for the sum of $£ 1200$. It has been used in the calculation of some of the tables in the English Lije Table, published in 1864 . Dr Farr says of it, "The machine bas been extensively tried, and it has upon the whole anawered every crpeetation. But it is a delicate instrument, and requires considerable skill in the manipulation. It approaches infallibility in certain respects; lut it is not infallible, except in very gkilful hands. The weakest point is the printing apparatus, and that admits of evident improvement."
M. Staffel and M. Thomas (de Celmar) have invented machiues which ean perform addition, oubtraction, multiplieation, division, and extraction of the square root. M. Thomas's machine is extensively used.
Sir William Thomson has recently invented an instrument (no deseription of which bas set been printed) which is able to solve any linear differential equation with variablo coefficients.

Professor Tait has also invented the principle of a machine, which, if constructed, will integrate any linesr diferential equation of the eccond order with variablu coefficients.

[^58]valCULUS. See Differential and Integral Calgulus.

CALCUTTA, the capital of India, and seat of the Supreme Government, is situated en the east bank of the Huglt River, in latitude $22^{\circ} 33^{\prime} 47^{\prime \prime}$ N. and lungitude 85° $23^{\prime} 3 t^{\prime \prime}$ E. It lies about 80 miles from the seahoud, and receives the accumulated produce which the two great river systems of the Ganges and the Lrahmaputra collect throughout the provinces of Bengal and Assam. Firmu a cluster of mud villages at the close of the 17 th century, it has advanced with a rapid growth to a densely inliabited metropolis, which, with its four suburbs, coutains a popu?ation of 892,429 souls. The central portion, which forms the Calcutts municipality, has a populatiou returned in 1872 at 447,601. In the same year its maritime trade amounted to $52 \frac{1}{2}$ mullions sterling, of which tho exports luamed 313 millions, and the imports 203 , showing an excess of exports over imports of 11 millions sterling.
The history of Calcutta practically dates from the year 1686. In 1596 it had obtaioed a brief entry $2 a 3$ a re::t-
laying village in the surrey of Bengal executed by command of the Emperor Akbar. But it was not till 90 years later that it emerged into history. In 1686 the Enghsia merchants at LIuglif, finding themselves compelied to quit their factory in consequence of a rupture with the Mughul anthorities, retreated about 26 miles down the river to Sutanati, a village on the banks of the Hugli, now within the houndaries of Calcutta. Their new settlement soon eatended itself along the river bank to the then village of Calcutta, and by degrees the eluster of neighbouring hamlets grew into the jresent town. In $1689-90$ the Bengal servants of the Erst India Company determined to make it tueir headquarters. In 1696 they built the original Fort William, and in 1700 they formally purchased the three villages of Sutanatl, Calcutta, and Goblndpur from Prince Azim, son of the Emperor Aurungzebe.

The site thus chosen had an excellent anchorage, and was defended by the river from the Marhattas, who harried the districts on the other side. A fort, subsequently rebuilt on the Vrubau principle, and a noats

Ground-flan of Catutia.

1. Almahouses.
2. Lepur A siuin
3. Church Miselon.

- Cathollic Colton.

6. Eaptist Cuspot und Mivaton
7. St Thomus If C Church.
8. Aslatle Sociuty.
9. Small Csuye Cour 9. Church ([R.C) of tho Sacred Heant 10. Mosque.
10. Baptist Chapel. 12. Home Department.
11. Tveasury. 15. Ju*า Hinl 16. Barke of Bencat 17. Statijunel Oftce. 15. Dlctalt lisll.

19 St Johas Chutch - 20. Folelán beparturent 20. Fokelán Departurne :1 sudules bewaney atulut :8. Gundameat hon budge Yasd.
designed to form a semicircle round the town, and $t n$ be connected at both ends with the river. but which was never completed, combined with the natural position of Calcutta to reader is one of the safest places for tride in India, duriug the cxpiring 'struggles of the Miughal smpire. It grew ${ }^{n} \mathrm{f}$ without any lixed plan, and with Sittle regard to the smontary arrangements required for a town. Some parts it it lio below water mark on the Hugli, and its low level dhroughout rendered its draingge a most dificult problem. Until far on in the last century, the jungle and paddy fichts closely hermed in the European mansions with a circlo of malaria; the vast plain (mecidein), with its gardons and promenades, where the fashion of Calcutia now displays itself overy eroning, was thra a swamp during three months of each year; the spacions quadranyte known as Wellington Square was built uion \& filthy creck. A legend relates how one-fourth of the European inhabitants perished in twelve months, ant
during scventy years the mortality was so great that the name of Calcutta, derived from the village of Kalighat, was identified by mariners with Golgotha, the place of is skull.

The chiof event in the history of Calcutia is the eack of the town and the capture of Fort William in 1756, by Suraj-ud-Daula, the Nawab of penggal. The majorty of the Finglish officiala took ship and fled to the mouth of the llugli River. The Eurupazas who remained were compelied, after a short resistance, to surrender themselres in the mercies of the young frinco. Tho prisoners, numbering 146 persons, were diven at the point of tho sword into the guard-room, a chamber searcely 20 feet sopuare, with but two small windows. Next morning only 23 wero taken out alive, among them Mr Iholwell, the annatist of the "Black llule." 'Hhis event too's place on June 20, 1756. The Mahometans retained possession of Caicnica for about seven monthes, and during then brief pern be
name of che town was changed in official documents to Alinagar. In January 1757 the expedition despatched froin Madras, under the command of Admiral Watson and Colonel Clive, regained possession of the city. They found many of the houses of the English residents demoished, and others damaged by fire. The old church of St John's lay in ruins. The native portion of the town had also suffered much. Everything of value bad been swept away, except the merchandise of the Company within the fort, which had been reserved for the Nawab. The battle of Plassey was fought on Juae 23d, 1757, exactly twelve months after the capture of Calcutta. Mir Jafar, the nominee of the English, was created Nawab of Bengal, and by the treaty which raised him to this position he agreed to make restitution to the Calcutta merchants for their losses. The English recerved $£ 500,000$, the Hindos and Mahometans $£ 200,000$, and the Armenians $£ 70,000$. By another clause in this treaty the Company was permitted to establish a mint, the visible siga in Indin of territorial sovereignty, and the first coin, still bearing the name of the Delhi- emperor, was issued on August 19th, 1757. The restitution money was divided among the sufferers by a committee of the most respectable inhabitants. Commerce rapidly revived, and the ruined city was rebuilt. Modern Calcutta dates from 1757. The old fort was abandoned, and its site devuted to the Customs House and other Government offices. A new fort, the present Fort William, was commenced by Clive, a short distance lower down the River Hugli It was not finished till 1773, and is said to bave cost two millions sterling. At this time also the maidan, the park of Calcutta, was formed; and the salubrity of its position induced the European iohabitants gradually to shift their dwèllings eastward, and to occupy what is now the Chauringhi (Chowringhee) quarter.

From this time the history of Calcutta presents a smooth narrative of advancing prosperity. No outbreak of civil war nor any episodo of disaster has disturbed its progress, nor bave the calamities of the climate ever done mischief which could not be easily repaired. A great park (maidan), intersected by roads, and ornamented by a garden, stretches along the river bank. The fort rises from it on its western side, the stately mansions of Chauringhi with Government House, the high court, and other public offices, line its eastern and northeri flank. Beyond the European quarter lie the deasely populated clusters of huts or "villages" which compose the native city and suburbs. Several fine squares, with large reservoirs and gardens, adorn the city, and broad well-metalled streets connect its various extremities.

Up to 1707, when Calcutta was first declared a presidency, it had been dependent upon the older English settlement at Madras. From 1707 to 1773 the presi. dencies were maintained on a footing of equality; but in the latter year the. Act of Parliament was pased, which provided that the presidency of Bengal should exercise a control over the ather possessions of the Company; that the chief of that presidency should be stylcd GovernorGeneral ; and that a supreme court of judicature should be established at Calcutta. In the previous year, 1772 , Warren Hastings had taken under the immediate management of the Company's servants the general administration of Bengal, which had hitherto been left in the hauds of the old Mahometan officials, and had removed the treasury from Murshidåoad to Calcutta. The latter town thus became the capital of Bengal, and the seat of the Supreme Government in India. Io 1834 the GovernorGeneral of Bengal was created Governor-General of India, and was permitted to appoint a Depaty-Governor to manage the affairs of Lower Bengal during his occasional
absence. It was not until 1854 that a separate head was appointed for Bengal. who, under the style of LieutenantGovernor, excrcises the same powers in civil matters as those vested in the Governors in Council of Madras or Bombay, althongh subject to closer supervision by the Supreme Government. Calcutta is thus at present the seat both of the Supreme and the Local Government, each with an independent set of offices. Gorerament House, the official residence of the Gevernor-Genersl of India, or Viceroy, is a magnificent pile of buildings to the north of the fort and the maiden, built by Lord Wellesley in 180 . 'f no official residence of the Lieutenant-Governor of Bengal is a house called Belvedere, in Alipur, the southern suburb c. Calcutta. Proposals have been made from time to time to remove the seat of the Supreme Goverament from Calcutta. Its unhealthiness, especially in the rainy season, its remoteness from the centre of Hindustan, and its distance from England, have each been auimadverted upon. These disadvantages of Calcutta have now, however, been almost entirely remored, or their consequences have been magated, by the conquests of science and modera engineering. The railway and the telegraph have brouget the Virem at Calcutta into elose contact with every corner of lndia; while an ample water supply, improved drainage, and other sanitsry reforms, have rendered Calcutta the healthiest city in the East,-bealthier, indeed, than some of the great Enropean torns. English civiliza: tion has thus enabled Calcutta to remain the political capital of India. The same agency still secures the city is her monopoly of the sea-borne trade of Bengal The River Hugll has long ceased to be the main channel of the Ganges; but Calcutta alone of all the successive river capitals of Bengal has overcome the difficulties incident to its position as a deltaic centre of commerca Strenuous efforts of engineering are required to keep open the "Nadiya Rivers," namely, the three off-shoots of the Ganges which combine to form the Hugli. Still greater watchfulness and more extensive operations are demanded by the Húgll itself below Calcutta, to save it from the fate of other deltaic streams, and prevent it from gradually silting up. In 1853 the deterioration of the Hugis channel led to a proposal to found an ausiliary port to Calcutta on the Matlah, another mouth of the Ganges: A committee, then appointed to inquire into the subject, reported that " the River Hlugli was deteriorating gradually and progressively." At that time "science had done nothing to aid in facilities for navigation," but since then everything has been done which the foresight of modern knowledge could suggest, or the power of modern capital could achieve. Observations on the condition of the river are taken almost hourly, gigantic steam dredgers are contioually at work, and the shiftiug of the shoals 18 carefuils recorded. By these means the port of Calcutta has been kept open for ships of the largest tonuage, and now secms to have out-lived the dauger whice threatened it.

Satisties. - Calcuta may, in one sense, be said to extend across the Hupli, and to include llowtah on the western side of the river, as well as the throe separate municipalities on the eastern bank, known as the suburbs of Calcatia, the ncrth suburban town, and the south suburban town. The total population of the area thas defned was returned by the census of 1872 at 892,429 snals. Calcutts proper, or the central portion, which lies, roughly speaking, between the old Marhatio ditch and the Hugli, is govemed by a distinct manicipality: In 1552 Mr Holwels estimated the number of houses within itw limits at 51,132 , and the inhabitants at 409,056 persons; bot botb these estimates were probably much too high; in 1802 ibe number of inhabitants was returned at 179.917 ; iu 1831 at 187,081 ; in 1850 at 361,369 ; and in 1866 at 377,924 , In 1872 a regular census was taken under the conduct of the municipelity. The resales present features of doubtfol accuracy. They were as follows:Aren, 8 square miles; number of houses, 38,864 ; population. Hindus, 291, 194; Mahometans, 133,131; Buddhista, 869; Ch:iatiang. 21,356; "other" denominations not separatcls clasivad, 1051:
grand total, 447,681; total of males of all deaomizations, 239,857; ferales, ${ }^{147}, 744$; avcrage aumber ot persoas per heuse, 11 ; ramber of persons per square mile, 55,950. The length of the roads in the town is about 120 miles. The presert governing boizy was created in eccerdance with the provisions of Act 6 of 186° (Bengal Council). It consists of the justices of the peace for Calcatta, with a salarisd chairman, who is a member of the civil service. All the members are nemiaated by the Gevernment, but a depuig chairman is chogen by the justices out of their own body. As the justices are aet in any sensa represeatative, the power and respea sibility are to 3 great extent ceatred in the chairman; but of late years, by meaas of departmental committees, the co-operation of the ordiaary members has been ealisted. Out of about 100 justices whe are reeident in Calcutta exactly one-half are Europeans. Ia 1874 the ordinary revenue of the muaicipality amounted to $£ 240,656$, of which $£ 160,000$ was raised by rates, and $£ 37,000$ hy licences. The ordinary experditure for the sarae year amounted to $£ 233,374$, of which $£ 80,000$ was deveted to interest on loans and sinking fuad, $\mathfrak{x} 32,000$ to geaeral expenses, $\mathfrak{£ 3 0 , 0 0 0}$ to roads, twe items of $£\{2,000$ to lighting aad water supply, and $£ 13,000$ to conservaacy. lrciuding capital account, receipts, loans, suspease account, ad cash balances, the matal ampuat af tha disposal of the justices during the
 fad capital account amounted $\mathfrak{t e} £ 382,823$. The total loan liabilities of the corporation are $21,466,060$, and the total of interest and sinking fund payable yearly is $£ 100,474$. The aremge rate of municipal taxatioa per bead of the population is about 10 s . 8 d . The mest important undertaking ueder the care of the municipality is the water supply. Tbe present system date9 from 1865, when the saaction of Gevernmeat was given to the construction of works which now pour upwards of a million gallons a day of filtered water into the city. The source of supply is from the Hughiat Palta, bont 16 miles above Calcutta. The works there censist of two large soction pipes, 30 inches in diameter, through which the water is Arawn from the river by three engines, each of 50 herse power now suinal ; the water is then passed into six settling tanks, each 500 feet loug by 250 feet wide. Here it is allowed to atand for 36 hours, whea it is rermitted to run off to the filters, eight in number, the area of 3ech being 200 by 100 feet. After filtration the water is made to " 10 over a marble platform, where its purity can be olserved. It is ihen coaducted to Calcutta by a 42 -inch iron main. These works :ost $£ 525,432$. They wero fiviahed in 1870 , a ad connected witi pires laid under 100 miles of streets. The total number of houss zonnectious ap to December 31,1874, was 8159 . The total quantity of water delivered dariag that year amounted to $2,524,566,300$ 5o Lons, being coasiderably over the cstimated average of 6 million gailicas daily, or about 13 gallons per head of the popolation. The tutal cost for the same year of the water-supply (inclusive of interest) was $£ 55,547$, or about 5 d . per 1000 gallons.
The drainage works are on an equally effective scale. The main sewers ase undergrouad, and foit the proper discharge of their contents in tho direction of the Salt Lake, a pompiag atation is maintained at en anaual cost of $£ 3000$. The system of undergreund drainage, althongh not entirely completed, had cost in 1874 a capitel oum of $£ 620,000$ lin 1863, on the constitation of the present raunicipality, a herelin offcer with ao adequats establishmeat was appointed The practice of throwing corpees into the river has been put down, and the burning ghits and burial-grounds have beea placed under supervisioa. All refuse and night-soil are remeved by tha municipality, and convered by a special railmay to the Salt Lake. The town is lighted by a private gas company, 2723 gas lamps and 730 oil lamps heing paid for at the public expensc. The fre brigto consists of 2 steam fire-engioes, 3045 haad eaeines, its annual cost being about $£ 2000$. The police of Calcatea is under the control of a commissioner, who is also the chnirman of the justices. Benesth him there is a depaty-commis. sioner. The force consists of 4 superinteadents, 155 subordinate officere of various graics, 1292 constables, and 6 mounted constables, maintained is 1873 at a cost of £41,227, of which Governmeat contributed oae-fout th. Sercral minor bodies, , ach as the siver policc, Goverament guards, sc., bring the entire sarength of the force in the town nud on the river to 2313 men. The great majority are natives, the namber of Ecropean sergeants and conatables being only 50 .
In 1872-73 the atatistics of education in Calcatta were as follows: -There were 3 Government collegeg, namely, the Presidency College, founded in 1855, end attended by 709 pripils; the Sanskrit College, established in 1824 , attended by 26 idult pupils, of whem 17 are Brihmans; the Calcutis Madrish or Mahometan College founded in 1781, aumber of pupids 528. There are also five colleges manly supported by missionary efforts, aided by Gorcrnment, and attended by 305 papils The total punber of schools ia Calcotts seported on by the Educational Departmen: is 260, with 19,445 ectolars; 157 of them are malo schools, teaching 16,155 boys; the remainine 103 are for grits, and teach 3290 pupils. According to a different pmaciple of classitication, 36 geloole teach English to 9445 boys. 121 terch the vernacular only to C820 boys, 23 are vernacular
szhools for girls with 3244 pupils, and 4 are nomal schools instructing 50 male teachers anil 46 female. Or the total anmier of pupils in these scliools, 47.7 per cernt. are ascertained to be Hindus, 13.5 Christians, 2.6 Sluselmans, and the remainug $36^{\circ} 2$ per cent. are of uascertioned religioas. The total ascertaiatd expenditure was $£ 25,011$, of which sum the Goveroment contributed $£ 9160$. The Governuent School of Art was atteaded in $1872-73$ by 9 studeats, of whon 88 are Hindus, 4 Jusalmang, and 2 Eurasians. Calcutta bas also an importat school of medicioe, or medical college, with a large hospital attached and every facility for a thorough scieatific traiaing.

The medical charities of Calcutta comorisa the Medical College Hospital, Just Hamed the General Hospital, the Native or Mayo Hospital, the Municipal Panper Flospital, and minor dispensanus. Of these the General Hospital is contined almost solely to Europedis. The total amount contributed by Goverament to these nustintions is $£ 30,000$. The number of persons treated during the year 1872-73 was 251,039, of rhom 20.505 were indoor patients. OI these 64.3 per cent. were men, $16 \cdot 3$ wemen, and 18.5 clildren. The rate of mortality in cholera cases was 434.3 for every thousand treated:

Mortiaryreturns are collected in Calcutta by the police inspectors, and compared with the registers kept by paid clerks of the muanci pality at the burning ghais and burial-greunds. In 1873 the total namber of deaths thus ascertained was 11,557 , or 25.82 per thousand. The death rate ameng the Christiaas was $31 \cdot 5$, ameng the Hiadus $26 \cdot 1$, and amoag the Mallometans 24.7 . The highest death rate was ia January, Norember, and December, and the lors. est in Juae aad July.

The mean temperature of Calcutta is abeut 79° Fahr. The highest temperature recerded during the last 15 years is 106° in the shade, a ad the lowest $52^{\circ} \cdot 7$. The extrene range is therefore a little over 53°, while the mean temperatures of December and May, the coldest and hottest months, are $68^{\circ} \cdot 5$ and 85° respectively. The average rainfall during 36 years has been 66 inches,-the highest rainfall on record being 93.31 inchee in 1871 , and the lewest 48.61 iaches ia 1837. By far the greater part of the rain falis between the menths of Juar and Octeber.

Like the rest of the seaboard of the Bay of Pengal, Calcotts it exposed to periodical cyclones, which do much ruischief. The greatest pressure of the wind registered is 50 th to tha square foot. Ia the sterms of 1864 aud 1867 the anemometer was blewn away. A great loss of life and property was caused alnag the Hugli by the storm of October 5tb 1864 . In Calcutta and its suburbs 49 persons were killed, gnd 16 wounded, 102 brick houses were destroged, and 583 severely damaged; 40,698 tiled and atraw huts were levelled with the ground. The destruction of shippiag in the port of Calcutta appears greatly to have exceeded that on record io any pravious storm. Out of 195 vessels only 23 remained uninjured, and 31 , with an aggregate toanage of 27,653 tons, wcre totally wrecked. Oa November 2, 1867, the force of the wind was not less violent, but there was no storm wave, and consequently the amount of damage done was much less.

Tue Port of Calcutta, extending 10 miles along the Húgl, with an average width of working channel of 250 yards, and with moorings for 169 vessels, is under the management of a body of 9 European gentlemen styled "Commissioners for making Improvements in the Port of Calcutta." This body was constituted in 1870 , and has since that date receired considerable additions to its powers. In 1871 they ware appointed " Bridge Commissioners," to take charge of the thoating bridge over the Hugli, and to work it when completed. This bridge, finished in 1874, now supplies a permanent connection between Celcutta and tho railway terminus on the Howrah side of the river. It is constructed on pontoons, and affords a continuous roadway for foot passengers and vehicles. The traffic returns for 41 weeks in 1875 were $£ 7593$; the cost of the bridge has been $£ 220,000$. The main duty of the Port Commissioners has hitherto consisted in providing accommodation, by jetties and warohouses, for the shipping and native boats, which carry on the great and incrcasing trade of Calcutta

In the year 1873-74 the inceme of the commissioners from all sources was $£ 114,709$, and the cxpenditure $£ 78,260$. The total amount of capital expeaded up to that ycar was $\pm 550,939$, including a debt of $£ 400,123$. The number of vessels arriving and departing in 1861-62 was 1793, with an aggregate tonoage of 1.337,682 tons; in 1873-74, the namber of vessels was 1927, tonnage 2.457, 147. The number of ateamers, and especially of ateamer passing through the Suez Canal, is greacly on the increase.

The growth of the commerce of Calcutta may be seen from the Pollowing figures:-In 182021 the lotal value of the exports and imports, including treasure, was $£ 10,454,910$; in $1830-31, £ 8,756,382$; in 1840-41, $£ 15,202,697$; in 1850-51, $£ 18,754,025$; in 1860-61, £31,794,671; in 1870-71, $£ 49,316,738$. The value of the customs riuties (including salt) was in $1820-21, £ 151,817 ; 1830-31, £ 121,321$; 1840-41, £495,515; 1850-51, £1,038,365; 1860-61, £2,270,654; 1870-71, $£ 3,548,926$. Cotton goods first became an important article of import in 1824; oil seels were first exported in 1835; the exports of jute on a large scale date from 1860, those of tea from 1864. Among the chief articles of import in 1870-71 were-apparel, value $£ 186,767$; becr, $£ 140,859$; coal, $£ 109,185$; cotton manufactured, f11,624,712; machinery, f194, 193 ; metals, $\pm 1,311,547$; railway materials, $£ 710,357$; salt, $£ 652,632$; spices, £150,150; spirits, $\mathbf{x} 162,635$; wine, $£ 214,191$ '; wood, $£ 156,903$; woollen manufactures, $£ 347,116$; treasure, $£ 2,255,244$; Government shiprafats, $£ 981,557$; total value of imports, $£ 21,198,478$. Amoدg the chicf articles of export in 1870-71 were-cottoa raw, $£ 2,020,159$; cotlon manufactured, $£ 811,825$; dyeing materials, $£ 153,113$; grain and pulse, $£ 2,630,451$; hides and skins, $£ 1,573,655$; indigo, £2,285,202; jute, $£ 2,585,390$; jute manufactured, $£ 664,898$; lac, £194,576; metals, $£ 215,920$; opium, $£ 5,490,395$; saltpetre, £440,183; seeds, $£ 2,921,117$; silk, £1, 508,801; silk manufactured, £244,076; spiccs, $£ 215 ; 018$; sugar, $£ 674,149$; tea, $£ 1,117,712$; tobacco, $£ 152,716$; woollen manufactures, $£ 136,052$; bullion and treasure, $£ 1,021,638$; Govcrnment treasure, $£ 228,534$; total valuc, of exporty, $£ 29_{1} 118,260$.

The internal trade of Calcutta is conducted partly by frilway, and partly by water traffic. There is no railway station within the limits of the municipality, but three separate railways have their terminus in the immediate neighbourhood. The East Indian Railway, whose terminus is across the river at Howrah, brings down the produce of the Nortb-Western Provinces and Bebar, and connects Calcutta with the general railway system of the Peninsula. The Eastern Bengal Railway and the South-Eastern Railway have their terminus at Siaidah, an castern suburb of Calcutta. The former is an impertant line running acress the Delta to the junction of the Ganges

- aud Brahmaputra at Goalanda. The latter is a short railway, intended to connect the metropolis with Port Canning, in the Sundarbans. The three chicef lines of water traffic are..-(1), the Calcutta canals, a ehain of ehannels and rivers passing round and thirough the Sundarlans, opien at all seasons of the year, and affording the main line of communication with the Ganges and the Brahmaputra; (2), the Nadiyd rivers, three in number, which branch off in a more directly southern course from the Ganges, above its junction with the Brahmaputra, and ultimately become the Hugli-these are with difficulty navigable during the dry season; (3). the Midnapur and Ilijili canals, leading south tewards Orissa.
(w. w. в.)

Caldani, Leopold Marco Antonio (1725-1813), a distinguished Italian anatomist and physician, was born at Bolegna in 1725. After holding various minor appointments, he was chosen assistant to the celebrated anatomist Morgagni at Padua; but disgusted with the envy whieh tuis distinguished position drew upon bim, ho remored to Venice. Soon after, however, be rias appowited to the professorship of the theory of meclicine, with the promise of being elected to suceecd Morgagni, who was then old and intirm. In 1772 he pulblished bis Etements of Pathology, and soon afterwards the Elements of Physiology. In the same year be took possession of the chair of anatomy, vacant by the death of Morgagni, and endeavoured, though without success, to found an anatomical museun. At the age of seventy-six, though threatened with hindness, he published, with the assistance of his nephew, a valuable series of anatomical plates. He died in 1813, at the age of eighty-eight.

CALDER, Sir Robert (1745-1815), Baronct, was born at Elgin, in Scotland, July 2, 1745 (o. s.) He beivaged to a very ancient family of Morasshire, and was :La second son if Sir Thomas Calder of Muirton. He was sdicated at the grammar school of Elein, and at the ape
of 1 ourteen entered the Eritish nary as midshipnan. In 1766 he was serving as lieuteuaut of the "Eses,", under captain the Honourable George Faulkner, in the West Indies. Promotion came slowly, aud it was not till 178: that he attained the rank of post-captain. He acquitted himself honourably in the various services to whieh he was called, bit for a long time had no opportunity of distin. guishing himself. In 1796 he was named captain of the Heet by Sir John Jervis, and took part in the great lattle off Cape St Vincent (February 14, 1797). He was selected as bearer of the despatches announcing the victory, and on that oceasion was knighted by George III. Me alsc received the thanks of parliament, and in the following year was created a baronet. In 1:99 he became rear-admiral; and in 1801 he was despatched with a small scquadon in pursuit of a French force, under Admiral Gantheaume, conveying supplies to the French in Egypt. In this pursuit he was not suecessiul, and returning bome at the peace, he struck his flag. Wheu the war again bruke out he was recalled to scrvice, was promoted vice-admiral in 1804, and was employed in the following year in the blockade of the ports of Ferrol and Coruña, in which (amongst other ports) shipls were preparing for the inrasion of England by Napoleon 1. He held his positiou with a forec greatly inferior to that of the enemy, and refused to be conticed out to sea. On its beconing known that the first movenent directed by Napolcon was the raising of the blockade of Ferrol, hear-admiral Stirling mas ordered to join Sir R. Calder and cruise with him to intercept the fleets of France and Spain on their passage to Brest. The approach of the enemy was concealed by a fog; but on July 22, 1805, their feet came in sight. It still out numbered the British force; but Sir Fohert entered intc action. After a combat of four bours, during which he captured two Spanish ships, be gave orders to discontinue the action. He offered battle again on the tro following days, but the challenge was not accepted. The French admiral, Villencuve, however, did not pursue his voyage, but took refuge in Ferrol. In the judgment of Napoleon, bis seheme of invasion was baftled by this day's action; but mueh indignation was felt in England at the failure of Calder to win a complete victory. He was, nevertheless, again sent out in August, and prevented Villeneuse from effecting a junction with the French fleet at Brest. In eonsequence of the strong feeling against him at home be demanded a court-martial. This was beld on the 23d of December, aud resnlted in a severe reprimand of the sieeadmiral for not baving done his utmost to renew the engagement, at the same time acquitting him both of cowardice and disaffiction. False expectations bad becó raised in England ly the mutilation of his despatches, and of this he indignantly complaincd in his defence. The tide of feeling, bowever, turned again; and in 1815, by way of public testimony to his services, and of acquittal of the charge made against him, he was appoiuted commander of Portsmouth. Ile died at IIolt, near Bishop's Waltham, in Hampshirc, August 31, 1818.

Calderon de la barca, Pedro (1600-1681); the most eminene representative of the Spanish national drama, was born in Madrid, Janiary 17, 1600 . His pros. perous life was undistinguished by striking incidents. He received his education at Salamanca, and after having been, as would seem, fur some years a retainer or dependant of various noblemen, in 1625 entered the army, where it is hinted that he did not distinguish himself. He bad begun to write for the stage in 1622, and in 1636 be was summoned to court, and soon became babitually employed as a writer of court spectacles by King Philip IV., a munificent patron of authors and artists. He was also made a knight of Santiago, and anw some further military scrice in Cata.
lonia: but in 1651 he entered the church, and from that period wrote nothing but spectacular plays for representation at court, and the religious pieces known as Autos Secramentules. He received various ecclesiastical preferments from Philip IV., and prolonged his days in wealth and honour until his death on May 25, 1681. Very few craits of bis personal character háve been preserved, and little else can be extracted from the sonorous eulogiona of his friend and biographer Vera Tassis than that he was beld in esteem for gravity, urbảnity, and modesty. A surer testinony to his character is the spirit of bis works, which are animated throughout by a lofty deal of honour and religoon according to the conceptions of his age and country, and are wholly free from the usual inpurity of the stage. Ile must evidently have heen a highly accomplished man, possessed of a large stock of erudition.

The entire number of preces comprised in Hartzeobusch's edition of Calderon, which does not inctude the autos sacramentales, 13122 . There are 72 autos. It is of course impossible to notice here more than a fraction of this prodigious mass of dramatic poetry. We shall briefly characterize the classes under which it admits of being distributed, adducing a few of the more remarkable dramas as representatives of the whole, and following in the maiu the admirable arrangement of Scback.

1. Religious Dramas.-Of these Schack reckons sixteen, including The Statue of Prometheus and Life is a Dream. This division comprises some of Calderon's most famous pieces, in particular The Fonder-zorking Magician, in which the brilliancy of his poetical imagnation is disphayed to the fullest extent, and by Shelley's translation of which be is hitherto best known in England. The subject-the voluntary surrender of a human soul to the Evil Oneoffers striking analogies and equally strong contrasts to Goethe's Faust. The comparison of the two pieces is most instructive, and most forcibly attests the vast progress in dcpth of thought and complexity of emotion of the modern over the medixval world. The Devotion of the Cross is Enother of the raost remarkable pieces of this class, rich in poetical beanties, and exhibiting Catholic antinomianism in its most unmitigated form. There is a deeper vein of thought in Life is a Dream, in which the poet is comparatively free from ecclesiastical influences, and which is also one of his most striking and original productions. The Constant Prince, founded on Don Ferdinand of Portugal's captivity, is tho very flower of Spanish religion, courtesy, and chivalry, and, like Life is a Dream, is an excellent acting play. The Schism of England and The Dayspring in Copacavana, apart from their great poctical merits, are interesting as indications of the national feeling with regard to nearly contemparary events.
2. Nineteen of Calderon's dramas are classed as historical tragedies. These generally exhibit his talent for effective theatrical situation in the most advantageous light; but in psychological depth and truth he is far behind the great dramatic masters of other countries. The most celebrated of theso pieces are founded on incidents in Spanish and Portuguese history, from the posthumons coronation of linez de Castro to the heart-rending story of Gomez drias's Leman, and tho porerful domestic tragedy of the Alcalde of Zalcmea, which displays more individuality in the delincation of personal character than is usual with him Nowhere can a fuller insight be obtained into the peculiarities of the Spanisis chasacter and the national ideal while the notion was still a great Catholic and Crusadag pewer. Calderon's treatment of historical fact, it need harilly be said, is frequently as free as Shakspeare's. The most remarkable of his historieal phays, whose plots sre not herived from the history of his own country, are No Wountw ite julursy. a most powerful tragedy on the
story of Herod and Mariame; The Loch's of Absalom, so greatly admired by Shelley; and Zerobia the Great.
3. The subjects of twenty four of Calderon's pieces are derived from mythology, chivalric romance, or novels. Most of these are merely spectacular, affording little scope for strictly dramatic power, but dazzling from the opule:tce of the poet's invention, and the sweetness and varicty of his rersification. He has bere given bis imasination the freest rein, and is nowhere more truly himself. No 1 agic like Love, a play on the story of Circe; Echo and Narcissus; and The Bridge of Mantible may be cited as characterstic examples.
4. Sixteen romantic dramas, generally medodramas or tragl-conedies. form the trausition from Calderon's tragic to his comic theatre. None of his plays are more distingushed for ingenuity of conception and grace of style. The Loud Secret is perhaps the most celebrated, but the rest are of hardly inferior merit.
5 We now come to Calderon's cumedies of intrigue, the so-called "comedies of cloak and sword," his delincations of the manners of his day, and of the actual human life around him. His range is an exceedingly linited one in comparison with that of the English dramatists. It hardly transcends the sphere of ordinary good society,-the valets and other representatives of the lower orders being for the most part merely conventional types. The motive of his pueces, moreover, scldom comprehends more than the two prime factors of love and jealousy. Within these limits, however, bis perception is commonly correct, and his characters are depicted with more individuality and subtlety than in his more serious picces. Even his highflown strain of chivalric sentiment and his punctilious formality correspond to fact. They are artificial indeed, but not affected, for they actually represent the ideal of the best contemporary soeiety, and represent the Spanish cavalier, if not precisely as he was, yet as he wished to be esteemed. The capital merit of these pieces, however, is the prodigious ingcouity of the plots, and the fertility of invention by which our attention is kept continually on the stretch. Calderon's expedients are incxlanstible; every fresh incident surprises, and none appears capricious or unnatural. Trenty five plays are included under this head. The Fairy Lady and 'Tis ill keeping a House with Twa Doors are perhaps the most generally known; all however are nearly upon a level.
5. Autos Sacramentales.-A volume might be written upon this most peculiar of all the forms of the modern European drama. We can only describe it here as a development of the mystery or miracle play of the Middle Ages, designed like it for public representation on some specified religious oceasion, and falling like it into two classes, the strictly Biblical play, of which Calderon's Brazen Serpent is an instance, and the religions allegory. The latter is Calderon's characteristic department, and nothing can surpass the boldness and quaintness of his personifications. Man, the World, Gailt, the Morning Star, the Synagogue, and Apostacy figure, for example, among his innomerable dramatis personc. The riches of his invention and his dietion are nowhere more abundant; but the profoundness of his philosophy and theology have been greatly over-estimated by writers of his own religous communion.
6. Mfinor Pieces.-Calderon also composed numerons farces, interludes, and other brief escasional pieces, the greater part of which are lost.
Calderon received the Spanish drama from his predeceesors in a flourishing condition, exhausted, in conjunction with his numerous gifted contemporaries, every phase of which it allowed, and left it at his death in a condition of total decay: His retirement frum the theatre is midille

Sife was probabiy occasioneu oy the conviction that it admitted of no further development. In his relation to his predecessors he appears as an imnovator, cliefly in the sumplitication of metrical forms. ' Though at least half of each of his plays is still in complete rhyme, he nevertheless resorts to assonances more liberally than his forerunners. If, on the ono hand, this brings him nearer to the language of reality, it on the other sometimes betrays hum into verbosity. In his earlier pieces the exuberance of his genius, and the example of the popular lyrical poets of the day, tempted him into conceits and extravagances of diction whech are less apparent in his later works. He yet lias nore fire and colour than any other of the Spanish dramat:sts, and may be described as the one among then w whom the Oriental element is most largely developed. He slares with his rivals the reproach of repetition, of calculated stage effect. and of stereotyped fornis of expression, which become at length mere convention and surplusage. 'The peculiarity of the form of composition cultivated by Calderon renders it difficult to assign his relative rank among poets of the first class. The Spanish drama is a creation sui geners, and all attempts at a comparison between it and other theatrical forms must be futile for want of a common measure. The art of Calderon attans its purpose not less completely than that of Shakespeare or Sophocles; all that can be said in its disparagement is that this purpose is less elevated. It falls bcluw the art of Gretee, inasmuch as it makes no pretension to represent the ideal either of divinty or of manhood; and bclow the art of Shakespeare, inasmuch as, instend of offerng a mirror to universal nature, it is restricted to the representation or poctic expression of a temporary and accidental phase of manners. It is the must periect embodunent concevable of oll the romantic and chivalrous elenents of Spanish national lide ; there is not, perhaps, such another example in literature of the wonderlul power of poetry to climinate all baser matter, and present the innernost idea of a socicty in untarnished brightness. Calderon is also the most perfect representativc of the state of feeling induced by unconditional allegiance to the Catholic Church at the critical moment when the scales of fath and knowledge are yet in equilibrium. Great Catholic poots baxy yet arise, with even more than (Galderon's depth of cunviction. but none can again enjoy Calderon's serenty. There is no disturbing element in his world, either of mnovation or of resistance, he is everything which by theory a consummate Catholic poet ought to be. It is therefore but larical that ho should be set up as the rival of Slazespear by the partisans of the mediæval revival, of whom Frederiek Schlegel is the most emunent literary representitive It would be a waste of time to contrast the conventional uniformity of his preces, reducible to five or six types at most. with Shakespeares infinte varety, the fant individualization of his characters whith Shakespeare's miraculous subtlety, his class prejudices with Shanespeare's; universal sympathy; his stereotyped cast of thoaght with Shakespeare's coniprehensive wisdom It is enough to remark, that greatly as he is admared and widely as he is read, be bas not contributed a single apprectable element to the literature of any country but has own, while Shakespeare has revolutionized the taste of Eur pe III is relation to his contenporaries is also different from Shakespeare's. Sbakespeare is a sun among stars; Ca deron the brightest star of a group. We shall render him most justice, not by instituting a vain parallcl with Shakespeare, or cyen Goethe, but by regarding those qualities which he necessarily bas in common with all poetical drawatists. In these respects it is impassible to praise him too highly Nothing can surpass the fertility, iugenuity, and consistency of his cor.structive faculty on the oos hand, or the afflienea of
ais imagery and menuy urs ivisnic... on on the other. The puet and the playwrigint are happly combined in him; the development of his plots holds the spectator in suspense from frst to last, and the diction, except in desigaedly comic passages, seldom lapses below the pitch of digumed and exquisite poetry. Even the extravagance of his hyperboles appears almost natural an:id the general torrend of impassioned feeling. The inteminable length of many of his speeehes is certainly a fault, and is partly attributable to the tluency and facility of his metre. If we regard him as a tragic poet, we must allow him power, restricted by the absence of any philosophical view of human mature or destuny. As a comic poet he excels in the pus comica of situation ; but dis dialogue is nore remarkable for vivacity than humour. His proper and preculiar sphere is that of the fancifully poetical. His inventiveness is here equal to any feat of construction, and his imagination to any opulenen of adornment. After Slakespeare and Arstophanes, nodramatist has understood so well how to transport his reader or spectator to an jideal world.

Calderon's metrical forms, altbough, as already stated, less rich and intricate than those of the earher Spanish dramatists, are nevertheless a great obstacle to his beug adequately translated. No language but the German, in fact, is adaptel to render him. Gries's version in that language is very celebrated. Schlegel and Sclanck have reudered sona jliays rery well ; ani the antos bave been translated by Lorinser Shelley's versiun of some scenes of the Wonder-vorking Magzctun is incomparably the best English interpretation, and no reproduction in our language will ever be perfectly successful that does not proceed upon his principle of interminghing blank verse with urregular lyrical metres. Mr Fitzgerald and Mr D. F. Al'Carthy, two excellent translators, have erred,- - the former by resorting to blank verse antively, the latter by discardang at altogether Mr Fitzgerald's wersion is too English, and Mr M'Carthy's too Spanish; the ;ecular dehcacy of the askonaut rlyme. which be bas endeavourcd to preserve thraugliout, is entirely imperecpate in our language Mr Fitzgerald lias rendered six plays, and Mr Mr Carthy eleven. There is perhaps no more congenial field for a writer of a poetical temperament than the translation of Calderon.
The chronotogy of Calleron's pieces is unsettled, but much has been done to allyist th. Many of them were puinted durng his life, but the first collinetwe edition was that pullithed in 1685 ly the
 cluding tuost of the atheri's dlamatic trilles, ane memeclialdy lost. The best whtuon is that by Hartzentusch min Anban's Biblotica de
 the autos, which whe publisted at Mathal in 1717 and 111 1759-6"
 of Caldelos will be fund in Honterwek, Thismer, ant other hos. toumins of Spanshl litenature ; but the lust amil finloese as that hy Sclask in has Geschuche der dramatischcn Litconeter uad Kums in Spamen, vol. iii. (Berlin, 1846.)
(1) G)

Calderwood, David (1555-1650), an lustoman of the Church of Scuthand, was born in 1575 He wis chucated at Elinburgh, where he tork the decree of M.A. in 1593. About 160 t he became minster of Crailng, near Jd dhurgh. and he speedily began to take part m the celesmational procepdines of that period, and wis conspicuous for has resolute opposition to the intruduction of Episcopary. In 1617, whle Janes was in Scotland, a Iemonstrase wheh had been drawn up by the Preshyterian clergy was placed in Calderwood's liands. He was summoned to St Andrews and examined before the king, but noither threats nor promises could make hinn yield, and deliver up the roll of signatures to the Remonstrance. He was deprived of his charge, committed tin prison at Si indrews, and afterwards romoved to Edinburgh. The prisy council, which long exercised an undefined and deapotic jurisdiction, ordainent bim to be boished from the kingdim for refusing to,
acknowledge the sentence of the High Commission. On giving security to banish himself from the kingdom before the ensuing Michaelmas, and not to return without the royal licence, he was released from prison. He accompanied Lord Cranstoun to Carlisle, where that nobleman presented a petition in his favour to tho king; but it was follored by no beneficial result. The subsequent application of Lord Oranstoun to the privy-conacil, and to the bishops, was attended with no better success. He lingered ia Scotland, publishing a ferv tracts, till the 27 in of August 1619, when he sailed for Holland. Where be chiefly resided in that conatry we are not informed, but Bishop Guthry states, that "in tho time of his exile he had seen the wild follies of the English Brownists in Araheim and Amsterdam." During his residence iu Holland he published varions works, and, among the rest, his Altare Damascerrum. At one period his enemies supposed bun to be dead; and he has rccorded a very extraordinary attempt to impose upon the world a recantation fabricated 10 his name. Calderwood appears to bave returaed to Scotland in -1624, and he was soon aitermards appointed minister of Pencaitland, in the county of Haddington. During the remaindor of his life be contiuned to take an active part in the affairs of the church, and he introduced in 1649 the practice, now confirmed by long usage, of dissenting from the decision of the Assembly, and requiring the protest to be entered in the record. His last years were deroted to the preparation of a History of the Church of Scotland. Ia 1648 the General Assembly urged him to complete the work he had designed, and voted him a yearly peusion of £800. He left behiad him an historical work of great extent and of great value, not indeed as a masterly composition, but as a storebouse of authentic materials for bistory.. An abridgment, which appears to have been preparcd by himself, was published after his death. An excellent edition of the complete work was published by the Wodrow, Jociety, 8 vols. 184:-49. The manuscript, which belonged :o General Calderwood Durbam, was presented to the British Misoum. A copy, trauscribed under the inspection of Wodrow, is among the archives of the church; another bslongs to the library of the uoiversity of Glasgow; and, as Dr M'Crie has stated, "in the Advocates' Library, besides a complete copy of that work, there is a folio volume of it, reaching to the end of the year 1572 . It was written in 1634, and has a number of interlineations and marginal alterations, differing from the otber copies, which, if not made by the author's own hand, were most probably done under his eye." Calderwood died at Jedburgh on the 29 th of O Jtober 1650 , aged seveaty-fire. Ho appears to have been a man of unbending integrity, fearless in maintaining his opinions, and uniformly consistent ia his professions; but as human virtues are never perfect, bis decision of character had some tendency to deviate into that obstinacy from which good mẹo are net always exempted.

CALEDONIA, used in general somewhat loosely to denote the northern pertion of Britain during the period of the Roman occupation of the island, had origioally a more restricted application. It is proposed in this article to give, from a geographical as well as an historical point of viow, a brief account of what seams to have been knewn regarding it ia ancient times.

The word Caledonia is first met with in the fourth book of Plioy's Mistoria Nuturalis (circa 77 a.D.), where, in the very meagre notice of Britain, the Caledonian forest (Caledniad syifas) is given as the northern boundary of the Roman fart of the island. Its next appearance is in the Agricaia of Tacitus (96a.d.) Here, woth in the brief geographical description of Britain, chaps. x. and xi., and in the account of Agricola's campaigns, chaps. xxy.-
xaxviii. Caledonia is unquestionably Britain north of the Firth of Forth. On turning to the geographer Ptolemy (circa 120 A.D.), we fail to meet with the term except 29 the name of one of the many tribes among which he bas parcelled out the "Bretapnic Island, Albion." To explais this it is not necessary to assume that Ptolemy was ignorant of the wider acceptation in which Caledonia had recently come to be employed among the Romans. It is more reasouable to suppose that, as he ayowedly drew the materials for his tables Irom earlier, chiefly from Tyrian sources, he judged it prudent to follow in the main long. recognized authorities. Iet even in Ptolemy we bave an indication eitber of the importance of the Caledonians among their neighbours or of the occasional use of the word as a general name for all the northern tribes. Twice he gives the Deucaledonian Ocean as bounding Britan on the oorth, that is, after the necessary correction for his mistake in making the whole of the northera part of the island trend to the east instead of to the north, as washing the shores of modern Scotland on the west. Confused and inaccurate in some respects as the Alexandrian geographer's tables are, they, notwithstanding, contain a surprising amoust of information regarding the leading features of the cosst-line of Britain, the correctnoss of much of which can be verifigd by existing names. His account of the tribes and their towns, especially towards the north, is, as roight bave been expected, much less defuite and trastworthy. In order to be able to give here some notice of the Ptolemaic geography of North Britain, Caledonia may for the moment be regarded as a synonymons term.

Ptolemy's errar in turning the northera part of the island to the east has already been noticed. How he was led into it there are no means of determaing. One effect of it is to exaggerate greatly the length of the Solway Firth and displace the Hebrides from their true pesition, as may be seen by referring to certain maps appended to several MSS. of the Geography and given with some editions of it. The error can easily be rectified; and when this is done the outline of the coast will be found to be wonderfully correct. ${ }^{1}$ Commeacing with the promontory of the Nocuantai (Mull of Galloway) in the south-west and proceeding porthwards along the sheres of the Deucaledonian Ocean, we have 10 succession the Bay of Rerigooios (Loch Ryan), the Bay of Oundogara (Ayr), the estuary of the Klota (Clyde), the Bay of Lelaamnonios (Loch Fyde), Cape Epidion (Mull of Kintyre), the outlets of the River Iongus (Loch Linnbe?), outlets of the River Itnos, Bay of Ouolsas (Lochalsb?), outlets of the River Nabaios, and Cape Tarouedoum or Orkas (Dunnet Head). Coming down the cast coast, said to be washed by the German Ocean, we find Cape Onirouedroum (Duncansbay Head), Cape Oueroubium (Noss Head 3), the outlets of the Iiver Ila, the Hirgh Bank, outlets of the River Losa, estuary of the Ouarar (Moray Firth), estuary of the Touasis (Spey ?), outlets of the River Keluios (Deverou ?), the promontery of the Taizalai (Kinnard's Head), outlets of the River Deoua (Dee), estuary of the Taoua (Tay), outlets of the liver Tina, est tary of the Boderia (Firth of Forth), outlets of the River Alamos, outlets of the Rwer Ouedra (Trne?). On the south, bounded by the Hibernian Ocean, we bave the penarsula of the Noonantai (the Rhinns of Gallowny), outlets of the Rifer Abracuanoos (Luce ?), estuary of the Iena (Crec), estuary of the Deoua (Dec), outlets of the Iiver Noouios (Nith), outlets of the Itouna (Elen).

The country is represented as inbabited by the Iolloming
1 The orthography of the names that follow is that of the text of Ptolemy (Wilberg's), and bot of the Latin traosiat:on. With a fervexceptions ther are evidently intended to express maiwe temms by means of Greek (perhaps origio ally Tywian) charactera, and at secms uodesirable te obsure them further by presenting them in those of another lanarga
tribes, sisteen in number:-the Nounantar, uweing under (t.e., east) of the peninsula of the same name (Wigtonshire), their towns' Loukopibia and Retigumion; east of them the Selgooual (along the Solway Firth, and inland), thear tuwns Karbantorigon, Ouxellon (Dumiries?), Korda, Timontion ; still further east, the Otadinoi, prubably along the sonth-east coast, their towas Kouria and Bremenion; and the Damnoniui, occupying apparently the basins of the Clyde, Furth, and Tay (in part), their towns Kolania, Suandouara (Ayr 1), Koria, Alauna (Stirling 1), Lindon, Ouiktona (near Perth); the Kaledonol, in the distnct from Loch Fyne to the Moray Firth, with the Caledoman forest to the west of them; eastward the Ouakomagor (Banff and parts of Moray and Aberdeen), their towns Banata, Tameia, the Winged Camp, Touasis; east of these the Taizalon (part of Aberdeenshire), their town Deuuana (Aberdeen), and the Ouenicones (Fortarshire), their town Orrea (Furfar l); while occupying the west of argyll and Inverness, part of Ross-sLire, and the whole of Sutuerland and Caithneaa, were in succession the Epidioi (in Kimyre), Kerones, Kreones, Karnonuka, Karinus, Kornauiol (Caithness). Decanta, Lougoi, and Smertal. Near the promontory of Orkas were the aslunds of Okitis aud Donmina; nurth of which ay the Orbadis (?rkneys), about threy in number, and stil farther north Thoule (Shetland I).

Ptolemy's description is the only detailed one we bave till we come down to the l6th century. It is mater for regret that the Antonine Itinerary, so useful an and to the identification of the Ptolemale towns in the southerd part of the sland, does not extend to the north, and that the lists of the anonymous geographer of Ravenna are so :orrupt as to be almost useless. About the mudle of the last cedtury a new element of confusion was introduced into what was tangled enough previously, by the publicaton of Bertram's well-known furgery De Situ Britannace, falsely ascribed to Richard of Cirencester, which bemg accepted as genume by Roy; Chalmers, Stuart, and others, has been the means of giving currency to many unfourded notiona regarding the nature and extent of the Roman conquests in North Britanu.

The written Listory of Caledonia as well as of the rest of what is now Scotland commences with the warlike operathuns in Britan of Agricola, the lecutenavt of the Emperor Domitian. (See Britasivia, p. 353.) In the third year of his command this famous general, who was fortunate enough to bave his son-1n-law. Tacitus as his biograpler, determined to attempt the annexation of the northern purtion of the sland. Accordingly, to 80 A.D., he advanced as far as the estuary of the Taus, or as Wex reads, the Tanaus. Whatever the true reading may be, the auppostrion that ois this occasion Agricola reacaed the Tay is antenable; though, whether the riser referred to be the English Tyne, the Tweed, or the Seotch Tyne, it ia impossible to say. The aucceeding aumater found bim as far north as the isthmus formed by the firtbs of Clota and Bodotria (Clyde and Forth). On it be erected of line of forts, with the iatention apparently of making it the northern boundary of the empure in those parts. In the following year be crossed the Clota, and orerran additonal tertitory "in that part of Pritain which looks towards Ireland." Information having now reached bim that the remuter and atill unconquered tribes were forming a combination against the Romans, he resolved to antictpate thent and (83 A.D.) carried the war beyond the Bodotria into the country of the Caledonans. That aummer an engagement was fought, which, though it resuled in farour of the invaders, taught the Romans that they had no ordinary foe to cope with. On the approach of winter both sides retired to their quarters to make preparations for renewing theibtruggle. Next season (84) Agricola, on resumung the offensive, found. himself con-
routed by a grand union of all the trinas of Caledonia, under a lealer whom Tacitus names Galgacus. The Roman general had previously despatched a tleet to ravage the coast, and on continuing his march northwarda, encountsred the enemy, upwards of 30,000 strong, near Mount Graupus; for there can be little doubt that this, the reading of Wex and Kritz, ought to be adopted instead of the Gramplus of the comwon editions. The exact locality ot the conflict that ensued haa bcen the theme of much profitless controversy; but we shall probably not greatly err in placing it somewhere on the borders of Kincardineshare. General Rof, whose conjecture is usually followed, tixed on Ardoch in Perthshire.' A careful study, however, of the whole narrative leads une to look for the hield of battle farther north, and nearer the coast. Tacitus, writing on the model of Thucydides and Livy, has put into the mouth of each teader, on the eve of the engagement, a speech of his own compusition, in which be describes the feelings that may be supposed to have actuated the hostile armes. That ascribed to Galgacus is a splendid specimen of pohshed sarcasm, muxed with mpassioned appeals to the patriotism of his hearers. Might, however, prevailed over night, and the Caledonians were defeated with a loss of 10,000 men. Agricolis, now thinking he bad pushed has conquests far enough, made no atienpt to pursue bis beaten foe, but at once led his army back to the territory of the Borestı (al. Horesti), whose name is probably pre served in the modern Forfar. Herc he gave orders to the commender of his teet to sail round the island, a feat abich the latter accomplished. Sood after he hinself was recalled to Rome by his jealons master.

Nutwithstanding Auricola'a suceess, the Romans seem to bave been quackly obliged to abandun part of therr conquests, for in less than forty years (169 a.d.) Hadrian's wall. which ran from the Tyne to the Solway, became the nortbern hants of thear empire in Britan. A bout wenty years later a secood Agricola appeared in the person of Lulhns U'rbicus, the lieutenant of Antoninus Pius. Almost nothing is knowd of lus actions, but be seems to have once more carried the arms of Rome to the Clyde and Foth, if nut beyond them, and to have erected on the line of Agricola's forts the more substantal work now kown by the name of the emperor be served (see Avionisics. Wall of). The natives must soon have recovered the losr ground: but scarcely anything is knowa benceiorth of the state of affars in the north $u l l 208$, when, if we may trust the bistorian Dion Cassius, as abridged bs Xiphume, the Emperur Severus determised to attempt the subyugation of the whole sland. At that tum the two most [owerinl tribes of North Britan were the Mratx, close to Hadrian's Wall, and the Caledonians beyond them. Protected by therr dative fastoesses, the latter offered him such a resistance that, without being able to bring them to a decasive engagement, be lost through disease, fatigue, and the sword, no fewer. it is said, than 50,000 men. Having reached what is termed the nortbern extremity of the island, but whach was in all likelihood merely the northern coast of Aberdeenshire, Seserus retreated southwards in a very feeble state of bealth, partly anduced by the fatigues he hed undergone. A league formed the next year between the Calcdunans and the Marata, buth of whom had already cast off lis authonts, led hom to make preparations for a new campangn, with the avorred determination of extirpating the whole rice. In the midst of these, however, hr died at lork io 210

For a whole century afterwands the saclent wnters are almost silent regarding Caledoma. In the sear 310 we hear for the first tune of the Psets, and in 367 Theodosius, an able Roman gedeml, was scut uto Britain by Valentinian I. to defend the Bratons of the suuth agaiust the
atiacks of the men of the north, represented by Ammianus Marcellinus az henng the licts divided into two tribes (the Dicalcdones and the Vecturiones), the Saxons, the Attacotti, and the Scuts. He was so far successful that the countries between the walls of Hadrian and Antoninus became yet again a subjected provinee, named Valentian by Theodosius, in honour of the emperor;-a conquest, bowner, which ean have lasted but a bref period. Henceforth, if we except the cffusions of the poet Claudian, the scanty notices of Britain to be met with during several succeeding centuries present the same sad tale of sufferings inflicted on the now effeminate Britons of the south by their "arlike neighbours, till at length the settlement of large bodies of Saxons in Englaod changed the aspect of affars.

The etymology of the word Caledonia has been variously given. Celydd (in Welsh, a woody sbelter) is the popular derivation; but Isaac Taylor (Words and Places, p. 44) thinks the word may possibly contain tbe root gael, and if өо, the Caledonians would be the Gaels of the duns or hills. Equally obscure are the ethnological relations of the people, the most probable opinion being that which regards them
as belonging to the British branch of the greai Ccilic family. A casual inference, bazarded by Tacitus (dgracoun chap. xi.), that the red harr and latge limbs of the inbabltants of Caledonia pont clearly to a German origin, must not be pressed too far. There were probably even in hus day Teutonic settlements along our eastern aod northern shores, but it seems too much to assume that that race was the dominant one north of the Forth. It is a still more doubtfal question to what race the Piets belonged. But the discussion of these and other points belongs to the history of Scotland (q.v.) (Sce Claudir Plolemar Geographia, ed Wilberg, Essendix, 1838; Roy's Miltary Antiquitied of the Romans an North Bretan, London, 1793, Burton's Mestory of Scolland, vol i., Edin. 1867.) (J. m'd)

CaLen berg, or Kalenberg, a former priucipality ol Hanover, which was traversed by the Weser and the Leme, and had an area of about 1050 square miles. It denved its name from an ancient castle, now in ruins. In the Middle Ages it belonged to Lüneburg, and after passung from one branch to anuther of the bouse of Brunswick, it came, in 1705, to Ernst August, electural prince of 11 aitorer.

CALENDAR

ACALENDAR is a method of diseributing tume into certan pieriods adapted to the purposes of civil life, as bours, days, weeks, months, years, de.

Of all the periods marked out by the motions of the celestial bodies, the most conspicuous, and the most intimately connected with the affairs of mankind, are the solar day, which is distinguished by the diurnal revolution of the earth and the alternation of light and darkness, and the solar year, which completes the circle of the seasons. But in the early ages of the world, when mankind were chiefly engaged in rural occupations, the phases of the moon must have been objects of great attention and interest,-hence the month, and the practice adopted by many nations of reckoning tume by the motions of the moon, as well as the still more general practice of combming lunar with solar periods. The sular day, the solar year, and the luvar month, or lunation, may tberefore be called the natural divisions of time. All others, as the bour, the week, and the civil month, though of the most ancient and general u'se, are only arbitrary and convencional.

DaY.-The true solar day is the intorval of time which elapses between tro consccutive returns of the same terrestrial meridian to the sun. By reason of the inclined position of the ecliptic, and the unegual progressive motion of the earth in its orbit. it is not always of the same absolute length But as it would be hardly possible, in the artuficial measurement of time, to have regard to this smal! inequality which is besides constantly varyng, the mean solar day is cmployed for all civil purposes. This is the time in which the earth would make one revolution on ste axis, as compared with the sun. If the earth moved at an equable rato in the plane of the equator. The mean solar day is therefore a result of computation, and is not raarked precisely by any astronomical phenomenon; but ste difference frum the true solar or apparent day is so emall as to escape ordinary observation.

The subdivision of the day into twenty-four parts, or bours. has provailed since the remotest ages, though different nations have not agreed either with respect to the epoch of its commencement or tho manner of distributing the hours. Europeans in general, liko the ancient Epyptians, place the commencement of the civil day at radnight, and reckon twelve morning hours from midncht satdey, and tweive evenang houra from milday to
midnight. Astronomers, aiter the example of J'tolemy, regard the day as commencing witb the sun's culmination, or noon, and find it most convenieut for the purposes of computation to reckon through the whole tirenty-fout bours. Hipparchus reckoned the twenty four hours from midnight to midoight. Sorme nations, as the ancrent Cbaldeans and the nodern Greeks, have chosen sunrise for the commencement of the day, others, agam, as the ltalians and Bohemians, suppose it to commence at sunset. In all these cases the Lesmning of the day varies witb the seasons at all places not under the equator. In the carly ages of Rome, and even down to the middle of the 5th century after the foundation of tho city, no other divisione of the day were known than sunrise, sunset, and mid-day, which was marked by the arriml of the sun between the Rostra and a place called Grecostasis, where ambassadore from Greece and other countries used to stand. The Grecks divided the natural day and nigbt into twelve equal parts each, and the hours thes formed wero denominated tentporary hours, from their varying in length according to the seasons of the year. The bours of the day and night were of course only equal at the time of the equinuxes. The whole period of day and night they called vox $\begin{aligned} \text { íjucpov. }\end{aligned}$

Week.-The week is a period of seven days, haviug ne reference whatever to the celestral motions, - a circumstance to which it owes its unalterable unformisy. Although it did not enter mto the calendar of tbe Greeks, and was not introduced at Rome till after the reign of Theodosius, $1 t$ las been employed from time ammeurorial in almost all eastern countries; and as it forms neather an aliquot part of the year nor of the lunar month. those who reject the Mosare rectal will be at a loss, as Delambre renarks, to assign to it an origu having much semblance of probability. It might have been suggested by the phases of the moon, or by the number of the planets knumn in ancoent tomes, an origin whech is rendered more probable from the names universally given to the different days of which it is compused. In the Egrptian astronomy. the order of the planets, beginning with the most remote, is Saturn, Jupiter, Mars, the Sun, Venus, Merary, the Monn. Now, the day being divided into twenty-four hours, each bour was cond secrated to a particular planct, namely, ne to Salurn, the following to Jupiter, tho third to Mars, and so on ancorures to the above order; and the day recelved the name of toe
planet which presided over its tirst buur. If, then, the first hour of a day was consecrated to Saturn, that planet would also have the 8th, the 15 th, and the 22 nd hour ; the 23rd would fall to Jupiter, the 24th to Mars, and the 25th, or the first hour of the second day, would belong to the Sun. In like manaer the first hour of the 3rd day would fali to tie Moon, the first of the 4th day to Mars, of the 5th to Mercury, of the 6th to Jupiter, and of the 7th to Venus. The cycle beng completed, the first bour of the 8 th day would return to Saturn, and all the others succeed in tho same order. According to Dio Cassius, the Egyptian week commenced with Saturday. On their flight from Egypt, the Jews, from hatred to their ancient oppressors, made Satufday the last day of the woek.
The English names of the days are derived from the Saxon. The ancient Saxons had borrawed the week from some Eastern nation, and substituted the names of their uwn divinities for those of the gods of Grece. In legislative and justictary acts the Latin names are still retained.

Latin.	English.	Sexon
Dies Solis.	Sunday.	Snn's day.
Dies Lunæ.	Monday.	Moor's day.
Dies Martis.	Tuesday.	Tiw's day.
Dies Stercurii.	Wednesday.	Woden's day.
Dies Jovis.	Thursday.	Thor's day.
Dies Veneris	Friday.	Friga's day.
Dies Saturmi.	Saturday.	Seterne's day.

Month.-Long before the exact length of the year was determmed, it must bave been perconed that the synodic revolution of the moon is accomplished in about $29 \frac{1}{2}$ days. Twelve lunations, therefore, form a period of 354 days, which differs only by about $11 \frac{1}{1}$ days from the solar year. From this circumstance bas arisen the practice, perbaps unaversal, of dividing the year into twelve months. But in tho course of a fev years the accumulated difference between the solar year and twelve lunar months would become considerable, and have the effect of transporting the commencement of the year to a different scason. The difficuities that aruse in attempting to avoid this inconvenience induced some oations to abandon the moon altogether, and regalate their year by the course of the sun. The month, however, being a convement poriod of time, bas retaiued its place in the calendars of all nations, but, instead of denoting a syoodic revolution of the moon, it is usually employed to denote an arbitrary number of days approaching to the twelfth part of a solar year.
Among the ancient Egyitians the month consisted of thirty days invariably; and in order to complete the year, five days were alded at the end, called supplementary days. They made use of no intercalation, and by losing a fourth of a day every year, the commencement of the year went back one day in every period of four years, and consequently made a revolution of the seasons in $1+61$ years. Hence 1461 Egyptian ycars are equal to $1+60$ Julian years of $365 \frac{1}{2}$ days cach. This year is called rayue. by reason of its commencing sometimes at one scason of the year, and sometimes at another.
The Greeks divided the month into tbree decades, or ocriods of ten days,-a practice which was imitated ly the French in their unsuscessful attempt to introduce a new salendar at the period of the liovolution. This division ofers two advantages: the first is, that the period is an exact movasure of the month of thirty days; and the second is, that the number of the day of the decale is connected wath and sugyests the mumber of the day of the month. For example, the 5th of the decade must necessarily be the 3th, the 15th, or the 25 th of the month; so that when the day of the decade is known, that of the month can scarcely be nustaken. In reckoning by weeks, it is necessary to keep in mind the day of the week on which cact month begins.

The Romans employed a division of the menth and a method of reckoning the days which appear not a little estraordinary, and must, in practice, have been exccedingly inconvenient. As frequent allusion is made by classical writers to this embarrassing method of computation, which is carefully retained in the ecclesiastical calendar, we here give a table showing the correspondence of the Roman noonths with these of modern Europe.

	$\begin{gathered} \text { March. } \\ \text { Many. } \\ \text { Jctove. } \\ \text { Jctopr. } \end{gathered}$	$\begin{aligned} & \text { January. } \\ & \text { AuFars. } \\ & \text { December. } \end{aligned}$	Aplu September November	Febiuary
1	Calendæ.	Calesdx.	Calendx.	Calendx.
3	${ }_{6}^{6}$	${ }_{4}^{4}$		4
3 4 4	5	Pud. $\stackrel{3}{\text { Nonas. }}$. $^{\text {a }}$	Prid. ${ }^{\frac{3}{2}}$	Pud. ${ }^{\mathbf{3}}$ Nonas
5	${ }^{3}$	Nonx.	Nonm.	None.
6	l'rid. Nonas.	8	8	8
7	None.	7	7	7
8	8	6	6	6
9	7	5	5	5
10	6	4	4	4
11	5	3	3	3
12	4	Prid ldus.	Prid tus.	Prid. Idus.
13	Prid 3	${ }^{1}$ dus.	Idus.	Idus.
14	Prid. ifus.	19	18	16
15	1 Idus	13	17	15
16	17	17	16	14
17	10	18	15	13
18	15	15	14	12
19	14	14	13	11
20	13	13	12	10
21	12	12	11	
22	11	11	10	8
23	10	10	9	7
-4	9	9	8	
25	8	8	7	5
26	7	7	6	4
27	${ }_{5}$	${ }^{6}$	5	3
28 20	5	5	4	Prid.Cal. Mart.
29 30	4	4	Prid. ${ }^{3}$ Calen.	
31	Pid, Calen.	Prid. Calen.		

Instead of distinguishing the days by the ordinal numbers first, second, thiid, de., the Romans counted backrards from three fixed epochs, namely, the Crulends, the Nones, and the Ides. The Calends (or Kalends) were invariably the first day of the month, and were so denominated because it ha:l been an ancient custom of the pontiffs to call the peaple tegether on that day, to apprize them of the festivals, or days that were to be kept sacred during the month. The Ides (from an obsolcte verb iduare, to divide) were at the middle of the month, either th. 13th or the 15th day; and the Nunes were the ninth cuy bofore the Ides, counting inclusively. From these three terms the days received their denomination in the following manner:Those which were comprised between the Calends and the Nunes were called the days bejore the Nones; those between the Nones and the ldcs were called the days before the Ides; and, lastly, all the days after the Ides to the end of the month were called the days before the Calends of tho succeeding month. In the months of March, May. July, and October, the Ides fell on the 15th day, and the Nones consequently on the 7th; so that each of these noonths bad six days named from the Nones. In all the other months the Ides were on the 13 th and the Nones on the 5th; consequently there were only four days named from the Nones. Every month had eight days named from the Ides. The number of days receiving their denomination from the Calends depended ou the nuruber of days in the month and the day on which the Jics fell. For example, if the month contained 31 days, and the Ides fell on the 13th, as was the case in Januery, August, and December, there e:cuid remain 18 doys after the Ides, which, added
iV. -84
so the first of the following month, made 1 if days of Calends. In January, therefure, the lith day of the mooth was called the nineteenth before the Calends of February (counting inclusively), the 15th was the 1Sth before the Caleads, and 80 on to the 30 th, which was called the third before the Calends (lertio Calendos), the last being the second of the Calends, or the day befure the Calends (pridie Calendas).

Year.-The year is eitber astrunomical or civil. The solar astronomical year is the period of tume in which the earth performs a revolution in its ortht about the sun, or passes from any point of the ecliptic to the same puont again; and consists of 365 days 5 hours 48 man. and 46 gec . of mean solar time. The civil year is that which is employed in chronology, and varies anong different gations, both in respect of the season at which it commences and of its subdivisions. When regard is had tu the sun's motion alone, the regulation of the year, and the distribution of the *days into months, may be effected without much trouble ; but the difficulty is greatly mereased when it is sought to reconcile solar and lunar periods, or to make the subdivisions of the year depend on the moon. and at the same tume to preserve the correspoodence between the whole year and the aeasuns.

Of the Solar Year. - In the arrangement of the civil year, two obiects are aought to be accumplished,-first, the equable distribution of the days among twelre months; and secondly, the preservation of the beginong of the year at the same distance from the solstices or equanoxes. Now, as the year consists of 365 days and a fraction, and 365 is a number not divisible by 12 , it is impossible that the months can all be of the same length, and at the same time include ell the days of the year. By reason also of the fractional excess of the length of the year above 305 days, it likewise happens that the years caunot all contan the same number of days if the epoch of their commencement remains fixed ; for the day and the civil year must necessarily be considered as beginaing at the same instant ; and therefore the extra bours cannot be included io the year till they have accumulated to a whole day. As soon es this has taken place, an additional day must be given to the year.

The civil calendar of all European countries bas been borrowed from that of the Romans. Romulus is said to bave divided the year into ten, months oaly, meluding in all 304 days, and it is not vory well known how the remainng days were disposed of. The ancient Ruman year commenced with March, os 13 indicated by the names September, October, November, December, which the last four months still retain. July and August, likewise. Were anciently denominated Quintilis and Sextilis, their present appellations haring been bestowed an comphinent to Juhus Cesar and Augustus In the relgn of Numa two months were added to the year, January at the begmong, and February at the end; and thas arrangement contmued till the year 452 b.c., when the Decenvirs changed the order of the months, and placed Eebruary aftor January. The monthis now consiated of twenty-mme and thiry days alternately, to correspond with the aynedic revolution of the moon, so that the year contaned 354 days; but a day was added to make tho number odd, whach was considered more fortunate, and the year therefore consisted of 355 days. This differed from the solar yeur by ten whole days and a fraction ; but, to restore the comedience, Numa ordered an additional or antercalary month to be inserted every gecond year between the 23 rd and 24th of February, consisting of twenty-two and twenty-thece days elternately, ao that four years contained 1465 days, and the moar length of the year was consequenty 366 days. The additional month was called Mercedinus, or Merci-
donus, from merces, wages, provably because the wages of workmen and domestics were usually yand at this seasun of the year: Accurding to the ebove arrangement, the year was too long by one day, which rendered another correction necessary. As the error amounted to twenty-four days in as many rears, it was orlered that every turd period of eight years, instead of contanning fuur attercalary months, amevnting in all to ninety days, should cuatain only three of those months, conststing of twenty-two days each. The mean length of the year was thus reduced to 365 days; but at is not certan at what time the octennai Ieriods, borrowed from the Greeks, were intruduced intc the Rumản calendar, or whetber they were at any ture strictly fullowed. It does nut even appear that the leng! of the intercalary month was regulated hy any certan principle, for a discrenomary power was left with the puntitis, to whom the care of the calendar was eummitted, to intercalate more or fewer days according as the year was fuond to ditfer mure or less trum the celestial mutions. This power was quickly abused to serve pohtical objects, and the calendar consequently thrown into confusion. By giving a greater or less number of days to the matercalat? month, the pontiffs were enabled to prolong the term of e magistracy, or basten the aunual elcctions; and so little care had been taken to regulate the year, that, at the tume of Julius Casar, the civil equinox differed from the astronomical by threo months, so that the winter month: were carried back into eutumn, and the auturnal notc summer.

In order to put an end to the disorders arising from the negligence or ignorance of the ponttfs, "Casar abolished the use of the lunar year and the intercalary month, and regulated the civil year enturely by the sun. With the advice and assistance of Susigenes, be fixed the mean length of the year at $365 \frac{1}{4}$ days, and decreed that every fourth year should have 366 days, the other years having each 355 . In order to restore the reroal equanox to the 25 th of March, the place it occupied in the time of Numa, he ordered two extraordinary months to be inserted between November and December in the current year, the first to consist of thirty-tbree, ead the second of thirty-four days. The intercalary month of twenty-three daya fell into the year of course, so that the ancment year of 355 days recersed en augmeatation of ninets days; and the year on that occasion contained in all 445° daves. This was called the last year of confusion. The kist Julian year commenced wath the lst of January of the 46 th before the birth of Christ, and the 708 th from the foundation of the city.

In the distribution of the days through the several months. Cæsar adopted a simpler and more commodious arrangement than that which has since pirevaled He had ordered that the first, third, bifth. seventh, uath. and eleventh months, that is January, March, Mey, July. September, and November, should hare each thrty-one days, and the other months thirty, exceptung Februery, which 10 common years should hare only twenty-nine, but every fourth year thirty days. This order was interrupted to gratify the vanity of Augustus, by giring the month bearmg his name us many days as July. whinh was named after the first Casar. A day was accordingly taken from February and given to Augiast; and in order that three munths of thrty-oue days might not cone together. September and November were reduced to tharty days, and thirty-one given to October and December. For so frivolous a reason was the regulation of Cazar abandoned, anc a capricions arrangement introduced, which it regmres some atention to remember.
'Ihe additional day which occurred every fourth yeas whe give to February as beug the shortest month, and
was anserted in the calendar between the 24 th and 25 th day. Februacy having then twenty-nine days, the 25th was the Gth of the calends of March, sexto calendas; the preceding, which was the additional or intercalary day, was called bis-sexto calendas,-hence the term bissextile, which is still employed to distinguish the year of 300° days. The English denomiuation of leap-year would bave been more appropriate if that year had diflered from common years in defect, and contaned only $36 t$ days. In the ecclesiastical calendar the intercalary day is still placed between the 24th and 25th of Fehruary; in the civil calendar it is the 99 th.

The regulations of Ciesar were not at frst sufficiently understood; and the pontifis, by intercalating every third year instead of every fourth, at the end of thirty-six years had intercalated twelve times, instead of nine. This mistake having been discovered, Augustus ordered that all the years from the thirty-seventh of the era to the fortyeighth inclusive should be common years, by which means tho intercalations were reduced to the proper number of twelve in forty-eight years. No account is taken of this blunder in chronology; and it is tacitly supposed that the calendar has been currectly followed from its commencement.

Although the Julian method of intercaletion is perbars the most convenient that could be adopted, yet, as it supposes the year too long by 11 minutes 14 seconds, it could not without correction very long answer the purpose for which it was devised, namely, that of preserving always the same interval of time between the commencement of the year and the equiner. Sosigenes could acarcely fail to know that this year was too long; for it had been shown long before, by the observations of Hipparebus, that the excess of $365 \frac{1}{4}$ days above a true solar year would amount to a day in 300 years. The real error is indeed more than double of this, and amounts to a day in 128 years; but in the time of Cæser the length of the year was an astronomical slement not very well determined. In the course of a few centuries, however, the equinox sensibly retrograded towards the beginning of the year. When the Julian calendar was introduced, the equinox fell on the 25 th of March. At the time of the Council of Nice, which was held in 325 , it fell on the 21 st; and when the reformation of the calendar was paade in 1582, it had retrograded to the 11th. In order to restare the equinox to its former place, Pope Gregory XlII. directed ten days to be surpressed ith the calendar ; and as the crror of tho Julian intercalation was now found to amomt to three days in 400 years, he ordered the intercalations to be ounitted on all the centenary years excepting those which are multiples of 400 . According to the Gregorian rule of iutercalation, therefore, every year of which the number is divisible by four without a remainder, is a leap year, excepting the centurial years, which are only leap years when divisible by four after omitting the two ciphers. Thus 1600 was a leap year, but 1700,1800 , and 1900 are common years; 2000 will be a leap year, and во ca .

As the Gregorian method of intercalation bas been adopted in all Christisn countries, Russia excepted, it becomps intereating to examine with what degree of aceuracy it recanciles the civil vith the solar year. According to the best deteminationa of modern astronotay (Le Verrier'a Solar Tables, Paris, 1858, p. 102), the mean geocentric motion of the sun in longitude, frons the mean equinox during a Julian year of $365 \cdot 25$ days, the sarme heing brought up to the preseut date, is $360^{\circ}+27^{n}$ " 685 . Thus the mean length of the solar year is found to be $\frac{360^{\circ}}{360^{\circ}+27^{7} \cdot 685} \times 365.25=365 \cdot 2422$ daya, or 365 daya 5 hours 48 min .46 sec . Now the Grogorian rula gives 97 intercalations in 400 years; 400 years therefore contrin $365 \times 400+97$, that is, $146,097^{\circ}$ daya; and consequently one vear ontains $365-225$ days, or 365 deye 5 hours 49 min .12 sec . This exceeds the true olar year by 26 seconds, which aroount to a dyy
in 2393 years. It is perhaps unnecessary to make any formal pro. Fision against an error which can only happen after so long a period of tinue; but as 3323 differs little from 4000 , it has been proposed to correct the Gregornan rule Ly making the year 4000 and all its multiples conmon years. With this correction the rule of inter. calation is as follows:-

Every year the nomber of which is divisible by 4 is a leap year, excepting the last year of ench century, which is a leap year only when the number of the century is divisible by 4 ; but 4000 and its multiples, $5000,12,000,16,000$, \&c. ara common jears. Thus the unifornaty of the intercalation, by continuing to depend on the sumber four, is preserved, and by adopting the last correction tho commencement of the year would not vary more than a day from ita presen: place in two huadred centuries.
la order to discover whether the coincidence of the civil and aolsr year could not be restored in shorter periods by a different methad of intercalation, we may proceed as follows.-The fraction 0.2422 , which expresses the excess of the solar yesr above a nhole number of dsjus, being converted inte a continued fraction, becomes
$\frac{1}{4+1}$

$\frac{1}{1+1}$
$\overline{3+1}$
$\overline{4+1}$
$\overline{1+}$ dc.
which gives the scrics of arprosimating fractiong,

$$
\frac{1}{4}, \frac{7}{24}, \frac{8}{33}, \frac{31}{128}, \frac{132}{515}, \frac{163}{673}, \text { ac. }
$$

The first of these, $\frac{1}{4}$, gires the Julisn intcralation of one day in four years, and is considerahly too great. It supposes the year to contain 365 daya 8 hours.

The second, $\frac{7}{29}$, gives seven intercalary days in trenty-nins years, and erra in defect, as it supposes a year of 365 days 0 hours 47 min .35 sec.

The third, $\frac{8}{33}$, gives cight intercslations in thirty-three years, on acven succesaive intercalations at the end of four years respectively, and the eighth at the cod of five yenrs. This supposes the year to contain 365 days 5 hours 49 min. $5 \cdot 45$ sec.

The fourth fraction, $\frac{31}{123}=\frac{24+7}{89+29}=\frac{8 \times 8+7}{3 \times 33+29}$, combines three periods of thirty-three ycars with ono of twenty-nine, and wouk consequently bo very convenient in applacation. It sup. poses the year to consist of 305 days 5 hou: 845 min. 45 sec., and is factically exact.

The fraction $\frac{8}{33}$ offers a converient and rery accurate method of intercalation. It implies o year difering in excess fom the tuve year ruly by $19 \cdot 15$ secombs, while tho Giegorian year is too long by 26 seconds. li produces a much nearer colncidence between the cival and solar yars than the Gregorian method; and, by reason of tes shortness of perod, confucs the evagutions of the mean equinas from the true within nuch narrower linits. It has been stated by Scaliger, Wedder, Montucla, and others, that the modern l'ersaus scivally follow this method, and intercalate eight days in thrtythree years. The statement has, however, luen cantested on good autbority; and at secma proved (sec Delambre, Astronomic Moderne, tom. i. (0.81) that the lersian antercabation combines the two perioda $\frac{7}{25}$ and $\frac{8}{33}$. If they follow the combination $\frac{7+3 \times 8}{20+3 \times 33}=\frac{31}{128}$, their determination of the length of the trogical year has been extremely exact. The discovery of the period of thirty-there years is ascilibed to Omar (heyam, one of the eight astronowars apmointed by GelalLddin Malech shah, auiten of Khorassan, to reform or cunstruct a calendar, about the year 1079 of our cra.

If the commencement of the year, instead of being retained at the sarne place in the sepgona by a uniform method of intercalation, were made to dapend on astronomical phenomena, the intercalations would aucceed each other in an irregular manner, subuetinces after four years and sometimes after five ; and it womld occusmonally, though rarely indced, bappen, that it would be impossihle to determine the day on which the year ought to begin. In the calendar, for example, which was attempted to lo intloduced in France in 1793, tha beginning of the year wai fixed at the midnight preceding the day to which the true autumual equinox falls. But suppoaing the instant of the sun's entering into the sign Libla to ke verv neer milnight, the small errors of the solar tatles might reader it doubt: fuit to whin day the equinox really belonged; and it would be in vain to hare reconrse to observation to obviate the difficults. It is thereforc infiutely moro cotnmodious to determine the comisenca.
ment of the year by a fixed rule of intercalation: and of the various methods which might be employed, no one, perhaps is oo the whole more easy of apphation, or better adapted for the purpose of cousputation, than the Gregorian now in use. But a system of 31 inter. calations in 128 years would be by far the most perfect as regards mathematical accuracy. Its adoption upon our present Gregorian calendar would only require the suppression of the usual bissextile once in every lus years, and there would be no necessity fur aoy further corrcetion, as tle error is so msignificant that it would not nmount to a day in 100,000 years.

Of the Lunar Yeur and Luni-solar Periods.-The lunar year, consisting of twelve lunar months, contains only 354 days; its comonencement consequently anticipates that of the solar year by eleven days, and passes through the whole cirele of the seasons in about therty four lunar years. It is therefore so obviously ill-adapted to the computation of time, that, excepting the modern Jews and Mabometans, almost all nations who have regulated their months by the moon bave employed sume method of intercalation by means of which the beginong of the year is retaned at nearly the same fixed place in the seasons.

In the early agea of Greece the year was regulated entirely by the moon. Solon divided the year moto tweire months, consisting alternately of twenty-mme and tharty days, the former of which were called deficient months, and the latter jull montha. The lunar year, therefore. contained 354 days, falling short of the exact tıme of twelve luations by about $8 \cdot 8$ hours. The first expedient adopted to reconcile the lunar and solar years seems to have been the addition of a month of thirty days to every second year. Two lunar years would thus contain 25 months, or 738 days, while two solar years, of $365 \frac{1}{4}$ days each. contain $730 \frac{1}{2}$ days. The dufference of $7 \frac{1}{2}$ days was still too great to escape observation; it was accordingly proposed by Cleostratus of Tenedos, who flourished shortly after the time of Thales, to omit the bienuary intercalation every eighth year. In fact, the $7 \frac{1}{2}$ days by which two lunar years exceeded two solar years, amounted to thirty days. or a full month, in eight years. By iuserting, therefore. three additional months instead of four in every period of eight years, the coincidence between the sular and lunar year would bave been exactly restored if the latter had contained only 354 days, inasmuch as the period contams $354 \times 8+3 \times 30=2922$ days, corresponding with ersht solar yeara of $305 \frac{1}{4}$ days each. But the true time of 90 Junations is 2923.528 days, which exceeds the above period by 1.528 days, or thirty-six bours and a few minutes. At the end of two periods, or sixteen years, the excess is three days, and at the end of 160 years, tharty days. It was therefore proposed to ensploy a period of 160 years, in which one of the intercalary months should be omitted; but as this period was too long to be of any practical use, at was never generally adopted. The common practice was to make occasio al corrections as they became necessary, in order to preserve the relation between the octennial period and the state of the heavens; but these corrections beine left to the care of incompetent persons. the calendar soon fell into great disorder, and no certan rule was followed tidl a new division of the year aas proposed by Mcton and Eucteroon, which was immeduately adopted in all the states and dependencies of Grecce.

1. The mean motion of the moon in longitude, from the mean equinox, during a Julian year of $365 \cdot 25$ days (accord. ing to Hlansen's Tables de la Lune, London, 1857, pages 15,16) is, at the present date, $13 \times 360^{\circ}+477644^{\prime \prime} \cdot 409$; that of the sun being $360^{\circ}+27^{\prime \prime} \cdot 685$. Thus the corresponding relative inean geocentric motion of the moon from tho sun is $12 \times 360^{\circ}+477616^{\prime \prime} \cdot 724$; and the duration of the mean aynodic revolution of the moon. or lunar month, is therefore $\frac{360^{\circ}}{t 2 \times 360^{\circ}+47616^{\prime \prime} \cdot 724} \times 365 \cdot 25=29.530588$ deys, or 29 days, f 2 bours. $4 \&$ mia. 2.8 sec.

The Metonic Cycle, whien niay bo regarded as the chof. d'ouvre of ancient astronomy, ts a period of niucteen solar years, after which the new moons again happen on the same days of the year. In nineteen solar years there are 235 lunations, a number which, on being divided by nineteen, gives twelse lunations for each year, with seven of a remainder, to be distributed among the years of the period. The period of Dleton, therefore, consisted of twelre years containng twelve months each, and seven years contaming thirteen munths each; and these last formed the third, fifth, eighth, eleveath, thirteenth, sixtenth, and nineteeatr years of the eycle. As it bad now been discovered that the cxact length of the lunation is a little more than twentymue and a half days, it became necessary to abaudon the alternate succession of full and deficmat months; and, in order to preserve a more accurate correspondence between the civil month and the lumation, Meton divided the cycle 10to 125 full months of thirty days, and 110 deficient months of twenty-nine days each. The number of days in the period was therefore 6940 . In order to distribute the deficient months through the period in the wost ectuable manner, the whole period may be regarded as consist.ng of 235 full months of tharty days, or of 7050 days, from whicb 110 days are to be dedueted. This gives one day to be suppressed io sixty-four; so that if we sufpose the months to contan each thirty days, and then omit every suxty-fourth day in reekoning from the begianag of the period. those months in which the omission takes place will, of course. be the deficient months.
The number of days in the period being known, it is easy to ascertann its accuracy bothin respect of the solar and lunar motions. The exact length of nineteen solar years is $19 \times 305 \cdot 2422=6939 \cdot 6018$ days, or 6939 dass 14 hours 26592 minutes : bence the pertod, which is exactly 6940 days, exceeds nineteen revolutions of the sun by nine and a half hours nearly. On the other hand, the exact time of a syondic revolution of the moon in 29.530588 davs; 235 lanations. therefore contan $235 \times 29.530588=6939 \cdot 68818$ days or 6939 days 16 hours 31 minutes, so that the period exceeds 235 lunations by only secen and a half hours.

After the Metome eycle had been in use about a century, a correction was proprosed by Calrppus. At theend of four cycles, or seventy-six years, the accumulation of the seven and a half hours of difference between the eycle and 235 luations amounts to thirty hours, or one whole day and six hours. Calippus, therefore, proposed to quadruple the period of Meton, and deduct one day at the end of that time by changing one of the full mouths into a deffeicat month The period of Calippus, therefore, consisted of three Metonc cycles of 6940 days each, and a perrod of 6939 days; and its error in respect of the moon, consequently, amounted only to six hours, or to one day in 304 years. This pernod exceeds seventy-sis true solar years by fourteen hours and a quarter nearly, but coincides exactly with seventy-six Julan years; and in the time of Calippus the length of the solar year was almost universally supposed to be exactly $365 \frac{1}{4}$ days. The Calippic period is frequently referred to as a date by Ptoleny.

Ecclesiastical Calexdar. - The eeclesiastical calent!ar, which is adopted is all the Catholie, and most of the Protestant countries of Europe, is luni-solar, beng regulated partly by the solar, and partly by the lunar year,-a circumstance which gres rise to the distiaction hetween the novablo and immovable fcasts. So early as the $2 d$ century of our era, great dispates had arisen among the Christians. respecting the proper time of celebrating Easter, which governs all the other movable feasts. The Jews celebrated their passover on the 14th day of the first monh, that is to say, the lunar month of which the fourteenth day either falls on, or next follows, the day of the versal equitus.

Most Christian sects agreed that Easter should be celebrated on a Sunday. Others followed the example of the Jews, and adhered te the I4th of the moon; but these, as usually happened to the minority, were accounted heretics, and received the appellation of Quartodecimans. In order to terminate dissensions, which produced beth scandal and schism in the church, the Council of Nice, which was held in the year 325 , ordained that the celebration of Easter should thenceforth always take place on the Sunday which immediately follows the full moon that happens upon, or next after, the day of the vernal equinex. Should the 14th of the moun, which is regarded as the day of full moon, happen on a Sunday, the celebration of Easter was deferred to the Sunday following, uu order to a a old concurrence with the Jews and the above-mentioned heretics. The observance of this rule renders it necessary to recoacile three periods which have no cemmon measure, namely, the week, the lunar menth, and the solar year; and as this can only be done approsimately, and within certan limits, the deteraiuation of Eastr is an aftair of considerable nicety and complication. It is to be regretted that the reverend fathers whe formed the Council of Nice were not advised to abandon the moon altogether, and appont Easter to be celebrated on the first or second Sunday of April The ecclesiastical calendar would in that ease bave possessed ail the simplicity and uniformaty of the cavil calendar, which only requires the adjustment of the civil to the solar year; but they were probably not sufficiently versed in astronemy to be aware of the practical difficulties when their regulation had to enceunter.
Dominical Letter.-The first problem which the construction of the calendar presents is to con日ect the weck with the year, or to find the day of the weck corresponding to a given day of any year of the era. As the number of days io the week and the nomber in the year are prime to one another, two successive years cannot begin with the зame day; for if a common year begius, for example, wh Sunday, the following year will begin with Monday, and if a leap year begins with Sunday, the year following will begin with Tuesday. For the sake of greater generality, the days of the week are denoted by the first seven letters of the alphabet, A, B, C, D, E, F, G, which are placed in the calendar beside the days of the year, so that A stands oppesite the first day of January, 13 oppesite the second. and so on to G, which stands opposite tive seventh; after which A returas to the eighth, and so on through the 365 days of the year. Now, if one of the days of the week, Sunday for example, is represented by E, Monday will be epresented by F, Tuesday by G, Wednesday by A, and so on; and every Sunday through the year will lave the same character E, every Monday F, and so with regard to the rest. The letter which denotes Sunday is called the Domenical Letter. or the Sunday Letter; and wheu the domacical letter of the year is known, the letters whinch respestively correspond to the other days of the week become knewn at the same turne.

Solar Cycle.-In the Julian calendar the dommical leters are readily found by means of a stort cyele, in which they recur in the same order without interruption. The number of years in the intercalary feriod berng four, and the days of the week beng seven, therr product is $4 \times 7=28$; twenty tight years is therefore a period which ancludes all the possible conibinations of the dars of the week with the commencement of the year. This peried is called the Solar Cycle, or the Cyrle of the Sun, and restores the first day of the year to the same day of the week. At the end of the cycle the dominacal letters retura again an the same order on the same days of the monti; heare a tahbo of dominical letters, wonctreeted for twentr-eight gears, will serve to show thé doronical letter of any gived
year from the commencement or the era to the refornas:on. The cycle, though probably not invented before the thaue ui the Council of Nice, is regarded as having cowmenced.niue years before the era, so that the year one was the tenth of the selar cycle. To find the year of the eycle, we hare therefore the following rule :- $d d d$ nine to the date, divde the sum by twenty-ight; the quotient is the number of cycles elapsed, and the remainder is the year of the cycle. Should there be no remainder, the proposed year is the twente. eightb or iast of the cycle. This rule as cenvenentily expressed by the formula $\left(\frac{x+9}{28}\right)_{r}$, in which x denotes the date, and the symbel r denetes that the remander, which arises from the division of $x+9$ by 2Ω, is the number required. Thus, for 1840 , we have $\frac{1840+9}{28}=66 \frac{1}{28}$; therefere $\left(\frac{1840+9}{28}\right)_{r}=1$, and the year 1840 is the first of the solar cycle. In order to make use of the solar cycle in fonding the dommeal ietter, it is necessary to knew that the first year of the Christan era began with Saturday. The dominical letter of that year, which was the tenth of the cyclc, was consequently B. The following year, or the 11th of the cycle, the letter was A; then G. The fourth year was bissextile, and the doumical letters were F, E , the fellowing year D. and so on. In this manner it is easy to fad the domincal letter belenging to each of the twentyeight years of the cycle. But at the end of a century the order is interrupted iu the Gregorian calendar by the secular suppression of the leap year ; hence the cycle can only be employed duriog a century. In the reforived calcudar the intercalary period is four hundred years, which number being moltiphed by serea, gives two thousand elght hundred years as the noterval in which the concidence is restered between the days of the year and the days of the week. This long period, however, may be reduced to four hundred ycars: for since the dominicai letter gues back five places every four years, its variation in four hundred years, in the Juhan calendar, was five hundred phaces, whela is equvalent to only three places (for five hundred divided by seven leaves three); but the Gregoriau cillendar suppresses exactly three intercalations on four hundred years, so that after iour hundred years the denmucal lecters must again return in the same order.
Hence the followne table of dumnical letters for funr handaci years will serse to show the dominical letter of any your th the Gircgor:at caleodar for ever. It conitans four columns of letiers, each coluron serving for a century. In order to fond the colunn from when the letter in tuly gaven ease is to be taken, strike off the two last figures of the date, dinde the frecediog figures by four, and the remminder will indicate the column. The fymool x, enphycd in the formula at the top of the column, denotes the number of ceaturics, that is, the figures remaining after the last two bave been struck of For canmple, required the dimmicai letter of the year le? 39 In thit, case $X=18$, therefore $\left(\frac{X}{i}\right)_{r}=2$, and in the second columin of Jetters, rpposite 39 , in the table we End F, which is tiee letter of the prepused year.

It deserves to be remarked, that as the dominital jetter of the ârst year of the era was B , the tirat column of the following table will give the dommical letter of every year from the commencement of the cra to the reformation. For thas purpise diride the date by 28 , and the later oppasite the reameinsler, in the first coluon of figures, is the domitucal letce of the pear. For example, supposing the date to be 1148 . On dwacng by 28 , the remainder
 za find D, C. the domancai jeters of the gemi Tias.

Table I.-Dominical Letters.

Years of the Century.				$\left(\frac{x}{4}\right),=1$	$\left(\frac{x}{4}\right)_{y}=2$	$\left(\frac{x}{4}\right)_{1}=8$	$\left(\frac{x}{4}\right)^{2}=0$
0				0	E	G	B, A
1	29	57	85	B	D	F	G
2	30	58	86	A	C	E	F
3		59	87	G	B	D	E
4	32	60	85	F, E	A, G	C, B	D, C
5878	33	61	89	D	F	A	B
	34	62	90	C	E	G	A
	35	63	91	B	D	F	G
	36	64	92	A, G	C, B	E, D	F, E
9101112	37	65	13	F	A	C	D
	38	66	9	E	G	B	C
	39	67	95	D	F	A	B
	40	68	96	C, B	E, D	G, F	A, G
13141516	41	69	97	A	C	E	F
	42	70	99	G	B	D	E
	43	71	99	F	A	C	D
		72		E, D	G, F	B, A	C, B
17181819	45	73		C	E	G	A
	46	74		B	D	F	G
	47	75		A	C	E	F
	48	76.		G, F	B, A	D, C	E, D
21222324	49	77		E	G	B	C
	50			D	F	A	B
		79		C	E	G	A
	52	80		B, A	D, C	F, E	G, F
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$		81		G	B	D	E
	54	82		F	A	C	D
	55	83		E	G	B	C
	56			D, C	F, E	A, G	B, A

Table II.-The Day of the Week.

Munth.					Dominical Letter						
Jan. Oct.					A	B	C	D	E	F	G
Feb. Mar. Nor.					D	E	F	0	A	B	C
Aprll Juiy					G	A	8	C	D	E	F
May					B	C	D	E	F	G	A
June					E	F	G	A	a	C	D
Augist					C	D	E	F	G	A	13
Sepl.			Dec-		F	G	A	B	C	D	E
1	8	15		29	Sun.	Sat.	Frid.	Thur.	Wed.	Tues.	Mon.
2	9	16	23	30	Mon.	Sun.	Sat.	Fild,	Thur.	Wed.	Tues,
8	10		$\because 4$	31	Tues.	Mon.	Sun.	Sat.	FiJf.	Thut.	Wed.
8 4	11		$\because 5$		Wed.	Tues.	Mon.	Sun.	Sat.	Tide.	Thur.
4	12	29	20		Thur.	Wed.	Tues.	Mon.	Sur.	Sut.	Frid.
5 6 7 7	18	20	27		Fid.	Thur:	Wed.	Tues.	Mon.	Sun.	Stut.
7	14	21	29		Sat	Fid.	Thur	Wed	Tues.	Mon.	Sun.

Lunar C'ycle and Golden Nomber.-In connecting the lunar month with the solar year, the framers of the ecclesiastical calevdar adopted the period of Meton, or lunar cycle, which they supposed to be exact. A different arrangement bas, bowever, becn fillowed with respect to the distribution of the months. The lunations are surposed to consist of twenty-nine and thirty days alternately, or the lunar year of 354 days ; and in order to make up ninetecn solar years, six embolismic or intercalary monthe, of thirty days each, are introduced in the course of the cycle, and one of twenty-mine days is added at the end. This gives $19 \times 354+6 \times 30+29=6935$ days, to be distributed among, 235 lunar months. But every leap gear ene day must he added to the hunar menth in which the 29th of February is included. Now if leap year hafyens on the first, secoud, or third ycar of the periond, there will be five leaj rears in the period, but only four
when the first leap year falls on the fourth. Io the former case the number of days in the period becomes 6940 and in the latter 6939. The mean length of the cycle is therefore 6939 年 days, agreeing exactly with mucteen Juliar years.
By means of the lunar cycle the new moons of the calendar were indicated before the reformation. As the cycle restores these phenomena to the same days of the civil month, they will fall on the same days in any twa years whicb occupy the same place in the cycle; consequently a table of the moon's phases for 19 years will serve for any year whatever when we know its uumber in the cycle. This number is called the Golden Number, either becouse it was se termed by the Greeks, or because it was usual to mark it with red letters in the calendar. The Golden Numbers were introduced into the ralendar about the ycar 530, but disposed as they would have been if they had been ingerted at the time of the Council of Nice. The cycle is supposed to commence with the year in which the new moon falls on the list of January, which took place the year preceding the commencement of our era. Hence, to find the Golden Number N , for any year x, we have $\mathrm{N}=\left(\frac{x+1}{19}\right)_{r}$, which gives the following rule: Add 1 to the date, divide the sum by 19 ; the quotient is the number of cycles elapsed, and the remainder is the Golden Number. When the remander is 0 , the proposed year is of course the last or 19 th of the cycle. It ought to be remarked that the new moons, determined in this manner, may differ from the astronomical new moons sometimes as much as two days. The reasou is, that the sum of the solar and lunar inequalities, which are compensated in the whole period, may amount in certain cases to 10°, and thereby cause the new moon to arrive on the second day befure or after its mean tinc.

Dionysian Pertod. -The cycle of tie sun brings back the days of the month to the same day of the week; the lunar cyele restores the new moons to the same day of the month; therefore $28 \times 19=532$ years, includes all the varintions in respect of the new moons and the doninical letters, and is consequently a period after which the new moons again occur on the same day of the month and the same day of the week. This is called the Dionysian or Great Paschal Period, from its having been employed by Dianysius Exiguns, Yamiliarly styled "Denys the Little," in determining Fuster Sunday. It was, however, first propased by Victcrius of Aquitain, who bad beea appointed by Pope Hilary to revise and correct the church calendar. Hence it is also called the Victorian Period. It continued in use till the Gregorian reformation.

Cycle of Indiction.-Besides the solar and lunar cycles, therc is a third of 15 years, called the cycle of indiction, frequently cm ployed in the computations of chronologists. This period is not astronomical, like the two former, but has refercace to certain judicial acts which took place at stated epochs under tho Greek emperors. Its conmencement is referred to the lst of January of the year 313 of the common era By extending it backwards, it will be found that the first of the era was the fourth of the cycle of indiction. The number of auy year in this cycle will therefore be given by the formula $\left(\frac{x+3}{15}\right)_{r^{\prime}}$, that is to say, add 3 to the date, divile the sum by 15, and the remaindo, is the year of the indiction. Wha the remainder is 0 , the proposed year is the fiftecnth of the cycle.
Julian Period-The Juliani period, proposed by the celebrated Josepb Scaliger as an universal measure of chronology, is formed by taking the continued product of the three cycles of the sun, of the moon, and of the indiction, and is un- quently $28 \times 19 \times 15=7950$
years. In the course of this long period no two years can be expressed by the same numbers in all the three cycles. Hence, when the number of any proposed year in each of the cycles is known, its number in the Julian period can be determined by the resolution of a very simple problem of the indeterminate analysis It is unnecessary, -bowever, in the present case to exhibit the general solution of the problem, because when the number in the period correspondiag to any one year in the common era has been ascertained, it is easy to establish the correspondence for all other years, without having again recourse to the direct solution of the problem. We shall therefore find the number of the Julian period corresponding to the first of our era.

We have already seen that the year l of the era had 10 for its number in the solar cyele, 2 in the lunar cycle, and 4 in the cycle of indiction; the question is therefore to find a number such, that when it is divided by the three numbers 28,19 , and 15 respectively, the three guntients shall be 10,2 , and 4 .

Let x, y, and z be the three quotients of the divisions: the numher sought will then be expressed by $28 x+10$, by $19 y+2$, or by $15 z+4$. Hence the two equations

$$
28 x+10=19 y+y=15 z+4 .
$$

To resolve the equation $28 x+10=19 y+2$, or $y=x+\frac{9 x+8}{19}$,
Lex $m=\frac{9 x+8}{19}$, we have then $x=2 m+\frac{m-8}{9}$.
L-tt $\frac{2 n-8}{9}=n^{\prime}$; then ${ }^{\circ} n=9 m^{\prime}+8$; bence

$$
\begin{equation*}
x=18 m^{\prime}+16+m^{\prime}=19 m^{\prime}+16 \ldots \ldots \ldots \tag{1}
\end{equation*}
$$

Again, since $28 x+10=15 z+4$, we have

$$
15 z=28 x+6 \text { or } z=2 x-\frac{2 x-6}{15} .
$$

$l_{\text {tt }} \frac{2 x-6}{15}=n$; then $2 x=15 n^{\circ}+6$, and $x=7 n+3+\frac{n}{2}$.
Let $\frac{n}{2}=n^{\prime}$; then $n^{0}=2 n^{\prime}$; consequently

$$
x=14 n^{\prime}+3+n^{\prime}=15 n^{\prime}+3 \ldots \ldots \ldots \ldots \ldots \text { (2). }
$$

Equating the above two values of x, we have

$$
15 n^{\prime}+3=19 m^{\prime}+16 ; \text { whence } n^{\prime}=n b^{\prime}+\frac{4}{4}-\frac{m^{\prime}+13}{15}
$$

Let $\frac{4 m^{\prime}+13}{15}=p$; we lave then

$$
4 m^{\prime}=15 p-13, \text { and } m^{\prime}=4 p-\frac{p+13}{4}
$$

Let $\frac{p+13}{4}=p^{\prime} ;$ then $p=4 p^{\prime}-13$;

$$
\text { whence } m^{\prime}=10 p^{\prime}-52-p^{\prime}=15 p^{\prime}-52
$$

Now in thia equation p^{\prime} may be any number whatever, provided $16 p^{\prime}$ exceed 52. The stmallest palue of p^{\prime} (which is the one here wanted) is therefore 4 ; for $15 \times 4=60$ Assuming thenefore $p^{\prime}=4$, we have $m^{\circ}=60-52=8$; and consequently, since $x=19 m^{\prime}+16$, $x=19 \times 8+16=168$. The number requited is consequently $28 \times 168+10=4714$.

Having found the number 4714 for the first of the em, the correspondence of the yearis of the ela and of the period is as followa :-
from which it 19 evadent. that if we take P to onpresent et e year of the Juhan penod, and x the corzesponding year of the Che sinin era, we shall have

$$
\mathrm{P}=4713+x . \text { and } x=\mathrm{P}-4713 .
$$

With regard to the numeration of the years pretious su the com mencement of the era, the practice is not untform. Ch vologists. in general, reckon the year preceding the first of the e:a - 1 , the nest preceding - 2, and so on. lo this case

$$
\begin{array}{llll}
\text { Era, } & -1, & -2, & -3, \ldots \\
\text { Period, } & 4713, & 4712, & 4711, \\
4714-x
\end{array}
$$

whence

$$
P=4714-x, \text { and } x=4714-P
$$

But atronomers, in order to preserve the uniformity of computation, make the scries of years proceed withont interruption, and reckon the year preceding the first of the era 0 . Thus

$$
\begin{array}{lrr}
\text { Era, } & 0, & -1, \\
P_{\text {Pliod, }}, & 4713, & 4712, \\
4711_{1}, \ldots 473 \\
\hline
\end{array}
$$

Leifone, at the sace
$P=4713-x$ and $x=4713-P$.

Reformation of the Catendar.-The ancieut chureb calen. dar was founded on two suppositions, botb erroneous, inmely, that the year contains $365 \frac{1}{4}$ days, and that 235 lunatious are exactly equal to nineteen solar years. It could not therefore long continue to preserve its correspondence with the seasons, or to indicate the days of the new moons with the same accuracy. About the year 730 the venerable Bede had already perceived the anticipation of the equinoxes, and remarked that these phenomena then took place about three days earlier than at the time of the Council of Nice. Five centuries after the time of Bede, the divergence of the true equinox from the 21st of March, which now amounted to seven or eight days, was pointed out by John of Sacrobosco, in a work published under the title De Amni Ratrone, and by Roger Bacon, in a treatise De Reformatzone Calendaric, which, though never published, was transmitted to the Pope. These works were prubably little regarded at the time; but as the errors of the calcudar went on increasing, and the true length of the jear, in consequence of the progress of astronomy, became better knorin, the project of a relorination was again revived in the 15th century; and in 1474 Pope Sextus IV. anvted Regiomontanus, the most celebrated astronomer of the age, to Rome, to superintend the reconstruction of the calendar. The premature death of Regiomontanus caused the design to be suspended for the time; but in the following century numerous memoirs appeared on the subject, among the authors of which were Stömer, Albert Pighus, John Schoner, Iucas Gauricus, and other mathematicans of celebrity. At length Pope Gregory Xlll. perceming that the measure was likely to confer a great eclat on bis pontificate, undertook the long. desired reformation; and having found the Governments of the principal Catholic states ready to adoft his views, he issuted a brief in the month of March 1582, in which he abolished the use of the ancient calendar, und substituted that which has since been recenved in almust all Chisistian countries under the name of the Gregonan Calendar or New Style. The author of the system adopted by Gregury was Aloysius Lilus, or Lugi Lihu Ghiraldi, n learned astronomer and plysician of Naples, who died, however, befure its introduction ; but the indowdual who most contributed to give the ecclesiastical calendar its present form, and who was clarged with all the calculations necessary for its rerification, was Clawius, by whom it was completely developed and explained in a grexat follo treatise of 800 pages, published in 1603 , the title of which 19 given at the end of this article.

It has already been mentioned that the error of the Julian year was corrected in the Gegorna calendar by the suppression of three intercalations 11400 years. Ih urder to restore the commencement of the year to the same place in the seasons that it had occupned at the time of the Councll of Nice, Gregory directed the day following tho feast of St Francis, that is to say the 5th of October, to be reckoned the 15 th of that month liy this regulation the vernal equanox wheh then haprened on the llth of March was testored to the 21st From 158: to 1709 the difference between the old and new style contmued to be ten days but 1700 being a leap ycar an the Julian calendar, aud a common year in the Gregorian, the difference of the styles during the 18 th century was eleven, days. The year 1800 was also common n the new calendar, and. consequently, the difference in the present century is twelve days. From 1900 to 2100 inclusive it will be thirteen days.

The restoration of the equinox to uts former place in the ycar, and the correction of the antercalary period, were attended with no dificulty, but Litus bad also to adapt the lunan gear to the nesprele of intercalation. The lunar
cycle contained 6939 days 18 hours, whereas the exact time of 235 lunations, as we have already seen, is 235 $\times 29 \cdot 530588=6939$ days 16 hours 31 minutes. The difference, which is I hour 29 minutes, amounts to a day in 308 years, ao that at the end of this time the new moons occur one day earlier than they are indicated by the golden numbers. During the 1257 years that elapsed between the Council of Nice and the reformation, the error had accumulated to four days, so that the new moons which were marked in the calendar as bappening, for example, on the 5 th of the month. actually fell on the 1st. It ronid have beeo easy to correct this error by placing the golden numbers iour lines higher in the new calendar; and the suppression of the ten days bad already readered it oecessary to place them ten haes lower, and to carry those which belonged, for example, to the 5th and 6th of the month, to the 15 th and 16 th. But, aupposiug this correction to have been made, it would have again become necessary, at the end of 308 years, to advance them one line higher, in consequence of the accumalation of the error of the cycle to a whole day On the other hand, as the golden numbers were only adapted to the Julian calendar, cvery omisaion of the centenary intercalation would require them to be placed one line lower, opposite the 6 th , for example, 1 ustead of the 5th of the month ; so that, generally apeaking, the places of the golden numbers would bave to be changed every century. On this account Litius thought fit to reject the golden numbers from the calendar, and supply their place by another aet of numbers called Epacts, the use of which we shall now proceed to explain.

Epacts.- Epact is a word of Greek origin, employed in the calendar to signify the moon's age at the beginniag of the year. The common solar year containing 365 days, and the lunar year only 354 days the difference is eleven; whence, if a new moou fall on the Ist of January in any year, the moon rill be eleven days old on the first day of the following yeer, and twontyetwo days on the first of the third year. The numbers cleven and twenty-two are therefore the epacts of those years respectively. Another addition of eleven gives thirty-three for the epact of the fourth year; but in consequence of the insertion of the intercalary month 20 each third year of the lunar cycle, this epact is reduced to three. In like manoer the epacts of all the following years of the cycle are obtained by successively adding eleven to the epact of the former year, and rejecting thirty as often as the sum exceeds that number. They nre therefore connected with the golden numbers by the formula $\left(\frac{11 n}{30}\right)_{r}$, in which n is any whole number; and for a whole lunar cyclo (supposing the first epact to be 11), they are as follows: 11, 22, 3, 14, 25, 6, $17,28,9,20,1,12,23,4,15,26,7,18,29$. But the order is interrupted at the end of the cycle; for the epact of the following year, found in the same manner, would be $29+11=40$ or 10 , whereas it ought again to be 11 to :orrespond with the monn's age and the golden number 1. the reason of this is, that the intercalary month, inserted st tho ond of the cycle, contains only twenty-nine days nstead of thirty; whence, after 11 has been added to the -pact of the year corresponding to the golden number 19, ve must reject twenty-nine insteal of thirty, in order to tave the epact of the succceding year ; or, which comes to the same thing, we must add twelve to the epact of the last year of the cycle, and then reject thirty as before.

This method of forning the epacts aright have been conshued indefinitely if the Julan intercalation bad been iolicwed without correction, and the cycle been perfectly exact; but as neither of these suppositions is trine, tro equations or corrections must be applicd, one depending on
the error of the Julian year, which is calied the solar equa tion; the other on the error of the lunar cycle, which is called the lunar equation. The solar equation occurs threc times in 400 years, namely, in every secular year which is not a leap year; for in this case the umission of the intercalary day causes the new moons to arrire one day later in all the following months, so that the moon's age at the end of the month is one day less than it would have been if the intercalation had been made, and the cpacts must accordingly be all dıminished by nnity. 'lbus the epacts 11. 22, 3, 14, \&c., become 10, 21, 2 13, \&c On the other hand, when the time by which the neu moona anticipate the lunar cycle amounts to a whole day, which, as we have seen, it does in 308 years, the new moons will arrive one day earlier, and the epacts must consequently be increased by unity. Thus the epacte 11, 22, 3, 14, \&c. in consequence of the lunar equation, become $12,23,4,15$. \&c. In order to preserve the naiformity of the calendar, the epacts are changed only at the commencement of n century; the correction of the error of the luaar cycle 10 therefore made at the end of 300 years In the Gregorian calendar this error is assumed to amonnt to one day in $312 \frac{1}{2}$ years, or eight days in 2500 yeara, an assumption which requires the line of epacts to be changed seven times successively at the end of each period of 300 years. and once at the end of 400 yeara, and, from the manner in which the epacts were doposed at the reformation. it $\pi 20$ found most correct to suppose one of the periods of 2500 years to terminate with the year 1800 .

The years in which the solar equation occurs. counting from the reformation, are $1700,1800.1900,2100.2200$, $2300,2500,8 c$. Those in which the Innar equation occurs are $1800,2100,2400,2700,3000,3300.3600,3900$, after which, 4300,4600 , and so on. When the solar equation occurs, the epacts are diminished by unity; when the lunar equation occurs, the epacts are augmented by unty ; and when both equations occur together, as in 1800. 2100, 2700 , \&c., they compensate each other, and the epacts are not changed.

In consequence of the solar and lunar equations, it is evident that the epact, or moon's age at the becinning of the year, must, in the course of centuries, have all different values from one to thirty inchusive, corresponding to the days in a full lunar month. Hence, for the construction of a perpetual calendar, there must be thirty diferent sets or lines of enacts. These are exhibited in the subjomed table (Table III.) called the Extended Table of Epacts. which is constructed in the following manner. The series ow golden numbere is written in a line at the top of the table and under each golden number is a column of thirty epacts, arranged in the order of the natural numbers, beginning at the bottom and procecding to the top of the column. The first column, under the golden number ${ }^{\circ} 1$, contains the epacts, $1,2,3,4, \&<c$, to 30 or 0 . 'The second columo, corresponding to the following year in the lunar cycle, must have all its epacts augmented by 11 ; the lowest number, therofore in the column is 12, then $13,14,15$, and so on. The third column, correspondirg to the golden number 3 , has for its first epact $12+11=23$; aud in the same manner all the nineteen columns of the table are formed. Each of the thirty lines of epacts is designated by a letter of the alphabet, which servea as its index or argument. The order of the lettera, like that of the numbers, is from the bottom of the column npwards.

In the tables of the church calendar the cpacts are usually printed in Foman numerals, execpting the last, which is designated by an asterisk (*), used as an indufinite symbol to denote 30 or 0 , ned 25 , which in the last cipht colunns is expressed in Arabic cbaracters, for a reason ilat will immodiately be explained. In the table
chere given, this distinction is made by means of an accent placed over the last figure.

At the reformation the epacts were given by the line D . The year 1600 was a leap year; the intercalation accordingly took place as usual, and there was no interruption in the order of the epacts, the line D was employed till 1700. In that year the omission of the intercalary day rendered it necessary to diminish the epacts by unity, or to pass to the line C. In 1800 the solar equation again occurred, in consequence of which it was necessary to descend one line to have the epacts dummished by unity, but in this year the Junar equation also occurred, the anticipation of the new moons having amounted to a day. the new moons accordugly happened a day earler, which rendered it necessary to take the epacts ic the next higher The There was, consequently, no alteration, the two equations destroyed each other The line of epacts

Table 111 -Extended Table of Epacts.

The use of the epacts is to show the days of the new 'moons, and conseguently the moon't age on any day of the year. For this purpose they are placed in the calendar (Table IV.) along with the days of the mouth and dominical leters, in a retrograde order, so that the asterisk stands beside the 1 st ef January, 29 beside the 2nd, 28 beside the 3 rd, and $6 e$ on to 1 , which corresponds to the 30th. After this comes the asterisk, which corresponds to the 31st of January, then 29, which belongs to the 1st of February, and se on to the end of the year. The reason of this distribution is evident. If the last Junation of any year ends, for example, on the 2ad of December, the new moon falls on tise 3 rd ; and the moon's age on the 31 st , or at the end of the year, is twenty-nine days. The epact of the follow:'s. vear is therefore twenty-nine. Now that lunation Laving cemmenced on the 3rd of Decemher, and consisting wit thity doys, will end on the 1st of January. The 2nd of January is therefore the day of the new moon, which is
belonging to the present ceutiary io tinertive C." In 1900 the solar equation occurs, after which the line sa B. The year 2000 is a leap year, and there so no alteration. In 2100 the equations again occur together and destroy each other, so that the line B will serve three centuries, from 1900 to 2200 . From that year to 2300 the line will be A. In this manner the line of epacts belonging to any given century 19 easily found, and the method of proceeding is obrious. When the solar equation occurs alose, the line of epacts is changed to the next lower in the table: when the lunar equation occurs alone, the line is changed to the nest hagher, when both equations occur together, no change takes place. In order that it may be percersed ai once to what centuries the different hines of epacts respectively belong, they bave bees placed in a columu on the left hand side of the fullowing table.
indicated by the epact twenty-nine. Io like manoer, if the new moon fell on the 9 of December, the epact of the following year would be twenty-eight, which, to indieate the day of acat new moon, must correspond to the 3rd of January.

When the epact of the year 19 knewn, the days on which the new meons occur throughout the whole year are shown by Table IV., which 1 s called the Gregorian Calendar of Epacts. For example, the golden number of the year1832, is $\left(\frac{1832+1}{19}\right)_{r}=9$, and the epact, as found io Table III., is twenty-eight. This epact occurs at the 3rd of January, the 2nd of February, the 3rd of March, the 2nd of April, the let of May, dc.; and these days are consequently the days of the ecclesiastical new moons in 1832. The astronomical new meons gencrally take place one or twa days, semetimps even three dars, carlier than those of the: calendar.
lable IV.-Gregorian Calendar.

Days	Jbmary		Febrasy		March		Aprid		3ay		Jung		Juls		Anguat		September		October		Notember		December	
	E	L	E	L	E	L	E	L	E	L	E	L	E	L	E	L	E	L	E	L	E	L	E	L
1	,	A	29	D	*	D	29	G	23	1	27	E	25	G	2521	C	23	F	22	A	21	D	20	F
2	29	B	28	E	29	E	28	A	27	C	25'26	F	$25 \cdot 25$	A	23	D	22	G	21	B	20	E	19	G
3	28	C	27	F	28	F	27	B	26	D	2524	G	24	E	2	[21	A	20	C	19	F	18	A
4	27	D	25'26	G	27	G	25'26	C	$25^{\prime 2} 2$	E	23	A	23	C	21	F	20	B	19	D	18	G	17	13
5	26	E	2524	A	26	A	2524	D	24	F	22	3	22	D	20	G	19	C	18	E	17	A	16	c
0	$25^{\prime} 25$	F	23	B	25.25	B	23	E	23	G	21	C	21	E	19	A	18	D	17	F	16	B	15	D
7	24	G	22	C	24	C	22	F	22	A	20	D	20	F	18	E	13	E	16	G	15	C	14	E
8	23	A	21	D	23	D	21	G	21	B	19	E	19	G	17	C	16	F	15	A	14	D	13	F
9	22	E	20	E	22	E	20	A	20	C	18	F	18	A	16	D	15	G	14	B	13	E	12	G
10	21	C	19	F	21	F	19	B	19	D	17	G	17	B	15	E	14	A	13	C	12	F	11	A
11	20	D	18	G	20	G	18	C	18	E	16	A	16	C	14	F	13	B	12	D	11	G	10	B
. 12	19	E	17	A	19	A	17	D	17	F	15	B	15	D	13	G	12	C	11	E	10	A	9	C
'13	18	F	16	B	18	B	16	E	16	G	14	C	14	E	12	A	11	D	10	F	9	E	8	D
14	17	G	15	C	17	C	15	F	15	A	13	D	13	F	11	B	10	E	9	G	8	C	7	E
15	16	A	14	D	16	D	14	G	14	B	12	E	12	G	10	C	9	F	8	A	3	D	6	F
10	15	B	13	E	15	E	13	A	13	C	11	F	11	A	9	D	8	G	7	B	6	E	5	G
17	14	C	12	F	14	F	12	B	12	D	10	G	10	B	8	E	7	A	6	C	5		4	A
18	13	D	11	C	13	O	11	C	11	E	9	A	9	C	7	F	6	B	5	D	4	G	3	B
19	12	E	10	A	12	A	10	D	10	F	8	B	8	D	6	G	5	C	4	E	3	A	2	C
20	11	F	9	B	11	B	9	E	9	G	7	C	7	E	5	A	4	D	3		2	B]	D
21	10	G	8	C	10	C	8	F	8	A	6	D	6	F	4	B	3	E	2	G	1	C	-	E
22	9	A	7	D		D	7	G	7	B	5	E	5	G	3	C	,	F	1	A		D	29	F
23	8	B	6	E	8	E	0	A	6	C	4	F	4	A	2	D	1	G		B	29	E	23	G
24	7	C	5	F	7	F	5	B	5	D	3	G	3	B	1	E	*	A	29	C	23	F	27	A
25	8	D	4	G	6	G	4	C	4	E		A	2	C		F	29	B	28	D	27	G	23	B
		E	3	A	5	A	3	D	3	F	1	B	1	D	29	G	28	C	27	E	25'26	A	$25 \cdot 2$	C
27	4	F	2	B	4	B	2	E	2	G		C	-	E	23	A	27	D	26	F	2524	E	24	D
28	3	G	1	C	3	C	1	F	1	A	29	D	29	F	27	B	25'26	E	$25^{\prime} 25$	G	23	C	23	E
29	2	A			2	D		G		B	23	E	28	G	26	C	2524	F	24	A	22	D	22	F
80	1	B			1	E	29	A	29	C	27	F	27	A	25'25	D	23	G	23	B	21	E	21	G
31	*	C			*	F			23	D			25'26	B	24	E			22	C			19/20	A

There are some artifices employed in the construction of this table, to which it is necessary to pay attention. The thirty epacts correspond to the thirty days of a full lunar month ; but the lunar mantbs consist of twenty-mno and thirty days alternately, thorefore in six months of the year the thirty epacts must correspond only to twenty-nine days. For this reason the epacts twenty-five and twentyfour are placed together, so as to belong only to one day in the months of February, April, June, Augast, September, and November, and in the same months another 25', distinguished by an accent, or by being printed in a different character, is placed beside 26, and belongs to the same day. The reason for doubling the 25 was to prevent the new moons from being indicated in the calendar as happening twice on the same day in tho course of the lunar cycle, a thing which actually cannot talse place. For example, if we observe the line B in Tablo III., we shall see that it contains both the epacts twenty-four and twenty-five, so that if these correspond to the same day of the month, two -ew moons would be indieated as happening on that day within mineteen years. Now the three epacts $24,25,26$, enn never occur in the same line, therefore in those lines in which 24 and 25 oceur, the 25 is accented, and placed in Sne calendar beside 26. When 25 and 26 occur in the same line of epacts, the 25 is ant accented, and in the calendar stands beside 21. The lines of epacts in which 24 and 25 both occur, are those which are marked by one of the eight letters $b, e, k, n, r, \mathrm{~B}, \mathrm{E}, \mathrm{N}$, in a!l of which 25° stands in a column corresponding to a golden number higher than 11. There aro also eight lines in which 25 and 26 occur, namuly, c, f, l, p, s, C, F, P. In the other 14 lines, 25 either does not occur at all, or it occurs in a line in whieh noither 24 nor 26 is found. From this it appears, that if
the golden number of the year exceeds 11 , the epact 25 , in six months of the year, must correspond to the same day in the calendar as 26 ; but if the golden number does not exceed 11, that epact must correspond to the same day as 24. Hence the reason for distinguishing 25 and 25'. In using the calendar, if the epact of the year is 25 , and the golden number not above 11, take 25 ; bnt if the golden number exceeds 11, take 25'.

Another peculiarity requires explanation. The epact 19' (also distinguished by an accent or different character) is placed in the same line with 20 at the 31 st of December. It is, however, only used in those years in which the epact 19 concurs with the golden number 19 . When the golden number is 19, that is to say. in the last year of the lunar eycle, the supplementary month rontains only 29 days Hence, if in that year the epaet should be 19 , a new moon would fall on the Ind of December, and the lunation would terminate on the 30 th, so that the next new moon would arrive on the 31st. The epact of the year, therefore, or 19, must stand beside that day, whereas, according to the regular order, the epact corresponding to the 31st of December is 20 , and thes is the reason for the distinction.

As an example of the use of the preceding tables, suppose it were required to determine the moon's age on the 10 th of April 1832. Ir 1832 the golden namber is $\left(\frac{1832+1}{19}\right)_{r}=9$, and the line of epacts belonging to the century is C. In Table III. under 9 , and in the line \mathbf{C}, we find the epact 23 . In the calendar, Table IV. look for April, and tho epact 28 is found opposito the second dsy. The 2nd of April is therefore the first day of the moon, and tho loth is consequently the ninth day of the moon.

Again, suppose it were required to find the moon's age on the 2nd of December in the year 1916. . In this case the golden number is $\left(\frac{1916+1}{19}\right)_{r}=17$, and in Table III., opposite to 1900, the line of epacts is B. Under 17, in Lue B , the epact is 25° In the calendar this epact first occurs before the 2nd of December at the 26th of November The 26th of November is consequeatly the first day of the moou, and the 2nd of December is therefore the seventh day.

Easter - The next, and indeed the principal use of the calendar, is to tind Easter, which, according to the regulathon of the Connel of Nice, must be determined from the fullowing conditions - $-1 s t$, Easter must be celebrated on a Sunday, 2nd, this Sunday must follow the l4th day of the paselual moon, so that if the 14th of the paschal moon falls on a Sunday, then Easter must be celebrated on the Sunday followng, 3rd, the paschal moon is that of which the lath day falls on or next follows the day of the vernal equinox; 4th, the equinox is fixed invariably in the calendar on the 2lst of March. Sometimes a misunderitanding has arisen from not observiog that this regulation is to be construed according to tha tabular full moon as determined from the epact, and not by the true full moon, which, in general, occurs one or two days earlier.

From these conditions it follows that the paschal full moon, or the l4th of the paschal moon, cannot happen before the 21st of March, and that Easter in consequence cannot happen before the 22nd of March. If the 14th of the moon falls on the 21st, the new moon must fall on the 8 th; for $21-13=8$; and the paschal new inoon cannot Gappen before the 8th; for suppose the new moon to fall on the 7 th, then the full moon would arrise on the 20 th, or the day before the equinox. The following moon would oe the paschal moon. But the fourteenth of this moon falls at the latest on the 18 th of April, or 29 days after the 20th of March; for by reason of the double epact that vecurs at the 4 th and 5 th of April, this lunation has only 29 days. Now, if in this case the 18 th of April is Sunday, then Easter must be ceiebrated ou tho following Sunday, or the 29th of April. Hence Enster Sunday cannot happen earlier than tise 22 nd of March, or later than the 25 th of April.

Hence we derive the following rulc for finding Easter Sunday from the tables :-1st, Find the golden number, and, from Table III., the epact of the proposed year. 2ud. Find in the calendar (Table IV.) the first day after the Tth of March which corresponds to the epact of the year ; this will be the first day of the paschal moon. 3rd, Reckon thirteen days after that of the first of the moon, the following will be the l4th of the moon, or the day of the full paschal moon. 4th, Find from Table I the dominical letter of the year, and observe in the calendar the first day, after the fourteenth of the moon, which corresponds to the dominical letter; this will be Easter Sunday.

Erample.-Required the day on which Easter Sunday falls in the year 18401 lst, For this year the golden number is $\left(\frac{1840+1}{19}\right)_{r}=17$, and the epact (Table III. line C) is 26. $2 n d$, After the 7 th of March the epact 26 first occurs in Table III. at the 4th of April, which, therefore, is the day of the new moon. 3rd, Since the new moon falls on the 4t.a, the full moon is on the lith $(4+13=17) .4 t h$, The dommical letters of "1840 are E, D ('Table L), of which D must be taken, as E belongs only to January and February. After the 17 th of April D first occurs in the calendar (Table IV.) at the 10th. Therefore, in 1840, Laster Sunday falls on the 19th of April. The operation is in ell cases much facilitated by meaus of the following table .-

Table V -Perpotual Tahle, shouing Easter.

Epact	Domindeal Letter. For Leap Years use the escosd Letler.						
	A	B	C	D	E	F	θ
+	Apr. 16	Apr. 17	Apr. 18	Apr. 19	Afr. 20	Apr. 14	Apr. 15
	- 16	- 17	(1) 18	- 19	$\cdots 3$	* 14	-15
7	- 16°	- 17	- 18	- 12	" : 8	(1) 14	$\cdots 16$
8	- 16	. 17	. 11	- 12	. 13	-14	-15
4	\cdots	- 10	- 11	- 12	- $: 3$,. 14	$\because 15$
- 6	$\cdots 9$	- 10	\cdots	- 12	-. 13	,. 14	$\cdots 25$
6	- 9	- 10	- 11	$\cdots 12$	-. 13	$\cdots 12$	- 8
7	$\cdots 9$	- 10	- 1!	$\cdots 12$	- 13	$\cdots 8$	118
8	9	- 10	-11	, 12	$\cdots{ }^{-} 6$	$\cdots 8$	\cdots
9	-. 9	* 11)	- 11	- 5	- 6	- 3	1. 8
10		- 10	\cdots	\cdots	- 6	\cdots	\cdots
11	$\cdots 9$	$\cdots 3$	$\cdots 4$	$\cdots 8$	- 6	$\cdots 7$	- 8
12	2	- 3	$\cdots 4$	- 5	, 6	$\cdots 7$	\cdots
13	-. 2	$\cdots 2$	- 4	- 5	$\cdots 6$.1. 7	$\cdots 1$
14	-. 2	- 31	- 4	45	.4. 6	Mar. 31	
15		$\cdots \quad \mathrm{a}$	- 4	- 5	Mav 30	- 31	$\cdots 1$
16	- 2	$\cdots 3$	$\cdots{ }^{-1}$	Max. 29	- 30	- 31	\cdots
17	\cdots	$\cdots 3$	Mar 28	- 29	.. 30	., 31	$\because 1$
1\%	- 2	Mar 27	- 28	,. 29	- 30	$\cdots 31$	$\cdots 1$
19	Mas 25	. 28	-. 28	- 29	$\cdots 30$. 81	$\cdots 1$
20	26	- 27	.. 24	. 29	- 30	- 31	Her. 25
21	-. 26	- 27	- 28	.. 29	$\cdots 30$	$\cdots 24$	- 25
22	. 26	- 27	- 25	- 89	" 23	\cdots	\cdots
23	26	- 27	28	- 22	-. 23	- 24	- 25
24	Apre 38	Apz ? ${ }^{\text {a }}$	Apr ${ }^{\text {a }}$	Ap.18	Apl 21)	Apr. 21	Apr. 22
25	- 33	2	- 25	- 19	- $=0$	$\cdots{ }^{\prime} \quad 21$	-122
25	23	1. 24	-18	- 19	- 20	- 21	-122
27	28.	- 17	- 18	- 19	- 20	$\cdots 21$	- 22
24	- 15	.117	, 18	- 19	- 201	- 21	$\cdots 22$
29	16	17	, 191	(1) 19	- 201	, 21	- 16

Such is the very complicated and artificial, though highly angenious method, invented by Lilins, for the determination of Easter and the other morable feasts. Its principal, though perhaps least obvious advantage, consists in its being entirely independent of astronomical tables, or indeed of any celestial phenomena whatever; so that all chances of digagreement arising from the inevitable errora of tables, or the uncertainty of observation, are aroided, and Easter determined without the possibility of mistake. But this advantage is only procured by the sacrifice of some accuracy; for notwithstanding the cumbersome apparatus employed, the conditions of the problem are not always cxactly satisfied, nor is it possible that they cau be always satisfied by any sinilar method of proceeding. The equinox is tixed on the 21st of March, though the sun enters Aries generally on the 20th of that nicilth, 60 me times even on the l9th. It is accordingly quite possible that a full moon may arrive after the true equinox, and yet precede the Ilst of March. This, therefore, would not be the grschal moon of the calendar, though it undoubtedly oughe to be so. If the intention of the Council of Nice were rigidly followed. The new moins indicated by the cpacta also differ from the astronomical new moons, and even from. the meau new muens, in gencral by one or two days. . In imutation of the Jews, who counted the time of the new moon, wot from the moment of the actual phase, but from the time the moon first became visible after the conjunction, the fourteenth day of the moon is regarded as the full moon; but the moon is m oppostion generally on the leth day; therefore, when the new moons of the calcndar nearly concur with the true new moons, the full moons are considerauly in error. The epaets are also placed so as to indicate the full moons generally one or two days after the truc full moons; but this was done puryosely, to avoid the chance of concurring with the Jewlish passover, which the framers of the calendar seem to bave considered a greater evil than that of celebrating Easter a week too late.

We will now show in what manner this whole apparatus of methods and tables may be disponsed with, and tha Gregorian calcndar reduced to a few simple formula a? casy computation.

And, first, to find the doninical leiter. Let L denote tho number of the dominical letter of ary gwon year of the era. Then, since every year whinh is rot a deap year cods with the sime day as that with rhich it began, the dominicall luter of the
folowng year must be $\mathrm{L}-\mathrm{h}$, ietrograding vine lettet efery ccm. mon yens. After x yeara, therefore, the number of the letter will bo $\mathrm{L}-x$. But as L can pever exceed 7 , the number x will alviays exceed L after the first seven years of the era. In order therefore to render the subtraction possible, L must he increased by sone multiple of 7 , as $7 m$, and the formula then becomes $7 m+\mathrm{L}-x$. In the year preceding the first of the era, the dominical letter was C ; for that year, therefore, we have $\mathrm{L}=3$; consequently for any areceeding year $x, \mathrm{~L}=7 m+3-x$, the yeara being all supposed to consist of 365 daya. But evcry fourth year is a leap year, and the effect of the intercalation is to throw the domusal letter one place farther back. The above expression must therefore be diminished by the namber of onits in $\frac{x}{4}$, or hy $\left(\frac{r}{4}\right)_{20}$ (this notation belug used
tn denote the quotient, in a whole number, that arises from dividing why 4). Heace in the Julun calendar the dominical letter is grven by tho equation $L=7 m+3-x-\left(\frac{x}{4}\right)_{10}$.

This equation gives the dominicas letter of any rear from the commencement of the ere to the reformation. In order to adapt it to the Gregorian calendar, we mast first add the 10 days that were left out of the year 1582 ; in the gecond place we must add one day for every century that has elapsed since 1600 , in consequence of the secular sappression of the intercalary day; nnd lastly we must dedact the anits contained in a fourth of the same aumber, because every fourth centesimal year is atill a leap year. Denoting therefore the number of the century (or the date after the two right-hand digits have been struck out) by c, the ralue of L must be increased
by $10+(c-16)-\left(\frac{c-16}{4}\right)_{w}$. We have then

$$
\mathbf{L}=7 m+3-x-\left(\frac{2}{4}\right)_{w}+10+(c-16)-\left(\frac{c-16}{4}\right)_{w} .
$$

that is, since $3+10=13$ or 6 (the 7 days being rejected, as they do not affect the value of L).

$$
\mathrm{L}=7 m+6-x-\left(\frac{x}{4}\right)_{w}+(c-16)-\left(\frac{c-16}{4}\right)_{w}
$$

This formula is perfectly general. and easily calculated. As an example, let us take the year 1839 In this case.

$$
x=1839,\left(\frac{x}{4}\right)_{w}=\left(\frac{839}{4}\right)_{w}=459, c=18, c-16=2 .
$$

and $\left(\frac{c-16}{4}\right)_{L_{n}}=0$. Heace

$$
\begin{aligned}
& \mathrm{L}=7 m+6-1839-459+2-0 \\
& \mathrm{~L}=7 m \mathrm{C}=2290=7 \times 328-2290 \\
& \mathrm{~L}=6=\text { letter } \mathrm{F} .
\end{aligned}
$$

The year thercfore hegns with Tuesday. It will be remembered that in a leap year there are always two dominical letters, one of which is emploged till the 29th of February, and the other till the end of the year. In this case, as the formula sapposes the anter. calation already made, the resulting letter is that which apphes after the 29th of February. Before the intercalation the domiuical letter had retrograded one place less Thus for 1840 the formula gives D ; during the first twa months, therefore, the domincal setter is \mathbb{E}.

In order to investigate a formula for the epact, let us make $E=$ the thae epact of the given vear:
$J=$ the Julian epact, that is to say, the number the rpact would have been if the Julan year bad been still io use and the lumar rycle had liepn exact.
$B=$ the correction depending on the solar vear
$M=$ the correction depending on the lunar cycie:
then the equation of the epact mid he

$$
E=.1+S+M
$$

60 that E will be known when the numbers J, S, and M aredetermined.

The epact J depents on the golden number N. and must lie de. tecrainel from the lact that in 1562. the first year of the reformel inlendar, N was 6. and J 26 For the following yeura, then. the e golden numbers and epacte are as follows:

and, thenfore, in gomerat $J=\left(\frac{26+11(N-3)}{2}\right)_{r}$. But the numerator of this frection becomes hy reduction $11 \mathrm{~N}-40$ or $31 \mathrm{~N}-10$ (the 30 heing rejectat, ao the remwinder only 19 sought) $r=\mathbf{N}+30(\mathrm{~N} .-\mathrm{H}):$ thereline, altumatcly.

$$
J=\left(\frac{N+10(N-1)}{20}\right)
$$

On account of the solar equation S, the epact J mast he dimin. ished by unity every centesimal year, excepting elways the forith.
After x ceatunes, therefore, it must be diminished by $x-\left(\frac{x}{4}\right)_{w^{\circ}}$. Now, as 1600 was a leap year, the first correction of the Julian intercalation took place in 1700 ; bence, taking c to denote the number of the century as before, the correction becomes ($c-16$) $-\left(\frac{-16}{4}\right)_{w^{\prime}}$, which must be deducted from J. Wc bave therefore

$$
S=-(c-16)+\left(\frac{c-16}{4}\right)_{w}
$$

With regard to the lunar equation M. we have already stated that in the Gregonan caiendar the epacts are increased by unity at tho end ol every penod of 300 years spen thes suscessively, and then the ncrease takes place once at the end of 400 years. This gives eight to be added in a perod of twenty five centuries, and $\frac{8 x}{25}$ in x ceaturies. But $\frac{9 x}{25}=\frac{1}{3}\left(x-\frac{x}{25}\right)$ Now, from the manoer in whub the untercalation is directed to be made (namely, seven times auccessively at the end of 300 yars , and once at the end of 400%, it is erident that the fraction $\frac{x}{25}$ mest amount to unity when the number of centuries amounts to twenty-four. In like manner, when the number of centuries is $24 \div 25=49$, we must have $\frac{x}{25}=2$; when the qumber of centuries is $24+2 \times 25=74$, then $\frac{x}{25}=3$; and, generally, when the oumher of centuries is $24+$ $n \times 25$, then $\frac{x}{25}=n+1$ Now this is a condition which wil: evidently be expressed in general hy the formula $n-\left(\frac{n+1}{25}\right)_{10}$ Hence the correction of the epact, or the number of days to be ins tercalated after x ceaturies reckoned from the commeacement of one of the periods of twenty-five centuries. is $\left\{\frac{x-\left(\frac{x+1}{25}\right)_{w}}{3}\right\}_{w}$ Tbe last perion of twenty-five centufies terminated with 1800 ; there. fore, in any succceding year, if c be the number of the century, we shall have $x=c-18$ and $x+1=c-17$. Let $\left(\frac{c-17}{25}\right)_{w}=a$, then for all years after $1 \$ 00$ the velue of M will be given by the formula $\left(\frac{c-18}{3}-a\right)_{u}$: therefore, conoting from the begin. ang of the calendar ia 1502.

$$
B=\left\{\frac{c-15-a}{3}\right\} u^{\circ}
$$

By the substitution of these values of J, S, and M , the eqnation. of the epact becomes
$E=\left(\frac{N+10(N-1)}{30}\right)_{r}-(c-16)+\left(\frac{c-10}{3}\right)_{10}+\left(\frac{c-15-a}{3}\right)_{20}$. It may he remarked, that as $a=\left(\frac{\mathrm{c}-17}{25}\right)_{a}$, the valne of a will ${ }^{\prime}$ be 0 till $c-17=25$ or $c=42$: therefore, till the year 4200, a way be neglected in the computation. Had the antucipation of the new monens been taken, as it ought to hare becn, at one day in 308 years instead of $312 \frac{1}{2}$, the luar equaton would hare accurred only twelve tunes in 3700 years, or eleven tumes successurely at the end of 300 years, and then at the end of 400 . In strict accuracy, therefore, a onght to have no value till $\mathrm{c}-17=37$, or $\mathrm{c}=54$, thast is to say, till the year 5400 . The ahove formula for the cpact is given by Delarnbre (IIsist. dis l'Astronomie Moicrne, tom. i. p. 9); it may be exhibited under a vanety of forms, bur the above is perthaps the bee, adapted for calculation. Another had preriously been girea in Gauss, but inaccorately, inasmuch as the correction depencing of a was omitted.
Having determined the epart of the year, it o::1\% remains to find Easter Sunday from the conditions already hand down. Let
$P=$ the mumher of days from the 21 st of March to the 15 th of the paschal meon, which is the first day on whels Easter Sunday carn fall:
$p=$ the number of days from the 21st of March to Esster Sunday. $1,=$ the number of the dommical letter of the year ;
$i=$ better helonging to the day on which the 15 th of the moon falls tben, sige Easter is the Surdiy followasg the 14th of tho moon. wo bavo

$$
p=P+(L-r)
$$

Which is commonly calles the numicr ef dircuith.

The value of L is a! rays given by the formula for the domiuical letter, and P and ℓ are easily deduced from the epact, as will appcar from the following considerations.

When $P=1$, the full moon is on the 21st of March, and the new moon on the eighth ($21-13=8$), therefore the moon's age on the lat of March (which is the game ss on the 1st of January) is tweutythres daya; the epact of the year is consequently twenty-three. When $\mathbf{P}=2$ the new moon falls on the niath, and the epaot is consequently twenty-two; and, in general, when P becomes $1+x$, E becomes $23-x$, therefore $\mathrm{P}+\mathrm{E}=1+x+23-x=24$, and P $=24-\mathrm{E}$. In like manner, when $\mathrm{P}=1, l \doteq \mathrm{D}=4$; for D is the dominical leitcr of the calendar belonging to the 22nd of March. But it is evident that when l is increased by unity, that is to say, when the fult moon falls a day later, the epact of the year is diminished by unity; therefore, in geaeral, when $l=4+x, \mathrm{E}=23-x$, whence $l+\mathrm{E}=27$ and $l=27-\mathrm{E}$. But P cso never be less than 1 nor l leas than 4 , and in both casea $\mathrm{E}=23$. When, therefore, E is grester then 23, we must sdd 30 in order that P and l may have positive values in the formula $\mathrm{P}=24-\mathrm{E}$ and $l=27-\mathrm{E}$. Hence there are tro cases.

$$
\begin{aligned}
& \text { When }<24,\left\{\begin{array} { l }
{ \mathrm { P } = 2 4 - \mathrm { E } } \\
{ l = 2 7 - \mathrm { E } , \text { or } (\frac { 2 7 - \mathrm { E } } { 7 }) _ { r } } \\
{ \text { When } \mathrm { E } > 2 3 , }
\end{array} \left\{\begin{array}{l}
\mathrm{P}=54-\mathrm{E} \\
l=57-\mathrm{E}, \text { or }\left(\frac{57-\mathrm{E}}{7}\right)_{r}
\end{array}\right.\right.
\end{aligned}
$$

By substituting one or other of these ralues of P and $\mathrm{l}_{\text {, according as }}$ the case may be, in the formula $p=\mathrm{P}+(\mathrm{L}-l)$, we shall have p, or the number of days from the 21st of March io Easter Sunday. It will be remarked, that as $\mathrm{L}-l$ canoot either be 0 or negative, we must add 7 to L as often as may be nccessary, in order that $L-l$ may be a positive whole number.

By means of the formula which we bave now given for the dominical lecter, the golden number, and the epact, Easter Sunday may be computed for any year after the reformation, without the assistance of any tables whatever. As an axaiople, suppose it were required to compute Easter for the year 1840. By subatituting this number in the formula for the dominical letter, we have $x=1840$, $c-16=2,\left(\frac{c-16}{4}\right)_{w}=0$, the refore

$$
\begin{align*}
\mathrm{L} & =7 m+6-1840-400+2 \\
& =7 m-2292 \\
& =7 \times 328-2292=2296-2292=4 \\
\mathrm{~L} & =4=\text { letter } \mathrm{D} \ldots \tag{1}
\end{align*}
$$

therefore $\mathrm{N}=17$.
For the epact we have $\left(\frac{\mathrm{N}+10(\mathrm{~N}-1)}{30}\right)_{r}=\left(\frac{17+160}{30}\right)_{r}=\left(\frac{177}{30}\right)_{r}$ $=27$; likewise $c-16=18-16=2, \frac{c-15}{3}=1, a=0$; thert ore $\mathrm{E}=27-2+1=26$.
Now since $\mathrm{E}>23$, wo have for P and l,

$$
\begin{equation*}
P=54-E=54-26=28 \tag{3}
\end{equation*}
$$

$$
l=\left(\frac{57-E}{7}\right)_{r}=\left(\frac{57-26}{7}\right)_{r}=\left(\frac{31}{7}\right)_{r}=3 ;
$$

consequently, since $p=\mathbf{P}+(\mathrm{I},-1)$,

$$
p=28+(4-3)=29 ;
$$

that is to say, Easter bappens tweaty-ainc days after the 21st of March, or an the 19th April, the sams result as was before found from the table:.

The principal church feasts depending on Easter, and the times of their celebration, are as follows :--

The Gregorian calendar was introduced into Spain, Purtugal, and part of Italy, the same day as at Rome. In France it was receiver in the same year in the month of December, and by the Catholic states of Germany the year following. In the Protestant states of Germany the Julian calendar was adhered to till the year 1700, when it was decreed by the dict of Ratisbon that the new style and the Gregorian correction of the intercalation sbould he adopted. Instead, however, of employing the zolden numbers and epacts for the determination of Eiscer and
the movable feasts, it was resolved that the equinox and the pascbal moon should be found by astronomical com. putation from the Rudolphine tables. But this method, though at frst view it may appear more becurate, was soon found to be attended with numerous inconrenjences, and. mas at length, in 1774, abandoned at the instence of Frederick Il. king of Prussia. In Deamark and Sweden the reformed calendar was received about the same time as in the Protestant states of Germany. It is renarkable that Russia still adheres to the Julian reckoning.

In Great Britain the slteration of the style was for $\&$ long time successfully opposed by popular prejudice. The inconvenience, bowever, of using a different date from that employed by the grester part of Europe, in matters of history and chronology, began to be generally felt ; and at length, in 175J, an Act of Parliament was passed for the adoption of the new style in all public and legal transactions. The difference of the two styles, which then amounted to eleven days, was removed by ordering the day following the 2d of September of the ycar 1752 to be accounted the 14th of that month; and in order to pre. serve uniformity in future, the Gregorian rule of intercala. tion respecting the sccular years was adopted. At the same time, the commencement of the legal year was changed from the 25 th of April to the lst of Jonuary. In Scotlend, the new style was adopted from the beginning of 1600 , according to an Act of the privy council in December 1599. This fact is of importance with reference to the date of legal deeds executed in Scotland between that period and 1751, when the change was effected in England. With respect to the movable feasts, Easter is deterimined by the rule laid down by the Council of Nice; but instead of employing the new moons and epacts, tho golden numbers are prefixed to the days of the full noons. In those years in which the line of epacts is changed in the Gregorian calendar, the golden numbers are removed to different days, and of course a new table is required whenever the solar or lunar equation occurs. The golden numbers have been placed so that Easter may fall on the same day as in the Gregorian calendar. The calendar of the church of England is therefore from century to century the same in form as the old Roman calendar, excepting that the golden numbers indicate the full moons instead of the new moons.

Hebrew Calendar.-In the construction of the Jewish calendar numerous details require attention. The calendar is dated froin the Creation, which is considered to have taken place 3760 years and 3 months before the commencement of the Christian cra. Tho year is luni-solar, and. ancording as it is ordinary or embolismic, consists of twelve or thirteen lunar months, esch of which has 29 or 30 days. Thus the duration of the ordinary year is 354 days, and that of the embolismic is 384 days. In either case, it is sometimes made a day more, and sometimes a day less, in order that certain festivals nay fall on proper days of the week for their due observance. The distribution of the embolismic years, in each eycle of 19 years, is determined according to the following rule:-

The number of the Hebrew vear (Y) which has its commenecment in a Gregorian year (x) is obtained by the addition of 3761 years; that is, $\mathrm{l}=x+3761$. Divide the IIcbrew year by 19 ; then the quotient is the number of the last completed cycle, and the remainder is the year of the current cyele. If the remainder be $3,6,8,11,14$, 17, or $19(0)$, the year is embolismic ; if any other number, it is ordinary. Or, otherwise, if we find the romsinder

$$
\mathrm{R}=\left(\frac{5 \mathrm{Y}+\mathrm{I}}{19}\right)_{r}
$$

the gear is embolismic wheu $\Gamma_{6}<7$.

The calendar is constructed on the assumpuous that the mean lunation is 29 days 12 hours $44 \mathrm{~mm} .3 \frac{1}{3} \mathrm{sec}$., and that the year commences on, or immeduately after, the new moon following the autumnal equmox. The mean solar year is also assumed to be 365 days 5 hours 55 min. $25 \frac{28}{57}$ bec., so that a cycle of nineteen of such years, containing 6939 days 16 hours 33 min . $3 \frac{1}{3}$ sec., 1 s the exact measure of 235 of the assumed lunations. The year 5606 was the first of a eycle, and the mean new moon, appertaming to the 1st of Tisrl for that year, was 1845, October 1, I5 hours $42 \mathrm{~min} .43 \frac{1}{3} \mathrm{sec}$., as computed by Lindo, and adopting the civil mode of rectoming from the previous midnight. The times of all future new moons may consequently be deduced by successively adding 29 days 12 hours 44 mm . $3 \frac{1}{3} \mathrm{sec}$ to this date.

To compute the tumes of the new moons which determine the commencement of successive years, it most be observed that in passing from an ordinary year the new moon of the follewing year is deduced by subtracting the interval that twelve lunations fall short of the corresponding Gregorian year of 365 or 366 days; and that, in passing from an embolismic year, it is to be found by adding the excess of thirteen lunations over the Gregorian year. Thus to deduce the new moon of Tisri, for the year immediately following any given year (Y), when Y is

$$
\begin{cases}\text { ordinary, subtract } & \binom{10}{11} \text { days } 15 \text { hours } 11 \mathrm{~min} .20 \text { sec. } \\ \text { embolismic, add } & \left.\binom{18}{17} \text { days } 21 \text { hours } 32 \mathrm{~min} .43\right\} \text { sec. }\end{cases}
$$

the second-mentioned number of days being used, in each case, whenever the fcllowing or new Gregorian year is bissextile.

Hence, knowing which of the years are embolismic, from their ordinal position in the cycle, according to the rule before stated, the times of the commencement of successive years may be thus carried on indefinitely without any difficulty. But some slight adjustments will occasionally be needed for the reasons before assigned, viz., to avoid cortain festivals falling on incompatible days of the week. Whenerer the computed conjunction falls on a Sunday, Wednesday, or Friday, the new year is in such case to be fixed on the day after. It will also be requisite to attend to the following conditions:-

If the computed new moon be after 18 hours, the following day is to be taken, and if that happen to be Sunday, Wednesday, or Friday, it must be further postponed one day. If, for an ordinary year, the new moon falls on a Tuesday, as late as 9 hours 11 min. 20 sec., it is not to be observed thereon; and as it may not be held on a Wednesday, it is in such case to be postponed to Thursday. It, for a year immediately following an embolismic year, the computed new moon is on Morday, as late as 15 hours 30 min .52 sec ., the new year is to be fixed on Tuseday.

After the d-tes of commencement of the successive Hebrew years are finally adjusted, conformably with the foregoing directions, an estimation of the consceutive intervals, by taking the differences, will show the duration and character of the years that respectively intervene. According to the number of days thus found to be comprised in the different years, the days of the several months are distributed as in Table V1.

The signs + and - are respectively annexed to Hesvan and Kislev to indicate that the former of these months may sometimes require to have one day more, and the latter sometimes one day less, than the number of days shown in the tablo, - the result, in every case, being at once determined by the total number of days that the year may happen to contaim. An ordinary year may comprise 353, 354, or 355
days, ana an embalismic year 383, 384 , or 385 days. In these cases respectively the year 13 sadd to be imperfect. common, or perfecr. The intercalary month. Veadar, is introduced in embolismic years in order that Piesover, the 15 th day of Nisan, may be kept at its proper season, which is the full moon of the vernal equmox, or that which takes place after the sun bas entered the sugn Arses. It always precedes the following new year by 163 days, or 23 wetks and 2 days; and l'entecost always precedes the new yeur, by 113 days, or 16 weeks and 1 day.

Tacle V] - Mobrew Mouths.

nedrew Month	Orisinery leas	Embolismice
Tims	30	30
Hesvan	$29+$	$29+$
Kisle	80 -	$30-$
Tebet	29	29
Sebat	30	30
Adar	28	30
(Veadar)	11	129)
Nisan	30	30
Yiar	29	28
Sivan	30	30
Tamuz	29	29
Ab	30	30
Elus	29	24
T0: 11	354	384

The Gregorian epact being the age of the moon of Tebet at the beginniug of the Gregerian year, it represents the day of Tebet which corresponds to January l; and thus the approximate date of Tisrı 1 , the commencement of the Hebrew yea; may be otherwise deduced by subtracting the epact from
$\left.\begin{array}{l}\text { Sept. 24 } \\ \text { Oct. } 24\end{array}\right\}$ atter an $\left\{\begin{array}{l}\text { ordinary } \\ \text { embolismic }\end{array}\right\}$ Hebrew year.
The result so obtained would in general be more accurato than the Jevish calculation, from wheh it may differ a day, as fractions of a day do not enter alite in these computations. Such difference may also in part be accounted for by the facs that the assumed duration of the solar year is $6 \mathrm{~min} .39 \frac{2}{6} \frac{\mathrm{~s}}{} \mathrm{sec}$. in excess of the true astronomical value, which vill cause the dates of commencement of future Jewish yeurs, so calcu!ated, to advance forward from the equinox a day in error in 216 years. The lunations are estimated with much greater precision.

The following table is extracted from Woolhouse's Measures, Weights, and Moneys of all Nations:-

Table VII.-Hebrew Years.

Ycar.	$\begin{aligned} & \text { Num- } \\ & \text { ber of } \\ & \text { Daye. } \end{aligned}$	Commencement (lat of Tiart).		$\left\{\begin{array}{c} \mathrm{Jewilsh} \\ \mathrm{i} \text { ear. } \end{array}\right.$	erof	Commencement (lst of Thsi).	
5606	35.	T	2 Oct 1845	5625	355	Sat.	4
07	855	Mon	21 Sept 1845	26	354	Thur.	21 Sept. 1865
08	383	Sat.	11 Sept. 1847	27	885	Mon.	10 Sept. 1866
09	354	Thar.	28 Sept. 1848	23	353	Mod	30 Sept 1867
10	355	Mon.	- icput. 1849	29	354	Thur	17 Sept 1868
11	385	S	Sept. 1850	30	55	Mon	6 Sejt. 1859
12	33's	Sat.	27 Sept. 1851	31	355	Mon	20 Sejt 1870
13	384	Tues.	14 Sept. 1852	32	383	Sat.	16 Sept 1871
41	355	Mon.	3 Oct. 1853	- ${ }^{-3} 3$	354	Thur.	3 Oct. 1872
\bigcirc	355	Sct.	23 Sept. 1854	${ }_{5} 34$	355	Mon	22 Sut. 1873
16	383	Thur	13 Sept. 1855	-35	383	Sat	12 Sept. 1874
817	354	Tuea.	30 Septt. 1856	${ }_{8} 36$	355	Thur	30 Scpt. 1875
${ }^{-18}$	355	Sat.	19 Sept. 1857	37	354	Tues.	19 Sept. 1876
19	S85	Thur.	9 Sept. 1858	38	385	Sat.	8 Scpt. 15.7
20	354	Thur	29 Sept. 1859	39	355	Sa	28 Sept. 1878
21	353	Mon.	17 Sept. 1860	40	3.54	Thur.	18 Sept. 1879
22	385	Thu	$55_{\text {Sckt. }} 1861$	41	883	Don.	Esept. 1880
23	35.	Thur.	25 Sept. 1862	42	$\cdots 5$	Sat	24 Spht. 1551
24	353	Jton.	148ent. $188{ }^{\circ}$	43	383	,	24 Scpt. 1882

Table VII. - Hebrew Years (continued).

Table VII.-Hebrew Years (continued).

Jewlsh Year.		Commencemeat (list of Tisri).		Yewrab Year	$\begin{array}{\|c\|} \hline \text { Num- } \\ \text { ber of } \\ \text { Dsys. } \end{array}$	Commencemeos (1st of TLati).	
5796	354	Thur.	4 Oct. 2035	5815	355	Sat.	3 Oct. 2054
97	353	Moo.	22 Sept. 2036	16	354	Thur.	23 Sept. 2055
98	385	Thur.	10 Sept. 2937	17	383	Mon.	11 Sept. 2056
99	354	Thur.	30 Sept. 2038	18	355	Sat.	29 Sept. 2057
5800	355	Mon.	19 Sept. 2039	19	354	Thur.	19 Sept. 2058
01	3×3	- at.	8 Sept. 2040	20	383	Moo.	8 Sept. 2051
02	354	Thur.	26 Sept. 2041	21	355	Sat.	25 Sept 2060
03	385	Mon.	15 Sept 2042	22	385	Thur	
\cdots	353	Mon.	5 Oct. 2043	$\stackrel{23}{2}$	35 353	Thur.	24 Sept. 2063
$\bigcirc 05$	355	Thur	22 Sept. 2044	224	353	Mon.	24 Sept. 2063
${ }_{4} 05$	384	Tues.	12 Sept. 2045	-25 -26	355 354	Thur.	11 Sept. 2064 10 (t. 2065
$\overbrace{8}^{8} 07$	355 353 5	Mon.	$1 \begin{aligned} & 1 \text { Oct. } 2045 \\ & 21 \text { Sept. } 2047\end{aligned}$	${ }_{5}$	354	Thur. Mon.	20 Sept. 2066
09	384	Tues.	8 Sept 2049	28	383	Sat.	10 Sept. 2067
10	355	Mon.	27 Seft 2049	29	354	Thur.	27 Sept. 2068
11	855	Sat	17 Sent 2050	30	35.5	Mon.	16 Sept. 2069
12	383	Thur	7 Sept 2051	31	383	Sat.	6 Sept. 2070
13	354	Tues	24 Sept 20502	32	35.5	Thur	24 Sept. 2071
14	385	Sst.	13 Sept. 2053	33	384	Tues.	13 Sert 2072

Mahometan Calendar - The Mahometan efa, or era of the Hegira, employed in Turkey, Persia, Arabia, de., is dated from the llight of Mahomet from Mecea to Medina, which was in the might of Thuriday the 15th of July 622 A.D., and it commenced on the day following. The years of the Hegira are purely lunar, and always consist of 1 welvo lunar monits, commencing with the approximate new moon, without any intercalation to keep them to the same season With respect to the sun, su that they retrograde through all the seasons in about $32 \frac{1}{2}$ years They are also partithoned into cycles of 30 years. 19 of which are common years of 354 days each, and the other 11 are intercalary years having an additional day appended to the last month. The mean length of the year is therefore $354 \frac{1}{30}$ days, or 354 days 8 hours 48 min., which divided by 12 gives $29 \frac{1}{5} 9 \frac{1}{50}$ days or 29 daps 12 homers 44 min., as the time of a mean lunatien, and this differs from the astronomical mean lunation by only 2.8 seconds. This small error will only amount to a day in about 2400 years.

To food if a year is intermalary or cominon, divide it by 30 the quoticot will he tho number of completed cycles and the remander will be the year of the current cycle; if this last be one of the oumbers 2,5.7.10.13, 16. 18, 21. 24, 26, 29, the year is interealary and consists of 355 days; if it be any other number, tha year is ordinary

Or if Y deoote the number of the Mahometan year, and

$$
R=\left(\frac{11 y+14}{30}\right)_{r}
$$

the year is intercalary when $R<11$
Also the number of intercalary years from the year 1 up to the year Y inclusive $=\left(\frac{11 \gamma+14}{30}\right)_{w}$; and the same up to the year $Y-1=\left(\frac{11 Y+3}{30}\right)_{w}$

To find the day of the week on which any year of the llegira hegins, we observe trat the year 1 began on a Friday, and that after every common year of 354 days, or 50 weeks and 4 days, the day of the week must ofcessarily become postponed 4 daye, besides the additiunal day of each intercalary ycar.

Hence if $u^{2}=1$	2	3	4	5	6	7
udacate Suo.	Mon.	Tues.	Wed.	Thur.	Frid.	Sat

- $w=2+4\left(\frac{Y}{7}\right)_{Y}+\left(\frac{11 Y+3}{30}\right)_{w}$ (rejecting sevens).

$$
\text { But, } 30\left(\frac{11 Y+3}{30}\right)_{w}+\left(\frac{11 Y+3}{30}\right)_{r}=11 Y+3
$$

gives $120\left(\frac{11 Y+3}{80}\right)_{w}=12+44 Y-4\left(\frac{11 Y+3}{30}\right)$, ,
or $\left(\frac{11 Y+3}{80}\right)_{20}=5+2 Y+3\left(-\frac{Y+3}{8 n}\right)_{r}$ (reiecting sevens).

So that

$$
w=6\left(\frac{Y}{7}\right)_{r}+3\left(\frac{11 Y+3}{30}\right)_{r} \text { (rejecting sevens) }
$$

the values of which obvionsly circulate in a period of 7 times 30 or 210 years.
Let C denote the namber of completed cycles, and y the year of the cycle ; then $Y=30 C+y$, and
$\omega=5\left(\frac{C}{7}\right)_{r}+6\left(\frac{y}{7}\right)_{r}+8\left(\frac{11 y+3}{30}\right)_{r}$ (rejecting sevens).
From this formala the following table has been constructed:-
Table VIII.

Year of the Cortent Cycle (v.)	Number of the Period in Sereo Cycles $=\left(\frac{C}{7}\right)_{\text {r }}$						
	0		2	3	4	5	6
$0]$	Mon.	Sat.	Thur.	Tues.	Sun.	Frid.	Wed
$\begin{array}{llllll}1 & 9 & 17 & 25\end{array}$	Frid.	Wed	Mion.	Sat.	Thur.	Tues.	Sun.
${ }^{2} 2{ }^{*} 10 \cdot 18{ }^{*} 26$	Tues.	Snn.	Frid.	Wed.	Mon.	Sat.	Thur.
	Sun.	Frid	Wed.	Mon.	Sat.	Thur.	Tues.
$4{ }^{12} 20.28$	Thur.	Tues.	San.	Frid.	Wed.	Mon.	Sat.
*5.13 *21 ${ }^{*} 29$	Mon.	Sat	Thur.	Tues.	Sun.	Frid.	Wed.
-6 142230	Sat.	Thur	Tucs.	Sun.	Frd.	Wed.	Mon.
${ }^{-7} 15 \quad 23$	Wed.	Mon.	Sat.	Thur.	Tues.	Sun.	Frid.
-16, 24	So	Fr	W	Mon	Sat.	Thur	Tue

To find from this table the day of the week on which any yaar of the Hegira commences, the rule to be observed will be as follows :-

Rule.-Divide the year of the Hegira by 30; the qnotient is the number of cycles, and the remainder is the year of the current cycle. Next divide the number of cycles by 7, and the second remainder will be the Number of the Period, which being found at the top of the table, and the year of the cycle on the left haud, the required day of the week is immediately shown.
The intercalary years of the cycle are distinguished by an esterisk.

For the computation of the Christian date, the ratio of a mean year of the Hegira to a solar year is

$$
\frac{\text { Year of Hegira }}{\text { Mean solar year }}=\frac{3543}{365.2422}=0.970224 .
$$

The year 1 begau 16 July 622, Old Style, or 19 July 622 , according to the New or Gregorian Style. Now the day of the year answering to the 19th of July is 200 , which, in parts of the solar year, 1 s 0.5476 , and the number of years elapsed $=Y-1$. Therefore, as the intercalary daya are distributed with considerable regularity in both calendara, the date of commencement of the year Y expressed in Gregorian years is

$$
\begin{aligned}
& 0.970224(Y-1)+622 \cdot 5476, \\
& \text { or } 0.970224 Y+621.5774 .
\end{aligned}
$$

This formula gives the following rule for calculating the date of the commencement of any year of the Hegira, according to the Gregorian or New Style.
Rule.-Multiply 970224 by the year of the Hegira cat off six decimals from the product, and add $621 \cdot 5774$. The sum will be the year of the Christian era, and the day of the year will bo found by multiplying the decimal figares by 365 .
The resnlt may sometimes differ a day from the truth, as the Intercalary days do not occur simultaneously; but as the day of the week can always be accurately obtained from the foregoing table, the reault can be readily adjusted.
Example.-Required the date on which the year 1362 of the Hegira begins.

970294
1362
$\begin{gathered} 1940448 \\ \vec{\sigma} 821344 \end{gathered}$
270224
: $321 \cdot 415083$
62] 5774
$\begin{array}{r} 043 \cdot 0205 \\ 365 \end{array}$
$8-3125$

Tlus the date is the 8:n day, or ine ε :h of january; of the yeat 1943.

To find, as a test, the accurate day of the week, the proposed year of the Hegira, divided by 30, gives 45 cycles, and rewander 12, the year of the current cycle.

Also 45 , divided by 7 , leavea a remainder 3 for the number of the period.

Therefore, referring to 3 at the top of the table, and 12 on the left, the required day is Fridsy.
The tables, page 670, show that 8 th Janaary 1943 i. a Friday, therefore the dste is exact.

For any other date of the Mahometan year it is only requisite to know the names of the consecutive montis, and the number of daja in each;'these arn-

Iturertam, . . 30	Shaaban, . - . . . 28
Saphar . 29	Ramadản, 30
	Shawall, 29
Rabia II., 29	Dulkadan 80
Jomada I., . \because. . 30	Dulhegga, 29
Jornada II., 29	and in mntercalary years 30
Rajab, . . . * . 30	

The ninth month, Ramadan, is the month of Abstinence obscrved by the Turks.

The Turkish calcndar may evidently be carried on indefinitely by successire addition, observing only to allow for the additional day that occurs in the bissertile and intercalary years; but for any remote date the computation according to the preceding rules will be most efficient, and such computation may be usefully employed as a check on the accuracy of any considerable extension of the calendar by induction alone.

The following table, taken from Woolhouse's Measures: Weights, and Moneys of all Nations, shows the dates of commencement of Mahometan years from 1845 up.to 2047, or from the 43 rd to the 49 th cycle inclusive, which form the whole of the seventh period of seven cycles. Throughout the next period of seren cycles, and all other like peroods, the days of the week will recur in exactly the same order All the tables of this kind previously published, which extend beyond the year 1900 of the Chris, tian era, are erroneous, not excepting the celebrated French work, L'Art de vérifier les Dates, so justly regarded as the greatest authonity in chronological matters. The errors bave probably arisen from a continued excess of 10 in the discrimination of the intercalary years. .
$\mathrm{T}_{\mathrm{AbLE}}$ IX-Makometan Years.

48d Cycle.			43d Cycle-cortinued.		
Year of Hegita	Commeacemeat (lot of Juharram).		Tear of Eegira.	Commeacement (1st of Nuharran).	
1251	Frid.	10 Jan. 1845.	1286*	Tues	13 April 1869
1262*	Tues.	30 Dec. 1845	1287	Sun	3 April 1870
1263	Sun.	20 Dec. 1846	1288	Thur	23 Mar. 1871
1264	Thur.	9 Dcc. 1847	1289*	Non	11 Mar. 1502
1265°	Mou.	27 Nov. 1848	1290	Sat.	1 Mar. 1578
1266	Sat.	17 Nov. 1849			
1267*	Wed.	6 ŠOV. IS50		44 th	cle.
1268	Dlon.	27 Oct. 1851		,	
1269	Frid.	15 Oct. 1852	1291	Wed.	S Feh. 1874
1270°	Tues.	4 Oct 1853	1292*	Sun.	7 Fcb .1875
1271	Sun.	24 Sent 1854	1203	Frid.	2§ Jan. 1876
1272	Thur.	13 Sept. 1855	1294	Tues.	$16 \mathrm{Jan}$.
1273*	Mon.	1 Sept 1556	1295	Sat.	5 Jan .1878
1274	Sat.	22 Aug. 1857	1296	Thur.	26 Dec. $18: 8$
1275	Wed.	11 Aug. 1858	1297*	Mon.	15 Dec 1879
$1276{ }^{\circ}$	Sun.	31 July 1859	1298	Sat.	4 Dec. 1850
1277	Frid.	20 July 1860	1299	Wed.	23 Nov. 188:
1278*	Tues.	9 July 1501	$1300 *$	Sun.	12 Nov. 1882
1279	Suu.	29 June 1862	1301	Frid.	2 Nor. 1853
1280	Thur.	18 June 1863	1302	Tues.	21 Oct 1884
1281*	Mon.	6 Junc 1864	1308*	Sat.	10 Oct. 1585
1282	Sat.	27 May 1865	1804	Thar.	30 Sept 1886
1253	Wed.	16 May 1866)305.	Mon.	19 Sept 1887
1234*	Sun.	5 May 1567	$1306{ }^{\circ}$	Frid.	7 Sept 1888
1285	Frid.	24 April 1868	1807	Wed.	25 Aug. 1889

49th Cycle-continued.

Year of Hegus	Commencement (1st of Mularram.)		Yesr of Hegira	Commencement (lst of Mubartam.)	
1454	Mon.	12 April 2032	1463	Frid.	4 Jan .2041 ,
1455	Frid.	1 April 2033	1464*	Tues.	24 Dec. $2041{ }^{\prime \prime}$
$1456{ }^{*}$	Tues.	21 Mar. 2034	1465	Sua.	14 Dec. 2042
1457	Sua.	11 Mar. 2035	1406**	Thar.	3 Dee. 2043
1455*	That.	28.Feb. 2036	1467	Tues.	22 Nov. 2044
1459	Tues.	17 Feb. 2037	1468	Sat	11 Nov. 2045
1460	Sat.	6 Feb. 2038	$1469 *$	Wed.	31 Oet. 2046
1461*	Wed.	$26 \mathrm{Jan}$.	1470	Mon.	21 Oct. 2047°
1462	Mon.	16 Jan .2040			

Table X.-Principal Duys of the Hebrew Calendar

Tisri 1, New Year, Feast of Trumpets:
$3,{ }_{1}^{1}$ Fast of Gueurliah.
", 10, Fast of Expiation.
.", $\quad 15$, Feast of Tabernacles.
", 21, Last Day of the Festival.
., 22, Fesst of the Sth Dey.
$\because 23$, Rejoicing of the Law.
Kisler 25, Dedication of the Temple.
Tebet 10, Fast, Sirge of Jerusalem.
Adar 13, ${ }^{8}$ Fast of Esther, (In cmbolismic
14, P'urim, \mid years. V'cadar.
Nisan 15, Passover.
Siran 6, Pentecost.
Tanuz 17, ${ }^{1}$ Fast, Taking of Jerusalem.
Ab 9,1 Fast, Destruction of the Temple.
Table XI.--Principal Days of the Mahometan Calendar:
Muharram 1, New Year.
Rabia 1. 11, Birth of Mahomet.
Jomada 1. 20, Taking of Constantinople.
Rajab 15, Day of Victory,
20, Exaltation of Mahomet.
Shazlan 15, Borak's Night.
Shawall 1, 2, 3, Grand Bairum.
Dulheggia 1, kurban Jairan.

Table XII.-Epochs, Eras, and Periods.

Same.	Chastan Date of Comanancetnent.	Name.	Christinn Lete of Compencement
Grecian Mundane em,	1 Sep. 5598 b.c	Sidonian era, Cassarean era of	Oct. 110 b.c.
Civilera of Con-		Antioch,	1 Sep. 48
stantinople,	1 Sep. 5508	Julian year,	1 Jan .45
Alexandrian		Spanish era,	1 Jan.
	29 Aug. 5502.	Actian era,	1 Jan. 30
Ecclesiastical		Augustau era,	14 Eeb. 27.
cra of Antioch, . .	1 Sep. 5492	Gulgar Christian era,	1 Jan I 1 Ad.
Julian Period,	1 Jan. 4713 "	Destruction of	
Mundane era, .	Oct. 4008 ,	Jerusalem, .	I Sel. 69 ,
Jewish Mun-	Oct. 3761 ",	Era of Macea. bees,	24
Era of Abraham	$10 \mathrm{ct}$.	Era of Diocle-	
Era of the		tian, . . . Era of Ascen.	17 Sep, 284 "
Olympiads Roman era	$\begin{array}{r} 1 \text { July } 776 \text { ", } \\ 24 \text { Aphil } 753 \text { ", } \end{array}$	Era of Ascens10a,	12 Nor. 295
Era of Nabonassar,	-6Feb. 73	Era of the Armenians,	7 July 552 ",
Metonic Cycle,	15 July 432 ,		
Grecian or SyroMacedonian era,	1 Sep. 312 ,"	of the Hegira, Persian era of Yezocgurd, .	16July 622 ".
Tyriau ere.	19 Oct. 125		

[^59]The principal works on the calendar are the following:-Clavins, *Romani Calendarii a Gregorio, XIII. P. M. restituti Explicatio, Bome 1603 ; L'ATt de verifier las Dates; Lalando, Astronomie, tom ii. ; Traits de la Sphere ef du Calendrier, par M. Revard, - Paris, 1816; Delambre, Traite de l'Astronomic Theorique et Pratuque, tom. iii.; Mtstoire de l'Astronomie Moderne; B'́ethodus tecksica ،brevis, perfacilis, ac perpetza construendi Calendarium Ecelcricisti-
cum. Slylo tam novo quam vetize, pro canclis Christianis Europa populis, dic., anctore Paulo Tittel, Göttingen, 1316 ; Foupole arutiliche pel caleolo della Pasqua, e corresione di quello di Gaitss, con critiche osservazioni si yuanto ha scritto del Calendario il Delambri, di Lodovico Ciccolini, Home, 1817; E. H. Lindo, Jewish Galendar for Sizty-four \bar{y} gars, 1838 ; W. S. B. Woolhouse, Mfeasures, Weighis, and Moneys of all Nations, 1869.

CALENDER, a mechanical engine employed for dressing and finishing cloths and various descriptions of fabrics, preparatory to sending, them into the market. It is also used by calico-printers to prepare the surface of their cloths for the operations of printing. The first object of calendering is to produce in the cloth as perfect extension and smoothness of surface as can be attained,-so that no wrimkle or doabled folding may remain in it. The second end attained by the calendering of cloth is the compression of the yarn or threads of which the texture is composed, which in some degree divests them of their cylindrical shape, and reduces them to a degree of flatness, which, by bringing them more closely into contact with each other, gives to the fabric a greater appearance of closeness and strength than it would otherwise possess. Tho operation of the calender also improves the superficial appearance, by flattening down all knots, lumps, and ather imperfections, from which no material from which cloth is fabricated can ever be entirely freed during the previous processes of spinning and weaving. And, thirdly, in certain fabrics it is desirable that cloth should receire, by means of friction, an additional lustre or polish, which is distinguished by the appellation of glazing. For the accomplishment of these objects the agencies on which the calenderer has to rely are moisture, heat, pressure, and friction, and these be variously combines to produce many different effects.
The term calender, which really means only the chief mechanical engine employed, gives the general name to the finishing establishments where all the varied operations of cloth-lapping are carried on; and it is as usual to say that goods are packed as that goods are dressed at a calender. The common domestic smoothing-iron may be regarded as 3 form of caleadering uteusil; as is also the old-fashioned uomestic mangle, which consists of a cylinder applied to a plane, upon which it is rolled backward and forward, until eome degree of amoothness is prodaced by this reciprocating motion. A form of mangle, consisting of an caormously heavy cylinder, which is worked forwards and backwards over a plane surface, is still used in caleadering establish. ments for the finishing of very heary linens and similar goods.
The smoothing calender completes the substitution of cylindrical for plane surfaces, all the parts whicis operste upen the cloth being of that form. This ingenious engine, which was introduced into Britain from Flanders and Holland during the persecution of the Hugueaots, has, eince its introduction and adoption, undergone no very material or important alteration or improvement in point of theoretical priaciple; nor, until the extension of the cotton manafacture had introduced a general spirit of meahanical improvement, were any great adrances made in the practical applications of it

Calenders are constructed with from two to five rollers or cylnaders, technically termed "bowla,"-three or firebowl calonders being most frequently employed. The materials of which these cylinders are made are wood, compressed paper, and metal, such as chilled cast-iron, brass, or cepper. They are variously arranged in relation to each othes, and as mechanical arrangements are re-quired-lst, for varying pressure; 2d, for applying acat within a metal bowl from atcam, hot irou, or burning gas;
and 3d, for varying the rate of motion of a pair of the bowls so as to prodnce friction-the gearing of a calerder is gomewhat complex. Commonly a three-bowl calerder has an upper and under cylinder of paper, the central one being of metal, and in such an implement either tro pieces may pass through at the same time, or one piece may receive two pressures. An ordinary five-bowl calender has the first, third, and fifth cylinders of paper, the intermediate being of metal, and here four successive pressures may be given. Fig. 1, Plate XXXII, is an eleration of a five-roller calender for finishing cloth. A, A are two paper rollors, of 20 inches diameter each. B, B are two cast-iron oylinders, externally turned until perfectly smooth; their diameter is 8 inches, allowing the enbstance of iron to be 2 inches, and lesving a perforation of 4 inches diameter. C is a paper roller of 14 inches diameter ; D, D is the framing of cast-iron for containing the bushes in which the journals of the rollers revolvé; E, E are two levers by which the rollers are firmly pressed together while the cloth is passing through.

Fig. 2 is an end view of the same caleader, with the wheels for glazing cloth. The wheel on the upper cyliader is 10 inches diameter, the wheel on the under cylinder is 13 inches diameter; they are connected by the wheel F, which communicates the speed of the upper cylinder, so that the wheel on the under cylinder being nearly one-third of an inch mere in diameter, the difference of their motions retards the centre paper roller, by which means the upper cylindor passes over the cloth one-third faster than the cloth passes through the caleader, and polishes it in consequence.

The construction of paper or pasteboard rollers for calenders is a process of great interest and importance. The frequent heating and coeling to which the apparatus is subject necessarily produces warping and splitting in wooden bowls, which are thereby rcadered uselcss, but the substitution of paper afforded a radical cure for these defects as well as a collateral advantage arising from its being eusceptible of a much higher degree of saperficial polish, which is always transferred to the cloth. In the construction of paper cylinders an axis or journal of malleable iron and two circular plates of cast-iron of the same diameter as the cylinder to be made are, in the first place, provided. A plate is secured on one end of the journal. The entire space between the two iron plates is then to be filled with circular pieces of paper or pasteboard, exceeding by about 1 inch in diameter the iron plates, and having each a correspondent perforation, through which the iren journal passes. A cylinder is thus formed, the substance of which is of paper locked together by plates of iron at the extremities, and susceptible of immease compression which it receives in a hydraulic press. After undergoing this preparation, the cylinder is exposed to atrong heat in a coufined apsrtment in which the paper contracts and becomes loosc. It is again pat into the press, more sheets of paper are added, and this process gee on till the cylinder has gradually acquired the requisite compression. It is then re-exposed to the ordinary :emperature of the ntmesplece, and by its ro-xpansion presents a body almost remarkably comonact, its specifo gravity in this state beide gleater than ceven tbat of sifrer.
CALENDER.

TiverbowZ Calender.- side eleration.

The only operation now requirea 1 s that of turning its superficics until correctly eylindrical ; and this is a worl of immense labour and patience.

For dressing muslins, gauzes, lawns, and other goods of a light kind, a smaller species of calender is employed. It censists of only three cylinders of equal diameter (generally about 6 inches), and is easily moved by a common winch or handle. The middle cylinder is iron, and the others are of wood or pasteboard. All the cylinders are of equal diameter, and are moved with equal velecities by means of small wheels. This machine is always used in a cold state.

By means of the calender, also, is produced the waved or watered surface, known as moiré among the French, and best seen in the silk textures called moire antique, and in woollen moreens. The effect is produced in a variety of ways, the priacipal method employed consisting of passing two webs laid above each other through the calender at the same time. The threads of the web not running perfectly parallel to each other are at some places superimposed, and at other points they'fit into alternate spaces, -the result being that at the places where the threads press directly on each other a higher gloss is produced, which gives the watercd appearance to the texture. Watering is also effeeted on a single thickness of material by mnving the web to the right and left as it enters the calender, and thus varying the direction in which it travels over a howl on which there are a series of eugraved lines runoing in a parallel direetion. Embossed patterns, or imitations of the grain of leather, \&c., for bookbinders' cloth, are produced by means of a calender having a bowl of bress or other metal on which the pattern is engraved. When a paper cylinder is used along with au embossing cylinder, the paper must be turned into sucb exaet proportion to the embossed bowl that it will repeat the pattern accurately on its circumference, so that the depressions on the one bowl always fit accurately into the clevations on the other. For many purposes a covering of leather, felf, or lead is used for the eylinder which works against that on which the pattern is engraved.
Goods after passing throught the calender are folded, either by mashinery or on long pins by hand-working into a variety of forms according to their nature and lestination, and when so folded they are subnitted to a very powerful compression either in a screr-pross or in an liydraulic press.

Fig. 3, Plate XXXII., is a perspectivo view of an hydraulic press. Λ is the piston, 8 inches diameter, werking in the cylinder B, and kept water-tight by passing throngli a collar of leather; D, a cast-iron plate raised by the piston A, between which and the entablature E , E the goods to be pressed are laid; C, C, C, C, four malleable iron columns, 23 inches diameter, having serewed ends, with nuts, by which the entablature and the base \mathcal{F}, \mathbf{F} are firnly connected together; G, a eistern for holding water to supply the two foreo-pumps H and I , the largest of which has a Γ iston $\frac{1}{2}$ inch diancter, and the other one of $\frac{1}{2}$ inch diameter, which is used to give the highest pressure; K, K, weights to balanee the pump-handles whieh fit into the sockets at l, l. The pistons of the foree-pumps are made water-tight by collars of leather, kept in their place by the serewed pieces m and n. e, e, c is a pipe commiunicating with the pumps and the large cylinder B; there is a stopeock at j, which shuts this communication when required.

Fig. 4 is an enlarged view of tho foree-pump piston, to show the method of keeping the rod parallel.
An illustration of a glazing calender as used by bleachers and calico-printers, with further details as to finishing processes, will be found under Bleachivg. See also Calico-Printing.

CÁLefino, Ambrogio (1435-1511), an Aagustine monk, born at Bergamo in 1435, was descended of an old family of Calepio, whenee he took his name. He devoted his whole life to the composition of a polyglott dictionary, first printed at heggio in 1502. This gig太utic work was after: wards angmented by Passerat and others. The most complete edition, p ublished at Easel nu 1590, comprises no fewer than elcven langugge. Tho best edition is that published at Padna in seven languages in 1772. Calepino died blind in 1511.

CALHOUN, Joby Caldwell (1782-1850), a leading politician of the United States, was grandson of an Irish Presbyterian, who founded Calboun settlement, in the district oi Abbeville, South Carolina. It was there that John Callhonn was born in 1782. .For some years ho assisted his midowed mother in the management of her farm, but at the age of eighteen he commenced to study for the bar. He graduated with honours at Yale College, and spent eighteen months at Litehfield, at that time the only law sehool in the country. He then returned to practise in his native district of Abberille. While there, in June 1807, the searching of the Chesapeake baving aroused strong feeling in America, Calhoun drew up for a public meeting a resolution expressive of indignation ayainst Great Britain, and supported it in a speech of such power that he was soon after elected a member oi the legislature, and in Norember 1811, becamo. member of Congress, where be continued to be an enthusiastic and prominent adherent of the war party: For seven years (commencing with 1817) be acted with eredit as secretary of war under Monroe; in 1825 he became Vice-lresident. of the United States under J. Quiney Adams; and in 1829 he was re-elected under Gerieral Jaekson. Henow he gan to bo looked upon as champion of the South; and, though he had supported the protective tariff of 1816 , he Lecame an eager adrocate of free-trade, -that policy being, eveu popularly, recognized as specially advantageous to the cotton-growing States. He is, however, best known as a stremuous defender of slarery, and as the author of a doctrine to whish the Civil War may le traced, - the doctrine of " nullifeation," according to which eack State has the right to reject any act of Congress which it considers unconstitutional. This ciew was in 1829 adopted by the legislature of his native State, and draina up in a docunient, mainly prepared by Calhoun, which was known as the "South Carolina Exposition," and whieb was approved hy Virginia, Georgia, and Alabama. In 1832 the legislature of South Carolina carried the theory into practice by passing laws nullifying the obnowions tariff of that ycar; but its opposition was crushed by the firmness of General Jackson, who deelared that bo wuld resort to foree, if necessary. The most important of the other politieal acts of Callioun are his defence of the right of veto which belongs to the president, his adroeacy of the annexation of Texas, and bis maintenance of tire cause of peace, when war with Great Britain was threatenal by the claims of the United States to Oregon. He died at Waslington on the 31 st Marel 1850 . Ifis works, with memoir, were publisbed posthumously in 6 vols. in $1853-1$. hy Richard \mathbb{K}. Cralle, who bad been his amanuensis. They include a dissertation On the Constitution ard Government of the Uuited States; and from this beck we learn that be adrocated the election of tre presidents, one by the free and another by the slave States, the consent of botl u: whon should be essential to the passing of any law. Calhoun's speeches were always directly to the point, cicar, and foreible, while he seldom indulged lia the ima joative or' purely rhetorieal. The integrity and werth of his chare ter have been spoken of in tho highest terms eren by lolitical opponents.

CALJCO-PRINTING

CALILO-PRINTING is the process of imprinting on textile fabrics patteras of one or more colours on a white or coloured ground. Though, as the name implies, the art is directed primarily, as it is by far most catensively, to calico or cotton textures, the same methods of oruamentation are also employed for certain woollen, linen, and silk fabrics, and the process of printing is aiso applied to anweven yarns, notably in the case of worsted yarns intended for use in the weaving of tapestry carpets. But as certain of tho processes employed for printing cotton agree essentially with those used for woollen and silk fabrics, it will be unnecessary here to refer specially to any other than the methods employed in the printing of calico proper.
There is a curious passage in Pliny's Natural History (xxxr. 42), from which it is evident that calico-printing in his time (the lst century) was understood and practised in Egypt. The following is a translation of this passage :-
"There exists in Egypt a wouderful method of dyeing. The white cloth is stained in various places, not with dyestuffs, but with substances which have the property of absorbing (fixing) colours. These applications are not visible upon the cloth; but when the pieces are dipt into a hot caldron containing the dye, they are drawn out an instant after dyed. The remarkable circumstance is, that though there be only one dye in the vat, yet different colours appear on the cloth; nor can the colours be afterwards removed. A vat which would of itself only confuse the colours on cloth previously dyed, in this way imparts several colours from a single dye-stuff, painting as it boils. It is evident enongh that the substances employed to stain the cloth, as Pliny expresses it, were different mordants, which served to fix the dye upon the cloth. Thus if we suppose certain parts of a piece of cotton cloth to be impregated with alumina, and the cloth afterwards dyed with madder, after the clearing, those parts only impregnated with the mordant would retain their red colour, while the remaining parts will contiuue white.

The general opinion is, that this ingenious art originated in India, and from that country made its way into Egypt. Whether this notion be well or ill founded, it is certain that cabico-printing was known and cxecuted by the Indians at a yery early pcriod. Their colours were beautiful and fast, and the varieties of pattern and the number of colours which they knew how to fix on different parts of the cloth gave to their printed calicocs a beauty and a value of no ordinary kind; but their processes are so tedions and so clumsy that they could be put is practice only where labour was exceedingly cheap.
It was not till towards the close of the 17 th century that calico-printing was introduced from India into Europe, haviug probably been praetised first in Holland, to which country a knowledge of the art was carried by the Dutch East India Company. Evidnce exists which shows that calico-printing was commenced in the neighbourhood of London so early as thi year 1676 , and there the art continued long to be practised. In 1738 it extended to Scotland, and took frm root in the country around Glasgow, but it was not till 1764 that it was introduced to what is now its chief contre. Lancashire. The extent of the industry in Great Britain at the present day is probably unequalled by the combined production of all other nations of the world. The other European countries where the art is prosecuted to any considerable extent aro-France, Switzreland, and Germany, to the last of which the amexation of the Rhino Provicees, consequent on the war of 1870-1, has
addel a famous ceatie of the wadustry. 1 ne art is also extenssuly coltivated in the United States, while Oriental communities still continue to prosecute it in thar own pe. culiar faslions.

In Europe the art has beed in a great measure created anew. By the application of machiuery, and by the light thrown on the processes by the progress of chemistry, the todious methods of the Indians bave been wonderfully simplifed ; and the processes are remarkable for the rapidity with which they are now executed, and for the beauty, fastness, and varicty of the colours which are applied on the surface of cotton. So great have been these improvements, that at the present tume in Manchester a piece (25 yds.) of calico can be printed in the short pernod of one minute; and the quantrty of calloes printed in Great Brotan in one year cannot measure less than three quarters of a milhon of miles, sceing the exports alone of printed cotton piece goods during the year 1871 amounted to $1,003,101,107$ yards, of a value of $£ 19,602,706$, an amount cxcceded by $140,000,000$ yards in $18,2$.

Grey calico is prepared fur printing by an elaborate process of Bleaching, for the details of which the reader is referred to the article under that head, vol. iii. p. 811. The bleached cloth previous to printing is generally passed through a shearing machine, which remores from its surface the fine downy pile and short threads, thus preparing a smooth unjform surface capable of taking a sharp distinct unpression from the engraved printing-blocks or rollers. The printing processes which follow are exceedingly complex and varied, demanding for their proper cxecution an extended range of chemical knowledge and mechanical ingenuity ; and as commercial success depends largely on the tasteful and harmonious colouring of patterns, no Jittle artistic ability and discrimination is required for the eficient superiutendence of such works.

There are two modes of printing,-namely, block-printing and machine-printing. The former has been practised from time immemorial; the latter is a modern invention, and originated after the introduction of the art of printing into Great Britain. In the case of block-printing the figure intended to be communicated to the cloth is cut out upon a block of sycamore, the parts which are to make the impression being left prominent, and the rest of the block cut away, just as practised for wood engravings. When the figure is too complicated, and the lines too fine, to admit of being cut in wood, it is made by means of smal pieces of copper, which are very ingeniously driven into the block, and the interstices are filled up with felt.

By means of a modern invention several colours may be applied at once on the cloth by means of one block. The machine used for this purpose, which is called a " toby"," consists of a box divided into several compartments filled with varions colours, which are in communeation through tubes with lottles filled with the same colours; and by means of a geutle pressure the colouring luid in each of the compartments of the machime is propelled through the felted cloth which covers each compartment. The block, being pressed against the cloth, takes the colour which is to be conveycd to the white calico by the blockprinter.

By Continental printers an intricate apparatus for printing called the Perrotine, from the name of its inventor, is emploved; but it has neser been introduced to any considerable extent in England. In this macline the intended figures are engraved upon a liat copper plate of about a square yard or more in size. Upon this plate the
culour to be applied is spread. Tae prate is theu pulled tackwards, the excess of colour being removed by a "docter," and the colour remaining on the engraving is then printed on the white cloth.

Printing is now almost universally accomplished by means of cylinder machines, in which the impression is given by one or a series of engraved copper cylinders ; a different cylinder being required for each separate colour or shade in the pattern. The cylinders are made about 3 feet 6 inches long and 6 inches in diameter; and in establishments of any considerable extent many thousands of these are kept in stock, involving an enormous outiay of capital. There are three different metheds in practice for engraving patterns or portions of patterns on the cylinders. In the first, the "die and mill" process, a cylindrical steel die is engraved with the pattern, which is afterwards transferred to a " mill" or cylinder of soft steel. The pattern on the mill is in relief, and after hardening it is by pressure impressed into the copper roller. The diameter of the mill is such that the repeats of the pattern fit with the utmost precision when transferred to the copper roller. The "die and punch" process is a modification of the foregoing, in which small patterns are impressed on the copper cylinder by means of a punch which has the pattern in relief trangferred to it from a sunk steel die. The third process by which engraved rollers are prepared is by the aid of the pentagraph, a most complex and ingenious machine, with which by the movement of a single tracer in the deep lines of an enlarged pattern cut in a zinc plate, these lines are reproduced on the original scalc, traced at five different places through a coating of bituminous varnish on the surface of the cylinder. After the engraving is complete, the cylinder is placed in a bath of dilute nitric acid, by which the pattern is bitten in along the surfaces of the metal exposed by the scrataing of the pentagraph peints.
Calico-printing machines are arranged to print with any number of such cylinders, from one up to as many as twenty; but in practice few machines carrying more than eight cylinders are employed. The accompanying diagrammatic section (fig. I.) illustrates the arrangements necessary for printing one colour, and each of the separate colours on a machine is similarly mounted round the periphery of the central bowl or cylin. der a. Against this central bowl a the engraved cepper cylinder b presses, and between them the cloth to be printed and a thick cloth or blanket pass. The cylinder is supplied with the printing material by means of a furnshing roller c, which revolves in the colour-box d. The superfluons colour is removed from the cylinder by means of the culour doctor e, a stecl blade which fits closely to the surfase of the roller, and

Fig. 1. renoves all colour except that which fills the engraved portions. The lint doctor f sinilarly renoves all impurities which adhere to the roller after it has communicated its impression to the cloth. Fig 2 shows the elevation of a sex-celour machine by Messrs Mather and Platt of Manchester, to whose courtesy we are indebted ior illustrations of the most recent and approved forms of apparatus. The essential parts of this machine consist of the central iron bowl or cylinder A, and the stex radiating arms B, each of which holds in positien an engesved roller colourbos, \&c., as shewn in diagram fig. 1. My means of scretrs and other fine mechanical adjustments the pitch of each roller can be arranged so that its particular colour falls on the proper ghace with the utmost exactitude, pooducing a
perfect pattern." In printing, the white calico is batzhed at C, and the cloth D passes inwards over teusion rails, proceeding round the periphery of the bowl A, reciving from each roller B a separate colour or mordant, and issuing at D^{\prime}, priuted and ready for the futher processes to

Fic. 2.-Cylinder Printing.Machine-six colours.
be hereafter detailed. Around the central boml A. are lapped, for the sake of elasticity, several folds of cloth. Between the central bowl and the cloth to be printed there passes, lst, an endless band of cloth or blanket, scen entering at E and issuing at E; and $2 d$, a "grey back" or web of unbleached calico, used to keep the blanket clean, which enters at F and issues at F.

By whatever mechanical means the printing is performed, whether by hand-block, perrotine, or cylinder machinc, the effect is preciscly the same, and the colours or mordants employed are in all cases alike. The substances to be printed on the surface of the calico have to be brought to a proper consistency for printing by means-of thickeners, with which they are mixcd up in colour pans. Althougb these are only mechanical agents, it is found in the prac tical operation of printing that particular thickencrs ar: more suitable for certain colours or mordants than others and the printer is guided by cxperience in sclecting tha? thekening adjunct which gives the elearest impression. Among the numerous thickeners available, those mont commonly eruphoyed are wheat thour and starch, potato starch, destrin or British gum; and gum-senegal or other varietics of gum-arabic. The mordant or the colour and its appropriate thickeners are placed in a range of colour pans, in which the materials are thoroughly incorporated. A pair of these pans (one m section), as constructed by Messrs Mather and Platt, embracine the most recent and approved appliances, is shown in fe. 3. In the cut, A represents the driving pulleys, F the iriving shaft, wheels, and catch-box, c whecls for giving a rotary motion to the brass stirrers d. E is the colour pan, of copper, double cased, made to swivel on centres or pivots f^{1} and f^{2}. Through j^{1} water and throush j^{2} stcan are supplied to the spice betrieen the outer and inner body of the pan for the purfues of boiling and cooling down the contents of the gan elternately as requited. 'The supply of steam or
of water to these pipes is regulated by the tap g. H is the framing, J stauda, with the necessary appliances for turning over the pans to enpty their contents, K a pipe and swivel tap for supplying water to the pans, L is the main steam pipe to f^{1}, m the rater pipe to f^{2} and K, and n and o are taps for washing out and for condense water respectively.

Fig. 3,-Colour Pans,

The variety of methods by which colours are produced on calicoes is almost cudless, and the processes employed, both chemical and mechanical, as mell as the tinctorial agents used, are also very numerons and diversificd. The processes are in practical works generally classified under the heads of numcrous different styles, combinations of several of which are frequently employed in the production of a single pattern It is at once impossible and unnecessary to enter into details of these various styles bere; but they all resolve themselves into a few general groups, under which hearls they will be briefly treated of. In certain styles a mordant, or chemical substance, which possesses an affinity for both the cloth and the dye-stnif, is the substance printed in the cylinder machine, and the calico bas to undergo a subsequent process of dycing by which those portions of the cloth which received the mordant are alone permanently dyed Again, the colour-box may contain all the ingredients necessary for the production of the colour, but to develop it in the fibre it is necessary to expose the printed cloth to the oxidizing inflnence of the atmosphere, or otherwise produce an oxidation of the dyestuff by which the colonr is developed and fixed. By a third process the colour is prepared and applied direct to the cloth mixed with some agent which, under the influnne of heat and moisture, either mechanically attaches or chemically frecipitates the coloner io the fibre. And a fourth process, which may be regarded as a modification of tho third, consists of mixing the dyo with powerful mordanting substances, which, after prining, are merely drod, the mordant volatilizing sutficiently to fix the dye, not very fane on the cloth. There are thas these four d.askns-

1. N. Colours.
Us
MI. Steam colours.

TV. Sirit colcurs.

Along with these different methods patterns are also produced and modified by means of substances applied to cloth already dyed or printed in order to remove the colour from certain portions of it which are either intended to remain white, or to receive some other colour afterwards. These substances are known as "discharges," and examples of their action are seen in printed Turkey reds and Enndannas.

Sometmes a substance is applied to cloth before it is deed, in order to prevent the indigo, or any other colour, from boing fixed on those ${ }^{\text {I }}$ arts to which it is applied, that they may remain white, or be afterwards made to recerve other culurs. Substances possessed of this property aro called "resists."

Dye Colours,

Uuder this head are included prints prepared by printing the pattern in one or more mordants-substances which have an affinity for the fibre on the one hand and the dyestuff on the other. The mordanted cloth is subsequently submitted to a process of dyeing, when the dye-stuff is fixcd only on such parts of the cloth as have bcen impregnated with the mordant. By using more than onc mordant, by mixing them, or by employing the same at different degrees of strength, a variety of shades or colours is produced in the process of dyeing with one dye-stuff.

Mordants.-The principal mordants employed for dye colonrs are the following:-

1. Red Liquor. - Theacetate of alumina mordant or "red liquor" of the calico-printer is prepared by partly decomposing alum, held in solution by impure acctate of lime, commonly called pyrolignite of lime; sulphate of lime precipitates and acetosulphate of alumina is thus obtained. Fed liquors thus prepared have a specific gravity of $1 . n 8$, and are composed as follows :-

Composition of four red Morlants per Gallon.

In the manufacture of "red liquor," sulphate of alumina is freqnently substituted for alum, and acetate of lead for pyrolignite of lime.
2. Iron Liquor.-Tho oxides of iron are much used as mordants, either in the state of protoxide or peroxide. The salt most employed is the impure pyrolignite of protoxide of iron, which is prepared either by decomposing green copperas with pyrolignite of lime, or by flacing in large rats pyrolignous acid and old iron, when, after a few months, the iron, which is gradually oxidized, dissolves in the acid, and gires rise to pyroljgnite of protoxide of iron. This valuable mordant is thickencd with calcined farina, flour, starch, or gum, and applied on the calico. After being exposed for a few days in a moist atnosplhere, it loses a part of the acid, and becomes partially peroxidized. Iyrolignite of iron of the specitic grarity of 1.05 gives a black with madder and several "tannin" substances. Varions shades of purple are obtained by adding different proportions of water to the mordant previously to applying it to the cloth; and rarious shades of chocolates are pro duccd by mixing this with the aluminn mordant previonsly. described, and then dyeing also with madder.

These two mordants are the principal emplosed for madder colones; but several others are cmphed for spers. I sharice. Amang these may be cnumerster the alcioimais

Fof soda or alkaline pink (used as a nurdant when it has to act as e resist for another colour such as aniline black), and acatates of chromium, copper, tin, and other metals.

Dye Colours. -The principal dye colour is madder or some of ats derivatives, ancluding artificial alizarin, the dyeing principle of madder obtained synthetically from anthracene. Madder is the root of a plant, Rubia tinctoria, a native of Central Assa, but introduced and extensively cultivated in south Europe, especially at Avignon in France. For the purposes of the calico-printer, madder-luot is prepared by simply grinding, oc in the form of flowers of madder (fleurs de garance), of garancin, of garanceux, or of alizarin. Fleurs de garance is powdered madder deprived of its soluble constituents and redried, whereby the tinctorial strength of the preparation is increased nearly one-balf. Garancin is prepared by boiling powdered madder in sulphuric acid; garanceux is spent madder similarly prepared ; and alizarin, the chief tinctorial principle of madder, is obtainable from garancin by the action of superheated steam. Aniong the chemical principles of tinctorial value yielded by madder there is, besides alizarin, an allied substance named purpurin. Alizarin of precisely similar compositivo and behaviour is now artificially made from nnthracene, one of the products of coal-tar, and purpurin also is obtainable by the oxidation of artificial alizarin. By chemical agency the essential ingredients of madder are thus now produced in a cheaper, mure convenient, and more effective form than it was formerly possible to extract them from the cultivated root. Madder extract, garancin, and alizario dye heavier and more brilliant colours than madder, and they require less soaping or other treatment to clean the whites after dyeing. Madder extract and artificial nlizarin are also used as steam colvurs.

We may now briefly follow the stages in priating a madder style, taking for example a calicn printed in four 'colours' (the techoical name for whatever is printed by the machine, whether mordant or dye), with a padding or blotch of weak iron liquor. In this case the mordants or colours are-

Black from strong solution of iron liquor.
Parple from weak solution of iron liquor.
Red from solution of red liquor.
White resist of solution of citric acid (lime jaice).
Parple pad or cover of weak iron Liquor, which falling on the acid resist forms a soluble ferric citrate.
Drying.-The cloth after receiving these impressions passes into a drying apparatus, geaerally a closed chamber, bighly heated by radiation from atean-chests of cast-iron. Through such a chamber the cloth passes up and down over aumerous rollors. traversiog a long distance before it emerges dry and ready for the next process. Another means of drying, employed in some of the best establishments, such as Thoraliebank, is by passing the cloth round a long series of revolving stcam cans or cylinders, the metallic surface of which is covered with felt. Recently a most effective aystem of drying has been introduced, which sonsists of forcing a atrong current of heated air through an eaclosed chamber by the action of a fan, connected with which is an apparatus filled with pipes, through which the arr passes, while aurrounding the pipes is a steam space. By thes plati any temperature may be obtamed, and the current of air adjusted by the speed of the fan.

Ageing. - From the drying apparatus the goods pass to the ageing room, a lofty and spacious chamber (fig. 4), where they are exposed to the combined influence of heat and steam. The pieces pass, as shown by the arrows, up and down over rollers from end to end of the room, travelling aver a long space. for twenty minutes or thereby. The at:nosphere is rendered moist by jets of steam blowing from pupes a. a. and hot by mdiation from the same and
other steam pipes. A differeace of four degrees is manntained between the dry and wet thermometers; the readings average 80° and 76° Fabr. The cloth takes up about 5 per ceat. of its weight of moisture in its passage, and as it issues at the further end of the apartment, it is piled up in loose bundles, and so left for two or three days in a warm moist atmosphere. The object of the operation of ageing is to precipitate the mordants 10 the fibre of the cloth, they in the meantime being partly decomposed with the diseogagement of abundant fumes of acetıc acid. The practical development of the modern process of ageiog is due to the scientific ingeruity of the late Mr Walter Crum of Thornliebark, the method previously practised having been tedious and uacertain, depeading upon variable states of the weather.

Fio. 4.-Vertital Section of Ageing Room.
Dunging. - It is next necessary to remove any superfluous uncombined mordant which may be on the cloth, and to take away the thickening agent with which the mordant was printed. Theso objects are accomplished by passing the goods through hot water, in which it was formerly the practice to dissolvo cow's dung, hence the name; but now some of the numerous dung substitutes are chiefy used, the princtpal of which are the silicate and the arseoiate of soda. The first operation in dunging is to pass the pieces through the "fly dunging " apparatus, - a cast-iron trough with rollers top and bottom,-by which the cloth is made to pass, in the open state, through the hot solution. This operation fixes the mordant in the fibre and prevents it from spreading to unmurdanted parts of the cloth in the subscquent washing and dyeing operations to which it ia subjected. Immediately after the fly-duuging the goods are washed and submitted to a sccond dunging, this time in a differeat kind of apparatus, through which they are passed in a coil or loose rope form. They are then thoroughly washed at a machine to removo the last traces of thickening matter and all uncombined ingredients.

Dyeing.-At this point the geeds are ready for dyeing, the most important process in the whole scrics of opera. thons. The dye-beck or vat, one form of which is showa in longitudinal and transverse section in fig. 5, consists of

Fio. 5.-Sections of Dye Vat.
an iron cistern or trough A, into which the dyeing solutius is introduced. Funning along the whole length of the
trough is a steam pipe b, perforated at interrals, by which the requisite beat for the dyeing operation is raised and maintained. Sloping upward from the steam pipe is a perforated diaphragin of iron or midfeather c, and mounted on a strong framework over the trough is the winch D , which by iis revolutions, effected by spur wheels, keeps the cloth moving down and up contmoously into and out of the trough. A peg rall c runs along the length of the trough, which kecps the pieces irom becoming entangled in their course 'The figure shows the course of a chain of pieces being dyed on the endess system, in which about twenty-five pleces are sewn together, and passed in a spiral form op and down from end to end and back again, to gu over the same course contmuandy throughout the cotare time necessary for completing the uperation. Another and more common method of arbanging the peecs 1 a the dyevat is to pass two preees, tial together end to end, over the wincls between each separate parr of pegs, in which case the picces revolve between the same pegs thronghout the operation. Whichever method is followed, the uperatuon and results are precosely the same The required quantity of cold water is admitted into the trough, the peces are arranged on the wanch, the dye-stuff is introduced, and the machinery set in motion. Steam is then .urned on, and the liquid is lieated gently and gradually till it reaches about 180° Fahr. The process is continued for from an lour and a quarter to about two hours, during whieh time great care is taken to mantain the temperature arrived at, and to keep the preces in constant circulation in and out of the vat. On the completion of the operation steam $1 s$ shut off, and the pieces are rinsed throngh cold water, after which they are caretully and repeatedly washed. Fig. 6 presents a scctional view of an apparatis devised by Messrs Mather and Platt for loose washing after dyeing

Fto fi -Mather and Plati's Washing Apparatus
In this machinc there are tro water boxes a, b, and three powls c, d, e, which are mounted horizontally in relation to each otber. The contral large bowl d, instead of being circular, has an irregular curved outline of alternate elevations and depreasions. Against this irregular-shaped bowl the two side bowls c ande are made to press, and they move back and forwarl, following the irrognlar ontline, frossed by powerful springs f acting on the ares on whele they are mounted. They have thus a rubbing action ir addition to their motion of revolution, an arrangement which produees a kind of hlapring and squeczing netion pnalagous to band-washing.

Clearing. - At this point the dyed calicoes present a very unoromisng apharnme, the mordanted portions which bave ubsorbed the dye being dull and leavy in colou: Whi, the whites have a suckly pink aspect. The operations i
of clearing are necessary to remove all the dye-stuff \because hich is loosely attached to the whites, and to develop and brighten the tints of dyed pattern. A variety of proeesses are pursued to aecomplish this object, but in all the action of soap and some "chemick" or chlorne solution plays the principal fart. The soal used must be free from all excess of alkali, and besides its detergent action it is supposed te be decomposed and give up part of its fatiy acid to the labe formed ly the nowdant and the dye-stutf. 'The processes for clearmgr such calicoes as here described are as folluws. After washug ont of the dyebeck the goods are passed. into a soapning beek, very smmlar in conetrnetion to the dyebeck, but surmwunted with a pair of squeezing rollers nnstead of the winch of the dyeng apparatus. In this they are trated with a bot solition of soap, they are then washed out, squeezed, and agan soaped, - the second time at a higher temperature than the first. After another washing they are "chemicked " in a meak chlorine solution, prepared by muxing ehloride of lime with soda ash, with excess of soda, and from that a final washing in pure water should leave the goods clear and bright, ready for the finishing operations they receve in common with all other styles.

The reds and pinks produced by an aluminn mordant with madder or artificial alizarin receive a different treatment. Mr Charles Drejins of Nanchester, in a paper of great practical value commonicated to the Society for the Promotion of Scientific Indnstry, says of these colours: "They were come time ago. dricd and steamed; by the steaming a further quantity of colonring matter was combined to the mordant, and the shades thus obtained were fuller than if the goods had nut been steamed. Non, instead of steaming only, the goods are passed through preparations the basis of whicb are fatty acids or fatty or resinous compounds: they are steamed after this preparation. I can speak bighly of the gond results obtained with some of these preparations, hoth as regards shade and saving of colour. The only difficulty is to obtain a good white; this can be overcome ly careful and proper treatment of the gools. For reds and pinks there is a sperial and extra operation, commonly called the 'cutting.' It consusts in fassing the goods soaper and rell washed through diluted nitromuriate of tin; the reds and pinks seem to bo riestroyed, becoming of a deep orange, but the subseguent sonping brings ont again the brilliancy of the sbade."

The processes above described are followed, with only modifications as to strength of mordants and the clearnus operations, for the pranting of ealicoes with the miudder pre-parations,-garancin, garanceux, and alizaran. The colours prodnced by these sulastances are as brilliant as malder colours, but they do not possess sueh fastness. On the wher hand, the whites are not deeply stained in the dye-beck, and they generally require only a simple paduing through a weak chlorine solution, and wasbung to clear the whites and prepare the goods for finishing. Some garanein and alizirna shades stand soaping rell, and are inprowed in tone by euch a treatment. Artificial alizarm and madder extract are now however chiefly used as steam colours, and to such perfection has printiog in that stile aftansed that the dyethouse has been abandoned altugether m certan Continental estahlishments. The retention of nlye-olour prating may now indera be looked on as a question of comparatue cxpense, which is determined chatly by the price of fuel.

Turkey Jied. - The production of thas heautiful colour belongs rather to the prosince of Iycing than to calicoprinting: but $n s$ patterns arw produeed on it by means of discharges, it is vecessary to innlurion a notice of it under the head of dye colours. It is obtained with madder,
garancin, and both natural and artificial alizarin, but the pieces previously to being dyed have to undergo a long nerea of operations, which consist in passing them successively in olive oil and carbonate of soda, and hanging then in the sir between the processes. They are then passed into a weak solution of red mordant, and afterwards of gall-nuts or sumach, well washed, and dyed in madder. When this has been effected, the colours are brightened by being boiled under pressure in a solution of goap and chloride of tin. On cloth so prepared certain discharge mixtures, principally tartaric acid properly thickened, are printed, and the pieces are passed through a aolution of chloride of lime which removes the red, leaving a whita pattern on a red ground. If a mineral colour or mordant is printed with the discharge it is left un the cloth in place of the discharged Turkey red, and thus various shades are produced in the brilliant red ground In handanna.printing the Turkey red calico is folded between metallic plates, which are perfnrated with designs, and ao arranged that each figure of the design corresponds through the pile of prints so folded. The whole is theu submitted to pressure, and a chlorine liquor is forced by pressure to percolate through the mass, which destroys the red colour in all those parts where the perforated plates allow the bleaching liquor to circulate.

- Although madder and its various derivatives are the priacipal dye colours, there are various others which may be and sometimes are so treated. Of these the most important is logwood, the wood of Hermatoxylon campechianum, which, although chiefly used as an oxidation colvur, sko yielda with slumina and iron mordants black and sorabre olate tints, which, however, do not possess the peculiar fastness of rasdders. Sapanwood and peachwood are also used as dye colours, the mordant and method of dycing being tho asme as for madder or garancin; the cluth, however, docs not receive the same treatraent after dyeing, and docs not require it, because these colours are much more easily removed from the parts of the cloth which are destitute of mordant Beautiful rads and pinks are produced by means of cochineal; but this dye-stuff is chiefly used as a steam colour and for mousselines de laine. The mordant in the case of calicoes is either alumina or oxides of tin, and the method of proceeding is aimilar tu that already described for madder and garancin colours. Quercitron bark (Quercus tincloria), and flavin-a prepara. tion from it, fustic, the wood of Mfaclura tincloria, snd Persisn berries, the fruit of Rhamnus irfectoruus, are all used as dye colours, chiefly for the production of vanous abades of yellow. In tha paper sbove quoted, Mr C. Dreyfus states that mahogany has lately been brought out as a colour-giving substance, that it gives with the tin and elumina mordants very bright and fast abades of brown, wuch more brilliant than those made from catechu, and that be has dyed some very good apecimens with Spanish mahogany.

'Oxidation Colours:...

Uader this head is iacluded a class of tinctorial substances which attach themselves to cotton fibre without the iotervention of any mordant, but which for the development and fixation of their colour must undergo a process of oxidation after printing in the machine. The oxidation may be induced either by exposure of the pieces to stmospheric influeaces, by passing them through a solution containing an oxidizing agent, or by priating with the materisl aome chemical substance which on exposure to heat gives off oxygen. The materials principally treated in this manner are indigo, catechu, aniline black, and certain blacks ohtained from logwood. The processes adopted for the printing of indigo and aniline black-the
two most inportant styles under this head-will make the practical application of the oxidation priaciple clear.

Indigotin, the colouring principle of indigo, is a substance obtainable from several other plants besides the species of Indigofera, from which it is commercially prepared. It is a body altogether insoluble in water, alcohol, ether, oils, or dilute acids or alkalies; but io presence of a variety of substances it takes up an additional equivalent of hydrogen, and thus is converted into white indigo, a colourless substance soluble in solutions of alkalies and alkaline earths. The change is thus represeated.

$$
\begin{gathered}
\text { Indigotin } \\
2\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}\right)+2 \mathrm{H}=2 \mathrm{H}=\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}
\end{gathered}
$$

White indigo is a most unstable compound, takiog ip oxygen with great facility either from the air or from certain solutions, and thus becoming retransformed into blue indigo. Advantage is taken of these circumstances in printing indigo colours; the colour is hydrogenized and dissolved, in which condition it is applied to calico, and on exposure of the picces so dyed to the influence of oxygen the blue colour is both developed and fixed in the fibre. The following are the principal styles in practice:-: \because

Indigoblue dips.-This fine blue colour is produced io the old copperas vat method by putting in a vat holding 2000 gals. of water 60 lt of finely ground indigo, to which is gradually added 120 ft of green copperas, or sulphate of protoxide of iron, together with 180 lb of slaked lime. Owiog to the lime remoring the sulphuric acid from the salt- of iron, the protoxide of that metal is liberated, and by its affinity for oxygen it decomposes the water, liberating bydrogen, which in its nasceat condition reacts on the blue indigo, and thus transforms it into white indigo, which is soluble in the excess of lime employed in the operstion. A zinc vat of recent introduction is now unuch mors gencrally ndopted than the above, its advantages being that tho indigo is much more quickly converted, and by nvoiding the abundaat precipitate of sulphate of lime a better class of work is produced. The zinc vat is prepared by adding to the 2000 gals. of water 20 lb of ground indigo, 30 lb of iron filings, 30 lb of finely powdered zinc, and 35 lb of lime. The powdered zinc in presence of the lime decomposes the water, giving ofl hydrogen, which is taken up by the indigo, which then 29 white indigo dissolves in the lime.

By whichever process prepared, the dye-vat being ready. a piece of calico is hooked on a wooden frame and well atretched cut; it is then dipped into the vat for fifteen minutes, taken out, and left exposed to the air for fiva minutes. The piece of calico, which is white when it comes out of the vat, gradually becomes green and then blue, owing to the oxygen of the air oxidizing the white indigo, and transforming it into blue, which is insoluble in water and fixed on the calico. The number of auccessive dips that the piece undergoes varies according to the various shades of blue which the printer requires. The pieces, after having been passed into a weak solution of sulphuric acid or "sours," which fixes the indigo thoroughly, only require to be well washed and dried.
To produce the well-known atyle of print which consists in a blue ground and white design, it is uccessary to print a resist, pass the pieces into a vat containing lime, and then dye them in the sbove indigo vat. The principal resist used is thic llue resist, a inixture of sulphate, acetate, and sometines nitrate of copper, and the solution is thickened with British gum, or calcincd flummery, together with pipe-clay for the block, and four for the machine printing. When the cloth on which this paste has been printed is dipped into an indigo vat, the indigo ia oxidized before it reaches the surface of the cloth. After
dyeing, the p.eces are passed through weak sulphuric arid, not only to remove the oxide of copper, which bas been precipitated, but also to fix. the indigo on the calico, by liberating it entirely from its lime combination. Various other resist pastes are employed when it is desired to print other colours over the white portions, as for example, when orange or yellow grounds are, desired the mixture consists of a salt of copper to resist the blue indigo vat, with a salt of lead to produce the chromate of lead by treatment with bichromate of potash after the blue dyeing is complete. The late J. Lightfoot of Accrington devised and patented, in 1867, a method of printing reduced indigo simultaneously with the mordants for madder, garancin, and other dye colours, by which a combination of indigo blue with other tints can be obtained of perfect clearness and brilliancy, without resorting to the complex and tedious processes involved in discharging colours, repeated printings, \&ic., wheu colours are blocked on a blue ground. The success of his process depeads on the preparation of a pulp of indigotio and tin, in which he carefully avoided any excess of tin salt, so that it does not attract the alizarin in the madder beck, and in consequence leaves the indigo effects clear and unclouded.

China Blue.-This style of print is obtanned by printing on the calico a mixture composed of pulverized indigo and sulphate of protoxide of iron, to which is sometimes added orpiment, and thickened with British gum. The pieces so printed are passed alternately, by means of rollers, first into a milk of lime, and then into a solution of sulphate of protozide of iron, when there ensues one of the most interesting phenomena of calico-printing; for as fast as the blue indigo is reduced into white indigo, instead of being dissolved by the lime of the bath, it is retained with force through the molecular attraction of the fibre of the calico, and prevented leaving the cloth until it is fixed by the exposure of the piece to the oxygen of the atmosphere. The pieces then only require to be passed into weak sulphuric acid, washed, and dried, in order to be completed. This process is not now much used.

Pencil Blue is obtained by reducing blue into white indigo, by boiling it for sevcral hours with protochloride of tin and alkali. When the indigo is well reduced, citrate of soda and starch are added, and after the whole $2 s$ carried to the boiling point, the calico is printed with it, passed into a milk of lime, washed. and dried.

Aniline Black is a most beautiful and fast colour, prepared by mixing 2 salt of aniline with 3 metallic salt and an oxidizing agent, which aubstances on exposure gradually react on each other, aud develop a rich velvety black. There is thus produced one of the most unalterable colours known, resisting soap, acids, and even chlorine to a remarkable extent. It is a colour of recent introduction, having been first printed by Mr John Lightfoot of Accrington, in 1859, and patented in 1863 ; but it is now in very exten. sive use, many different methods for producing it having been devised and patented. The most extensively cmployed eystem is that patented in 1871 by Mr"Lightfoot, the originator of the colour, which is thus given by Mr Dreyfus - 30 pints chlorate of ammonia, prepared either by means of tartaric acid and chlorate of potash, or by another process without tartaric acid, are thickened with 6 to 8 D wheat starch and 6 to 8 fb best dark British gum. When this colous has been well boilcd, it 18 allowed to get cool, and then 7 pints of a solution of the purces and most neutral aniline salt that it is possible to get are added; this polution is made with 8 to of salt to the gallon of water, with ibreequarters to oue pint of sulphide of copper paste After the mixtere is printed, the pieces are lightly dried and hung in the ageing room in a moist waron staparbere with the div bulb thermometer soout 80° asd
the wet bulb $i \hat{0}^{2}$ lower. From thurty hours to two dave are required to develop the colvur, the printer judging of the progress of the ageing by the tint. According to Mr William Mather an ordinary ageng machone will effectually "age" the aniline black, if only a proper current of air is maintained of the requisite morsture and tempers. ture. This is readily accomplished by having a properly contrived outlet to the chamber at the top, the draught of which is controllable, and inlets for fresh air in the sides of the chamber. This mode Mr Mather states is in successful operation, and by simple mechanical contrivances may be universally adopted. When the pattern has assumed a deep bottle-green tint. the goods are removed and passed through a solution either of bichromate of potash, of car. bonate of soda, or of both mixed, and then soaped sod dried. When aniline blacks are to be further prioted with steam colours or dye colours, as is commonly the case, the treatment of the pieces after ageing is modified according to the necessities of the case.

Chrome Black is ao oxidation colour produced by printin? with logrood liquor and passing the goods through a bati. of bichromate of potash, when the colouring priuciple of the logwood-hæmatoxylin-undergoes a special oxidation. The colours ubtained from catechu are also fixed by oxidation, the colouring primciple-catechuin-being only soluble in its unoxidized condition. and when oxidized after printing, it yields various browns and drabs, which have a very bigh degree of fastness.

Steam Colocps.

The various processes of printing included uader this bead are of modern introduction, but they have steadily risen in importance, till now they embrace the largest part of the art, baving so largely and rapidly superseded all other etyles that the process would appear to be destined to become the predominant style of the future. Indeed, to such perfection have steam colours been brought that in some Continental establishments, it appears, the dyebouse has been altogether closed and $\mathrm{s}^{\text {team }}$ coloura only now printed. As compared with the prin ing of dye colours the "topical" or steam colour style is sinple, direct, and expeditious, requiring no tedious dyeirg, and only light soaping, clearing, and finishing opcrations. By the dyeing processes alone the range of shades which it is practicable to priat on one piece is strictly limited by what-the mordants and their various combinations will yield with the particular dye-stuff used. But in stcam colours there is no limit to the number and varicty of shades which may be produced, each colour Lox on the cylinder printing. machine containing the whole ingredients essential to the production and fixation of a separate and distinct shade or colour. In addition to this the steaming prorass can be and is crtensively employed to supplemeni the effect of madder-printed or Turkey red goods by printing steam colours into the whites, produced cither by resist pastes or by discharges printed on the dycd texture.

Thedistinguishing peculiaritics of steam colours consistIst, in printing direct and at one operation on the clott the whole of the materials of the dye and its fixiog egent properly mixed and thickened, and 2d, in submitting the printed cloth to the influcuce of steam, which effects the fixation of tho colour. The effict produced by the combined heat and moisture of the steaming process is, in the case of certain combinations, purely merhanical, whle in others a chemical reaction ensues. In the priating of what are termed pignenit colours. or, in other vards, insoluble coloured fowders such as used by painters, they are simply mechanically fastencd or glued to the cloth by means of albumen, or some body of similar constitution. Which coagulates and becomes insoluble oo the application of o
certan heat. In the case of the regular steam colours and aniline dyes there is printed on the cluth a chemical mixture or solution, which on the application of heat produces a reaction resulting in the precipitation of an insoluble compound in the fibres, or a volatilization of the solvent inedium is caused, so that in both cases the same resultan insoluble precipitate-is produced.

With the developmeot of steam colours efforts have been made with success to mprove on the origmal crude and nnsatisfactury manner in which the steanung was performed. The old method, still largely employed, consists in wrapping the printed cloth around a perforated cylinder of copper, called a "column," nto one end of which a pipe passes for the admussion of steam. Around the culumu are first wrapped several folds of felt, above which eomes white calico, next the printed goods, and lastly an outer envelope of white calico. When so prepared the columu is set perpendicularly on a steam pipe, a stop cock is opened, and steam ts admitted into the intersor of the column, which presses through and acts on the printed goods. Immedately on the conclusion of the process the column must be dismounted and the goods run off, otherwise steam might eondense in the eloth and cause certatn colours to run.

The most common arrangement for steaming, however, consists of the chest or "cottage," which is a cylindrical steam-tight chamber, into which a carriage is introduced. The carriage is mounted with a series of rollers on which tho pieces to be steamed are hung, or, in a different arrangement, the cloth is fastened on a range of hooks projecting from a steam pipe. In the latter arrangement the hooks are heated by stean before the carriage is thrust into the chest, to preven: condensation of steam on the cold spikes, and consequent ruststaining of the eloth. Fig. 7 shows a

Fio. 7.-Soction of Steaming Chest.
sectional view of an ordinary steaming chest by Messrs Mather and Platt. A represents the body of the chest; B the steam-tight door, which draws up when the chamber is to be opened; C the carriage or waggon fitted with a range of square wooden rollers E. The rollers are all geared to move by means of a cog-wheel F, which is turned by the attendant outside the chamber. The carriage is run in unon the rails D; steam is admitted by the perforated steara-pipe $G ; H$ is a tap for running off condensed water, and J is a safety-valve. While one carriage is in the chamber another is being filled and prepared outside to take its place when the goods are sufficiently steamed.

The steaming chest is at best only a crude and disconnected manner of performing one process in printing, and as all the others are continuous, it forms an awhward break in the series. To obviate this, and to secure expeditiun and continuity, a method of steaning has been devised
by M. Cordillot of Moscow and Mr (William Mather of Salford, which they patented in 1874. Their apparatus, of which a sectional illustration is ohown in fig. 8, they claim will effectually steam 1000 pieces of 25 yards per

Fio. S. - Cordillot and Mather's Steaming Apparatus.
day. According to their suecification, it consists of " a trick or other chamber a, the roof of which is lined with a curved steam jacket b, connected by side pipes $c \mathrm{c}$ to the perlorated pipe d near the floor. At each end of the chamber a is an opening closed by a stcam-tight door $e_{\text {, }}$ through which openings the wagyons for receiving the steamed fabrics are adinitted and discharged. The fabrio is led into the clamber a over the feed roller g and between the small guide roller or tube h and copper troughs i and i, both of which and the tule h are beated by steam and project on each side of the wall to collect any moisture that may ruo down. When the fabric is in the chamber it is carried around three or other convenient number of rollers marked j, the last of which delivers it anto one of the waggons $f^{\prime \prime}$ The rollcrs are all beated by steam to prevent condensation, and as very poist steam is required for some colours, the supply thipe $1^{\text {asses }}$ through water before entering through the pipes φ into the eurved jacket b, and thence going by the side pipes ce into the periorated pipe d as before described. "When the apparatus is in operation the steamed fabrics are deposited in one of the waggons, as shown in the figure, and when one is full both end doors are opened to allow the last waggon near the lefthand door to be discharged and to move the full waggon one step towards the exit door by the introduction of an empty waggon through the right-hand door; this briogs another waggon in position for receiving the steamed fabries, and while this is being filled the full waggon (after the four empty ones introduced to fill up the chamber at starting have passed through) that had been discharged can be emptied and brought back to the entrince door." Tho waggons are made of strong wirc and are heated up before entering the chamber. By this system the patentees affirm that the goods are long enongh exposed to the sieam to allow the chemical reactions to take place in the cloth, so that the colours neither print off nor run during the remainder of the process, and the fixation is completed while the goods lie in the waggons inside tho chauber. This system of steaming is in successful operation in some Man-. chester print-works.

Steam colours include two distinct classes of work-lst, pigment colours, or the series fixed by a mechanical effect proluced in steaming; and 2d, ordinary stcam coloure, in which the fantion is effected more by nemical agency.

Pigment Colours are se named because the tunctorial agents employed are coloured lakes, and the msoluble mineral powders used otherwise as panters' colours. Only a linited number of painters' colours are so used, as, for a variety of reasons, many of them are not sultable for calicoprintiag. Colours coutamiag arsenie, for example, and zome others which produce brilliant effects, cannot be used on acceunt of their highly poisonous nature. Others are exeluded on account of their cast, some are too dull and wuddy in colour, and some are lable to tarnish or darken on exposure to light, air, mosture. or otber influences. The pigments which are inost extensively useful are ultramarise blue, Guignet's or chrome green, and chrome orange, all of which are very largely used by themselves or is combination with other coleurs Lamp black is also empleyed for the production of a solid grey, and vermulionred with some other metallic sulphides are sometimes, though rarely, printed as pigment colours. The principal lakes used are carmine, corallin lake (a derivative of phenel or carbelic acid), black logwood lake, and several others prepared from the dye-woods with tin and alumina salts. The aniline dyes on their first introduction were also worked as pigment colours, and printed with albumen.

The first medium employed for fixiag mineral pigments and lakes to calice was a solution of India rubber in coal aaplitha, an agent whicli. so far as clearness and permanency of the printed colour is conceroed, was perfectly satisfactory. The steaming dissipated the highly velatile naphtha and left the thin film of caoutchouc mixed with the colour firmly adherent to the tissue. But the inflammability of the copious naphtha fumes evolved gave rise to many earious accidents, and the method had on that aecount to be abandened. No other medium has been found to give so satisfactory results as the proteio compounds, of which albumen ebtained from the white oi eggs is the type. Besides egg albumen, bloed albumen, lactarin or casein from milk, and gluten from wheaten flour are used as agents for fixing pigments. In printing witt albumen advantage is taken of its well-known pcculiarity of coagulating and becoming quite insoluble at a temperature under the boiling point. It is mixed with the colour and deposited on the cloth in its soluble state, when, by the operation of steaming, it coagulates and remains firmly attached to the tissue, iuprisoning with it the particles of celour with which it was mixed. The cloth is not in reality dyed, but bas only a coloured pattern mechanically fastened or glued to it. Egg albumen gives the mast delicate and elear shades, but recent improvements in the preparation of blood albumen render it increasingly available for bright colours. Lactarin and gluten, dissolved by means of caustic alkalies, are used for printiag ultramarine and other pigment coleurs. The length of time that pigment coleurs are left in the steaming apparatus varies from balf-an-hour to as bour.

Ordinary Steam Colours.-The essential features of this atyle consist in printing direct on the cloth the dyeing material, mised in proper propertion, with any neeessary merdant, and certain acids or salts to keep the misture in solution. On the application of moist heat after printing, the acid is evaperated or a chemical decompesition takes place in the case of the salt, and an insoluble precipitate is produced in the fibre. Steam colours possess great brilliancy, but they have not the fastness and solidity of madder-dyed goods. The dyes in the case of steam celours must be in the form of decoctions or prepared extracts of the special chemical tinctorial prineiples. Such preparations have of recent years ceme into rery wide use, and with the progress of chonucal scioace they are daily attaining greater prominence and perfection, so that the older applicaHion of crude materials is rapidly being supplanted by the
we of agents of known strengtn and quality. inus, $-\boldsymbol{\sigma}$ already mentioned, madder extract and artificial alizarin, treated as steam or "topical" colours, have largely taker the place of madder rout as a dye colour, and by the pre paration of artificial alizarın from anthracene, printers are now rendered independent of the vegetable kingdom as a source of thear hitherto nost umportant dye-stut.

As a preparatery to printing, the cloth is mordanted or prepared by passing it through a solution of stannate of soda, and treating with as very weak solution of sulphuric acid which decoraposes the stannate, combining with the soda, and leaves the stanmic acid (perexide of $t n$) precipitated in the fibres Cloth thus prepared bas much purer and brighter shades than simple bleached calico The commen stean coleurs include black and chocolate from logwood liquer, orange froas annatto, yellow from Peissan berry liquor and from bark liquer, green from Persian berries and yellow prussiate of potash, purple from logwood and red prussuatc of potast, dark red frem sapanwood and bark liquor, reds, purples, and chocelate from madder extract and alizarin, and blues from Prussian blue Iren, alumina, and other merdants are used with these celours according to their charater and the nature of the shades desired. The selvent prineipally employed is acetic acid, which readily velatilizes in the steaming process, but oxalic acid is also empleyed to keep certain special oxides in solution during the printing. Oxidizing agents, as the chlorate or bichromate of petash, are also required for the development of some colours. Steam blue is pristed, not by using the Prussian blue colours ready formed, but by effecting the chemieal reaction on the cloth itself, which results in the blue celour. In seme cases yellow prussiate of petash is used, which yields Prussian bluc ; again. when the red prussiate is employed, Turnbull blue is the result, bur a misture of both, to which a propertion of ferre-prussiate of tin, called tin pulp, is added, is the source of the best steam blue. The reaction by which the colour is developed will be understood by instancing the develepment of Prussian blue from the yellow prussiate. It is mixed with an acid-tartaric, exalic, or sulphuric-or the whele three combined, and printed on the cloth. In the steaming the added acid combines with the potassium of the prussiate and liberates ferrocyanic aeid, which is further decomposed into cyanide of iron, abundant fumes of hydrocyanic acd (prussic acid) being meantime evolved. On withdrawing the goods from the steaming chest after this decomposition is complete the pieces are quite coleurless, but exposurc to the atmesphere in as ageing chamber, or passing them through an oxidizing s.lution, such is the bichromate of petash. develeps the characteristic bluc of Prussian blue.

Ariline Colours.-These coleurs now constitute the largest and mest mportant sectien of steam-fixed dyeing materials, and in their behaviour and method of printing they form a class by themseives. The range of aniline colours now embraces almost every possible shade; and in no :ther department of scientific and technical research bas equal activity been displayed within the fers years which have passed since these colours were intreduced; and the rewards of investigation have been commensurate. The number of colours intreduced, and the methods of preparing them which have been suggested are bevond computation, and the list of these which are new in eurrent use is exceedingly exteasive. In addition to the dyes procured frem aniline many more of an allied nature are prepared from other derivatives of coal-tar, phenel, naphthalin, and anthracene, some of which have also come inte extensive use, and the applicability of others has been demenstrated. The topical use of these celours in connection with extract of madder, Guiguet's green, ultramarine, dc., has exercised a pewerful infuence in improving the art of design in con-
nection with calico-printing, placing as they do at the disposal of the designer an unlimited range of the most striking, brilliant, and pure colours.
Aniline colonrs have a powerful affinity for animal substances, dyeing silk and woollen tissues readily mithout the intervention of any murdant. Taking advantage of this property aniline colours were, on their introduction, printed as dye colours, albumen beng user as a mordant. An albuminous sol titon was printed and fixed on the cotton, ond on its introduction, so prepared, into the dye-vat the albumen readd $/$ tonik up the colour, while the unmordanted portions merely mooed an easily discharged stain. Anuine colours were a'so prnted with albumen in the manner already describei as applied to pigments and colured lakes; and the patenfs secured by Mr Walter Cruni, in 1859, for the application of gluter and lactann in printing, had reference chiefly to the uso of anillne colours. The process of fixing these colours now generally adopted is kuown as the arsenite of slumina process. In this process the dye is dissolved in water or acetic acid, carefully filtered through a fine cloth and mixed with acetate of alumina, a thickener, and arsenious acid dissolved in glycerine This mirture is printed on the cloth, which is theo introduced into the steaming chest. In the steaming, acetic acid is liberated and arsenite of alumina formed, which with the aniline colour is precipitated in the fibres as a brilliant insoluble lake.

Spirit Colours.

This etyle of printing consists simply of a modification of the process for ordinary steam colours, but excluding the eteaming. All the decoctions end extracts used for regular steam colours may be employed in this method, but they are mixed with euch large proportions of the mordants and acids that were they submitted to the action of steam the fibre would be quite destroyed. When printed, apirit colours are therefore simply dried and aged for several hours, aiter which they are rinsed in water, washed, and dried. The style yields very brilliant but very loose and fugitive colours, and is now falling into disrepute.

Finisaino Processer.

After the prints heve undergone the various operations described sbove, they are submitted to a series of processes, whose object is to give to the fabrics such an appearance as will please the eye of the buyer, All the finishing processes have one common end, namely, to fill up the interstices which exist in the fabrics, and thus give to the calico n more substantial and glossy appearance; and this is effected by filling the cloth with boiled starch,
farina, or sour flour, which is obtained from wheat flour which has been allowed to ferment. To these are ofter added large quantities of eulphate of lime or baryta, and, other similar substances, with the object of imparting to the cloth a weight and appearance of solidity which it does not reailly possess. The finishing processes are varied according to the nature of the print, musins requring a quite distinct mathod of treatment from ordinary calicoes, and forniture chintzes also receive a finish pecular to glazed goods. Some of the apparatus employed in finishing will bo found fifured under the heading Bleaching, where also the subject is entered into in some detail. As the general features of tinshing, including water-manglng, drying, damping, starching, and calenderng are the same both for white cottons and pruts, it is unnecessary bere to detal these operations. The machines and operations in a finish. ing. room may be briefly notuced as follows. The goods are opened by passing over a winch at a considerable eleva tion, and if necesssry attetched in breadth on a machine which evens the texture snd draws it out laterally. They are then passed into the chloring machine, which has two rollers, one of brass and one covered with india-rubber. The lower one is made to revolve in an aqueous solution of chlorine, and as the cloth passes between the rollera it ${ }^{-1}$ is saturated with this solution. It passes immedistely through a box containing a vapour of steam, which at once arresta the action of the chlorine, the momentary contact being sonsidered sufficient to brighten the white ground without giving time for the colours to be affected. From the steaming box the piece passes through a water mangle, where pure water is spurted on the cloth, and after passing through the trough it receives a hard squeeze to extract as much moisture as possible before the drying is reached. The machine is a range of steam cans, generally made of copper. The next operation is that of etarching, the machinery of which is almost identical with that used for chloring, etarch paste, bowever, occupying the place of the chlorine liquor. The lower roller revolves in and carries op the starch to the cloth, which passes round th3 upper rollers and becomes saturated by the squeezing action produced and regnlated by the screws and levers of the machine. After starching, the goods pass direct to another drying machine, whence they are taken to be damped by a slight sprinkling of water, Thich they receive in passing over a simple machine for the porpose, consisting of a rapidly revolving brush throwing ap a fino spray. Calendering is the next and final operation, after which each piece is separated and folded up by a plaiting machine, or hooked by hand. It is then made up in the ordinary book form, and after being pressed in a screw or hydraulic press is ready for the market.
(J. P1.)

CALICUT, or Koligod, a seaport town of Indis on the western cosst, in the British district of Malaber and the presidency of Madras, situated about 560 miles S . of Bombay, in $1115^{\prime} \mathrm{N}$. lat. and $75^{\circ} 52^{\prime} \mathrm{E}$. long. The town stands on the sea-shore in a low and unshcletered position; snd as there is neither river nor harbour, ships ere compelled to anchor in five or six fathoms water, about two or threa miles from land. Tho houses are for the most part built, either of sun-dried brick or laterite, and have a tidy appearance. In the quarter of the Moplahs or Mapillas there are several mosques, and the Portuguese quarter possesses a Roman Catholic church One of the largest buildings ie the jail, which can eccommodste 600 prisoners. The port is frequented by vessels from the Red Ses and the Persian Gulf, which return with freights of rice, cocoanota, ginger, cardamoms, sandal-wood, añd teak. The wearing of cotton, for which the placo was at one time so
famous that its name became identified with its calico. is no longer of any importance. Calicut is of consideratile antiquity; and about the ? th century it had its population largely increased by the immigration of the Moplabs, a fanatical race of Mshometans from Arabia, who entered enthusiastically into commercial life. It was the first place in India visted by any European navigatur, for it was there that Vasco de Gama arrived in May 1498, ten months and two dayeafter his departure from Lisbon. At that time it was a very flourishing city, and contained several stately buildings, among which was especially mentioned a Brabminical temple, not inferior to the largest monastery in lortugal. In 1509 the Marshal Don Fernando Continho made an nnsuccessful sttack on the city; and in the following year it was again assailed by Albuquerque with 3000 troops On this occasion the palace was plundered and the town burnt; bat tho Portuguese were finalls repulsed, and fled
to their ships after heary loss. Not leng after they concinded a peace with Prince Zamorin or Tamuri, and were allowed to build a fortified factory in the town. An English factory was feunded in 1616. The tewn was taken in 1.65 by Hyder Ali, who expelled all the merchants and factors, and destroyed the cocoa-nut trees, sandal-wood, and pepper vines, that the country, reduced to ruin, might present no temptation to the cupidity of Europeans. In 1782 the troeps of Hyder were driven from Calicut by the British; but in 1789 it was taken and destroyed by his
son Tippoo, who carried off the inhabitants to Beypores and treated them with great cruelty. In the latter part of 1790 the country was occupied by the British; and under the treaty concluded in 2792, whereby Tippoo was deprived of half his dominions, Calicat fell to the British. After this event the inhabitants returned and rebuilt the town, which in 1800 consisted of 5000 houses. The present population is upwards of 25,000 , composed largely of Moplahs, but including abont 4000. or 5000 Portuguese, besides Parsees, Eaglish, \&c.

CALIF. 0 R N IA

CYALIFORNIA, the name originally given to a pertion of the region of western North America bordering on the Pacific Ocean, and apparently taken from a Spanish romance (Las Sergas de Esplandian), in which the anthor speaks of "the great island of Califernia, where a great abundance of gold and precious stones is found." This romance was publisbed -in 1510, and, becoming quite popular, the name of Califernia probably struck the fancy of some one of the officers or companions of Cortez, and was applied by them to the newly-discovered country, perhaps on account of its association with a region fabulously rich in gold, the early Spanish discoverers in America always expecting to find an El Dorado in every new region they entered

As at first used, the name of California was applied to the coast and the territory at a little distance from it, north of Mexice; gradually it was extended over what we new call the "Great Basin," and with no well-defined limits to the north At the present time, the name California means only the State of Califermia, one of the United States of America, and the peninsula is called Lower California. To the Spanish Americans these natural divisions of the country were and atill are known as Upper and Lewer California (Alta and Baja Califernia), and the two were called "Las Califernias"-the Califernias.

The first discovery of the coast of Lewer California was made in 1534, by an expedition sent out by Cortez, and consisting of two ahips, commanded by Bezerra de Mendeza, and Hernando de Grijalva; and later, the gulf now known es the Gulf of California was discovered and navigated by Cortez bimself; after whom it was for a time called El Mar de Cortez, and later El Mar Vermejo (the Red or Vernilion Sea), in consequence of the red coleur which it has at times, and which is probably due to the multitudes of small animalcula (cristaceans ?) inhabiting its waters. In 1540 the meuth of the Colorade River was discovered by Alarcon. in command of a fleet sent out by Mendoza for geographical exploration. In 1542 the coast of California proper was explored by Cabrillo as far north as Cape Mendocino, in latitude $40^{\circ} 30^{\prime}$. In 1578 Sir Francis Drake entered the Pacific, and coasted along the shores of the American continent, reaching a point as far north as 48°. Whether he diiscovered the bay and harbour of San Francisce has been and still is a matter of dispute. By some he is supposed to bave tarricd and refitted his ships at what is now knowr us Sir Francis Drake's Pay; by others he is believcd to have done this in the Bay of San Francisco itself. The evidence seems to decidedly preponderate in favour of the first of these suppositions. In 1602 the bays of Sun Diego and Menterey were discovered by Viscaine; but mere than a hundred and fifty years clepsed before the latter was visited again, and before settlemcuts began to be made on the coast of Upper California. The peninsula (Lower California) was entered by Jesnit missionaries in 1697, and a permanent mission established at Lorcto; where, and at other points, the Jesuits maintained them-
sclves, on the whole successfully, ontil 1767, when they were expelled from the country by order of Charles III. of Spain, and all their property twryed over to the Franciscan monks. Later, the Dominicans obtained exclusive possesgien of the peninsula; and the Franciscans, not unwillingly, withdrew to Upper California, where they established themsel:es. built numereus missions, and throve remarkahly unil Mexico became independent of Spain in 1822; this event was a death-blow to the establishments of the Franciscans, which from that time ferward lost ground from year to year, and finally were broken up altogether in 1840. The treatment by the fathers of the natives of the country was successful so far as the accumulation of material wealth was concerned, but not in the slightest degree conducive to their intellectnal advancement or development, as the zo-called converts were simply the slaves of the "good fathers." The whele number of the mission establishments was twenty-one,-the first founded in 1769 , the last in 1820 . They were all on or near the coast or bay of San Francisco, and the fathers displayed most excellent judgment in selecting for their sites the very garden-spots of the conntry. The number of the aboriginal inhabitants of California has rapidly decreased within the past forty or fifty f gars. The various authorities agree in fixing their number at over 100,000 in 1823 . In 1863, according to the census made by the Indian Department, there were only 29,000 ; the census of 1870 gave about the same results, namely, $29,025,5784$ being actually enumerated, and the remainder merely an estimste. It is certain that the decrease in the Indian population was at one time exceedingly rapid; it would appear, however, that at present it is much less so. The few that are left are mestly a degraded, miserable set of beings.
During the time of the flourishing of the missions of California, the connection of the country with Spain threugh Mexico was a very loose one. Gradually a trade of seme importance sprang up between the Atlantic and Pacific sides of the continent. Beston bad for a number of years an entire monopoly of this business, which censisted chiefly of an exchange of groccries and cotton goors for furs and hides. The royage usually lasted twe yes? or more, and the profits were large. A few Englishmes and Americans wandered into California from different parts of the werld betmeen 1810 and 1830 ; and some adventurous und daring men found their way acruss the continent, in the pursuit of the dangerous and exciting business of bunting and trapping. It is estimated that there were, in 1830, as many as 500 foreigners on the west side of the Sierra Nevada. Of all these early pieneers, John A. Sutter is the one who is best known, from the fact that the first effective discuvery of geld, by the Americans, was made by men in his cmploy; and also on account of the generons hospitality with which te welcomed the first comers into Calfornia, notably Fremont and his party.
In 1842 Commodore Jones of the American nary captured the fort of Monterey,, raised the stars and stripes, and took
possession of the country for the United States; but the next day he hauled down his colours, and apologized for his mistake. About this tume the attention of the United States Government began to be strongly attracted towards California; and, as is universally believed in that State, the French and the English were also looking in that direction, with a view to a future possible taking possession of the country All the circumstances connected with the seizing of Calitorna by the Unted States will probably never be known It appears pretty clear, bowever, that the authorities at Wachington, having determined on a war with Mexico, and fully a ware of the importance to the United States of an extension of their terstory on the Pacific, resolved to take possession of Californa, so that after the termination of the war, matters being settled on the basis of $u t_{1}$ possidetes, that country would become a part of the United States. At all events. Fremont being accidentally engaged in conducting a scentific expedition on the Pacific coast, received in May 1846, verbal instructions from an officer dispatched from Washington in a natuonal ship, and who had crossed from Vera Cruz to Mazatlan. In consequence of these instructions, he turned back, made lus way at once to Sutter's Fort, then to Senema, where he organized a battahon of mounted riffemen, and on the 5 th of July he called his furces together, and recommended a declaration of mopendence. On the 2 d of the same menth a United States frigate had arrived at Montercy, where, on the 7 th, the commander boisted the American flag, issuing at the same time a proclamation, in which California was declared to be from that time forth, a portion of the United States. This was followed by some fighting with the native Californians, and much bitter discussion and dissension among the different officers of the navy and army, who were cuncerned in the conquest of the country. The principal result was, that Fremont, who was tried by court-martial, found guilty of mutiny, and sentenced to lose his commission, was ever afterwards considered by the people to Lave been the real conqueror of California, and, in consequence, be came near being elerated to the Presidency The country was entircly pacifed before June 1847, and in March 1848 a treaty was ratified between the Governments of the United States and Mesico, by which the whole of Upper California was ceded to the United States, just at the moment when the discovery of gold on the American River was beginnang to attract attention; and when the news of the ratification reached tbe Pacific coast, the excitement had already spread far and wide, San Francisco was deserted, and the whole population of the country was at work in the mountans, digging gold The discussion as to what should be done with Califoroua, when acquired, begad in Congress in 1846 ; and the question of slavery or no slavery an the new territory was at once raised. A most furious confict fullowed, and nothing was accomplished during that session or the next ; even as late as the adjourament of Congress, on the 4th of March 1849, the only progress made towards creatiog a Gosernmeut for the new territory, was that the United States revenue laws had been extended orer it, and San Fraacisco made a port of entry. In consequence of this the people themselves got together in September I849, and a constitution was framed forbidding slavery, and in other respects resembling the constitutiona of the free American States On the $\overline{\text { th }}$ th of September 1850, a bill finally passed Congress, admitting Celifornia into the Union as a State. and without alavery, but leaning New Mexico and Utah open to its introduction. At the same time the celebrated "Compromise Measūrca" became a law and these were supposed to have settled the question of alavery for ever in the republic; the lapae of a few years proved, Lowever, that this was a problem which admitted of no
peaceful solution. By the treaty with Mesico, the Uuluted States did not acquire the Peninsula of Lower California, although they bad military possession of it at that tume. It was probably known to the authoritues at Washington that it was a region of little ralue, as compared with the country to the north of it, or Califorma proper.

Lower Califorvia. - Under this designation is comprised the whole peniusula, and it extends from. Cape St Lucas to the boundary between the United States and Mesico, which is a line "drawn from the middle of the Rio Gila, where it unites with the Colorado, to a point on the coast of the Pacific one marine league due south of the southernmost polut of the port of San Dicgo." The breadth of the peninsula ranes sery much, it beng from five to six tumes as great between the parallels of 27° and 98° as it is opposite the Bay of La Paz. The area of Lower Califerdia has been estimated as 58,000 square miles ; the recent charts of the American Hydrographic Office, based on orignal surreys, make the peninsula narrower than it was formerly belered to be, and its area has not been computed since these surveys were uade, it will probably not exceed 50,000 square miles.

The interior of Lower California is chiefly known to us, as to its pbysical and geological structure, from a reconnalssance made by Messrs Gabb and Laebr, of the State Geological Survey of Califerna, in 1867. This esploration was set on foot in order that some ofermation might be obtained relatise to the value of a concession made by the Mexican Government to an American company. This grant was expected to lead to a settlement of the country, but the whole thicg turned out a failure.

Accurding to Mr Gabb, the peninsula is divided into three distnct portions. The nertherb and southern extremities have much in common with each other, while the middle division differs decidedly from the others in its physical cbaracters. The most southem division consists ch'efly of granitic rocks and high ranges, which with their spurs corer nearly the whole area from Cape St Lucas to La Paz. Within this district, and lying between the spura of the mountains, are many small ralleys, some of whieh are very fertile, and well supplied with water. According to the Americad hydrographic charts, there are in this part of the perinsula two well-defined ranges, aud the culminating point is given as 6300 feet in altetude. It is in this regien, about half-way from Cape St Lucas to La Paz, that the principal mines of the peninsula are situated, and these are the only ones which, thus far, have proved to be of mucb ralue. They are in the districts of San Antonio and Truunfo. In 1867 these miness were producing at the rata of about $\$ 20,000$ in ralue of silver per month; and, from recent newspaper notices, it would appear that they are still wiorked with suceess. The ores are, bowever, refractory, and not easily treated.

Proceeding northwardly into the middle section of the peninsula, the granitic masscs umte and form one mountain range, which runs parallel with the coast of the gulf, and at a distance of fifteen or twenty miles from it. It is known as the Sierra Gigantea, or del Gigante, and has an elevation of from 3000 to 4000 fect. Crossing this range and descending its western slope, its inclination is found to be very gradual, the grantie mass benng flanked on that side by heary accumulations of sandstone, which has a gentle dip a way from the crest of the ridge. This sandstone is quite desticute of fossils, but is believed by Mr Gabb to be of Mieceie age. It is cut by numerous volcanic dykes, and also contains great quantities of material of eruptive origin, in the form of interstratified masses. In this portion of the poninsula the settlements are confined to the eastern base of the Sierra Gigantea. Here, at numerous points clong the coast, there are small valloys, with gond borbnurs
adjacent; and these bittle patehes of country are very fertile and adapted to the growth of tropucal and sems. tropical plants. By far the greater portion of the region. however, is extremely barren and forbidding; although occasional deep ravines and narrow valleys offer a marked contrast to the general sterility of the rest of the country. The northern divsion of the pemmsula is considerably broken by mountain ranges, resembling in this respect the southern extremity. The culininating poist is put down on the American hydrographic charts at 9130 feet in altitude, and it is called Mount Calamabue. Between the ranges are broad valleys, covered with grass, and said to possess some agricultural value, although as yet almost entirely unoccupied.

The dryness of the climate is the characteristic feature of the peninsula of Lower Calfornia; and althongh there are no reliable statistics of the rainfall it is undoubtedly y° very simall. It is, indeed, very urregular, there being long periods of absolute dryness, in certain regions at least. The yearly average fall over the whole peninsula, for a long period of years, would perbaps not exceed three or four mehes. As in the drier portion of Upper California, so here, when the rain does fall, it occasionally comes down in almost destructive quantity, over a very limited area, in the form of what are popularly known as "cloud bursts."

Owing to the dryness of the elimate in part, and also to the character of the Mexican Government, all the numerons attempts which have been made to settle Lower California have proved failures. The population at present is estimated at from 8000 to 15,000 , about two thirds of whom live near the sonthern extremity of the peninsula. The harbours on both eoasts are numerous, and that of Magdalena Bay is hardly inferior in extent and availability to the Bay of San Francisco itself. Whale fishing on the west coast, and especially about Sebastian Viscaino Bay, was, a few years ago, carried on very eztensively. In the winter of 1848 there were fifty American ships anchored in the bay and lagoons of Magdalena, ehiefly engaged in capturing the "Californa Grey" whale (Rhachianectes glancus, Cope). The pearl-fisheries of Lower California bave also for many years been of some importance; they are conducted by companies, and the divers are chiefly Yaqui Indians. The total value of the pearls obtained, within the last century and a half, has been estimated at five or six millions of dollars; but this, of course, can hardly be considered as being anything more than a rough approximation. On the whole, the prospects of Lower California are not very eheering; dryness and sterility are the dominating features of a very large portion of the country. The emigration schemes bave all failed, and not without considerable suffering to the unfortunate people who from timo to time have been deluded into the belief that the peninsula was a rich and fertile region. The attempts at mining for colper, which have been made at various points north of Triunfo, have all proved unsuccess. ful.
'Thf State of California. Arec.-This is what is now always meant when the word "California" alone is used. It is in part the equivalent of the "Yper California" (Alta California) of the Spanish, -the present state of Nevada, and also the territories of Arizona and Utah, as well as parts of Wyoming and New Mexico, having licen also included onder that somewhat vague designation. California extends from the boundary already defined on the south to the parallel of 42°, which is the dividing line between this State and Oregon. On the east, the 120 th meridian forms the boundary from 42° south to the intersection of that meridian with the 30 th paraliel, which takes phace within the waters of Lake Tahoe, near its soutinen end, From this point the boundary runs obliguely

In a south-easterly direction to the intersection of the 35tb parallel with the Colorado River, and thence down the river to the Mexican boundary line opposite the month of the Gila. The whole area thos embraced has beea variously estimated at from 155,000 to 188,981 square miles. The last-mentioned figures are those given in the latest document published in connection with the United States ceasus,-General Walker's Statestical Allas, -as well as in the Report of the Commissioner of the United States General Land Office for 1866. It is beheved, however, that the first-named figures are much nearer the truth than the other higher statement, and that the area of Califorma is somewhere between 155,000 and 160,000 square miles.

Topography.-The surface and climate of California, although extremely varned in character, bear everywhere a pecular ampress, very different from that of the Atlantio coast and Sississippl Valley States. The division of the year into tro seasons-the wet and the dry-marks this portion of the Pacific coast in the most decided manaer, and this natural climatic area coincides almost exactly in its extension with that of the State of California itself. Soon after crossing the Oregon line, we enter a region of summer and winter rains; and, in Lower 'California, although the entire precipitation is exceedingly small, it 1 s , on the whole, decidedly tropical in its character.

Before, however, the nature of the Californian elimate can be understood, it will be necessary to give sume aceount of the physical structure of the State, and to indicate the interesting and somewhat peculiar character of the relief of its surface. Califormia may be divided into three quito distinet portions, and these are very different from each other in impcrtance, -the central being much the most densely populated, and in every respect the most valuable. This central portion is embraced between the parallels of 35° and 40°, and has, on its eastern side, the Sierra Nevada, and on its western the Coast Ranges, with the Pacific Ocean at therr western base. Between these two mountain chains lies the Great Central Falley, nhich forms so marked a feature in the topography of the state. This valley is drained by the Sacramento River, flowing from the north, and the San Joaquin from the south, the two uniting about midway between the northern and southern extremitics of the valley, and entering the Bay of San Francisco through Suisun and San Pablo bays, which latter 1 s, in fact, but the northern expansion of San Francisco Bay itself. Sulsun Bay, on the other hand, is rather the partly submerged delta of the united rivers, being shallow, and containing large, low islands eovered with a dense growth of "tule" (Scirpus palustris). The entire length of the Great Valley is about 450 miles; and its breadth, which is small in its northern part, and gradually increasing towards the sonth, averages about 40 miles, including the lower foothills. so that the entire almost level area contains about 18,000 square miles. The direction of the valley is parallel with that of the ranges between whach it is enclosed, or about N. $31^{\circ} \mathrm{W}$.; but it gradually takes a more northerly course to the north of the Buy of San lanciseo, in harmony with the change in tho trend of the ceast, beyond the parallel of 39°. From the mouth of the Sacramento to Redding, at the northern head of the ralley, the rise is 556 feet in 102 miles ; and from the mouth of the Sun Joaqum to liem Lake it is 252 feet in 260 miles. A striking feature of the Sacramento liver is the fact that for 200 miles north from tho mouth of the Feather River it does not reccive a single tributary of any note, althongly walled in. by high mountain ranges. Indeed, the whole of the Great Valley is thus surrounded; the only break being at San Francisco, where the channel which connects it with the sca-

the Golden Gato-is only one mile wide in its narrowest part. The region thus enclosed, computing it from the divide, or meter-shed, of the enclosing mountain ranges, is 520 miles in length, and it has an average breadth of 110 miles. This gives an' approximete ares of 57,200 square miles, as stated by U S Irrigation Commissoners, their estumstes having bean mede on the basis of the State Geological Survey maps. The drainage of this entire area reaches the sea through the Golden Gate. Buo before nuticing the lakes and rivers which beleng to the Great Valley, it will be desirable to give some idea of the mountain ranges in which these rivers take their rise ; and it should be added in justice, that dearly all that is known of the detaled structure and elevation of the mountain ehains of Californas is due to the work of the Geological Survey.

The Sierra Neveda, or Snowy Range, of Cslifornia is, on the whole, the largest and most intereating chain of mountains within the limite of the United Ststes. Its scenery is attractive, and in some respects quite onique ; its vegetation is unsurpassed in grendeur, unleas it be by thet of the Australian forests; its mining resources are large, and have been the direct cause of the rapid peopling of the Pacific side of the continent sad of the building up of eleven States and Territories in what was before almost an unknown region. In generel altitude, the Sierra Nerada does not much excel some of the ranges of the Rocky Mountains proper, although it has one summit higher than any yet ascertained to exist in the United States, not including, however, the Alaskan territory. The length of the chsin, from Mount San Jacinto to Mount Shasta, is sbout 600 miles; but, on some secounts, it would be more proper to consider the Sierra as beginning at the Tahichipi Pass end terminating at Lassen's Peak, iu which case ite leugth would be about 430 miles. The breadth of this great mass of mountains varies from 75 to 100 miles; and it nerrows towards the north, while its altitude also declines in the same diraction. The slope of the range is everywhere long end gradual on the west, end short and precipitous to the east, in which latter direction, of course, the general level of the Great Basin is attsined, snd this is from 4000 to 5000 feet above the sea The highest part of the range is between the parallels of $36^{\circ} 30^{\prime}$ sad $37^{\circ} 30^{\circ}$; here the passes are about 12,000 feet in elevation above the eea-level, and the peaks range from 13,000 to $14,\{86$ feet in altitude, the culminating point, Mount Wh tney, being about 600 feet higher than sny peak yet measured in the Rocky Mountains. From this peak, going north, the range declines gradually, snd at the point where the Central Pacific Railroad crosses it the summit is only 7000 feet above the sea; this is in latitude $39^{\circ} 20^{\circ}$. The slope of the Sierra in the central part of the State opposite Sacramento is about 100 fect to the mile, the range being there seventy miles in breadth betweed the valley and the crest; farther south, opposite Visalia, the average rise is as much as 240 fect to the mile, up to the summit of the passes, and 300 f et to the peaks. In this part of the range, the slope or the east is very abrupt, being as much as 1000 feet to the mile from the summit to the level of Owcn's Valles, a descent of sbout 10,000 feet. The western side of the Sierrs Nevada is furrowed by extremely deep and precipitous gorges, or cañons, as they are universally called in California. These are narrow at the bottom, where there is usually berely room for the river to run at an ordinary stage of water; their sides slope upwards at a very steep angle, often as much se 30°; and they are sunk from 1 to 3000 feet, or even more, below the general ievel. These cainons become more' and more marked features of the range as we procsed north in the Sierra; and where the valcanic formations here apread themselves uniformly
over the flanks of the mountains, so as to form a sunooth and almost level surface, as is the case over an extensive area, the contrast between the deep and precipitoas cañons and the plam-like region, with its gentle slope to the west, in which they have been excavated, is a very marked one.

The Coast Ranges form a large mass of mountaing, almost as broad as the Sierra, but much inferior to it in elevation, and at the same time more complicated in details. The Sierra Nevada is essentially one range or chsin, with great simplicity of structure. It is only here and there that, slong the crest or near it, a double liue of summits exists, with deep longitudidal valleys bet veen, which are occasionally occupied by lakes, as in the case of Lake Tahoe; while the Coast Ranges, on the other hand, are made up of numerous broken and indistinct chains, each of which usually bas a distinct name, the different groups of ranges having, however, on the whole a well-marked parallelism with the coast. Near the Bay of San Francisco the culminating summits are about 4000 feet in altitude; to the north and south of the bay the elevation of the ranges increases. Monte Diablo, twenty-eight miles distant from San Francisco in a north-north-easterly direction, is 3856 feet in height, and forms a well-known land-merk, being, from to scmewhat isolated position on the north, a very conspicuous object over much of the central portion of the state. The view from its aummit is remarksbly com. prehensive, as is that from Mount St Helena, st the head of Napa Valley, sixty miles north of San Francisco, and 4343 feet in height.

The flanks of the Coast Rangey on the western side of the Great Velley are very scantily provided with forests, and there is not a single atream on that side permenent enough to reach either the Sacramento or San Jouquin throughout the entire year. The only streame which carry water in summer on the west eide of the Sacramento Valley are Puta, Cache, and Stoney creeks, and these all disappear during the dry season, soon after leaving the foot-hills. On the western side, however, the conditions are greatly changed. The rain-fall, slmost entirely cut off on the esstern slopa of the Coast Ranges, becomes considerable on the western side of the more elevated Sierra, and numerous large rivers are fed from the melting snow during the summer, although, towards the close of the dry season, the body of water which they carry hes usually become very much diminished. The streams tributary to the Sacramento on the east side ere-the Feather, Yuba; American, Consumnes, Mokelumne, and several other smaller ones. The Feather has the largest drainage area of any river having its source in the Sierra. It runs for a long distance parallel with the Sacramento, receiving on the east all the drainage which would otherwise run into that river. There are no lakes in the Sacramento division of the Grest Vallcy; but at its soathern extremity there are seversl, one of which is of large size, baving an ares of not less than 700 square miles. This is Tulare Lake, which, together with Kern and Buena Vists lakes, receires the drainage of the southern part of the Sierra, by the Kern, Kaweah, King's, and other smaller streams. Tulare Lake is quite shallow, being only 40 feet deep; its banks are low and reedy (hence the name, Tulare, a place of reeds or tules), and in wet scasons it overfiows them, and becomes greatly extended in area. At such times tho excess of the drainage passes off into the San Joaquin; but in dry seasons the evaporation is so great that there is no discharge in that cirection. The northern branch of the San Joaquin heads in the grand group of summits of which Mounts Maclare, Lyell, and Ritter are the culminating points; the southern rises on the north side of Mount Goddard. The united stream issues from the mountains st Millerton; and, after gaining the centre of the valley, it turns and runs at right
angles to its formu.se, receiving tirce important tributaries and several smaller ones on the east, but not a single permanent one from the west. The area of the Sierra drained by the San Joaquin is only about half that of which the Feather collects the surplus wate--.

There are several large mountain lakes in California, some of which are of pure and fresh water, while others are alkaline, being withont any outlet. The finest of these is Tahoe, which lies on the very summit of the Sierra, and at an elevation of about 6200 feet. It has a length of about twenty miles, and is 1500 feet deep, its water being extremely pure, as it contains only three grains of solid matter to the gallon. The overflow of this body of water passes off by the Truckee River, and enters Pymmid Lake, where it "sinks," or disappears by evaporation. Clear Lake is another beautiful sheet of water, in the Coast Ranges, and about the same Jength'as Lake Taboe, but much narrower and more irregular in shape. Owen's Lake is the "sink" of Owen's River, and is about eighteen miles long. Mono Lake is the sink of the streams rising in the Sierra betwees Mount Dana and Castle Peak. It is al ont fourteen miles long, and nine wide, and lies at an elevation of about 7000 feet above the sea-level. There are several other large alkaline lakes in Lassen and Modoe counties, which receive the drainage of the eastern slope of the Sierra, within the limits of the State. Death Valley is the sink of the Amargosa River, and it has eridently been once an extensive lake, although now only a mud-flat in ordinary winters, and a dry, alkaline, desert plain in summer. All these lakes and depressions show very plainly, by the terraces which surround them, that the water was formerly much more abundant, and stood at a higher level than it now does.
North of the parallel of 40°, where the Coast Ranges and the Sirra unite, and the Great Valley disappears, the country is extremely rough and very thinly inhabited. The seven counties which are included within the region north from the head of the Sacramento Valley to the State line had in 1870 a population of only 19,269 , and they had all lost in numbers during the previous decade. The counties of Lassen, Siskyou, and Modoc, which are embraced in the north eestern corner of the State, are chiefly covered with volcanio plains, rery dry and barren, lying between precipisous, although not very lofty, ranges. The waters of this region have no drainage to the sea. These three counties, with an area as large as that of Belgium, had in 1870 a population of only 8175 , or less than one to the equare mile. The north-western corner of the State is also extremely rough and mountainous, and a large part of it quite uninhabitable. The ranges which intersect it, and which are known as the Siskyou, Salmon, and Scott Mountains, seem to be geologically the continuation of the Sierra Nevada. They are from 6000 to 8000 feet in beight; but they have never been accurately mapped, and very little is definitely known about then, although gold washing hare been carried on for many years in some of tho rallegs bordering the Klamath River and its tributaries.

That portion of California which lies to the south and east of the southern inosculation of the Coast Ranges and the Sierra, comprising an area of fully 50,000 square milcs, is also very thinly inhabitel, with the exception of a narrow strip along the const. Nearly all of Sim Diego and San Dernardino comnties belongs to the Great Dasin system, haring no drainage to the sea. Les Angeles County, how. ever, has within its borders some of the most fertile lands in tho state. I'hese form a strip about treenty miles wido a'ong the coast; the north-eastern half of the county on the other hand, is oxtremely barren. The region lying east of the Sierra Nevada, and between the crest of that
range and the boundary of the state, chiefly dirided between the two countres of Mono and Inyo, is also a very moun. tainous tract of country. Owen's River runs through it from north to sonth for a distance of 180 miles, emptying into the lake of the same rame, lying at the south end of Oren's Valley, and with no outlet. Here the scenery is extremely grand, the ralley being very narrow and the ranges on either side elevated from 7000 to 10,000 feet abore the lake and river. The Inyo range, on the east, 1 quite bare and destitute of timber, and its summits are only occasionally whitened with snow for a few days during the winter, the precipitation being almost entirely cut off by the Sierra on the west. East of Owen's Lake ars several parallel ranges of mountains; and beyond them, at a distance of about furty miles from the lake, is Death Valley, which is about 150 feet below the sea-lesel. The name was given in allusion to the fate of a party of emigrants, who perished here, many years ago, from thirst. and perbaps starration, Between Owen's Lake and Death Valley are the Panamint Mountains, which have lately beea the scene of considerable mining excitement. A portion of the extreme southern part of the State in San Diego Connty is also below the sea-level. Here is a depressed area of fifty miles in length, the width of which is unknown; in its lowest part it is orer 300 feet beneath the level of the sea. Dry Lake occupies the greatest depression of this area at the entrance to the Coahuila Valley.

There are many fine points in the scenery of California, some of which have already become well knowil from the descriptions of pleasure-trarellers who have flocked to the State from all parts of the world. The granite pinnacles and domes of the Highest Sierra opposite Owen's Lake; the snowy cone of Mount Shasta, rising 10,000 feet abore the adjacent plains; the lovely ralleys of the Coast Ranges, with their peculiar regetation,-all these have their cbarms; but the point which is most attractive of all is tho Yosemite Valley. This is situated in the Sierm, about 150 miles in a direct line; a little south of east, from San Francisco. Its elevation is 3950 feet above the sea, and it is hemmed in by cliffs varying from 2000 to 3000 fees in elevation. The principal features of the Yosemite, and those by which it is distinguished from all other know valleys, are-first, the near approach to verticality of it: walls; second, their great helght, not only absolutely, but as compared with the width of the ralley itself; and finally, the small amount of talus or dibris at the base of these gigantic cliffs. The waterfalls in and about this valley are also of wonderful beauty and varicty. Those of the Yosemite Creek, which descend from the cliffs on the north side, are most remarkable for their height, which is, in the whole, not less than 2600 feet, but divided into three parts, with one vertical fall of 1500 feet. The Novada and Nerced Falls of the Merced River, which flows through the whole loncth of the valley, combine great beight with a large londy of water, and are wosderfully grand. The IIalf Dome is one of the most striking features of the losemite, its elevation being 4737 feet abore the bottom of the valley, with an absolutely vertical face of 1500 feet at the summit, turned towards the Tenaya Fork of the Merced, alove which it rises. The scenery of the cañon of the Tuolumne River, which lows parallel with the Merced, a few miles further morth, is also eatremely picturesque, and remarkalle especially for the great number and variety of the cascades which occur at short interrals in the deep gorge, the walls of which are bare and almost vertical precipices, in places more than a thousand feet high. The river, which is not much less than a hundred feet ride, falls 4650 feet in a distance of twenty-two miles. A few miles farther down, the narrow gorge opens out into a beautiful ralley, in many respects a wonderful counterpart
of the Yosemite, although inferior to it in grandeur. This is called the Hetch-Hetchy. Above the Yosemite Valley the scenery of the High Sierra is very attractive, immense conical knobs or domes of granite being a prominent and very characteristic feature of this and other portions of the Sierra Monnt Dana, a little over 13,000 feet in beight, dominates over the regon sbove the Yosemite; and from its summit, which is quite eary of access, a roguficent panorama may be had of the Sierra Nerada, mitl Muno Lake, nearly 7000 feet bclow, spread out like a map, and heyond it the lofty, and, in some instances, snow-clad ranges of the Great Basin, while several well-formed and very large voleanic cones are seen just to the south of the lake.

Climate- The climate of California presents many icatures of interest, differing considerably from those obtanning in the Eastern and Mississippı Valley States, which bave furnished a dajornty of the immigrants to the Pacific coast and Great Basin. There can be no doubt that emigration to Califoraia has, especially within the past $f \in w$ years, been greatly stimulated by the desire of people at the East to escape the sudden changes, the intense heats of summer, and the bitter colds of winter, which characterize the climate of the whole country east of the Rocky Mountains.

The climate of California is very different in different parts of the State, according to distance from the ocean, aituation with reference to the mountain ranges, and altitude above the sea-level. But there are certain peculiar features which obtain all over the State. In the first place, the divizon of the gear into two ceasous-a dry and a rainy one--1s the most marked general characteristic of the Californan climate. But, as one gocs north, the winter rain $1 s$ found to begin earlier and last longer; while, on the oiber hand, the coutheastern corner of the State is almost rainless. Again, the climate of the Pacific coast, along its whole length, is milder and more uniform than that of the States in a corresponding latitude east of the mountanas. Thus, we have to go as far north as Sitka, in latitude 57°, to fond the same mean yearly temperature as that of Halifax, in latitude $44^{\circ} 39$. And in going south along the coast, we observe that the mean temperature of San Diego is six or seven degrees less than that of Charleston and Vicksburg, which are nearly in the same satitude as San Diego, and situated, one on the Atlantic, the other on the Mississippi River. But, in addition, we notice that the means of summer and winter are much nearer the man of the year in California than in the east. Thos, comparing Washington and San Francisco, we hare-

	Mean of Yeas.	Monn of Summer.	Heas of Witoter.
San Francisco,	56	60	51
Wreshington,	56.07.	76.3	6.

This condition of things is not oo marked as we advance iuto the interior of California; but everywhere in the state the winters are comparativoly mild, and the beat of oummer is much less disagreeable in its effects, because the eir is exceedingly dry and the evaporation proportionately rapid. The climate of San Franciseo is indeed wonderiully uniform; and the bracing, cool air which sweeps in from the ocean during the efternoons of the summer, although not favourable to persons with weak lungs or sensitive throats, is the very breath of life for those who are in vigorous health. One great drawback to the enjoyment of the delightful climate of Califormia, however, is the dust of summer, which seems, until one becomes accustomed to it, quite unbearable. A more serious difficulty in this State is the extreme variability in the amount of rain which falls from year to year; and this uncertainty is something which must olways be present in the mind of the farmer
as dirc!y senously to influence his futare Some years ere so dry that the crops are almost on entire failure, except directly on the coast, or where artuicial irrigation 13 practised - other years are so wet, that serlous inundations occur. During the interral from 1850 to $18 \pi 2$, the yfarly raw-alall ranged, st San Francisco, 1rom $7 \cdot \frac{1}{}$ wehes to ± 9.27 inches. In going soutbsard from San Francisco, the mean rain-fall vecreases aloug the coast, and at San Diego it is only about 10 inches At Fort luma it is a little over 3 inchas. In the Slerra the anman preapitation increases as we rise a alcitude; it is almiost eutirely in the ford of suow at elevations greater than 6000 or 7000 feet; and this snow. as it melts during the snmmer, furnishes a store of wryer of immense importance to the State, sypplying, as it does, the numerons ditches or simaltcanals, which have been built, in connection with great reservors bigh up in the morntains, for supplying the miners, and whichare more and more otilized for agricaltacal purpases, as the placer-mining claims sease to be worked.: As there is no.fall of rain or snow of any conseqnance on the Sierss doring the summer, the accumulated stock of the previous minter melts gradually, and after a saccession of dry scasons, it almost cnturely disappears from the summits of the range. If, on the other hand, t wo or more rainy winters follow each ether; the crest retains a large amount of spow to add to the next year's atock. The climatic conditions are such, bowever, that there are no true glaciers formed anywhere in the Sierra, although the truces of former ones are everywherc visible along the highest part of the range. These ancient glaciers once covered the summits and extended quite low down in some of the valleys,notably in that of the Tuolumne, where the ice-flow may once hare been from thirty to forty miles in length. The walls of the Hetch.Hetchy Valley are beautifully scored and polished by former glaciers, whirh once eutircly. filled the upper portion of this grand cañon. The nearest approach to a glacier which at present exists in tho Sierta is to be jound on Mount Shasta, on the north side of which, and almast at the summit, are large masses of ice baving many of the characteristics of the genuire glacier.

The rinds of Californta are, during the summer, exceed. ingly regular in their movement. As the ioterior becomes beated by the sun, the air rises, and a current of colder air rashes from the sea to take its place. Wherever there is an opening, therefore, an the Coast Ranges down to the level of the sea, there the mind will blow through it fiercely during the hottest part of the rummer day, towards the interior. Thus, in going from the Bay of San Franciaco towards the mountains, or up cither the Sacr.mento or the San Joaquin Valley, the wand will be with the traveller. In fact the current spreads out fan-shaped from that ponat, and reaches far up from the ocean. A very strong wind and cool and bracing weather at San Francisco are indica. tions of exceptionally hot days in the interior. At night the breeze slackens, and usually ceases altogether, a light mist often enveloping the city of San Francisco At the same time, the cooler air draws gently down the mountain slopes, in opposition to its direction during the day. In the interior, the days, in summer, are extremely warm, the thermometer sometimes rising to 120° in the shade, and 160° or 170° in the sun. The farther one goes from the Bay of San Fravcisco, the hotter it becomes. At night, however, the radiation is rapid, and the temperature falls, so that a warm covering is almost a?mays needed. The south-eastern corner of California is excecalingly dry, and has a very high temperature. At Fort Yums the mean of the year is 76°, and the heat in summer is almost intolerable, the thermometer ranging above 90°, sometimes for weeks, both by night and by day. Among the peculiarities of the Californias this is not one of the least striking, that, as one
leaves the Sacramento and San Joaquin plains, and travels into the monntains, it beoomes quite perceptibly warmer, at least for the first 2000 or 3000 feet of ascent. Thus, the mean temperature of the year at Colfax, 2400 feet above the sea-level, was, for $\mathrm{J} 871,1^{\circ} 6$, and for $1872,1^{\circ} 4$ higher than that of Sacramento, which is only 30 feet above the sea. As.bigh up as 8000 or 10,000 feet the days in summer are comfortably warm, and even on the high peaks of the Sierra, at 12,000 or 13,000 feet of altitude, at mid-day it is usually so warm that an overcoat is not ueeded. At night, however, at these elevations, it is almost always se cold that frost occurs, although occasionllly it is very warm all night long, even at as great an altitude as 8000 feet. It adds very much to the pleasure of travelling in the High Sierra that the weather is, by dzy, almost all summer long, delightfully mild and clear, and without rain; so that one of the greatest discomforta to which tourists are exposed in Sxitzerland and most other regions of pleasure-travel is here entirely unknown.

Geology.-The geological structure of California is comparatively simple, although the extreme paucity of fossils in the rocks of the gold region for a long time rendered it impossible to ascertain the age of the anriferous belt. It is also true that, for similar reasons, the formations which make up the main body of the Coast Ranges were not casily mada out. A geological survey was authorized by the legislature in 1860, and continued, with occasional stoppages, until 1874. In the published volumes and maps which have been issued in the course of this work, almost all that is known with accuracy in regard to the geology and mineral resources of the State may be found.

The Sierra Nevada first claims attention, as being the dominating range. It has a ceutral core or axis of granitic rock, which forms almost the whole body of the range in its southern portion, diminishing in width as it is followed towards the north. All the bigher points of the Sierra, in its most elevated portion, are of granite. Farther north there are a few high peaks of metamorphic rock, and many of the summits are capped with volcanic materials. Flanking the granite ia a very beavy mass of slaty metamorphic pocks, commonly known as the auriferous belt of the Sierra. This consista chiefly of argillaceous, chloritic, and talcose slates, with a great variety of other metamorphic rocks in smaller amounts, and some large, apparently isolated patches of limastone, which succeed one another in the line of direction of the axis of the range. The strike of the slates is usually parallel with that of the axis of the range, and their dip is, in geveral, at a high angle towards the east. Low down in the foot-hills, sandstones of Tertiary and Crataceous age occur in considerable quantity. From the Stanislaus River towards the south, these strata are Tertiary, and they form quite a broad belt on White River and Pose Creek. On the Alaerican River, and north of it, the Cretaceous rocks are occasionally well developed and full of organic remains. All these beds rest in almost horizontal position on the uprurned edges of the auriferous alates, showing that the elevation and metamorphism of the chnin of the Sierra took placc previous to the Cretaccous epoch. These beds are of marine origin; but there are very extensive masses of scdimentary materials higher op in the Sierra which are fluviatile snd fresh-water deposits, and they are associated with great quantities of volcanic detritus and sold lava which has evidently come down from the higher portions of the chain. The eruptive materials do not usually lie where they were ejected, lot seem to have been carried far from their origmal position by currents of water, as they are made up, in great part, of rolled or brecciated masses, and are interstratified with gravels and finely laminated clays. These latter often contain impressions of leaves and whole trunks of trees, usually
ailicifed, as well as bonea of land and aquatic anumala The character of these fossil remains indicates that the formation is of late Tertiary age, and it may be considered as Pliocene. Although the crest of the Sierra is frequently crowned by large masses of voleanic materials, there are no indications of present activity along the range, and only occasionally can remaias of ancient crateriform openings be seen. In Plumas County, however, and especially in the neighbourhood of Lassen's Feak, there are several solfataric areas and well-formed cinder cones, some of which exhibit very marked appearances of recent action. From here northward, voleanic masses cover more and more of the higher regions, and almost the whole of the north-eastern corner of the State is exclusively occupied by rocks of this character. Lassen's Peak (10,577 feet) and Mount Shasta (14,440 feet) are both extinct volcanoes, and the latter has, near its summit, hot springs and indications of solfataric action. The auriferous slates of the Sierra contain occasional fossils; and, in quite a number of localities, these bave been found in close proximity to well-marked and productive veins of quartz, which are now, or have formerly been, extensivcly worked for gold. . These fossils are of Jurassic age, and no Silurian or Devonian forms have ever been discovered anywhere in the Sierra In Plumas County, Triassic fossils have also been discovered, but only in one locality of limited extent. These ara however, identical with species belonging to the Alpina Trias, which bave been found in large quantities, and in numerous localities, on the eastern side of the Sierra, and which prove that this interesting group of rocks has a wide distribution on the Pacific side of the coatinent. Tha limestone belt, already mentioned, appears to be entirely destitute of organic remains, except in the extreme northern part of the State, where, in one or two localities, it has been found to contain well-marked carboniferous types. Farthes south, this rock has become much metamorphosed, and is in many places converted into marble, while its organic remains appear to have becone entirely obliterated.

The Coast Ranges are made up almost entirely of Cretaceous and Tertiary marine strata, chiefly sandstones and highly bituminous shales. The Cretaceous rocks occur from the Cañada de las Uras northward along the east side of the Coast Ranges, gradually oceupying more and more space in a northerly direotion. After passing the Bay of San Francisco, this formation makes up nearly the whole mass of the mountains, which grow more elevated and rougher towards the north, the rocks being mach metamorphosed and broken by granitic intrusions. In the vicinity of Clear Lake (latitude 39°) there is a belt of volcanic materials, accompanied by hot springe, and solfataric action, crossing the ranges from east to west. The Const Range momntains have been much disturbed, and in part elevated during the most recent geological epoch, as large masses of strata of Plioccue age are found in various localities to have been turned up on edge; but volcanic activity seems to have beea more general and continucd to a later date in the Sierra than in the Coast Ranges. Some of the granitic masses along the shores of the Pacific are more recent than the Miocene Tertiary, as strata of this age bave been uphifted and turned up on edga by the protruding granite. Indecd, everything in the Coast Ranges points to great geological disturbances as baving occurred at a very recent date. Among the illustrations of this coudition of things, the changes prodaced by carthquakes in modern times may be cited. Like all the rest of the Pacific coast, California is lialle to these disturbances, and this eircumstauce has undoubtedly bad considerable influence in retarding the settlement of the State. No year bas been known, sinco the conquest of the country by the Americans, so disastrous as mere the spring
and summer of $181 \overline{2} \overline{\text { j }}$ the destruction of life at that time would probably have been large if California had been as thickly settled as it now is. During the phule of May of that year the southern part of the State was violently agitated, and the disturbances continued with more or less severity through the eatire summer. So frequent and violent were the shocks that the people abandoned their houses and slept on the ground. In September the missions bf San Juan Capistrano and La Purisima were destroyed, end thirty or Eorty persons killed at the first-named place; also a considerable number at Purisima, but how many was never ascertaiped. At Santa Barbara a tidal wave rushed into the interior ; but the inhabitants, having observed the previous recession of the sea, had fled to the adjaccat bigh ground, and thus escaped destruction. In the year 1808, in the months of June and July, there were numerous shocks at the Presidio of San Francisco. On the 8th of October 1865 the whole region adjacent to the Bay of San Francisco was violently disturbed, and many buildings thrown down, while hardly one of brick or atone within the city itself escaped injury ; but fow lives were lost, although great alarm was felt. Since that time there has been no severe shock having its focus near the coast; but in 1872 the whole Sierra Nevada, and the adjacent State of Nevado, were most violently shaken, the centre of the shock having been along the axis of the range, from which the waves were propagated east and west with about equal velocity. Immense quantities of rock were thrown down from the granite pinoacles in the Highest Sierra. The small settlcment of Lone Pine, in Owen's Valley, at the cast base of the monotains, was completely denolished, and between twenty and thirty persons killed. Luckily the heaviest part of the shock was limited to a region hardly at all inhabited, so that the destruction of life was insignificant in comparison with the extent and violcace of the disturbance. Lighter shocks continued to be felt, for two or thrce months after the first severe one, through the whole extent of Owen's Valley. The extinct or dormant volcanoes, of which there is a fine group midway in the valley between its two extremities, showed no signs of being affected by this exbibition of the seismic forces. . There are in the coast Ranges long and very etraight fissures in the rocks, which have been produced by earthquakes in modern times; and these bave, in some instanees, been accompanied by changes in the relative level of the ground on each side.
1 Mining. - California was for many years chiefly known to the world as the regico where gold was obtained in extraordinarily large quantities. The excitement occasioned by the discovery of the precious metal was verygreat throughout the United States, and this and the finding of an equally important auriferoue region in Australia, only two or three years later, produced an immense effect on the commerce of the world, stimulating enigration in a way never before dreamed of. The existeoce of gold bad long been known in California, and washings had been carried on in the southern part of the country, near the Sao Fernando Mission, for several gears, having commenced there as early as 1841. No discovery had been made, however, which attracted much attention, or laused any excitement, previous to the occupation of the country by the Americans. In January 1848, a piece of native gold was picked up in an excavation made for a mill race on the South Fork of the American River, at a place now called Coloma: It was several months, hore:'er, before the number of persons brought together by this discovery bad become largers but, by the ead of December, washing for gold mas going on all along the foot-bills of the Sierra, from the Tuolumne River to the Feather, a distance of 150 miles. The first adventurers came from Mexico, the South American coast, and even from the Sandwich Islands. The
excitement extended to the eastero Atlantic States iu the course of the autumn and winter succeeding the discovery; and, in the spring of 1849, the rush of emigration across the plains, and by way of the Isthmus of Panama, com. menced; and it was estimated that 100,000 men reacherl Califoraiz during that year, among whom were representstives of every State in the Union. The emigration to the land of gold was continued, with but little abatement, during the three succeeding years; but the excmement fell off in a marked degree in 1854, at which time there was a decided reaction throughout the United States in regard to mining matters. The Californian discoveries had given rise to a general search for metalliferous deposits in the Atlantic States; and this bad been followed by will speculations, a great deal of money having been sunk in opening new mines, and in attempting to develop old ones which bad, never yielded anything of value. How many miners were actually at work in California at the tume of the greatest excitement can only be a matter of conjecture lt is generally believed that not less than 50,000 aien werd engaged in mining for gold at the close of the year 1850 . Those who bad good opportunities for observing think that there were as many as 100.000 at work in 1852 and in 1853. At the time of their greatest productiveness, the yield of the Califormian gold washings reached about sixty. five millions of dollars in value a year; this was from 1550 to 1853. If there were 75,000 miners actually employed at this time, the average amount obtained must bave been fully $\$ 8$ a day por man. The average is thought by many to have been as bigh as $\$ 20$ a day during the year follow. ing the first discovery. At this time the degings for gold were chiefly along the rivers. These were "tumed,"that is, the water was taken out of the natural channel by means of wooden flumes,-and the accumulations of sand and gravel in the former beds were washed. All the small "gulches " or ravines leading dowa the sides of the stecp and narrow valleys, or cañons, were worked over, either with or without the aid of water. These were the first and richest "placers," and in them the preciuns metal was inost unequally distributed. Those who first got hold of the rich bars on the American, Yuba, Festher, Stanislaus, and the other smaller streams in the beart of the gold region, made sometimes from one to five thousand dollars a day; these rich spots were chiefly very limited in area, and after one whas worked out, it toight bo days or weeks beforo another was found.

During the year 1851 the miners, not finding any longer room for employwent on the river-bars, began to extend their "prospecting" to the higher ground, and it was not long beiore it was discovered that the so-called "high gravels"-that is, the detrital deposits of "Tertiary agecontained gold, elthough the quantity was so small that prashing it in the ordinary way was oot profitable. This led, in 1852, to the invention of the "hydraulic process" of working the auriferous detritus, the idea of which is duo to E. E. Matteson, B native of Connecticut. This process bas now received an inmense development, euccessive improvements having been made io the metbod and the machinery for applying it, unti: the result havo become indecd wonderful. The "aluice" which is used with it, and, in fact, in ali gold-washing in Califoruia at present,almost without exception,-iz also a Californian invention. Previous to its iutroduction, first the "rocker" aod then the "tom" were employed. During the first gears of the Californian excitement there was much wandering about within the State and in the adjacent territories in scarch of new "diggings," the mincrs seeming to hare the fized idea that somewhere an auriferous centre or focus would be found, vastly richer than any thing previously discovered. They were an excitable body of incn, and frequeutly left
valuable localities in seareh of something better, anrays hoping that deposits of unheard-of rictiness would be developed. Occasionally a kind of frenzy would seem to seize on then, and thousands would flock to some new and perbaps distant-locality, on the strength of newspaper reports, where many would perish from disease and starvation, the rest returning in poserty and rags. Thus, in 1855, the Kern River fever raged through the State, at least 5000 miners going to that distant region of the Sierra, only to find that the gold deposits were limited in extent, and already worked out. In 1858 the "Fraser River rush" occurred; and this was more disastrous to California than the most deadly pestilence would have been; for it caused a terrible amount of suffering. Nearly 20,000 men left the State for that remote region, where few met with even moderate success, while all suffered 'great privations, and many died, the survivors coming back in a state of complete destitution. The shallow "placer diggings" of California are now pretty well worked out, and the gold at present is chiefly obtained from the hydraulic miming operations and from the quartz veins. The deep or bigh gravels, as they are indiscriminately called, and which are worked by the hydranlic process, lie chiefly in Nevada, Placer, and Sierra counties, in the region extending between the branches of the American and Yuba rivers. These gravels are usually assoeiated with heary deposits of volcanic materials, and, indeed, they are oiten entirely covered by immense llows of lava, under whieh the workings are carried by means of tumnels.
All the operations connected with the exploitation of the large hydranlic "claims" are usually on a grand scale. As much as twenty-fire, or even fifty, tons of powder are sometimes used in a single blast to loosen tho gravel, so that it ean be acted on with ease by the jet of water thrown from the "pipes." To give an idea of the force of the agent thus employed, it may be stated that, when a six-ineb nozzle is used, under a bead of 300 feet, as is sometimes done, not less than 1600 cubic feet of water are discharged in one minute, with a veloeity of 140 feet per second. The water, as it thus issues from tho nozze, feels to the touch like metal; and it retains its cylindrical form unbroken until it strikes the grarel bank at a distance of a hundred or more feet. The detritus, thus powerfully acted on, crumbles rapidly, and the disintegrated material is carried by the current into the sluiee-boxes, where it leaves its auriferous particles in the "rifles," which are chinks or cavities between the bars or blocks of wood or stone with which the bottom of the sluice are lined. Gold-mining in the solid rock-or quartz mining, as it is usually called, because the gangue or vein-stone which carnes the gold is almost exclusively quartz-is also extensively carried on in Cahforma, having beefi begun as early as 1851 . The mines are scattered over the State from San Diego to Plumas counties; but the most itopurtant and productive ones are in Amador and Nevada. The distribution of the gold in the reins is :xccedingly irregular, and, consequently, the business of quartz-mining has been, in most cases, a very uncertain one. A lage number of the principal workings are on, or in the neighbourbood of, what is known in Calfornia as the "Great Quartz Yein," or the "Mnthe Lode," an immense development of quartz, which mus been traced from Mariposa County to Amador, over a distance of eighty miles,- - not continuously, but in a series of nearly parallel belts, or lenticular masses, with barren intervals between them; these have very nearly the same drection, and are paralled with the axis of the Suerra. It is un the Great Quartz Vein that the celebrated Mamosa mines are situatel; which, bowever, bave not, on the whole, proved sueressful. In the samo position are the mines of Amador Connty, anung which the one formerly oalled the Hayward Mino is
the best known, and for a long time ono of the most prostable. The mass of quartz worked in this mine was of grant size, although of low teoure in gold. It was, for some years, the deepest mine in the country; but several of those on the Comstock Lode in Nerada have now attained a considerably greater depth.

Silver-mining has been attempted in many localities in California, and much money spent in trying to develop the argentiftrous lodes which bave from time to time been discovered. A few years ago, there was a great excitement on the very summit of the Sierra in regard to supposed valuable silver-bearing veins, and particularly at a locality called Meadow Lake, in Nevada County. Quite a number of mining camps and towns were built up, one of which bad for a time several thousand iuhabitants. Notining permanently salualle was discovered, bowever, and the region was soon entirely abaudoned. The most persistent efforts hare beeu made, for the past ten years, to work argentiferous deposits in the folcanic rocks near the summit of the Sierra, in Alpine County, at and near Silver Dlountain. Although it does not appear that any mine in this region has been successful, the expenditure is still kept up. Slate Range, a little to the east of Owen's Lake, was the scene of considerable excitement some ten or twelve years ago, rich silver ores having been discovered there; but it was found that mining could not be made profitable in that distant region destitute of water and fuel. Quite recently, the Panamint lange, in the same vicinity, las attracted much attention. The only paying silver mines in the State seenn, however, to be those in the Inyo lange, at Cerro Gordo, where the oro is chiefly galena, rich in silver, and also containing considerable gold. The yield of this district in the year 1872 was nearly a million of dollars in value, six-tenths of which was silver.

Quicksilver has been extensively mined in California, the Quick. mine of this metal at New Almaden, Sauta Clara County, dilrer. baving been worked previous to the gold excitement. All the work:ble deposits of cinnabar thus far knuwn to exist are situated in the Coast Ranges, and they are chictly limited to the metamorphic Cretaceous group of rocks, in which they are associated with serpentine, imperfect jasper, hornstode, and cbalcedony. By far the most important mines are those at New Almaden, a few miles west of San Jose. These produced, in their palmy days, during the years 1853 to 1857 , and 1861 to 1869 , from $2,500,000$ to $3,500,00015$ of quicksilver per annum. In 1870, the production had fallen offito $1,000.000 \mathrm{lb}$. The total production of the New Annaden mines between 1850 and 1870 was a little over 40,000,000 th. The New Idria Mine is in Munterey County, about nincty miles south of New Almaden. This bas also been, for some years, a quicksilver-producng locality of considerable importance. Cinnabar also oceurs in considerable quantity at numerous llaces north of the Bay of San Francisco, in Napa and lake countres. The most important mone in this region is the Fidington, neat Knoxville, in Lake County. The export of this metal from Cahfornia was, in former years, very large, reaching, in 1868 , the amomit of 44,506 Hasks, or $3,404,70910$; in 1870, it was ouly 6,359 thasks, although the production fot that year was estimated at 28,600 thasks, or $2,157,906!t$, of which 12,000 were the product of the New Almaden mine, 7600 of the New Idria, and of the remainder, about one-half was from the Fedington, and the rest from various smaller mums north of the lay of Sin Francisen.

Copper ores necur ma great many localities within the limits of the state of Califomia, and at some of these a large amount of work has been done, although at the present thme there does not seem to be a sugle locality whore the ures of this metal are now mined. Quite large masses of nearly pure native copper, mixed with the red uxide bave
been found in the sorth-western coraer of the State, and also farther south in the Coast Ranges. No permanent mine has, however, yet been developed at any point on the west of the Great. Valley. In the foot-bills of the Sierra, at a place known as Copperopolis, in Calaveras County, there is a very extensive deposit of copper ore, which was actively mined aome ten years ago, producing very largely for a time. The mass of ore here was, in places, as much as 30 feet wide, although not of high grade. In 1864 the value of the ahipments of copper ore from California was a little over a million dollars; this was almost all from one mine, the Union, at Copperopolis. Tin bas been discovered at one locality in the southerd part of the State, in the Temescal Raage, about forty miles south-east of Los Angeles; and mining was attempted here, but tie locality bas been for some time abandoned. Zinc and lead occur, in the form of the sulphuret, in a great number of the quartz veins of the gold-bearing belt; they are generally present, however, only in small quantity, and have not been made the object of miving enterprise. Irou ores are also found, in several localities, in large quantity; the want of suitable cheap fuel has prevented these ores from being utilized, and all the iron consumed on the Pacific coast comes from the Atlantic States or from Great Britain. Coal of the true Carboniferous period does not occur anymbere on the. North American continent west of the eastern base of the Cordilleras; but there are, ut various points, extensive deposits of ligmte and imperfect coal; in some of these, the woody atrusture ts entirely obliterated, and the substance may with propricty be called coal. It is rarely the case, huwever, that it does not contain a large percentage of water. These deposits are both of Tertury and Cretaceous age; but at the localities extensively worked in California and on Vancouver Island, the beds belong exclusively to the last-named group. The only mines of coal of any consequence in Californin are those of Monte Diablo, so called because situated on the north alope of that mountain, and a few miles from the entrance of the San Joaquin River into Susun Bay. The coal rased at these mines is of tolerably good quality for domestic use; but it cadnot be used for ocean steaming or tor making gas, as it contans a large amount of auphur, and from 10 to 12 per cent. of water. These mines have gelded of late about 175,000 tons per annum. There is also a large deposit of about the asme quality, and the same geological age, on Eel River, in Mendocino County. This ia ton far from navigable water to be utilized at present, as it cannot compete with the more accessible deposits on Vancouver 1sland, and at Belligghan and Coos bays, or with those more receutly opened near Senttle in Washiogton
Petroleam. Territory. Petroleum was thought likely, at one time, to become of great importance as a product of California, and several millions of dollars were expended in boring and scarching fur it, but almost eatirely without surcess. The great bituminous slate formation, of Miocene age. which stretches along the coast from Monterey to Los Angeles, does. indeed, contain a large amount of combustible matter, which may at some future time become of economical value. At present there seems to be no immediate prospect of the; enct it is ceetain that the geological conditions are such that fuwing weïs, like those of Pennsylvana, will not be found on the Pacific coast. Borax is one of the mineral productions of California, which is becoming of some importance. The value of the exports of this article from San Francisco in 1873 wes over $\$ 400,000$. Of this, bowever, a considerable portion came from the adjacent State of Nevada. Sulphur has been mined in several localities, to some extent, for the manufacture of sulphuric acid. Marble occurs in many places in the Sierra Nevada, and is quarried for ordi'nary architectural purposes. Granite and freestone are abrudantly distributed; the former exista in inexbaustible
quatisity on the line of the Central Pacific Railroad, the latter near San Francisco and in many other places in the Coast Ranges.

Fauna.-Somewhat over a huadred species of mammalia Nammslia have been found in Califormia.. Among the most interesting are the grizzly bear (Ursus horribilis), formerly very common, but now only met with in out-of-the way localities; they are especially aboddant in the Coast Ranges soutb of Monterey-ibe Santa Lucia Range. They aro savage and poserful animals, but do not care to attack men unless suddenly intruded upon, or when with their young. The black bear (U. americanus) is still pretty common in the bigher parts of the mountains; and the so-called cinnamon and brown bear are supposed to be rarieties of this species. The sea lions (Eumetopias stelleri) are of little ralue commercially, but they excite a great deal of interest on account of their size, their strange gambols and extraordinary noises; they abound on the coast, and especially on the Farallones. Visitors to San Francisco from abroad rarely fail to go to the beach opposite Seal Rock, an isolated point near the city, and almost always crowded with these animals, whose curious babits can be watched from the mainland at a short distance. The beaver (Castor conadensis) was formerly very common in the State, and many are still left. The spermophiles, or ground squirrels, are extremely abzodant, and great nuisances; the ground is ofteo boney-combed for miles with their burrows. The large hare-squirrel and the tiny pine-squirrel are common in the mountains. Gopbers are very troublesome to the farmers; there are five species of them, the largest (Thomomys bulbuorus) being abuadant in the central portlun of the Siate oear the coast. The elk (Cervus canadensis), formerly found in great numbers in California, is nuw almost exterminnted, unless it be in the nortbern counties, in the recesses of whoso forests they nay be still occassonally seen. The deer (C. leucurus) is quite common, at a distance from settlements, and especially in the southern IIigb Sierra. A few antclopes are still met with; but when the Aınericans first entered California, these animals were scen in immense herds all over the plains of the San Jozquin and Sacramento valleys. The mountain sheep (Ours monfana) is also nearly exterminated. Of Birds birds, over three hundred and fifty species have been described as occurring in California. Some of the most characteristic of this State are the road-runner (Geococcyx calt/ornianus), nearly allied to the cuckoo, but like a pheasant in its habits of running and inability to $f y ;$ the California woodpecker (Melanerpes ,ormicirorus), which has the curious habit of boring holes in the bark of trees and filling them with acorns, which fit most accurately and closely in the carities.thus madc. The object of this arrangement appears to be, to allow tho grubs to fatton inside the ncoms, which thus in time are found to contain a mice meal for the provident bird. The California vulture (Cathartes californuans), the largest flying bird in North America, is not limited to this State, but is common there. The sage hen (Cenerocercus urophasaanus) is a fine game bird, found in abundanice on the east slope of the Sierra, among the "sagc-brush." Two specics of quail are very abundant, and very characteristic, in the State,-Orcortyx pectus and Lophertyx californica. They both bave elegant crests of long narrow feathers, in one species turned backwards, in the other formards. Fish are very abuddant on Fishus. the coast; salmon are canght in great numbers in the Sacramento River, and are an important article of food, especially in Oregon. Sturgeon are also abundant; and as their flesb is sold at a very low price, it is much eated by those who are obliged to be economical. The salroon is also in this respect a -very valuable fisb. The so-called "rockfish" are amorg the fish most abundant in the Sen Fran-
cisco market, and perhaps the most characteristic. They belong to the genus Sebastes, and there are several opecies of different colours. Smelts are abundant; but they are not true smelts, and are inferior to them as an article of food. There are several fish of the flat-fish family, and called soles and turbot; although in no case are the species identical with those Iound on the Atlantic coast or in Euroope. The Tom cod is abundant in the winter months, and although small. it is one of the best of the hishes of the coast. The barracouta (Sphyrcena argentea) is decidedly the bestflavoured fish found on the coast; but it is, not at all common. The ofsters of the Californian coast are small ; but foreigu ones are planted in the Bay of San Francisco, where they grow rapidly. Hard-shell clams and mussels are abundant, and are eaten in considerable quantity. The balotis called Abelone is taken in great numbers, but eaten exclusively by the Chinese. Crabs, lobsters, and ebnmps, are abundant on the coast; and they are used to some extent as food. The varsety of species of the crab family is very great, and some of them are very large. Quite serious attempts have been made, under the auspuces of the United States Fish Commassioncr, to introduce some of the eastern fishes into Califorman waters, cspecially the shad; but these trials bave not yet led to any satusfactory results.

Flora.-The vegetation of California has many features of interest - The great extent of the State and the vared character of its surface are strongly impressed upon its flora A great number of botanists and professional seed collectors have visited California from time to time ; but no general review of all the species has ever been made, although such a one is now in progress under the auspiecs of the Geological Survey. The entire number of species found in the State is estimated at about 2500. There is not so great a variety of forest-trees as would naturally have been expected; and many of the most useful varieties are entirely wanting. The foresta bave, in places, and especially along the Sierra, at an elevation of from 2000 to 6000 or 7000 feet, a character of grandeur hardly surpassed in any part of the world. Many of the trecs are of gigantic dimensinns. Coniferous trees greatly predominate in the densely wonded portion ot the Stato. Ol the pines, the cugar pine ($P_{2 n u s}$ Lambertana) is perhaps the finest tree, reaching occassonally 300 feet in beight. Its wood is valuable for mside work, and it is much used in the Sierra, where the tree $1 s$ chtefly found. This, and the Pinus Coulteri, have cones of great size. Pinus sabiniana, the digger pine or nut pine, is the characteristic tree of the loot-bills of the Sicrra, where it occurs associated with the black oak (Q. sonomensis), sparsely scattered over the hillsides, and never io dense forests. This is the foot-hill arboreal vegetation ,Rising a litle higher, at an clevation of 3000 to 5000 fect, the pitch pme (P. ponderosa), the sugar pine, the white or bastard cedar (Libocedrus decurrens), and the Douglas spruce (Abies Douglasii) are the predommating and characteristic trees. Still higher, the firs ceme $1 n$, namely the Picea grandis and the amaíilis, as well as the tamarack pine (P. contorta). This belt ranges at from 7000 to 9000 feet elevation on the Sierra, through the central pertion of the State. The big tree (Siequomggantea) belongs to the same belt as the sugar pine, Douglas spruce, and pitch pine. This tree occurs in groves or patches from latutude 36° to $35^{\circ} 15$, nowhere descending much below 4000 feet un eleration, or rising abore 7000 . There are eight or nine of these patches of big trees, and by far the largest is that one which extends along the tribntarics of King's and Kaweab ruvers, ahont thisty miles N.N.E. of Visalia. This belt is probably uver ten miles in length, the trees are, bowever, not grouped by themselves, but stand scattered among other species.

The tallest big tree yet discovered ineasures 352 feet in beight. The circurnference of the largest, near the greund sometımes reaches nearly 100 feet. Many are over fifty feet 10 curcumference, at 6 feet above the ground. One in the Calaveras Grove, which was cut down, measured 24 feet and $\mathrm{l} \frac{1}{2}$ unches in diameter, whout the bark, at 6 feet above the ground, this would probably bave measured about 27 feet with the bark. Its age was a little less than 1300 years. As the big tree is exclusivoly limited to Califorma and to the Sierra Nevada, so the only other species of the same genus, the redwood (S. semperverens), is peculiarly a Coast Range tree. It is found chrefly in the counties north of San Francisco Bay, where it forms magnificent forests, exclusively harated to this one species. A few of theso trees masy be found beyond the line dividing the State from Oregon, but thas species, as well as the big tree, is pecuharly Californian. The wood, although brittle and sphntery, is durable, and much used for building purposes in San Francisco. In 6ize, this tree is very littio inferior to the Sequola gigantea. It appears that this species cannot thrive except where it is frequently visited by the ocean fogs. Another characteristic Coast Range tree is thee Califorma laurel (Tetranthera californica), which bas a beautifully grained wood much valued for cabinet-work. Some species of Coniferous trecs occurring in the Coast Ranges are very limited in therr range; as, for instance, the well-known ornamental tree, the Pinus ansignes, which is Sound near Monterey, and the Cypress (Cupressus macrocarpa), of which there 1 s a magnificent grove at Cypress Point, near Carmelo Bay. The Abies bracteata is another of these trees of singularly limited distribution The Douglas fir, or spruce, on the other hand, is spread over a rast area in California, Oregon, Washington Territory, and tbrougb the Rocky Mountains. Of sbrubs, the manzanita (Arctostaphylos pungens) is a very characteristic one, being found all orer the Sierra Nevada in dry places; the California buckeye (Asculus californica) is another low. spreading tree or shrub, abundantly distributed through the Sierra and in the coast valleys; and another shrub, called by the Spanish the chamiso (Adenostema fasciculata), is widely scattered up and down the Sierra and Coast Ranges. The chamiso and the manzanita, with a variety of sbrubly vaks and other thomy plants, when combined together in a dense and sometimes quite impenetrable undergronth, ferm what is called by the Spanish a "chaparral" If the chamiso occurs alone, the thicket is known as a "chamisal." The oaks are very characteristic trees of the Californa Valley, te which they often give by their graceful grouping in isolated clumps a monderfully park-like character. The burr oak (Q. lobata) is the most striking of these trees, growing to a great size, and having pecular, gracefullydrooping branches. The elin, the hickory, the beech, the .chestnut, and many other of the most characteristic and useful trees of the Eastern States, are entirely wanting in California. One valuable variety of the ash occurs, but only in Imited numbers, and there is no species of maple which is suitable for use. Indeed, there is no wood on the Pacific coast from which any part of the ronning-gear of a good waggon can be made; consequently there is a large importation into the State, from the Atlantic side, of timber for this and similar purposes, while, on the other hand, the ornamental forest-trees of Cahfornia are already widely spreal over the world.

Agrtulture. The amount of land in California, which can properly be called tillable, cannot be stated with any approach to accuracy, and the estimates would vary, according as the peculiarities of the climate, and the possibilitics of artificial amgation, were taken into consideration. A large part of the State consists of barren deserts or precipitous mountains, either too rough os too
slevated, or too dry for cultization under any circumstances. A considerable portion of the Great Valley will not yield sufficiently to pay for cultivation, unless a thorough so'stem of irrigation should be adopted. Extensive districts produce valuable crops when the season has been wet enough; and an excess of rain which is injurious in one part of the State is of great benefit in anuther. The number of acres of "improved land" in the state, as given by the census of 1870, was $6,218.133$; but Mr Hittell, in the third edition of his Resources of California, published in 1867, estimates the amount of cultivated land at only $1,000,000$ acres. The same authority says, "Not more than one acre in ten could now be tilled proftably." Nlowing the census returns to be correct, the propertion of improved land would be about one eighteenth of the wholc. Oring to the peculiarities of the climate, and especially its mildness in winter, and the dryness of the summer, the whole system of cultivation is very different in Califurnia from what it is in the Mississippi Valley and the Eastern States. If the season is favourable, that is, if rain falls in abuedance by November, so that the grouad becomes soft enough to plougb, then sowing is begun at once, and the best crops are raised when the "latter rains,"-as they arr usually called, -which fall in March and Λ pril, are tolerably abundant, and yet not so much so as to cause inundations. June and July are the harvest months, and the grain can remain out of doors during the whole summer without injury, or until it can be conveniently carried away, barns being little used. Almost everything, except ploughing, in conaection with agricultural work, is done on a large scale, with the belp of machinery; and the profitable farms are usually of great size, comprising many thousand acres. According to the census of 1870, the amount of the priacipal productions of the sod was in that year as follows:wheat, 16,676,702 busheis; barley, 8,780,490 bushels; weal, $11,391,743 \mathrm{It}$; petatees, $2,049,227$ bushels; wine, $1,814,656$ gallons ; butter, $7,969,744 \mathrm{lb}$. Barley is the ${ }^{-}$ most certain crop raised, and wheat and woel are tue most importat for exportation. The Californian wheat is of the finest quality, and is largely shipped to foreign countries. In 1873, according to the statistics of the San Francisco Commercial IIerald, the shipments of wheat and llour were es follows :-to Great Britain, of Cour, 245,703 barrcls, and of wheat, $9,152,303$ quintals; to China, flour, 125,891 barrels; to Central America, Hour, 42,835 Larrels; to Japan, flour, 9566 barrels; to Panama, flour, 12,777 barrels; to Australia, wheat, 22,400 , bushels; with other sunaller ameunts to numerous ports in and about the Pacific. The total alipments for the years 1871-1873 were as follows:-

| | Flour, barrelg. Whest, quintala | | | |
| :---: | :---: | :---: | :---: | :---: | Darloy, quintals

Fruit is an item of great importance in the agriculture of California, the quantity raised being very large, and the quality excollent. The pear, plum, apricot, and grape are especially good: and largo quantities would be sent to the Eastern States if the distance were nut such as to make it difficult and expensive to transpert this bulky and perizh-

- able commodity. A large amount of capital bas been invested in the manufacture of wine. As carly as 1861 a million of gallons were made in that year, and in 1870 the product was estimated at $2,500,000$ gallons. The principal winc-praducing districts are in the vicinity of Sunoma, north of the Bay of San Francisco, and in the region about Lus Angeles. The value of the exports of wine bas not increased much in the last three or four years; in 1873 it was 8356,373 . The quantity of wine which might be prodused in California, if there were a market for it, would
be very large; but the quality is not all that could be desired, although the persons engaged in this business are sanguine in the belief that, with time and experience, the difficulties will be overcome, and thei. products be largely in demand in the Eastern States where at present thers is scarcely any sale for them.

California is a country particularly adapted to raising sheep, and the wool interest is a very important one. Tae winters are so mild that shefter for tha flocks is not required, and they bave no other food than that which they pick up for themselves on the lower plains in widtar, and in the bigher mountain valleys in the summer. The summit vallays of the Sierra are literally alive with sheef during the months of July, August, and September, coutir less berds being driven thare from the parched up plains at the base of the ranga. In 1873, according to the Commercial Merald, about $30,000,000 \mathrm{tb}$ of wool were exportec from San Francisco, and 3000000 tb coasumed in the home manufactories.

Manufactures. - The value of the manufactures of Cali fornia is given, in the census report of 1870 , at $\$ 66,594536$ the increase baving been rapid within the past ten years; previous to 1860 almost every manufactured article used in the State was imported from the East or from Europe. The great distance of the Pacific coast irom the manufacturing districts of the world offers a heavy premium fot the establishment of various industries, especially for those which furnish bulky gnd inexpensive products, such as wooden wares, agricultural implements, machinery, coarsa articles of clothing, and vehicles. The drawbacks are, tbe high price of labour. where the Chinese cannot be cmployed; the absence of good coal, and the scarcity of other fuel; the distance of the water-power from the principal markets, and its higb costat all puints, which is duc to the necessity of building long canals, dams, and other apphances for stering and utilizing the water; and the absence of thosa woods which are most needed for the innumerable uses to which this material is put in manufacturing. There are certain articles, however, which have to be made in Cah. fornia, because the people of other countries find it difficult to ascertain exactly what is needed to meet the require. ments of the l'acific coast. Thus, nuning machinery is a very important article of Califurnian .manufacture, and many improvements bave been made in this department, called out by the peculiar wants of this State and of Nevada. The manufacture of heavy woollen goods, especially blankets. is an item of impertance, there being threc large establusa. ments of this kind in San Francisco. Leather is tanned in considerable quantity in the coast counties, and tha exports of this article amounted in value, in 1872 , to the sum of $\$ 253,692$. Beots and aboes are manufactured in large quantity for bome consumption and from nativi leather.

Population.-The population of Califernia is concen. trated in and around San Francisco; and it becomes rapidly less dense as one recedes from the centre. The extreme northern and aouthern counties are very thinly inbabited. The central part of the State, embraced between the parallels of $36^{\circ} \cdot 20^{\prime}$ and 40° including only one-third of its whole area, contained in 1865 over ninety-five per cent. of the population. A region of 4000 square miles adjacent to the Bay of San Francisce includes probably half of the eutire number of inhabitants in the State,-San Francisco alone, by the last census, having 38 per cent. of the whole. The reasons of this concentration around the bay are not diticult to find; the climate is more agrecable and bealthier, and the valleys which open out to its waters are the most delightful and most fertile portions of the atate. The desire of conceatrativo is strongly felt in a region where the country is so thinly settled, aud where the facilities
of communication are not great, and schools and charchés far apart, or wanting altogether. Those who haye made iortanes in miniag come to "the Bay" to spend then; those ${ }^{*}$ who have lost their all, or become "strapped,' to use the miner's phrase,- -go to the great city to find employment. And San Francisco is not only the metropolis of California, but of the whole Pacific coast. There is not another city or tomn bavigg one-tenth of its populatiod anywhere from Alaska to Panama. It has the ooly really good barbeur alung the entire line of coast from Lower Califorota nerth to Pnget Seund, that of San Diego excepted, and this has a desert region behind it, where settlements caunet be made. The popplation of San Franciseo, by the censns of 1870 , was 149,473 , baving increased to that number in the previous decade from 56,802 , the gain of the city beigg relatively considerably greater than that of the State itself. Sacramente crty, the capital, is the only other town in Califernia which bas as mnch as one-tenth of this number. It is claimed, indeed, that the present (1876) population of San Francisco is not less than 250,000 , the increase having been unusually large during the past year, which bas been, on the whole, a very prosperous one for the State. The other large towns are-Sacramento, 16,283 ; Oakland, 10,500 ; San Jese, 2089; Grass Valley, 7063 ; and Los Angeles, 5728 ,--all these figures being those of the census of 1870 . The population of the whele State, accerding to the same authority, was, in 1870, 532,031, an increase of 53 per ent. since the previons census of 1860 . The grewth of Califernia has not been in the years from 1860 to 1870 as rapid as in the decade preceding that, when the increase amounted to 310 per cent. Remarkable as has been the development of this State, it does not equal that of some of those of the Mississippi Valley dnring the same period. Thus Iowa gained mere between the gears 1860 and 1870 than did Cahiforaia, although baving only one-third of the area of that State; and in the decade previous to that ber gain was relatively nearly cqual to that of the Golden State, and actually twice as great. The actual iacrease of pepulation in Massachnsetts, with its area of oaly 7800 square miles, was greater in the jears $1860-1870$ than was that of Celifernia.

The brilliant discoveries of metallifereus deposits in Nevad, wholly developed within the past fifteen ycars, have added mucb to the wealth and reseurces of Califerpia, for the ties of business are nearly as strong between the two States as if there were ne pelitical line of division between them. Nearly all the capital insested in the regiod at the eastera base of the Sierra came frem the Pauific side of the monutains, and most of the machinery used there las been constrncted in San Francisco. Nevada takes a large amount of the surplus agricnltural prodacts of California, and gives bulliou in exchange, that being the only thing she produces for exportation.
The Cbinese element in California is a peculiar and
interesting feature. By the tast census there were 49 . of that race in the State. They are settled in great numbe: in San Francisco, where they are house-servants, and opeatives in the manufacturing establishments, which cunld no: be successfully carsied on with white labour. They also work the abandoned placers, although the ameunt of therr gains in this operation must usually be very small, as they are only allowed to occupy spots supposed by the white mes to have been quite worked ont. "The white miners have a great dislike to Chinamen, who are frequently drivee away from their claims, and expelled from districts by mobs. In such cuses the officers of the law do not ordinarily interfere; and, no matter how moch the unfortuate ycllow men may be beaten or despoled, the law does not attempt to restore them to their rights or avenge their mrongs" (Hittell, in Resources of Calefornia, 3d ed. p. 375).

General Considerations. - Finally, California has in its faveur its immense extent of area, its variety of physical confguration, the fertility of a portion of its soil, and, ebove all, the mildness and attractiveness of its climate. Its position on the Pacific is one which justifies the confident expectation that the commercial interests of San Fraucisco will continue to increase in magaitnde, since it must always concentrate the trade of an immense area There are some conditions which may eventually operate powerfnlly to retard the development of this State. Of these the most important is, perhaps, the wastefulness of the present method of agriculture, by which crops are centinually taken from the soil, and nothing restered to it. Another serieus matter is the constant wholesale destruction of the forests going on in the Coast Ranges aod in the Sierra; there is reason to fear that this will eventually have a disastrous cffect on the regimen of the rivers, causing inandations in the spring and excessive droughts in summer. The danger from earthquakes has already been alluded to ; and there is no question that it bas had and will contiaue to bave ao influence in retarding the growth of the State, as there is not tho least donbt that it similarly affects the whole South American Pacific coast. The facility with which the legislature can be manipnlated, and brought to sanction schemes fraught with injury to the people, is not a circamstance peculiar to California ; although, in several instances, heavy blows have in this way been struck at the prosperity of San Francisco. The distrust of the legislatare often leads the pcople to reject that which is good, from the fear that an undertaking which looks well at the start may be so managed as to resnlt in rain. Thus, it seems impossible to carry out any general system of irrigation, or of forest culture and preservation, desirable as these thiogs may be, because the people bave no confidence in anything which has to be managed by the legislature, or which can be interfered with by that body at any time, and diverted to the subservience of private ends, to the iojury of the public.
(J. D. w.)

Caligula, caius cersar, the third of the Roman emperors, was the sou of Germanicus and Agrippina, and was bern in 12 a.D. He was brought np in his father's camp among the soldiers, and received the pame Caligula, from the calige, or feet-soldicrs' shoes, which be ased to wear. In 32 he was summonce to Tiberias, who was then living at Caprees, and did all in his power to ingratiate himself with the tyrant. Perhaps about 35 he married his eirst wife, Junia Claudia, whe died io the following year. Caligula scems then to bave resolved apor obtaining运 successien to the empire. For this purpose be leagurd aizself with Macro, commander of the pratorian guards,
whose wife he had scducca, atu tuere can oc ne doude that the death of Tibcrins ras hastencd by ene or oort of then. The senate conferred the imperial pewer upon Caligula alone, althcuga Tiberius, the grandson of the preceding emperer, had been designated as ce-heir, and he entered on his first consulship in Jaly 37 . For an account of he reign and character see lionan listony.

CALIPH, or Khalif, the sovereign dignitary among the Mahometans, rested with an almost absolute authority in all matters relating to religion and civil polity. In the Arabic it signifies successor or vicar, the caliphs bearing the same relation to Mahomet that the popes, in
the estimation of Roman Catholics, bear to St Peter. It is at this day one of the titles of the grand seignior or sultan, who claims to be successor to Mahonet, through the line jncluding Abu-Bekr, Oman, and Othman (the Sunnite view), and also of the Sophi or Sufi of Persia as chaimant through Ali (the Shiite view). The history of the rule of the Sophis may occasionally remind the student of the saying current respecting Russian autocracy some fifty years ago, that it was, "despotisp tempered by assassination." When Louis XIV. was one day, in the presence of some coortiers, extolling the government of the Sophis as something approaching to an almost ideal excellence, the Marshal d'Estrees replicd, "But, sire, I have seen three of them strangled during my lifetime" One of the chief functions of the caliph, in his quality of imaum or chief priest of Islamism, was to begin the public prayers every Friday in the chief mosque, and to deliver the khootba or sermon. In after times they had-assistants for this latter office ; but the former was always performed by the caliph in person. The caliph was also obliged to lead the pilgrims to Mecca in person, and to march at the bead of the armies of his empire. He granted investiture to princes apd sent swords, standards, gowns, and the like, as presents to princes of the Mabometan religion; who, though they had thrown off the yoke of the caliphate, held of it as vassals. The caliphs usually welt to the mosque mounted on males; and the Seljukian sultans, thongh masters of Baghdad, held their stirrups and led their mules by the bridle some distance on foot, till the caliphs gave them the sign to mount on horseback. At a window of the caliph's palace there always hung a piece of black velvet 20 cubits long, which reached to the ground, and was called the caliphis sleme; this the graodees of his court kissed daily with great respect. After the destruction of the caliphate by IIulagn, the Mahometan princes appointed a particular officer in their rcapective deminions to sustain the sacred anthority of caliph. In Turkey this officer is called mufti, and in Persia sadne.

The successions of caliphs continued from the death of Mahomet till the 655th year of the Hegira, when Baghdad was takeo by the Tatars. After this, bowever, there were persons who claimed the caliphate, as pretending to be of the family of the Abbassides, and to them the sultans of Egypt rendered great honours at Cairo, as thic truc successors of Mahormet ; but this honour was merely titular, and the right allowed them only in matters of religion ; and though they bore tho sovercign title of caliphs, they were subjects and dependents of the sultans. In the year of the Hegira 361, a kind of. caliphate was crected by the Fatimites in Africa, and lasted till it was suppressed by Saladin. Historians nlso speak of a third caliphate in Vemen or Arabia Felix, erected by some princes of the family of the Jobites. The empcrore of Marocco assume the title of grand scherifs, and pretend to be the true caliphs, or successors of Mahomet, though under another name. For particulars concerning the caliphs and caliphate see works bearing on Mahometan rule, such as Ockley's History of the Saracens; Gibbon's Decline and Fall, chap. li.; Von Hammer, Histivire des Ottomans; and for a brie§ survey, Freeman's History and Conquests of the Saracens, Oxford, 1856. Sce also articles Abbassides and Maguimetanism.

CALISTHENICS. See Gimnastics.

CALITRI, a town of Ialy, in the prosince of Principato Ulteriore and district of Sant' Angelo de' Lombardi, about 40 milcs S.E. of Benevento. It is situated on an eminence near the River Ofanto, and is supposed to occupy the site of an ancient town called Aletrium. Its principal buildings are the parish church and a Benedictinc convent. Population, 6629

CALLXTUS, the name of taree different popes or bishops of Rome. Little is known of Calixtus I., bishop of Fome from about 220-226 A.D., during the reigns of Heliogabalus and Sevcrus. Calixtus II., Guido of Vienne, was clected in 1110, after the death of Gelasius II. Iu 1122 be concluded with the Emperor Henry the important treaty of Mentz, by which the mutual rights of the ehurch and the empire were definitcly settled. He died in December 1124. Calistus MII., Alphonso de Borgia, was raised to the Papal chair in 1455 at a very advanced age. He was feeble and incompetent. The great object of his policy was the excitement of a crusade against the Turks, but he did not find the Christam princes resmonsive to his call. He died in 145 S .

CalidtuS, Georgits (1586-1656), a celebrated Lutheran divine, born at Middleburg 1 m Holstein in 158 G. After studying at Helmstadt, Jena, Giessen, Tübingen, and Heidelberg, he had an oppormity of travelling through France and England, where he becane acquainted with tho leading Reformers, and saw the different forms which the Reformed church had assumed. On his return be was appointed professor of divinity at Helmstadt by the dulye of Brunswick, who bad admired bis abiiitics in a contest which he had when a young man with the Jessit Augustioe Turrianus.: After becoming a master of arts be published a book, Disputationes de I'racinuis Religionis Christianae Capitious, which provoked the bostile criticism of several learned'men; and on his elevation to the professorship he published Lis Epitome of Theology, and soon after his Epitome of Horal Theology, which gave so great offence as to induce Statius Buscher to charge him with a sccret leaning to Lomanism. Scarcely had he refuted the accusation of Buscher, when, on account of his intimacy with the Reformed divines at the conference of Thorn, and his desire to umte them with the Lutherans, a now charge was preferred against him, princirally at the instance of Caluvius, of a sceret attacbment to Calvinism. The disputes to which this gave rise, known in the church as the Syncretistic controverss, lasted during the whele lifetime of Calistus, and distracted the Lutberan Chorch, till a now controversy arose with Spencr and the Pictists of Halle. Calixtos dicd in 1656. There is a monograph on Calixtug by Henke, 2 rols. 1853-56; see also Dorner, Gesch. d. Irotest. Theol., pp. 606-624.

CALLAO, the chief port of Peru, lics $8 \frac{1}{2}$ miles from Lima, the capital city, in $12^{\circ} 4^{\prime}$ S. lat., $77^{\circ} 13 \mathrm{~W}$. long. It is buile on a flat point of Jand in the recess of a spacious and well-sheltered bay, which is partyenclused ly the islands of San Lorenzo and Fronton, and affords the best anchorage on the Peruvian coast. The modern town lics balf a mile north of the sitc of an older city, destroyed by an earthquake and invasion of the sca in 1746. It consists mainly of houses built of wicker-work and plastered with mud, stronger buillings being dangerous from the frequency of earthquakes; but a walled guadrangular fortress, built by the Sjanish Government between 1i:0 and 1775 , extends over about 15 acres, and is now used for the custom-leuse offices and storcs. Thare are alsa several forts mounting cannon, and anong the public buildings are the military and naval Government effices and barracks, three Catholre clurches aud a Protestant chapel, two clubs, a hospital, and four banks. Several nerspapers are pullisted in the town. Calloo is the headquarters of the Pacific Stcam Navigation Company in South America (incorporated, in 184(), and the works in connection with their large flat of steam-vesselsfoundrics, carpenters' shor's, tlour-mills, bakcries, and gris work--occury a large area near the custom-house. A large steam sugar-refinery is also in operation. Harbour woika, cnusisting of sea walls of concrete biocks, and docke, with
berthing space for thirty large vessels, begun in 1871, were completed in February 1875, superseding the old and inconvenient pier and boat harbour. These works comprise also eighteen steam-cranes for loading goods, a triple line of railway along the dock walls, gas illumination, and supplies of fresh water. A \#loating dock, 300 feet in length, capable of taking up a vessel of 21 feet draught, and 5000 tons weight, was built in Glasgow and sent out to Callao barbour in 1863. The phenomenon of the bubbling up of aulphuretted hydrogen gas in the harbour, known aa "Callao painter," from its action on the paint of shipa, has generally been ascribed to volcanic action, the belief having been that Callao is in the crater of an extinct volcano; but the borings for the new works discovered the cause of this to be in atrongly impregnated springs forcing their way up through a stratum of clay and mud. Callao communicates with Lima by carriage road, and by a railway, complated in 1852, which is now extended through the capital towards Oroya over the-Maritime Andes. The Pacific Company despatches or receives an ocean steamer almost every week to or from Liverpool by Valparsiso, the Strait of Magellad, and Rio de Javeiro ; a separate bi-weekly oteam line unites the port with Valparaiso, and communication is maintained with Panama by steamers four times a month each way. ' French and German steam lines have alao headquarters at Callao. Trade is carried on mainly with Britain, the United States, France, Italy, Germany, Norway, and Central America, an average of neatly 2000 vessels entering the barbour anoually, and frequently cleariog in ballast for the Guano Islands, although exportation from the former main eource of supply of guano -the Chincha Islands-ceased in 1872 . This substapce continues to be the most valusble export; after it come augar, cotton, wool, hides, silver, and gold. Callao imports timber and railway material, wheat, ice, cattle, coal, and mixed cangoes of manufactures from foreign countries, and considerable quantities of flour from Chili. The whole value of iniporta and exports exceeds $£ 6,000,000$ annually. Sinco 1850, with the exception of the yeara between 1856 and 1861, when the immigration was prohibited by Congress, Chinese coolies have been imported in considerable numbers through Callao from the Portuguese pessession of Macas in China. Perhaps 100,000 male Chinese have been iatroduced under contracts to serve for eight years; the passages have too often been atteaded with great hardships and frightful mortality, but the Chinese prove valuable workers on the great railroada now constructing in Peru.

Though the climato of Callao is good, having the pure breeze from the Pacific, and a temperature rarcly exceeding 77° or falling below 65° Fabr., yet, in the absence of all hygiene, diseases, such as fevers and smallpox, are very prevaleat, and the rate of mortality is high. The population, in default of recent exact cnumeration, may be taked at from 15,000 to 18,000 ; the census of 1866 , the latest, gave 14,800 , a decrease of upwards of 2000 in seven yeara, and the number was further reduced by the havoc made by yellow fever in 1868. The traffic aud business, and with these probably the population, of the port are, however, increasing.

CALLCOTT, Sir Augustus Wall (1779-1844), Kut., R.A., one of the mest distinguished of Eaglish landscape painters, was born at Kensington in 1779, aed died there in 1844. His first study was music ; and he sang for several years in the choir of Westminster Abhey. But at the age of twenty he had determised to give up music, and had exhibited his first painting at the Royal Academy. He gradually rose to distinction, and was elected an associate in 1807 and an academician in 1810 . In 1827 he received the bonour of knightbeod; and, seren years later, was appointed surveyor of the royal pictures. His twe prin-
cipal subject pictures-Raphael and the Fornarina, and Milton dictating to his Daughters, are much inferior to bis landscapes, which are placed in the bighest class by their refined taste and quiet beauty. Callcott always chose to paint nature in her lovely and placid aspect; and bas therefore been called the English Claude.

CALLCOTT, Jorn Wall (1766-1821), brother of the preceding, was bora at Kensington in 1766, and was the son of a builder. At the age of scven be was sent to a neighbouring day school, where he contioued for five years, studying chiefly Latin and Greek. During this time he irequently went to Kensington church, in the repaira o: which bis father was employed, and the impression be received on hearing the organ of that church seems to have roused bis love for music. The organist at that time was Henry Whitacy, from whom Callcott received bis first musical instruction. He did not, however, choose music as a profession, being desirous to become a surgeon, obly when on witeessing a surgical operation he found bis nervous system seriously affected by the sight, be determined tc devote himself to music. His intimacy with Dr Arcolo and other leading musicians of the day procured him access to artistic circles; and his successful competition for the prize offered by a musical society called the "Catch Club" soon spread his reputation as composer of glees, catches, canons, and other pieces of concerted rocal music. On these his reputation as a creative musician is mainly founded. In them he displays considerable skil and talent, and some of his glees retain their popularity at the present day. They are well adapted to the voice, and their melodies are pleasing and not without fceling. A: an instruaicntal composer Callcott never succeeded, not even after be had taken lessons from Haydn. But of far greater importance than bis compositions are his theoretical writings, and it is chiefly for the sake of the latter that he is noteworthy beyond other English composers of equa! merit. His Musical Grammar, published in 1806 (3d edition, 1817), was long considered as the standard work of musical instruction in this country, and has not been superseded up to the present day by any other book produced by an English musician. It is a scholarly and lucid treatment of the rudiments of tho art, but at present, of course, antiquated to a great extent, and, indecd, all but useless to the student of modern music. Callcott was a much esteemed teacher of music for many years. He also held the position of organist at various churches. In 1800 he tock his degree of Mus. D. at Oxford; and in 1505 he succeeded Dr Crotch as musical lecturer at the Royai Institution. Towards the cnd of his life bis artistic career was frequently interrupted by ill-health. He died, alter much suffering, in 1821. A posthumons collection ai his most favourite vocal pieces was published with a memoir of his life by his son-in-law, Mr W. Horsley, bimself a composer of mote. Numerous other works remain in manuscript.

Callcott, Mrs Maria Grabasa (1786-1844), daughter of Admiral Dundas, became the wife of Sir Augustus Callcott in 1827. With her first busband, Capt. Grabam, R N., she travelled in India, South Africa, and South Amcrica, where she acted for some time as teache: of Donna Maria, who became queen of Portugal in 1826, and in the company of her second husband she speni mucb time in the south of Europe. She published accuunts of her visits to lndia (1812), and to the environs of Rome (1820); Memoirs of Poussin (1820); a History of France ; a History of Spain (1828) ; Essays fouard a Mistory of Panting (1836); Little Arthur's Hastory of England (1836); and the Scrinture IFerbal (1842).

CALLIMACHUS, a celebrated Greek poet, was a native of Cyrene. and a descendant of the illustrious house of
the Battiadx, whence by Orid and others be is called Battiades. He flournshed under Ptolemes Philadelphus and Euergetes, and prubably succeeded Zenodotus as chief librarian of the famuns Alexandran library, an office be held from about 260 b.c. till bis death, whicb took place about 240 B.c. He was regarded, accurding to Quintilian, as the proce of Greek elegiac pocts. His style is elegant and nervous, yet his excellences are rather the result of excessive elaburation than of genuine puetre power: bence Ovid (Am., i. 15) says of him-Quemevs ngorezo non valet. arte vale. Perbaps tho Hymn to Apollos shocid be excepted from this criticism. Cullumachus was a learned critic and grammarian, and the instructor of Eratosthenes, Aristophanes of Byzantium, and Apollonius Rhodius. He wrote in prose and in verse on a great variety of subjects; but bis only existing works are six bymns, seventy-three epigrams, and some fragments of elegies. Of the vartous tmitations of Callimachus by the Roman poets, the small poem by Catullus, De coma Berences, is the most celebrated.

Among the numerous editions of his works the following may the noticed:-By Gravius wih Spanherm's Commentary, Utrecht, 1697; by Eraesti, Leyden, 1761 ; by Blonmfield, Lond. 1815 ; by Volzer, Lips. 1817 ; Fragmenta, by Nake, 1844. Hyinnt el Epi. grammata, by Meineke, 1861: Callinachsa, by Schneider,-i. (Eyקrai), 1870, ii., 1847.
CALLIMACHUS, an architect and statury, the inventor of the Corinthian column, was probably a native of Corinth. He is said to bave derived the idea of the Corinthian capital from observing an acanthus plant surrounding a tile-covered basket whicb bad been placed over a tomb. His era is uncertain; but as the Cornathian column was used in 396 b.c., by Scopas, the architect of the templo of Athena Alea at Tegen, be nust bave lived before that time. Though Callimachus worked admirably in marble be is said to bave spoiled his ongiual cunceptions by excessive elaboration, which rendered b's s:yle artificial. (Plin., N. H., xxxiv. 8, ө. 19.)

CALLIOPE, the muse of epic poetry. She was so named from the sweetness of ber voice, and was the last of the nine sisters. Her distinguishing office was to record berolc actions; and she is represented with a tablet and etyle, or a roll of paper in bor band. See Muses.

CALLIRRHOE, in Greek legend, was a daugbter of the river god Achelous, and became the wile of Alcmæon, who had wandered from Argos to be purified in the water of the Achelous from the crime of baving killed bis mother Eriphyle. He bad taken with him from Argos the allonened necklace and peplos of Harmonia, with which his mother had been misled by Polynioes, but he liad left then in Arcesia. Callirrhoe pressed so hard to obtain them bat be was compelled to go for that purpose to Phegeus, the king of Psophes in Arcadia, with whom he bad left them. While returning be was wayland by Phegcus and killed. Callirrboe now implored the gods to cause ber two young sons to grow at once to manhood to avengo their fatber's death. This was granted, and ber sons slew Phegeus with his two sons, and returning with the necklace and peplos, dedicated them at Delphi.

CALLISTHENES, a philosopher of Olynthus, and a relation and pupil of Aristotle, througb whose recommendation he was appointed to attend Alexander in his Asiatic expedition, 334 в.c. He bad the imprudeace to censure the conqueror's adoption of Ortental customs, inveighing especially aganst the servile ceremony of adoration. Havnog by the boldness of his censures rendored bimsel! highly obnozrous to the king, he was accused of being privy tn a treasonable conspiracy; and after being kept in chains for aeven moriths be dicd, either by torture, or of a disease ariong from excessive obesity. Ca!listhenes wrote an
account of Alexander's expedition, a history of Greeve, and other works, all of which bave perished.

CALLISTO, in Greek Mythology, an Arcadian nymph, who was transformed into a bear as a penalty for having born to Zeus a son, Arcas, from whom the Arcadians, or bear-people, derised therr name (Ovid, Metan., it. 468, fol.) Arcas, when bunting, encountered the bear Callistu, and would bave shot ber, bad not Zeus with swift wind carried up both to the skies, where he placed them as a constellation. Artemis, as goddess of bunting, was styled Callisto in Arcadra, and had the symbol of a bear.

CALLISTRATUS, an Athenian orator, whose eloquence made sucb an impression un Demosthenes that be resolved to devote bimself to oratory. On account of the surcender of Oropus to the Thebans Callistratus, despite his magnaticent defence, was condemned to death, 361 b.c. He fled to Methone in Macedona, where it is said he founded tho city of Datum, afterwards Philippı. Having returned to Athens, he was put to death.

CALLISTRATUS, an Atbenian poet, whose works have nearly all perisbed. He is now only known as the author of the bymn in bonour of Harmodius and Aristogiton, who fell in their attennt to put down the dyapsty of the l'isistratide at Athens. This ode, which is contanned in Athenzus, bas been beautfully trar.slated by Thomas sfoore.

Callot, Jacques (1593-1635), a Frencb engraver, was born in 1593 at Nancy in Lorranc, where his father was a herald at araus. He carly discovered a very strong predilectivo for art, and at the age of twelse quitted home without his father's consent, and set out for Rome, where be intended to prosecute bis studies. Being utterly destitute of funds be joined a troop of Bobemians, and arrived in their company at Florence. In this city he had the good fortune to attract the notice of a gentlemen of the court, who supplied hum with the ueans of study ; but ho removed in a short time to Rome, where, however, be was recogaized by some relatives, who immediately compelled him to return bome. Two ycars sfter this, and when only fourteen years old, be again left France contrary to the wishes of his friends, and reached Turin before be was overtaken by bis elder brother, who bad becn despatched in quest of bim. As his enthusiasm for art remained undiminished after these disappointments, he was at last sllowed to accompany the duke of Lorrane's envoy to the Papal court. His first care was to stuly the art of design, of which in a short tume be becarne a perfect master. Philip Thomasin mstrurted him in the use of the graver, which, bowever, bo ultumately abandoned, substututing the pont as better adapted for bis purposes. From Rome be went to Florence, where he remaned till the death of Cosmu IT., the Mæcenas of these tumes. On returning to his native country be was warmly received by the then dutise of Lorraine, who admired and encouraged bim. As hrs fame was now suread abroad in various countries of Europe, many distinguisled persons gave him commissions to executc. By the Infanta Isabella, sovereign of the Low Countres, he was commissioned to engrave a design of the siege of Dreda; and at the request of Lous XIII. Le designed the srege of Rochelle, and the attuck on the Isle of Re. Whin, lowever, in 1691, he was desired by that monarch to execute an engraving of the siege of Nancy, which be had just taken, Callot refused, saying, "I would rather cut off my thumb than do anything againet the buaour of my prince and of my country;" to which Louis replied-that the duke of Lorraine was happy in possessing such subjects as Callot. Shortly after this be returned to bis native place, from which the king failed to allure him wath the offer of a handsome pension. He died in 1635 at the nge of forty-two. He engraved in all about 1600 picces,
he Dest of which are those executed in aquafortis. No ne ever possessed in a higher degree the talent for grouping a large' number of figurea in a small space, and of representing with two or three bold strokes the expression, action, and peculiar features of each individual. Freedom, variety, and naiveté characterize all his pieces. His Faire, bis Miseries of War, his Sieges, his Temptation of St Anthony, and bis Conversion of St Paul will be sought after and admired as long as there are artists to learn and a public to appreciate.

CaLMAR, or Kalamar, the capital of a province of the same name in Sweden, on Calraar Sound opposite the island of Oland, about 190 miles from Stockholm, in $56^{\circ} 40^{\prime} \mathrm{N}$. lat., $16^{\circ} 20^{\circ}$ E. long. It is built on the island of Quaraholm, and communicates with the suburbs on the mainland by a bridge of boats. Most of the houses are built of wood; but the cathedral, erected in the 17 th century by Nicodemus Tessin the younger, the castle, the town-house, and other public edifices are of stone, of which there are good quarries in the island of Oland. It has a gymnasiup, and several smaller educational establishneents. The harbour is safe and commodious, but a large part of the trade has been transferred to Stockholn. Besides its manufactures of woollen stuffs, leather, tobacco, and potash, the town carries on shipbuilding and an export trade in flax, timber, iron, alum, piteh, \&e. Calmar was once a flourishing and strongly-fortified town; and, previous to the conflagration of 1647, was built on the mainland. It is frequently mentioned both in the military and political annals of Sweden, and especially gives name to the treaty by which Sweden, Denmark, and Norway were, io 1397, rected into one kingdon under Queen Margaret. Populaion in I868, 9120.
CALMET, Dom Augustine (1672-1757), a scholar and Biblical critic, born at Mesnilla-Horgne in Lorraine, in 1672. In bis fifteenth year be went to the university of Pont-a-Mousson, which he attended for a single session. In 1688 be joined the Beuedictines at the abbey of St Mansin, into whose order be was publicly receired in the following year. His theological and philosophical studies he completed at the abbey of Munster, to which he was sent in 1704 with the rank of sub-prior: He here organized an academy of eight or ton monks, the sole business of whose life was to assist bim in preparing his Commentary on the Diele. The publication of this voluminous work, begun in 1707, was not completed till 1716 Two years after this latter date be was rewarded for his services with a presentation to the abbey of St Leopold at Naney, and ten years after to that of Sénones, where he died in 1757. II attachment to his country and congregation was such, that he refused a bishopric in partibus offered to him by Pope Bonedict XIII. Besides his Commentary, he wrote many other works, of which the most important are his Histoire de l'Ancien et du Nouveau. Testament, an introduction to the Ecclesiastical History of Fleury; Dictionnaire historique, critique, et chronologique de la Bible, an extremely learned, but ly no means judicious work; and Histoire universelle sacrée et profanc, 15 vols. 4to. The Dictionary of the Bible hes been transleted into English, and is a weldknown work.

CAIMUCKS, Kalmocis, or Kaimuits, a people of Mongolian race who inhabit various parts of the liussian and Chinese empires, $4 s$ woll as other portions of Central Asia. They are of the middlo hoight, fairly proportioned, and of considerable strength ; their eheek-bones are prominent, the clin shert, the nose turnce up, the beard thin, and the hair scrnbby. For the most part still in the nomadic stage, thoy inhabit conical felt tents, which thasy aet up in regular lines like the strects of a town. Their wealth consjats eutirely in small but bigh eqirited
borses, excellent cattle, and broad-tailed, rough-fecced abeep. They are so much addicted to gaming that they not unfrequently stake everything they possess. fo religion they are adhercnts of Lamaism, and their conduct is greatly under the control of their priests. Their language is closely connected with Mongolian proper, and is writtea with a similar alphabet; its grammar and vocabulary have been made known to Europeans more especially by A. H. Zwick about 1853. Of their literature the great proportion is religious, and is derived from Indian originals. The Siddhi Kür, a collection of stories, which is one of their most famons productions, was published with a German translation, a glossary, and notes, by B. Jülg, at Leipsic in 1866. As carly as the l6th century the Calmucks possessed an extensive district of Central Asia between the Altai mountains and the Thian Shan, and between the desert of Gobi and the Balkash or Tengis Lake; and they were also settled in what is now the southern part of the Yeniseisk government, where indeed they were first met by Russian emigrants. At that time they bore the name of Derben Oirat, or Four Confederates, being divided into the four tribes of Jungars, Turguts, Khoshots, and Durbots In the 17 th century the Calmucks grew extremely strong, and after violent fends united themselres, under the leadership of Batur and his son Galdan, into the powerful Jungarian kingdom. The strife which preceded the unification occasioned important movements of some Calmuck bands towards the E. and S.E. of Russia. Under Kour. liuk, the great mass of the Turguts appeared for the first time within the Russian territory on the eastern side of the Volga in 1630. They conquered the nomadic Nogais of the district, but on this first occasion turned back to the Kirghiz steppes. In 1636 as many as 50,000 kibitkas, or more than 200,000 men and women crossed the Emba, and took possession of the Trans-Volga steppes of the present Astrakhan government ; and plundering incursions began to be made on the Russian settlements, in Saratoff, Penza, and Tamboff, while Tobolsk, in Siberia, had tc defend itself with arms in 1646. After the fall of Kourliuk, in an attack on Astrakhan itself, the Calmucks became less aggressive, and in 1655 passed of their own accord under Russian authority. Down to the middle of the 18 th century bands, however, continued to arrive, and the depredations on Russian ground did not cease during all the long reign of the Khan Ayuka (1670-1724). Tbis chief more than once broke his oath to the Russian Government; but he also on several occasions supplied very important contingents to the imperial army. Ilis power is shown by the fact that his court was visited in 1713 by an ambassador from China. In the reign of the Empress Catharine the Russian Covernment created great discontent among the Calmucks by their general treament, and still more by refusing to confirm Ubashi, the grandson of Ayuka, in his dignities. A Calmuck chieftain from Jungaria skilfully took advantage of this condition of affairs to persuade Úbasbi and his subjects to return to Jungaria, and attempt its conquest. The result was the wonderful and disastrous dight of the Calmucks from Russia in 1751, so graphically described by Do Quincey. The number of the fugitives amounted, according to some authorities, to 120,000. Harassed on all sides by savage troops of Cossacks and Khirghises, the wretched Calmucks pursued their may across the barren steppes, and their main body was routed in a terribie battle on the shores of the Bal. kash. The remmants were settled on the banks of the Ili by the Chinese emperor Kien Long, and there their descendants are still to be found. There still remained in Russia the Durbots, who were living in the Don territory, and those of tho Astrakhan Calmucks tho at the time of tio flegir happened to be on the right bank of the Volga

The total number now in the Russian empire may be estimated at 120,000 . In the Chinese territory, where they are known as Eliots, or Oliuts, their uumbers are considerable,but are not precisely known.
Seo Pallas, Mongolische Völkerschaften, 1775-1802; Bergmana, Nomadische Streifereien unter den Kalmitchen; Helmersen, Der Telezkische See und die Teleuten in ostl. Allai, 1838, Quatremère, "Observ. géogr. et hist. sur les Calmouks," in Journ. des Savants, 1839; Hommaire de Hell, Les steppes de la mer Caspienne, 1843; Tchibatcheff, Voyage d^{\prime} Aluai, 1846 ; Semenoff, Slovar Ross. Imp.
; CALNE, a town of England, in the county of Wiltshire, soruected with the Great Western railway gystem by a branch line opened in 1863, and situated about 16 miles directly east of Bath. It stands in a valley intersected by the little brook of Calne, and is surrounded by the high table-land of Marlborough Dewns and Salisbury Plain. The town is clean and well paved, and contains an ancient church (St Mark'a) with a tower by Inige Jones, and a tewn-house considerably enlarged by the marquis of Lansdowne, whose saat of Bowood is about two miles distant. The educational establishments include Bentley's grammar achool founded in 1660, national and infant schools, and an institution for training ferrale servants, which was endowed by Mrs Guthrie, to whom the town is also indebted fer a children's hospital. The principal trade of Calne is the curing of bacen; and there are also flaxmills, paper-mills, and flour-mills in operation. The manufacture of bread cloth, at one time of great importance, is almost extinct. Calne formerly returned two members to parliament, but the number is now reduced to one. Population of the municipal borough in 1871,2468 , and of the parliamentary, 5315. From the remains found in the ricinity, Calne seems to hare been an important Roman station. It was the occasional residence of the West Sayon kings; and is celebrated in legendary ecclesiastical history for the escape of Dunstan at the synod beld therc in 997.

CALOMEL, mercurous chloride, or subchloride of mercury (HgCl), is a compound of mercury of great value in medicive. It occurs native as horu quicksilver in the mercury mines of Idria, at Obermoschcl, in Bavaria, Horowitz in Bohemia, and Almaden in Spain, in the form of translucent tetragonal crystals, with an adamantine lustre, and a dirty white grey or brewnish colour.

A great number of processes are available for the preparation of calomel for pharmaccutical purposes. The directions of the British Pharmacopoia are as follows:Sulphate of mercury 10 oz., mercury 7 oz., commen salt 5 oz., and boiling distilled water. The sulphate of arercury is to be moistened with part of the water, and it and the mercury rubbed up together until all metallic globules disappear. The salt is then added, and the whole thoroughly triturated, after which it is sublimed in a vessel of such capacity that the calomel, instead of forming a crystalline crust en the sides as it would do in a vessel of small dimensions, shall fall in the form of a fine impalpable powder on the floor of the receider. The sublimate is to be washed until the washings cease to be darkened on the addition of a drop of sulphide of ammonium. The reaction in the above case may be represented thus:

$$
\mathrm{HgSO}_{4}+\mathrm{Hg}+2 \mathrm{NaCl}=\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HgCl} .
$$

After thorough washing the calomel has to be dried at a temperature not exceeding 212° Fabr., and preserved in a jar away from the light, exposure to which darkens it by partial decomposition inte corrosive sublimate $\mathrm{H}_{\mathrm{g}} \mathrm{Cl}_{2}$ and metallic mercury. Calomel when so prepared is a dull, beavy, white, nearly tasteless powder, which is rendered yelle $\begin{aligned} \\ \text { ish } \\ \text { by trituration in a mertar or when heated. It }\end{aligned}$ is eatirely insoluble in water, alcohol, or ether, and volatilizes, below a red heat, withont fusion. When eublimed in a confined chamber it forms a crust or cake.
the inuer surface of which is covered min crystals in fine quadrangular prisme, having a transparent dirty-white appearance.

Calomel is one of the mildest and most frequeutly employed of all mercurial preparations, producing its effects with little lecal irritation. It exercises a powerful infuence on the secreting orgaus, stimulating the liver and intestinal glands to increased activity, on which account it is much relied on in cases of functional derangement of the liver. It is usually combined with other remedial agents, each exercising an infuence in modifying the effect or increasing the activity of the other. Thus as a purgative it is combined with jalap, scammony, celocynth, and other similar substances. The much used Plummer's pill, which is essentially the same as the compound calomel pill of the British Pharmacopoia, contains in addition to calomel an equal weight of oxysulphide of antimony, with guaiacum and castor oil. It is employed buth in Europe and America as an alterative in chrovic skin diseases, in liver affections, and in disorders of the digestive system. On account of its tastelessness calomel is a convenient aperient for children, who howerer appear to be less susceptible to its effects than adults. It has been used in very large doses in the treatment of cholera; and it is a convenient medium for producing salivation. Suspended in gum or glycerine water it has been used for hypodermic injection ; and in the form of an ointment it is one of the most useful of external applications in the case of obstinate skin diseases:
Calonne, Caarles Alerandre de (1734-1802), a French statesman, was born at Douai in 1734 . He wes descended from a good family and eatered the profession of the law, in which be rapidly attained success. He became in auccession advocate to the general council of Artois, procureur to the parliament of Douni, and finally master of requests, a dignity which gave him the right of sitting in the general council. He seems to have been a man of great business capacity, gay and careless in tenperament, and theroughly unscrupulous in political action. In the terrible crisis of affairs preceding the French Revolution, when minister after minister tried in vain to replenish the exhausted royal treasury and was dismissed for waut of success, Calonne was summoned to take the general control of affairs. He assumed office in 1783, and at first everything seemed to prosper. Money flowed in readily, and the gaiety ef the minister gave courage to the court. But his prosperity was hollow and rested on no secure foundation. Calonne had levied tares until it was impossible to extract more frem the impoverished people He had borrowed till his credit was entirely gonc, and he at last found himself compelled to disclese to the king the true state of affairs, and to lay before him what in his opinion was the ouly measure that could restere France. The first step in this proposed plan was the convecation of the notables, and the writs summoning them were issued in December 1786. On the 22d February of the following year Calonne disclosed to the notables his anxiously expected scheme for reconstituting the finances. The main provisions of this plan were the redistribution of the taxes, so that the whole might not fall on the upprivileged classes, the imposition of a land tar on the revenaes of the nobles, and of a cimilar tax on the incomes of the clergy, and the abolition of corroes and the gabelle. All Calonne's cloquence could not succeed in rendering this ucheme palatable either to the notables or to the people. The noblesse and clersy strenuuusly resisted any attempt to infringe upon their privileges, and the people were beginning to feel that in a convocation assembled to settle the affairs of Frauce the nation itself had no part. Calonne had opened the floodgates, and was powerless to resist the torreat. His fall, however, was primarily due to the
indignation of the court. He was dismossed from office in April, and exiled to Lorraine. Soon afterwards be passed over to England, and during his residence there kept up a polemical correspondence with Necker on the fuances. In 1789, when the States-General were about to assemble, be crossed over to Flanders in the bope of belng allowed to offer bimself for election, but be was sternly forbidden to enter France. In revenge be jomed the Bourbon party at Coblentz, wrote in therr favour, and expended nearly all the fortuue brought ham by his wife, a wealthy widuw In 1802, baving agan taken up his abode in London, he received permassion from Napoleo to return to France. He died 30th Octuber 1802, about a month after his arrival in his native country. Calonnte was the author of several works on the fioancial and political condition of France during the period of the Revolution, whach are still of value.
CALPURNIUS, Tirus, a Roman bucolic poet, under whose name eleven eclogues have been trasmitted to us. is interesting as the first imitator of Virgil in pastoral poetry, aud from the controversy respecting his date. His eclogues usually occur mas. along wah the Cynegeticm of Nemestanus, who uudoubtedly Hounshed under Carious (28i A.D.), and hence he has been gencrally referred to the same epoch. This view is expressed in a tamous passage of Gibben (ch. xii), where Calpurnus 19 cited as an authority for the spectacles exhibited with unusual splentour by Carinus. Gustavus Sarpe, in an mgemous disquisition published in 1819, tirst mantaned that Calpurmus bad lived as early as the reagn of Nero; his arguments have been repeated and greatly fortified by Moritz Haupt (1854), and have convinced tho most recent authorites, Teuffel, the latest aud most accurate historan of Latm hiterature, and Mr Pinder. This thesis would andeed be untenable a! the last four eclogues could the aycribed to Calparmus, as they contan manfest mintations of Status. Haupt, however, seems to bave proved from motermal ovdence that they are the work of Nemestanns. Upon attentive consideration, however, it appears to the preseat writer that Calpurnins cannot have written either under Nero or under Carinus. 1. The first eclogue is undirectly dedicated to a sovereign, complimented as the auspicious successor of a lawless tyrant, by whom a large proportion of the senate had been executed or imprisoned (ver. 60-62, 69-73). This censure is inapplicable to Caris, and the compliment could in no case have been addressed to his son and successor Carinus. It is almust equally mappropriate to Nero's predecessor, Claudius, who was popular with the senate (Suct. in Claudio, 12, 46). 2. The accession of the new emperor is hailed as the termanation of war (Ecl. i. ver. 46-50) and the harbinger of a durable peace (i. 54 ; iv. 127, 131, al other passages). But Nerv's accession took place at a period of profound puace, and Carinus's at one of extensive foremgn hostihties. 3. Carinus cannot have been intended, masmuch as no mention is made of his own or has father's milatary renown or of the association of his brother in the empure, nor can be have been represented as favourable to the senate, which he notoriously detested (Vopiscus in Carmo, c. 17). If, on the other hand, the poct bad written to eelebrate tho accession of Nero, ho would not have omitted to celebrate the then ommpotent Agrippuna 4. Calpurmus's description of the games in the ouphitheatre (ECl 7) differs from the aecount of Vopiscus in the Augustan hastory, - whatever is especially celebrated by tho one being onatied by the other. Calpurnius dwells wholly on the zoologicial, Vopiscus on the masical and dramatac features of the eatertamment; the former has not a word to say on the nova spectacula indicated by tho latur as the distimemshing features of the show-the thensand pantommens, tha furs
huudred performers on wind instruments, the urs mimum agentes. It may also be rewarked that Calpurnius speaks of the amphitheatre as looking down upon the Tarpeta،. rock, which, according to the preferable opimion, was on the opposite sude of the Capitoline bill to the Caropus Martus, where the games were exbibited by Nero (Suet. in Nerone, 12).

It reminas, therefore, to discover an emperor to whom the panegyrac of Calpuraus can apply, whose predecesson should have been a scourge to bis subjects in genera! and to the senate in particular, and whose own accession at an early age should have beeu balled as a pledge of permanent tranquillity-one, moreover, who should have exhibuted public spectacles in the amphitheatre. All these conditions are fultilled by Gurdian 111., wbuse accesstun at the age of thirteen or sixteeu (238 A.D.) clused a serses of civil wars and revolts which had proved fatal to six emperors, while the character of Maximin, virtually bis immediate predo cessor, enarely corresponda to the description of Cal purmus. Maximan's terocuty bad been chetly madulged at the expeuse of the senate (Capitolinus, passim), and the public rehef at Gordian's accession is significantly expressed by the great preponderance of inseriptions celebratiog the tranquillity, of which he was regarded as the barbinger, among the legends of the medala struck durmg bas rcign. Other medals ettest the fact of his having exbibited wild beasts in the Flavian amphatheatre (Guri, vol. iii. pp. 115-121). It may be added that the anperial favourite upon whose patronage Calpurnius relies may be plausibly ideutified with Tineaitheus, Gordian's virtuous mimister and father-m-law ; and that the mention (Ecl. 1. 77-78) of the comet which signalized the succession of the prince is Illustrated by the appearance of a comet in China, which would probably be visible in Italy, in September 238, three mouths after Gordian's proclamation as sole emperor. (Wilhams, Chinese Observations of Comets, p. 21.) This conte continued visible in China for forty-one days. Calpurmus's statement that it bad been consprcuous for twenty days when be wrote enables us, if our hypothess be correct, to indicate the date of bis literary début with remarkable precision.
In this caso Calpurmus is not strictly entitled to the distuction of having led the way in the bucolic amitation of Virgil, - fragments of two anonymous eclogues baving been recently discovered and published which undoubtedly belong to the age of Nero. He is, burever, Virgal's 6rst follower of auy mark, and no- important modification bas been mittinluced into bis treatment. He is unquestionably a skilfui literary craftsman, a far scholar and an apt courter, and not devord of real puetacal feelang. The bastard style of pastural cultwated by hm, in whach the description of nature is made the wrater's pretest, while ingemous flattery is bis real purpose, nevertheless excludes genume pleasure, and consequently genume poetical achevement. He may be farly compared to the muor poets of the remgu of Anne. No blographical particulars respecting him are known except has complants of his poverty.

Calpurnas was first pranted in 1471. togetoer wath Silius Italicus. tle has been frequently republished, generally in company with Gratius and Nemestanus the beat edition is it vol. u. of Wernsdurfs foule Latm Menores. The most recent 19 Lhat by Glaeser, Gottingen, 184*.

IR. G.)
Caltagirone, or Calatagirone, a town of Sicily, the seat of a bishop, to the provnce of Catania, and about 34 mules S W. of the city of that nane, is situated on two rocky emmences umted by a bridge, about 2170 feet above the level of the sea. It is well budt and possessesta foe market-place, the rums of a castle, a cathedral, several churches, and ten convents. a casa communale or turn-house. balt un anceut suistracowns. a:1 orpanalye, and a
hospital Its inhabitante are said to have a mach greater amount of calture than is common in the prorincial towns of Sicily, and great encouragement is given by the higher classes to the cause of education. The most remarkable industry in the town is the manufacture of terra-cotta figures, representing different types of Italian costume. The remains of an aqueduct, an ancient subterranean road cot out of the rock, and various mosaics and other antiquities discovered by excavation, show that the site of the town was already occupied at a very early date; and according to some en identification may be effected with Hybla Minor. The present city, however, owes its origin to the Saracens, who defeated the (Freeks there in 831 , and remained in possession till 1060 . Popalation, 25,978 .

CALTANISETTA, or Calatanisetta, the capital of a province of the same name in Sicily, is situated in an extensive and fertile plain, dominated by Monte San Giuliano, near the right bank of the Salso, 62 miles S.E. of Palerme. It is well bailt, and contains several handsome edifices, is defended by a castle, and is the seat of judicial courts. In the neighbourheod, at Terra-Pilata, are several springs emitting hydrogen gas, a mud-volcano, and extensive sulphur-works; and sbout 2 miles distant is the Abbey of Santo Spirito, foonded by Roger I., where a grazt national festival is held every Whitmonday. The tomn is of Saracenic origin, as indeed its name suggests-Kalat-al-Nisa, the Ladies' Castle ; but it has been completely modernized. In 1820 the people of Palermo were defeated near it by the Neapolitan General Pepe. Population, 26,156.
CALVADOS, a department in the north of France, extending from $48^{\circ} 46^{\prime}$ to $49^{\circ} 25^{\prime} \mathrm{N}$. lat., and from $0^{\circ} 26^{\circ}$ E. to $1^{\circ} 10^{\prime} \mathrm{W}$ long., formed out of that part of Lower Normandy which comprised Bessin, Bocage, the Champagne de Caen, Auge, and the westera part of Lieurin. It is said to have received its name from a ledge of rocks, atretching along the coast for a distance of about 15 miles between the mouths of the rivers Orne and Vire, on which the Calvados, a vessel of the Spanisb-Armada, was wrecked in 1588. It is bounded N. by the English Channel, E. by the department of Eure, S. by that of Orne, W. by that of Manche, and has an area of 2132 equare milcs. The southern part of the department is somewhat elevated, bcing crossed by a monntain range, and forms a continuation of the great water-shed between the basins of the Scine and Loire; but the rest of the surface is gencly undulating, and consists of extensive ralleys watered by numerous streams which fall into the English Channel. The coast is high, and generally inaccessible, except at the months of the principal rivers, such os the Touques, the Dives, the Orne, and the Yire, which are navigable at high tide for several miles inland, and are indicated by lighthouses at their moaths. The valleys, which generally slope in a direction from south to north, afford abundant pasturage for horses and cattle, and the agriculture of the district is superior to that of most of the other departments. Wheat, potatoes, and all kinds of vegetables are raised in great quantities for the markcts of the interior and for exportation. The orchards of the Auge district produce a very superior kind of cider, of which upwards of $30,000,000$ gallens are made in the department ; while Isigny is the centre of a large domestic and export trade in butter, cheese, and other dairy produce. Poultry is reared to a considerable extent for the Paris market. In the larger towns, of which on account of the sgricaltural pursuits of the inhabitants there are very few, there are manufactories of lace, woollen yarn and cloth, linen, ceticoes, flannel, shawls, cutlery, and earthenware. Besides these the paper-mills, oil-mills, tanneries, refincries of beet-root and foreign sugar, distilleries, and bleach-fields, scattered throughout the department, give employment to
a greas number of hands. Although seams of coal are found and wrought at Ligny, must of the cos! used in the department is imported from England or Belgium. Building stone and fuller's earth are plentiful. The fisheries along the coast are extensively prosecuted for Parisian consumpt, and consist chiefly of lebster, oyster, herring, and mackerel fishing. There is a canal from Caeis'to Ouistreham. A line of railway frem Paris to Cherbourg runs through the conntry and gives off five branches. The department is divided into six arrondissements,-Caen, Falaise, Bayenx, Vire, Lisieux, and Pont l'Eveque, the cbief towns of whioh bear the same name. The principal port is Honfleur. The population in 1872 was 454,012.

CALVART, Denis (1555-1619), a Flemish painter, born at Antwerp in 1555. After studying landscape painting for some time in his native city he went to Bologna, where he perfected himself in the anatomy of the homan form ninder Prospero Fontana, and -so completely lost the mannerism of Flemish art that his paintings appears to be the work of an Italian. From Bolegna he went to Rome, where he assisted Sabbatini in his works for the Papal palsce, and devoted much of his time to copying and studying the works of Raffelle, He ultimately returned to Bologna, and founded a actiooh, of which the greatest ornaments are Guide and Domenichino. His worke are eapecially admired for the powcr of groaping and colouring which they display. He died at Bologna in 1619

CALVERT, Gborge, Lord Baltimore (1582-1632). one of the principal secretaries of state under James I., was born at Kipling in Yorkshire in 1582. He was educated at Oxford, and after travelling on the Continent entered public eervice as sccretary to Rohert Cecil, afterwards eard of Salisbury. In 1617 he was knighted, and in 1619 he was made one of the principal sceretaries of state. He retained office for five years, at the end of which term he resigned, alleging as a reason that he had recently adopted the Catholic faith. He still centinucd at court, howerer, in the capacity of a privy-councillor. In 1625 he was; made Baron Baltimerc, in the county of Longford, Ircland, anil ameng other rewards he reccived for his services was a patent as lord of the province of Avalon in Newfoundland. As this colony was much exposed to the attacks of the French he left it, and obtained another patent for Maryland, in the nerth of Virginia. He died in 1632 before the grant was confirmed, but in that year it was made out in the name of his son Cecil. The city of Baltimore derives its name from the title of this family.

CalVI, a fertifed town in Corsica, the capital of an arrondissement, is situated on a peninsula in the bay to which it gives its same, 38 miles W.S.W. of Bastia, in 42° $34^{\prime} 7^{\prime \prime} \mathrm{N}$. lat. aud $8^{\circ} 45^{\prime} 10^{\prime \prime} \mathrm{E}$. long. Hs position is unsheltered, and its ancient fortifications present a mournful appearance, while its climate is rendered unhealthy by the cthalations from the neighbouring lagoon. Since the foundation of Ile Rousse by Panli it has greatly decayed and its interest is now mainly historical or antiquarian. The most important buildings are the old palace of the Genoese governor and the church with the monuments of the Eaglioni family. Calvi was founded in the 13th century by Giovanniello of Pictra Allerata, one of the military adrenturers of that restless period. In 1278 it passed into the "hands of the Genoese, and from that date it was remarkable for its adherence to their side. It was attacked by De Thermies in 1553, and two years after it stood no fewer than three sieges with such determined resistance that the Geneese senate canscd Civitas Calvi semper fidelis to be carved on the chief gate of the city, which atill preserves the proud inscription. In 1794 Calvi was captured by the Euglish, but it was retaken by the Corsicans in the following year. Population in 1872, 2164

- Calvin, Jobn (1509-1564), was born at Noyon, in Picardy, July 10, 1509. His father, Gerard Calvin or Cancin, ${ }^{1}$ was a notary-apostolic..." procurator-fiseal for the lordship of Noyon, beaides holding certain ecclesiastical offiees in connection with that diocese. The name of his mother was Jeanne Lefrane; she was the daughter of an innkeeper at C'ambray, who afterwarda came to reside at Noyon. Gerard Calvin is described as a man of considerable sagacity and prudence, and on this account held in esteem by the leading men of the district. - His wife added to considerable personal attractions the graces of a vivid and earnest piety. Their family consisted of four sons, of whom John was the second, and two daughters.

Of Calvin'a early yeara only a few notices remain. Hia father destined him from the first for theological studies, being moved to this by the evidences afforded in his boyhood of a religious tendency, and perhaps also by a shrewd afprebension of the kind of pursuits in which he was most fitted to exeel. The esteem in which the father was held opened for the bog a place in the household of the noble family of De Montmor, where he received his elementary education along with the children of the house, though at his father's expense. In his thirteenth year his father, whose circumstancea were not effluent, procured for him from the bishop the office of chaplain in the Chapelle de Nôtre Dame de la Gesine. A few days after his appointment he received the tonsure, and on the 29 th of May 1521 he was installed in his office. The plague having visited Noyon, the young De Montmors were sent to Paris to pursue their studies there, and thither Calvin accompanied them, being enabled by the income received from his benefice to meet the expense of a residence in the metropolis. His first school was the College de la Marehe, at that time under the regency of Maturin Cordier, a man of excellent character, of sound learning, and of high repute as a teacher. To him Calvin e'ver aeknowledged himself indebted for the benefits received under his tuition. In dedicating to bim hia Commentary on the First Epistle to the Thessalonians, as "eximix pietatia et doctrine viro," he declares that so had he been aided by his instruction that whatever subsequent progress be had mado he only regarded as reeeived from him, and "this," be adda," I wish to testify to posterity that if any utility acerue to any from my writings they may acknowledge it as having in part flowed from thee." From this institution he removed to the Collége Montaigu, where he had for instruetor a Spaniard, who is described es a man of learning, and to whom Calvin was indebted for the culture of his already acute intellect, by the study of dialectica and the seholastic philosophy. Whilst at school the future reformer distinguished himself by bia superior sbilities, and his indefatigable asaidnity. He speedily outstripped all his.competitors in grammatical studies, and by his skill and acumen as a student of philosophy, gave fruitful promise of that consummate excellence as a reasoner, in the department of speculative truth, which he afterwards displayed. Iotensely devoted to study ho eared littlo for the pastimes in which his fellow seholars indulged; he shunned suciety, and was more disposed to censure the frivolities of those around him than to seek the solace of their companionship; severe to others he was still more so to himself, and his pale face and attenuated frame bore witnesa

[^60]at once to the rigour of his abstinence and the ardour with which he prosecuted his studies. In his nineteenth gear he, through the influence of his father, obtained the living of Marteville, to which he was presented on the 27th ol September 1527. After holding this preferment for nearly two years, he exchanged it in July 1529 for the cure of Pont l'Evêque, a village near to Noyon, and the place to which his father originally belonged. He appears to have beeu not a little elated by hia early promotion, and althongl not ordained, he preached several sermons to the people. But though the career of ecclesiastical preferment was thus early opened to him, Calvin was destined not to become a priest of the Church of Rome. A change came over the mind both of his father and himself respecting his future career. Gerard Calvin, looking at things only from a worldly point of view, began to suspect that he bad not chosen the most luerative profession for his son, and that the law offered to a gouth of his talents and industry a more promising sphere. ${ }^{2}$ His son, on the other band, had come under an intluence of a very different kind, but which, with atill more decisive impulse, inclined him to relinquish the ecclesiastical life Through the counsels of his relation, Pierre Robert Olivetan, the first translator of the Bible into French, he had been led for the first time to study the sacred volume, and to test his religious opinions and practices by its dictates. The result was that, though not yet detached from the faith of the Romish church, he was very willing to relinquish all thoughts of becoming a priest in that communion. He accordingly readily complied with his father's suggestion; and having resigned his cure, he removed from Paris to Orleans, in order to study law under Pierre de l'Etoile, a distinguished juriseonsult, and at that time professor there. On this new pursuit Calvin entered with characteristic ardour, and such was his progress in legal knowledge, that he frequently oceupied the chair of the professor, while bis general reputation for ability and scholarship stood so high that, on leaving Orleans, he received the grade of doctor without payment of the usual fees, as e compliment to his merits. Other studies, however, besides those of law had oceupiad him whilst in this city. God, who had destined him for a very different career; was in His providence preparing him for the work he had to do. His mind, at first bardened by the inflnence of early superstition, was, he himself tella us, brought ty audden conversion into a state of docility. ${ }^{3}$ An ardent desire to attain proficiency in sacred knowledge took possession of him, and though this did not lead him to reuounce other studies, it rendered him frigid in the pursuit of them. At all times, indeed, a diligens student, he seems at this time to have been impelled by his zeal beyond those bounds which a wiso regard to health would impose. It was his wont, after a frugal supper, to labour till midnight, and in the morning when he awoke, be would, before he arose, recall and digest what he had read the prerious. day, so as to make it thoroughly his own. "By these protracted rigils," says Beza, "he secured indeed a solid erudition, and an excellent memory; but it is probable he at the same time sowed the seeds of that disease which oceasioned him sarious illnesses in after life, and at last brought upon him premature death." 4

From Orleans Calvin went to Bourgea to prosecute his studies under a learned Italian of the name of Alciati, whom Francis I. had invited into France, and settled na a professor of law in that university. Here he became aequainted with Melchior Volmar, a Cerman, then professor of Greek at Bourges, and a man of sound erndition

[^61]as well as exemplary character. ${ }^{\text { }}$ - Ey hum calvin was taught Greek, and introduced to the study of the New Testament in its original language, a service which he gratefully acknowledges in one of his printed works. ${ }^{1}$ The conversation of Volmar also seems to have been of use to him in deepening his religious convictions, and confirming bino in his attachment to the doctrines of the Reformation. These were now beginning to be widely diffused through France. Twelve years had elapsed since Luther had published his theses against indulgences,--twelve gears of intense excitement and aazious discussion, not in Germany only, but in almost all the adjacent kingdoms In France there had not been as yet any overt revolt against the Church of Rome, but multitudes were leading a friendly ear to the Reformed doctrines, and a fess were in secret rejoicing in having beartily embraced them To such Calvin united biimself whilst at Orleans, and after his removal to Bourges he became a teacher, both in private confereace with inquirers and by discourses in more public assemblies. "Before a year bad elapsed," says be, speaking of his conversion, "all who were desirous of a purer doctrine were in the habit of coming to me, though a novice and a tyro, for the purpose of learning." ${ }^{2}$ And Beza tells us that he not only fortified the few believers who were in the town, but prenebed often in some of the neighbouring mansions and hamlets, whereby he wonderfully advanced the kingdom of Cod in many families, among which he specifies that of the lord of Lignieres, who with his lady beard with approval the new doctrines. ${ }^{3}$ In engaging in such efforts, Calvin appears to have yielded to a constraining sense of duty rather than to have followed the bias of his orn incline. tions. "By nature," says he, "somewhit clownish (sub. rusticus), I always preferred the shade and ease, and would have sought some hiding.place; but this was not permitted, for all my retreats became like public schools." ${ }^{*}$ Nor did he infuse any of the enthusiasm which usually marks the young reformer into his addresses. "He taught the truth," says Beza, "not with affected eloquence, but with such depth of knowledge and so much solid gravity of style, that there was not a man who could hear him without being ravished with admiration." ${ }^{5}$

His residence at Bourges was cut short by the sudden death of his father, which oecasioned his return to his native place. Immediately after his father's decease, be seems to heve paid a hasty visit to Paris, and then to bavo returned to Noyon, where he resided for a couple of years or so. At the close of this period he appears to bave returned to Paris, where be apparently resided from 1529 to 1532, as letters mritten by him are dated from Paris in these years. While there he lodged with a tradesman, Etienne de la Forge, who early fell a victim to his zeal for the Reformation, and "whoso memory," Calvin says, "should be blessed among believers as a boly martyr for Christ." ${ }^{\circ}$ In his house the friends of erangelical truth were wont to meet, and Calvin not only associated with them, but frequently preached in their assemblies. Tu the great joy of all sueh, he at lengthe entirely relinquished his legal pursuits and devoted himself afresh to theology, -giving bimself up wholly to the work, preaching with great energy. and using ail the means in his power to win converts to the truth, as well as to confirm those by whom it had been already embraced: By this time the Reformation had attracted so many adherents in Franec, that the upholders of the established system became infuriated, and attempted to stay its forther progress by

[^62]the most cruel persecutions It^{-7} was whilst these, were raging that Calvin issued his first pablication, an edition of Seneca's tract De Clementia, with an elaborate commentary. This book he published at his own cost, and dedicated to Claude Hangest, abbot of St Eloi, a member of the De Montmor family, with whom Calrin had been brought up. The commentary, which is written in that pure and terse Latinity which characterizes all Calvin's works composed in the languageof ancient Rome, displays extensive acquaintance with ancient literature, though the author has fallen into the extranrdinary mistake of running the two Senecas, father and son, into one, and making the philosopher die 115 years old. It has been suggested that Calvin published this work with a view to influence the king to put a stop to the persecution of the Protestants, but there is nothing in the treatise itself or in the conmentary to favour this opinion.

This work was published in April 1532, and seems to have brought Calvin more of honour than of profit. It appears, indeed, that he had some difficulty in paying the cost of its publication; and it is probable that it was partly in order to meet this that he sold at this time tho slender patrimony which his father had left him. He at this time also relinquished the ecclesiastical preferments which he had hitherto continued to hold, an act which, though demanded by the change that had taken place in his religious views, was entirely voluntary on his part, and, when viewed in connection with his then straitened circumstances, must be put to the credit of his integrity and disinterestedness. He was now in his trenty-fourth year, and was already recognized as at the bead of the Reformation movement in France. An occasion soon occurred which brought him into open collision with the dominant party. Nicholas Cop, the newly-elected regent of the Sorbonne, had to deliver an oration according to custom in the Church of the Maturins, on the feast of All Saints. Being intimate with Calvin, he pronounced an oration which the latter had prepared for him, "of a totally different sort," says Beza, "from what was enstomary." It was, in fact, a defence of the Reformed opinions, especially of 'the doctrine of justification by faith alonc. This was more than the Sorbonnists could bear, and Cop, being summoned to appear before the parliament, found it necessary to make his escape from Paris to Basel. An attempt was at the same tinie made to seize Calvin, but being forcwarned of the design by his friends, he also made his escape. His lodgings, however, were searehed, and his books and pspers seized, to tlie imminent peril of some of his friends, whose letters were found in his repositories. He himself retired first to the eastle of Lord do Hazeville near Mantes, and after that to Saintonge, where be was the guest of Lovis du Tillet, a canon of Angouleme, and where at the request of his host he prepared some short discourses, which wero circulated in the surrounding parishes, and read in public to the peopie. He subsequently remored to Nerac, the residence of the queen of Navarre, the only sister of Francis I., who then favoured the Reformers, and through whoso intercession the storm that had broken out against them was for the time abated. Here he became acquainted with the venerable Jacques Lefevre d' Estaples, a scholar and man of science, whom the queen had reseued from the fury of the Sorbonnists, and engaged as tutor to her children. By him Calvin was warmly receired, and bis future eminence as a reformer of the church predicted.

It bas been asserted that it was whilst resident at Saintonge that Calvin prepared the first sketch of his Instiutio Christiance Religionis; but this bas not been proved. His residence in that retirement continued only
' Biet. Eccles., 101 t p. 9.
for a very few months; for, in 1534, we find him first at Noyon, his native place, and soon after again in Paris. Here he was compelled to remain concealed, in consequence of the measures which the enemies of the Reformation were still pursuing against its adherents. At the risk of his life, howevcr, he came forth to meet one whom he was afterwards to encounter under very different circumstances, the Spsnish physician, Servede or Servetue, who was even then enyaged in propagating his heretical notions concerning the Trinity. Servetus having expressed a desire to have a conference with Calvin, it was arranged that they should meet and discuss their conflicting opinions; but thongh Calvin waited for him long at the time and place appointed, Servetus failed to make his appearance, "being," saye Beza, " unable to endure the sight of Calvin," bat more probably deterred by the danger to which both were exposed from the hostility of the ruling powers. Calvin's design in acceding to this colloquy seems to have been a kindly one towards Servetus. "Not without danger to my life," he himself says, "I offered to deliver him from his errors."" Nor was Servetus the only errorist whom Calvin endeavoured at this time to confute. The Anabaptists of Germany had spread into France, and were disseminating many wild and fanatical opinions among those who bad seceded from the Charch of Rome. Amung other notions which they had imbibed, was that of a sleep of the soul after death. To Calvin this notion appeared so pernicious, that he composed and published a treatise in refutation of it, under the title of Psychopannychia. In this work he chiefly dwells upon the evidence from Scripture in favour of the belief that the soul retains its intelligent conscionsness after its separation from the body,-passing by questions of philosophical speculation, as tending on such a subject only to minister to an idle curiosity.
The Psychopannychia was published in 1534 at Orleans, whither Calvin had bsen constrained, in consequence of the violence of the persecution at Paris, to retreat. On his way thither he stopped for some time at Poitiers. Here many gathered ronnd him desirous of instruction from him; and in a grotto ncar the town he celebrated for the first time the communion in the Erangelical Church of France, using s piece of the rock as a table. From.this time forward his influence became supreme, and ail who had imbibed or become tinged with the Reformed doc trines in France turned to him for counsel and instriction, attracted not only by his power as a teacher, but still more, perbaps, because they saw in him so full a development of the Christian life according to the evangetical model. M. Renaa, no prejudiced judge, pronounces him "the most Christian man of his time," and attributes to this his success as a reformer. Ceitain it is that already he had drawn apon him the notice of those who were seeking to extinguish in blood the light which had been kindled, and which he was so prompt to hold up to vicv; so that ha was obliged to seek safety in flight. In company with his friend Louis du Tillet, whom he had again gone to Angouleme to visit, he eet out for Basel. On their way they were robbed by one of their servants, who so catirely stripped them of their property, that it was only by borrowing ten crowns from their other servant that they were enabled to get to Strasburg, and thence to Bascl. Here Calvin was welcomed by the band of scholars and thcologians who had conspired to make that city the Athens of Sxitzerland, and especially by the learned Simon Cryneus, and by Wolfgang Capito, the leader of the Rcformation at Basel. Under the auspices and gnidance of the latter, Calvin appliod himself to the stndy of Hebrew.

Francis I., desirous to continue the-persecution of the Protertants, but anxions at the arme tine not to break with
'Cu'vini Refut. Rrtoruin Serveti, Opp., t. vin. p. 511 .; Ed. Ametel.
the Protestant princes of Germany, resorted to the unworthy expedient of instructing his anibassador to assure the latter that it was only against the Anabaptists, and other parties who called in question all civil magistracy, that his severities were exercised. Calvin, indignant at the calumny which was thus cast upon the Reformed party in France, hastily prepared for the press his Institutes of the Christian Religion, which be publistued as a confession of the Reformed faith, and dedicated to the king. This work Calvio says be wrote in Latin that it might find access to the learned in all lands. ${ }^{2}$ Soon after it appeared he set about translating it into French, as he himself attesta in a letter dated October 1536. This eets at rest a question, at one time moch agitated, whether the book appeared first in French or in Latin. The earliest French edition Enumn is that of 1540, and this was after the worl hed been much enlarged, and several Latin editions had appeared. In its first form the wort consisted of only six chapters, and was intended merely as a brief manual of Christian doctrine. It appeared anonymonaly, the anthor haring, as he himself says, nothing in viem beyond furnishing a statement of the faith of the persecuted Protestanta, whom he saw cruelly cut to pieces by impions and perfidious court parasites. ${ }^{3}$ In this work, thongh produced when the enthor was only twentyfive years of age, we find a complete ontline of that theological system which has since borne his name. In none of the later editions, nor in any of his later works, do we find reason to believe that he ever changed his viems on any essential point from what they were at the period of its first publication. Such an instance of maturity of mind and of opinion at so early an age, would be remarkable under any circumstances; but in Calvin's case it is rendered peculiarly so, by the ehortness of the time which had elapsed since be gave bimself to theological studies. It may be donbted also if the hisiory of literature presents us with another instance of a book written at so early an age, which has exercised snch a prodigious influence upon the opinions and practices both of contemporaries and of posterity.

After a short visit to the court of the dochess of Ferrara, which at that time afforded an asglum to several learned and pions fugitives from persecution, Calvin returned to F-nce to arrange bis affairs before finally taking farewell of his native conntry. His intention was to settle at Basel, and to devote himself to study. Bnt being unable, in consequence of the disturbed state of the conntry, to reach Basel by the ordinary route, he had to take the ronte through Geneva. Whilst in this city his further progrese was arrested, and his resolution to pursue the quiet path of stndious research was dispelled, by what he calls the "formidable obtestation" of Farcl. ${ }^{4}$ After many struggles and no smaill suffering, this energetic spirit had succeeded in planting the evangelical standard at Genera; and anxious to secure the aid of such a man as Calvin, he entreated him on his arrival to relinguish his design of going farther, and to devote himsclf to the work in that city. Calvin at first declined, alleging as an excuse his need of securing more time for personal improvement, which conld not be obtained were he engaged in ministeris? work. To the ardent Fare! this seemed a mere pretext for indolence. "I tell yon," he continued, "in answer to this pretence of your studies, in the name of Almighty God, that if you will not derote yourself with us to this work of the Lord, the Lord will curse yon as one seeking not Christ so mach as himself." Startled by this denumciation, and feeling as if God had laid his band on him to detain him, Calvin consented to remain at Geneva, where

[^63]he was immediately appointed teacher of theology. He was also elected preacher by the magistrates with the consent of the people, but this office be would not accept until it had been repeatedly pressed upon bim. His services seem to bave been rendered for some time gratuitously, for in February 1537, there is an eatry in the city registers to the effect that six crowns bad been voted to him, "since he has as yet hardly received anything.".
Calvin was in his twenty-eighth year when he was thus constrained to settle at Geneva; and in this city the rest of his life, with the exception of a brief interval, was spent. The post to which be was thus called was not an easy one. Though the 'people of reneva had cast off the yoke of Rome, they were still "but very imperfectly enlightened in divine knowledge; they had as yet bardly emerged from the filth of the papacy."1 This lad them open to the incursions of those fanatical teachers, whom the excitement attendant upon the Reformation had called forth, and who hung mischievously apon the rear of the reforming body. To obviate the evils thence resulting, Calvin, in union with Farel, drew up a condensed statement of Christian doctrine consisting of twenty-one articles. This the citizens were summoned, in parties of tea each, to profess and swear to as the confession of their faith-a process which, though not in accordance with modern notions of the best way of establishing men in the faith, was gone through, Calvin tells us, " with much satisfaction." As the people took this oath in the capacity of citizens, we may aee here the basis hid fer that theocratic system which subsequently became peculiarly characteristic of the Genevan polity. Deeply convinced of the importance of education for the young, Calvin and his ceadjutors were solicitons to establish achools throughout the canton, and to enforce on parents the sending of their children to them; and as he had no faith in education apart from religious training, he drew up an elementary catechism of Christian doctrine which the children bad to learu whilst they were receiving secular instruction. Of the troubles which arose from fanatical teachers, the chief proceeded from the efforts of the Anabaptists; but these Calvin and his colleagues so effectually silenced by means of a public disputation held on the 18th of March 1537, that they never afterwards appeared 'at Geneva. In the course of this year also, the peace of Calvin and his friends was much disturbed, and their werk interrupted, by a turbulent and unprincipled preacher named Peter Caroh, who, after many changes of religious profession (with none of which, however, had he associated anything of true religion, or even much of ordinary morality), had assumed the character of a stickler for orthodory. In this character he accused the Gebera divines of Sabellianism and Ariaism, because they would not enforce the Athanasian creed, and had not used the words "Trinity" and " Person" in the confessiou they had drawn up. In a aynod held at Bern the matter was fully discussed, when a verdict was given in favour of the Geneva divines, and Caroli deposed from his uftice and banished. Thus ended an affair which seems to have eccasioned Calrin much more uneasiness than the character of his assailant, and the manifest falsehood of the charge brought against him, would seem to justify. Two brief tracts, intended to expose the evils and warn against the seductions of Popery, one entitled De Fugienda Idolatria, the other De Papisticis Sacerdotiis, must be added to the labours of Calvin this year.
Hardly was the affair of Caroli settled, when new and severer trials came upon the Generan Reformers. The severe simplicity of the ritual which Farel had introduced, and to which Calvin bad conformed; the strictness with

[^64]which the ministers sought to enforce not only the laws of merality, but certain sumptuary regulations respecting the dress and mode of living of the citizens; and their determination in epiritual matters not to submit to the least dictation frem the civil power, led to such violent dis. sensions that Calvin and his celleagues refused to administer the sacrament to the people. For this they were banished from the city. They went first to Berb, and soon after to Zurich, where a synod of the Swiss pastors bad been convened. Before this assembly they pleaded their cause, and stated what were the points on which they wero prepared to insist as needful for the proper discipline of the church. They declared that they would yield in the matter of ceremonies so far as to employ unlcavened bread in the eucharist, to use fonts in baptism, and to allow festival days, provided the people might pursue their ordinary avocations after public service. These Calvin regarded as matters of indifference, provided the magistratea did not make them of importance, by seeking to enforce them; and he was the more willing to concede them, because he boped thereby to meet the wishes of-the Bernese brethren, whose ritual was less simple than that established by Farel at Geneva. But he and his colleagues insisted, ou the other band, that for the proper maintenance of discipline, there should be a division of parishes - that excommunications should be permitted, and should bo under the power of clders chosen by the council, in conjunction with the clergy-that order should be observed in the admission of preachers-and that only the clergy should officiate in ordination by the laying on of hands. It was preposed also, as conducive to the welfare of the church, that the sacrament of the Lord's Suppe.-abould be administered more frequently, at least oace every month, and that congregational singing of psalma should be practised in the churches. On these terms the synod isterceded with the Gencyese to restore their pastors; but through the opposition of the Bernese this was frustrated, and a sccoed cdict of banishment was the only response.

Calviu and. Farel betook themselves, under these circum. stances, to Basel, where they soon after beparated, Farel to go to Neufchatel, and Calvin to Strasborg. At the latter place Calvin resided till the outuma of 1541, occupying himself partly in literary cxertions, partly as a preacher in the French church, and partly as a lecturer on theology. In 1539 be attended the convention at Frankfort as the companion of Bucer, and in the fellowing year he appeared at that at Hagenau and Worms, as the delegate from the city of Strasburg. He was prescnt also at the diet at Ratisbon, where he became personally acquainted with Melanchthon, and formed with him a friendship which lasted through life. It is to this period of his life that we o se the completed form of his Institutro, his Commentary on the Epistle to the Romang, and his Tract on the Lord's Supper. Notwithstanding his manifold engagemerits, be found time to attead t t, the tenderer affcurns; for it mas during his residence at Strasburg that be married Idelotte de Bures or van Buren, the widow of a person named Störder, whom he had cenverted from Anabaptism. In ber Calvin found, to use his own words, "the excellent companion of his life," Ω " precious belp" to bim amid bis manifold labours and frequent infirmities. She died, in 1549, to the great grief of her busband, who never ccased to mourn her loss.

During his absence, disorder and irreligion had prevailed in Geaera. An attempt was mude by Cadolet, bishop of Carpentras, to take advantage of this so as to restore the papal supremacy in that district ; but this desiga Calvin, watchful over the interests of his ungrateful flock, though' exiled from them, completely frustrated by writing such a reply to the letter which the bishop had addressed to the

Geuevese, as constrained birn to desist from all furtber efforts. He seems also to bave kept up his connection with Geneva by addressing letters of connsel and comfort to the faithful there who continued to regard him with affection. It was whilst he was still at Strasbury that there appeared at Geneva a translation of the Bible into French, bearing Calvin's name, but in reality only revised and corrected by him from the version of Olivetin. Meanwhile the way had been opened for his return to the post whence he had been driven in that city. In the summer of 1541 , the decree of hia banishment was revoked, and in the following September he gielded to the earnest entreaties of his now penitent tlock, and returned to Geneva, where be was received with the ntmost euthusiasm. He entered upon bis work with a firm determination to carry out those reforms which he had originally purposed, and to set up in all its integrity that form of church policy which lie had carefully marured during his resideace at Strasburg. He now becane the sole directive spirit in the church at Gencva. Farel was retaned by the Neufchatelois, and Viret, soon after Calvin's returi, removed to Lausanne. His duties were thus rendered exceedingly onerous, and bis labour became excessive. Besides preaching every day in each alternate week, be taught theology three days in the week, atteuled weekly meetings of his consistury, read the Scriptures once a week in the congregation. carried on an exteasive correspondence on a multiplicity of subjects, prepared commentaries on the books of Suripture, and was engaged repeatedly in controversy with the opponents of his opinions. "I have not time," he writes to a friend, " to lonk out of my house at the blessed sun, and if things continue thus, I shall forget what surt of appearance it bas. When I have settled my usual -business, I bare eo many letters to write, so many questions to answer, that many a aight is speut mithout any offering of sleep being brought to nature." We cannot in this sketch follow him through: ill the details of his brief but busy life after he returned to Geneva; we can only atford to nutice elightly the leading events.

Of the controversies in which Calvin embarked, one of the most important was that in which be defended bis doctrine coucerning predestination and election. His first antagonist on this head was. Pighius, a Romanist, who, resuming the controversy between Erasmus and Luther on the freedom of the will, violently attacked Calvin for tha vies's he had expressed on that subject. Calvin replied to him in a work published a 1543, in which be defends bis owu opiniuns at length, as well by general reasonings as by an appeal to both Scripture and the Fathers, especially Augustine. So potent were bis reasoniags in the esteem of his opponent, that the latter, though owing nothing to the gentleness or courtesy of Calvin, was led to embrace his views. A stul more vesatious and pretracted controversy on the sarne subject arose in 1551, in which Calvin was called to defend his views against Bolsec, originally a Carmelite friar, but who baving recounced Fomanism bad Qed from France and come to Ceneva, where be appeared as a physician. In becoming a physician, bowever, he bad not relinquished theological studies, and being a zealons oppouent of predestinarian views, he was tempted on one occasion, after a sermon on the subject by Calvin to attack anto in the public assembly. Calvin replied with equal sehemeace; and an officer of pulice, scandalized that such a scene should occur in church, touk Bolsec into custody. The pastors resolved to have a conference with him befure the conncil; and for two days the disenssion was conducted by him and Calsin with mur h_{2} alulity on buth sides. The council were at a loss what course tu take; not that they doubted whith of the disputants was right, for they all hell by the viows of Calma, but thes were umblo to
determine to what extent and in which way Bolsec abould be punished for his heresy. The question fas submitted to the Swiss churches, but they also were divided in their judgment; some counselling severity, others gentlo measures. The result was that Bolsec was banished from Geneve. The enemies of Calvin insinuated that he counse'led the intiction of a heavier penalty; but this he himself in a letter to Bullinger indignantly denies. In this controrersy nltimately several others, includiog Castellio, Fabri, and even Bullinger and Melanchthon took part against Calviu, and only Beza appeared as a zealous coadjutor. But the most memorable of all the controversies in which Calvin was engaged, was that into mhich be wa. 3 brought in 1553 with his old antagonist Servetus. After many wanderings, and after baving been condemned to death for heresy at Vieune, from which he was fortunate enough to make his escape, Servetus arrived in July 1553 at Gencva. He appears to have remained in quiet here for some time, and was about to leave for Zurich'when, at the instigation of Calvin, he was arrested and conveyed to prison on the clarge of blasphemg. This charge was founded on certain statements in a book published by him in 15:3, entitled Christianismi Restitutio, in which be animadverted in terms needlessly offensive on the Catholic doctrite of the Trinity, and advanced sentiments strongly savouring of Pantheism. ${ }^{1}$ At the trial which followed Calvin appeared as his accuser, and the conflict was conducted between the two with nuch ability on both aides, and at tho same time with no small keenness and bitterness. After a protracted trial, the accused was condemned to be burnt to death, and was accordingly burned at Cbampel near Geneva, on the 27th of October 1553. Farel attended him in his last hours, and accompanied him to the pace of crecution. He had an interview also with Calvin on the morning of the iatal day, when be asked his forgiveness, but refused to retraçt any of lis expressions. Calvin has been much censured. not to say vituperated, for his share iu this unbappy transaction. In order to aggravate the charge agarast lim it has been alleged that it was by his invitation that Servetus came to Genera, that it was by his urgency that the magistrates, over. Whom his influence was unbounded, condemned Servetus to death, and that it was to gratify a personal pique and through batred of Servetus that be thus cruelly and relentlessly pursned him. Of these allegations not one can be proved, and some are undoubtedly false. It is not true that Calvin induced Servetus to come to Geneva; on the contrary, when Servetus intimated a wish to visit that city if it pleased Calvin that he should do so, Calrin intimated very plainly that it did not please him, and refused to pledge himself for his safety should be come, as he was resolved, should he come, to prosecute him to the death. ${ }^{2}$ That Calvin influenced the magistrates to condemn Servetus is true only in the same sense in which any public prosecutor who jleads before the judge for the condemnation of one agaiust whom lie brings a criminal cbarge, may be said to infiuence the judge to condemn him. As for the assertion that Calvin's influcnce with the magistrates was unbounded, this falls to the ground before the fact that at this time be was in a state of antagonism with the dominant party. ${ }^{3}$ That Calvin hated the doctrones which he found in Ser: sctus's book there can be no doubt, and that he thought the author of such views as were there advanced

[^65]Geserving of death, if be refused wheo reasoned with to recant, is unhappily true; but that be was actuated by personal spite and animosity against Serretus himself thére is no evidence; on the contrary we have his own express declaration that, after Servetus was convicted, he used no urgency that he should be put to death, nud at their last interview he told Servetus that he norer had avenged private injuries, aod assured him that if he would repent it would not be his fault if all the pious did not give him their bands. ${ }^{1}$ There is the fact also that Calrin used his endeavour to have the sentence which had been pronounced against Servetus mitigated, death by buroing being regarded by bim as an "atrocity," for which he sought to substitute death by the sword. ${ }^{2}$ All that can be justly charged against Calvin in this matter is that he took the iuitiative in bringing on the trial of Servetus, that as his accuser he prosecuted the suit against him with undue severity, and that he approved the sentence which condemued Servetus to death. When, however, it is remembered that the unanimous decision of the Swiss churches and of the Swiss state Governments was that Servetus deserved to die ; that the general voice of Christendon was in favour of this; that even such a man as Melaneitithon affirmed the justice of the sentence, ${ }^{\text {, }}$ that an eminent Eoglish divine of the next age should declare the process agaiost him "jast and honourable," 4 and that only a few roices here and there were at the time raised against it, candid and mpartial men will be ready to accept the judgment of Celeridge, that the death of Servetus was not "Calvin's guilt especially, but the common opprobrium of all European Christendom" ${ }^{5}$

J'he heresy of Servetus was not extirpated by his death, but none of his followers were visited with severcr pena! ties than that of banishment from Geneva The trials of several of these., with the conferences and controversies connoted with them, occupied much of Calvin's time for several years. He was also involved in a protracted and somewhat vexing dispute wilh the Lutherans respecting the Lord's Supper, which ended in tho separation of the evangelical party into the two great sections of Lutherans and Reformed,-the former of whom hold that in the ,eucharist the body and blood of Christ are objcetively and consubstantially present, and so are actually partaken of by the communicants, whilst the latter maintaia that there is only a virtual presence of the body and bloed of Christ, and coasequeatly only a spiritual participation thereof through faith. Io connection with these controversies on points of faith, Calvin was for many years greatly disquieted, and sometimes even cadangered, by the opposition offered by the libertine party in Geneva to the ecclesiastical discipline which he had established there. His system of church polity mas essentially theocratic; it assumed that every member of the state was also under the disciphne of the church; and he asserted that the right of exercising this discipline was vested exclusively in the consistory or body of preachers end elders. His attempts to carry out these viema brought him into collision both with the anthorities and with the populace,-the latter being enraged st the restraints imposed upon the disorderly by the exercise of chureh discipline, and the former being inclined to retain in their own hands a portion of that power in thinga apiritual which Calvin was bent on placing

[^66]exclusively in the hands of the church rulers." Eis daunt: less courage, his perseverance, and his earnestness at length prevailed, and he had the satisiaction, before he died, of seeing his favourite systeun of church polity firmly established, not only at Geneva, but in other parts of Switzerland, er.d of kuowing that it had been adopted substantially by the Reiformers in France and Scotland. Nor was it only in religious matters that Calvin busied himself; nothing was indifferent to him that concerued tha welfare and good order of the state or the adrantage us tho citizens. His work, as has been justly said, "embraced everything ;" he was consulted on every affair, great and small, that came before the council,-on questions of lax: police, economy, trade, and manufactures, no less than on questions of doctrine and church polity. To him Geners owed hér trade in cloths and velvets, from which so much wealth accrued to her citizens; satitary regulations were introduced by him which mide Geneva the admiration of all visitors; and in him sha reverences the founder of her college, which still flourishes, and from which so many learned men have gone forth.

Amidst these multitulinous cares and occupations, Calrin fonad time to commit to writing a number of works besides these provaked by the varions controversies in which he was engaged. The most numerous of these were of an exegetical character. Includins discourses taken dowa from his lips by faithful auditors, we have from him expository comments or homilies on nearly all the books of Scripture, written partly in Latin and partly in French. In the estimation of many, these constitute the most valuable of his works. His eandour and siucerity as an inquirer inte the meaning of Scripture-his judiciousness, penetration, and tact in eliciting his author's meaning-his precision, condensation, and concinuity as an expositor-the accuracy of his learmag, the closencss of his reasoning, mid the elegance of his style, a'l conspire to coufer a high walue od Lis exegetical works, and to make them at once rich sources of biblical knowledye aud admirable modols of biblical exposition.
But it is chiefly as a theologim and the bead of a theological school that Calvin is now knowo. This renders it fitbing that some account should be here given of his theological system. This is developed in his Institutio, which, though proluced originally at an early period-of Lis life, was so frcquently and carefully rexised by hirs, that in the form in which it has come down to us it presents his most matured viess and thoughts. In some of his tracts and polemical writngs certain of his doctrines are more fully expounded, illustrated, and defended; but nowhere has he adrocatcd any tenet which is not in sobstance to be found in the Institutio.

Much of Calvin's theology is common to him with all evangelical divines, nad in the parts which are more peculiar to him and his school he follows closely in the Step of Augustine. The following may be regarded as his characteristie tencts, though all are not peculiar to him.

Man as a sinner is guilty and corrupt. The first man was made in the innage and likencss of God, which not only. implies man's superiority to all other crcatures, but indicates his original purity, integrity, and sanctity. From this state Adam fell, and in his fall involved the whole haman race descended from him. Hence depravity and corruption, dif. fused through all parts of the soul, attach to all mon, and this first makes them obnoxious to the anger of God, and then comes forth in works which the Scripture ealls works of the flesh (Gal. r. 14). Thas all are held vitiated and perverted in all parts of their nature, and on account of such corruption deservedly condemned before Gind, by whom nothing is accepted save righteonsness, innocence, and parity. No. is that a being bmind for azother's efetie: for when it is
said that we through Adam's sin have become obnoxious w the diviae judgment, it is not to be taken as if we, being ourselves innocent and blameless, bear the fault of his offence, but that, we having been brought uader a curse through his transgression, be is said to bave bound us. From him, however, not only has punishment overtaken us, but a peatilence instilled from him resides in us, to which punishment is justly due. Thus even infants, whilst they bring their own condemnation with them from their mother's womb, are bound not by another's but by their own fault. For though they have not yet brought forth the fruits of their iniquity, they have the seed shut up in them; nay, their whole nature is a sort of eeed of sin, therefure it cannot but be hateful and abomiaable to God (Ixstit. bk. ii. ch. i. sect. 8).
To redeem man from this state of guilt, and to recover him from corruption, the Son of God became incarnate, assuming man's nature into union with His own, so that in Him were two natures in one person. Thus incarnate He took on Him the offices of Prophet, Priest, and King, and by His bumiliation, obedieace, and suffering unto death, followed by His resurrection and ascension to beaven, He has perfected His work and fulfiled all that was required in a Redeemer of men, so that it is truly affirmed that He has merited for man the grace of salvation (bk. ii. ch. 13-17). But until a man is in some way really united to Christ so as to partake of Him, the benefits of Christ's work cannot be attained by him. Now it is by the secret and special operation of the Holy Spirit that men are united to Christ and made members of His body. Through faith, which is a firm and certain cognition of the divine benevelence towarde us founded on the truth of the gracious promise in Cbrist, men are by the operation of the Spirit united to Cbrist and are made partakers of His death and resurrection, so that the old man is crucified with Him and they are rased to a new life, a life of righteousness and holiness. Thus joined to Cbrist the believar has life in Him and knows that he is saved, having the witness of the Spirit that he is a child of God, and having the promises, the certitude of which the Sprit had before impressed on the mind, sealed by the same Spirit on the heart (bk. iii. cb. 33-3「). From faith proceeds repentance, which is the turning of our life to God, proceeding from a aincere and earnest fear of God, and consisting in the mortification of the flesh and the old man witbin us and a vivification of the Spirit. Through faith also the beiever receives justification, his sins are forgiven, ho is accepted of God, and is held by Him as righteons, the righteousness of Christ being imputed to him, and faith being the instrument by which the man lays hold on Christ, so that with His righteousness the man appears in God's sight as righteous. This imputed rightcousness, however, is not disjoined from real personal righteousness, for regeneration and sanctification come to the believer from Christ no less than justification ; the two blessings are not to be confounded, but neither are they to be disjoined. The assurance which the believer has of salration he receives from the operation and witness of the Holy Spirit; but this again resta on the divine choice of the man to salvation ;" and this falls back on God's eternal sovereign purpose, whereby IIe has predestinated some to eternal life while the rest of mankind are predestioated to condemnation and eternal death. Those whom God has chosen to life He effectually calls to salration, and they are kept by Him in progressive faith and holiness unto the end (bk. iii. passim). The external means or aids by which God unitee men into the fellow. ship of Cbrist, and sustains and advances those who believe, are the church and its ordinances, espectally the sacraments. The church universal is the multitude gathered
trom diverse nations, which though divided by distance of time and place, agree in one common faith, and it is bound by the tie of the same religion; and wherever the word of God is sincerely preached, and the sacraments are duly administered, according to Christ's institute, there beyond doubt is a church of the living God (bk. 2v. ch. 1, sect. 7-11). The permanent officers in the church are pastors and teachers, to the former of whom it belongs to preside over the discipline of the church, to administer the sacraments, and to admonish and exhort the meabers, while the latter accupy themselves with the exposition of Scripture, so that pure and wholcsome doctrine may be retaned. With them are to be joined for the gercrnment of the church certain pious, grave, and holy mee as a senate in each church; and to others, as deacons, is to be entrusted the care of the poor. The election of the officers in a church is to be with the people, and those duly chosen and called are to be ordained by the layng on of the bands nf the pastors (ch. 3, sect 4-16). The sacraments are twoBaptism and the Lord's Supper. Baptism is the sign of initiation whereby men are admitted into the soclety of the cburch and, being grafted into Cbrist, are reckoned among the sons of God; it serves botb for the confirmation of fatth and as a confession before men. The Lord's Supper is a spiritual feast where Christ attests that He is the life-giving bread, by which our souls are fed unto true ond blessed immortality. That sacred communication of His flesh and blood whereby Christ transfuses into us His life, even as if it penetrated into our bones and marrow, He in the Supper attests and -eals; and that not by a vain or emptysign set before us, but there He puts forth the efficacy of His Spirit whereby He fulfis what He promises. In the mystery of the Supper Cbrist is truly exbibited to us by the symbols of bread and wine: and so his body and'blood, in which He fulfilled all obedience for the obtaining of righteousness for us, are presented. There is no such presence of Christ in the Supper as that He is affixed to the bread or included in it or in any way circumscribed; but whatever can express the true and substantial communication of the body and blood of the Lord, which is exhibited to believers under the aad symbols of the Supper, is to be recerved, and that not a perceived by the imagıation only or mental intelligence. but as enjoyed for the alment of the eternal life (bk iv. ch. 15,17).

The incessant and exhausting labnursto which Calvingare bimself, could oot but tell on the strongest constitution: how much more on one so fragile as his! Amid many sufferings, however, and frequent attacks of sickness, he mauful'y pursued hat course for twenty-eight years; nor was it till his frail body, torn by many and paiaful diseases-fever, asthma, stone, and gout, the fruits for the most part of his sedentary habits and unpausing activity-had, as it were, fallen to pieces around him, that his indomitable spirit relinquished the conflict. In the early part of the year 1564 his sufferings became so severe that it was manifest bis earthly career was rapidly draming to a close. On the 6th of February of that year he preached his last sermon, baving with great difficulty found breath enough to carry him through 1 t . He was several times after this carried to church, but nerer agan was able to take soy part in the scrvice. With a noble disinterestedness he refused to recerve has stipend, now that he was no longe: able to discharge the duties of his office. In the midst of his sufferings, bowever, bis zeal and energy kept bim in contınual occupation; when expostulated with for such unscasonable toil, be replied, "Would you that the Lard should find me idle when Ife comes $8^{\prime \prime}$ After he had retured from public labours he lingered for sqme months, enduring the ecverest agony without a murmur, and cheerfully atteuding to all the duties of a private kind which bid
diseases lf ft him strength to discharge. A dcep impression aeems to have been made on all who visited him on bis deathbed; they saw in him the noble spectacle of a great apprit that bad done its life-work, calmly and trustifully passing through the gate of suffering into the long-desired and frmly-espected repose of heaven. He quietly expired in the arms of his faithful friend Beza, on the evening of the 27 th of May, 10 the fifty-fith year of his age.

Calvin was of middle stature; his complexion was somewhat pallid and dark; bis eyes. to the latest clear and lustrous, bespoke the acumes of his gedius. He was sparing in his food and simple in his dress; lie took but little sleep, and was capable of extraordinary efforts of intellectual toil. His memory was prodigious, but be used it only as the servant oi has hugber faculties. As a reasoner be has seldom been equalled, and the soundness and penetration of bis judgment were such as to give to bis conclusions 10 practical questions almost the appearance of predictions, and inspire In all his frignds the urmost ennidence in the wisdom of has counselce of a thealogian be stands on an emioence wheb only Augnstine has surpassed, whilst in his skill as ad expositor of Scripture, aod his terse and elegant style, be possessed advantages to which Augustuue was a stranger. His private character was in harmony with his public reputation and position If somewhat severe and irritable, he was at the same tume scrupulously just, truthful, and steadfast; be never deserted a friend or took ao unfair advantage of an antagonist, and on befittiog occasions be conld be cheerful and even facetous among his intrmates. "I bave been a witness of him for sisteen years," says Beza, "and I think I am fully entitled to say that in this naan there was exhibited to all an example of the life aud death of the Christian, such as it will not be easy to depreciatc, such as it wall be difficult to emulate."1 (W, L A.)

CALVISIUS, Sethus (1556-1617), a Gernian astronuuner and chronologer, was born at Groschlcben, ir Thuringia, in 1556 He studied at Helmstidt, where he made great progress in classical hiterature, as woll as in the aciences in which he afterwards became so distuguished. He waa offered-a professorship of mathematics at Frankfort, and afterwards one at Wittenberg, both of which he declined. He agreed, however, to conduct the school of music, established at Pforte,-man office which be afterwards exchanged for a similar situation at Leipsic. At Frankfort he published, in 1585, his Opus Chronologuum, a work compled on astronomical principles. He likewise organized a aystem of chronology. emhodying the history of the world, upon an mgenious and original plan, haghly commended by Casaubon and Scaliger This work, which was strongly condemned in the Index Expurgatornus, has been Irequently reprinted In 1612 Calvisuus published his Etenchus Calendaru Gregorioni, et duplex Calendari melantis forma, in which be attermpts to prove the inadequacy of the Gregorian calendar, and proposes to introduce a new system based upon astronomical principles The only proof now extant of his musical boowledge is his treatise entitled Nelodia condendar ratio. He died at Leipsic in 1617.

[^67]CALYDON (Kaduóuv), an anciant town of mish 73 miles from the sea, on the River Eveous. It was emid bave been founded by Calydon, son of Etolus; to have bate the scene of the hanting, by Meleager ead other herees, of the famous Calydonaa boar, seat by Artemis to lay waste the fields; and to bave taken part in the Trojan war. In bistorical tumes, it is first mentioned (391 b.c.) as itz the possesston of the Acheans, who retained it for twenty years, by the assistance of the Lacedxmunian king Agesilaus, notwithstanding the attacks of the Acarnanians. After the battle of Leuctra (371 B.C.) it was restored by Epamunondas to the Etolans. In the time of Ponipey it was a town of importance; but Augustus removed ats inhabitants to Nicopols, which be founded to connemorato his vetory at Actumen (31 e.c.)
CALYPSO, in Grectan mythology, was a daughter of Oceanus and Tethys, or of Nereus, or of Atlas, and reigned in the mythical island of Ogygia. When Ulysses was shipwrecked on ber shores, Calypso entertaioed the hero with great hospitality; and by the unted antuence of her love and spells, she prevailed on bro to remain and share her honours. Io this manner seven years had been spant, when Llysses was seized with an irresistable disire to revisit his native country. Calypeo tined every experlient. and even the promise of eternal youth, to induce the hero to remain, and when all her efforts bad proved unavailing, and be set satl, grief at his departure occasioned her death. (Hesiod, Theory. 359; Hom, Od. i 50, v. 23, vii. 254; Apollod. 1. 2, § 7.)

CAM, Dtogo, a Portugucse discoverer, of noble birtb. belongng to the latter balif of the 15 th century, is famous for baving carried on, under Alphouso V., the diseoveries in Western africa commenced by Don Heury. He amled round capes Gonçalvez and Catharma, a ad haviog obtaned great intluence xwith the king of Congo, opened up that cualitry for the introduction of Chrstanity. On his first voyage (1454) he was accompanied by Martin Behem, tho astronomer and cosmographer. Subsequently Caw penetrated as far as $22^{\circ} S$ lat.

Camaldulians, Camadunians, or Camaldolites. an order of relighous persous, founded by Rornuald, as Italian, in the hegrming of the IIth century, in the desolate waste of Camaldol, or Carapo Malduli, on the lofty heights of the Apeonnes. Their rule was that of St Benedict. and therr houses were never erected at less than fire leagues from citics. The monks were divided into cenobites and eremites. The Camaldulians, till the close of the 1lth century, were called generally lionualdins; previously, Camal. dulan was a particular natne for those of thedesert Camaldula Guido Grandi (1671-1742), a Camalduhan monk, and mathematicuan to the grand duke of Tuscany, published Camaldulion Dissertations, on the ongin and establishment of this order. Pope Gregory XIII. was a Camaldulian.

CAMARLNA, an ancient city of Sicily, situated on the south coast, near tho mouth of the Hippurss or Fiume di C'amarana, as it is still called. about 20 miles E. of Gela or Terranova. It was originally founded by the Syracusans in the 6tli century b c ., but was shortly afterwards destroyed by the mother city, because it had thrown off its allegrance. Restored in 495 B C. by Hippocrates of Gela, it was again depopulated by Gelon, the conquerer of Syracuse, and did not recerve a permanent establistment till 461 . During the next century the manspring of ths political action was usually antipathy to Syracuse, but on the Athenian invasion it ultumately sent assistance to the beleaguered city. Tho Carthayimians struck a severe blow at its prosperity in the ith century b.c., and in 258 a large part of its inhabitants were sold as alaves by the Roman consuls. The town contioued to exst in the $2 d$ century of the Christian era, and its site is still marked by a considerable mass nf ruins. Mì kíco

TapápAive", "Do not stir Karuarina," a proverb somewhat sqqualent to our alvice to "let well alone," is said to have been originally the answer of the Delphie oracle to the citizens when they consulted as to the draining of a neighbouring lake.
Cambaceres, Jean Jacques Regis de (1753-1824), an eminent French statesman under the first repoblic and the first empire, was born at Montpellier the 18th October 175.3, of an old and distinguished family. Being destined for the profession of law, he began his studies in that lepartment at an early age, and was soon recognized as one of the ablest jurisss in France. And as his legal learning was one of the unain sources of his fame, so it was his chief means of rendering service to his country. Cambuceres was a decided though moderate disciple of the now principles now everywhere diffused in France, and on the assembling of the States-general in 1789 was ehosen as a second representative for the nobility of the district of Monspehier. The right of Montpellier to send a second noble deputy was dispated, and Cambacéres did not sit. But he was a menber of the National Convention in 1792. Foreseeing the vulent courses into which the Convention should be umpellel, Canbacéres, from principle as well as necessity, held aloof, and sought to avoul the perils and excesses of the tume by confining himself to the nentral province of jurst and legislator. The trial of the king, however, compelled him to declare bimself. In the first place, he maintarned that the Convention was not competent to try the king; and when the trial bad been decided on, he insisted that all latitude of defence ought to be accorded to the royal counsel. As to the sentence, he found the king gulty, and worthy of the punishment due to one. who had ronspred against his country; but moved for delay in the execution of it, till peace should be restored, or the French monl invaded. Thas moderation made Cambacéres "suspect" in the eyes of the Mountain, and he confined himself more circumspectly than ever to his proper work of revising and codrifing the new laws. On the downfall of Robespierre in 173.t, he was a leading man in the restoration of a milder regime. He was sometime president of the Conwention, and, subsequently, president of the Committee of Public Safety, in which capacity bo helped to the co..elusion of peace with Prussia and Spain. Under the Directory he again fell under the suspicion of the extreme party, and was obliged to retire from the presidency of the Five Hondred, to which ho had been called. He took no part in the revolution of the lSth Brumairo (9th November 1799), which overturned the Directory and set up the consulate ; but Napoleon hall such confidence in him that the made him second consul. This confidence Cambaeérès continued to enjoy all through the consulate and the enipire. On the cstabiisinnent of the empire ho became grelh-chancellor, being life-president of the Senate, and the seght-land man of Napelicon in the civil administration generally. While loval to his master, his induence was on tho wheld benuegial to France. Ho took an important Gurt in the redaction of the Code Napoiem, tried to dissuade Napoieon from tho murder of the Due d'Enghien and from tho disastrous campaigns of 1812 and 1813, and saly gave in his adbesion to the act of abdication of 181.t when rosistance was manifestly hopeless, while he resumed ofice with eluctanee during the Ihundred Days.

After tho final restoration of Lowis XVIII. in 1815, Cumbaceris again became an object of rersecution, this time as a regicile, and was whligel to retire into Belgiom. A rosal decree of 1818 restored lime to all his civil and political rights, but he dul not again emergo from private life. Ho died in 1824. Cambacires was a great en'"ast to most of the leadiar. men in the stormy dhys of idu levwliton. He was modersie in his opiniuas and in
bis adrocacy of them; ne had a clear, penetrating and luminous understanding; and was a great master of senatorial eloquence. He had been created duke of Parma a 1803, and by this name is sometimes known in history.

CAMBALUC is the na:ne by which, under sundry modifications, the royal city of the Great Khan became known to Eurepe during the Middle Ages, that city being in fact the same that we now know as Peking. The word itself represents the Mongol Kuan-Baligh, "the city of the kban," or emperor, the title by which Peking continues," more or less, to be known to the Mongols and other northern Asiatics.

A city occupying approximately the same site liad been the capital of one of the principalities iuto whinh Cluna was divided some centuries before the Christian era; and during the reigns of the two Tartar dynasties that immediately preéeded the Mongols in Northern China, viz., that of the Khitans, and of the R"in or "Golden" khans, it had been one of their royal residences. Under the names of Yenking, which it received frem the Khitan, and of Chungtu, which it had from the Kin, it helds a conspicuous place in the wars of Chinghiz Khan against the latter dynasty. He captured it in 1215, but it was not till 1264 that it was adopted as the imperial residence in heu of Kara Kormn in the Mongol steppes, by his grandson Kublaï. The latter selected a position a few hundred yards to the N.E of the old city of Changtu or Yenking, where he founded the new city of Tra-tu ("great capital"), called by the Mongols Taílu or Dautu, but also Kaan-brtigh; and from this time dates the use of the latter name as applied to this site.

The new city formed a rectangle, enclosed by a colossal mud-rampart, the longer sides of which ran north and south. These were each about $5 \frac{1}{3}$ English miles in length, the sherter sides $3 \frac{3}{3}$, so that the circuit was upwards of 13 miles. The palace of the khan, with its gardens and lake, itself formed an inner inclosure fronting the soath. There were eleven city gates, viz., three on the south side, always the formal front with the Tartars, and two on each of the other sides; and the streets ran wide and straight from gate to gate (except, of course, where interrupted by the palace-walls), forming an oblong ebess-board plan.

Tatu continued to, be the residence of the emperors tull the fall of the Mongol power (1368). The native dynasty (Ming) which supplanted them established their resid:ace at Nun-king ("Scuth-Court."), but this proved so inconrenient that the second sovereign of the dynasty reoccupred Tatu, giring it then, for the first time, the name of Pe-king ("North-Court"). This was the name in common use when the Jesuits entered Chim towards the ead of the 16th century, and began to send home accurate information abont China. But it is not so new ; the names in ordinary use being King-cheng or King-tu, buth siguifying " capital." The restoration of Cambiluc was commenced in 1409. The size of the city was diminished by the retrenchment of nearly oue-third at the northern end, which brought the enccinte more uearly to a square form. And this constitutes the modern (so-called) "Tartar city" of Peking, the south front of which is identical with the south front of the eity of Kublai. The walls were completed in 1437 . Population gathered about the southern front, probably using the material of the old city of Yenking, and the excrescence so formed was, in 1544 , euclosed by a wall, and called the "outcr eity." It is the same that is nsually called by Europeaus " the Chinese city." The ruins of the retrenched nothern pertion of Kablai's great rarupart are still prominent along their whole extent, so that there is no reora for question as to the position or true dimensions of tho Cambalue of the Midule ages; and it is most probable. indeel it is alnost a necessity, that the present paiter. stands on the lines of kutha's palace.

The city, under the name of Cambanc, was constituted into an archiepiscopal see by Pope Clement V. in 1307, in favuur of the missionary Franciscan Iolin of Montecorvino ; but though some successors were nominated it seems probable that no second anctropolitan ever actually occupied the seat.
Maps of the 16th and lith centuries otten stow Cambaluc in an imagnary region to the north of China, a part of the misconception that bas prevalled regarding Cathay (sce Cnina). The narde is often in popular literature written Cambalu, ané is by Longfellow accented un verse Cámbähá Put this spelling origimates in an accidental error in Rerousio's ltahan version, which, till lately, was the cheif clannel through which Alarco Polo's book was popularly known. The orignal (French) MLSS all agree with the etymology in celling it Cambalue. which slonld be accented Cambáluc.
(п. Y.)

CAMBAY, or Kanbay, a town or Western India, in Guzerat, or the northern division of tho province of Bumbay, and forining the capital of the native state of the same name, which bas an area of about 350 square miles, and a population of about. 175,000 . It is situated on the liver Mahi, at the upler part of the Gulf of Cambay, 230 mbles N of Bumbay, in $22^{\circ} 18^{\prime}$ N. lat. and $79^{\circ} 39^{\prime}$ E. long. It is supposed to be the Comenes of Ptolemy, and was formerly a very flourishing city, the seat of an extensive trade, and celcbrated for its manufactures of salk, chintz, and golll stuffs; but owing. princinally to the gradually increasios difficulty of access by water, its commerce has long since fallen away, and tho town bas become poor and dilapilated. The tides rise upwards of 30 fcet, and at bigh water ships anchor near the cown. The trade is cbiefly confined to the export of cotton. The town is celebrated for its agates and carnelians, which are wrought into a variety of trinkets of reputation principally in Cbina. The bouses in many instances are built of stone (a circumstance wirich indicates the former wealth of the city, as the material had to bo brought from a very considerable distance); and a brick wall, three miles in circumference, surrounds the town, enclosing four large reservoirs of good water and three bazaars. To the south east there are very extensive ruins of subterrauean temples and other buildings balf.buried in the sand by which the ancient town was overwbelmed. These temples belong to the Jains, and contain two rassive statues of their deities, the one black, the other white. The frincipal one, as the inscription intimates, is Iariswanath, or Parswanatha, earved io the reign of the Emperge Akbar; the black on has the date of 1651 inscribed. It is supposed that Cambay about the 5th century was the cipital of the Hindu emperors of Western India. Io 1780 t was taken pinssession of by the army of General Gnddard, was restored to the Mahrattas in 1783, and was afterwerds ceded to the Britisb by the Peishow under the treaty of sen3. The mawab, who is one of the 153 feudatory princes of Sritish India by Sunnud or patent, pays $£ 5876$ of annual tribute to the viceroy of lndia from bis revenue of $\pm 35,000$. His military establishment consists of 800 horse and foot, who are employed indiscriminately in revenue, piliec, and miscellaneous duties; and a few pieces of orinance complete his resources.

The Gclf of Cambay, which is shallow and abounds in shoals and sand-bants, penetrates the coast of ludia for about 80 miles. It is supposed that the depth of water in this gulf has been decreasing for more than two cen turies past. The tides, which are very bigh, wo into it with amazing velocity, but at low water the bottom is loft nearly dry for some distance below the latitude of the town of Cambay. It is, however, an important inlat, being the channel by which the valuable produce of central Guzerat and the British districts of Ahmedabad and Broach is
exported; but the rallway tron Bombay to Baroda ane Ahnedabad, near Cambay, is gradually attracting the tradr. to itself. The gulf extends between 21° and $22^{\circ} 10^{\circ} \mathrm{N}$. lat., and $71^{\circ} 50^{\circ}$ and $79^{\circ} 40^{\circ} \mathrm{E}$. long.

CAMBERT, lionert ($1628-1677$), the earlicst composen of French operas, was born at Paris in 1628, His master for the clavecin, and probably also for composition, was Chanbounieres. He was organist of the echurch of St Honore, and alsu beld the office of musical superintendent to Queen Anne of Austria, mother of Louis XIV. His carler works, the words of which were furnished by the Abbe Perrin, continued to be performed before the court at Vincennes, till the death of bis patron Cardinal Mazarin. Displeased at his subsequent neglect, aud jealuus of the favour shome to Lulli, who was musical superintendent to the bing, be went, in 1673, to Loudon, where be was appointed suon after bis arrival master of the baud to Cbarles 1i. Onc at least of his operas, P'omone, was performed in London under his direction, but it did not suit the popular tastc. Ilis principal operatic pieces were entitled Aradue ou les Amours de Bacchus, Pomone, and Les Peines et les Ilaisirs de l'Amour. Cambert died in London ahout 1677.

CAMBODIA, more properly Camboja, or liamboja, a very ancient k ingdom of South-eastern A sia, still subsisting in decay. As now limited the territory of Camboja fornis a rough parallelogram, consisting in large part of alluvial plain, lying athwart the lower course of the Mekong or Great Camboja River, just above the Delta. The greatest length of the territory runs from W. to E., covering a little more than 32° of longitude, vir., from about 103° E. long. to $106^{2} 40^{\prime 2}$. The mean breadth from S. to N . is a little over 2° of latitude, extending on the western coast from $10^{\circ} 30^{\prime} \mathrm{N}$. lat. to $11^{\circ} 45^{\prime}$, and on the little known eastero frontier from about $11^{\circ} 35^{\prime}$ to $13^{\circ} 40^{\prime}$. On tho N. it is bounded by provinces which the Siamese have wrested from Cambija; Qn the E. by Cochin-Chinese territory ; on the S. by the Delta Provinces Girst taken by Cochio China from Camboja, and then by the French from Cochin China; on the W. by the Gulf of Siam, along which it estends for 200 miles, now its only scaboard.

Batb the etbnology and tho early bistory of Camboja pratake of the obscurity that hangs over Indo-China generally. But traditions of the ancient grandeur of the bingdom are borno out by the recent exploration of numerous architectural remains of extraordinary extent and magnificence within its former haits. Some important notices are found in Chineso annals, and moro information is to be exjected when numerous existifg inscriptions shall havo been successfully interproted.

The namo given by the people of Camboja to their orn race is khmér, a name which was known and used by carly Arab voyagers and geographers under the form Komar, and noted by them as a country famous for aloeswood; it bas, however, been imbroiled.'in inuch confusion botb by them and by their commentators. There is a persistent and apparently well-fouuded tradition among the Kbmer, that before their own immigration, as they say from the vorth, the Tsiam or Champa race were in possession of the soil, whilst the Khmer themselves seem to have preceded the descent of the Thai race, to which the people of Siam and Laos belong.

Local written legends again appear to speak of tro early immigrations from Gangetic ludia. We know that the Pali-Buddbistica! anoals of Ceylon record that at the conclusion of the third great syriod of the Buddhist church, beld at Palibothra, in the year 302 after Puddha (corresponding, according to ordinary Ceslonese reckoning, to 241 b.c., but as corrected by Professar Mas Miller to 175 日.c.), a mission was despatched to the region of

Savarna-Bhumi-r.e., Aurea-Regio or Chryse; and this record may have been the real basis of the earlier Cambojan tradition. 'But it must not be forgotten that in Ptolemy's map of the Indo-Chinese coast are found many Sanskrit names. indicating the existence of Hindu settlements at least as carly as the lst century of our cra. The name of Kiamboja, though in later days we find it subjected to fantastic charade-making after the Clinese fashion of etymology, ${ }^{\text {b }}$ appears to be simply the transfer of a name fameus in old Indian literature as that of a race and regien on the N.W. of the Panjâb, in or near the present Chitrâl. Such transfers were common, and many survive in Indo. Chinese nse or memory to this day. ${ }^{2}$
It is a singular circumstance that some of the Cambojan legends collected by Bastian-indications of which were also recorded by missionaries two centuries ago-bring the sccond Indian immigration from a western region called Rom or Rona-visei. This will be noticed again. v

Like other Indo-Cuinese states Camboja possesses written annals; but these do not commence till 1346 A.D. Hence they only take up the history of the kingdom when its power, and perhaps its civilization, were already past their climax.

From the Chinese annals odder information is obtained. These mention, under the name of $F_{i} i-n a n$, and as early as the 12 th century b.c., a kingdem embracing what afterwards became Cambeja; and the Emperor Hiao-wuti of the Han dynasty is alleged to have made Funan tributary, along with adjoining countries, circa 125 b.c. Some two centuries later the same annals place an immigration under a furcign prince, whe became the founder of a dynasty, and is perhaps to be identified with the Indian leader of the native legends. The fourth king of this dymasty-say in the latter part of the 2 d century-makes exteusive cenquests over the adjoining kingdoms and coasts, and takes the name of Tawang ("great king"), probably a translation of the Indian title Maha-raja, which reappears some centuries later in Arab narratives as that of the king of the Isles. It is alleged, too, at this time, that the people of Tu-tsin, i.e., of the Roman empire, including Western Asia, frequented the ports of Funan for trade. This circumstance is highly probable when we consider that Ptolemy attests such voyages as having been made at least occasionally, in the lst or 2 d century, whilst the Arab narratives show that they wore habitualin the 9th.
Cambejan legend, like that of nearly all the Indo-Chinese countries, couples the introduction of Buddhism (perhaps rather its re-introduction) with the name of Buddhagbosha. Hewever that may be, it is about the 1000 th year of Buddha (i.e., according to the ordinary calculation 457 a.D.), and near the date usually assigned to Buddhaghosha, that the traditions place a great king, Phutamma Sürivong, i.e, Padma Suryavansi; and it is at this epoch of the 5th and 6th centurics that Garnicr is inclined to place the great kings, who ware the founders of the older architectural menuments. Fergusson weuld place these several centuries later, but the whele subject of their chrenology is as yet too obscure. From about this time the kingdom is known in Chinese records as Chinla, and to these days of splendour may be referred an old Chinese proverbial saying, " Rich as Chinla." It appears long to have ruled over the valley of the Menam (since the 14th century the seat of Siamese

[^68]monarchy), and perhaps at one time to the shores of the Bay of Bengal. In the reign of Prakrama Bahu of Ceylon (ll55 A.D.) we hear, in the annals of that island, of bis intercuurse with Camboja (Jour. As. Soc. Bengal, vol xli. p. 198).

A very remarkable account of Chinla or Camboja, by an envey sent from Peking shortly after the death of Kublai Khan (viz., in 1295-1297), has been translated by AbelRemusat, and affords us a strange peep into the midst of a civilization now in the profoundest decay. The accuracy of his details regarding topegraphy and surviving monuments of architecture attests the writer's trathfulness. The court and capital are described as very splendid, whilst (as in all Indo-Chinese countries) some traits of the deepest barbarism in manncrs show themselves. The kingdom possessed many fortificd cities; but its power was already in decline, for it had not long before suffered from one of those invasions of the Thai which have ever since been wearing it away. Again and again such invasions and temperary occupation were repeated, especially after the foundation of the Siamese monarchy ly another branch of the Thai in 1350.
The Portuguese found their way to Camboja not long after the conquest of Malacea, and the kingdom still retained a good deal of the shell of its old splendour. Yet its native ferce appears by this time to have been in reality almost burnt out; and towards the end of the 16 th century the land swarmed rith foreign adventurers, both European and Asiatic, among the latter of whem Japanese were prominent. At the instigation of some of these adventurers we find the Spanish autherities at Manilla (1594159S) engaging in " fillibustering " expeditions to Camboja, with little result. Somewhat later the Portuguese had factorics in the country, and then the Dutch (1635). Notices of English trade with Camboja appear as early as 1616. In 1641 Gerard van Wusthoff of the Dutch factory conducted a remarkable expedition up the Great River to Viencbang, the capital of one of the Laos states, about 1000 miles from the sea,-a feat never repeated till the French mission of 1866-68. In 1 f43 Mynbeer Regemortis, envoy from Batavia, with all the Europeans of the factory, on his way to court. were assassinated under Portuguese instigation, and this put a discreditable and too characteristic end to the official relations of Europeans with Camboja. The English established a factory at Pulo Cendere, a group of islands off the coast of the Cambojan delta in 1702, but this also came to a speedy end in the massacre of its members by the Macassar sepoys of the garrison. The first missionary whn entered Camboja was Gaspar da Cruz, a Dominican, in 1555. Ile has left some curieus particulars which are given by Purchas.
Camboja continued to be ground between the two millstones of Siam and the now rising kingdom of CochinChina. The former about 1600.annexed large tracts on the N.W., augmented a century later, and again in 1810-12, by seizures which embraced the districts adjoining the Great Lake, at the very heart of the old monarcly; the latter in the middle of the last century absorbed the whele of the Delta; and Caminga was thus reduced to its present narrow limits. In $18: 6$ a king was enthroncd under the joint investiture of Siam and Cochin-China. The French invasion of the Anamite provinces in the Delta took place in 1859, and these were formally ceded in 1862. Meantime Camboja seemed about to be finally swallowed up by Siam. It was manifest, hewever, that the prospects of the new French passession would be materially restricted if all above the Deita were Sianese; and France began to claim the claracter of protector of Camboja. In 1864 the king, Morodam, was solemnly crowned in the presence of a French and of a Siamese representative; and a treaty was
coucluded, placing the kingdom formally under joint protection of those two powers, but practically of France. The presence of a Siamese resident at the court ceased; and thus a reprieve at least was given to this ancient monarchy.

Capitals and Serports.-The ancient capital of Camboja in its splendour was Angkor, of which we shall speak below, abandoned in consequence of its exposure to Siamese aggression in 1388, but briefly reoccupied in 1437. In 1388 the court moved to Basan or Boribun, on the S.W. shore of the lake, and a few years later to P'nompenh, rorruptly in some tooks called Calompe, at the conluence of the outlet of the Great Lake with the Mekong. This appears to be the place named by some of the old writers Chordamuco. About 1528 it was established at Lovek (called by Valentijn Eauweh), near the west side of the issue from the lake; thea at Puntenang or Pontaipret opposite Lovek. dong, a few miles north of the confluence, became the capital in 1739, and so continued down to 1866 , when it was again transferred to P'oompenl. The chicf port of foreign trade in the 17 th century was Potaimat, called by foreiguers Ponteamas, replaced afterwards by Kangkao or Atien on the same bay. But both were in the territory taken by the Cochin-Cbinese, and now French. Since the aanexations by Siam and Anam Camboja las only one port, Kampot. The trade is chiefly in Chinese bands. Between this and the rich alluvial tract round the capitals a bigh range of bills has to be passed, but there is a cart road the whole way to P'nompenh.
Chief Geographical Fealures.-The great river Mekong, knowa also as the Camboja River, a name bestowed when its delta yet belonged to Canboja, flows through the existing territory for ebout 250 miles, from N.E to S.W. This river as a whole will be better dealt with elsewhere (see Nekong). The nest main feature of the present limited territory is the "Great Lake," as it is called by the CochinChinese (Bienhoa), or "Freshwater Lako" of the Cambojans (Tale-Sab), -by the Malays styled the Lake of Sri Rima. This lake is of the nature of those sheets of water which in Bengal are called jhils, viz., a shallow depression in an alluvial plain, retaining a part of the annual overflow of the rivers throughout the year, and hence subject to great variations in depth and extent In the rains it is said to bave a length of about 100 miles (N.W. to S.E.) with a breadth of one-third as much. Its average depth in the dry season is only 4 feet. The Udong River, communicating between the lake and the Mckong, fills a channel of great breadth. Its waters change their direction balf-yearly, from June to December filling the lake from the Mekong, and from December to Junc draining the lake into the Mekong. The lake is an object of superstitious regard to the people, and the fisbery therein is the most important event in their annual life. It is carried on in the dry season, during which time extensive pile-villages are erocted in the lake; where the drying and salting of the fish is carried on. The dried fish is exported largely to Cochin China, as well as live fish in cages. Mucb also is converted into oil.

Natural Productions and Exports. - The elephane may he regarded as the characteristic animal of Camboja. Wild herds are numerous, and frequent the shores of the lake in the dry scason. The tamed animals are hy no means so well trained as in Iudia, but they are the chief beasts of burden, and a few years ago did not cost more than $\mathfrak{£ 1 0}$ or $\mathfrak{L} 12$. The rhinoceros also abounds (the species we do not find stated) about the foot of the mountains nurth of the lake. Strong and bandsome ponics are bred, much in demand at Bangkok. Among wild enimals there are said to be three species of vild cattle.

The Chinese envoy of 1295-97 mentions among Cambojan exports rbinoceros' horns, gamboge, cardamoms, and
eagle-wood; and these are still aniong the most characteristic. Though the gum called gamboge derives its name from Camboja, and is chiefly supplied by that country, the tree (Garcinia Morella) does not appear to have been seen in its native localities by any botanist. Dr Thorel, of the French expedition: indicates its babitat as in the N.W. of the old Cambojan territory, about Korat, now subject tu Siam. The cardamoms (Antomum villosum, Louveiro) aro produced in the mountains not far from the lake. Eugle. wood (or Aloes-wood) appears to be the result of disease; forming internal cavities in the soft white wood of Aqui. laria agallocka, and is obtained by splitting the tree,--its probatile existence in any tree being recognized by indica. tions knowa to the collectors. It is now found chiefly near the coast of the Gulf of Siam, about Chantibun (now Siamese), and is said to be common in the islaud of Kotran, or Pbukok, of Kampot. The names eagle-wood, agila, \&c., are corruptions from the Sanskrit Aguru, and have nothing to do with eagles.
Other vegetable products are nutmeg, liquerice, caout. chouc aad gutta-pereha, tobaceo, sapan-wood, pepper, rice, cotton, sc., with beazoin from the Upper Mekong. Additional exports of sorts are hides and horns, tortoise-shell, lac, ivory, and dried elephant Hesh. Iron of excellent quality is smelted and wrought by some of the bill tribes.
Pcople, Government, and Language.-Of the numerous wild, or we should rather say illiterate, tribes on the borders of the Cambojan plain, and still imperfectly known, we cannot speat in our limited space. The Cambojans proper, or Khmér, differ much from both Siamese and Cochin-Chinese. They are described as tall, well and strongly made, showing less of Mongoloid feature than any of the better kaown nations of Indo-China; good-matured but apathetic, and leaving all the trouble and gains of trade to Chinese, Anamites, and Malays. Their religion is Buddhism of the usual Indo Chinese type. But like the other races of that region they eall in the devil-dancing medicine. man in illncss. They cut the hair short, leaving a top-tuft, and wear the langutit, or loin-cloth, tucked between the legs, using that Hindu name for it.
There are some 2000 Roman Catholic Christians in the country, and some considerable nuniber of Malay and Tsiam Mahometans. The Malays are chietly on the coast, and claim to be very ancient settlers.
The government is an absolute monarehy, after the usual Indo Chinese kind, with a second king or eeresar, the Yrua. râja of ancient India, known by a corruption of that title.
The language is placed by the late Mr Lugan in his "Mon Anam." class. But it appears to differ materially from the Anamite, as well as from other purely monosyllabic languages of Indo China. These, like the Chinese, employ a variety of so-called tones, or inflexions of voice, by which different meanings of the same monosyllable are discriminated, 一the Anamite having six such tunes. The Cambojian is without these, being spoken, as a missionary expresses it, recto tono. The mumeration is stated by Garnier to present traces of a quinary system, but the vocalulary which he gives hardly confirms this. The leters are an ornamental form of the Pali, which bas been the foundation of all the Indo Chinese alphabets. An older form, illegible to the modern priests, is used in the inscriptions.
Architcctural Antiquitics. As already indicated, these are of the bighest importance and interest. They are found in some forty or more known localities, and some as far north as Suren in the Korat district, now Siamess ($14^{\circ} 47^{\prime} \mathrm{N} . \mathrm{lat}$.) Indeed the inost important remains are all in what is now Siamese territory, north of the Great Lake. The remains embrace walled cities of large extont; palaces and temples, stupendous in scale and rich in design. and often most claborately decorated with long galleries of
storied bes-reliefs; artificial lakea enclosed by walis of cut stone ; stone bridges of extraordinary design and excellent execution; elaborate embanked higkrvays acrosz the alluvial Hats, \&c. Were it possible to reconcile the geography, shey would almost justify the extravagant fictions of Mendez Pinto regarding the palaces and temples of Timplan and Timagogo.

About fifteen miles north of the lake, buried in forest, is the ancient capital, commonly called Angkor or $\begin{aligned} & \text { Wakhon }\end{aligned}$ (both corruptions of the Indian Nagara) 7\%om, or "the Great City," the proper old name of "wich was Inthopata. Guri, i.e., Indraprasthapuri, after the capital of the Pandus in the ancient India of the Mahthlarat. Mouhot and Thomson have by some misapprebension greatly esaggeratod its size; but its walls do in fact form a quadrangle of nearly $8 \frac{1}{2}$ miles in circuit and 30 feet in beight, surrounded by a very wide ditch. There are five gates (troo on the east), 'of very grandiose though fantastie architecture. About five miles south of the city is the great temple called Nakhon Wat, i.e., " the city monastery," one of the most extraordinary architectural relies in the world.

This also is enclosel ly a quadrangular wall of 3860 yards in compass, outside of which is a wide ditcb. We cannot attempt to describe this edifice wath its corridors, seulptures, and towers rising to 180 reet and upwards. Much in the detail is Indian; much that is but obseurely traced as yet in India connects itsedf with other remains in Indo-Cbina and in Java; much again is unique. One remarkable point is the Roman-Doric character of the enriched pilasters which form a feature [requently recurring; this, too, has parallels, though not quite so striking, in Coylon and in medixal Burmese remains.

Sorne remarkable features of the Camboja monuments are distinctly mentioned in the Chinese medieval narrative, but there is apparently no notice of the Nakhon Wat. If force is to be attached to this omission, it will indicato the date of that building as between 1296 and 1352, the date of the first great Siameso iovasion. We are not yet in a position to say with certainty to what worship they were dedicated, though inclining to the view of Garnier, who regards them as belonging to Buddbism, the still existing worship of the nation; and some of the temples are certainly Buddhist. Mr Fergusson dissents, and regards the great temples as monuments of serpent-worship,-though admitting doubt.
'lhough the existence of these remarkable ruins bad been quite forgotten till what may be called their rediscovery, of which the first distinct account was given by M. Mouhot in 1859, they had been known to some of the early Jesuit missionaries, who speak of their " diseovery in $1570^{\circ}{ }^{\prime \prime}$ - and a notice of them from such a source will be foundin Yedler's Universal Lexicon under "Cambodscba" (1733) Fi: Father Ribadeneyra (1601) says a legend ascribed the erection to Alexsnder the Great. This must have originated with the Malays, among whom Iskandar and the "Alexander Saga" were familiar and popular. And to the same communication may perhaps he duo that strange introduction of Rome into the legendary history. This would then be Rome in its Mussulman sense,-Ram-i.e., Greeeo or Turkey.
-Sea Garnier, Voyage d' Exploration en Indo-Chine, Paris; Cortam. vert et de Rosny, Tableau de la Cochin-Chine, Paris 1862; Bastian, Reise ii. and iv. ; Moubot'a Travels, 1864 ; The Philippine Istands, \&c., by Antonia de Morga, Hakhyt Soc. 1868 ; Cambodua anl its Races, Dy G. Thomson; Antiquitics of Cambodia, by J. Thomson; Fergasson's Hist. of Architecture, vol. is., and Trce and Serpent Worship; Crawfurd's Mimion to Sirm and Cochin.Chima; AbelRémusat, Nouv. Afelener's Asiat. vol. i. 100; Culcrder of Shate-lapers, Eust Indics, 1862 ; l'urchas, vol. iii., Sc.
(H. Y.)

CAMBORNE, a small town in the county of Cornwall, about 13 miles by rail $\mathrm{S} . \mathrm{W}$, of Truro. It is a neatly built
place, and stands in the immediate neighoourhood of some of the most productive tin and copper mines in the county, which afford employment to most of the inhabitante. It has a handsome parish chureh, in the later Gothe style, restored in 1862 . Population in 1871, 7757.

CAMBRAY, in German Kamerik, or Kambryk, a fortified tom of France, in the department of Nord situated on the right bank of the Scheldt, 32 mules S of Lille, in $50^{\circ} 10^{\circ} \mathrm{N}$. lat. and $3^{\circ} 14^{\prime} \mathrm{E}$ long. It is well built, contains a large number of ancient gabled bouses,' and is surrounded by strong walls flanked with round towers. The principal building is the Cathedral of St Scpulchre, vccupying the site of an earler structure, mbich was gratly damaged during the Frencb Revolution, and suffercd still more severely from a couflagration in 1859. It stall contains a monument by David to the memory of Fénelou, but the tomb in which the archbishop was huned was broken open in 1793, and his coffin melted idtu hullets. Of the old archicpiscopal palace the only thing left is a Renaissance portal ; and the archbishop now has his residence in what was formerly the convent of the Benedictines. Besides these may he inentioned the church of St Gery, and the belfry of St Martio ; the town-house, dating Irom 1873; the citadel; and the publie library, containing upwards of 35,000 volumes, in what was formerly the church of the bospital of St Julin. Cambray is the chief torn of an arron ssement, and bas judicial and commercial tribunals r sefirst instance. A college, two theological seminaries, a medical school, and a scbool of design are its chief educational establishmenta; it has also rarious learned societies. The town bas long been famons for its manufacture of fine muslin, to which it gave the name Cambric ; and it also contains manufactories of cotton cloth, lace, and thread, as well as sugar-factories, oil refineries, distillerjes, breweries, and other industrial establishments. Its trade consists of grain, wine, hemp, hops, cattle, butter, and coal. The Selieldt begins to be navigable at the town, and communicates with St Quentin by means of a canal. Population in $1872,22,897$.

Cambray is the ancient Nervian town of Camaracum, which is first mentioned in the Antonine ltinerary. In the 5 th century it was the capital of the Frankish king Ragnachar. Fortified by Charle. magne, it was captured and pillaged by the Normans in 870 , and unsuccessfully besieged by the llungriana in 953 During the 10 lh , 11 th, and 12 th centuries it was the scepe of frequent hostilities betreen the bishop and Lis supporters on the one hand and the citizens on the other; but the latter ultimately effected their inde. pendence. In 1478 Louis X ! , who had obtained possession of the town on the death of the last duke of Burgundy, handed it over to the emperor, and in the $16 \mathrm{th}_{\mathrm{h}}$ century Charles the Fifth caused it te be fortified with a stroug citadel, for the erection of which the castles of Cavillers, Escandœuyres, and manyothers were demolished. From that date to the peace of Nimeguen, which assigned it to France, it frequently passed from hand to tand by capture or treaty. In 1793 it was besieged in vain ly the Austrians. The Langue of Cambray is the name given to the alliance of Pope Julius II, Lonis X!l., Marimilian 1., and Ferdinand the Catholic against the Venetians is 1503; and the Peace of Cambray, or as it is also cnlled, the Ladies. Peace, was concluled in the town by lonise of Sacoy, mother of Francis 1., and Dlargaret of Austria, ount of Charles $V_{\text {. }}$, in name of these monarchs. The bishopric of Cambray dates from the 5th century, and it was erected in 1559 into an archbishopric, which continued till the Revolution, and has since been restorel. The bishops received the title of comat from the Emperor Henry l., and in 1510 sere raised to the dignity of dukes, their tertitory including, beside the tuwn itself, the distict called Canbresis.

CAMBRIDGE, Cousty or, one of the smaller English counties, belonging to the South Midland disision of Eogland, is about 45 miles in length and 30 in breadth. It comprises 17 hundreds, and the boroughs of Cambridge and Wisbeach. There are in the county, which is embraced within the diocese of $\mathrm{Ety}, 172$ parishes and townships, besides pats of parishes. It contains, according to the census of $188^{\circ} 1,524,926$ statute acres. It is divided by the old course of the River Ouse into Carmbridge proper and the

Isle of Ely. Until the year 1857 the Isle of Ely was practically a cuunty palatine, like the county palatine of Chester and the bishopric of Durbara, a distinct enclosure within the county. The liberty of the Isle of Ely bas ats court of quarter sessions, a separate commission of the peace, and its own county rate. The county, which is purely agricultural, and for the most part arable, presents a vast laud expanse, with little that is picturesque and with no elamss to fine scenery, but imposing to the summer tourst by the frequent pollarded watercourses, the heavy crops of grain, and the ummense. dome of sky.

Cambridgeshire evidently opce formed part of the country of the Iceni. The Icenhilde, always a British way, and never a via strata, was most probably derived from the same root. The country is neh in Roman roads and other remains, and sume of the Roman roads were doubtless formed on old British rracks. (For the ancient roads consult Professor Babington's Monograph.) Cambridgestire becarme a dependency of the kingdoa of East Anglia. It was moluded in the Danelagh, though how far it was colonized by Northmen is uncertain. Accordiug to Hevry of Huntingdon, in the war agaust the Danes, when the English fled the men of Cambridgeshire resisted most manfully. During the period of the Conquest, the slege and capture of the Isle of Ely is the most jemarkable event, the sea country was the last that yuelded to the Conqueror, and the balf-legendary Hereward is the last English bero of the conflict. In the time of Steplen, in the time of John, and in the time of the Barons' War in the reign of Henry III., the Isle of Ely emerges repeatedly into notlce. The splendid foundations of Etheldreda and her sister, with tho rising colleges of the unversity of Cambridge, drew pilgrims to the distruct from all parts of the cenutry. In the Civil War Cambridgeshire belonged to the associated counties, and had no actual share in the conflict. Cromvell possessed a considerable estate in the Isle of Ely, and lired in tho rectory house of Ely till elected member for Cambridge. He became governor of Ely, and his son Henry died in the neighbourhood (Carlyle's Cromwell). King Charles, after his scizure at Holdenby, was brought to Childerly near Cambridge, and was taken thence to Newmarket, near which the Parliamentary army was encamped under Fairfax and Cromwell.

The drainage of the Cambridgeshire fens forms one of the most remarkable chapters of the industrial history of the country. All the northern portion of the county, at the junction of the counties of Lincoln, Huntingdon, Cambridge, and Norfolk, is part of the vast district known as the Great Level of the Fens. A large province of 680,000 acres of the richest land in England has been reclaimed from the sea and preserved by continual watchfulness, as completely as is the case in the opposite kingdom of Holland. The great works which dave reclaimed the land were mainly due to Cornelius Yermuyden, the Dutchman, knighted by Charles I., and the Dutch and Flemings be employed, and in more recent times to James Rennie, the eminent enginecr. The chief promoters were five successive earls of Bedford, who have given their name to the great Bedford Level. From the earliest times, however, there bad been conflicts between the encroaching waters and the inhabitants of the invaded shores. The Romans, who left few great works unattempted, reclaimed much of the rich silt and soil deposited on the shores of the Wash, and constructed tze immense drainage work known as the Carr (Fen) Dyke. They also carried causeways over the fen country. Much of the Roman work seems to have lapsed into the "great dismal swamp," caused by the silting up of the outfalls of rivers. and the mingling of the tides with. the upland waters. The submergod territory seems
originally to have been rich meadow and forest land, and it receires the river deposits of suil from eight counties, the causes of the great and abiding fertility. All this region then formed an immense estuary, the Wash, or rather a large lake, communicating by shifting channels with the sea. The more elevated gronnds were called islands, whose isolation sometimes invited the founders of religrous edifices, and sometimes those withont the pale of the law. The whole country from Casubridge to Lincoln was a morass abounding with fish and fowl, and all the seattcred habitations of the fenmen were Lable to be swept away by sudden storms.

The monasteries and the bishops of Ely did good work in the reclamation of lands. Morton's Learn was a canal made by Bishop Morton of forty miles from Peterborough to the sea, which draned the North Jievel. After the dissolution of the monasteries the work fell into abeyance until renewed by Cornelius Vermusden. The fenmen vehemently opposed his plans, and Oliver Cromwell, the member for Cambridge, put bimself at their head and succeeded in stopping all the operatious. When be became protector, howerer, be sanctioned Vermusden's plans, and Scotch prisoners taken at Dunbar, and Dutch prisoners taken by Blake in his victory over Van Tromp, were employed as the workers. Much valuable land was reclamed, and the fen country altogether improved. There remaned, however, very much to be done. Vermuyden's system was exclusively Dutch; and while perfectly suited to Holland it did not meet all the necessities of East Anglia. He confined his attention almost exclusively to the inland draining and embankments, and did not provide sufficient out-let for the waters themselves into the sca. So late as 1810 there were districts in which people reaped their harvest, and gathered their orchard frusts, and went to church, in boats. Rennie pouted out the truc scuentific principle that a thorough drainage cuuld only be effected by cutting down the outfall to low water at spring tides, and so facilitating the escape of the waters. He projected a grest system of dranage and provided a more'effectunl outfall of the Ouse into the Wash. His work was mproved and extended by Telford.

Throughout the present century great improvements of all kinds have been carried on. The surplus waters wero formerly pumped into the rivers and canals by windmills; but this could not be counted on as an intariable force, and steam-mills are generally substituted. Dykes, causeways, sluices, and drains were now cut in every direction. All the rivers of Cambridgeshire which formerly found their outlet at Wisbeach, before the channel was choked up, now mainly by cuts and straightenings, have forsaker. their old beds and aro poured into the sea by artificiel streams, like the Bodford rivers into the German Ocean.

It will be interesting to enumerate the onginal wourses of the streams; it is not always easy to decipher the natural channels. The chicf ricers are the Nene and the Ouse, with its tributary streams. The Nene on arrixing at Peterborough turned to the right, and making a circuit of several meres passed by March to Wisbeach. It is now made to flow into three chanuels. One arm is the Cats. water or Shire Drain, which meets Morton Lcam and flows into the Wash; the escond arm is Whittlesey Dyke, or the old Neno river ; the third is Morton's Leam. Tho Greas Ouse enters the Fens near Earith, where it formerly forked; one branch. ultimately juined the Nene; the other branch was called the West Water, and ultimately joined the main channcl of the Nenc. Both the channela are now nearly closed to the waters of the Otuse, and are carried by the Bedford rivers in a direct line to Denver, where they meet the channel of the Little Ouse. and 50
seach the sea at King's Lynn ${ }^{-}$The Cam or Granta, formed by the function of some small Essex streams. Hows N N E. from Cambridge, changing ats name on Ouse three miles from Cly, out astead of Howng ante the sea at Wisbeach as carron on w henver and thenesto the seas at Lymm The Lark for shven males separates Cambridestare from : ulfulk, aud the Linont, a teeter of the Luk, also serves as a boundary streim lis auotber stretch of seven miles.

All the nerthern part of Cambridgeshire, the fen country. is covered with alluval deposite esexing on a bed of chay il great but unknewn thechess these are called she Kiomeridge and Oxturd clavs, the Jxturd clay ving belon the Kimmeridge There is wobeak ol :ununinty between them, they are only distugushed by we eaboded 4 isols above the clay There ly a depusit ot peat of cartable thickness. thit generally very drep Suutb and eat the Fens are bordered by a narruw belt of Kimmeridee clay. beyond wheh is a strip of luwer and then of appingruan sard, and beyond this. III the suutbern division if the country, we have the chalk In the ten country there are great masses of gravel sand and dralt-clay "W. can trace the rise of the fen lands througt the deposis of linnt fluods, and the growth of fuel bug, "Professur Sedgwick) Besides these regular formatu,ns aod deposits Cambrideeshare contains much diluvi.il deposit, not to be accounted for by land-tloods or udes and currents. but belonging to the glacial permd The uplands or an-ealled "highlands " of Cambridgestrre are level but broken by low chalk hilts in the neighbourbood of Esses and Suttulk The chalk is in two dirisions, - upper with 甘ints. Iower without fints At the foot of the lills the lower bed of chalk has been extensively quarried. and mucb elaborate sculpture in Ely Cathedral has been formed of it The thin upper greensand below the lower chalk rests on gault. This formation everywhere constitutes the northern border of the chalk, and in the western portion of the country forms rich, well-wooded soll. The gault is the blue brick earth of Cambridge, and has a thickness of 150 feet Professor Sedgonck has given a careful account of the fossils found in these formations, and there is an ample collection of examples in the Woodivardian Museum In deep diggings in the fen tands, and in excavations for buildings in Cambndge gravel, remaus are discovered of the wolf, bear, horse, and bos primigenius. Ditunal beds of loam mixed with fragments of chalk excend into the parts of Cambridgeshire adjaceat to Essex and Suffolk. Along the uregular line separating Cambridgeshure from these counties the iron-sand which uaderles the gault ises to the surtace It forms excellent garden ground. and is rich in fragments of mineralized wood (Conybeare and Phillip's Geology of England and Wales). Cambndgeshure ss one of the chief com-produciag counties. A part of the county near the south-west border was formerly called the Dauries, and large dairy farms are still found producing cheese rery simular to the best Stition. The census of 1871 returned 25 per ceat. of the maie population as agricultural labourers, farmservants, and shepherds. Although the county is entirely agricultural, mainly arable, with some wheat and pasture crops, many busy trades are also carmed on,-brewng and maling, brack-making, bue-burning. There is a great deal of boat-buiding, and there are many scamen employed on the naverable cuts. The chmate of the county as generally heatiny, but at would be premature to say that ague is altogether baushed from the fen country.

Some refcrence has already bcen made to the British and Roman astiquties. There are some remans of Roman camps; a few only of Norman castles. In the snuthern part of she county are four great dykes. They once formed the ow, \% ' ury between East Anglia and Mercia; cach estended
from fen land to woosea connury, crossing the opeu intervening space The chref of these fosses was the Devil a Ditch, another was the Fleam or Balsham [yke. the otbers were the ditehes of Breat and Bran All these wero most probably of Britisb origin The county of Cambridge is rich in churches, esperially in Ely and Cambrige and their neightourtouds We bave abundant examples of Pre-Norman. Norman, Early Englash. Decorated Perpen. dicular at Ely there are some valuable monastic remains. The iamous Abtey of Tburney is waly represeated by carmus foundations. and a fraguent of the atibey chureb. "huch bas been worbed into the present grash shureb Of tumestic arcbitecture there are very shight remains in one or two mauur buluses, and some remans of the Ephscopal patace at Duswabin The moderri architectural efoits nuy well compret what thase of any tormer ye

Thungb Cambraje ta the county tona. Eis is the one city ot Cambridgeshire It derivedits oame trum the abundance of the eats which were luand there ft wis situated on the largest of the islands that rose above the level of the F ens, which in winter were surrounded by water and wereonly accessible by certain passes or gates (See ELY) The uther Cambridmesbire towns are avoa elsumerated Wisbeach fbeact of the Ouse) to a large aod prospernus town. uext in size and population to Cambridge The avigable Raser Nene intersects the toun and makes it a purt The mana export as graio, the man import is Baltuc tumber The Wisbeaca caoal g.ves water communication in maoy directions Newmarket tias a somewhat peculiar. reputation, and is called the metropulis of the turi The race course is four miles in lengit. of efastic turt sume bundred borses way be seen exercising on the Downs Tbere are seven race meetiogs in the year This and the nerghbuuring lown ul Royston. on the burders of Hertfordshire, have been often frequeated by rnyalty., many bouses are inhabited by pairons of the turf Ourliterature abouods with relerences to Newmarket, which, truth to say. are as a rule of an untiattenog description Wimpole Park, Lord Hardwicés place, is the principal seat in the conoty, and the tine park has sume of the best amber in the country Wimpole is celebrated for its pictures, and there is a good library The priscijal other proprietors are the dukes of Bedford and Futland and Mr Childers Doddiogton was till recently the rictiest hong in Eagland. but the revenues are now spread over sered rectortes The nllage of Babra. han is celebrated as the first place in Englaod where water irngation sas introduced. and also for the breed of Southdowo sheep which bears the uane Whitlesea Ifere is the most remarkable of the modern reclamation, there abund. ant crops are ralsed where boating aod fishing were carried on within Loing memory Whutlesea West is still covered with water many months in the year, when there $1 s$ alund ance of waterfowl. The ancient town of March should be poticed, also Chatteris, Thorney, Joban, formerly famous for their abbeys The town of Therney w'as greatly 10 . proved and beautified by a former duke of Bedford Ia 1875 the county say under the ownership of 6497 propritetors of one acre and upwards, and of 6677 proprietors of less than one acre. For parlamentary purposes the two divisions of the share and isle iomione district, returning thre members to parhament The population of the county in 1861, as coompared with 1851, exhibited a de crease of 5 per cent. but in 1571 an improrement was manifested to the extent of 5 per cent The rate of progress is slow, and it is hardly likely to be occelerated By the ceasus of 1871 the population consisted of 186,906 persoas, - of whom $92,{ }^{1} 15$ were males, and 94.791 females.
(F. A.)

CAMBRIDGE, the chief town of the above county, and the seat of a fanious unversity, is situated on the Cam, in
the midst of a healthy fertile country, which for the moat part has been reclaimed frem the fens. The trade of the town is derived from its being the centre of an agricultural district, and fiom the custom of the resident members of the university. The Cam ehanges its name to the Oase as the Isis dees to the Thames, and Cambridge is the head of navigation for barges fron King's Lynn, whieb hefore the railways was cennected with a very considerable busmess. Cambridge is now a chief station on the Great Eastern lime, and is also connected with the Great Noribern, the Loodon and the North-Western, and the Midland lines. A large market is beld on Saturdays. The town has returned two members aince the time of Edward L It is a very anclent cerperation, and nader the Muncipal Reform Act is governed by a mayor, tell aldermen, and thirty common councilmen The university, a corperation separate from

Plan of Cambridge.
the borough, also returns two members. The town has an eacellent free grammar schiool, founded by Dr Perse, good public institutions, and endowed almshouses. The town owes its existence mainly to the unversity, which overshadows it in importanee. In this respect Cambridge and Oxford differ from all other universities, which are generally absorbed in the tewn in whicb they are atuated. Cambridge, like Oxford, is of a angularly unique character, and ufferds examples of arehtecture fron the dawings of uuthentic history to the more modern structurey designed $t 0$ meet the wants of our own day. The ongmal Cambrige was the ancient Roman Camboritum, a small settlenent on the left or north bank of the Caw or Granta A eastle (\%as built to overawe the fen country, of which some runs nay be traeed, and Roman coins from the time of Vespasian downwards bave been found. To Anglo Saxou times the ruer was called Granta, and the Roman town Grantchester, a name which still survives in the present village near the town. The modern name was derived from a great stone bridge, the only one in those parts that was thrown acrass the Cam, probably in eld Romian days. Bede gives Cambridge or Grantchester the eppthet of "desolata." It was exposed to the assaults of the Danes
and repeatedly plundered. In the days of Edward the Elder we ind that Grantbridge, a derivation of Cambridge, is giving its name to a slure, in a new divison of Mercia In the l1th eentury the boreugh began to expand beyond the narrow Roman limits. A population grew up by degrees on the other side ef the neer. Helagous foundations gradually took their place in the borough. W'e begin to have authentic annals in the 12th century. Learned men eame hither ansious to teach, and scholars anxieus to bo tuught. The studeats first hed in the houses of the townsfolk, as in German and Scottish unversties; ne afterwards 6ind hostels, where students and teachers ledged together. It is probable that the great Benedictine monasteries of the Fens may hare had a part in the erigin of the unversty. We find Heary III. (1231) assung writs for the regulation of Carabridge "clerks," and makug mention of ehauceilor and masters. A few years later we find the king entrenching the pewn with twe gates, which, however, were burnt by the barons. In Wiat Tyler's insurrection the colleges were attacked and ransacked by the rabble, it was supposed with the connwance and assistance of the Cambridge tornsfolk, but were repulsed by the young bushop of Normet The first two Stuart kings and the first two Hanoverian kings cultwated friendly personal relatoons with the unversity. In the Civil War many of the colleges sent their plate to Ring Charles, but town and unversity without actual cenflict came into the obedience of the Commonweuth. In other respects Cambridge Las been so fortunate as bardly to pnssess any history.

We proceed to notiee somewbat in detal the remarkable structures mbich bave now a Eurepean reputation. Althougb there is no street to equat the glonnous High Street of Oxford, yet the long street wheh begins wath the Trumpiugton Road. and then as a narrow lane fronts Scjulchre Church, 18 hired with the most impertant celleges What is called "the backs of colleges," where the Cam wanders beneath frequent arches through groves and gardens, has a more unique beauty than Oxford or any ether unversity town can display. Within recent years there bave been conatant changes at Cambridge, and the aspect of the jlace has been materially altered; there bave been great demolntious and recenstructions, and some very fine edifices bave been added. The Fitzwillian Maseum, as we first enter Trump. ington Street, is a very striking edifice, and as large funds from time to time are accumulated for the extension, it wilt beeome inereasingly valuable. Recently it has at a great expense received e remarkable amount of colour and decoration. The columned façade. with ita portice and colonnades, is considered by aome the most striking piece ef arehitecture in the kingdom. It wis the fouadation of Viscount Fitzwillam, an Irish peer, who bequeathed to the unversity bis pheture callery, including fine examples of the greatest masters, 120 folio volumes of engravings, a valuable library, and $£ 100,000$. Yanous ether valuable collections have from time to tume been gathered inte the Fitzwilliam Museum. The sculpture gallery is pecularly rich There are also Colonel Leake's Greek vases, the Disney marbles, the Elison cullectinn of modern painters, the Mesmer collectusi At a sbort distance from tho Fitzwillam, at the eld of a waterceurse, is Hobsua's Conduit. removed here from the market-place, where it stood from 1614 to 1856 . Hobson was a great benefactor to Cambridge, and is connwemorated by Milton. The Pitt Press is found in this the of street, whth a very church-like arpearance. It was erected in menory of Willam Pitt the statesman. Adderbrooke Hospitat, the Botimic Garden (arranged after De Candolle's system), the Anatomeal Museum, and the Observatory, are very much werthy of examination. The renowned Senate-house, the ceutre of the umversity, is remarkable for its elaborate finish aud perfect profortious

In this fine room tha university cxaminations are held and degreses are bestowed. The scenes witnessed here when the mathematical honour list is issucd, and on the degree day followng, are a very interesting cpisode of university life. The sentur twangler of the year receives a mighty ovation. Very near the Senate-house is the Unversity Library ; the Georges were great benefactors to both. It is one of the ferr libraries entitled to coptes of all new books. The number of books and MSS. is about half a milhon. The most remarbable MS is that known to bcholars as D, the Codex Bezce, the uncual MS or vellum of the four Gospels and the Acts, presented by Theodere Beza. The front of the library is an Italian balistraded areade; the basement story of the quadrangle is called "the Schools," a n:uch more lumited expression than the same Oxford term. In the "school" were once carried on the lectures and disputations from which " wranglers " and "sophs" derived their names. One part of the schools is devoted to the Woodwardian or Geological Museum, enriched by the collections of the late Professor Sedgwick. He taught geology to undergraduates in visiting the neighbourhood with them. Slose to this is the Mineralogical Museum, enriched with diamonds presented by the late Lord Alford. The fine new buildings of the Union Society are noticeable. Various Cambridge churches are very interesting. The Round Church or Sepulehre Church is one of four sumilar churches in England (the Temple Chorel being one), modelled after the Church of the Holy Sepulchre at Jernsalem. It was restored in 1841 by the Camden Socsety. Great St Mary's, like St Mary's, Oxford, is the church of the university. St Benedıct (or Benet) Church is very interesting. Its restoration in 1869 fully displayed the magnificent Romanesquearch of great antiquity, adad traces of Early Englsh and Pre-Norman remains. St Mary's the Less, next to Peterhouse, is a very anciert church. The old church of All Saints, opposite St Jobn's, has been removed, aud is rebuilt in Jesus Lane. There are a large number of modern churches. There is a wide market-place and several open spaces, sucb as Christ's Piece and Parker's Piece. The railway station, where different companies find a cornmou home, is spactous and handsome. The so-called school of Prthagoras (the origin of the term is olscure) was doubtless the abode of a Thegn or Saxon gentleman. The mound of the Castle, a natural bill scarped and cut down, must have been of great importance in overlooking the fen couctry. It was probably within the lines of the lioman station, and a castle was built here by the Conqueror; many honses, according to Domosday Book, being removed to make way for it. Edward I. lodged here, but the castle was soon in ruins. The massive gateway was removed to make way for the county courts. The county gaol, at the rear of the county court, was arranged according to plans of John Howard the philanthropest.

Each college in Cambridge has its "separate interest, something remarkable in chajel, hall, or library, in garden or gallery. We shall rapdly indicate some distinctive features in each. The largest of the colleges is Trinity, the largest collegiate foundation in Europe. It is on both sides the street. for a new court. the Master's Court, was built at the expense of Dr Whewell. and his cipher, W.W., is on the capacious tower. The Fiugs Gateway is the entrance to this lamons college. The geeat canopied statue is that of Henry VIII., in whose twae this vast purtal was built by the scholars of Trimsty ife pass into the great court with its velset sward and the lofty stone conduit, bnown as Nevill's Fonatain. On one shde is the Nlaster's Lodge, with a fine collection of portraits, and a set of state rourus. On the some side is the lofty Golhic hall, with a hugh-peaked Fiemish roof. In term time when the great hall, with its iainted piess and armorial boarings, is crowded with
students, the sight is remarkable enough. Gn entering the chapel the ante-chapei should be carefully noted, with the statue of Newtcir in a sitting posture, the statue of Barrow, a statue of Macaulay, and soon there will bo one of Whewell. A scoond great gateway, with the nicbed statue of Edward III., leads into the second court. Ou the south is a third gateway with four towers on the angles, called, from a statue of Queen Ehzabeth in ber robes, the Queen's Gateway. The library was begun by Barrow and designed by Wren. It is the most classic building in the unversty -in Wren's favourite style of the old Italian. It overlooks the river, and below the library is a colonnade opeang on the bridge and the Lime Walk. In the value of its contents this library ranks next to the unversity library, it possesses the mathematical MSS of Newton and the poetical MSS. of Mition. It numbers nearly 100,000 volumes. The woodwork is by Gibbons; the series of marble busts by Roubillac. Recent additions bave been made of the busts of Professor Sedgwick, Mr Tennyson, and Mr Ellis. At the end of the room is Thorwaldsen's statue of Lord Byron, which was refused admission into Westranster Abbey.

The next largest college is St Jobn's, which is famous St Juluic for its series of splendid improvements. The col'dege consiste of four courts; the plain brack edifices are carried to the brink of the river, but on the other sule of the river is the magnificent New Court designed by Rickman, the finest modern structure of all the Cambricige quadrangles. The massive antique gateway of the first court has the armorial bearings of the foundress of this college and Christ's College, the Lady Margaret, countess of Richmond and mother of Henry VII. The chapel and ball are in the front court. The second court is still larger, and is one of the very few untouched by modern restoration. The thard conirt has a cloister on the west; and the antique library, unaltered for generations, takes up the whole upper jart of the north side. The Master's Lodge, finished in 1865 by Sir G. G. Scott, extends westward. A light Gothic bridge over the Cam conducts into the New Court, a stately quadrangle, with a vaulted cloister along the south side. The magnificent chapel, erected mainly by the society, and enriched with many gifts, at great expense, was opened in 18j9. It was erected by Sir G. G. Scott, and bas some resemblance to the Saiate Chapelle at Paris. The rool and painted glass are especially remarkable. Chantrey's monument to Henry Kirke-W'bite, erected at the expense of an American gentleman, is to be transferred to this chapel

St Peter's College, or Peterhouse, is the oldest of the St Petm colleges. It was foupded in 1257 by Hugh de Balsham. who was one of the first to separate between the monkish and scholastic element in education. The upiversity leng gave special bonour and celebration to De Ealskami St Peter's is remarkable for emment men, and for lay fellow. ships at a time when they were hardy known elsewhere The gardens are good, and there is a small deer parts.

King's College owns that magnificent chapel which widely hanf dominates over all the buildings in the town and university The college was originally commenced and endowed by Henry VI., in connection with Eton. Eenry VII. deserve: the title of a sceond founder. The chapel is one vast long. drawn nave. It is the latest and most sumptuous example of the Perpendicular order of Cothic architecture. The fretted roof, unsustained ly a single pillar, is raulted inte twelve divisions. The centre of each is a pendant keystone, termmating alternately in roses and portcullises, each key. stone weighing more than a ton. Orer the stone roof is the timber roof. An organ separates between chapel and ante-chapel. The painted glass is the most remarkable that has been bequeathed to us by the age of Henry VII. and Heury VIIl., and kelongs to a time when the art n^{\prime}
parming nad sttained its bighest excellence. There are five-and-twenty windows, with more than a hundred subjects. The chantres are fine. The exterier of the chapel, though very line, bardly corresponds with the interior. The mmense design for the college, entertained by Henry VI., has never been carried out, and the new buildings, erected at a great expense, beve not beea subordinated to the general design. The best of these $1 s$ the Muster's Lodge ; the Fellows' Buildings are incongruous. King's College Chapel is certainly the architectural gem of the university.
Caius (pronounced Key's) College, in point of size, is the third college in the unversity. It has a somewhat special character being termed ibe Medical College. The founder was a physician bigh in favour with Pbilip and Mary. His tomb, with the inscmption "Fui Caius," is the great ornameat of the chapel. In the painted glass of the chapel is a series delineating the maracles of bealing. No college bas undergone greater alterations unttua recent years than Caius College, the larger part of the college having been taken down and rebuilt. It bas now some of the most striking architectural effects in modern Cambridge. The tbree famus gates-the Gate of Humility, the Gate of Virtue, the Gate of Honeur-are ro taned. Mr Fergusson says of the last "that it is one of the most pleasing as well as one of the most adranced specimens of the Early Renassance in England." The new hallis by Salvio (1864) The hittle college of Trinity Hall has also a epectal character, being the Legal College. To a great extent it has been rebuilt, after a destructure fire in 1851. The gardens are very fine.

Queen's College is the work of the two rival queens of the Red Rose and the Whate, Margaret of Anjous and Elizabeth Woodville, whe are almays regarded as cofuundresses. Erasmus teek up his ahode leere and promoted the new learning. His study a supposed to have teen in the douth-west tower of the old court. The chapel bas beeb beautufully restored in recent years A quaint bridge, called the "mathematical bridge." leads anto the garden or wilderness on the other side of the Cam. On the south side of the Clonster Court is Erasmus's Court. It is said to be in contemplation to fill up the western side

Emmenuel College has a peculiar interest of its own. Ennumaci Once its site was occupied by a house of Domincan friars, and it subsequently became the chosen college of the Puritans. The frontage of this college is long and imposing. Tbrough an arcade we pass mito the principal court, above an arcaded side of which is a picture gallery desigued by Wren for the Master's Lodge. The library bere is very good. Sidney Sussex College has a hustory very parallel sidnas to that of Emmanuel College. They were togetber styled Susses. is the time of Charles 1. "nurseriey of Puntansm." Oliver Cromwell was a member of thas college, and the best extant likeness of hm is to be found here. There as also Bernini's bust from the plaster impression taken after death. This college was umproved to the extent of entire oblateration by Wyatville, who has cnly left the old oriels of the Master's Lodge remanng. The lodge has a large pleasura garden attached. Next to this college is Christ's, opposite Christ's. to which a street runs westward that has some curious old houses and an old name, Petty Curey, the meaning of Which has been much discussed, it most probably means " hitle cookery." Christ's College was the foundation of the Lady Margaret, the saintly foundress of St John's Her portrait is in chapel and ball, and her arms over the gateway. Like Sidney Sussex, Cbrist's mas restored in the last century, and nearly all iraces of antiquity estinguished. Christ's is famoos for its asseciations with the Platonists, and espectally wath Miton. His rooms are pointed out, and his mulberry tree in the garden has drawn pulgrims from every part of the world. The old tree is carefully propped up and mounded, and a new tree has been plantod from an offshoot. Bchand the college ss an open space of park-like character leading down to the boats. Some of the latest restorations now in progress are in Pembroke. When Pembroke. Queen Elizabeth saw this college eho exclaimed, "Oh domus antiqua et relıgiosal" but the peculiar features which gre this college its picturesque appearance are being inexorably sscrificed to modern requirements. The cbapel was designed by Sir Chnetopker. Wren, and csecuted at the cost of his uncle, Bishop Wren, as a thankotfering for his liberation from a confinement of eighteen $y \cdot a r s$ in the Tower. The college has been called "Collegum Episcopale," from the number of its prelates. It also boasts the great names of Edmund Spenser, Gray, and William Pitt. Jesus College stands pleasantly back from the public Jesua road, surrouaded with gardens and meadows. The ivied walls bave a very pleasant aspect. The college chapel is a very noble one, and may rank after King's College chapel and the rew chapel of St John's. It 18 among the mest maymbirent of the recent restomans at Cambridge. It is part of the old church of Si Ruadegund; the ante-clapel, "hach tis heogg decorated under the care of Mr Rossutti, bergg promion of the ongenal nave. The New Court or Garden Cuurt ta sbedowed with trees of many years' growth. The college bas recently land out fresh grounds and buildugs The cock. Lte balge or rebus of Bisbop Alcock, the founder. as discernible in many parts of the college. Magdalene College is the orly college on the north side of the Cam. It was founded by a lord of Audiey End, whose representatue always nuarates the beal of the college. It boasts three librarnes, - the college library, the Peckard library, and the Pepystan litrary. The last contains the Pep's Ms and much old black-leiter !temenre. The last of the Cambridge colleg's is Downug College. It was onty founded in the year 1000 , mith large bequests from a Camoridgeshre baronet. The trst vordergraduate was in 1821. but the college has m later years reselved a considerable development The well-woded gromas are handsome and extensue, and are thrown frecly open to the public.

Some of the Caruhridge localaties should be mentioned. The suburb of Barnwell bas thr remans of an ancient
priory At Stombridge is the disused chapel of an ancient hospital for lepers. The greatest fair in Eughand was one held here. The little village of Trumpington is a favourite lucality. Granchester has some pemains which make it a question whether it or Cambridge Castlo wis the site of the old Roman station. Byron's Pool is in the river here. Madingley is a fine old mansion, the residence of the Prince of Wales when at Cunbridye, and possibly the scene of Gray's Eleg!, Between this place and Cumbridge is the Observatory. The central dome revolves on wheels, and can be moved by a situgle hand. The remarkable telescope was presented by the late duke of Northumberland in 1835. A favourite walk is to tie very moderate elevation known as the Gogmagog Hills, an off-shoot of the chalk range, the summit of which has been a Koman camp and a lord-treasurer's abode. The Ladies' College at Girton nay also be mentioned. Chesterton and Cherry Hinton are familiar resorts of Cambridgo men. Theso are environs of Cambridge. The borough population of Cambridge in 1871 was 30,078 , consisting of 13,742 males and 16,286 females.
(F. A.)

CAMBRIDGE, a city of the United States, in the county of Middlesex, Massachusetts. It lies on Charles River, three miles N.W. of Boston, with which it is connected by two bridges, with long causeways, and by horse railroads, or tramways It is the seat of Harvard University, the oldest, richest, and most thoroughly equipped literary institution in the United States. Connected with the university is an observatory, in $42^{\circ} 22^{\prime} 48^{\prime \prime} \mathrm{N}$. lat. and $71^{\circ} 8^{\prime} \mathrm{W}$. long. Under the name of Newtown a settlement was made on its territory, then much more extended than at present, by some of the first company of English colonists on Massaehusetts Bay in 1630. It was then proposed to malse it the eapital of the colouy; but the neighbouring peninsula of Boston was found more convenient for commercic and defence against the Indians. The order of the colony court in 1636 having provided for planting a college at Newtown, its name was changed to Cambridge, in honour of the Eoglish university town, where some of the leading men of the colony had been edncated. The first company of settlers, being Mr Hooker's chureh and congregation, moved to Connectient in 1636, to fud better farm-land. Their rights were purchased by another body of colonists just arrived from England. The present site of the college balls was originally "fortified" by palisades, within which the settlers found protection at night for themselves and their cattle against a possible inroad of the savares. Here was set up the first printing-press in the United States, and from it issued John Eliot's translation of the Bible, for the Indians, in their own language. Under the title of "Cambridge Farms," the present town of Lexington, incorporated as such in 1712, was a part of the original town. The town of Brighton, now annezed to the city of Boston, formerly South Cambridge, or Littlo Cambrides, was separated and received its present name in 1807; and the west patt of the original settlement, known as Menotomy, was marked off in the samo year, as West Cambridge, now known as Arlington. Between this place and Cambridge is North Cambridge ; and the districts of the city nearest to Boston, by the two bridges, are called Cambridge Port and East Cambridge. Cambridgo was incorporated as a cify in 1816 . It is for tho most part level, with much marsh land near the river, portions of which are in process of heing reclaimed. Tho eemetery of Mount Auburn is on the westeru border of the city. . The population of Cambridge in 1874 was 50,337 ; the numbers of polls fur voters, 11,983; of dvellings, 7383. The valuation was-of personal property, $\{17,532,971$; of reai, $S 19,012,700$; total, $866,576,67 \mathrm{l}$. The net debt of the cily incured for water-wores, streab, schoolhouses,
and other improvements, is $\$ 3,732,135$. The city appropriation for 1874 was $82.771,509$. Total cost of the water-works, $\$ 1,399,396$. The police department, mith 60 oficers, cost S71,710; fire department, 897,355; filling up low lands, s650,000. The average number of pauicers, 129 ; net cost of their maintenance, $\$ 38,000$. Cost of street lighting, s20,157. The system of publie sehools is very complete and efficient, ineluding a high school, 7 grammar schools, 18 prinaries, and a training sehool;-with 183 teachers; cost of maintenance, $8260,187 \cdot 17$. Cat:Frisuge was the site of the camp of the first American army. at the outbreak of the War of the Revolution with Great Dritain. From it went the detachment which intrenched on Bunker's Hill; and here Washington took command of the army, July 3, 1775.

CAMBYSES, a Penim wyal name, derned from the Greek Ka $\beta_{i}{ }^{\circ} \eta$ s, in wheh form it appears in Herodotus and in the Greek writers generally. lu inseriptions frem Esypt the mane is given as Ka μ Brocos (Letronne, Recuild. inscrip. gracq., ii. pp. $350,356, f$.). In the old-Persian of the Behistun inscription it stands in the form Rabujiga (Rawlinson) or Kambuiva (Oppert, Spiegel). Io Zend the name takes the form Kovaus, and in Arabic nad modern Persian it is worn down still further to Lious and Kaus. In Egyptian the name oceurs under three forms of trauscription,-Kanbu:a, Kembatet (Lepsius, höigsbuch, taf. xlix.), or rather Kambuzia, and hambursa (Lauth, Ein neuer Kambyses-text, p. 5). The etymology of the name is obsenre, and the attempts to explain it by Rawlinson (Jour. As. Soc., xi. p. 97) and Eenfey (Die persiscien Keilinschriften, p. 77) canuot be regarded as successful. It has been often remarked that the name, or one very similar, occurs more than once in the East as an ethnical and geographical designation. Thus we find Cumboja a territory in India, Kamoj a tribe of the Kafirs in Cabul; and a territury named Cambsene, situated in the north on the Kur, is known to Greek geographers. In the same region there was a river called Cambyses, the modem Jora. Perhaps with Spiegel (Eranisile Alterthumskunde, vol. ii. p. 294) we may regard the personal name Kambujiya as originally an aijective, meaning belonging to Kambuja. Iu Egypt, also, Cambysu occurs in the Itinevarinm as ti: name of a place in the Delta, but this is probably derived from the Persian king about to be mentioned, bv whom Egypt ivas conquered

The persons known by the name of Cambyses belong to the Achwmenian line of l'ersian kings. It is thought that the great-grandiather of Cyrus the incoat was thus called. The evideice, hoveve:, for the cxistence of this Cambyses, though strone, is constructive rather than direct- (see Rawliosen'e IIerodutus, vol. iv. p. 259). It is certain that the father of Cyr"s was named Cimbyses. He is called by Herodotas (i. 1 Ji) "a Persian of good family," but by Xenophon (Cyrop., i. 11, 1) he is denominated "king of the Persions." The justness of this title is proved by an iascription on a brick found at Senkereh, in which Cyrus calls himself "the son of Cambyses, the powerfel ding." as well as by the statement of Durius Hystaspis, in the Behistun iuscription (col. i. 4), that eight of his Achomenian ancestors had been kings. Daring the reiga of this Cambyses the Persian nation was included in the Melian empire, and he is represented as the vassal of the Mevitan king Astyares. At the same time he is said to liny, marricd Mandane, the daughter of Astyages, by whons iu became the father of Cyrus. Sueh, at least, is the acecu:t of Iferodutns, Xemoplion, Dioderes, and Trogus Pon peius. Ctesias and Nicolaus Damasecnus give a different represeatation.

It is stated by Loftus (Chaldoz and Susia:ia, p. 2?: that he found at Warka "brichs inscribed in slightly
relieved cunciform characters of Cambyses, the brother of Cyrus, a personage of whom we possess no historical notice whatsoever."

The only other, and the best known, king of this name is the elder son and suceessor of Cyrus, who reigned over the Persian empire, according to Herodotus, for seven years sad five months-from 529 to 521 b.c. Of bis proceedings befure his famous invasion of Egypt little is known. To this period we must now, on the authority of the Behistun inscription (i. 10), in opposition to Herodotus (iii. 30), assign the seeret murder of his brother, Bardiya (she Smerdis, Merdis, Mardus, or Mergis of the Greeks,called Tanyoxarces by Ctesias, and Tanyoxares by Xenothou). Egypt at this time lay on the horders of the Persian emfire ; its subjugation had long been an object of ambition to the great dsiatic conquerors; it had reeently provoked reprisals from Persia by scading help to Lydia egainst Cyrus; and in resolving to attack that country Cambyses was hoth carrying out the settled policy of his predecessurs and accomplishing the purpose of his own father. If therefore, as is not unlikely, there was such an necasion given for the enterprise as that which Herodotus relates, it is not neeessary to suppose that this was more than a pretest. A year or two were spent in colleeting the forees of the empire, and the preparatory measures taken seem to have been marked by prudence and skill. A fleet of Pbenician and Greek ships was collected to operate against the vessels of the Egyptians; and the belp of an Arabian ehief was sceured to provide water for the army in erossing the desert on the south and west of Falestine. The old king of Egyt, Amasis, under whom the country inad enjoyed a long period of peace and prosperity, died a few months hefore the invasion, and was succeedcd by his soa Psabmenitus, under whom the measures of defence proved unsuccessful. An obstinately contested but decisive victory was gained by the Persian arms near Pelusium, and this was specdily followed up, by the siege and capture of the capitat, Memphis, and by the suljugation of the whole country. The date of this conquest is commonly regarded as 525 b.c. (see Rawlinsor., Anc. Mon., vol. i. p. 385), though some find cause to place it one or even two years earlier (rf. v. Gumpach, Zeitrechnung d. Ass. u. Bab., pp. 165, f.; Lauth, op. cit., pp. 13, f.; Brugsch, Hist. d'Egypte, i p. 267 ; Duneker, Gesch. d. Illerthums, vol. ii. p. 792, n. ; Lepsius, Königsbuch, p. 89).

Henceforward the life and activity of Cambyses ccutred in his new dominiun. We know from an importnat hieroglyphic inscription proceeding from a priest of Neith at Sais, that he assumed the responsibilities and titles preper to a king of Eyypt, taking as his throne-mane that of Ramesut. Moreover, it is evident that for a time at least he cultivated the good-will of his new subjeets. We learn that he took Egyptians who had been officers of Psammeoitus into his immediate service ; that he sought iostruction in regard to the rites of their religion, and was initiated into certain of its mysterics; that he listened to complants in regard to the profunation of the temples by Persian and other forcign soldiers, and gave orders for their removal from the saered preciucts; that he secured the priests io the receipt of the temple-revenues, and arranged for the due and continued celebration of the customary ceremonics and festivals. A monument is still eztant on which he is represented adoring, on bended finee, the god Apis. (See De Rouge, Jimoire sur la stitue naophore du Vatican, passim ; brugsch, op. eit., rol. i. pf. 266, f; Lauth, op. cit., pp. 17, f.) One act, indeed, of a diferent complexion is reported by Herodutus (iii. 16), viz., his outragiog and fnally consuming by fire the embalmed body of Amasis,-an act, the historian assures 4s, which shocked the feelings alike of Egyptians and of

Persians, and which strongly attests the same jealous and resentful temper which prompted the murder of his brother.
After having establisbed himself in his new possession, Cambyses, Herodotus (iii. 17, f.) informs us, planned three expeditions. One was against Cartlage, in regard to which, however, he was thwarted by the refusal of his Pheenician mariners, who formed the principal portion of his sea-forces, to operate against their kindred. Anotirp was directed against the Oasis and temple of Jupiter Ammon in the desert west of Egypt (see Heeren, D. ofrikan. Fölker, i. p. 416), the issue of which was that the whole of the force sent on this enterprise, numberiog, it is said, 50,000 men, perished in the sand. The third was intended for the subjugation of the Ethiopians on the south of Egypt (regarding whose locality see Heeren, op. cit., i pp. 337, f.; Rawlinson, Merod., vol. ii. p. 421 ; Maspero, IIstoire ancienue, pp. $533, f$.), and of this Cambyses himself took the commaud. The army, however, had marched less than a fifth of the distance when their provisions failed, and they were reduced to the utmost straits,-even, it is said, to cannibalism. Cambyses was thus foreed to retrace his steps and to lead baek the remnant of his army to Egypt in disappointment and disgrace.

Uoder the smart of this tbreefold disconfiture the conduct of Cambyses towards the Egyltiaos assumed a new and much more stern and cruel aspect. The people of Memphis were rejoieing on oceasion of the disenvery of a calf bearing the marks of their god Aps, when he arrived there on his return from his unfortunate expedition. Irritated by their apparent lack of sympathy, and misconstruing their joy, he ordered some of the masistrates of the city to be put to death; and what was still more fatal to his popularity, he commanded the newly.found god to bo Jed into his presence, and inflicted upon it with his dagyer a mortal wound. The epitaph of this unfortunate god " las been found by M. Marictte in the Serapem, and is now in the museum of the Lourre" (Lenormant, Manual of Anc. Hist., vol. ii p. 99). We hear alse of his violating the sepulchres of the Egyptians, and of his penetrating into the sanctuaries of their gots, and making sport of the more grotesque images. According to IIerodotus, it seemed to the Egyptians that he had gone mad; and it is certain that they retained the most gloomy recollections of this period of their history. In the inscriptiou alrcady mentioned, drawn up wifle the Fersians were still supreme in tho country, and thercfore witb due reserve and caution, refercnee is made to the procedure of Cambyses in such language as the following :-" There hapencd a calamity in this district along with the very groat calamity which befell the whole land;" "a frightful misfortune lufell Esypt, the like of which never occurred in this land" (Brugscl, op, cit., i. p. in1 ; Lanth, op. cit., p. 19, of. p. 49). It is, in all prokability, the sense of this " frightful misfortune"-the kecmucss of feeling excited thy tho outrageous decds of Cambyses towards their gods-which led the Egyptians to allcge that he was smitten with frenzy, and to put in eirculation some et least of the many storices relating to his eruelty towards his own countrymen and relatives which Herodotus and others report.

After an absence from Persia of several years, Cambyses, having appuiuted Aryandes, a Persian, governor of Egypt, set out on his homeward mareh. Ile was met, according to Herodotus (iii. 64), at a place in Syria called Agbatana, supposed by some to be Bataniea, or Bashan, by others to be IIamath, by the tidings of the Median revolution, the usurpation of the sovereignty by Gomates, the Magian, and the impersonation by the usarper of his own brother whom, as has been notieed, he had eansed to be secretly murdered. Springing hastily upon his horse, his sword fell from the sheath and wounded him mortally in the thigh. According
to Ctesias (Exc. Pers., § 12) he died at Babylon, of a wound accidentally inflicted while carving a piece of wood for his smusement These accounts agree in representing his death as accidental A somewhat different impression is conveyed by the statement of Darius on the point in the Behistun inscription (i 11), who says that "killing hunself he died' (Cf. Oppert, Les inscriptions des Achéméndes, p. 54.) It may be, as Spiegel believes (Eran. Alterthum, ii. p. 302), that the phrase expresses nothing more than the Greek tradition reperts. Rawlinson, however (Auc. Mon., iv. p. 394), and Duncker (op. cit., ii. p. 801) understand it as meaning that be committed suicide. The character of this king is sufficiently obvious. It is evident that he was an inpulsive, self-willed, reckless, ambitious despot, of the peculiarly Oriental type, possessed of considerable ability as a general, but with passions so strong and uncontrolled as to render the powers he possessed worthless for good. It was reported that from his childhood he was liable to epulepsy and also, what is probably more trustworthy, that be caunc to be much given to wine. By the Egyptiaus he made bimself utterly abhorred. By the Persians also. whale they acknowledged bis success in enlarging their empire, his memory was beld in evil repute. While they called Cyrus a fatber, they called his son a despot or master, and while they said the one was "gentle, and procured them nll manner of goods," they called the other "harsh and reckless" (see Rerndotus, ii. 33, 34, 89). In the Hebrew Scriptures, Cambyses appears once. under the name of Ahasuerus, in Ezra iv. 6 (see Artaxerxes). Some suppose that he is the "cruel lord" and "fierce king," to whose bands the Egyptians were to be given over, according to Isa. six. 4 His name occurs in Babylonian contract-tatlets found st Warka, with the title "Cambyses, king of Babylon." (See Loftus, op. cit., p. 222; Bossnquet, Trans. Bib. Archaeology, i. pp. 210,f.) He is usually regarded as the Lohrasp of Persian traditionsl history (Malcom, Hist. of Persia, i. p. 334); but another of the heroes of that cycle of romance, Kaus, appears both from the name and from the exploits ascribed to kim to be the true representative of Cambyscs. (Cf. Spiegel, op. cit., vol.i. p. 594 ; Gobineau, Hist. des Perses, vol. i. p. 1123.). (w.TU.)

CAMDEN (1). a city of the United States, capital of Camden county, New Jersey, situated on the left bank of the Delaware River, directly opposite Philadelphia, with which it is connected by a regular steam-bost service. It lies 87 miles S.W. of New York, and is the terminns of several rallway lines. Among its public buildings the chief place is held by the court-house and the railway atations; and its principal industrial establishments are ironfoundries, saw-mills, chemical works, glass-worke, shipyards, and engineering factorics. The city received its charter in 1831; and gas-light was first introduced in 1852. In 1840 the population was only. 3371 ; in 1850 it amounted to 9479 , and in 1870 to 20,045 .

CAMDEN (2), the capital of Kershaw county in South Carolina, United States, 33 miles N.E. of Columbis on the Waterce River, which is nsvigable for eteam-boats as far as the town. It contains an arsenal, an academy, and a library, and is altorether a flourishing little town. It is hest known as the scene of two battles, - the first fought in 1780 between Gates and Cornwallis, and the second in 1781 between Greene and Rawdon. Population in 1870 , 1007.

CAMDEN, William (1551-1623), a celebrated antiqnary and historian, was born in Londun, May 2. 1551. II is father, who was a native of Lichfield, settled in London, where he became a member of the company of paperstainers. His mother was of the ancient family of Curwen of Workington is Cumberland. Young Camden received bis early education at Christ's Hospital and St Paul's

School ; and in 1566 he entered as a servitor of Magdalen College, Oxford; but nöt succeeding in getting a demi's place, he removed to Bruadgate Hall, and, somewhat more than two years afterwards, to Christ Church, where he was supported by his friend and patron Dr Thornton. About this time he became a candidate for a fellowship at All Souls College, which he lost through the adverse infuence of the Roman Catholic party. In 1570 he supplicated the regents of the umversity to be admatted bachelor of arts, but ut this also he was disappornted The following year Canden came to London, where be prosecuted his favourite study of antiquity, under the patronsge of Dr Geodman, dean of Westminster, by whose interest be was made, in 1575, second master of Westmanter achoul. From the time of his leaving the university to this period, he had travelled throngh great part of England, with a view to make observations and collect materials for his Britamia, on which he was now sernously engaged. In 1581 be becamo intimately ncquainted with the learned President Brisson, who was then in England, and in 1586 he published tho first edition of the Britanna, a survey of the British isles, written in elegant Latin. In 1593 he succeeded to the head mastership of Westminster schoul, on the resig. nation of Dr Grant. In this office be contunued till 1597, when he was promoted to be Clarencteux king-at-srms. In 1600 Camden made a tonr to the north, as far as Carlisle, ascompamed by his friend Mr (afterwards Sir Robert) Cotton. In 1606 be Legan his correspondence with the celebrated President de Thou, which contınued to the death of that historian. In the following year be published his last edition of the Britannaa, from which the several English translations have been made; and $1 n 1608$ be began tu digest bis materials for a bistory of the reign of Queeu Elizabeth. In 1609, after recovering from a dangerous illness, he retired to Chiselhurst in Kent, where he contınued to spend the summer months during the remander of his life. The first part of has annals of the queen did not sp pcar till 1615, and he determined that the second volume should not appear till after his death. The work was entirely finished in 1617, and from that time he was principally employed in collecting materials for the further improvement of his Bratannia. In 1622, being now upwards of seventy, he determined to lose no time in executiog his design of founding a history lecture in the university of Oxford. His deed of gift was accordingly transmitted by bis friend Mr Heather to Mr Gregory Wheare, who was by himself appointed the first professor. Camden died at Chiselhurst, Nov. 9, 1623, in the seventy-third year of his age, and was buried with great solemnity in Westminster Abbey, where a monument was erected to his memory. He was a man of great modesty and integrity, profoundly learned in the history and antiquities of England, and a judicious and conscientious hastorian. The Camden Society, fonnded in 1838 for histerical research, was so named in honour of him. Besides the works already mentioned, he was author of 80 excellent Greek grammar, and of several tracts in Hearne's collection.' His greatest and most usoful work is the Britannia. It was first translated into English, and published in folio in London in 1611, by Dr Philemon Holland, who is thought to have consulted the author himself; and therefore great respect has been paid to his additions and explanations, on the supposition that they may belong to Camden. But in a later edition of the aamo translation, published in 1636 , the doctor has taken liberties which cannot be excused. A new translation, made with the utmost fidelity from the last edition, was moblisied in 1695, by Edmund Gibson of Qucen's Conlege, Ozford, afterwards bishop of London; in which, besides the addition of notes, and of all that deser:ed to be taken notice of in Dr Holland's first edition, there are many other augmentations
and inprovenenis, all properly distinguished from the genume work of the auther.

Gitisou's edtion was repmoted in 1722 , and several umes subsequently The latest and best edtions ate thuse by Gough, 1789-90, 8 cols. ful, aud by Gough and Sichols, 18166,4 vols. fol.

CinMDEN, Charlfs Pratt, Earl, and Viscolnt Buruan (1713-1794), chief-justice of the Common Pleas, ford chancellor of Engl:and, and president of the councal, was burn in 1713. He was a descendant of an old Devonshire fambly of bigh standmg, the thard sun of $\mathrm{Sir}_{\mathrm{r}}$ Juhn Pratt, chief-justice of the Kang's Bench in the remg of George I. He recensed his early eúucation at Liton College, whence he passed, at the age of seventern, to King's College, Cambridge. In 1734 he became a fellum of his college, and in the fullowing year ubtained his degree of B.A. Having adopted his father's profession, he bad entered the Middle Temple in 1728, and ten years later be was called to the bar. He practised at first in the courts of Cummon Law, traveling also the western circuit. In 1:40 he tuak las degree of M.A. For sume years has practice was su limited, and he became so much disteuraged, that he sermously thought of turning his batk on the law and enterng the chureh. He listened, however, to the advee of bis frend Sir Lobert Henley, a bruther barrister, olterwards known as Lord Clancellor Nurthingtori, amd persevered, working on and wating for the success whech in such case is usually stow to come. The fist case a hich brought hion prommently into notice and gase bun assurance of ultimate sucess was the Govermment prosecuthor, iin 1752, of a boukseller, Willan: Owen, for a libel on the llouse of Commons Drate was engetged as Junior cuansel for the defence, and he made his mather in an carnest anal powerful spech, wheh contribited to the verdect for the defendant. In 1753 be undertouk the deferice of Marjliy, who stood charged with the forgery of a nill. Fuar years later, through the inlluence of Villiam latt (afterwards earl of Chatham), with whom be laiad furmed an intimate friendship whale at Eton, be recencod the appoint ment of attorney-general. The sume gear he entered the House of Commonis as member lor the small boroush if Downon in Wiltsare, which was sulsergueatly dis. frunchised. Ha sat in parlament four years, but did not distinguish bimself as a debater. His professumal pratice now largely increased. One of the most nuticeable incidents of his tenure of office as atterney-gencral was the frosecution of Dr Shebbeare, a violent paty writer of the day, for a libel against the Government contaned in his noturiuus Letters to the People of England, which wero [ublished in the years 1750-1758. As a proof of Irate's molderation in a period of passionate party warfare and frequent "State Trials," it is noted that this was the only official prosecution for libel which he set on foot. In January 1762 I'rath was raised to tho bench as chief-justice of the Cummou l'leas, this post being vacant by the deatl of Chief Justice Willes. He was at the same time knighted. Sonn after Lis elevation the nation was thrown into great exeitement ahout the prosecution of the "worthless profligate" Jolin Wilkes, and the question involved in it of the legality of " geveral warrants." Chief-Justice Pratt pronounced, with decisive and almust passionate energy, against their legality, thus giving voice to the strong reeling of the mation, and winning for bimself an extraurdinary degree of fopularity as one of the "maintainers of English constitutional liberty." Honours fell thick ujom han in the form of addresses from the city of London and many large towns, and of presenta tions of freedum from various corporate budies. In July 1765 be was raised to the peerage as Baron Camlen, of Camden Place, in the county of Kent; and in the folluwing jear be tras removed from the court of Cummon Pleas to tala his seat as inrd cbancellor (July 30, 1766). This
seat be retained less than four years; for althongh be discharged its dutaes in so efficient a manner that, with one exception, his decistons were never reversed un apjeal, lie took up a position of such uncompromismy hostility to the Governments of the day, the Graftou and North administrations, on the greatest and must exchting matters, the treatmumt of the Amernan colones and the proceedngs against Juhn Wialkes, that the Government bad no chure but to regure of ban the surrender of the great seal. He retired frou the Court of Chaneery in January 15 TO , but be contanued to take a warm interest in the poltual affairs and discussions of the thme. In bis specches in the llomse uf Lord, be sumetmos showed a strung ill-feelmy agimst his great opponent, Lord Manstiedd, on the doctrme of hise He continued steadfastly to olluse the taxation of the Ameritan colunists, and signed, in 1778, the protest of the. Lods in favour of an aldress to the kng on the sillject of the mamfento of the Ameman commissioners. In 178: he mas apponted ןresident of the comale under the liochmat bam admanstraton, hut retaed in the follombig ye:a Whthin a few months lae was rematated mons allice unde: the lite adninistration, and held at thll he dath. Lond Canaten "as a strennous upponemt of Mr Fox's Jadra Ball: tuok an ammated gart m the debates on mpurtant pubhe mazters ull witha two years of bis death, intuduced in 1786 the selache of a regencer on occasion of the king: unsanity, and to the last zealously defended bis early vew: on the functions of juries, espectally of therr right to decile on all questions of libel. He was raised to the dignity of an earl in May 1780 and was at the same tine created A'scount lay ham. Earl Camdendied in Lomodon, Apral 1s, 1791. Huremains were interred in Seale ehurchan kent

CAMEL, the Djemat of the Arabs and Gomat of the Hebrews. a genus of Rumbant Manmals, whels, with tho Suuth American llamas, form the fauily Cumelda, and which in their dentition, in the absence of borns aud of Iooufs completely envelopang tue tues, and in the separatoun of the navicular and cutbid bones of the tarsus, show on aflimity with certan of the Perissadactyle Ungulata. In common with the llamas, and unlike all other ruminants, the camel has two upher meisor teeth, conical and laterally cont pressed, and sumerhat resemblisg canine teeth, of whech in the upper jaw there are two, in addation to twelve auhars. Beneatlo there are six meisors, two camnes, and ten mol.a: teeth, the whole formung a dentition admirably suited for the teariug asunder and mastication of the coane dry shrulis on which the camel usually feeds. It pussesses lesider many other peculiarities in form and structure sjectally adapited to its mode of life. Its nustris are in the form ut oblique shits, whieh can be opened or shat at will, and llus the ergan of stmell, which in the camel is of extraordinaty acuteness, is preserved from contact wath the bot acrid sand that, like a "pillar of cloud," frequently sweeps aerose the desert. The extremities only of the two tues which fonn: the foot are free, and are cach terminated by a short and somewhat curved nail, the rest of the toes being connected together by menns of a broad elastic pad on which the fuot rests, and which buoys the camel up as it moves on the suf: and ever-shifting surface. The horay callosties on the breast and limb-juio:s, ou which the camel rests when being loaded, may possibly have resulted from the long ages of servitude to which it has been subjecter, but whether they existed in the wild cancl or not. traces of then are said to be now found on the now lan young. The hump of bumpe on the camel's back are mere masses of fat, without ang corresponding curve or the rertebral column of the ammal, and form a reserve of nouristment to be used whea citer supplies fail ; consc zuentlyduring leagthened periuds of juivation, and during the ruting season, when the males almoes cease to cat, these masses greatly diminish in size. The canel
driver knows well the value of this netural storehouse, and takes care before starting on a lengthened jonrney to have the humps of his beasta well distended. In its native deserts, however; the camel is more liable to suffer from lack of water than of food, and accocdingly the stomach is so modified as to allow of a certain quantity of water being stored for future use. On the walls of the paunch or first stomach. little pouches with narrow mouths are developed; these are the so called "whter cells," the biggest of which in an adult eamel measures when dilated about three inches in width and depth, and these serve to strain ofl a considerable quantity of water from the contents of the paunch, retaining it for future use by means of powerful sphincter muscles. The npper divided lip of the camel is slightly extensile, and is used as a feeler with which to touch and examine its food before turning the salue into its mouth, The animal is further characterized externally by its long neck, the dusky colour of its fur, the shaggy masses of lonor woolly hair on certain parts of its body, and tho disproportionate shortuess of its legs. These, together with the peculiarities already mentioned, combine to make it one of the most ungainly of known animals, and almost justify the recent description given of it by Dr Russell. the Times correspondent, as "an abominably ugly necessary animal." Nevertheless, it is as indispensable where great deserts are to be traversed is is the ship on the ocean highway, and this fact seems to have completely blinded tha Arab to its undoubted deficiences in form, for in his poctry allusion is sometimes made to the motions of the camel as to a recog. nized standard of elegance.

The camel is one of tho oldest mammals now living, and fossil remains have been found in the Miucena of the Sevalik Hills of a species (Camelus sivalensis) somewhat laryer, but otherwise searcely distinguishable from recent forms. "The difference is so slight," says Andrew . Murray, "it pleases us to think that we may have here, in this most ancient animal, a species which saw the Miocene epoch, and which has survived all the chances and changes which hive taken place since then." That it was one of the carliest of domesticated amimals is evident from the frequent allusions made to it in the oldest written records of the human race Six thousand camels are said to have formed part of the wealth of the patriarch Job; they also formed part of the present which Pharaoh gava to Abraham, and it was to a company of Ishmaelites travelling from Gilead to Egypt on camels, lpeden with spices, much as their Arabian descendants do at the present day, that Joseph was sold by his brethren. Naturalists are able to indicate with more or less certainty the wild progenitors of most of the domestic animals, but they have hitherto failed to obtain any reliable ovidence of the existence, at tho present day, of the wild ancestor of the camel. In tho eastern hemisphere it stands alone, sole representativo of the family to which it belongs, its only allies, the llamas, leing confined to the slopes of the Andes and the southem parts of South America. Paloontologists, however, by tha discovery of several fossil forms, have been able to Lridga over the geographicel gap which at present separates the two brinches of the Camelide.

During the rutting season the male camel becomes exceedungly savage and dangerous, and engages in n̂erca contests ith its follows The gravid femalo carries her young for Inlly eleven montlis, and produces only one calf'at a fime, which sho suckles for a year. Light days after birth the Arabinn camel stands three fect high, but it does not reach its full growth till its sisteenth ur soventecnth year. It lives from forty to fifty years. The flesh of the young camel resembles veal, and is a favoarite Sond of the Arabs, while camel's mulk forms an excellent and highly nutritious beverage, although, according to Layard, it does not furnish buter. The woolly hair, which grows to a great length on
the under side of the neek, the upper part of the legs, ana on the humps, is shorn every summer, and is woven into a variety of stuffs used by the Arab for clothing himself and his family, and in covering his tent. It was in raiment of camel's hair that John the Baptist appeared as a preacher. The hair imported into this country is chiefly used in the manufacture of small brushes used by painters, while the thick hide is formed into a very durable leather. The dung is used as fuel, and from the incinerated remains of this sal-ammoniac is extracted, which was at one time largely exported from Egypt.

But it is as "the ship of the desert," without which rast tracts of the earth's surface wonld probably have remained for ever nuexplored, that the camel is chietty valuable. In its fourth year its training as a beast of burden begins, when it is taught to kneel down and to rise at a given signal, and is gradually accustomed to bear increasing loads. These vary in weight from 500 to 1000 lb , according to the varicty of camel employed, for of the Arabian camel there are almost as many breeds as there are of the horse in more temperate regions. When crossing a desert the camels are expeeted to carry their load 25 miles a day for three days without drink, getting a supply of water, however, on tho fourth; but the fleeter varicties will carry their rider and a lag of water 50 miles a day for fire days without drinking. When too heavily laden tho camel refuses to rise, but on the march it is exceedingly patient under its burden, only yielding beneath it to die; relieved from its load it does not, like other animals, seek the shade, even when that is to be fonnd, but prefers to kneel beside its burden in the broad glare of the sun, seeming to luxuriate in the burning sand. When overtaken by the deadly simoom it falls on its knees, and stretching its suake-like neek along the sand, closes its nostrils, and remains thus motionless till the atmosphere clears; and in this position it affords some slielter to its driver, who, wrapping his face in his mantle, cronches behind his beast. Of still greater service is it, when, the whole caravan being on the point of perishing for want of water, the acuta sense of smell which the camel possesses enables it to perceive the presence of water morg than a mile off; then it will break its halter and make an unerring track for the well. The food of the camel consists chiefly of the leares of trees, shrubs, and dry bard regetables, which it is enabled to tear down and masticate by means of its upper incisors and powerful canine teeth. It is, however, fond of luxurious living when such is to be hal, and, according to Sir Samuel Baker, when it arrives in good pasture, after several days of sharp desert marching, it often dies in a few hours of infinmmation cansed by repletion; but when other animals are starving, the camel, according to the same authority, thrives "on the ends of barren leatless twigs, the dried sticks of certain shrubs, and the tough dry paper-like substance of the dome palm, about as succulent a breakfast as would be a green umbrella and a Times newspaper." The docility of the camel has become wellnigh proverbial throughont leurope, but recent travellers who have studied the animal in Arabia and Africa bave said much to lessen, if not to extinguish, its reputation in this particular. "If docile means stupid," says l’algrave, who had ample opportunity of obsersing the camel during his romantic sojourn in Arabia, "well and good; in such a ease the camel is the very model of docility. But if the epithet is intended to designate on animal that takes an interest in its rider so far as a beast can, that in some may understands his intentions, or shares them in a subordinate fashion, that obeys from a sort of submissive or half-fellowfeeling with his master, like the horse or elephant, then I say that the camel is by no means docile-very much tho contrary. He takes no heed of his rider, pays no attention whether he be on his back or not, walks strmight on when
once set agoing, merely because he is too stupid to turn aside, and then should some tenptiog thorn or green branch allure him out of the path, continues to walk on in the new direction simply because be is too doll to turn back into the right road. In a word, he is from first to last an undomesticated and savage animal rendered serviceable by tupidity alone, without much skill on his master's part, or any co-operation on his own, save that of an extreme passiveness. Neither attachment nor even habit impress him ; never tane, though not wide-awake ennugh to be exactly wild." So also Sir S. Baker, in his recent work The Albert Nyanza, bears testinnony to its extrenie duIness, for while other ruminants in feeding select wholesome hcrbs, the camel is stupid enough to eat indiscriminately every green vegetable; it is thus often poisoned through eating a plant knorn to the Arabs as "camel poison," and on this account it is customary to set watchers over them while grazing in districts where this plant is found. The camel, bowever, is revengeful, and in satisfying this passion is said to dieplay a far-thoughted malice scarcely consistent with the extreme stupidity attributed to it by Palgrave. Of this vindictiveness the camel driver is well aware, and of 'he certainty that sooner or later it will seek revenge; accordingly it is customary for the person who has reason to fear its malice to throw bis clothes before the camel, neapwhile concealing himself until the infuriated animal :las expended its rage in tossing and trampling upon them, when the iojury, real or supposed, is immediately forgotten.
The camel is probably a native of the desert countries of the soutb-west of Asia, whence it has spread into most of the arid regions of the eastern hemisphere, carrying with it wherever it goes a mark of its desert origin in the antipathy which it shows to cross a stream of water. It bas lately been introduced into Australia, the great central desert of which was recently crossed by Warburton with a caravan of carele. It has now also obtained a footing in the New World, ten camels beving jeen latided at New York some years ago, all of them, however, with the exception of a single male and female, dying soon after. The surviving pair were transferred to Nevada, where the soil was sandy and sterile, producing abundance of prickly shrubs which on other animal would touch, but on which the pair of camela flourished and bred. This female has already given birth to twenty-four young, all of which are still (1875) live, and some of these haring also bred, there are now ninety-six camels, all, with the exception of the original conple, born in Nevada. In Europe the camel is only reared in the neighbourhood of Pisa, having been introduced there by one of the dukes of Tuscany, and is employed as a beast of burden, but is said to be gradually deteriurating.
There are two species of camel-the Arabian and the Bactrian. The former or single-humped species (Camelus drumedarius) is found in greatest perfection in Arabia, whence it has spread eastwards to India, where it is now extensively used, although the stony nature of much of the ground it has to pass over does not give it in India that superiority over other beasts of burden, which it undoubtedly possesses in desert countries. It scems to bave spread .. ist wards with the Koran along the North Africen shotes, and to have been introduced by the Moors into Spain, where, however, it did not succeed in establishing itself. it glso accompanied the followers of Mahomet into European Turkey. In Arabia several breeds, each possessing special qualities, are carefully cultivated The chief of hese are the thick-built, beavy-footed, and slow-paced rariety, used for carrying heavy loads, and the dromedarya name often applied to all the nembers of the single-humped pecies, but properly belonging only to a thin, comparatively zlegant, and fine-haired breed, celebrated for its fleetness, carrying its rider when necessary 100 miles a day The
dromedary, says Palgrave, "is the race-horse of its species," ${ }^{\text {s }}$ and the difference between it and the heavy variety is exactly the same "as between the race-horse and a hack:" Another breed, belonging to a tribe of Arabs who dwell dear the western shores of the Red Sea, is specially adapted for jonrbeying with loads over mountain כus districts,and Baker, who made use of them, states. that they accomplished feats in mountain climhing which would have been impossible to any other domestic animal so loaded. The Bactrian or two-humped camel (Camelus battrianus) is a somewhat larger and more robust species, and is much rares than the Arabian. It is found throughout the region lying ta the rorth and east of that inhabited by the dromedary, from the Black Sea to China and northward to Lake Eaikal, where in winter it sustains severe cold, subsisting meanwhile upon the leaves and twigs of the willow and birch, The pads on its feet are harder than in the other species, and are thus better fitted to bear the changes wrought on the soil by the frequent alternations of rain and drought, while its fur is also thicker and more plentiful. In Central Asia botb species occur, and bybrids are not unconimon, the latter being, it is alleged, occasionally fertile among themselves.
(J. ci.)

CAMELLIA, the name of a genus of Teruströmiacere, remarkable for its evergrecn lanrel-like foliage, and its haddsome ruse-like flowers, whence the common species, C. japonica, is sonet!mes called the Japan rose. This is an evergreen sbrub of remarkably hardy constitution, so that in our climate it flourishes perfectly in a cold greenbouse ; indeed, in the south and west of England, and in other favourable situations, tive plant itself is hardy, and ooly suffers from frost in regard to the damage done to ita flowers, which are naturally developed very early in the spring, and are therefore liable to suffer injury from spring frosts. The plant had becn cultivated by the Japancse and Chinese long previous to its introduction to our gardens from China in 1739, and, in consequence, numerous doubleflowered varieties were at that time known, of which about two dozen sorts were introduced from Cbina, chicfly between 1806 and 1824 , sume two or thrèe others having been obtauned so early as 1792-4. This number of varictics has now been very considerably increased by the production of European seedlings, so that several hundreds are figured in a publication called Nouvelle lconographie de4 Camellias, specially devoted to their illustration. The plant seeds freely in the climate of Italy and the south of Europe, aod thence many first-rate sorts have been obtained.
The orginal type of C. japonica forms a dense bushy evergreen, abundantly clothed with ovate acuminate glossy leaves, and decorated with sessile single red fowers com* posed of from five to seven (nominally five) broadly obovato rosy carmine petals, which expand into a cup-shaped flower; and surround a circlet of aumerous monadelphous stamens, witbin which a few free stantens, two to each petal, arè produced. These stamens afford a fine contrast to the broad spreading petals. This form, or one but slightly removed from it, is still cultivated in gardens, as a stock on wheh to graft the double-flowered sorts, these only, in a general way, being now prized. There are, however, some few exceptions, as, for cxample, the single white, whose iarge flowers, with their conspicuous stamens, are extremely baudsome when associated with the rich-looking dark green foiisge.

The name Camellia was given to these plants by Linn axus in tonour of George Joseph Cameilus or Kamel, a Mori arian Jesuit, who travelled in Asia, and wrote a history of the planis of the island of Luzon. In Japan, its native country, the Camellia attains to the size of a large tree; and it is held in bigh estimation iny the Jepa. .ase on account of the extreme beauty of its large, sicmy, aut
varoonsecoloured fowers, which, bowever, bare this drawback, that they have no scent. It appears to have been cultivated by the Chiness from time immenorial, and all our earlier introrluctions were obtained from that country. According to the Kortus hewensis, it was mitiobuced inta England by Rubert James, Lord Petre, befure the year 1733; and the Waratah, or anemone-flowered variety. which bas broad outer petals and a crowd of sutaller central ones, is said to have been introduced at the same time. The double white, a variety as yet unsurpased in beanty, its Howers being so pro in colour, and so inll and symmetrically inabricated in form, was introduced in 1792, as also was the double striped, a free blooming bardy kind, with rosy red flowers irregularly blotehed with white, whech though surpassed in size and richuess of culouring by more modern European varieties, is still too useful to be altngether dis carded. The latest direct importations are probably the hexangular-Howered Canellia (hexangularis), introduced from China by Mr Forture in 1846, a variety wheh, lake that called Lady Huine's Blish (incarmata), has the pointed petals laid diractly over each other, so that the face of the flower becomes six-angled; and the fish-tailed Camellia, introduced in 1861, a varicty in which the leaves are sharply serrated at the margin and forked at the apex, so that they resemile in fom the tall of a fist.

T's be seen in their full perfection Camellias should be plantod out in borders of properly prepared soil under glass ; but these borders should be very effectmally draned, and of such a mechanical compestion as never to becone soddened, for the plants regutire to be almost deluged with water when making their growth, and when developing their blossoms. The borders, moreover, when the plants bave become well established, and the soll is full of roots, will reguire to be assisted by top-dressings, sucb as sheep or deer dung, and by applications of hiquid manure. They by no means require a heated structure, nor too mach sunlight, but when well established in a cool and somer hat shaded conservatory, may becone a source of intinite delight to those who have a fore for Howers. As instances of the great esteem in which the Camellia is held, it is only necessary to refer to the immense number of cut bloons sold during the season in Covent Garden market, and the bigh prices which they realize while yet comparatively scarce.
The genus Camellia is limited tosome six or seven species, natives of India and Japan. Of these, besides C. japonica, another named C reticulata, a a ative of the island of Hong. Kiong, is highly prized io gardens for its ecly handsome blossoms it differs from C' iaponica in its dnuny branches, aod retuculated, not glossy leaves, and also in its much larger flowers. The double-flowered variety of this plant has a most gorgeons appearance, apecimens of the fowers having been measured which were as much as fwenty incher In circumference.

Botb C. Sasanqua (=oleifera), and C. drupifcra ($=$ Kissii), the former inhabiting Japan and China, the latter Cochin-China and the mountains of India, are oil-yielding plants. The oil of C saisonqua (of which Sasnok wa is the native Japanese name) has an afree. able odour, and is used for many domestic porposes; it is ebtuined from the seeds by subjecting them to pressure sufficient to reduce them to a coarse jowder, and then boiling and again pressing the entushed materina. The leaves are also used in the form of a decoc. tion by the Japancso women, for washing their hair, and in a dned stato they are mixed with ter on necount of their pleasant Davour. The oil of C. drupnfera, which is closely atlice to C. Sasiangua, is used medicinally in Cochin China, its flowere also are odoriferous, all the other known species, except the Indaan C. Iutescons, being iaodomus.

The genus Camellia is very closely allied to that of tbe tea-phnt (Thea); inded so cluse is tho affinity that some botanists have pro. posed to unite them. Dr Seomann, however, in a memoir published in the Transadions of the Lannean Socrety (x \times ii. $33 i$). pinints nut their distinctions, from which it appents that white in Camellia the fonwers are erect and sessile, the calyx many-leaved with deciduous srpala, the interior stanzeria (those within the momadelphoms nug) twice the number of pratals, and the styles five of number, the fowers of Thea are pedunculate and nolding, the calya five-semaled prith persistiat sepals, the meterior stameos equaling the petate in
number, and the styles three. So close, however, is the agrepment between them that the red-flowered Camellia Sasanoun, as it was for a long turae called in gardeus, has, as a result of iuvere intimate aequaintance whth its structure, to be referred to Thra, under the name of Thra matefora. Buntlamad Hooker, in there vew Gemera I'lanturum, have :Igan umted Thea whth Camellia wimer the !atier

 the F\%ora of Erotish india (1 292), wlipe thie Thea ossamicea if

 T chmensis ly Limberus auil Setuman.
(7 MO)
CAMEO, a term of duubtíul origin, apphed to engrared work executed in rehef, on hard or precious stomes, wh imtations of such stunes in glass called "pastes," or on the shells of ublluscous ammalls. A cameo is thus the converse of an intagho, whind consists of an incised or sumb engraving executcd in the same class of matemais. The word cameo is generally regarded as beng derised from the Arabic camra, a charin or amulet, but a number of other denvations have been suggested, anorg wbich a highly allegorical ongin of the word from the Araluc cammut, the camel's bump, inilying any object in relut. bas been mantained by an emment authority. Campu. cutting is an art of much more recent introduction thas the sister art of intaghoengraving. The earlsest known traces of any attempit at cutting gem-figures in rel:ei nre seen in certain Hœœnician and Etruscan scaraken, in which the back of the beetle has been utilized for the iant rehneation of another and quute different Ggure. One uf the most ancient known cameos, of which the date can lis fixed with certanty, consists of a sardooys of three layers with prortrat beads of Demetros Soter and bis wife Laodice. Wheh must bave been engraved between the years 102 and 150 B.c.

The materials which ancient artists used for cutting into cameos were chefly those sliceous minerals wheb, under a variety of names, present various strata or bands of two or more distuct colours, and properly the name cameo should be resilicted to work executed in relief on such banded stones. The minerals, under different names, are essentially the chalcedonic variety of quartz, and the differences of colour they prosent are due to the presence of variable proportions of iron and other foreign ingredients. These banded stoaes, when cut parallel to the layers of diferent colours, and when only two coloured bands-white and black, or sometimes white and black and brown-are present, are known as onyxes, but when they have with the onyx bands layers of caroclian or sard, they are termed sardonyses. The sardonyx, which was the favourite stone of ancient cameo-engravers, and the material in which their masterpieces were cut, was procured from India, and the increased intercourse with the East by the way of Egypt after the death of Alexander the Great had a marked influence on tho development of the art. Cameorutting attained the zeaith of its pristiue perfection in Rome during the first two centurics of the Christian era, the chief works being portrats of the reigning families, and allegerical illustratious of their glories. Contemporaneously with the production of the finest works in Oriental precions stones, pastes or imitations in glass were made in it. credble numbers to meet the requirements of the classes whe could not afford the otber necessarily rare and costly lixuries. Both in perfection of material and in artistimerit these imitations were, in the best period, of extrnordinary merit. The Barberini or Portland rase in the British Musemo is a rerecxample of the skill of hoth the glass-worker and engraver on glass of ancient times.

The two most famona examples of this art which havo come dowa to the present day are the Great Agate of the Sainte Chapelle in the Biblnthique Nationale, Paris, amb \because A suguslus Cameo in the Vienna collection. The former-
was pledged emong other valuables in 1244 by Baldwio II. of Constantinople to Saint Louis. It is mentioned in 1344 as "Le Camabieu," having been seat in that year to Rome for the inspection of Pope Clement VI. It is a sardonyx of five layers of irregular shape, like all classical gens, measuring about 13 inches by 11 ioches. During the Middle Ages the subject was supposed to be the triumph of Joseph in Egypt ; but it is now known to represent on its upper part the apotheosis of Augustus, the centre beiug occupied with the reception of Germanicus on his return from his great Germah campaign by the Enperor Tiberius and his roother Livia. The lower division is filled with a group of captives in attitudes expressive of woe and deep dejection. T'Le Vienna gem (Gemma augusta), ad onyx of two layers measuring 9 inches by 8 , is a work of still ereater artistic interest The upper portion is occupied with an allegorical representation of the coronation of Angustus,--the emperor being represented as Jupiter with Livia as the goddess Roma at his side. In the composition Neptune and Cybele, with several merabers of the family of Augnstus, are introduced, and on the exergue or lower portion are Roman soldiers preparing a troply, barbarian captives, and feurale figures. The history of this inestimable treasure has been traced from the time of the Crusades, and it came into the possession of the Enperor Rudoly II. in the 16 th century for the enormous sum of 12,000 gold dueats

While these and other similar moruments of antiquity, which have come down to us only mellowed and not injured by time, have iotrinsically a priceless value as the expression of the most perfect artistic culture and feeling of the age to which they belong, they possess at the same time equally great signifieance to the student of the history, civilization, morals, and manners of the perious. They supply the most authentic means of confiruing the inferences to be drawn from classical souress as to beliefs, usages, dress, domestic and public babits, and pursurts of the people with whom they deal, and be weans of such gems not only are the prevailing features of an ancient race accurately delineated, but the actual portraits of many of the most prominent personages in the world's history have been faithfully preserved, and can be identified beyond the sladow of a doubt.

The art of camco-engraving waned in the early part of the 3d century, after the death of the Emperor Severus, but under the first Cbristian Emperor Constantine it enjoyed a brief period of revival Many very beautiful cameo portraits of Constantine are extant; and it was during or shortly nfter bia reign that Cluristian Scripture subjects began to appear on cameos. That class of subjects constituted the staple of such work-generally rude and urtistically debased-as continued to be cultivated under the Byzantine empire down to nearly the epoch of the lienaissance. From the Byzantine period downward one peculiarity of gen-engraving becomes noticeable. Camcowork as compared with integlios iu classical times was rare and infrequent, but now and onwards the opposite is the case, intaglio-sinking haviog almost died out, and cameos being chielly produced. Commercial intercourse with the East still secured for the engravers a supply of magnificent tardonyxes, although blood-stone and other non-banded stones were very commouly used for works in relief. Cameos during the long dark ages were used chiefly for the decoration of reliquaries and other altar furniture, aud as such 'heir designs were purely ecelesiastical or scriptural To this period also belongs the class of complimentary or motto -ameos, which, containing only inscriptions and an omanental border, executed in nicolo stones, were used as Parsonal gifts and adurnments.
is mediayal aitues antigue cameos were held io peculiar
veneration on accoun of the belief, then uuversal, 碞 their potoncy as medicinal charms. This power was suppposod to be derived from their origin, of which two theuries, equally satisfactory, were current. By the one they were beld to be the work of the children of Israel during their sojourn in the wilderness (hence the vame Pierres d" Lsrael), while the other theory beld them to be direct products of nature, the engraved figures pointing to the peculiar virtue lodged in them.

The revival of the glyptic arts in Western Europe dates from the pontificate of the Venetian Paul II. (1464-71), bimself an ardent lover and collector of gems, to which passion, indeed, it is gravely affirmed be was a martyr, baving died of a cold caught by the multiplicity of gens exposed on his fingers. The cancos of the early part of the 16 th century rival in beauty of execution the finest classical works, and, indeed, many of them pass in the cabinets of collectors for genuine antiques, which they closely imitated. The Oriental sardonyx was not available for the purposes of the Renaissance artists, who were conscquently obliged to content thenselves with the colder Gerinan agate onyx. The scarcity of worthy materials led them to use the backs of ancient cameos, or to indprove on classical works of inferior value esecuted on good material, and probably to this causc must also be assigued the introduction of shell carueos, "hich are not supposed to bave been made previous io this period.

Arong the means of distinguishing antique cameos from cingueceuto work, the kind of stone is one of the best tests, the classical artists having used ouly rich and warmtinted Oriental stones, which finther are frefuently drilled through their diameter with a minute hole, from having been used by their original Oriental passessors in the form of beads. The cinquecento artists also, as a rule, worked their subjects in bigh relief, and resorted to undercutting. no case of which is found in the flat low work of classica times. The projectiug portions of antique work eshibit a dull chalky appearauce, which, bowever, fabricatörs learnee? to imitate in various ways, one of which was by cramming th gizzards of turkey fowls with thie gems. Another index ol antiquity is found in the different methods of working adopted in classical and Renaissance times. The tools employed by the Renaissance engraver were the drill and the wheel, both fod with oil and dianond or emery dust. The drill was simply the common' instrument known by that name, and the wheel was a small metallic dise, which cat by its periphery being made to rotate in a verticai plane. Aptique gems of the best period were cut or seratebed ($\gamma \lambda^{\prime}$ íctr, scalpere) with the diamond point (splinters eitlier of corundum or sapphire), with the aid of the drill, which the artists possessed in common with their modern successors.
In the carly part of the 18th ceatury great confusion was introduced into the study of this department of art, by the fraudulent insertion on a wholesale scale of names in Greek, purporting to be those of the engrayers of the geme beariog thero. In reality the insertion of his name by any artist, on cameos especially, was an exceedingly rare occurrence. An invariable and unfailing test of the authenticity of any signature on a cameo is "that it te always in relicf, which is a sure evidence that it was cut at the same time with the rest of the composition." Another fraud practised in Italy during the revival consisted in engraving on unnamed portrait gems a name supposed to suit the aspect of the individual.

In our own day the engraving of cameos has ceased to be pursued as an art. Roman manufacturers eut stones in large gnantities to be used as shirt-studs and for setting ja finger-rings; and in Rome and Paris an extensive trade is carried on in the cuttigg of shell cameps, which are
largely imported into Enyiand arin....ounced as brooches by Birmingham jewellery manufacturers. The principal shell used is the large bull's-mouth shell (C'assis rufe), found in East Indian seas, which has a sard-like underlayer. The black helmet (Cassis tuberose) of the West Indian seas, the horned helmet (C cormutu) of Madagascar, and the pinks queen's conch (Sirombus gigw.) of the West Imilies are also empluyed. The famous potter Jusiah Wedgwood introduced a mothod of making imitations of cameos in pottery by producing white figures on a coloured grouod, this consticutug the peculiarity of what is now known as Wedgwood ware.
(J. PA.)

CAMERA LUCLDA, an instrument invented by Dr Wollaston for drawing in perspective.

If a piece of plane glass be fixed at an angle of 45° with the horizon, and if, at some distance beneath, a shect of paper be laid horizontally on a table, a person looking downwards through the glass will see an image of the objects situated before him; and as the glass which refects the image is also transparent, the paper and pencil can he seca at the sane time with the image, so that the outline of the inage may be traced on the paper. The image is an inverted one. This is the simplest form of the instrument, and may be constructed extemporaneously by fixing on a staud a plane transparent glass, with its surfaces ground parallel, or a piece of Muscovy glass, at an angle of 45° with the horizon A card with a small hole in it will serve as a sight for keeping the eye steady in one situation whilst the pencil is tracing the image.

Let a plane mirror, $c b$ (Plate XXXIV. f.g. I), be inclined at an angle of $22 \frac{1}{2}^{\circ}$ with the horizon, and let $b a$, a piece of plane transparcut glass, be so placed as to make an angle of $22 \frac{1}{2}^{\circ}$ with the vertical, then rays $f g$ from au object will be twice reflccted before they reach the eye at e, and, consequently, on looking down through the transparent glass, an erect image is seen, and the pencil may be drawn over the outlines of this image, so as to leave a perspective representation on the paper.

As the image and pencil are at different distances, they cannot be both seen in the same state of the eye. To remedy this inconvenience, a convex glass is used, of such focus as to require no more effort than is neccssary for seeing the distant objects distinctly. By means of this lens, the anage will appear as if it were placed on the surface of the paper. In fig. $1, b d$ is a convex glass of 12 inches focus. Instead of using a convex lens, short-sighted persons will require a concave glass to be placed at f, in the course of the rays from the object to the reflecting surface. In fig. 2 , $i k$ is a concave glass so placed that it may be turned at pleasure into its place, as the sight of the observer may require. Persons whose sight is nearly perfect may use either the coucare glass placed before the reflecting surface, or the convex placed between the paper and the eyc.

In theo actual construction of the instrument, a prism is used instead of a mirror and plar.e gliss. The rays from the object fall upen the surface bo of the prism, fig. 3 . This surface $b c$ is inclined $22 \frac{1}{2}^{\circ}$ to the horizon. The refractive porrer of the glaus allows nonc of the rays in this situation to pass out; they are all reflected from the surface be to the surface $a b$, and from that to the eye. wh waker an auglo of 135° with be, and 221° with the vertical. The eyo cannot see the pencil though the prism as it does throngh a plane glass; therefore, in orter that the pencil may be seen, the eye must be so phaced that only a part of the pupit may be above the cdge of the prisin, as at e. fig. 3 ; and then the reflected image will be seen at the same time with the paper and pencil. There is a suall pece of brass perforated with a holec (ing. 2), and morinso on:a centre: this serves to keep, the ege in one position, as it must be that the iruage may be steady, and also to regulate the
relative quantities of light to be received from the object and from the paper.

The instiareant, being near the eye, does not require to be large. The smallest size which can be executed with accuracy is to be preferred, and is such that the lens is only threc-fourths of an inch in diameter. Fig. 4 shows the instament on its stand, and clamped to a board. The joint by which the prism is attached to the stand is double.

This instrument serves for drawing objects of all forms, and consequently also fur copying lines already drawn on a plane surface. If it is required that the copy shall be of the same size as the original drawing, the distance of the drawing from the prism should be the same as the distance of the papcr from the eye-hole. No lens will be necessary in this case, because the image and the paper, being both at the same distance from the eye, coincide without the aid of a glass

In order to have a reduced copy of a drawing, the drawing is to be placed at a distance from the prism greater than the distance of the paper from the eye-hole. If the distance is twice as great, a copy will be obtained in which the lines are of one-half the size of the lines in the original, and so in proportion for other distances. A leus is necessary, that the eye may be enabled to see at two different distances; and, in order that one lens may serve, the distance between the eye-hole and the paper should be variable: to that effect the stand is susceptible of being lengthened or shortened at plcasure.

The length of the stem is adjusted upon optical principles. When a distant object is to be delineated, the rays coming from it, and reflected by the instrument to the cye, are parallel. and it is required that the rays proceeding from the papel to the eye should also be parallel. This is accomplished by interposing a lens between the paper and the eye, with its priucipal focus on the paper. When the object to be delineated is so near that the rays which come from it to the eye are divergent, then it is required that the rays from the paper should likewise be davergent in the same degree, in order that the paper and the image may both be seen distiactly by the same cye; for this purpose the lens must be placed at a distance from the paper less than the distance of its principal focus.

The advantage of this instrument as compared with the camera obscura are, -Ist, That it is small and easily carried about; 2dly, That no liacs are distor:ed, not even those most remotc from the centre; and 3dly, That in the field of the canacra lucida 70° or 80° may be included, whilst the distinct field of the camera obscura does not extend beyond 30^{\prime} or 35° at most. See Reperiory of Arts, vol. x., 1807, p. 162, and Niiuholsons Jourral, vol. z:ii.

If the camera lueids be fixed at th:a eyo-glass of a telescope, it will reflect to the crec the image of the objects in the field of the telescope, so that a draming of the imare may be madc. See Brewster's Accomat of some Philosoykical instruments. i plane reflecting glass fixed at an arigle of 45° with the horizon, and glaced so as io receive the rass from the eye-glass of a telescope, will also give an image of the onjects in the ficld. so simatel that the image day be triced with a pencit. Varley's pant gaphic telesocpe is upon this principle. In order that the deld may be large, the magnifying power of the seleserpe thull be smull.

The optigraph of Rumsi $\%$ ant Thomas Jones, deseribed
 an instrument of a ainilar dind. The tuage of the object is scen in a telescope. There is a piece of plane glass ncire e. in the foens of the eye-ghas of the iclescope F, Plate XXXIV: fic. 5. On the centre of this picce of glass is a dot: a is a plane mirrer, inelined so as to reffect the image of the object intu the telescope. This airror remains Excd, whilst

the telescope is movable on a universal joint at its objectglass b. Near c is another plane mirror, which reflects the rays to the eye-glass. The eye being placed at the eyeglass at e, the telescope is to be moved by the handle h an that the dot in the focus of the eye-glass shall pass over the outlines of the image seen by the eye, and the pencil at L performing a similar motion to that of the dot, and widing freely in its sbeath, presses with its weight on the paper; a drawing of the object is the result. If the stand and slider H be lengthened, an enlarged drawing will be obtained.

CAMERA OBSCURA, an optical apparatus, consisting of a darkencd chamber, at the top of which is placed a box or lantern, containing a convex leos and sloping mirror, or a prism cumbining the lens and mirror. The rays of light from surrounding objects are received by the lens, and the mirror reflects images of the scenery downwards on a table placed underneath. This ingenious contrivance is said to bave been invented by Baptista Porta in the end of the 16 th century. For the camera obscura used by photographers see Peotography.
CAMERARIUS, JOACEM (1500-1574), whese family nange was Liebhard, one of the most learned classical scholars of his time, was born at Bamberg on the 12th April 1500. ISe studied at Leipsic, Erfurt, and Wittenberg, aod in the last-mentioued town he enjoyed the friendship of Melanchthon. For some years be was tcacher of history and Greck at tha Gymnasium, Nurcmberg. In 1530 he was aent as deputy for Nuremberg to the Diet of Augsburg, whera he readered important assistance to Melanchthon. Five gears later be was commissioned by Duke Ulrich of Würtemberg to reorganize the university of Tiubingen; and he subsequently readered a similar service at Leipsic, where the remainder of his life was chiefly spent. He translated into Latin Herculotus, Demosthenes, Xenophon, Homer, Theocritus, Suphucles, Lucian, Thcodoret, Nicephorus, and other Greek writers. He published upwards of 150 works, includidg a Catalogue of the Bishops of the principal Sees; Greck Epistles; Accounts of his Journeys, in Latio verse; a Commentary on Plautus ; Euclid, in Latin; and the Lives of Helius Eobanus Hessus and Pbilip Melauchthon. He died at Leipsic in 1574.

CAMERARIUS, Joaceim (1534-1598), в learned physician, an of the preceding, was born at Nuremberg, 6th Nuvember 1534. After having finished his studies in Germany he visited Italy, where he graduated as dector of medicine. On his return be was invited to reside at the courts uf aeveral princes; but he was too much devoted to the atudy of chemistry and botany to accept their offers. He aattled in his native town of Nuremberg, where he practised as a physician, and was the chief agent in founding a medical achool. He wrote a Hortus Medicus, and severa) other works. He died on the 11th Octoler 1598.

CAMERINO, formerly the capital of a delegation of the same name in the States of the Church, and now the chief town of a district, in the provioce of Macerata, in Italy, is situated on a height at the foot of the A pennines, 41 miles W. of Ancona. It is the seat of an archbishop, agd possesses a amall university founded in 1727, a theological aeminary, nineteen conventual buildiugs, and a bronze statue of Pope Sixtus V., dating from 1587. Its cathedral, Sansovino, is built on the site of an aocient temple to Jupiter, and contrias a number of excellent paintings. The culture and manufacture of ailk is by far the most important branch of industry; to which may be added the preparation of leather. Camerino occupies the site of the avcient Camerinum, an Umbrian city, whose inhabitants, the Camertes, are mentioned as an important people at a very early date. About the beginning of the Christian era its Lads were bestowed qu military colouists: , but it continucd
to enioy considerable prosperity. In the Middle Ages it originally tormea part of the duchy of Spoleto; but it passed in the l3th century to the Varani family, and in 1520 was made an independent duchy by Leo X. About serenty years afterwards it was incorporated by the Papal States. The painter Carlo Maratta, the last of the so-called Roman school, was a native of the city. Population, 11,880 .

CAMERON, Joun (1579-1623), a learned theologian, was born at Glasgow about 1579, and received his early education in his aative city. After having taught Greek in the university for twelve months, be removed to Bordeaux, where be was suon appointed a regent in the College of Bergerac. He did not remaio long at Bordeaux, but accepted the offer of a chair of philosophy at Sedan, where he passed two years. He then returaed to Bordeaux, and in the beginning of 1604 he was nominated one of the students of divinity who were maintained at the expease of the church, and who for the period of four years were at liberty to prosecute their studies in any Protestant seminary. During this period be acted as tutor to the two sons of Calignen, chancellor of Navarre. They spent one year at Paris, and two at Geneva, whence they removed to Heidelberg, where they remained nearly twelve months. In this university, on the 4th of April 1698, he gave a public proof of his ability by maintaining a series of theses, D_{6} triplici Dei cum Homine Fadere, which were priuted among bis works. The same year be was recalled to Bordeaux, where be was appointed the collcague of Dr Primrose; and when Gomarus was removed to Leyden, Cameron, in 1618 , was appointed professor of divinity at Saumur, the principal seminary of the French Protestants.

Iu 1620 the progress of the civil troubles in France obliged Cameron to seek refuge for himself and family in England. For a short time he read private lectures on diviaity in London; and in 1622 the king appointed bim principal of the university of Glasgow in the room of Rubert Boyd, who had been removed from his office in consequence of his adherence to Presbyterianism. His successor appears to have been more farourably iacliacd to Episcopacy,-a circumatagee that may have teaded to diminish the cordiality of his reception io his uative city. Here he also taught divibity with great reputation, but he resigned his uffice in less than a year. Calderwood says that "Cameron was so misliked by the people that he was forced to quit his place soon afterwards."

He returned to France, a ad fixed his residence at Saumur; and after an interval of a yaar he was appointed professor of divinity at Montauban. .The country was atill torn by civil and religious dissensions; and as Cameron maintained the doctrine of passive obedieace, he excited the indignation of the more strenuous adhereats of his own party. He withdrew to the neighbouring town of Moissac ; but he aoon returned to Montauban, and a few daya afterwards be died at the age of about forty-six. Caneron left by his first wife several children, whose maintenance was undertaken by the Protestant churches in France. All his works were published after his death.

His name has furnished a designation to a party of Calvinists in France, who asserted that the will of man is ouly detormined by the practical judgment of the mind; that the cause of men's doing good or evil proceeds from the knowledge which God infuses into them; and that God does not move the will physically, but only morally, by virtue of ita dependence on the judgment of the miad. This peculiar doctrine of grace and free-will was adopted by Amyraut, Cappel, Bochart, Daille, and othen of the more learned among the Reformed ministers, whe judged Calvin's doctrines on these points too harsh: Thi Cameronites are moderatc Calvinists, and approach it the opinion of the Arminians. Tbey are also called

Universahist, as holding tae universal refereace on carists death, and sometimes Anyraldists. The rigid adherents to the Synod of Dort accused them of Pelagianism, and even of Nanicheism, and the controversy betwen the parties was carricd on with great zeal; yet the whole questron between them way only, whether the will of man is determmed by the mumedare action of God upon at, or by the intervention of a knowledge which God impresses on the mund. The Synod of Dort had laid down the position that God not only illumnates the understanding, but gives motion to the will by making an internal change therein; whereas Canoern admitted only the illumination by which the mind 13 -morally moved, and attempted to explain the decision of the Syood of Dort su as to make the two opinions consistent.
Cameron, Riceard (? -1680), the founder of the Cameronians, was born at Falkland, in the county of Fife. The date of his birth is not kouwn. His father, who was a shopkeeper in that town, gave him such an education as the village sehool afforded ; and his success was so great that, while still a youth he was appointed schoolmaster. In this situation he had opportunities of becoming acquanted with some of the more enthusiasuc ficldpreachers, who at this time wandered through the country draseminating their doctrines. Persuaded by them be reargoed his.situation, and shortly after entered the family of Sir Walter Scott of Harden as.chaplain and tutor. He uid not renain there long, however, for, refusing to acknowledge the Indulgence, he joined the ranks of the nonconorming ministers, and incited the inbabitants of the sulthern counties of Scotland to protest openly against the new edict. So formadable was the agitation that the Governmeot thought fit to interfere, and pronounced illegal all arned assemblages for religious purposes. Cameron was obliged to take refuge in Fiollaud, where he resided for some time; but in the spriag of 1680 he returned to Sontland, and once more made bimself formidable and obnoxious to the Government. Shortly after the defeat of the Covenanters at Bothwell Bridge in that year, Cameron mas slain in a skirmish at the Aird's Moss, lishting bravely at the head of the few troops which be had been able to collect, and which formed the nocleus of tho renowned regiment in the British army afterwards known by his name.
Cameroons, or perbaps preferably Camaroons, is the greatest mountain-mass on the western coast of Africa. It is situated at the angle of the Eight of Biafra, directly opposite the island of Fernando Po, with which it has evidently an intirate geological ennnection. Its European name is said to be derived from the Portuguese Camarios folumps or prawns), and to have been bestowed by the early discorsers on the neighbourng const from the abundance of its crustacea. The natiue designation of the highest beak is Mongoma Loba, or the Mountan of the Sky and the whole upper region is usually called Mongo-moNdemi, or the Mountan of Crearness. The area of the Cameroons fetper is calculated at about 380 square miles; but ofishoots and underfalls seem to stretch both north and south forconsiderable distaaces. The phle is of disunctly volcame formation, and the lagher district contans numerous eraters and lavabeds of comparatively recent date. On the principal summit, whose twin preaks of Mount Albert and Victorm rise to a beight of abuut 12.120 feet above the seatevel, there are one small and two large craters, from which, if native report can be trusted, eruptions have taken place withn the nemory of man (1833). The lower portions of the mass are occuped by a lusurant tegetation of palms, acacias; fig-trees, kokos, plantans, and a rich variety of tree and shrub; while at the height oi about - oco fect there sive llace to ierns, grasses,
and bearbs. The climate of the midare 2 one would render it an excellent site fur a sanaturium for Europeans debilitated by the malaria of the aeagbbouring cuasts; and the fertility of the soll would suon rase the district to great cummercial inportauce, if it were brought under cultavation. The native tribes which m. habit the mountain sties are comparativelytiew, and have a very small proportion of the surface in actual pussession, To the south of the Cameroons lics the Lay of Ambas (Ambezes, or Amborze), with the two islanals of Ndana and Mondori. It forms a well-sheltered harhour, and is capable of receiving the largest vessels. In 1837^{\prime} the king of Etmbia on the mamland made over a larye part of the country round the bay to Colonel Niculls, and in 1848 he agreed to abolish buman sacrifices at the fene..Is of his great men. In 1858 a settlement was made on the coast at the mouth of a small nver, flowing into Murtun Cove, now known as the Victoria River. The settlers were Mr Saker, a Baptist missionary, alid his converts, who removed from Feruando Po, when the Spansh authorities published an ediot forbiding public worshtp to Le celebrated by any but the Roman Catholi; clergy. To the south-east of the motmtains flows the Cumeroons River, where the Baptist mission bas had a station sunce 1850. The most important tribe is the Duallas, whose language bas been reduced to writing within recent years. The ascent of the Cameroons Mountans was first attenpted by Mr Merrick in 1847; but it was not till 1801 that the summit was actually gained by Captain Richard Purton and Mr Mann, a botanst. See Burton's Aleokinta and the Cameroons Mountans, 1863 : papers by Mr Mann in the Procedings of the Linncean Society : also Zettschryit d. liesellschaft jurl Erdk. an Dovin, 18i4, and Petermanis's Mutheel., 1863.
Camillus and CaMilla, in Rniman Antiquty. the titce appled to the boys and girls who wero occupred in the ceremones of sacrifice, whether temporarily or as a preparation for their entering the presthood. In the latter case it was necessary that they should be the children of parents still alve (patrome et matrmi) and frecburn. The name Camillas las been jdentified with the Caduilus or Casmilus of the Samothracian mysteries.
Camblus, Marcus Eurtus, one of the most illug. trious herocs of the Roman republic. He truaphed four times, was five tunes dictator, and was bonoured with the appellation of Second Founder of Fone. When accused of having unfarly distributed the spoil taken at Ven, he anucupated judzinent, and went vuluntarly mo exile at Ardea. But during his exile, instead of tejoting at the devastation of Finale by the Ganls, Le exerted hamelf to repel the enemy, and yet kept wath the uthost stritness the sacred law of Rome, in refusing to accept the connmand, whel was ofiered him by several provate persons. The Romans, when besteged in the Cantor by the Gants, created han dicentor; and an this capachy he acted with so much bravery and conduct, that he enurely drove the encmy ont of the terntories of the comnonwalth. He died of the plague in the enghty-first year of has age, 305 18.c. The famous story of Camilhs and the schoomaster belongs to the campaign aganst the Falsems in 394. It is said that when Camilus appeared before Falern, a schoolmaster attempted to betray the town bey brmging into his carup the sons of some of the prucpal inhabutimes of the place. Camillus. mhenamit at such baseuess, ordered that the trator should haise has hands teed behond hm, and be whpped into the town ly his own scholars. It is said that the Fahseans were so affected by the gereorosity of the Roman general that they mmodiaty surrendered (Livy; Mutareh). For a critical estmate of the amount of Listoric truth that hics under the somewhat lugendary history of Camillus see Гomas Histolls:

CAMISARDS was the name given to the peasantry of the Cévennes who, from 1702 to 1705 and for some years niterwards, carried on an organized military resistance to the dragonnades, or conversion by torture, death, and confiscation of property, by which, in the Huguenot districts of France, the revocation of the Edict of Nantes was attempted to be enfurced Court de Gébelin derives the word from camisade, a night attack (IIist. des troubles des Cevennes, 3 vols. 1760). Louvrelcuil, in his Le Fanatisme Renomele, 1704 , suggests its connection with the camese, or linen shirt, at one time worn by the insurgents as a uniform, and with camis, a road-rumner. The Camisards were also called Barbets (or water-dogs, a term also applied to the Vaudors), Vagabonds, Assemblers (assembleée was the name given to the mecting or conventicle of luguenots), Fuotics, and the Children of God. They belonged to that romance-speaking people of Gothic descent who took part in the earhest movenients towards religious refurm. It was in Languedoc that the Peace of God and the Truce of God were formed in the Jlth century against the miserics of private war (Rudolph Glaber, iv. 5). There were preserved the forms of municipal frcedom which nearly all Europe had lost, and there commerce flourehed withont spoiling the thrift, the patience, the sumplicity of the national character Not even the voluptnons court of Arles, with its treuveres, its courts of love, and its excravagant applications of the rules of chivalry, could corrupt the free and lanost iotelligence of these sonthern communities. Before the tragedy of the Albigenses began, It was a proverb in Languedoc against the suiusd and sensual pricsthood, "J'aimeras micux être pretre que davorr fart une telle chose." ilthough the rage of the Crusaders and the cold hate of the Domimicans were successful in blasting the commercial development of the -district, they conld not wholly erarlicate those ideas wheh, whether called Paulician, Cathanst, Bulgarian, Mussite, or Protestant, really represent religious sancerity and mental freedom. Calvin was warmly welcomed when he preached at Nimes, Montpellier became the chicf centre for the instruction of the Huguenot yonth. But it was in the great triangular plateau of mountain called the Cévennes that, anong the small farmers, the cloth and silk weavers, and vine dressers, Protestantism was most intense and universal. These people ware and still are very poor, but they are melligent and pious, and they add to the dcep forvour of the Provencal character a gravity which is probably the resuit of thear recorded history. From the lists of Huguenots sent from Languedoc to the galleys (1684 to 1762), we gather that the common type of physique is "belle taille, cheveux bruns, vasage ovale." The dhocese of Meude consists of 173 parishes, and contairs the Bas Gevaudan and the Haut Gevaudan. The Hlaut Cevaudan consists of the Mountams la Margucrite and Aulrac; the lias Gevaudan embraces the Hautes Cévennes and the Lazère. In the midst of these momnains are threc great phans or phateanx, called respectively L'Hopital, L'Hosfitalet, and La Cause, and a forest named Le Farx des Drmes. Earley and chestnuts are the chief products of Gevandan. The Basses Cevennes are in the richer dincese ni Alas, which has 93 parishes. The chici mountains are digona and Esperon. the latter enclosing a beantifut plateau named Hort-Dieu (God's Garden). The Vivarais lies in the diocese of Viviers, which has 31.4 parishes and 3 cantons; Bontières, Montagne, and Bas-Vivarais. Farther snuth are the well-cultivated dioceses of Uzes, Nimes (called Little Canaan), and Montpellier, the last of which is connected with La Serrane, the southern brauch of the Cevennes. The whole district of the war is thus contained in the modern departments of Lozere, Aveyron. Drume, Ardéche, Gard, and Herault. ${ }^{\circ}$

To understand the war of these Camisards requires a glance at the preceding history of Frauce. The aystem of toleration which was established under the Edict of Nantes, 13 th April 1598 , and the Edict of Grace (Nimes), July $16 \div 9$, was essentially a politicat compromse, and not a recognition of the priaciple of reliogious' equality. The right of having a private chapel was given to all seigneurs de fief haul justacier, but in the case of a seagneur sans haute pustzce only thirty persous might attend the service. New public churches were to be authorizat at a cortain rate in certain places. On the other hand, Calvinists were admitted to all public posts and to ail protessiuns; they conld publish books in towns where they liad churches. The Chamber of the Edict was formed in the partiament of Paris for the impartial judgment of cases brought by Huguenots; and the " mu-partic," half-Catholic half-Protes. tant coustitution, was adopted in the town-consulates and the local parliancuts of the south. Atter the short-lived strugsle between Louis XIII. and the Duc de Rohan, the Hugnenots settled down into contented inlustry; the army and navy of France were led by two Huguenots, 'lurenne and Duquesne, and Cardinal Bentivoglio wrote to Yope P.unl IV. that he no longer found in France "quell" insauo tervor di coscienza si radicato primo negli ugonotti." Eut the court in which Nuse. de Maintenon had succeeded to Mme. de Montespan, where Louvors and the Jesuit Pere la Chaise were as supreme as Bossuet and Flechier in the church, could not long be satisficd with tolerated heresy, which they chose to consider as veiled rcbellion.

On the death of Mazarm a commissioner lad perasibulated the kingotom to moqure into the titles, or mather to suppress as many as posisblc, of the fluguenot churcheg schools, and cemeteries. The extirpation of Leresy bad, in fact, been provided for by a clausc an the marrage-contract between Lums and Maria Theresa (1660), and in spite of the protection of Colhert, a policy was begun of destroying prece-ancal the pruleges of the dissenters. The chancellor Le 'lellier, by a series of arbitrary council colicts, shut agamst them the pubhe offices and the trade corporations, forbade then to inarry with Catholics, and encouraged, almont enforced, the conversion of children who hat reached the age of seven. The wholesale briLreir. i Pelisson, the destruction of churches by Foucaul ir Mr taubon, Bearn, and Poitiers, the billicting of solders un the unconverted in Langueloc by the intendant Biville, led up the Edict of Revocatan (18 th October 1685). Thas edict directed all the churches to be destroyed, forbade religious mectings under pain of imprisonment and combscation of goods, ordered all manisters or pastors (who wuld not change their faith) to be bansheif whthm fifteen days, and to stop preaching at once under paun of the galleys, promised sevcral exemptions from taves and mereased salaries to converted mimsters, suppressed all Hugnenot schools, and directed all chihiren to be baptized and brought up in the Cathohe famh, prohibitcd all Huguenots. except ministers, from going abroad, and dectared the property of those who had already gone to be forfeited unless they returned within four months. Such was the formal scheme. In earrying it into effect, IIuguenot Biblcs, Testaments, Psalters, and books of religious instruction were burned, and Hugnenots were forbidden to hire themselves as artisans or as domestic servants. Torture, hanging, insults worse than death to women, the galleys for life, imprisomment for life in the Tour de la Constance, near Aigucsmortes, were the ordinary occurrences of the next sixty years. Nany escaped to Genera, Lausanne, Amsterdan, and London. It is calculated that 600,000 French Protestants left theit country in the twenty years following the revocation, and 400,000 in the trenty years preceding it (Smiles, Ths Huguenots in France, p. 17). Mons suffered a shamefol
convergon, but in the Cévennes the inlat cal as rese two poor to escape, and all over Languedoc began the secret meetings of the Cbursh of the Desert. At last Louvois proposed that this reoellious district should be turned into an actual descrt. The iutendant Bâvalle and the Duc de Noailles raised an array 40,900 strong, and erected forts at Nimes, St Hippolyte, Alais, and Anduze. The peace of Fisswick (1697) facilitated these operations. The religious bysteria which now descended on the Cevennes has been traced (De l'Inspiration des Camisards, par Hippolyte B-anc, Paris, 1859) to Du Serre, an old Calvinist of Dicu-le-fit, who, in reading Jurieu's well-known book on the Fulfilment of the Prophecies, became suddenly inspired to preach and pray, and who about 1689 communicated his enthusiasm to the shepherdess La Belle Isabean, and 500 or 600 other so-called prophets.

In 1700 this sacred fire again broke out in the person of a travelling dressmaker in Ardèche, and spread from the summits of the Lozère to the sea (Peyrat, Histoire des Pasteurs du Désert, i. 261). A woman (Isabel Vincent) was again the most exalted of the prophets. The Abbe du Cbaila, a veteran Catholic missiunary from Siam, had been appointed inppector of missions in the Cévennes. There he introduced the "squeezers" (which resembled the Scotch "boot"), and his systematic and refined cruelty at last broke the patience of his victims. His murder, ou 23d July 1702, at Pcnt de Mont Vert, was the first blow in the war. It was planned by Esprit Sesguier, the "Daoton of the Cévennes," who at once began to carry out his idea of a general massacre of the Catholic priests. He soon fell, and was succeeded by Laporte, an old soldier, who, as bis troop increased, assumed the title of the Colonel of the Children of God, and named his camp the "Camp of the Eternal." He used to lead bis followers to the fight, ainging Clement Marot's grand version of the 68th Psalun, "Que Dieu se montre seulement," to the music of Goudimal. Besides La Porte, the forest-ranger Castanet, the wool-carders Conderc and Mazel, the soldiers Catinat, Joany, and Ravenel were selected as captains, -all men whom the theomanie or prophetic malady had visited. But the most important figures are those of Roland, who efterwards issued the following extraordinary despatch to the inhabitants of St Andre :-"Nous, comte et seigneur Rolsnd, généralissime des Protestants de France, aous ordonnons que vous ayez à congéater dans trois jours tous les prêtres et missionaires qui sont chez rous, sous peine d'être brîlés tout vifs, vous et eux" (Court, i. p. 219); and Jean Cavalier, the baker's bey, who, at the age of seventeen, commanded the southernarmy of the Camisards, and who, after defeating successively Count de Broglie and three French marshals, Montrevel, Berwick, and Villars, made an honourable peace. ${ }^{\text {t }}$

Cavalier for nearly three gears continued to dircet the war. Regular taxes were raised, arscnals were formed in the grest limestone caves of the district, the Catholic churches and their decorations were burned, and the clergy uriven away Occasionally routed in regular engagements, the Camisards, through their desperate valour, and the rapidity of their movements in a country without good conils, were constantly successful in skirmishes, night attacks, and ambuscades. A force of 60,000 was now in the ficld against them; among others, the Irisb Brigade which had just returned from the persecutions of the

[^69]Vaudos Montrevel adopted a policy of exterminationa and 466 villages were burned in the Upper Cévennes alone, the population being for the most part put to the sword. The l'ope, Clement XI., assisted in this glorions work by issuing a Bull against the "exccrable race of the anctent Albigenses," and promising remission of sins io the holy militia which was now formel among the Catholic population, and was called the Florentines, Cadets of the Cross, or White Camisards. Villars, the victor of Iluchstadt and Friedlingen, saw that conciliation was necessary; he took advantage of the feeling of horror whth which the quict Protestants of Nimes and other tuwns now regarded the war, and published an amnesty. In May 1704 a formal meeting between Cavalier and Villars tuuls flace at Nimes. The result of the interview was that ε document entitled I'rès humble requête des réformés du Languedoc au Roi was despatched to the court. The three lcading requests for liberty of conscience and the right of assembly outside walled towns, for the liberation of those sentenced to prison or the gallcys under the revocation, and for the restitution to the emigrants of their property and civil rights, were all granted,- $t h e$ first on condition of no churches being built, and the third on condition of an oath of allegiance being taken. Tho greater part of the Camisard atmy under Roland, Ravencl. and Juany would not accept the terms which Cavalier had arranged. They insisted that the Edict of Nantes must be restored,--" point de paix, que nous riayons nos temples." They continued the war till January 1705 , by which time all their leaders were either killed or dispersed.

In 1709 Mazel and Claris, with the aid of two preaching women, Marie Desubas and Elisabeth Catalon, made a serious effort to rekindle revolt in the Vivarais. In $1 / 11$ all opposition and all signs of the Reformed religion had disappeared. On 8th March 1715, by medals and a proclamation, Louis XIV. announced the entire extinction of heresy. Fourteen ycars afterwards, in spite of the strictest survelllance, aided by military occupation whenever the exigencies of fureign war permitted, the heroic missionary Antrine Court had organized 120 churches in Languedoc, which were attended by 200,000 Protestants, and governed secretly by the old discipline of "pasteur, anciens, consistoire, synode;" the Society of Help for the Aftlicted Faithful (to which George I. subacribed 500 guineas a year) had established their training college st Lsusanne; ard during the next thirty years Paul Rabaut, minister ft Nimes, fostered and developed this religion, the chatl of intolerance. Voltaire's intervention in the affsir of Caia: stopped further religious persecution of an extreme kind? but it was not till 1775 that the last galley slaves from Languedoc were liberated, and not till 1789 that, on the motion of Rabaut St Etienne, the son of Paul Rabaut. the National Assembly repealed the penal laws agaiust Protestants. ${ }^{3}$ The sufferings of the Cévenols on the gallegs ("Forcats pour la Foi," as they were called) bave been described in the Mómoires de Marteithe de Bergeran Rotterdam, 1757 (translated into English by J. Willington. 1758, 2 vols.); in Bion's Relation des tourments que lcn fait souffir aux Protestants sur les galères de France London, 1708 ; in the Discours sur la Providence, by Lowis de Marolles, which is translated into English; and in the Histoire de l'Honnéte Criminel, the autobiography of Jean Fabre. M. Athanase Coquerel the younger published 1866 an Historical Study on the subject.

[^70]What we know of the spiritual manifestations in the Cérennes (whieh much resembled those of the Swedish Raestars of Smaland in 1844) is chiefly derived from Le Thédure Sacrê des Cévennes, London, 1707, reprinted at Paris in 1847 ; A Cry from the Desert, \&e., by John Lacy, London, 1707; La clef des propléties de M. Marion, London, 1707; Avertissements prophétiques d'Elie Marion, \&c., Loudon, 1707 About the date of these publications Marion, Durand Fage, and Cavalier were in London. They tried to propagate their "mystical phalans" there, but the consistory of the French fhureh in the Savoy pronounced the "ecstasy" to be an assumed and voluntary habit. Voltaire relates (Siecle de Louris XIV., e. 36) that Marion wished to prove his inspiration by attenpting to raise a dead body from St Paul's churchyard. He was at last compelled to leave England. The inspiration (of which there were four degrees, avertissement, souftle, prophétie, dons) was sometimes communicated by a kiss at the assembly. The patient, who had gone through several fasts three days in length, became pale and fell insensible to the ground Then came violent agitations of the limbs and head, as Voltaire remarks, "quite aceording to the ancient custom of all nations, and the rules of madness transmitted from age to age ". Finally the patient (who might be a little child, a woman, a half-witted person) began to speak in the good French of the Huguenot Bible words such as these: "Mes frères, amendez-vous, faites pénitence, la fin du monde approche; le jugement général sera dans trois muis; répentez vous du grand péché que vous avez commis d'aller \& la messe ; c'est le Saint-Esprit qui parle par ma bouche" (IIstoure 'dz fanatiome de notre temps, par Brueys, Utrecht, 1737, vol. i. p. 153). The discourse might go on for two hours; after which the patient could only express himself in his native patois,-a Romance idiom,--and had tho reeollection of his "ecstasg." All kjnds of miracles atteaded on the Camisards. Lights in the sky guided them to places of safety, voices sang encouragement to them, shots and wounds were often harmless. Those entranced fell from trees without hurting themselves; they shed tears of blood; and they subsisted without food or speech for nine days. The superoatural was part of their life. Much literature has been devoted to the discussion of these marvels. The Catholics Fléchier (in his Lettres Choisies) and Brueys consider them the product of fasting and vapity, nourished on apoealyptic literature. The doctors Bertrand (in his Du Magnetisme Animal, Paris, 1826) and Calmeil (in his. De la Folie, Paris, 1845) speak of mag: netism, 'hysteria, and epilepsy, a prophetic monomania based on belief, in divine possession. The Protestants Peyrat and Court ars content with.the phrase " ecstasy," and do not invoke the supernatural. The Catholic Tories, such as M. Hippolyte Blane, regard the whole thing as the work of the devil. Since the publieation of Hecker's work on Sipidemics of the Middle Ages, it has been possible to conshler the subject in its true relations.

Although the Camisarus were guilty of great cruelties in the prosecution of the war, there does not seem to be suficient ground for the charge mado by Marshal de Villars: "Le plupart de leurs ehefs ont leurs demoiselles". -1.tier of 9th August 1704, in the War Archives, vol. 1797). T here probably were many cases in which a vicious use was made of the opportunities afforded by war and religious exeitement; but the charges of sexual immorality rest chiefly on the worthless statements of Louvrelevil. The standard works relating to the Camisards are,- Elie Béuoit, Mistorie de l'Edit de Nantes; C. Coquerel, Mistoire des Eglises du Desert; and the work of Court, already mentioned.

Among the contemporary relics of this intersting period ought to be noticed Lettre sur l'Elat present des Eglises reformes de

France, Au Desert, Chez Freme le Sincere. ithe suctow proves from the letter of Louis XiV to the Elechar of Brandenburg, 6th September 1666, that the ling admitted that the Huguenots wer loyal subjects, and had even given remarkable proofs of loyalty. He contrasts the passivity of his frieads with the political intrigues of the Polish Socinians, and with the turbulence of the Swiss Aus. baptists. Claude, in his Plainte des Prolestans cruellement opprimé duns le Royaume de France, Cologne, Chez Marteau, 1686, gives p virid picture of the persecution from the beginning. He mentions the "Explications," or official glosses on the edicts, of which the Jesuil Meynier was the most prolific author, one of which maintained that the Elict of Nantes (contrary to its express terms) was confined to Hugnenots in life at its date; another, that the phrase Pctite École did not include any school in which Latin was tanght. He inveighs against the duplicity of the Conseil, who professed sometimes tc blame, sometimes to encourage their intendants, and of the king, who in his circulars to the clergy declared (down to the moment of revocation) that he did not wish to in'erfere with the edicts. Soulier in his History of the Edicts of Pacifcation, and Nicole in his Protestants convicted of Schism, justified the royal policy from Scripture, history, and reason. Maimbourg in his History of Pope Gregory, and Varillas in his History of Keligious Revolutions in Europe, praise Lomis for using only the weapons of charity and persuasion. Translations of the narratives of John Bion, and of the anonymous frieud of the martyr Louis de Marolles, were published together at London in 1712. The latter is dedicated to Heinsius, Pensionary of Holland and West Friesland, who had assisted the refugee Camisards; it is preceded by a violent preface, in which the author, an English cergyman, points out how the position o: France has altered since the Peace of Ryswick, and urges the English intervention to restore the Edict of Nantes. For the politica of the subject he refers to The Intercst of Europe with respect to Peace or F'ar, London, 1712. Bion's narrative coutaing all the details abont the galleys. The Complete History of the Ceventres by a Doctor of the Civil Law. London, 1703, consists of an acconnt of the people and country by an Englishaman who had lately travelled there, and of a separato historical survey, description of the edicts and political orgument. The doctor also prints the pretended Manifesto of the Cavennois to the Dauphin, arid a form of prayer nsed in the Camisard Assembiy. The Mcmoirs of Jean Cavalier are written in a very simpla and picturesque style. One object he had in writing was to contradict the statements of Pire Daniel. The Thedere Suere des Cevennes consists of the depositions of twelve witnesses (including Marion, Fage, Cavalier, Portales, Duvois) aworn on 6th March and 1st April 1707, before John Edisbury and Sir Richard Holfurd, both Masters ia Chancery. The Thiâre also contains important extracts from the works of Bénoit, Brueys, Guiscard, and Boyer, and several original letters from Camisards. The same desire to protect the refugees from the attacks of the Freach Savoy Church in London, led to the publicae tion of the Milange de literature historique el critique sur lout ce qui reanade l'etat extraordinaire des Cevennois, Loudon, 1707 ; ${ }^{\text {a }}$ and of a full account of the proceedings in the Consiatory and A ssembly against Jean Lions, one of the faithful ministers. The former coutsing excerpts from a Dissertatio de justitia armorum Cebennorum by Ernest Plane, Frazkfort, 1704, which speculates about a supposed Camisard medal, torning out afterwards to be a Swedish dollar; the letters CRS (woich the German savant translated Christos Rex Solus) meaning only Carolus Rex Suecire.
(W. C. S.)

CAMOENS (or, aecording to the Portuguese spelling, Camóes), Luiz de ($1524-1579$), the son of Simão Vaz de Camoens end Ana do Sa e Miranda, was deseended in the female line from the Gamas of Algarve, with which family Vasco de Gama claimed kiuship; on the male side also the Camoens were of gentle birth and high social position. Lisbon, Coimbra, Atemquer, and Santarem have clamed to be the cradle of this "prinee of poets of his time;" the balance of evidence, however, is now generally considered to be in favour of Lisbon. Manoel Correia, who was on terms of intimacy with the poet, in his Commentaries on the Lusiad, states: "The author of this book is Laiz de Camoens, Portuguese by nationality, born and bred in the city of Lisbon, of noble and aceredited parentage." Correia states in his notes to canto 10 of the Lusiad, that Camoens was more than forty years of age when he wrote it ; and, further on, that the canto was written in 1570. The evidence of Faria e Sousa, extracted in 16.13 from the registers of the "India House at Lisbon," proves Camoens to have been twenty-fire years of age in 1550 ; and 152% is now generally accepted as appreximately the year of his birth.

Alarnasu of the shock of an earchquake as eariy as 1520 , the court remeved to Coimbra, where it femained until the pestilence, which devastated Lisben and the border lands of the Tagus, had mederated; the nobles and "fidalguia" followed the king and court. Simãe Vaz de Camoens having heuse and possessiens at Coimbra, would naturally follow the court there with his family; the more se as his brother Bente had, prier to 1527, taken "the habit in the monastery of Santa Cruz," where he was often visited by the king. Evidently a man of culture, he was chesen, on the reformation of the university in 1529, "being then prior of his order," the first chancellor. The pepularity ef the training at the newly-reformed university drew within its walls most of the sons of the nobility and "fidalguia." Here Cameens was entered as one of "the henourable poor students" in 1537, remaining there until he had completed his eighteenth year. Of his maoner of life during the period which intervened between his removal to Coimbra and the commencement of his university career, semething may be gathered from his minor writings, from. which it appears that he mandered by Mondego's banks, "careless and unfettered in the free licence of boyhood."

The position of the poet's uncle, Dom Bente de Camoens, as prier of Santa Cruz, in addition to his status as chansellor of the university, naturally suggested the church as a career for Camoens. This seems to have found ne favour with him, as he writes, "I felt the pulse of many states of life. The clergy, I see, take stronger hold of life than of the salvation of souls; and the monks, altheugh shrouded in hond and babit, expose some small tokens inconsistent with the profession that he whe turna his back upon the world for God should desire nothing that the world can give." Freely and injudiciously expressed at an inopportune moment in the ardour of youth, such home truths would tend to mar his advaocement in church or state; while his honesty, culture, wit. peetic genius, and comely appearance mould induce much jealous emmity at a court where he was the idol of the women.

During his studentship, and possibly at a vacation revel, or when some degree was conferred, the students acted his Amphitrites in imitation of Plautus. The dramatic 'representations at the university had usually been of the tragedies of Seneca, or of original Latio compositions. This work of Cameens, in popular "redendilhos," and in the vernacular, was considered an attempt to popularize a poetic reaction which satirized the mode in which the grave dectors of the university desired that all instruction theuld be imparted. In a satire of Resende's, "to Luiz Camoens, reprehending those who, despising the learned, waste their own time with jesters," he indicates Camoens \because as a pitiful poet, an unlucky monster, boasting to be a Latin bachelor."
With reference to the precise period when Camoens removed entirely from his alma mater and became again resident in Lisbon, seme speculations have been hazarded by his biographers. The one carrying the most weight is cited by the Visconde de Juremenha, whe founds it upon the statement made by the peet in his first letter from India: "Because, when I refleet that without sin, which weuld sentence me to thirteen days of purgatory, I have passed thirteen thousand caused by evil tongues." Upon this Juromenha observes: "These thirteen thousand days are equal to eight geare and eight days, and deducting the twe years Cameens passed in Ceuta, and the one year oi ksnishment on the upper Tagus, this leaves 1542 as the year of his departure froun Coimbra." Thus we find Cameens quitting eollege to return to the ceurt-at Lisbon in his eighteenth year. A French biegrapher has assumed, with seme force, that "Certe" aimply means Lisben, and net the court; for as Camoens was not of the titular nebility,
he would not be received at court. Contenperary evidence, on the other hand, rather faveurs the assumption that being of the "fdalguia," gentle born, and well cultured, he would be chosen as companion by many of the young nobles who were his fellow-students at Coimbra.

Gentleness of birth, classind attainments of no mear order, a cultivated intellect, and peetic genius, united to a pleasing personal appearance aud witty manner, must have been goed passports to the court of Jehn IIf., in which resided et that time the Infante Dom Luiz, a man of considerable attainments and a fair poet; also the Infanta Donna Maria, patreness of the Belles Lettres, surrounded by a bery of fair damsels who could compose songo dirge, epigram, and roundelay, or jest with the quick wit of a Beatrice, and who: like her, knew many "merry tales" by beart. Statesmen, such as the Cende de Sorteltha and the Conde de Vimioso, ceurtiy paets, and fellow-students of Camoens at Coinbra, both in the full blaze of court faveur, would glady welcome to Lisbon so polished a youth as Caneens must at that time bave been. Of this same ceurt of John III. Gil Vicente writes, "It is a seia in which many fished, but found the pastime dangerous." Sá de Miranda also blamed "t the economic error of herd. ing together all the young nobility in Lisbon."

Here, no doubt, Cameens fermed acquaintanceships if not friendships, and became quickly initiated into the mysteries of coart life and manners. Prececious and bern a poet, his facility in every style of versification, a mind atered with romances of chivalry as well as pepular fiction, and the poetic lore then available in his own, the Spanish, Italian, and classical idioms, would, added to his youth and aprigbtly manner, render him popular with the gentler, and unpopular with the sterner ser. Abandoning in some degree the antiquated ferms of compositien in vogue, he ratreduced eclogues, songs, and sonnets, full of tenderness and beauty, after the manner of the Italian school. Montemayor and Sá de Miranda, both Portuguese, residing in Italy, had already adopted and naturalized to some extent the Italian form of pastoral poetry.

Here we must speak of Camoens's romantic passion for a certain high-born lady of the court. "The sweet unwitting cause" of so much detriment to his court adrancement, and, if we are to credit his muse, of anguish to bis heart, was a certain Denna Caterina de Atalde in attendance upon the queen of John III. The anagram of Natercia for Caterina clearly indicates the lady's name. in addition to which an acrostic coupling the names of Luiz with Caterina de Atafde, said to be by Camoens, puts the matter beyond all doubt. The tradition is that, on a certain Good Friday, Camoeas for the first time encountered the lady's eyes at her devotions in the Church of the Chagas, Lisbon. That the round proved deep and permanent there is abundant evidence in his Rimas.

The lady's father, Dom Antenio de Lima, held the office of chamberlain in the rogal heusehold, a certain Pero de Abdrade de Camioha serving in a similar capacity the Infante Dom Duarte. Caminha was a poet of fair ability, and was probably jealous of the success of Camoens; in addition to which tradition asserts that Caminha himself, favoured by her father, aspired to the hand, if not the beart, of the Denna Caterina. We may infer that the lady was not ignorant of the effect her eyes wrought upen the author of the Lusud; at any rate Caminha was jealous, and revenged himself in weak aplenetic rather than satirical verse, while the lady's father employed his interest to mar the poet's prospects.

The precise cause which led to Cameens's banisbnent from Lisbon is net clear. The principal reasen, no doubt, was bis passion for the golden-tressed Caterina, but there
may have been in addition to this some unintentiva, watempt of the rigid court etiquette which hedged the royalty of that day; for it was the custom that lyric offerings intended ior the ladies of the queen's court should first be submitted to the chamberlain, and then by him transferred to the chief lady in waiting, who banded the effusion to the queen,-she, in her turn, after perusal, passing the "burniag lines of passion" into the hands of the damsel to whom they were addressed. Camoens, doubtless, would essay some safer and more secret mode of conveying bis offerings to the lovely Caterina. The dislike of De Lima, and the jealousy of Caminha, aided by the indiscretion and free-lance life of Camoens, may have led to this mark of the royal severity. Whether such or other causes intervened, the fact remaius that he was banished from the court. The precise Jocality to which he retired, bowever, still remains conjectural only. Adding the year of his banishment to the two years he was absent with the army of Africa at. Ceuta, where, in a naral engagement with the Moors, a chance splinter destrojed the sight of his right eye, we find him again in Lisbon in 1550.
During the three years which intervencd between Camoens's return from Ceuta and his embarkation for India in 1553, be seems to have led a careless and discreditable kind of life, consorting with the least reputable court gallants, and a certain dissolute ex-Franciscan friar, who had abandoned the cowl to adopt the role of a low comedian. Since be inherited the traditions of "fidalguia,"-candid, brave, impetuous, and crossed in love,-much of the free and careless life credited by tradition at this period to Camoens is reasonably accounted for, if it may not be condoned. At this period occurred the fracas which led to his imprisonment and subsequent embarkation for India On the occasion of a grand procession at the festival of Corpus Christi, one of the king's equerries appears to have had a dispute with two masquerading companions of Canoens. The latter, unhappily intervening to defend one of theee friends hardly pressed, wounded the equerry in the neck, his two friends escaping in the confusion. For this Camoens lay some time in prison, and was only pardoned upon the uaderstanding that he should cmbark forthwith for India. Juromenha gives the full text of this pardon.

With reference to the -poet's departure for India in March 1553, the indefatigable Faria e Sousa discovered the following entry on the books of the registry of the Lisbon India House :- Fernando Casado, inhabitant of Lisbon, went in his atead Luiz de Camuens, son of Simon and Ana de Sa." His father did not offer himself as the customary surety, while it is seen from a docurnent, dated the 7 th of March that year, that he was still alive, and an inhabitant of Lisbon.
Camoens, in ,his first letter from India, alludes to his departure from his native city; and as he sailed out of the "golden-sanded Tagus" in the twilight, exclaimed in the bitterness of his heart, using the words of Scipio Africanus,-"Ungrateful country, thou shalt not possesa my bonea!"
The ship in which he sailed, the "San Bento," parted company with her consorts during a storm, and reached her destination in the same year, while her missing consorta did not anchor at Gos until the following spring. On landing at Goa, Chmoens found the Viceroy Noronba preparing an expedition to act against the king of Pimenta, who had invaded the territories of the allies of Portugal. With this expedition aailed Camoens; and "after chastising the enemy," be says, "with little trouble, we destroyed the people trained to the use of the curved bow, punishing ibem with death and fire." He returned to Goa early in ? iue fellowing year, 1554.
"ke friendly terms upon which Camoens remaned with the governor, and probably his disguat at the vice and venality ranpant around him, induced him to join the expedition organized with a view to check the depredations of the Noorish rosers on the coast of Arabia. The commander, Menezes, received instructions to cruise on that coast where be expected to intercept the galleys sailing from Bassorah.' The fleet cleared from Gua early in the year 1555; and, after seeking the Moorish galleys in vain wintered at Ormuz. Returning in the following spring to Goa, Camoens, in cancão 10, describes his unpleasant impressions of this royage: "Here fate's most cruel chances led me; bere in this lonelf, sterile, sun-scorched land did Fortune will that part of my brief life be passed, and thus in fragments cattered lie throughuut the world." Some of Camoens's biographers allude to the governor Barreto as one of his relentless persecutors. Juromenia, however, demurs to this, alleging that two intimate friends of Camoens then at Goa, in the most frank and decided language, laud Barreto as "a liberal cbliging comrade, and one ever ready to overlook offences received." That Camoens was unpopular with the venal many, his expression "This land is the mother of great villains and the stepmother of honourable men" leaves little doubt. He cante to uphold the honour of Portugal, and not to intrigue, brawl, and barter his soul for gold. His satirical exposure of the abuses so rife then in the Eastern dominions of Portugal will readily account for his numerous enemies, official and lay. Festivals, banquets, and dramatic representationa inaugurated the governorship of Barreto. Carnoens's pen was not idle. He wrote a comedy for the occersion, entitled Filodemo. Corrcis, who describes binself as "companion in the state of India, and a great friend of Camoens," happily secured either the original MS. or a copy, which is, or was, in the national library at Lisbon. It is entitled, A Conedy made by Luis de Camoens, and represexted in India during the governorship of Barrcto. and in which the following characters figure, \&ic.

Camoeng's unpropitious star still dominated bis fate. The vices rampant in Goe, the drunkenness, dicing, brawling, and cowardice, were notorious; and during theso festivitiea, which lasted some weeks, were more pronounced than ever.

A certain satire, said to be from the pen of Camoens, passed from hand to hand, entitled A Jest which vas made upon some men who did not think ill of wine, feiguing that in Goa, at the feasts which were made on the govemon's succession, these gallants went to sport with canes bearing devices on their banners, and verses conforming to their designs and inclinations. It is written chiefly in prose, having verses introduced. No names of the "gallanta" appear. After introducing a few of these revellers, the author concludes by atating " that several other illustrious personagea desired to be admitted to the feasts and aports, and to have an account of their qualifications chronicled;" but, he observes, "the writing would be infinite, because all the men in India are so distinguished, and therefore let these suffice as examples." This jest, intended to satirize the corruption and inmorality of the daily life of the Portuguese in India, caused intense amusement to those who did not recognize their own portraita on the canvas; while, on the other hand, those who did, or imagined they did, were, furious,-so much so, that "the innocent author remained rcady to bang himself."

The tradition is that this Jest was appended to Camoens'a econd letter from India, and that the author desired its source should remain unknowa; "because I da. not wish that of my little so many should eat." l_{3} that as it may, Camoens was banished from Goa, and this Jest is said to have been the cause. Some of those ridiculet
ware fowertul, walignant, and treacherous; and it is surmis'd that Barreto was of the aumber, but it is difficult to imasine that if Barreto in eaded punishment be should have noade of this bauishinent a atepping-stone to a lucratize appointment, whirh must have been one of considerable importance, embracing as it did the custody of the property of absentees, and of those Portuguese who had died in India. In a latter from Francisco de Souza to John III. the impertance of this office is recogoized, grave complaints of embazzlement and misappropriation of the property of deceaod morchaots and others having reached Lisbon, so that, "early in 1556 , a commission was despatched from the mother country to take charge of the effects of deceased subjects," and, in 1557 , "full instruc. tions as to the management of this atate department followed." Barreto, with a laudable desire to abate these scandals, may well have appointed a bold energetic man, upon whose integrity he could rely, and Camoens was s.lected.

Daring the absence of Cameens from Goa his friead Luiz Eranco Correia collected the verseshe had scattered amoagst his friends, shrewdly ohserving, "that they who knew aot the poetic art failed to estimate its value."

Apart from the vices and intrigues of Goa, and in the quietude of the Grotto still shown at Macae as the spot where much of the Lusiad was penned, we may imagine halcyon days for the persecuted poet. Here Antonio, the Javanese slave, is first introduced to history, - he who tended Camoena so affectionately and with such solicitude througa those latter years of misery and neglect, which were the lot of this unhappy "prince of poets of his time." It is surmised that the first six cantos of the Lusiad were composed during Camoens's stay at Macao ; for in the seventh, allusion is made to the shipwreck he suffered on his retura to Goa

During his absence slanderous tongues were net silent, and we hear of his roturn to Goa by order of the goveroor, to make answer to charges brought against him is his capacity as commissary. Wrecked near the mouth of the River Mekong, Camoens and his faithful Javanese escaped only with their lives. Camoens, rescuing nothing but the mannscript of his epic, at length landed at Goa in the last dajs of Barreto's governorship, and was cast into prison. Here be received the only news which could aggravate his pain-the sad tidings of the death of Donna Caterina de Ataide, the Natercia of his impassioned youth. We can estimate the depth aad teadcruess of his grief touchiagly expressed in many of the Rimas.

The arrival in the autumn of the folloming year of Dom Constantinho de Braganç as governor to replace Barreto led to the liberation of Camoens, the charges aganst him having been proved to be unfounded. Under the protection of Dom Constantinho the poet enjoged some respite from his persecutors. It was during this period of "cultured calm" that be innted several "versifying friends" to a basquet, where cach, on uncorering his plate, discovered, in place of the first course, ao appropriate stanza. The eurprise gave occasion to considerable mirth and amusement. Three years later Dom Constantinho was replaced by the Conde de Redondo, an early friend and cumpannon of the poet's. Towards the close of 1562 Camoens suffered a now reverse. Miguel Rodriguez Coutuho, a rich braggart, nick-named Fios Seccos (dry threads), detained him in clustody for a trifling detit. On this oceasion Camoens sent a request to the Conde to release bim, in eprgrammatic verse, which well rcreages Coutanho's meanness, commencing- "What devil so completely damned but fears tho edge of Fios Seccos' sword." Camoens was released, hut dues not appear to have accompanied the viceroy and his aplondid retinue to Zamorin. Being desirans to return
to his Lativs laud, a certain Captain Barreto, nephew of the old goveruor of Goa, charmed with the society of the poet, agreed to carry lim to Sofala; once there be boped to detan him, and claimed a small sum be was unable to discharge. Here the expedition under Noronha, exgovernor of Goa, found him; and of Camoens's condition Diogo de Couto wrote: "Here we encountered thut 'priace of poets of his time,' my fellow-sailor and friend, Luiz de Canoeas, so poor that he lived upon his acquant. ance, whe found him necessary. clothing and gladly gave him to eat. During that winter he prepared bis Lusiad for the press, and wrote much in a book he called the Parnaso of Luiz de Camoens."

The fleet, iacluding the "Santa Clara," with Camoen: on board, sailed from Sofala in November 1569, and on the 7th April 1570 the good ship cast anchor in the broad waters of the "golden-sanded Tagus."

After seventeen years of weary exile me may imagine the thrill of joy that warmed the heart of Camoens at the first sight of the headland which bares its base to the wash of the Atlantic, and marks the entrance to the Tagus. "From the round-top of the loftiest mast a sailor shouts, 'The land, the land!' This is my native land so fondly loved, which beaven grant, all perils past, my task accom. plished, these eyes bebold once more before their light be dimmed for ever." While others from the far Indies brought rich merchandize and gold, be who had snffered banishments and imprisonments, had encountered tempests and shipwreck, came freighted only with a single manuscript, on the pages of which were traced in immortal verse the glorious bistoric decds of the Portuguese nation, and the touching episode of Ignez de Castro. Here Fortune still continued to persecute Camoens. He and his companions wera not permitted to land, Lisbon having recently suffered irom the effects of a pestilence which had destrosed 50,000 souls. ${ }^{1}$

Late in the month of April, the great plague having abated, a procession of our Lady of Health was decreed; and it is supposed that Camoens had already landed and embraced his mother, then "very old and very poor." The Lusiad, being now completed and ready for the press, after much delay and many impediments, was, through the influence of Do1n Maooel, ambassador to Castile, presented in manuscript to the young king in the follow. ing year, 1571 ; the royal permission to print the rork was accorded, the Alvara bearing data the 23 d September of that year. Later the "censura" of the holy office ras obtained, bearing date 12 th March 15.2. It carries the signature of Father Ferreira, a man of singular ability and evidently liberal views, and is as follows :- "I saw, by order of the Holy Inquisition, these ten cautos of the Luszad of Luız de Carovens, relatang the valorous deeds in arms of the Portuguese in Asia and Europe, and I did not find in them a single offensive thing, nor aught contrary to the faith and good manners; only it seemed to me necessary to warn the reader that the author, in order to exaggerate the perils of the navigation and entrance in: ladia of the Portuguesc, makes use of a fiction of tho beathen gods; and although San Agostinho in lis Retractacues corrects the having calle, the muses gotdesses, nevertheless, as this is puetry $^{\text {bud }}$ fiction, and the autbor does not pretend nore than to adorn his proet.c style, I have not consdernd it meonvenent thes fable of the gods in this work, knowing it for such, und while Is always preserved the truth of our Holy Faith, that all the gods of the heathen are devils, and therefore it appeared to me that the hook is worthy of being printed,

[^71]and the anthor displays in it much talent and erudition in the human sciences." The Lisbon upon which Camoens turned his back in 1553 had sadly changed; the times were out of joint. A dreadful pestilence had decimated the population; the intrigues inseparable from a regency, and a young king, the sport of youthful favouritos, rulcd by the Jesuits, brave aad impetuous, already meditating the luckless expedition to Africa, overshadowed both court and kingdem. Ficmarking this, in his address to the young king Canoens wrote, 一"The bumility of the anchorite should not be the only virtue of your ministers."

At length the epic, dreamed of at Cuimbra, commenced in banisliment, contiaued at Ceuta, resumed at Goa and ilacao, revised at Mozambique and Sofala, and perfected in a Gumble ruom in the Rua de Santa Ana, Lisbon, was issued from the press of Antonio Gǒyalvez.

The first edition of the Lusud bcars date Lisbon, $\mathbf{1 5 7 2}$. Its success was immense, and the despair and malice of the mediocre paets of the court intense. A secondedition was issued from the press of Guçalvez in the same year.

Isolated amid this literary strife, Camocos lived retired, and was very poor. He lived in the knowledge of many, and in the companionship of fer, inhabiting an apartment in a house adjoining the convent Santa Ana, at the botom of a small street which led to the college of the Jesuits, where the sole cunsulation of his later years was his intimacy with some of the fathers. By the death of the Princess Donna Maria, who expired in 1578, Camoens lost the last of his protectors, and was reduced to extreme poverty; then came the heaviest blow of all, the death of his faithful Javanese Antonio.

Early in the year 1578 , after the grand ceremony of the Bencdiction of the Standards, Dom Sebastian, the boy king, departed on bis ill-starred expedition to Africa, Bernardes, a court poet and a cuurtier, being selected in preference to Carooons to accompany the expedition and sing its triumplis. In Augast uccured the fatal rout of Ncazar quivir, and the death of the young king, sfter which, according to the testimony of Bernardo Rodriguez, "Camoens went as one dreaming."

Three months prier to the poet's death, Benitn Caldera's Castilian version of the Lusiad was printed at Aleala de Henares, and we may reasonably infer that Carmocns saw a copy."

The disaster of Alcazar-quivir shook Portuguese nation. ality to its base. In the last letter Camoens penned he alludes to this event. "I have so loved my country that not only do I deem myself happy to die in her bosom but 'appy to die with her.

The sad sickress unto death came at last, on the 10 th of iune, 1580 . In a small, cheerless room of a shabby house in the Rua de Santa Aba (No. 52 or 54) Luiz de Camoens lied, and he was buried in the aeighbeuring convent of Santa Ana. On the flyleaf of a copy of the first edition of the Lusiad (said to be in the library of Holland House), and in the bandwriting of Fray Jose Indio, a Carmelite monk of Guadalajara, is found the following statement:-
" What thing more griavous than to ace so great genius lacking success 1 I anm him die in a hospital in Liston, withont a aheet to cover him, after having triumphed in the lodies, and having sailed five thousand fire hundred leagues by sca. What naming so great for those, who, by night and day, weary themsel ves in atudy without profit, like the spider weaving a web to catch mall lics."

Some picturesque and touching, but probably apocryphal narratives are chroaicled by Camoens s biographers. One tells of the faithful Jaranese Antonio sallying forth at eventide to beg from passers-by the means to procure a modest ratal for bimself and his master; another, of Barbara, a mulatto woman, who, from the scanty store upen herstall and the still scantier treasury of ber pocket, spared a daily ration and
an ocoasional silver coin rin pity for one she might hava known prosperous at Macao ; and a third of a " fidalgo," named Roy Diaz de Camara, whe came to his poor dwelling to complain of the non-fulbiment of a promise of a translation of the penitential psalms, and to whom Camoens replied-" When I wrote verses I was young, had ample food, was a lover; and beloved by many friends and by the ladies ; therefore, I felt poetic ardour. Now I have no spirit, no peace of mind ; behold there my Javanese whe usks me for two coins to purchase fuel, and I have none to give him." On his deathbed he is said to hare exclaimed, "Who ever heard that on so small a stage as a puor bed, Fortune should care to represent so great misfortune, and I, as if such were not sufficient, place myself on ber side, bccause to dare to resist sueb ills would appear effrontery."

Camoens was spared the pain and humiliation of seeing a Castilian king upon the throne of Portugal. It is, bowever, related of Philip II. that, soon after his occupation of Lisbon, he inquired for Camoens, and finding him already dead, gave (as documentary evidence shows). instructions that a pension be granted to the poet's mother, still "very old and very poor." She survived the poet some years.
: Of Camoens's personal appearance Manocl Severim de Faria, one of bis bingraphers, writes thus: " He was of middle stature, his face full, and his countenance slightly lowering; his nose long, raised in the middle, and large at the end. He was much disfigured by the loss of his. right eye. Whilst young his hair (like Tasso's) was so yellow as to resemble saffron. Although his appearance was not perhaps prepossessing, his manners and conversation were pleasing and cheerful. Ile was afterwards a prcy to melancholy, was nerer married, ald left no child." On a marble slab fixed in the wall of the church of Santa Ana. bom Gunçalo de Coutinha bad an inscription placed; but as both clurch and inscription perished in the earthquake of 1755 , there is some doubt as to its precise wording, and whether " he lived poor and neglected and so died" formed part of it or not.

Amid many tibutes to Camoens's memory, those of Manoel de Sousa, Diogo Beruardes, Tasso, and Lope-deVega are well known. The last alludes to him as "the divine Camoens," and adds, "Strange fortune that to somuch wit and learaing gave a life of poverty and a rich sepulchre."

A Spanish bingrapher of Cervantes has ahewn "that the most remarkable coiacidence of fortube may be traced in the events which marked the lives of Camoens and the author of Don Quixote."
Estimating the popularity of Camoens great epic Os Lusiadas by the number of cditions printed in Portugal, it aes without question considerable, no less than thirty-eight having been published at Lisbon prior to the year 1700, end in addition four in Spain, -threo in Castitian and one in Portuguese. There exist translations in Eaglish, French, German, Jtalian, Dutch, Potish, Bohemian, Daniah, Swedish, Russian, Latin, Greek, and even Hebrew. The earlicet in English is by Sir Richard Fansham (London, 1655), and was com. posed doring his hanishment at Tankergley Park, Yorkshire, in 1652. Had he lived to prepare a aecond edition, many errors and imperfections arising from an incomplete knowledge of the Portugerse idiom would, no doubt, have been rectified. Ha way appointed athbassedor to Portugal in 1661, where he remained three yeara, being then transferred to Madrid, where be died in 1666. Nickle's Lusiad was first published in 1776; and hardly merits Southey a condemnation (he proferring that of Fanshaw) of "most unfaithful." It is fairty close in phaces, but much of the force of the original is sacrificei. for the sake of smooth versification. Another translation by Musgrave in blank verse appeared in 1826, the latter cantos of which aro closer and more effective than the earlier. A acrsion of the first fire cantos by Quillman followed in 1853, rendered with coosiderable grace and with greater accuracy than Mickle's. In 1854 appeared a version ly Sir Thomas Mitchell.

Io estimating the genius of Catmoeos, it must be remembered that. ' we build with ready materials, but ho dug the quarty, rongl-
sering and puishing with his own hands the material for his edifice." He firengthenol and pohshed the Portuguese lagguage, aud his influence preserved it from destruction as an idiom during the Spanish occupation, when the language of the court was Castilian. The circumstances under which his great epre was penned were pecularly unfavourable to the production and elatoration of such a work; still he triomphed over every dilficulty. and produce.] the epic master-piece of hisage. Theophito Braga, his latest Portuguese bogiapher, observes, " In Camoens we find exemplitied that tradition which insures moral unity to a frople, and ts the bond which constitutes their nationality, as in the Homeric poems are centered the Hellemic traditions. This same sprit aumated Camoens, "or in Os Lusuadas are gatliered together many beautuful aml excut.
ag traditions of Portuguese history." Extended and elaborate Tiotices of the Lusiad will be found in Adamson, Mickle, and Bou'grwek.
Of Camoens's minor wnoks, or Rimas, a full and exhaustive notice sill be found in Memnirs of the Lafe ant Writings of Luw de camoens, by John Adamson, London, 1820: two exymasite trittes the siginals in Spanish) will be found in Tieknor's History of Spanash sitcrature. Lord Strangford, Adamann, Hayley, and Southey have each translated striking exaniples of the Kimas.
(F. W.CO)

CAMP, Roman. While the Greeks, dependiag more up n the advantages of situation, adapted the form of their encampraent to the nature of the gronad selected, the Romans laid out theirs according to a fised and defiuite plan, modified only by the numbers for whom acconmodation bad to be provided. Its form and arrangement in the hest days of the republic are minutely and clearly described by Pulybius, the compaaion in many wars of the younger Geipin.

A Koman camp of the Polybiar type was intended primarily to accemmodate a consular army, consisting of awo legions, each of 4200 infantry and 300 cavalry, with the ordinary contingent of "suci," amonnting in all w. 16,800 foot and 1800 horse and for this purpose it was pitehed iu the form of a square, each side of which extended 2017 Roman feet in length. This square was divided into two unequal portions by a perfectly straight road called the "principia," 100 feet in breadh, rumning paralle with the front and rear of the camp, and forming at its extremities in the sides AC aod $1: \mathrm{D}$ of the camp two gates, the "porta jriecipahs dextra" and the "porta principalis sinistra." In what maly te callel the upper and smaller portion, determumg the arrangenent of the rest of the cama, stood the "pratorium" (P), or general's tent, so situated as to have a comoanding view io all directions. 100 feat af clear pround ad every side left the "nrutarium"
in the centre of a square, whose sides, earb 200 feet in leagth, were carefully traced parallel to the sides of the camp. To the right and left of the "pratoriom," at F and Q, were the "forum," or market-place, and the "quastorium, " or paymaster's tent. Further to the righr and left, at $(p, q),\left(p^{\prime}, q q^{\prime}\right),(r, s),\left(r, s^{\prime}\right)$, were stationed the cavalry and infantry that formed the budjguard of the consul and quastor. Fifty feet in fruat of the praturium," along the line formung the opper boundary of the "priacipia," were the tents of the twelve tribunes of the legions six to the right and six to the left of the "pratorium," opposite their respective legions. In the prolungation of the same lane were probably stationed the "priefectu sociurum." Passiug from the upler to the lower division, or to what was called the front of the camp, we cross the "proncipa." the great thoroughiare of the army, where the standards of the legion were placed roand the altars of the gods. This part of the camp, i.e., between the "principia" and the sude CD, was allotted to the mana body of the army. It was intersected transversely in the mindle by a street 50 feet bruad, the "via quatana," as well as longitudinally by what were called the "vie" or streets of the camp. Each of the latter was also 50 feet 111 breadth, and the central "via "fornsed the boundary between the twos legrons, which were placed symmetrically to the rigtt and left on each s:dc. The " equites," " triarn,"." priucipes," and "hastati" of the legion were stationed in the spaces numbered (1, 1"), (2, 2). (3, 3), (4, 4'), -each of the spaces devoted to the cavalry cuntanning, withon an area of 10,000 square feet, one squadron of thirty men and horses, whale in the same area there were quartered of the "pracipes" and "hastati" two " mamples" or divisions of sixty tmen each. Each of the spaces where the "trarn" were stationed was maly balf this area, and devoted to oue "manule" of suxty men. Spaces (5, 5'), (6, 6) were assigned to the cavalry and mantry of the allies, of whom, howeve=, a part was quartered in the upper camp. The "velites" (hight-armed troops) were probably distributed propiortionally among the three divistons of the iafantry. Between the tents and onter wall of the camp there was an "intervallum" all round, 200 feet broad, by which ample room was given for the passage of the legions in and out, and which also served as a receptacle for booty, as well as to increase the distance of the troops from the eaeny. The camp was provided with four gates-(l) "porta principahs dextra," and (2) "porta principahs sinistra," at the extrematies of the "principia;" (3), "perta pretoria," on the side nearest the "pratornm," aud in the very ceatre of that side; (4), "porta decumana," in the centre of the side opposite. The fortifications consisted of a fosse or ditch (fossa), 9 feet deep and 12 feet wide, the earth from which, as it was dug out, beng thrown to the anside, formed, wath the additon of turf and stone, a mound (agger), on the sumbut of whel were bixed stout wooden stakes (sudes).

Such was the general outline of the Polybian camp; but when, under the emperors, changes were made on the consutution of the army, and organzation by cohorts was introduced, the form and disposition of a liomar camp underwent modifations that resultedin what has been called the Hygman camp, from Ilygnus, a land surseyor who flourished under Trajau and Hadrian, and who has gusen an acconnt of its arrangement in his diay. The princpal ponts of contrast with the Pulyhan camp were, that the form was now oblong and did nut wecupy half so much space, that tho troops were stathoned in cohorts round the rampert so as to enclose tho whole hody of forerguers end baggage. adi that the fortification was much less substantial.

The crdnary cntreachmeate thrown up from day to day by a Romat ermy whele on the march were but slight;
but, where it was neeessary or expedient to remain together for some time, or where it was likely they might reoccupy the same ground, a more permanent camp, with a proportionably stronger rampart, was formed. Such an encampoent was called "cnstra stativa," or a stationary camp.「bis, agaio, was distinguished as "castra æstiva," a pernanent summer camp, and "castra hiberna," a permanent winter eamp. Such were the eamps that, in process of ame, becoming surrounded by a numerons population, inrmed the nucleus of large towns, many of which may be recognized in England by the name-termination "ehester" or " cester."
CAMPAGNA, a town of Italy, in the province of Principato Citeriore. 19 miles east of Salerno. It stands in the centre of a mountanous district, of which it is the sapital. It is the see of a bisbop, aod contanns a cathedral and college, besides several churches and convents. Population, 9813.
CAMPAGNA DI ROMA, is, in the wider application of the word, an extensive plain of central Italy, almost comeding with the anceent Latium, and, in a mure restricted signification, that portion of the larger area which lies immedrately round the city of Rome between the Tiber and the Anio. The cireumference of the latter "-inight be marked," says Gregorovius, "by a series of well-known points,-Civita Veceha, Tolfa, Ronciglione, Soracte, Tivoli, Palestrina, Albano, and Osta; " while the former may be regarded as boumded on the N. by the Mountans of Viterbo (Sylva Ciminia), on the E. by the lower ranges of the Apennines, and on the S. and W. k.y the Tyrrhenian Sea. It extends about 84 miles in lengl.h from Civita Vecchia to Terracina, and has a breadth of 24 miles,-1ts area beng nearly 1400 square miles. Of distinetly volcanic formation, the surface presents a very undulating appearance, broken by deep gullies and studded with extinct craters, that now form tho basins of lakes, such as those of Bolsena, Vieo, and Baceano. In ancient times It seems to have been a well-peopled region, and was the seat of numerous cities; but in the 3 d and 4 th centuries в.c. the Roman aristoeracy turned the most of the district into huge estates, and thus led to the disappearance of the egrieultural population. In the earlier period of the empire its condition grew worse and worse, and many parts of the phin became covered with pestilential marshes. The emperors Claudius, Nerva, and Trajan turned their attention to the amelioration of the district, and under their example and exbortation the Roman aristecracy erected numerous villas within its boundaries, and used them at least for summer residence. With the ram of the empire and the inroad of the barbarian hordes the desolation of the Campagna was complete; but, again, ii the Middle Ages, it became dotted over with the baronial castles of the rival families of Rome-the Orsmi, the Colonnas, the Savelli, the Conti, and the Caetani-who ruthlessly destroyed the remains of earller edifices to obtain maierials fer their own. Several of the popes, as Boniface IX., Sixtus IV., and Julius III., made uasuccessful attempts to improve the sanitary condition of the Campagna; and equally fruitless in more reecot cimes-as far, at least, as the general purpose is concerned-have been the effrtt of Popes Pius VI. and VIL., and of General Miollis, the Ereach governor of Rome. The most healthy portions of the tervitory are in the north and east, embracing the slopes of the Apennives which are watered by the Teverone and Saceloo ; and the most pestilential is the stretch between the Lepini Hille and the sea. The Pontine mirshes, included in the latter division, were drained, according to the plan of Bolognini, by Pius VI.; but though they have been restored to cultivation, their insalubrity is still notorioua. The aoil in ronny parta is very fertile;
and the atmosphere, which is so deadly to ma'd, has ne hurtiul effect on the lower animals. In summer, indeed, the vast expanse is little better than an arid steppe; but in the winter it furnsbes abundant pasture to tlocks ol sheep and herds of silver-grey oxeo and shaggy black horses. The land is for the wost part let by the pro. prietors to Hercanta di Campayna, who emplny a sul.. oriluate class of factors (fatemi) to manage their allairs on the spot. It is evident that the malaraz which renders the Campagua almost unuhabitable durmg the summer n owing to untural canses affecting a wide areas with which it is very difficult to deal, and that no merely local unprovements can bave any elfect. The regulation of the rivers 13 sy defective that they annually overtlow a great extent of surface; the character of the soll allows the waters to gather in fetid masses, and the heat of summer turns theru into noxious vapours. The attention of the Italian Guvernment and of Gencral Garibaldi bas recently been turned towards the systematic sanitary moprovement of the distriet, - with what results remains to be seen. The planting of the Eincalyptus globulius and the Heluanthus annuus bas been partially resorted to, especially in the district of Tr . Fontani, and, it is reported, with some success.

Full detanls on the Campagna will be found in Westphal, Dre Rumusche Campaquat, 1820 : Vidier, La Campagne de Rome, 1842. Adolph Stahr, Ein 'W'mer' in Kion, 1847-50; Paolo Dlantovana, Descrizzone geologica della Campayma Romana, Turin, !875, Di Pietro Ba!estra, Lifucne nella Compagna e cithe di Roma, 1875. Augustus Ilare, Days near Liome, 1875. See also an articla by Fr Siebmann in Ausland for August 1875, and another by Fr. von Hellwald in the followng number.*
Campan, Jeanne Louise Menriette (1752-1822), née Genest, was born at Paris in 1752. Carefully educated, and surrounded by the most cultivated society, at the age of fifteen she bad ganed so bigh a reputation for her accomplishinents as to be appointed reader to the young princesses. At court she was a general favourite, and when she bestowed her hand upon M. Campan, son of the secretary of the royal eabinet, the king gave her an annuty of 5000 hivres as dowry. She was soon after appointed first lady of the bedcbamber by Marte Antoinette ; and she continued to be the fathiul attendant of that princess till she was forcibly separated from her at the sacking of the Tuileries, on 20th June 1792. After this vent Mme. Campan, almost penniless, and thrown on her own resources by the illness of her husband, bravely deternuned to support herself by establishing a school at Saint-Germain. The institution prospered, and was patronized by Mme. Beauharnais, whose influence led to tho appontment of Mme. Campan as supermtendent of the academy founded by Napoleon at Econen, for the educs. tion of the daughters and sisters of members of the Legion of Honour. This post she held till it was abolished at the restoration of the Bourbons, when she retired to Mantes, where she spent the rest of her life amid the kind attentions of affectionate friends, but saddened by the loss of her only son, and Zy the calumnies erreulated on aecount of her connection with the Bumpartes. She dicd in 1822, leaving interesting Memoves sur la vie provée de Marre Antanette. suzuss de smuvenirs to anechotes historiques sur les règnes de Loutis XIV-XV. (Farıs, 18:3); a treatise De l'Education des Femneres; and one or two small didactic wurks, written in a clear and matural style.
CAMPANELLA, Tosaso (1568-1639), one of the most brilliant and unfortunate of the Italian Renaissance philosophers, was born at Stilo in Calabria in 1568. At a very early age be showed remarkable mental power; his memory was uncommonly tenacious, and before bo was thirteen years of age he had mastered oearly all the Latm authors presented to bim. In bis fifteenth year be entered the order of the Dominicaus, attracted partly by reading

The lives of albertus Magnus ad Aquiaas, partly by his intense love of learning. He was placed at first in the zonvent at Morgentia in Abruzzo, and after completing his sourse of philosophy was transferred to Cosenza, there to study theology. He soon became discontented with his teachers, for be earnestly desired to read, not only the works of Aristotle, but the book of nature, which was the :agguage of God. An accident drew his attention to the work De Rerum Natura of Telesius, which he read with great eagerness. Ho was delighted with its frcedom of speech and its appeal to nature rather than to authority. His first work in philosopby, for he was already the author of numerous poems, was a defence of Telesius against the attacks of Marta, an Aristotelian. It was styled Phulosoplia sensibus demonstrata, and appeared in 1591. The freedom and boldness of his attacks upon estallished authority soon brought him into disfuvour with the clergy. He leit Naples, where he had been residing, and proceeded to Rome For seven years be led an unsettled life, wanderiag through Padua, Bologna, Venice and other towns, everywhere attracting attention by tho brilliancy of his talents and the boldness of his teaching. Yet Campanclla was strictly ortholox, held- the established faith, and was au uncompromising advocate of the Pope's temporal power
He returned to Stilu in 1598. In the following year he was arrested and committed to prison. What was the immediate cause of this is not clearly known. According to the most common report the motives for his imprisonment were entirely pulitical. He had joined himself to those who desired to free Naples from Syanish tyranny, and bad excited them by bis fiery eloquence and independence of spirit. His friend Naudé, bowever, declares that this was a complete mistake, and that the expressions used by Campanella, which were interpreted as revolutionary, had quite a different reference and signification. Whether from error or not, the mnfortunate philosopher was committed to prison, and remained there for twenty-seven years, auffering much torture and misery. Yet his spirit was unbroken ; be composed sunncts, and prepared a series of works, forming a complete system of philosophy, which were published at a later date. During the latter years of his long confinement he was kept in the castle of St Elmo, and was allowed considerable liberty. There seem, indeed, to have been great doúbts even in the minds of thuse who imprisoned him whether he had done anything deserving buch a punishment. Still he was looked upon as dangerous, and it was thought better to restrain his boldness. At last, in I626, be was set at liberty For sotae three years be was confined in the charubers of the Inquisition, but in 1629 he was fairly free. He was well treated at Rome by the Pope, but he made cnemics; , and, profiting by the lessons of experiesice, be thought it well to avoid future danger by taking flight from Rome. He came to Paris in 1634 under the protection of the French ambassador to Italy, and was received with marked favour by Cardinal Richelieu. The last few years of his life be spent in preparing a complete edition of his works; but only the first volume appears to have been published. He died on the' 26 th of May 1639.

The philosophy of Campanella is in many respects interesting and important, but it has much that is fantastic, and is wanting in unity aud completeness. With Telesius ho agreed in rejecting the Aristutelian method of inference. According to hin truth or certainty is only to be found in immediate intuition. The sciences aro not to be constructed from definitions by deduction, but proceed by induction to definition, which in the natural order comes anst. The syllugisun is only useful for expounding; the universal rule which it involves is always a resnlt of
induction, aud the particuler subsumed under it is itseil part of the induction. Our kuowledge begins in doubt. We know neither the past nor the future; even in the present we only know things as they appear to be, not as they are. The first proposition in a theory of cogmtion is that 1 myself think; the certainty of self-consciousness is the primary truth.

With all this freedum of philosophizing Campanella proserved a completely orthodux respect for revealed religion; he aimed indeed at a systum which shuuld embrace in one comprehensive scheme religiuus and philosephical principles. His view of Gud is nut far renoved from that of Eruno ; he lays stress upon the divine unty and ounipresence, and as he is couvinced that community of action is only possible where there is identity of being, be is driven to an appareatly pantheistic conclusion. Giod is the ultiunate uuit; His three manifestations may be called power, wisdom, and love. He alone has pure being; all other things created by or emanating from Himare limited, i.e., have non-belng. All things are of the same nature, otherwise there cuuld be no mutual action; there is a unversally difused life aud sensilility.
lu bis natural philusoply Campanella mainly follows Tclesius, and lays duwn as fundamental forces heat and cold, in their concrete form, sun and earth. By these all things are formed. The soul of man is in uature corporeal, but is inmortal, being endowed with a striving afier happiness never attained in this life.
In practical plutusopiby Campanella was an extrente reforner. In his Civetas Solis he sketebes an ideal stait, in which principles of communism are fully carricd out. He contends for a comaunity of goods and wives, for state control of population, and fur a universal military traiuing. The king in bis ideal state is called Hoh, i.e., Metaן少ysics; his ministers have names meaning respectively Puwer, Wisdom, and Might. The whole work is cold and abstract, utterly wanting in the rleh practical detail of its prototype, the L'topria.
A long lit of Campanella's works is given by Echand, App to Cypriano, lita Campanclla, who enumetates eighty-two, and thy Campanela himsedf in the tirst vol. of Lis collectud woiks. The most important were De Sensu Rerum, 1620 : Sontis 1hilosoghia Efriogisticer Parles IV. (contuining Cindas Sulis), 1623: Atheismurs Triumphatus, 1631; Phelosoph hin liationalis, 1637 ; Phztosophia Uniùrrsetisis scu Afeckyhyszca, 1638; De Monarchia Hispqnica, 1640, t:anslated into Englith.
Sre on his Life Cypriauo, Vita Campmella, 1705, 1722; Baldacchiui, Vita ϵ ! Filosofin di Tomoso Campanella, 1840. On his philusophy, see Ritter, Gics. d. Thul. yol. ix., who gives a very full $_{\text {dit }}$ arromut ; Carriere, Phil. Wellanschauung der Reformatonsect, S22-603; Dareste, Th. Morus ct Campanello. 1843. Somie of the works have been translated into French, Ewares choisies de Caminnella. par Mae. L. Collet, 1844; Ciut du solet, par Villegardelle, 1840.

CAMPANIA, an ancient province of Italy, seprated from Latium on the N. by the Massican Hills, and from Samnium on the E. by the Apennines, and bounded on the W. by the Tyrrhenian Sea, ond on the S. by Lucania. It was distinguished by its lerthlty, beauty, and genial climate, and by the excellence of its harbours. It censists of a plain, broked only by a low volcunic ragge of bills, of which the chief is Mons Gaurus, and by Mount V'esuvius, The original inhabitants of Campania were Oscans or Ausonians. The first settlers were the Greeks who founded Cumx, and afterwards Dicearchia, Palxpulis, and Neapolis. It seoms pretty certain that the nest invaders were the Etruscans, and that they founded Capua and Nolis. The Etruscans in turn had to give flace to the Sammites. But buth these invaders were few in nomber; and the Campanian people continued to be of essentaily Oscan race. The remains of their largnage are, indeed, our best specimen of Oscan $1 n$ the the century b.c. War broke. ont with the Romans, and in 340 E.c., by the batule of

Vesurius, Campanis fell into their hands. For subsequeat history ${ }^{\text {bee Roman History. The Bay of Neples was one }}$ of the favonrite situations for the villas of the ancient Romans; and, notwithstanding the eruption of Vesurius in 79 A.D., which buried the cities of Herculaneum and Pompeii, Campania continued to flourish. The ehief towns were Capua, Cumæ, Neapolis, Nola, Pompeii, Herculaneum, Vulturnum, Puteoli, Liternum, Teanum, Salernum, Suessa, Misenum, Surrentum Picentia. The province was traversed by several roads-the Via Appia, the Via Latina, part of the high road from Rome to Rhegium, and a road constructed by Domitian along the coast from Siauessa to Neapolis. Under Augustus, Campania was joined to Latium to form the F:rst Region of Italy Its name then gradually superseded that of Latium; so that at present the district round Rcme is known as the Campagna di Roma
CAMPANI-ALIMENTS, Matteo, an Italian mechanician and natural philosopher of the 17th century, was born at Spoleto. He held a curacy at Rome in 1631, but devoted bimself principally to scientific pursuits. As an optician, he is chiefly celebrated fur the manufacture of the large object-glasses with which Cassidi diseovered two of Saturn's satellites, and for an aitempt to rectify chromatic aberration by using a triple eye-glass; and in dock-making, for his invention of the illuminated dial-plate, and that of noiscless clocks, as well as for an attempt to correct the irregularities of the pendulum which arise from rariations of tenperature. Campani published in 1678 a work on horology, and on the manufacture of lenses for telescopes. His younger brother Giuseppe was also an ingenious optician (indeed the attempt to correct ebromatic aberration bas been ascribed to him instead of to Matteo), and is, besides, noteworthy as an astronemer, especially for has discovery, by the aid of a telescope of his own construction, of the spots in Jupiter, the credit of which was, however, also claimed by Divini.

CAMPANILE, the bell tower attaehed to the churches and torn-balls in Italy. Bells are supposed to have keen first used for announcing the sacred offices by Pope Sabinaa (604), the immediate successor to St Gregory; and their use by the mumiemalities came with the nghts granted by kiags and emperors to the citizens to enclose their towns with fortifications, and assemble at the sound of a great bell. It is to the Lombard architects of the north of Italy that we are indebted for the introduction and development of the camparile, which, when used in connection with a sacred buildng, is a feature peculiar to Christian arehitecture,-Christians olone niaking use of the bell to gather the multitude to pullic worship. The campanile of Italy serves the same purposo as tho tower or steeple of the churehes in the northand west of Eurupe, but differs from it in design and position with regard to the body of the shureh In the north and west the tower forms an mintegral part of the budding, it is frequentry placed at the west end or at the south or north side of the nave, in wheb case the grouvd story forms a porch to the chureh ; sometumes it is at the intersectorn of the uave and transepts, in which case it rises as a grand central feature round which everything else groups, as scen at Salisbory, Lideolo, Norwich, ic In Italy the campanile os alnust always detached from the church, or at most connected wath it byan areaded passage. Io Italy there are (with one or two exceptrong, such us San Ambrosio, Milan, and at Novara) never more thau one campande to a chureh, whereas in the north and west the nomber varics from one to seven.
The design of the campanile differs entirely from its northern type. It never has buttresses, is very tall and thin in proportion to ito rorght, and is square on plan, occasionally round, as at Ravenna and Pisa, and in one
or two cases, as at San Gottardo, Milan, octagonal. The campanile generally rises from base to summit without break; the faces are divided vertically by fat pilasters, and horizontally by string-courses, arcades, or windows As a rule the openings increase in number with the height of the stage. Many, perhaps the finest examples, bave openings at the top only.

The chief architectural defect of the square campanile is the cevering. This is generally a short conical roof, either square, cireular, or octagonal on plan; but its junction with the tower mas never successfully managed. Tho campanili in the north of Italy and in Rome are nearly all built of brick. In Tuscany, as at Pisa and Siena, and further south, as at Viterbo, they are vencered with marblo of various colours.
The tallest campanile is the one at Cremona; it rises to a height of 396 feet. Probably the grandest and richest is that designed by Giotto iu 1334 for the cathedral at Florence. It measures 275 feet bigh and 45 feet square : it is eutirely vensered with black, red, and white marble, and is divided into five stages, the upper three only baving windows. Giotto intended to bave finished it with a spire 90 feet high, but Taddio Gaddi, who succeeded Giotto as. architect, thinking that the tower would not be inproved by it, left it as it now exists. Some of the best examples of eluurch eampanili are to be found in Venice, Verona, Modena, Cremona, Parma, and Pisa.
The campanili belonging to the municipalities hase generally a distiuct character from those attached to sacred edifices; they have a smaller section on plan in proportion to the height. They want the conical roof, and are generally batlemented; some have as upper and smaller stage, wherein the bells are hung, as at Floratice, Siena, Volterra, and Montepulciano. Their faces are rarely divided by pilasters; there are few windows, genetally sinall openings ouly to light the stairease; and they ato more frequently incorporated with the body of the building than the church campanili, often rising from the wall heads and not from the ground to great heights. The roost remarkable campanili are those at Venice, Florence, Pisa, and Siena. The eampanile of St Mark's at Venice stands in the great square in front of the cathedral. Its erection was commenced about the beginning of the 10th, and completed up to the belfry about the middle of the 12th eentury. The belfry was erected and firished ly Bartelomeo Buono in 1517. From the lesed of the piazia to the belfry stage, it is constructed of brick; the belfry and surmounting pyramid are of marble. The total height is 323 feet, and it is 42 feet equare at the base. The gallery at top is reached by an inchned plane, and there are no wndows other than emall openings lighting the asceut.
The leasing tower or campanile of Pisa, built by ths citizeus to risal that of Venice, was erected by Bonamno, and tegon in the year 1174. It is circular on plan, and about 51 feet in diameter and 172 feet high. Notincluding the belfry it is dinded vertically into seren stages, all of which, with the exception of the lomest, are decorated with an open arcade The conical covering of the belfry was never constrncted. This tower overbaugs its base upwards of 13 feet, and for long it wes supposed to bave been bult so. It is fomuded on wooden pules driven into buggy ground. When the tower bad teen carried up about 35 teet it began to settle to one side. That no such settlement was ever anticipated may be usserted from the fact that a gurgoyle or water-spout to throw off the water from the first arcade, may be observed on what is now the bighest side. As the work was carried on, the levels wero altered so as to keep the centre of gravity within the base. This tower was fuished by an architect called William of Innspruek. The outside is entirelv constructed
of white marble, and the inside of stone from Verrucs. There are many campanili, notably the Garisendi and Asinolli towers at Bologna, that incline to one side,-all from the same cause as at Pisa.
The campsnili of Florence and Siena are somewhat similar in design. The one at Florence is built of stone, and is about 20 feet square and about 300 feet high. That at Siena is built entirely of brick, and measures about 21 feet square and 282 feet high Both are battlemented and have a smaller upper stage for the belfry. Several other importsnt examples exist at Volterra, Montepulciano, Figline, Oppi, \&c., \&c. (R. AN.) CAMPBELL, Sir Colin See Clyde, Lord.

- CAMPBELL;: GEORGE (1719-1796), a theologiai and Biblical critic, was born at Aberdeen on the 25th December 1719. His fatter, the Rev. Colin Campbell, one of the ministers of Aberdeen, was the son of George Campbell of Westhall, who claimed to belong to the Argyll branch of the family. Mr Colin Campbell died in 1728, leaving a widow snd six children in somewhat strsitened circumstances. Goorge, the youngest son, was destined for the legal profession, knd after attending the grammar school of Aberdeen and the arts classes at Marischal College, he was sent to Edinburgb to serve as an apprentice to a writer to the Signet. But he does not seem to have had any liking for law-st any rate he found in theology a study much more to his taste. While at Edinburgh he fell into the habit of attending the theological lectures, snd this was followed, when the term of his apprenticeship expired, by bis enrolment as a regular student in tho Aberdeen divinity hall. After a distinguished career he was, in 1746 , licensed to presch by the Presbytery of Aberdeen; but his first attempt to obtaln e charge-that of Fordoun in Kincardine-ehire-was unsuccessful. In 1748, however, he wss ordained minister of Benchory Ternan, a psrish on the Dee, some twenty miles from Aberdeen. Here he spent the next nine years, labouring with much success as a country minister, snd planning two at lesst of the works by which he was afterwards to make himself knowe. In 1757 he left Banchory Ternan to beoome one of tho ministers of Aberdeen. That city was at the time the centre of uo inconsldedrable intelleotual activity. Reid was professor of philosophy at King's College; John Gregory, Reid's predecessor, held the chair of medicioe; Alesander Gerard was professor of divinity at Marischal Collcge; and in 1760 Beattie became professor of moral philosuphy in the same college. These men, with others of less note, formed themselves in 1758 into a society for the discuseion of questions in philosophy. Reid was its first eecretary, and Campbell one of its founders. It lasted till about 1773, and during this period not a few papers were read, particalarly those by Reid and Campbell, which were afterwards extended in the form of published treatises.

Mesnmbile Campbell was, in 1759, made principal of Marisohal College, an appointment due rather to the high estimstion in which he was held by those who-knew him, and perhaps also to his family influence with the duke of Argyll, then to nny published cridence he had giveu of his fitess for the post. But this evidence, if it was required, was soca forthcoming. In 1763 he published his celebrated Disertation on Miracles, a work that originated in a sermon preached two years previously before the Synod of Aberdeen. In it he seeks to show, in opposition to Hume, that miracles are capable of proof. by testimony and that the miracles of Christianity are suficiontly attested. Hume derived our belief in testimony equally with our belef in the laws of nature from experience; he held that where the lnws of nature, being a uniform expericace, contradict testimony, the latter must give ray ; and be further held that in the case of miracles the laws of nature do actually
contradict the testimony in favuar of miracles, i.e., miracles are incapable of proof. In reply Campbell asserts-(1) that testimony is not derived from experience, but "has a natural and original influence on belief antecedent to experience." As, however, he admits that experience is; if not the source, at least the measure, of testimony, he virtally grants all that Hume desires, and leaves the question where it was. But (2) he urges, and with more success, that testimony can prove a miracle. There is no contradiction, he argues, as Hume ssid there was, between what we know by testimony and the evidence upon which a law of nature is based; they are of a diferent description indeed, but we can without inconsistency beliere that both are true. He also dwells at considerable length upon the ambiguity of the word "experience" as it is used by Hume, and devotes the rest of the work to a discussion of the actual evidence for the miracles of Christianity. The Dissertation is uot a conplete treatise upon miracles, and does not approach the subject from points of view it would be regarded from now, but with all dẹdactions it was and still is a valuable contribution to theological literature.
In 1771 Campbell was elected professor of theology at Marischal College, and in consequence he resigned his city charge, although be still preached as minister of Greyfriars, a duty then attached to the chair. His next work was not a theological one. During his early ministerial life at Banchory Ternan ho planned and began the composition of a work on rbetoric. - The results of his labours were partly communicated to the Aberdeen Philosephical Society, for most of the papers he read there were on "Eloquence" and cognate subjects ; but it was not until 1776 shat his Philosophy of Rhetoric appeared,-a work that at once took a high place among books on the subject, which it can bardly be ssid even now to have lost. The most interesting portion is pcrhaps that which treats of evidence; certaiuly the least satisfactory is that on the eyllogism. In 1778 his last and in some respects his grestest work appeared, A New Translation of the Gospels. The translation is a good one, but it is the critical and explanatory notes which accompany it that give the book its high value. Several of his zermons were published, notably one in 1737 On the Success of the first publishers of the Gospel, considered as a proof of its truth. It was preached before the Society for Propagating Christian Knowledge, and is one of the happiest specimens of his style and method of argument.
Campbell, who had never enjoyed robust health, was in 1795 compelled by increasing weskness to resign the offices he held in Marischal College, and on his retirement ho received a pension of $£ 300$ from the king. He did not long enjoy the royal bountr, for he died on the 31st of March 1796 of a etroke of palsy. Principal Campbell had marricd Miss Grace Farquharson, daughter of Mr Farquharson of Whitehouse. They had no children. In church politics be belonged to the moderato side, but his independcace of judgment and streagth of conviction were too grent to permit him to be confined by the trammels of party. It is as a theologisn and as a scholar, the acutest aud most cultirated that the Church of Scotland has produced, that he will be best remembered.
His Lectures on Ecclesiastical History and some smaller writings were published after his death ; and there is a uniform edition of his works in six vols. Svo. A short account of bis life, by the Rer. Mr Keith, is prefixed to his Lectures on Church Hislory
CAMPBELLL. Joan. LLD. (1708-1775), a miscellaneous author, was born at Edinburgh, March 8, 1708. Being designed for the legal profession, he was sent to Windaor, and npprenticed to an attorney; but his tastes goon led him to abandon the study of lam, and to derote himself entirely to literature. In 1736 he published
the Military History of Prince Eugene and the. Duke of Marlborough, and soon after contributed seversl important articles to the Ancrent Universal History. In 1742 and 1744 appeared the Lives of the British Admirals, in 4 vols., a popular work which has been continued by other authors. Besides contributing to the Biographia Britannica and Dodsley's Preceptor, he published a work on The Present State of Europe, consisting of a series of papers which had appeared in the Museum. He also wrote the histories of the Portuguese, Dutch, Spanish, French,Swedish, Danish, and Ostend settlements in the East Indies, and the histories of Spain, Portugal, Algarve, Navarre, and France, from the time of Clovis till 1656 , for the Moderı Universal History. At the request of Lord Bute, he published a vindication of the Peace of Paris concluded in 1763, embodying in it a descriptive and historical account of the New Sugar Islands in the West Indies. By the kirg he was appointed agent for the provinces of Georgia in 1755. His last and most elaborate work, Political Survey of Britain, 2 vols. 4to, was published in 1744, and greatly increased the author's reputation. Campbell died December 28,1775 . He received the honorary degree of LL.D. from the University of Glasgow in 1745.

- CAMPBELL, Tromas ($1777-1844$). This distinguished poet was a cadet of the respectable family of Campbell of Kirnan, in Argyllshire. Owing to the gtraitened circumstancea of his father, who had settled in Glasgow and been unfortunate in business, young Campbell was obliged, while attending college, to have recourse to private tesching as a tutor. Notwithstanding the amount of additional labour thus entailed, he made rapid progress in his atudies, and attained considerable distinction at the university over which it was his fortune, in after years, to preside. He very early gave proofs of his aptitude for literary composition, especially in the department of poetry; and ao strong was his addiction to these pursuits, that be could not bring himself aeriously to adopt the choice of a profession. From private tuition, which is at best an irksome drudgery, he recoiled after a short trial. Neither law, physic, nor divinity had any attractions for him ; nor is it probable that he ever would have risen to eminence in a regular profession, owing to a constitutional sensitiveness almost morbid, and a want of resolute energy. We are told by bis friend and biographer Dr Beattie that "the imaginative faculty had been so unremittingly cultivated that circumstances, trifing in themselves, had acquired undue influence over his mind, and been rendered formidable by an exaggeration of which he was at the moment unconscious. -Hence varivus difficulties, which industry might have overcome, assumed to his eye the appearance of insurmountable obstacles. Without resolution to persevere, or philosophy to aubmit to the force of necessity, he drew from everything around him, with morbid ingenuity, some melancholy presage of the future. He was dissatisfied with himself, chilled by the world's neglect, and greatly hurt by the apathy of friends who had extolled his merits, but left him to pine in obscurity." Campbell was not a man who could have successfully struggled with the world. Fortunately for him, his genius was such as to ensure an early recognition.

We find him at the age of twenty in Edinburgh, attending lectures at the university, soliciting employment from the booksellers, and not unknown to a circle of young men then resident in the Scottish metropolis, whose names have become historical. Among those were Walter Scott, Henry Brougham, Francis Jeffrey, Dr Thomas Brown, John Leyden, and James Grahame, the author of the Sabbath. He also becsme acquainted with Dr Robert Anderson, editor of a collection of the British poets, a man of estreme enthysiasm and kindliness of disnosition, who early apprecinted the remarkable powers of Campbell, and
encouraged him to proceed in his literary career. In 1793 his poem, The Pleasures of Hope, was published.
Probably there is no parallel instance of literary success ao instantaneously achieved by a ñrst effort ; nor was that owing to novelty of design on the part of the author, or the caprice of the public. For considerably more than half a century the poem has maintained, nay, increased its popularity. During that time the public has adopted sud abandoned many favourites-names once famnus and in every mouth have gradually become forgottcn and unregarded-poetical works of greater pretedsion, which were ooce considered as masterpieces of genius and inspiration, have fallen into neglect; but this poem by the boy Campbell remains a universal favourite. It, is not much to say that it is, without any exception, the finest didactic poem in the English language. Even those who are not admirers of didactic poetry are forced to admit its charm; and the uttermost objection that criticism can make appears to be a certain vagucness, which, after all, is inseparable from the nature of the subject and the necessary plan of the composition. The delicacy of the thoughts, the beauty of the imagery, the occasional power of pathos, the extraordinary felicity of the language, and the wonderful harmony of the versification, distinguish the Pleasures of Hope from sny poem which has been written before or since, and entitle it to a yery high place as an originsl work of geniua. It is as origiosl and charactoristic of ite author as is the Deserted Village of Goldsmith, with which it has been frequently, but surely improperly compared. Goldsmith's pocm affects us by its simplicity and truth. Campbell's, it must be owned, is much more florid and ornamented; but how exquisite is the taste of the ornament!
The literary and the private histories of an author are inseparable. In order to comprehend the one we must have recourse to the other. The first success of Campbcll brought him fame, but not fortune. He had disposed of the copyright of the Pleasures of Hope, by his original bargain with the publishers, for a sum certainly moderate, which, however, probably exceeded his expectations at the time. He was, moreover, very, kindly treated, for he received a considerable unstipulated allowance for each new edition, which circumstance ought to have deterred him from uttering certain diatribes against "the trade," in which he was afterwards rather prone to indulge. The fact is that he did not know how to make use of his success. Instead of availing himself of the reputation which be had so worthily and decisively won, and applying himself to 8 now effort, he went abroad without any determinate aim; was perfectly wretched on the Continent, where he had no friends, and was sorely embarrassed for want of means; and began to write fugitive poctry for the London journals. On his return to Britain be had ample opportunity of bettering his condition. With a name such as his, a moderate amount of exertion would have sciured bim not only a competence but comparative afluence; but indolence, perhaps the result of timidity, had grown upon him. Campbell never could adapt himsclf even to the profession of literature, which, precarious though it be, is not withour its prizes. In that profession, as in all others, the requisitcs for success are steadiness, punctuality, and persererance; but Campbell posscssed none of them. The publishers were ready, and offered to givo him lucrative employment, nor was he at all back ward in accepting their offers; but when the period for performance arrived he had hiterally done nothing. In extraordinary contrast to him atands Scott, who seemed simply to will in order to conceive and execute. Campbell had many bright conceptions, but he could not apply himself to the work. Of course he lost repute with the meu who alone can intervene between an
author and the plunic, ana "the fathers of the Row" became chary of offering him engagements. Sume idea of the extent of his habitual indolence may be formed from the fact, that the publication of bis Specimens of the British Poets did not take place until thirteen years after the work was undertaken!

In the meantime Campbell married, and his prospects were of the darkest, when, in 1805, he received a Goveraineat pension of $£ 200$. He was then in great distress, and even that aid, material as it was, faled to extricate him. It was probably fortunate for hus fame that such was the case, for in 1809 he published his poem of Gertrude of Wyoming, to which were attached the most celebrated of his grand and powerful lyrics.

Among Campbell's lengthier poems Gertrude of Wyoming must hold the second place. He designed it for a poem of action, but he has failed to give it that interest and vivacity which a poem of action requires. There is in it too decided is predominance of the sentimental vein, and an extreme degree of elaboration, which, in poetry as in panting, is hurtful to the general effect. There ${ }^{s}$ great truth in the following criticism, which occurs in a letter from Jeffrey to the author:-"Your timidity or fastidiousness, or some other knavish quality, will not let you give your cunceptions glowing, and bold, and powerful, as they present themselves; but you ruust chasten, and refine, and soften them, forsooth, till half their nature and grandeur is chiselled away from them. Believe me, the world will never know how truly fou are a great and original poct till you venture to cast before it some of the rough pearls of vour fancy." In spite of these defects, Gertrude was considered at the time as a work in every way worthy of the poet's previous reputation; and it will ever be admired by that numerous class of readers who are more fascinated by the beauties of expression than by high inventive porrer and vigorous arecution.

The soundness of the above criticism, proceeding from an eminent literary authonty whose whole leanings were rather towards thau against fastidiousness in compostion, is demonstrated by the universal admaration accorded to Campell's lyrical pieces. One or two of these, in particular Lochiel's Warring and Hohenlinden, are to be referred to an earlier period than the composition of Gertrude, but there are others of a leter date which show how much power remained in the man wheo he chose to exert it freely. There are few lyrics in the English langaage to be placed in comparison with the Mariners of Eagland or The Battle of the Baltic; and his exquisite poem of O'Connor's Child, Which has not unaptly been termed the diamond of bis casket of gems, is greatly superior in pathos and passion to his more elaborate compositions. All these, and others scarcely inferior to them, seem to have been struck off at a heat, and to have escaped that chaselling procese to which Jeffrey so pointedly refered.

Campbell was now settled at Sydenbam in England, and his circumstances were materially improved. His home was a happy one ; the socicty in which be moved was of the most refiaed and intellectual character; and he empoyed the personal friendship of many of his distinguished contemporaries. Ample lesure was afforded him to carry into effect any of the cherished schemes of his literary ambition; but bis indolence and inherent want of resolution again interfered. His most noteworthy exertion for years appears to bave been the preparation of a short course of lectures on poetry, which be delvered with great éclat at the Royal Institution. in London und elsewhere. It appears that at ono tine it was propased by his friends, and especially by Sir Walter Scott, that be should become a candidato for the occupancy of a literary chair in the University of Edinburgh; but ho shrank from the idea of
undertaking on serious a labour as is involved in the preparation of a thorough academical course. In 1820 be accepted the editorship of the New Monithly Magazine, atid acted in that capacity for a considcrable period, until be resigned it to take charge of the Metropolitan. His con. nection with periodical literature may have been adrantageons in a pecuniary point of view, but did not tend materially to enhauce his reputation. His was not the pen of the ready writer; and it must ever be regretted that be was induced to bestow so much attention upon merely ephemeral literature, to the sacrifice of the nobler aims which were expected from his acknowledged genius. In 1824 be published his Theodric, a poem which, in spite of sume fine passages, was generally considered as a failure. With Theodrac his poethcal career may be said to heve closed. At times be put forth short poems of various degrees of merit, but none of them were equal to the grand lyrics already treasured in the memory of his countrymen. It seemed as if a large portion of the old virtue had departed from him; and bis last published poem, the Pilgrim of Glencoe, showed hardly any marks of his former accomplisk. ment and power.

In fact it appeared that the rich mine of poetry had been worked out. Withuut actually adopting that conclusion, wo may observe that Campbell had latterly occupied himself most zealously with matters which were apart from bis earlier pursuits. In the first place, he took an active shars in the Institution of the London University, and it was mainly through his exertions that it was sared from becoming a mere sectarian college. Shortly afterwards, in 1826, he was elected Lord Rector of the University of Glasgow, an event which he considered as the crowning honour of his life, and which certainly was a mark of distunction of which any man might have been proud. He did not accept the office as a mere sinecure, but appli.d biuself to discharge the actual duties (which, through tho negligence of former regtors, bad been allowed to fall into abeyance) whth a zeal and energy which made entire conquest of the hearts of bis youtbful constituents. In 1831, the year in which the gallant struggle of the Poles for their independence. was termmated by entire defeat, Campbell, who in his earliest poem bad referred in such beautiful language to the shageful partition of Yoland, more than revived his yourblul enthusiasm for her cisuse. He bad watched with an anxiety almost bordering on fanaticism tho progress of the patriotic movement; and the news of the capture of Warsaw by the Russians affected him as if it had been the deepest of personal calamities. "Flis heart," says his biographer, "was in the subject of Poland; he could neither write nor speak upon any other with commen paticnce, and if a word was dropt in company that did not harmonize with his feelings, he was very apt to consider it as a personal offence." In one of his own letters he says. " [know that my zeal for Poland has put me half mad." And again, "It. is still all that I can do to support a tolerable cheerfulness hefore these kind hospitable people, for Poland preys on my heart night and day.. It is sometimes a relicf to me to weep in sccret, and I co weep long and bitterly." Nor did he show his sympatty by words alone, but by resolute and continued action. He was the founder of the association in London of the Friends of Poland, which not only served to maintain the strong interest felt by the British people for the Polinh cause, but was the means of providing assistance and giving employment to large numbers of the unfortunate exiles who were driven to scek refuge in thas country Never, tall has dying day, did be relax bis excrtions in their behalf; and many an unhappy wanderer, who, but for unexpected aid, might have perished in the streets of a forelgn city, had reason to bless the name of Thomss Campbell.

7 Tue remainder of his life presents few features of interest. Domestic calamity bad overtaken him. His wife, whom be loved affectionstely, bad been takea from him-of his two sons, one died in infancy, and the other was afflieted by an incurable malady. His own bealth became impaired. He gradually withdrew from public life, and died at Boulogne on 15th June 1844, at the age of sixty-seren. His last hours were soothed by the affiecrionate care of his relatives and friends; nor did his countrymen forget the poet in his death, for his remains were solemnly interred in Westminster ADicy, with the boncurs of a public funeral.

Few poets of reputation, whose span has been extended nearly to the threescore and teo allotted years, have written so little as Campbell : at the same time it must be confessed that there are fewer still whose works are likely to be prized by posterity in the like proportion with his. If we throw out of consideration altogether Theodric,-though some might demar to such an exersion,-if we overlook the Pilgrim of Glencoe, and weed from bis lyrical garden such plants as bave little charm either from their colour or their fragrance, there will still remain a mass of poetry familiar to the ear snd the beart, such as bardly any other writer of this century has been able to produce. We may regret that Campbeli was not more diligent in the cultivation of his poetical genius, that he did not apply himself more sedulously in his earlier years to some seriuns effort, and that he allowed other parsuits and designs to interfere with his peculiar calling. But who can venture to say what sucerss might have attended bis efforts bad he acted otherwise than he did? We blame the poet for apparent indolence, not reflecting that inspiration is not to be commanded at will. It is not only possible but easy for the man who is practised in versification to write a certain given number of lines within a eertain specified tine; but genuine poetry nerer was and never will be the product of Egyptian taskwork. It cannot be produced to order-is nuist be spontaneous; and its quality mast depend ertitirely upon the mood of mind ander which it is com posed. The greater part of the poetry or rather the verse of Southey, a considerable portion of that of Scott, and a vast deal of that of Wordsworth, was not couceived or written under the poetic impulse. On such occasions these celcbrated men were writing verse, as they might lave written prose, without enthusiasn or anything like the feeling of passion; and altbough their ordinary thoughts were far higner, bolder, and more subtle than those of the millinn, they still were not attempting to rise beyond their ordinary iutellectual level. One can see at a glance when they were inspred, and when they were merely versiffing. Of the poets who adorned the first half of the present century, Coleridge and Campbell were couspicuous for their abstinence in writing except under the influence of real emotion. Of the former it may be said that he has hardly per ued a line of mere mechanieal verse.; the latter did not do so until his inspiration seemed to have abandoned him. Undoubtedly, bowever,-to have recourse to a hackneyed, though by no means an unmeaning plirase,-it is the duty of the peet to woo the muse, not to wait for ber conrtship. He must seek for the waters of Castaly, not tarry till they are conveyed to him; and it is in this respect probably that Campbell principally erred. He did not sufficiently endeavour to awake bis genius; be was too much a dreamer, and may at times have lost bis opportunity from the sheer weigot of indolence. And yet, considering the value of the legacy he has left, we have no reason to complain. Critics may diepute regarding the cumparative merits of his longer works; and, as they ineline towards didactic or narrative poetry, may prefer the one composition to th: other. Both are entitled to high
praise and bonour, but it is on his lyrics that the future reputation of Campbell must priacipally rest. They bave taken their place, never to be disturbed, in the popular heart; and, until the language in which they are written perishes, they are certain to endure.
(w. E. A.)

CAMP3ELL, Jobn, Baron (1779-1861), the second son of the Rev. George Campbell, D.D., by Magdalene, the only daughter of John Hallyburton, Esq. of Fudderance, was born at Cupar, Fife, on 17th September 1779. His fsther was for fifty years the parish minister of Cupar. For a few years young Campbell studied at the United College, St Andrews, where he met Thomas Chalmers. In 1800 he was entered as a student at Lincoln's lnu, and becane a pupil of the well.known special pleader Mr Warren, the master of Lyndhurst, Denman, and Cotteuham. A few days after his entragee, as he recerds in his Lives of the Chancellors, hc saw and beard Lord Thurlow speak in the House of Lords. After a short connection with the Morning Chronicle be was called to the bai in 1806, and at once began to report cases decided at Nisi Prius (i.e., on Jury Trial), in the courts of Kiag's Bench and Commen Pleas, and on the bome circuit. Of these Repmets he poblished altogether four volumes, with learned notes; they extend from Michaelmas 1807 to Hilary 1816. Campbell alsa devoted himself a good deal to crimınal business, but in spite of his unceasing industry he failed to attract much attention behind the bar; briefs came in slowly, and it was not kill 1827 that he obtained a silk gown and found himself in that "front rank" who are permitted to hare political aspirations. When Ceorge IV. died (26th June 1830) and Parliament was dissolved (24th July), Campbell, like all the new Whig men of the day, resolved to enter Lord Crey's Parliament. With the belp of his relative Major Scarlett be contested the borough of Stafford, which he represented ir 1830 and 1831. In the House he showed an extraordinary, sometimes an excessivè zeal for pablic busifiess, speaking on all sutjects with practical scase, but on none with eloquence or spirit. His main object, however, like that of Erongham; was the smelioration of the law, more by the abolition of eumlirons tellnicalities than by the assertion of new and striking principles. Thus his name is associated with the Fincs and Recoveries Abolition Act (3 and 4 Will. IV. e. 74); the Law of Descent Aet (3 and 4 Will. IV. e. 106); the Law of Dower Act (3 and 4 Will. IV. c. 105) ; the Statute of Limitations (3 and 4 Will. IV. c. 27) ; the Execution of Wills of Resl or Personal Property Act (1 Vict. c. 26); one of the Copybold Tenure Acts (4 and 5 Vict. c. 25); and the Imprisonment for Debt Act (1 and 2 Vict. c. 110). All these measures were important and were carcfully drama; but their merits cannot be explained in a biographical notice. The sccond was called for by the preference which the common law gave to a distant collateral over the brother of the balf-blood of the first purchaser; the fourth conferred an indefeasille title on adverso possession for twenty years (a term shortened by Lord Cairns in 1875 to twelve years) ; the fifth reduced the number of witnesses required by law to attest wills, and removed the vexatious distiuction which existed in this respect between freekolds and eopyholds; the last freed an innecent debtor from imprisonment ouly before final judgment (or on what was termed mesne proccss), but the principle stated by Campbell that only fraudulent debtors should be imprisoned was ultimatcly given effect to for England and Wales in 1869.1 In one of his most cherished objects, however, which formed the theme of his maiden speech in Parliament, Canipbell was doomed to dissppoint.
${ }^{1}$ Two of bis' later Acts, allowing the defendant in an action for libel to prove veritas, and giving a right of action to the rcpresentatives of persons killed through negligedce, also descrve mention.
mont. This was the establishment of a general Register of Deeds or Tittes to Land for England and Wales, which would diminish the number of uumarketable and unsafe titles, and thus simplify and cheapen the transfer of land. As head of the Real Property Commission of 1827, he had ample opportunity of observing the evils caused by the absurd system of outstanding terms, ${ }^{1}$ and he was able to quote the example of most European countries, where com. pulsory publication had been found neither to burt commercial credit nor to wound family pride. The - measure of 1830 was defeated by the country attorneys, led by Sir Chas. Wetherell, but the prinerple has rapidly gained ground and bas been partially embodied in the Land Transfer Bulls of subsequent reformers. Campbell's nost impertant appearance as member for Stafford was in defence of Lord John 'Russell's first Reform Bill (1831). In a 'temperate and learned speech, based on Fox's declaration against constitution-mongering, he supported both the enfruochising and the disfranchising elauses, and easily disposed of the cries of "eorporation rebbery," " nabob "representation," "opening for young men of talent," \&e. .The following year (1832) found Campbell solicitor-general, a lanigkt, and member for Dudley, whieh he represented till 1834. In that year he became attorney-general and was returned by Edinburgh, for which he sat till $1841 .{ }^{2}$

His politieal creed declared upon the hustings there was that of a moderate Whig. He maintained the connection of chureh and state, opposed triennial parlianents and the ballot, and railed against the dictatorship of the great duke (see Speech at Edinburgh, 3d January 1835, 8vo, London, 1835). Although in his relatious with his constituents in both England and Scutland there was traceable an unpleas'ant spirit of accommodation and cajolery, in Pariament his position, bothTolitical and religious, was always well defined and independent. There be centinued to lend the most effective help to the Liberal party. His speech in 1835 in support of the motion for inquiry inte the Irish Church Temporalities with a view to their partial appropriation for national purposes (for disestablishment was not then dreamed of as possible) contains much terse argument, and no doubt contributed to the fall of Peel and the formation of the Molbourne cabinet. The nest year Campbell had a fierce encounter with Lord Stanley in the debate which followed the motion of Mr Spring Rice on the repair and maintenance of parochial churches and chapels. The legal point in the dispnte (which Campbell afterwards made the subject of a separate pampilet) was mhether the churehwardens of the parish, in the absenee of the vestry, had any means of enforcing a rate execpt the antiquated interdict or ccelesinatical censure. It was not on legal technicalities, horever, but on the broad principle of religious equality, that Campbell supported the abolition of Church Rates, in which he included the Edinburgh Annuity-Tax. In the same year he spoke for Lord Melbourne in the action (theught by some to be a political conspiracy ${ }^{3}$) which was brought by Mr Norton agrainat the Whit premier for criminal conversation with the beautiful and aceomplished graud-daughter of Sheridan. At this time also he exerted bimself for the reform of justice in

[^72]the ecelesiastical courts, for the uniformity of the law of marriage (which he held should be 1 purely civil contract), and for giving prisoners charged with felony the benefit of counsel. His defence of the Times newspaper, which had accused Sir Julin Conroy, equerry to the duchess of Kent, of misapropriation of money (1838), is chiefly remarkable for the confession-" I despair of any definition of libel which shall exelude no publications which ought to be suppressed, and inelude none which ought to be pe -nitted." His own definition of blasphemous libel was enforced in the prosecution which, as attorney-general, be raised against the bookseller Hetherington, aud which he justifed on the singular groond that "the vast bulk of the population believe that morality depends enticely on revelation; and if a doubt could be raised anong then that the Ten Commandments were given by God from Mount Siai, men would think they were at liberty to steal, and women would cousider themselves absolved from the restraints of ehastity." But bis most distinguished effort at the bar was undoubtedly the speech for the House of Commons in the famous case of Stockdale v. Hansard. The Commons had ordered to be printed, among other papers, a, Report of the Inspecters of Prisons on Newgate, which stated that an obscene book, published by Stocidale, was given to the prisoners to read. Stoekdale sued the Commons' publisher, and was met by the plea of parliamentary privilege, to which, however, the judges did not give effect, on the ground that they were entitled to define the privileges of the Commons, and that publication of papers was not essential to the functions of Parliament. The matter, was settled by the Act 3 Vict. c. 9.

In 1840 Campbell conducted the prosecution against John Frost, one of the three Chartist leaders who attacked the town of Newport, all of whom were found guilty of high treason. We may also mention, as matter of historical interest, the case before the High Steward and the House of Lords which arose out of the duel fought on Wimbledon Common between the earl of Cardigan and Captain Hasvey Tuckett. The law of course was clear that the "punctilio whieh swordsmen ialsely do call bonour" was no excuse for wilful murder. To the astonishment of everybody Lord Cardigan escaped from a capital charge of felony because the full name of his antagonist (Harrey Garnett Phipps Tuckett) was not legally proved. It is difficult to suppose that such a blunder was not preconcerted. Campbell himsélf mado the extroordinary declaration that to engage in a duel which could not be declired without infamy (i.e., social disgrace) was "an aot free from moral turpitude," although the law properly held it to be wilful murder. Next year, as the Melbourne administration was near ita close, Plunkett, the renerable chancellor of Ireland, was forced by discreditable pressure to resign, and the Whig attorney-general, who had never practised in Equity, became chancellor of Ireland, and was raised to the peerage with the title of Baron Campoell of St Andrews, in the couniy of Fife. His wife, Mary Elizabeth Campbell, the eldest daughter of the first Baron Abinger by one of the Campbells of Kilmorey, Argyllshire, whom he had marricd in 1821, had in 1836 been created Baroness Strathed. 14. The post of ehancellor Campbell held for only sixteen days, and then resigned it to his suecessor Sir Edward Sugden (Lord St Leonards). It was during the period 1841-49, when he had no legal duty, except the self-inuposed one of oceasionally hearing Scotch appeals in the House of Lords, that the unlucky dream of literary fame troubled Iord Campbell's leisure. ${ }^{4}$ By tmo days' court work in Dublin

[^73]be had recerved a pension of $£ 4000$ per annum from an ungrateful country, and he suddenly remembered what Lords Coke and Bacen had said about the debt due from everyं successful lawyer.
Following in the path struek out by Miss Striekland in her Lives of the Queens of England, and by Lord Broughàm'a Lives of Eminent Statesmen, he at last pro dueed, in 1849, The Lives of the Lord Chancellors and Keepers of the Great Seal of England, from the earliest times till the reign of King George IV., 7 rols. 8 vo . The conception of this work is magnificent; its execution wretched. Intended to evolve a history of jurisprudence from the truthful portraits of England's greatest lawyers, it merely exhibits the ill-digested results of desultury learding, without a trace of scientific symmetry or literary taste, without a spark of that divine imaginative sympathy which alone ean give flesh and spirit to the dead bones of the past, and without which the present becomes an unintelligible maze of mean and selfsh ideas. A charmung style, a virid faney, exhaustive researeh, were not to be expeeted frole a hard-worked barrister; but he must certainly be held responsible for the freguent ' plogiarisms, the still more frequent inaceuracies of detail, the colossal vanity which obtrudes on almost every page, the hasty iasinuations against the memory of the great departed who were to him as giants, and the petty sneers which he condeseends to print against his own contemporaries, with whom he was living from day to day on terms of apparently sincere friendship. These faults are not so glaring in the lives of such men as Somers and Hardwicke, whom distence in time makes safe from personal jealousy; they are painfully apparent in the lives of Fldon, Lyndhnrst, and Brougham, and they have been pointed out by the tiographers of Eldon and by Lord St Leonards. ${ }^{1}$ And yet the book is an invaluable repertory of facts, and must endure until it is superseded by something better. It was followed by the Leves of the Chicf Justices of England, from the Norman Conquest till the death of Lord Manskeld, 8vo, 2 vols., a book of similar construction bat inferior merit.

It must not be supposed that during this period the literary lawyer was silent in the Ilouse of Lords. He spoke frequently. The 3 d volume of the Protests of the Lords, Lately edited by Mr Thorold Rogers, contains no less than ten protests by Campbell, entered in the years 1842-45. He protests against Peel's Income Tax Bill of 18.12 ; against the Aberdeen Act (6 and 7 Vict. c. 61) as conferring undue power on church courts; against the perpetuation of diocesan courts for probato and administration; against Lord Stanley's absurd bill providing compensation for the destruction of fences to dispossessed Irigh tenants; and amainst the Parliamentary Proeeedings Bill, which proposed that all bills, except money bills, having reached a certain stage, or having passed one House, should be continued to next session. The last he opposed beeause the proper remedy lay in reselutions and orders of the House. He proteste in favour of Lord Monteagle's (Mr Spring Rice) motien for inquiry into the sliding ecale of corn duties under 5 Vict. e. I4; of Lord Normanby's motion on the Queen's speeeh in 1834, for inquiry into the state of Ireland (then wholly under military occupation); of Lord Rednor's bill to define the constitutional powers of the home secretary, when Sit James Graham opened Mazzini's Jetters. In i 844 he reeords a solitary protest against the judgment of the House of Lords in Reg. e. Millis, which

[^74]afirmed that a man regularly mărried according to the rites of the Irish Presbyterian Church, and aftermards regularly married to another moman by an Episcopally ordained elergyman, ceuld not be convicted of bigamy, because the English lam required for the validity of a merriage that it should be performed by an ordained priest.
On the resigation of Lord Denman in 1850, Campbell was appointed Chief Justice of the Queen's Bench. For this post he was well fitted by his knowledge of common law, his habitual attention to the pleadings in court, and bis power of clear statement. On the other band, at Nisi Prus and on the criminal circuit, he was accused of frequently attempting unduly to influence jories in their estimate of the credibility of evidence. It is also certain that he liked to excite applanse in the galleries be snme platitude about the "glorious Revolution" or the "Protestant suecession." ${ }^{2}$ He assisted in the reforms of special pleading at Westminster, and had a recognized place with Brougham and Lyndhurst in legal discussions in the House of Lords. But he bad neither the generous temperament nor the breadth of wiem which is required in the composition of even a mediocre statesman. In $185 y$ be was made Lord Chancellor of Great Pritain, probably on the undersianding that Lethell should succeed is soon as he could be spared irom the House of Commons. His short tenure of this office calls for no remark. In the same year he published in the form of a letter to Mr Payne Collier an amusing and extremely inconclusive essay on Shehe speare's legal acquirements. One [assage wili show the conjectural process which runs througlt the book: "It Shakespeare was really articled to a Stratford atiorney, in all probability, during the five years of his clerkship, he visited London sereral times on his mester's business, and he may then have been introduced to tho green-room at Elackfriars by one of his countrymen connected with that theatre." The only positive piece of evidenco produced is the passage from TVomas Nash's "Epistle to the Gentlemen of the Two Universities," Irefixed to Crcene's Arcadia, 1859, in which he upbraids somebody (nat known to be Shakespeare) with having left the "trade of Noverint" and busied himself with "whole llamlets" and "handfuls of tragical speeches." The knowledge of law shown in the plays is very much what a universal observer must have picked up. Lawyers always underestinate the legal knowledge of an intelligent layman. Campbell died on the 23d June 1861. It has been well said of him in explanation of his suceess, that he lived righty years and preserved his digestion unimpaired. Ite had a hard head, a splendid constitution, tireless industry, a generally judicious temper. He was a learned, though not a ecientific lawecr, a faithful political adherent, thoroughly honest as a judge, dutiful and happy as a husband. But there was nothing admirable or heroie in his nature. On no great suliject did his principles rise above the commonplace of party , nor had he the magnanimity which excuses rather than aggra: vates the faults of others. Mis life is the triumph of steady determination unaided by a single brilliant or attractive quality.
(w. c. s.)

CAMPEELTOWN, a rogal burgh and sesport of Scotland, in Argyllshire, situated on an indentation of the coast, near the southern extremity of the peninsula of Kintyre, in $55^{\circ} 25^{\prime} \mathrm{N} .13 \mathrm{t}$. and $5^{\circ} 36^{\prime} \mathrm{W}$. long. Its principal buildings are the churebes (one of vibich stands on the site of the castle of the Macdona!ds), the town house, the jail, and the athenreum. The stapie industry is the manufacture of whisky. There are in the town, or in

[^75]its immediate viciaity, upwards of tweuty distillerles, which produce a spirit that is in bigh estimation. Many of the inhalitadts are also engaged in the fisheries and the coasting trade. A goud supply of water is furnisked, from a distance of a mile.and a balf: by the works opened in 1866. The harbour, which is formed by the inlet of the sea called Campbelto:in Loch, has been im proved by the extension of the pier to a distance of 250 feet. The whole bay measures about 2 miles in length by 1 in breadth, and has from 6 to 15 fathoms water. The registered vessels belooging to the port on the 31 st of December 1874 rere 41 sailiog vessels of 2590 tons and 2 steamships of 284 . During the same year there entered 806 British and 18 foreign vessels, with a tonnage of 61,838 and 2353 respectively. Campbeltown unites with Ayr, Inveraray, Irvine, and Oban in sending one rember to parliament. The population of the parliamentary burgh in 1871 was 4593 , white that of the parish amounted to 8580. Campbettown is supposed to be a place of considerable antiqnity, though no memorial of this exists except a finely-sculptured stone cross, which now stands on a pedestal in the market-place, and is popularly assigned to the 12 th century. Prior to 1700 the place was a mere fishing village, but it was then erected into a royal burgh through the interest of the Argyll family, from whom it derived its aame.

Campe, Joachim IIennrich (1746-1818), a German educationist, was born at Deensen in Brunswiek in 1746. He studied theology at the university of Halle, and after acting for some time as chaplain at Potsdam, he accepted a post as director of studies in the Philanthropin at Dessan. The soon after set up an educational establishment of his own at Trittow, near Hamburg, which be was obliged to give up to one of his assistants within a few years, ia conbequence of feeblo bealth. In 1787 he proceeded to Branswick as counsellor of education, and purchased the Schulbuchhandlung. which under bis direction became a most prosperous busincss. He died in 1818. His numerous educational works were widely used throughout Germany. Among the most popular were the fileine Finderbibliothek, 12 vols., 11th ed., 1815; Robinson der Jïngere, 59th ed., 1861, trauslated into English and into nearly cvery European language; and Sammatliche Kinderand Jugendschriften, 37 vols.

CiMPEACHY, or Campecite, a fortified towa of Mexico, formerly in the province of Yucatan, but now the capital of a new state to which it gives its name, is situated on the vost side of the pehinsula on the shore of the Bay of Campeachy, in $20^{\circ} 5^{\prime}$ N. lat. and $90^{\prime} 16^{\prime} \mathrm{W}$. long. The town is generally well built, though the houses, chiefly of limestume, are for the most part only one story in beight. Its public edifices, several of which are substantial structures, comprise a citadel, several churches and convents, a theatre, a muscum, a college, a school of navigation, a hospital, and a custom-house. The pert, thuagh of considerable extent, and defended by a breakwater 160 feet long, is very shallow, and vessels drawing more than 10 feet have to anchor upwards of a mile from shore. During the Spanish domination Canpeachy had a monopoly of the imports to Yucatan, and it still maintaios a fair amount of commercial activity. There is a large trade in logwood (Palo de Campeche, or Campeachy wood), and considerable quantities of wax, cotton, hides, and cigars are also exported. Shipbuilding is carried on, and salt and rarble ars obtained in the neighbourhood. In 1872, 24 Soreign vessels entered the port, and 317 engaged in the coasting trade; and in the previous year the customs nomounted to $£ 29,133,000$. A railway is in course of con\& buction to Mimatithan, a distance of 385 miles. The rininity is interesting for ios Impliun remains: aud the city
itself is said to be "built over extensive artificial galteries or catacombs, supposed to have been devoted by the ancient people [Mazas] to sepulcbral uses." See Bancroft's Native Races , f the Pacific States of North America, vol. iv. p. 265. The Spanisb town, founded about 1540 near the older Iudian settlement, which at the tame of the conquest had abont 3000 houses, was captured by the English in 1659 , and several times in the same centary fell into the hands of the Buccancers. In the revolution of 1842 it was the scene of various engagements between the Mexicans and the people of Yucatan, in the last of which the latter were signally sucecssful. The population, which nombered $15,500 \mathrm{~m} 1865$, is now nearer 19,000 .

CAMPEGG1O, or Canpegg1, Loreszo (1479-1539), Cardinal, was burn at Bologna in 1479 . He was the son of an eminent lawyer, and for some years was himself engaged in the legal prufession. But after the death of his wife he entered the clareh and quickly attained to bigh office. For his services to the Papal cause during the reduction of Bologna, Pope Julius II. raised him to the rank of bishop, and sent him as nuacio to Germany and Milan. In 1517 be because cardinal, and t two gears later he was sent to England to stir up a religions crusade against the Turks. He was unsuccessful in this mission, but received from Henry VIII., io 1524 , the bishopric of Salisbury. Towards the close of 1528 he came over to England to assist Wolsey with regard to Henry's contemplated divorce from Katherine. He failed to accomplish anything, and left in the following year. The bishopric of Salisbury was withdrawn from him, and though at a later date (1536) it seemed possible that he might regain it, his expectations were disappointed. He died at Rome in 1539, just as he was about to set out on an embassy to Vicenza. CAMPER, Peter (1722-1789), a celcbrated anatomist and naturalist, was born at Leyden, May 11, 1722. He was educated at the university of Leyden, and ia 1746 graduated in philosophy and medicine. After the death of his father in 1745 he spent more than a year in England, studying nuder the most famons medical teachers in Loudon. He then visited Paris, Lyons, anci Geneva, and returned to Franeker, where he had been appointed to the professorship of philosophy, medicine, and surgery. He visited England a second time in 1752, and in 1755 he was called to the chair of anatomy and surgery at the Athenæum in Amsterdam. He resigned this post after six years, and retired to his couatry house near Franeker, in order uninterruptedly to carry on his studies. In 1763, however, he accepted the professorship of medicine, surgery, and anatomy at Groningen, and continued in the chair for ten years. He then returned to Francker, and after the death of his wife in 1776 spent some time in travelling He made the acquaintance of Diderot and Marmontel at Paris, and was received with great respect by Frederick the Great at l'otsdain. In 1762 he had been recurned as one of the deputies in the assembly of the proviace of Friesland, and the latter years of his life were much occupied with political affairs. In 1783 he was nominated to a seat in the council of state, and took up his residence at the Hague. His death (7th April 3789) was caused by a violent pleurisy, the effects of which were accelerated by political excitement.

Camper's works, mainly menioirs and detarhed papers, are very numerous; the most important of those bearing on comparative anatomy were published in three vols. at Paris in 1803 , under the title CE゙uves de P. Camper qui ont pour objat IUstoire Nadurelle, da Physiologic, et l'Anatomic Comparie.

CAMPERDOWN. Sce Duncan, Adam.

CAMPHOR is a colourless translucent body, having a tough waxy structure, with a specific gravity about equal to that of water, melting at $347^{\circ} \mathrm{Fabr}$. and boiling af 400°. It volatulizes readily at ordianry temperaturea,

Fring of that peculiarly pungent aromatic odour which is characteristic of the aubstanee. It is very slightly soluble in water, to which it communicates its werm camphoraceous taste; but it dissolves with facility io alcohol, ether, fixed and volatile oils, naphtha, \&c. In its chemical constitution it is analogous to the solid stearoptines deposited by many essential oils, especially such as are derived from labiate plants. By subnitthog it to the action of oxidizing agents camphor, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$, is traosformed into eamphoric aeid, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$, and if the oxidatıon is continued it becomes camphretic acid, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{7}$.

The greater part of the camphor of Western commerce is obtained by distillation from the wood of a tree, Camphora officinarum, belonging to the Natural Order Lauracese. It is produced most largely in the Island of Formosa, the area of production being a narrow belt of debateable land separating the Chinese settlement from the territory held of the aloriginal inhabitants of the island. The preparation of the product is consequently attended with considerable danger, owing to the mutual jealousies and encroachments of the natives and the Chinese. The crude and primitive process of distillation is thus deseribed by Mr E. C. Taintor in his Trade Repmet of Tamsui, 1869 :-" A long wooden trough, frequently hollowed out from the trunk of a tree, is fixed over a furnace and protected by a coating of elay. Water is poured into it, and a board perforated with numerous small holes is luted over it. Over these holes the ehips [of the camphorwood] are placed and covered with earthenware pots. Heat being applied in the furnaee, the steam passes through the chips, carrying with it the eamphor, which conderses ia the form of minute white erystals in the upper part of the pots." It is collected and stored in vats to await exportation, during which time it gives out from 3 to 4 per cent. of unerystallizable camphor oil of a yellowish colour, whieh has been suggested for use in medieine and the arts in the same way as spirits of turpentioc. In addition to the supplies obtained from Formosa, a considerable quautity of camphor is now shipped from Japan. Japanese unrefined cemphor is of a lighter colour than that ootained from Formosa, and commands a higher price in the market. Crude camphor is submitted to a process of refining by sublimation from a small quantity of sand, clarcoal, ironfilings, or lime. The operation is condueted in glass vessels of peculiar form, to the upper part of which the scblimate adheres. It requires to be conducted with great care on account of the peculiarly inflammable nature of the product, and the beat must be carefully regulated to produce a solià compact eake.

Borneo camphor, or Barus eamphor, is a variety differing entirely in its source, being the produce of Dryobalanops Camphora, and also somewhat remuved in its clecmical constitution and physieal properties from the ordinary variety. It is obtained in its concrete form in fissures in old trees, which are cut down and split up in seareb of it. The tree is a native of the Malay peninsula, and is found chiefly in certain parts of Borneo and Sumatra. Borneo camphor is extravagantly prized by the Chinese, who readily pay one buodred times more for this variety than for ordinary camphor.

A third variety of camphor, scarcely knewn beyond China, but there called Ngai camphor, bas keen ascertained by the late Mr D. Banbury to be the product, in part at least, of Blumea balsamifera. In chemical composition it is the same as Borneo camphor, but differs from it in respeet of odour, greater hardness, and higher volatility. In China it occupies in respect of value an intermediate place between ordinary and Borneo camphor.

Camphor is extensively emploged in medicine both internally and externally as a atimulant, but its chief
medicinal use is in the preparation oi limiments, into the composition of many of which it enters. It has a vulgar reputation as a prophylactic, on which aecount it is in great demand during serious epidemics. It pessesses properties invaluable to naturalists and others for keeping furs, skins, and other animal substances free from moths; and it similarly preserves cabioets of insects from attrek. A very large quantity of camphor is consumed in India, and generally throughout the Elast.

CaMphUYSEN, Dirk Rafaelsz (1586-1627), a Datch painter, poet, ad theologian, the son of a surgeon at Gorcum, was born in 1586 . As he manifested great artistic talent, his brother, in whose charge he ras left on the death of his parents, placed him under the painter Govitz. But at that time there was intense interest in thenlogy; and Camphuysen, sharing in the prevailing enthusiasm, deserted the pursuit of art, to become first tutor of the sons of the lord of Njeuport, and then minister of Vleuten. As, however, he had embraced the doctrines of Arminius with fervour, he was driven from this post, and saffered much persecution. His chief solace was poetry; and he has left a translation of the Psalms, and a number of short pieces, romarkable fur their freshness and depth of poetic feeling. IIe is also the author of several theological works of fair merit, among which is a Compendium Doctrince Socinorum; but bis fame ebiefly rests on this artistic power. Lis jictures, like his poems, are mostly small, but of great beauty; the colouring, though thin, is pure; the composition and pencilling are exquisite, and the perspectire above criticism. The best of his works are his sunset and moonlighe scenes and his views of the Rhine and other rivers. The close of his life was spent at Dokkum, where he died in 1627 .

CAMPI, Bervardino, a pupil of Giulio Campi, who adopted a less arubitious style, but is equal and in some respecta superior to his master. Bernardino was born at Cremona in 1525 , and legan life as a goldsinith. After an education under Giulio Campi and Ifpulito Corta, he attained suehskill that when he added another to the eleven Cesars of Titian, it was impossible to say which was the master's and which the imitator's. He was also much influeneed by Correggio and Raffaclle.

CAMPI, Giulio, the founder of a school of Italian painters, was born at Cremona about 1502 , and died in 1572. He was son of a painter, Galeazzo Campi, under whom be took his first lessons in art. He was then taught by Giulio Romano ; and be made a special study of Titian, Correggio, and Raffaelle. His worts are remarkeble for their correctness, vigour, and loftiness of stgle. They are very numerous, and tho church of St Margaret in zis native town ores all its paintings to his hand. Among the earliest of his school are his brothers, Vingenzo and Antonio, the latter of whom was also of some mark as a sculptor and as historian of Cremona.

CAMPIAN, Edmund (1540-1581), a celebrated English Jesuit, was born of humble parentage at London in 1540. From Christ's Hospital be removed to Oxford Umversity, where he took a degree and beeame fellow of St John's. He was admitted to boly orders in the English Church, and in 1567 was ordained deacon. Being convinced that be could not assent to the Protestant formulary required by the Church of England, be left Oxford and went to Ireland, where he oecopied himself in writing a history of the country. He then joined Allen and others at Douay; and passed his novitiate as member of the Socicty of Jesus. After residing for a short time at Brünn, Vienna, and Prague, where be taught philosophy and rbetoric, be was sent by Cregory XIII., along with Father Parsons, on a propagandiat mission to England. He arrived in England in 1580, and entered on his duties by challenging tho
aniversities and elergy to dispute with him. In July 1581 he was apprehended along with Parsons ànd two other agents at Lyford in Berks, and thrown into tho Tower, on a charge of having excited the people to rebellion, and holding treasonable correspondence with fort:gn powers.
Having been found guilty, be was condemned to death, and was executed at Tyburn, Dec. 1, 1581, with several others of bis order. He is admitted to have been a man of great abilitiea, an eloquent orator, a subtle philosopher, and able diplomatist; and be is praised by all writers, whether Protestant or Roman Catholic, not only for his talents and aequirements, but also for the amiability of bis disposition. A full account of the Jesurt mission in which Campian took part will be found in Froude's Eistory of England, vol. xi.

CAMPLi, a town of Italy, in the province of Abruzzo Uiteriore I., 5 miles nprth of Teramo. It bas a cathedral, an abbey, and several churches and convents. Population, 7770.

CAMPOBASSO, a city of Italy, the eapital of the pro. vince Molise, ${ }^{5} 3$ miles N.N.E. of Naples. It is stuated on the ascent of the mountain Monteverde, around which it forms a kind of amphitheatre. It is fortified, and contains a cathedral, the rums of a castle, a small theatre, a hospital, and various other public buildings. The most important industry is the making of steel and eutlery, and there is a considerable export trade in corn. Population, 14,090.

CAMPOBELLO, a town of Sicily, in the province of Trapani, 7 miles E.S.E. from Mazzara. In the neighbourhood are the interesting quarries of Rocea di Clisa, from which the blocks were obtained for the buildings of the ancient Selinus. Population, 5575.

CAMPOBELLO DI LICATA, a town of Sicily, in the province of Girgenti, and 20 miles E.S.E. of the city of that name, on a tributary of the Salso. It possesses valuable sulphur mines. Population, 6301.
Campomanes, Pedro Rodriouez, Conde de (17101802), a Spanish statesman and writer, was born in Asturias about 1710, or, according to other authorities, in 1723. From 1788 to 1793 he was president of the council of Castile, but on the accession of Charles IV. he was removed from his office, and retired from publie life, iregretted by the true friends of his country. His first literary work was Antiquidad Maritima de la Republica de Cartayo, with an appendir containing a translation of the Voyage of Hamno tho Carthaginian, with curious notes. This appeared in a quarto volume in $1 \% 56$. His prineipal works are two admirable easays, Discurso sobre el Fomento de la Industria Popular, 1734, and Discurso sobre la Educacion Popular de los Artesanos y su Fomento, 1775. As a oupplement to the last, ho published four appendices, each cousiderably larger toan the oriminal essay. The first. contains reflections on the origin of the deeay of arts and manofactures in Spain during the last eentury. Tho seeond points ont the steps necessary for improving or re-establishfing the old manufactures, and contains a curious collection of royal ordinances and rescripts regarding the eneouragement of arts and mannfactures, and the introduction of foreign raw materiale. The third treats of the grild laws of artisans, contrasted with the results of Spanish legislation and the municipal ordinances of towns. The fourtin contains eight essays of Francisco Martinez do Mata on national comaerio, with some observations adapted to present circumstances. These were all printed at Madrid in 1774 and 175%, in five volumes. . Count Campomanes died in 1802.

CAMUCCINI, Vinceinzo (1775-1844), the most famous of tho modern historical painters of Italy; was born at Rome ia 1775. Hu was enlucated by his brother Pietro. n picture-
restorer, and Bombenur, an engraver, and, up to the age of thirty, attempted nothing higher than copies of the great masters, his especial study being Rafaelle. As an original painter, Camuecini belongs to the echool of David. His works are rather the fruits of great cleverness and patient care than of fresh and original genius; and his style was essentially imitative. He enjoyed immense popularity, both personally and as an artist, and received many honoura and preferments from the Papal and other Italian courts. IIe was apponted director of the Aeademy of San Luea and of the Neapolitan Academy at Rome, and conservator of the pictures of the Vatiean. He was also made chevalier of nearly all the orders in Italy, and member of the Legion of Honcur. His chief works are the classical paintings of the Assassiuation of Cæsar, the Death of Virginia, the Devation of the Roman Women, Young Pomulus and Remus, Huratius Cocles, the St Thomas, which was copied in mosaid for St Peter's, the Presentation of Christ in the Temple, and a number of excellent portrats. He died at Rorae September 2, 1844.

CAMUS, Caarles Etienne Louts (1699-1768), a French mathematician and meehanician, was born at Créey-cr-Bric, near Meaux, on the 25th August 1699. At the age of twelve he was able to maintain himself by teaching at the College de Navarre in Paris, where he deroted himself to mathematics, civil and military arehitecture, and astronomy. Ile became Associate of the Acadénie des Sciences, professor of geometry, secretary to the Academy of Architecture, and member of the Royal Society of London. In 1736 he accompanied Maupertuis and Clairvaut in an expedition to Lapland for the measurement of a degree of the meridian, when be rendered essential scrvice, not only as a geometrician and astronomer, but also by his remarkable skill in the meehanical arts. He died on the 2d February 1768. He was the author of a Cours de Mathématiques (Paris, 1766), and a number of essays on mathematical and meehanical subjects.

CANA, of Galilee, a village of Palestine, remarkable as the birthplace of Nathaoael, and the seene of Christ's "beginning of miraeles." Its exact site is unknown, but it is evident from the Biblieal narrative that it was in the neigbbourhood of Capernaum. By a tradition as old as the Sth century it is identified with Kefr Kemna, and by a more modern hypothesis with Kana-el-Jelil. The former lies about $4 \frac{1}{2}$ milcs N.W. of Nazareth, and contains the ruins of a church and a small Christian population; the latter is an uninhabited village about 9 miles N. of Nazareth, with no remains of antiquity but a few cisterns.

CANAAN, a geographical name of archaic Hebrew origin, generally supposed to mean "depression," "lowland," and hence fitly applied to various low-lying districts of Syria, viz., Phœenicia (Isa. xxiii. 11 ; Josh. v. l, where the LXX. has tîs Фotviкךรs), Thilistia (Zeph. ij. 5), and the valley of the Jordan (as implied in Num. xiii. 29, of. Josh. xi. 3). It is, however, also applied to the whole of the territory conquered by the Israelites on the west side of the Jordan (Gen. xi. 31, xij. 5 ; Num. xiii. 2,17 , \&c.), the boundaries of which are given in Gen. xv. 18 as "the river of Ebypt," (i.e, the Wady, or torrent-valley, el-Arish), and "tho great river," the River Euphrates. Probally tho Israelites found the uame in use in tho Jordan Valley, and, as a part of this was the first district they eonquerca, extended it to their subsequent acquisitions. We have good parallels for this extension in the use of Argos for the whole of the Peloponnese, and of Hellas for the maialand of Greece. Of course this theory implies that the original signification of the word had been forgotten as was so often tho case with Hebrew proper names. The Phœnicians likewise accepted the name of Canasa. Hecateus of Miletus (about 520 b.c.) knen $X_{\text {ré }}$ as a
synonym for Dovich, and the same identifieation is found in Pbilo's Sanchoniathon (Müller's Fraymenta Hist. Grean, vol. i. p. 17, vol. iii. p. 369). St Augustine, too, says that the Punic peasants, when asked whet they were, replied in Punic, Chanani (ed. Bened., vol. iii. col. 932), and on a coin of the date of Antiochus Epiphanes, Laodices in the Lebanon district is called "a mother, or metropolis, in Canaan" (see inscription in Schröder, Die phonzzische Sprache, p. 275). It is remarkable that there is a trace, and no more, of the extended use of the word Canaan in Egyptian. The town nearest to Canaan, in the territory of the Shasu or Bedawin (lit. Brigands, cf. Heb. shäsäh), was called Pa-Kanana (Brugsch; Histoire d'Égypte, p. 145).
An instance of the confusion produced by the ditferent uses of the term Canaan is supplied by Gen. x. 15-18, where the tist of Phomeian cities is mterrupted by the five Palestinian nations, the Hittites, Jebusites, \&c. As De Goeje has ponted out, the orymal writer of the Table of Nations understoat Canaan in the sense of Phenicia-be had probably used a Pheenscan chart; the interpolator, in that of Patestine (Theologisch Tijdschrifl, 1870, p. 241).

Why Canaan is placed among the deserendants of Ham could only be shown by a chart of the world as known to the Phurnicians Clearly there was a misunderstanding as to the coasts of the Red Sea.

Compare Movers, Die Phonizier, vol. ii (1), pp. 4-6: Knobel. Dre Volkerlafel der Cencsis, pp. 307-310; De Geeje, Over de Namuen Phocnicié in Kanaan, Amst. 1870.
(T. K. C.)

Canalantes. Only two of the pessible senses of the word Canaanite need be bere rclerred to ; for the others, see Phenicians and Puilistines. And as one of these is included in the other, let us pass at once to the Canaanites in the larger scnse, i.e., the whole group of nations conquered by the Israelites on the west side of the Jordan. The group is variously described. It is sometimes said to consist of five-Canaantes, Hittites, Amorites, Hivites, Jebusites (Exod. xiii. 5) ; sometimes of six, the Perizzites, i.e., Pagani, being added (Esod. jii. 8, 17, xxiii. 23 , xxxiii. 2, xxxiv. 11 ; Deut. xx. 17; Josh. ix. 1, xii. 8) ; sometimes of seven, by including the Girgashites (Deut. Vii. 1 ; Josh. iii. 10 , x xiv. 11); once of ten, omitting the Hittites, and including the aboriginal Replaim and three Arab tribes, the Kenites, Kenizzites, and Kadmonites (Gen. xv. 19-21). The latter, however, are clearly inserted by mistake, as they only became inlabitants of Palcstine, so far as tbey did become such, as the reward of assistance given to the. Israclites. There are only two of these natiens about whom we have any collateral informationthe Hittites and the Amorites. The former, however, seem also to have been included among the Canaanitcs by mistake. Historical evidence, both Biblical and extrabiblical, proves convincingly that they dwelt beyond the borders of Canaan; and linguistic evidence tends on the whole to show that they did not cren speak a Semitic language (see Hitrites). The latter, too, were not entirely homogeneous with the other Canaanitish peoples, if the notices in Deut. iii. 11 (" Og of the remnant of the Rephaim"), ibid. 13; Josh. sii. 4, siii. 12, may be taken as historical. Perbaps, as Erald suggests, they were mixed with the aborigines. A Semitic basis scems probable, but has only one linguistic fact in its favourSen'r, the Amerite name of Hermon (Deut. iii. 9), mentioned also in an inscription of Shalmaneser (Brit. Mus. Coll., vol. iii. p. 5, No. 6, 1. 45) ; personal names like Og and Sihon may easily have been Semiticized, and the name Amorite itseif, being probably descriptive (see Amorites), bas no ethnological value.. They are at all events un-Canaanitish in their political capacity, two considerable states having been founded by them on the east of the Jordan (Deut. iii. 8 ; Josh. xii. 2 ; Judg. x. 8, xi. 22). It will therefore be better to exclude Hittites and Amorites from the present notice.
L. It is extremely difficult to draw any distinction between
the remaining members of the Canaanitish group. As Politicat described in the early books of the Old Testament, they state. have a general family likeness. They are described as living in a state of political disintcgration, the colubined result of the Semitic love of independence and of the varied conformation of the soil. Thirty-one of their petty kings are mentioned in Josh xii. 9-24, meluding the king of Hazor (afterwards reckoned to Naphtali), whose realm, in Judg. xi. 10 , is called "the chef of all those Lingdons." We tind, indeed, a king of Bezek claiming to have enslaved "seventy" of the surroumding regu/2 (Judg. i. 7). but this is an altogether exceptional event, for which the foosening of authority produced by the guerilla wasfare of the Israelites suffieently aceunnts. Yet the isolation of the Canaanites ean never have been complete. Like the Phenictans, they will bave bad their. federations, as appears to be implied by the title Baal-berith, or "Baal of the Covenant" (Judg. viii. 33); and hiernglyphie inscriptions tell of their alliances with the Khita or Hittites against their Egyphan suzerains. Indeed, the rebellious tendencies of the Syrian states will partly explain the inaction of the Pbaraohs during the Israelitish conquest. The only injury Joshua could do to the latter would consist in blocking up the military coast-road to the north of Syria, but this was well secured by Egyptian garrisons, which Joshua did not venture to attack; while to get the Canaanites humbled witbout any tronble was a clear gain. That the Israelites were not immediately and at all points successful is now universally recognized. The work of many years was concentrated by tradition on a single great name; yet the Old Testament itself corrects by mumberless indications the error of the more imaginative narrative. Thus the kingdom of Hazor, which had been utterly destroyed, according to Josh. xi. 10, 11, emerges ngain in the unore accurate account of Judges (iv, 2, 3). And beth Joshua and Judges (not to descend later-see Avorites) supply evidence for the continucd Canaanitish occupation of many parts of the country (Jesh. xiii. 13, xv. 63, xvi. 10, xvii. 12, 13; Judg. i. 19-36). Tho immediate result of the invasion was, not the extinction of the old, but the addition of a new (and yet not wholly new) elcment, of stronger stuff but less advanced culturc.
II. No doubt the Israclites at first put an end to much Results of of which they could not discern the value, or, to use their the conown phrase, made it a lheirem, a thing consecrated to God quest by destruction. The origin of Hebrew literature would not be such a blank if the sacred archives of Kiryatbsépher, or "the Book-city;", otherwise called Kiryath. sannah, or "the Law-city (?)" (Josh. xv. 15, 49), bad been preserved. Still the attractions of culture were superior in the long run to the dietates of religious zeal. Goodly houses, vineyards, and oliveyards (Deut. vi. 10, 11) were agents more powerful even than chariots of iron. The secrcts of agriculture had to be learned from the Canaanites; intercoursc naturally led to intermarriage, and so a new strife arose in the field of religion, in which balf the Jewish nation perished utterly, and the other half was only saved by its voluntary submission to a spiritual despotism.
UI. The pages of the bouk of Judges are full of com- Resigions plaints of Israelitish infdelity, which is rightly aseribed by character the compiler to misture of blood (Judg. iiii. 6). It is trie intics and that expressions like tbis of infucclity have only a limited aceuracy. As Emald and Kuenen have pointed out, the fnal editor of Judges lived in the age of the Exile, when the religion of Yahveh (miscalled Jebovab) had attained its full development. From bis pcint of view, religious approximation to the Canaanites was wilful apostasy, because it involved the effacement of the distinction between physical and moral religion. But of this distinction the Is raelites were hardly more rojscions than the Caneanites.

The religions of both nations were based on a feeling for she powers of nature, whether regarded as destructive and aviul, as by the one, or as favourable and lovely, as by the other. Thus the one religion was stern and in tendency moral; the other soft and in tendency immoral: there was indeed a difference, but not a clear-cut distinction between them. To come to particulars,-the chief object of Canannitish worship was the dual-natured god of life and fruitiulness, viz., Baal, or rather the Baal, i.e., "the lord," and his consort Ashéralt, i.e., "the bappy," and so "bappy-making, favourable" (as in Assyrian, Salmanuazir, "Salman is favourable"). The maseuline form is also probably a divine title, and has given its name to the tribe of Asher, as Gad ("good fortune") to the Gadites. As Movers long ago pointed out, Ashérah is not identical with Asbtoreth or Astarte, whose name is phitologically different, and who belongs to another type of Semitic religion. Her symbol was the stem of a tree (Deut. xvi. 21; Judg. vi. 25), though this may have been sometimes earved into an image; that of the Eaal probably had the form of a cone, and represented the rays of the sun. It is these symbols which are referred to in the phrase, "the Daals and the Ashérahs" (Judg. iii. 7) ; the "groves" of the authorized version is an evident mistranslation (see in the Hebrew or some aecurate modern version, Judg. vi. 25; 1 Kings x v. 13; 2 Kings xxiii. 6). The licensed harlotry which formed part of the worship of Ashérah was profoundly obnoxious to the later Hebrew writers (Num. xxv. ; Deut. xxiii. I8), though, indeed, even the folk-loreof the Isratlites stows traces of aversion to its attendant immorality. An illustration of this is furnished in the narrative of Sodom (Gen. xviii., xix.), which ean only refer to the later Canaanites. Similarly, another writer (Gen. xv. J6) describes "the iniquity of the Amorites" as the divine justification of the Israelitish conquest. It is also the subject of a threatening passage in the Levitical legislatiou (Lev. xriii.), which if composed during the Babyloman exile, as is held by Graf and Kaliseh, is a remarkable evidence of the tenacity of pre-Israelitish customs.

Another characteristic of Canaanitish religion, though far from peeuliar to this, was soothsaying. After Israelite prophecy had broken its sbell, and taken its daring flight into a more spiritual region, its first anxiety was to destroy that rival phenomenon which enslaved the minds of men to gross superstition. Hence the earaest dehortations of Isaiab (ii, 6), and of the writer of Deuteronomy (xviii. 10-14).
There was only one relie of Canaanitish times which the diseiples of prophetic religion could not or would not throw aside-the old traditions. For it can hardly be doubted by uneompromising historical critics that some, perhaps many, of the narratives of Genesis are but purified versions of Canaanitish myths and legends. Tho most obvious examples will naturally be those stories which are attached to localities in Canaan, e.q., Luzand Beersheba. Of course the story of Melchizedek, "the king of Salem," and "priest of the most high God" (Gen. xiv. 17-24), is not one of these, being out of harmony with all our other notiees of the Canaaniteg. It is also easily separable from the rest of the narrative, and may possibly be as late as the Maccabcan period, and written in honour of the temple and its priesthood, which are glorified by being, as it were, prefigared in the patriarchal age.
IV. The question has been asked of late, Thethera remnant of theold population of Palestine may not still be in existence. M. Clermont-Gauneau, following l'rof. E. II. Palmer (Itistory of the Jewish Nation, p. 64), answers it confidently in the affirmative. In the fellahin or peasants of the Holy I.and be sees the descendants of the Canaanites, who, Laving beca sed ased to a a 'ro of serfdom, were contemptuousty over-
looked by the successive hordes of conquerors. Their strange superstitious customs have been remarked by every close observer, and are evidently survivals of some early form of religion. M. Ganneau also mentions some curious legendary parallels to Biblieal narratives existing among them. Dr_{r} Thomson (The Land and the Book, pp. 226-8) bolds a similar theory about the sect of the Nusarieh in northern Syria, who are equally bad Moslems, but more probably represent the débris of tee later Syrian paganism.
V. We have yet to speak of the ethnological relation of Ethootrs the Canaznites and the Israelites. The linguistre evideuce points to a kinship as close as that of both to the Pbæumcians. Not only are the personal names of the Canaanites (Melchizedek, Adonibezek, Adonizedek, Oman or Aranyah, of which Araunah seems to be a cornuption) pure Hebrem, but so toc are the names of their cities, an evidence of still greater value, as given both in the Old Testanent and in the lists of the places conquered by Thotbmes III. The latter have been diseovered by Martett-Bey on a kind of triumphal arel at Karnak; they inelude 119 names belonging to Canaan, of which 75 bave been identified with known Hebrew names of places (Mariette-Bey, in Comptes Rendus de l'Académie des Inscriptions, I8̄̈4, p . 243, \&c.). The same Hebraie claracter is apparent in the names given in the "Travels of a Mobar" (see the Records of the Past, vol. ii. pp. 107-116), which have been illustrated, we understand, by the recent explorations of Lieutenant Conder. How, it has been asked, is this community of language to be accounted for? The problem is a real one to those who regard the Table of Nations (Gen. x.) as an ethnologieal authority, for in that docuinent the Canaanites are clussed separately from the Hebrews among the deseendants of Ham. From thus, as we believe, antiquated point of view, it becomey necessary to assume that the Canaanites borrored their language from some of the genuine descendants of Shem. From the Israelites? But.they spoke the language long be fore the Israelite immigration. From an aborigital Semiticspeaking race? But there is no historical evidence for the existence of such a people. We are thus driven to accept the view that the Table of Nations is arranged not on an ethnological but on a geographical principle. The Canaanites will then be classed among the descendants of Ham as belonging, according to the compilers, to the southern terrestrial zone-not, however, the Canaanitss, in our sense of the word, for these formed no part of the original Tal!e (see Canafe), but the Phenicians. Apart from this risunderstood document there is no difficulty in admitting the affinity of the three nations, the Israelites, the Canannites, and the Plomicians, who all appear to have migrated successisely from a Babylonian centre (see Pmencians). The last to move westward were probally the Hebrews They are generally supposed to have originally spoken ad Aramaic dialect, but after entering Palestine to hare adopted that of the more civilized Canaanites (sce Introductions of Bleek and De Wette-Schrader). The only cridence, however, offered in sapport of this wjew is Gen. xxxi. 47, where the "cairn of witness" receives a Hebrew name from Jacob, an Aramaic from Laban. From this it is inferred that Laban's great-unele Abraham must, according to tradition, have spoken Aramaic, as if Aramaic were as early a development as IIebrew, and as if the writer in Genesis bad any thought of illustrating plithogical problems! Of any such event in the history of the liebrews we have simply no eridence whatever.

Compare Ewald, History of the People of Isracl, Eng. trans., vol. i. Pp, 232-242; Kucnen, licligion of Israel, Eng. trans., vol. i. chap. 1 (with note) and 4 ; Movers, Die Phonizier, rol. ii. (1), pp. 61-52; Knobel, Dic IUlhertafel der Genesis, pp. 202, 321, 332-353: Clermont-Ganmen, "The Arabs in Palestine":' Nacenillan's Mage

(I. K. C.)

CANADA

dIANADA, geographically and politically, difers widely from the British colony known by that name prior to 1867. Before that date the country embraced under the name of Canada included a region about 1400 miles in length and from 200 to 400 miles in breadth, extending from tho watershed west of Lake Superior eastward to Labrador. Alongside of it lay the independēt British provinces of Nova Scotia, New Brunswick, Prince Edward Island, and Newfoundland, and beyond it to the north and the west the vast regions abandoned to the Hudsen's Bay Company But various causes combined to impress on Canadian statesmen the desirableness of uniting the colonies of British North America into one political confederation. - On the cession of Canada to Great Britain in 1763, its Freuch colonists were guaranteed the free exercise of the Toman Catholic religion, and equal civil and commereial privileges with British subjects. Further privileges were secured by "the Quebee Act" of 1774, whereby the old French laws, including the custom of Paris; the royal edicts, and those of the colonial intendants under the French regime, were declared binding in relation to all property and civil-rights; while the criminal law was ouperseded by that of England with its trial by jury. The veignories, with their feudal rights and immunities, were also perpetuated; and thus, under the fostering protection of England, the colonial life of the France of Louis XV. land the regency survived in the "New Franco" of Canada, unaffected by the Rerolution of 1792. But the wbole French population at the date of the conquest did not exceed 65,000 . From Great Britain, and still more from the older colonies, emigrants bastened to occupy the now territory to the north of the St Lawrence. On the declaration of independence by the revolted colonies in 1776, the loyelist refugees were welcomed by the Provincial Government, settled on land in Upper Canada, and aided with funds and farming implements; and these were followed by emigrants from Great Britain. But it was not till 1791 that the rule of a governor, aided solely by a council appointed by the Crown, was auperseded by the grant of a constitution establishing the Government with an elective legislature. At the same time Upper Canada, with its purely British settlers, was made a separate province from the old French colony of Lower Canada. At this date the population of Lower Canada lad increased to upwards of 130,000 , and that of Upper Canada was about 50,000 . According to the first atrictly reliable census of 1811 it amounted to 77,000 . But the increase of population of Lower Canada was in part due to the immigration of British settlera. In 1793 a Protestant bishop of Quebec was appointed by the home Government; and in 1804 a cathedral was erected for him at Quebec, on the aite of the old Recollet church. Dr Jacob Moustain, the Anglican bishop, exerted himself in the cause of education. Parliament enacted the establishment of free schools throughout the parishes of Lower Canada, but to this the Roman Catholic clergy gave resolute opposition; , and in various other ways a spirit of antagonism began to mauifest itself between the Freuch inhabitants and the British population.

The war of 1812 followed; and during the protracted atruggle on the Canadian frontier till the signing of the treaty of Gbent in 1814, the French and British colonists were united in loyalty to England ; but with the restoration of peace internal political difficulties revived. The legislative and executive councils were at open variance with the popular representative assemblies; and a new element of strits created antagenism between Upper and Low er Canada.

The postion of Quebec and Montreal gave to Lower Canada a control over the exports and importa of the country; financial misunderstandings arose between the two provinces respecting their rightful share of import duties; and a pruposal, first made in 1822 , for a legis lative union between Upper and Lower Canada, was at length carried out in 1841, accompanied by important concessions designed to confer on the majurity of the representatives of the people that influence over the exeeutive Government which constituted the essential element of responsible government in England. But while the British colonists were divided by the old English party lioes; the French Lower Canadians, united by local interests, race, and religion, were able to hold the balance of power whenever the two British parties divided on points of suffieient importance to preclude a compronise. Thus while the advantages of soil and elimate, the industry, and the consequent wealth of Upper Canada, enabled it to contribute an ever-increasing proportion of the revenue of the united provinces, it frequently received a very partial share in their distribution, and was liable to be outwoted on questiona in which both local feeling and local interests were largely involved. This condition of things was turned to account in the party contests of the time with an ever-increasing irritation and sense of wrong on the part of the British colonists of Upper Canada, until a common feeling overrode party lines, and matters were brought practically to 8 deadlock.
This it was whieb led to the idea of a legislative union among the various British Amcrican colonies, whilo reserving to each the control of its own local government; and the common dangera to which they were exposed by results springing out of the great Ameriean civil war furnished additional motives to such a union. The leaders of different parties representing the various intcrests of the provinces, after mature deliberation, agreed to the prineiplcs .of the proposcd confederation, and the Imperial Government responded by giving it the requisite force of parliamentary authority. The Imperial Act, known as "the British North American Act, 1867,", provided for the voluntary union of the whole of British North Ameriea into one legislative confederation, under the name of the Dominion of Canada. Thus the older provinces lave preceded, even by centuries, the Ilominion within whieh they are now enbraced, and have a separate history of their own. The Domidion thus constituted consists at present of the old provinees of Upper and Lowcr Canada, now designated respectively Ontario and Quebec, along with Nova Scotia, New Brunswick, Prince Edward Island, Manitoba, and British Columbina. To it also pertain the territorics in the north-west atill unsettled, with power to receive them into the confederacy when they acquire the requisite population and organization of provinces. Provision is also made in the Imperial Act for the admission of Newfoundland into the confederacy. It is further provided that the constitution of the Dominion shall be "similar in principle to that of the United Kingdom;" that the executive authority shall be vested in the sovereign of Great Britain and Ireland, and cartied on in bis name by a governor-general and privy council ; and that the legislative power shall be exercised by a.parliament consisting of an Upper House, or "Senate," the members of which are nominated for life, by summons under the great seal of Canada, and a "House of Commons," duly elected by the aeveral constituencies of the varioua provinces in proportion to the relative population of each.

The Act of Confederation cameinto operation on the lst of July 1867, at which date the provinces of Ontario and Quebec were united to the maritime provinces of Nova Scotia and New Brunswick. In 1870 the newly created province of Manitoba, in 187 t that of British Columbia, and in 1872 that of Prince Edward Island, were successively admitted into the confederation. A licutenantgovernor and council are to be appointed to administer the affairs of the north-west territories, not yet settled or organized into provinces; and thus the whole of British North America has been organized into a united political confederacy under the name of the Dominion of Canada.

Previous to the confederation of the provinces, Labrador E. of a line drawn duc N. of Anse au Sablon, was independent of Lower Canada, and it still remains politically attached to Newfoundland. The tract of country known as Canada till 1867 extended from Labrador westward to the high land beyond Lake Superior, and from the St Lawrence Valley and the great lakes nortbward to the watershed between them and the Hutson Bay, and embracod an area of 331,220 square miles, lying between tho parallels of $41^{\circ} 71^{\prime}$ and $50^{\circ} \mathrm{N}$. lat., and the meridians of $57^{\circ} 50^{\prime}$ and 117° W. long. . This extensive region, which eonstituted the most important colnny of Enoland, is now included in a Dominion which stretches across the North American continent from the Atlantic to the Pacific Occan, and embraces an area of about $3,500,000$ square miles. The vast prairie lands of the great north-west, thus embraced within the Dominion, and out of which the province of Menjtoba has been already formed, include the most fertile region of the whole continent. $\overline{\text { lpady}}$ immigration is setting steadily in that direction; nor can it be doubted that what las remained till recently.a desert, traversed annually by migratory herds of bullaio, and only available as a bunting ground for wild Indians and the trappers of the Hudson's Bay Company, is destined to become the seat of populous provinces, and to ecastitute one of the chicf granaries of the wrord.
By the addition of the maritime British provinces, includod originally within the Acadie of the old French régime, Canada has acquired an extensive line of sea-coast, indented with bays and harbours, offering the most admirable facilities for every branch of maritime enterprise; and to these will, no doubt, be added erc long the island of Newfoundland, with the command of fisberies unequalled in value either in the Old World or the New. The peninsula of Nova Scotia and the island of Newfoundland form the eastern barriers of British North America, closịng the Gulf of St Lawrence, and commanding the Atlantic coast, with its ocean trade and its incxhaustible fisheries; while Vancouver Island, and the shores of the neighbour ing mainland, streteh along the Pacific coast, with estuaries, inlets, and well-sheltered harbours, awaitins the development of the growing trade of tho Pacific. There the rivers abound in salmon; tho whale fisherics of the neighbouring ocean already yield valuablo returns; and the cod, haddock, and other deep-sen fisb invite the enterprise of the young province, and guaranteo an inexbanstible sourco of future wealth.

The people by whom the maritime advantages of the eastern provinces bave thus far been enjoyed are peculiarly fitied by origin and training to turn them to the best account. In the early years of the 16 th century, when France was striving to outrival Spmin in the occupation of the New World beyond the Atlantic, hardy adventurers of Basque, lireton, and Norman bluol sailed from Dieppe, St Malo, liochelle, and other French seaports, and divided among them the trathe in fish and fars of tho Newfondland lauks and the Gulf and the River St Lamtence. The discovery of Canada, and, indeed, of the Anserican continent,
is justly assignea to Jonn ana seosstian Cabot, who set out from Bristol under the auspices of Henry VII, of England in 1497, and landed on the coast of Labrader sererteen months before Columbus reached the American mainland. But England was slow to avail herself of the advantages of the discovery: In 1524 Vicrazzalo, a Floren. tine navigater, sailing under the French flag, coasted tho new found continent from Florida to Cape Lietun, and the whole vaguely defined fegion was appropriated in the nano of Francis I. as "La Niouvelle France." 'I'en years later Jacques Carticr sailed from St Maio, explored the coasts of Newloundland, Nuva Scotia, and New Brunswick; and for a time the Norman and Breton adventurers enjoyed a monopoly of fish, peltrics, and whatever else could reward those pioncers of civilization for their adventurous daring and enterprise.

By such bardy adventurers the maritima prorinees orere originally settled, beforc Britain awoke to the importance of the fisheries and other valuable resources of the New Wordd. But she in her turn contributed an energetic body of colonists, including many of Scottish origin; and the war of independence led to a considerable inllux of loyalist inmigrants from the sevolted colonies. War, both then and in 1812, had its usual efficet in depressing native industry. But with the return of peace the British provinces entered on a prolonged course of prosperity, very partially affected by the political troubles of $1836-7$, or even by the American civil war of 1862 and subsequent years. llali a century ago the population of the whole of British North America was less than 1,000,000; in 1872 that of the four provinces of Oatario, Quebee, New Brunswick, and Nova Scotia, amounted to $3,485,761$; and the population of the Dominion now exceerls $4,000,000$ of souls.

So long as Cinadamas detached in government and all political relations from the uaritime provinces, and embraced only Quebee and Ontarin, with access to the ocean solely by the St Lawronce, which is clused for fully five months in the year, it constituted an inland province, subject to many sestrictions, and was to a considerable extent dependent on reciprocal relations with the United States for jts Coreign trade.

In a " Memorandum on the Commercial Relations, Past and Present, of the British North American Provinces with tho United States," submitted to the Government at Wash ington in April 1874, by Eir Edward Thornton and the Hon. George Brown, as joint rdenipotentiarics of ller Britannic Majesty, it is shown that, in the interval from 1845, when a more biberal policy gave encouragenent to intimato commercial relations between Canada and the United States, till 1853, the aggregate esport and import trade between the two countries rose from $\$ 8,074,291$ to $\$ 20,691,360$; and at the same time a latge amount of tho import and export traffic between Great Britain and the provinces was carried in bond over the canals and railways of tho United States. The Ticeiprocity Treaty was negotiated by the late Earl of Elgin, as governor-general of Canada, and signed on the 5th of June 1854, and it was abrogated in 1866 . In the later years of its continuance the civil war in the United States gave a great adrantage to Canada, so thint in the list year of the treaty the exports to the States amounted to $\widehat{5} 4,714,383$. Yet even ti:en the balance of trade continued to be in favour of the United States; and under the operation of the treaty, New lork, Portland, Doston, and other American seaports, were so largely used for the trade of the British provinces, that the transportation traffie sent to and brought from foreign countries, in boind, over the railways and canals, and in the ocean ships and stcamers, of tie United States, became an important clement of revenue to their chief lines of transport.

The effect of all this, at a time when jealousies and heart burnings bad arisen out of the American civil war, led American statesmen to over-estimate the value of such facilities to the British Provinces, and even to conceive that the abrogation of the Reciprocity T'reaty, and the restriction of such facilities, would suffice to create a desire for annexation. Happily, experience has led to very different results. In the " Memorandum on Commereal Relations," already referred to, it is remarked :-
"The indnesty of Canada bad beeo largely directed to the supply of the American market with commodities for home consumption, es woll as for foreigo exportation, and the repeal in 1866 of the Iteciprocity Treaty, under which so vast a trade had grown up, rendered imperatively necessary prompt measures to open new markets for the sale of Cadadian produce. These measures were at once takea. Under the influence of the formal notice giren by the United States in 1565, of their intention to terminate the treaty, federation of the provinces, then under discussion, was hurried on, and became a fait accompli withio fifteen mooths after its repeal. The intercolonial Railway was at once undertaken, at a cost of orer $\$ 20,000,000$, at thic national expense, to secure direct connection to and from the Atlantic occan, at Halifax and St John, on Canadian aoil. Comnissioners were despatched to the British ond other West India Islands, and to South American States, to promote the extensios of direct trade between them aud the Dominion. The enlargement of the caoals, the improvement of the navigation of the lakes and river St Lawrence, the construction of the Bay Verte canal, to counect the waters of the Bay of Fundy and the St Lawrence, the aubsidizing of ocean and river steamship lines, and the promotion of the great shipbuilding and fishery interests, all receised a aew and vigorous impetus.
"These measures were attended with remsrkalle success. Onty seven fiscal years have passed aince the repeal of the treaty, but slready the loss inflicted by it has been more than mado cip, and excellent outlets in new directions opened for Cadadian coramerce; with an increasiog amnaal proportion of the vast carrying trude formerty done for the proviocea by the railtays, csoals, and steamohips of the Republic traosferred to Canadian hads. The traffe between the United Statea nod the Prorinces at once fell, from an average during the three years before the repeal (accordisg to American official statistica) of acarly $\$ 75,000,000$ per annum, to an average of $\$ 57,000,000$ per annum during the first three years follow. ing repeal ;-the Act of Confederation, too, removed from the category of foreign commerce to that of home consamption the large interchanges of commodities between the several sections of the Deminion ; and the aggregate foreign commence of the provinces consequentiy fell io the first y car after the repeal of the treaty to $\$ 159,202,615$ from $\$ 160,409,455$ in the previous year. As will be seen from the following statement, however, the trade of the Domioion spectily recovered from the blow, and the velume of its foreign commerce gradually increascd until, in the seventh year from the repeal of the treaty, it reached the great sum (for a perple of foar milliu.1s) of $\mathbf{3} 235,301,203$,-being serenty.five millinis higher than it had ever reached in any ycar of the treaty's existence:-
1867. Total exports and inports of Canada

	and Newfoundtand		\$139,202,615
1868.	"	"	139,595,615
1869.	"	,	142,240,897
1870.	"	,	161,275,538
1871.	"	"	184,552,006
1872.	"	"	205,339.043
1873.	"	"	235,301,203

Total Foreign Commerce in seven years... $\$ 1,297,807,81 \%^{\prime \prime}$
Thus the immediate effect of the repeal of the Reciprocity Treaty was to draw the British proviaces into closer union; while, as appears from official returns, the interchange of traffic, which from 1820 to 1866 had been largely in favour of the States, underirent so great a change from 1866 to 1873 as to ahow a balance against the United States, and in favour of Canada, in value $\$ 51,875,008$. Wheat, flour, provisions, and other articles, which were formerly sold to New York and Boston houses, are now asot through Canadian channels, direct to the maritime provinces, to Newfoundland, the West Indies, South America, and to Great Britain; and Cenada thus enters into competition with tio United States in its own foreign markets. Mr E. H. Derby, special commissioner of the United States Treasury, makes this admission as to the effect of the treaty on a single port:--"Tha commerce
of Boston affected by the Keciprocity Treaty exceeds $\$ 27,000,000$ annually, namely,-imports from and exports to the maritime provinces, $\$ 6,000,000$; outfits and returns in deep-sea tisheries, $\$ 11,000,000$; 1 nports oi wool, grain, and animals across the frontier of Canada and entered there, with returns, at least $\$ 10,000,000 . "$ With the union of the maritime prorinces to those on the St Larrence, Canada has passed from the condition of an inland colony, dependent on the good wall or the interested aims of a fureiga rival, to the position of the fift maritume nation of the world. The fisheries more than all else have laid the foundation of the industrial progress of the eastern provinces; and in the men who now sail thair fish. ing fleets Canada has acguired the elements of a powerful marine, which, in any national exigency, wilh be found to add no less to the defensive strength of the Dominion, than it now does to its commercial enterprise.

By right of semionity the province of Quebec claims the first place among the sister provinces of the Dominion, though Nova Scotia may dispute sith her the claim of earliest settlement. Among the cities of the Dominion it is probable also that Montreal will retain the pre-eminence by reason of the unparalleled advantages of her geogra. phical pusition fur commercial purposes. In numbers ${ }_{r}$ wealth, and productive industry, bowever, the foremost rank is at present duc to the province of Ontario. Refer. ring to separate articles for a detailed description of each province, we confine ourselves there to what concerns the Dominion as a whole.

Extert. - The Dominion ot Canada extends from 45° N. lat. northward to the lludson Bay, and reaches from the Atlantic to the Pacilic Ocean. In superficial extent it is nearly equal to the whole of Europe, and comprises an area of about $3,500,000$ square miles. The larger moiets of this, including the territory formerly held by the Hudson's Bay Company, is the property of the Duminion Goremment. Of this about 120,000 square -miles consist of prairie lands with occasional scattered groves and belts of trees along the rivers, admirably adauted for agr:culture. A larger tract, consisting ehiefly of timbercul land, but interapersed witu prairics, and well fitted for settlement and farming operations, may be estimated to cover little ahort of 500,000 square miles. Beyond those two avnilabla regions of land, adapted, by soil and climate, for the growth of wheat and other grains, and the rearing of stock, there is a further belt of land, which, though lying in a colder zone, is timbered, elothed with good natural grasses, and as fit for the growth of barley and oats as are many of the less genial regions of Northern Europe which support a coosiderable agricultural population. This northern belt of timbered land is estimated at little less than 930,000 square miles. All this, as well as mueb more still uncleared within the various provinees, has to be aettled and brought under cultivation ; aod out of the grcat prairie and foreat lands of the north-west hare yet to bo foshioned the future provinecs of the Dominion of Canada.

Population.-The population of the whole Dominion in 1871, exelusive of Indians bejond the limits of the provinees, was $3,485,761$, but to this has sinco becn added the provinces of British Columbia, Manitoba, and Prince Edward Island; therety increasing the population to nearly $4,000,000$. To this a large addition bas since been mude, both by natural increase and by immigration. Tho entire population of Canada in 1875 was estimated to amonnt to $4,600,000$, exclusive of Indians, estimnted at 85,000 .

Indians.-In the older provinces of Canada the Indians bave long since been gathered togethicr into settlements, under the care of superintendents aid other officers of tho Indian department, and in some cases, with industrial achools and other organizations for accelerating their pros.
gress to an equality in all respects with the white settlers. Missions under the care of different Christian churches have also undertaken the work oi religious training, and the supervision of their schools. Of the bands of Indians thus settled on their own reserves, accurate statistics are furnished in the abnual reports of the Indian Department. But only a vague estimate can be formed of the actual numbers even of the Crees, Blackfect, Sioux, and other wild tribes which wander in the vicinity of the Red River settlements, or are brought into trading relations with the factors of the Hudson's Bay Company. The followiag estimate of the Indian tribes throughout the Dominior of Canada is besed on the most recent information ; and probably farms a fair approximation to their actual numbers:-

tario	14,184
Quebec.	10,843
Nova Scotia	1,765
New Brunswick.	.. 1,380
Prince Edward Island	323
Manitoba and N.W. Territories	23,800
British Columbia............	.28,500
Rupert's Land	4,500
	85,301

Nationalities.-The nationalities of the population of Canoda are in some respects peculiar. The first settlement mado by Europeans, as has been alroady noted, was by the French navigator Jaeques Quartier, or as he is now nniversally styled, Cartier, in 1535. He explored the coasts of Newfoundland, previously discovered by Cabot, and those of Nova Scotia and part of the Gulf of St Lawrence, and took possession of them in the name of Francis I. For two genturies and a quarter thereafter Acadie and Cansda were provinces of France; and wben, in 1759, they passed to English rule, a French popalation of 65,000 souls changed their allegiance. Everything was then done, consistent with British honour, to make the change as easy as possible. They were oecured in the undisturbed possession of their lands, and in the free exercise of their religion. All ecelesiastical property was respected, and the rights of the church so effectually guarded, that the only remnant of a state church in the Dominion is the Roman Catholic church in the province of Quebee, with its great wealth, its control of education, and its right to lery tithes and other church dues from its adberents. The French laws in like manner remained intact; except in so far as the new subjects of England welcomed the substitution of its eriminal law, and trial by jury, for the arbitrary rule of intendants and otber representatives of an absolute monarehy. By such means the language and customs of the Freach population of Canada have been perpetuated, and continue to exercise a marked influence on the character of the country as a whole, though the results of confederation are already tending to diminish this, and to limit the French element to the old province of Quebec. The Canadian population of Frencis descent now numbers $1,082,940$; and in the fresh stimulus given in recent years to immigration, strong inducoments have been beld out to the expatriated inhabitants of the former French provinces of Alsace and Lorraine, to seek a hnme among the French Canadians of Quebec.

The other nationalities of the Dominion include in the returns of the last census 64,447 natives of the United States in the four provinces of Ontario, Quebec, New Brunswiek, and Nora Scotia, who may be assumed to comprise Immigrants of English, Scottish, and Irish descent, with an undetermined foreigu element. Besides those the Irish population of Canada now amounts to about 850,000 , the English to upwards of 700,000 , the Scotch to 550,000 , the Germans and Dutch to upwards of 230,00), the mixed race of Afrioan descent to nearly 22,000 ; the. Welsb to 7800 ; Swisc, 2962; Norwegians, Swedes, Danes, and

Icelanders, 7000; Italians apwards of i000; and Spaniards, 900. The abrupt emigration of the Icelanders from their remote Arctic home, consequent on recent volcanic disturbances, along with other causes, has led a number of them to seek a home in Canada. The Menoonites, a Russian sect holding opinions closely allied to the Quakers in reference to bearing arms, have left their bomes in large bands, and many of them sre settling in Manitoba, and other parts of Canada. Added to all those, bave to be taken into account the miscellaneous elements of the new population of British Columbia, -Greek, Mexican, Spanish, French, German, Chinese, and Japanese ; in addition to which the native Indian popalation constitutes an important element. The mixture of Indian and White blood has been considerable in the older provinces, and cannot fail to affect largely the population of Manitoba and the North West. Nevercheless in Cansda, as in the United States, British race and .Britisb institutions alike predominste, and give a tone and character to the people, the influence of which increases after a few generations, as the foreign element is gradually absorbed into the prevailing stock.

The, peculiar geographical position of Canada, in immediate proximity to the United States, places it in very different circumstances from Australia, New Zealand, and other British colonies, in reference to immigration. With thousands annually sailing to New York and other United States ports, yet destined for Canada, and many more selecting the ronte by Liverpool and Quebec to the Western States, it is only by the definite returns of the decennial census that the actual results of immigration can be uetermined. The following tabular statements compiled from the official reports of the Minster ot Agriculture for the Dominion, to whose department the chsrge of immigration is assigned, and from the returns of emigrant agents and other soarces, will suffice to convey some accurate ides of the rapid increase of the population from this source. The first table shows, in column I., the total number of emigrants from Europe who landed in the St Lawrence during a period of eight consecutive years, from 1866 to 1873. Column II. shows the number of immigrants entering Canada at all points, in so far as they came under the cognizance of immigrant agents, or other Government officials, who were reported to have settled in the Dominion. Column III. shows the numbers who gave a preference to the route by the St Larrence, and, arriving at Canadian ports, proceeded from thence direct to the United States. The increase in the number of immigrant settlers in Camada within the abore period, it will be seen has been fire-fold. In reference to the third column there is a eompensating element in the fact that, not only many of the better class of emigrants who seek a home in Canada choose the route by New York, and so enter the provinces overland, but the Minister of Agricultore draws epecial atiention to a feature in the returns, showing a direct emigration from the United States to Canada. This is liable to be affected largely by the conditions of trade and industrial progress in either country. In 1873 the number of immigrants from the United Statea to Canada amounted to 8971 persons.

Year.	1.	II.	III.
1868	23,648	10,091	41,704
1867	30,757	14,666	47,212
1868	34,300	12,765	58,683
1869	43,114	18.630	57,202
1870	44,475	24706	44,318
1871	37,020	27,777	37,949
1872	34,743	36,578	52,608
1873	30,901	50,056	49,059
Total	289,953	195,259	383,720

The character of the above Canadian immigration as an addition to the industrial population of the Dominion may be partially tested by the following classification of the occupations or trades of the heads of families and other adult males who landed at Quebec during the last-named four years.

Occupations.	18:0.	$18: 1$	1872.	1873.
Farmers....................	4,144	2,989	2,336	1.470
Labourers	12,248	11,465	6,189	6,202
Mechanics..........	1,717	1,674	6,809	7,662
Clerks and Traders.......	146	89	79	62
Professional Men	10	4	14	7
Tot	18,265	16,2:1	15,427	15,403

-In the year 1872 the total number of emigrants who sailed from British ports, both to the Colonies and to foreign states, amounted to 295,213 ; but 26 per cent. of the whole were foreigners, availing themselves of the route through Great Britain to their Enal destinations

Climate.-The variations of the Canadian climate are less than in many countries of much smaller extent. But throughcut nearly its whole area, Canada is characterized by greater heat in summer and a much lower temperature in winter than in corresponding European latitudes Its general character is level, thoagh it includes the Rocky Mountains, with the picturesque and diversificd region lying between them and the Pacific, add the Laurentian range, continued northward to the Arctic Ocean.

Begides the great lakes which find their outlet through the St Lawrence to the sea, there are thousands of lakes throughout Canada, mauy of them of large dimensions. Foremost among those is Lake Winnipeg. The two great branches of the Saskatchewan take their rise in the Rocky Mountains, and after uniting their streams, flow into this lake, which also receives the Assiniboin, the Red River, and other smaller rivers. The St Lawrence and the great lakes, of which it is the outlet, are estimated to contain 12,000 cubic miles of water; and the Niagara Falls, which constitute the main feature in the deseent from Lake Erie to Laku Ontario, are on a scale commensurate with this vast fresh water system of rivers and lakes. The River Niagara issues from Lake Erie in a broad, tranquil stream, varying in breadth from one to three miles, and centinuing through a course of about 15 miles, with a fall of little more than a foot per milc. But on reaching thr rapids, the descent is suddenly increased to about 80 feel in less than a mile, before the water reach the grand leap of about 165 feet perpendicular over the great falls. The Horse-Shoe Fall, on the Canadian side is upwards of a third of a mile broad. Between this and tha American Fall Goat taland intervenes; and then another volume of water, about 600 feet wide, plunges with like abruptness into the abyss below. The great breadth as compared with the beight of the falls tends in some degree to mislead the eye in the first impression produced; and it is only by slow degreas that the mind is brought to an adequate estimate of the gradieur of the scene. Sir Cbarles Lyell thus describes the effect produced on his mind, at a first glance, and after prolonged study of all their remarkable features:-"We first came in sight of the Falls of Niagara when they were about three miles distant. The sun was shining full upon them-no building in riew-nothing but the green wood, the falling waters, and the white foam. At that monent they appeared to me more beautiful than I expected, and less grand; but after several days, when I bad enjoyed a nearer view of the two cataracts, had listened to their thisdering sound, and gazed on them for huars from above and below, and had watched the river foaming over the
rapids, then plunging beadlong into the dark pool, acd whan I bad explored the delightful ialand which divides tha falls, where the solitude of the ancient forest is still unbroken, I at last learned by degrees to comprebend the wonders of the acene, and to feel its full magnificence." The river, passes over the centra of the Horse-Shoe Fall in a solid column of water of 20 feet; and it is estimated that fifteen bundred milliong of cubic feet pass over the falls every minute. This great water system of rivers and lakes affects the climate of the older proviuces of Canada; and the other large rivers, with the pumerous bodies of fresh water distributed over so large a portion of the whola aurface of the Dominion, help to preserve an equable climate: and affiod many facilities for local transport.

Reckonirg Lake Erie and Lako Ontario with the Niagara River as parts of the St Lawrence, the river system trends in a N.E. direction throughout the whole course from Point Pelee, which is situated in 42° lat., to Tadousac, the earliest French trading port, at the mouth of the Saguenay, in 48° E' lat. From the the coast still continues to trend northward till it merges in the inhospitable shores of, Labrador, in a latitude which is still as far south as London at the Strait of Belle Isle. The degrees of latitune indeed, are a very partial guide to the charaster of the Canadinn climate as compared with that of the British Isles; and any statement of the miean tempuratures of the two is deceptive. The severity of the winter, os tested by the thermometer, leads to a very esaggerated impression of Canadian experiences. Owing to the dry, clear, bracing atmosphere which.generally prerails, the sense of disconfort produced by the raw easterly winds and damp fogs of an English spring suggegts an idea of cold, such as is rarely thought of in a Canadian winter. Thera are indeed, every winter, a $\mathrm{f} \in \mathrm{w}$ days of intense cold, as in the summer there are briel periods of equally intense heat, when the thermometes ascends, or descends, through a scale unknown in the more equable English climate. But throughout the greater part of the minter season in Canada the sky is bright and clear, ond the weather thoroughly enjoyable. Open slcighs are in use by all. Sleighing parties of pleasure ara arranged for the period of full mood, that they may return bome over the snow, after an evening's enjoyment at some appointed rendezvous; skating, snow-shoeing, and other outdoor esercises are in universal fasour, and the suand of the sleigh-bells in the open thoroughfares adds to the exhilarating sense produced by the pure bracing atmosplere. Snow accorciingly brings witbi it no auch ideas of discomfort as are associated with it in England; while by the farmer it is bailed as altogether beneficial. In the province of Quebec the stiow begins to lie early in November; in Ontario it ig fully a month later; and it differs correspondingly at various localities throughout the Dominion. But everywhere the appcarance of the snow is baled as ceasonable and beneficial. It protects the wheat sown in autumn from the frost, affords facilities to the farmer for bringing his produce to market, aids the lumberer in collecting the fruits of his labour in the forest at suitablo points for transport by water with the spring freshets, and so contributes alike to business and pleasure.
The following tables, carefully prepared from official' reports transmitted to Professor Kingston, director of the Magnetic Observatory, Toronto, from the chief stations throughout the Dominion, supply reliable data for determining the temperature and climatic changes at the most important points throughout Canada and Newfoundland. In the column of first frost at Montreal, as abown in the last of the tables, the dates for the years 1872, 1873. and 1874 incicate the first iall of the thermometer to 32°, while the earlier dates mark the first hoar frost of the antumn.

Mean Temperature (in degrees Fahr.) for each Month and for the Year in the several Prounces, and for certain Statzons in the Dominion of Canada.

	Jan	Feb.	March	April	May.	Junc	July	1 Aug.	Sept.	Oct.	No	Dec.	Year.
Ontario	$19 \cdot 3$	$20^{\circ} 2$	$26^{\circ} 7$	420	614	$65^{\circ} 6$	69.8	681	$6 \hat{8} 6$	$47 \cdot 4$	330	205	43.8
Quebec	$13 \cdot 5$	159	25.3	41.8	$54 \cdot 9$	-i6.0	$70 \cdot 2$	$68 \cdot 1$	58.7	47.0	$33 \cdot 1$	171	42.6
New Branswick	$16 \cdot 1$	181	26.4	$37 \cdot 6$	$46 \cdot 4$	57.7	62.8	61.4	54.2	451	$32 \cdot 3$	19.8	39.9
Nova Scotia ...	223	$21 \cdot 2$	267	35.9	446	$55^{6} 6$	$63 \cdot 3$	82.9	56.4	48.2	$36 \cdot 5$	25.5	41.7
Prince Edward Isand	$20 \cdot 5$	147	276	$33 \cdot 1$	$46 \cdot 2$	54.0	$64 \cdot 3$	62.7	57.2	49.4	32.7	$22 \cdot 9$	$40 \cdot 5$
Manitoba	$2 \cdot 9$	$3 \cdot 10$	$9 \cdot 1)$	$30 \cdot 2$	51.2	63.6	$65 \cdot 9$	64.8	61.3	40.0	14.6	0.6	$32 \cdot 6$
British Columbia...........	228	$28 \cdot 8$	40.8	61.9	59.9	64.5	72.2	$70 \cdot 7$	61.4	$49 \cdot 3$	30.0	24.5	48.1
Newfoundland	25.6	227	$28 \cdot 7$	$33 \cdot 3$	43.0	50.7	60.3	60.1	$55 \cdot 8$	496	38.0	28.9	41.4
Toronto	22.9	229	29.3	41.0	517	617	67.4	$66 \cdot 2$	58.1	$45 \cdot 9$	$36 \cdot 2$	$25 \cdot 7$	44.1
Montreal	16.8	186	$26 \cdot 9$	43.5	57.2	66.4	72.2	69.8	60.8	47.5	83.6	18.9	44.3
St John, New Brunswick..	18.4	21.4	$27 \cdot 8$	$38 \cdot 2$	46.7	54.7	597	59.5	54.5	45.6	35.7	22.8	$40 \cdot 3$
Halifax	$22 \cdot 9$	$23 \cdot 7$	28.1	381	$4: 4$	59.7	$63 \cdot 5$	$63 \cdot 3$	67.4	483	$37 \cdot 8$	$25 \cdot 8$	$43 \cdot 1$

Averages of the Highest Temperatures in each Month ond Year for various places in the Dominion of Canada from three or more years.

	J^r.	Feb.	Marct.	Aprll.	May	Jane.	Juy.	Aug	Sept.	Ocı	Nov	Dec.	Year.
Ontarto. Toronto	$43^{\circ} \cdot 9$	44.	$51^{\circ} 9$	67°	$7{ }^{\circ} \mathrm{S}$	86°	89	$86^{\circ} 0$	812	68.6	$5{ }^{\text {¢ }} \cdot 9$		- 2
Goderich	$45 \cdot 1$	46.2	52.8	72.8	78.5	$86^{\circ} 6$	870	86.0 86.2	81.2	728	56.9 572	47.3 44.6	$91 \cdot 1$ $89 \cdot 1$
Windsor	48.9	63.5	$58 \cdot 5$	78.6	83.6	92.0	93.5	92.6	891	78.6	61.8	48.4	32.1
Woodstock	$47 \cdot 3$	61.2	$52 \cdot 0$	77.5	$85 \cdot 5$	89.6	89.6	90.9	$85 \cdot 6$	731	50.9	41 2	92 を
Barrie	467	$47 \cdot 8$	$65 \cdot 7$	73.6	$81 \cdot 3$	871	91.6	88.5	892	78.4	$63 \cdot 6$	$45 \cdot 4$	93.6
Peterborough	43.3	458	$50 \cdot 5$	7:3	$83 \cdot 2$	$90 \cdot 5$	$92 \cdot 2$	91.3	86.8	736	56.8	43.9	94.2
Pembroko	409	44.9	55.8	$68 \cdot 9$	$87 \cdot 4$	93.9	93.8	88.7	$84 \cdot 2$	$75 \cdot 4$	$57 \cdot 3$	40.7	95.$]$
Quenec.													
Montreal	41.7	43.3	52.8	73.3	871	$89 \cdot 9$	92.3	90.1	84.1	79.9	58.8	446	$96 \cdot 1$
Quebec	$38 \cdot 2$	$37 \cdot 6$	48.7	61.4	819	90.2	896	82.5	$78 \cdot 9$	69.2	46.4	38.8	906
New Brunswice.													
St John	40.8	41.0	45.8	56.8	67.2	75.4	78.6	76.2	70.6	$60 \cdot 6$	54-2	446	79.0
Bess River	42.0	$39 \cdot 9$	$48 \cdot 0$	56.1	77.8	88.0	871	$85 \cdot 1$	78.5	69.4	56.9	413	88.6
Nova Scotia.											-		
Hzlifax	47.4	$45 \cdot 7$	$52 \cdot 1$	$63 \cdot 8$	78.9	83.2	86.1	86.4	81.0	72.4	$59 \cdot 1$	48.3	83.3
Glace Bay. C. B.	48.	$42 \cdot 2$	$47 \cdot 2$	57.0	$70 \cdot 4$	80.0	85.9	82.9	76.2	69.4	$55 \cdot 3$	48.2	86.7
Sydney	48.7	$43 \cdot 3$	49.2	57.2	$75 \cdot 4$	79.5	63.4	84.0	75.0	$69 \cdot 2$	66.9	48.1	856
Prinoe Edward laland. Charlottotown	48.8	$41 \cdot 8$	49°)	52.6	74.7	78.8	87.0	82.3	73.8	68.6	$65^{\circ} 0$	45.0	87.0
Mavitoba. Winuipeg	$27 \cdot 5$	$36 \cdot 6$	38.6	$64 \cdot 3$	82.8	91.6	$95 \cdot 2$	$92 \cdot 3$	84'8	72.4	$43 \cdot 4$	$30 \cdot 0$	$96 \cdot 1$
Britisif Columbia. Spence's Bridge, Thompsnn River \qquad	47.7	$61 \cdot 3$	677	$80 \cdot 7$	$87 \cdot 4$	87.7	96.7	937	873	77.7	577	45•3	96•7

Averages of the Lowost Temperature in each Month and Year for various places in the Dominion of Canada from three or more years.

	Jan.		Narch.	April.	May.	June.	Juty.	Aug.	Sept.	Oct.	Nor.	Dec.	Year.
Ontario. Toronto			24	19.2	$30^{\circ} 6$	$38 \cdot 3$	46.4	$4 \hat{4} \cdot 4$	343	24.9			
Goderich	13	$-1 \cdot 1$	$2 \cdot 1$	21.6	28.4	$32 \cdot 1$	$46 \cdot 4$	44^{-5}	$36 \cdot 3$	$28 \cdot 8$	13.9	- $2 \cdot 9$	- 8.8
Windsor	58	- $7 \cdot 9$	15	23.0	33.4	44.9	48.8	$48 \cdot 3$	$35 \cdot 4$	$25 \cdot 7$	1) 9	- 7.4	- 14.9
Woodstock	76	-130	$5 \cdot 2$	222	28.5	36.0	$42 \cdot 2$	4.]	29.6	$20 \cdot 2$		- $15 \cdot 5$	- 18.2
Barne ...	-174	-137	-6.1	18.0	27.0	$37 \cdot 6$	$46 \cdot 6$	42.3	$34 \cdot 1$	$25 \cdot 3$	10.8	- 19.9	- 26.5
Petorborough	- 20 :	- 155	-111	$11^{1 / 3}$	$27 \cdot 1$	36.7	43.2	36.7	28.2	26.3	2.0	-22.8	- 25.9
Pembroke	- 327	-26.5	-23.2	11.0	$26 \cdot 8$	35.1	44.4	$3: 8$	30.0	20.3		-26.3	-87-3
Qufbec. Montreal	- 78.2		- 9.5	27			53.4		41.2	$28 \cdot 9$		-12.	
Quebec	- 20.3	-178	-8.9 -8	17.5	$30 \cdot 9$	$42 \cdot 2$	46.6	45.5	36.4	25.6	$\begin{array}{r}-3.4 \\ \hline 4\end{array}$	-16.3	-23.5
Neiv Brunswice.													
St John...	- 11.0	6.4	- 1.2	$20 \cdot 2$	31.8	43.0	49.0	$48 \cdot 4$	41.0	25.0	12.8	- 5.8	-30.6
Bass River .	-20.2	- 15.2	- 3.4	$17 \cdot 4$	$25 \cdot 4$	$40 \cdot 0$	$47 \cdot 8$	41.6	33.7	20.0	7.0	-12.5	-22.6
Nova Scotia.													
Halifax	- 6.2	- $3 \cdot 0$	- 0.7	. 19.8	$25 \cdot 8$	87.6	50.2	$44 \cdot 3$	36.5	$25 \cdot 7$	16.7		-8.8
Glace Bay	- 3.6	-4.7	0.1	16.5	24.8	33.6	40.2	$44 \cdot 2$	$37 \cdot 0$	25.8	19.6	-6.2	- 7.5
Sydney	- 6.3	- $5 \cdot 3$	-4.3	14.7	25.0	32.3	$38 \cdot 3$	41.4	$33 \cdot 6$	24.7	$19 \cdot 7$		- 9.8
Prince Edwatd Island. Charlottetown	-16.0	$-15 \cdot 7$	- 20	147	277	36.6	44.9	45]	39.4	$32 \cdot 2$	13.7	- 8	-16.5
Maritoba. Winnipeg			- 2			38		40	20	$8 \cdot 1$	8	$-34 \cdot 2$	$\cdot 8$
Britisif Columbif													
Spence's Bridge.......	- 7 -7\|	1-5.3	16.5	$81 \cdot 7$	$89 \cdot 4$	47.0	83.0	19.7	36.3	27.0	$2 \cdot 8$	2.7	-18.7

Monthly and Annual Rainfall in Inches for various places in the Dominion of Canada from threc or more Years

	Jan.	Feb.	March.	April.	3ay.	Jane.	Joly.	Ang.	Sept.	Oct.	Nov.	Dec.	Year.
Toronto	1-23	$0 \cdot 89$	1.69	$2 \cdot 44$	3.25	2.93	3.25	3.02	$3 \cdot 72$	2.39	2.98	$1 \cdot 66$	29.42
Goderi:h	0.66	0.55	$1 \cdot 39$	181	$3 \cdot 38$	2.39	$2 \cdot 94$	$2 \cdot 78$	$3 \cdot 28$	$2 \cdot 46$	1.44	0.84	23.92
Wiodsor	1.19	$1 \cdot 14$	1.56	187	3.63	$3 \cdot 15$	$2 \cdot 41$	$2 \cdot 14$	1.69	$1 \cdot 75$	$2 \cdot 42$	0.82	23.78
Woodstock	0.59	0.58	$1 \cdot 31$	1.60	$3 \cdot 04$	$2 \cdot 45$	2.95	$4 \cdot 41$	$2 \cdot 93$	2.64	0.95	0.82	24.28
Barrie	0.01	0.18	$1 \cdot 12$	1.66	$2 \cdot 84$	2:37	3.01	$2 \cdot 25$	$2 \cdot 84$	$2 \cdot 35$	1-42	0.63	20.71
Peterborough	0.64	0.36	1.01	1.89	1.96	$2 \cdot 03$	$2 \cdot 45$	260	$3 \cdot 22$	2.93	1.81	0.65	20.55
Pembroke .	0.15	0.15	0.56	$1 \cdot 33$	3.06	2.23	$2 \cdot 51$	$2 \cdot 36$	3.21	$2 \cdot 58$	1.09	$0 \cdot 21$	19.49
Mootreal	0.64	0.42	$1 \cdot 41$	$1 \cdot 30$	$2 \cdot 26$	3.01	2.26	$3 \cdot 62$	3.9	3.75	$2 \cdot 65$	0.85	27.26
Quebec	0.25	0.00	$0 \cdot 42$	1.17	2.52	$1 \cdot 11$	$2 \cdot 52$	4.27	$2 \cdot 81$	2.89	0.95	$0 \cdot 00$	19-26
St John	$2 \cdot 13$	2.86	2.23	$3 \cdot 14$	4.51	3.00	$3 \cdot 45$	3.89	4.38	4.68	$5 \cdot 33$	267	$33 \cdot 27$
Bass River	$1 \cdot 30$	0.61	0.02	$2 \cdot 13$	$2 \cdot 83$	3.30	2.53	$3 \cdot 77$	$2 \cdot 58$	4.88	378	$1 \cdot 15$	29.78
Halifax	$3 \cdot 66$	3.39	$2 \cdot 91$	$3 \cdot 10$	$4 \cdot 17$	3.04	$2 \cdot 37$	3.61	3.69	$5 \cdot 02$	4.68	8- 44	43.08
Glace Bay, C. B.	$4 \cdot 29$	$4 \cdot 35$	$3 \cdot 96$	$4 \cdot 22$	8-49	$4 \cdot 50$	$3 \cdot 95$	$4 \cdot 27$	537	$6 \cdot 44$	5.69	4.96	55.49
Sydney	$3 \cdot 49$	$3 \cdot 16$	$2 \cdot 20$	4.03	3-46	3.16	$3 \cdot 42$	5.07	548	$5 \cdot 4$	6.83	4.03	$49 \cdot 42$
Cherlottetown	$2 \cdot 27$	0.68	1-12	0.97	$2 \cdot 44$	$3 \cdot 79$	$2 \cdot 92$	3.48	394	4.62	$2 \cdot 46$	1.06	29.75
Winaipeg	0.00	0.00	0.33	0.80	2.72	$3 \cdot 81$	$2 \cdot 75$	2.12	3.73	0.54	0.00	0.00	16.83
Spence's Bridge	0.08	0.19	$0-00$	0.21	0.78	0.81	025	0.47	0.32	$0 \cdot 20$	0.37	$0 \cdot 20$	3.88

Average Fall of Snow in the several Pronnces of the Dominion of Canada, with the number of Days' Snow, and number of Days' Rain.

	Depth of Snow fa inches									$\begin{gathered} \text { Total } \\ \text { Snow } \\ \text { no } \\ \text { Seasoa. } \end{gathered}$	$\begin{aligned} & \text { No. of } \\ & \text { Daya } \\ & \text { Snow. } \end{aligned}$	$\begin{aligned} & \text { No. of } \\ & \text { Days } \\ & \text { Ralo. } \end{aligned}$
	September.	October.	November.	December.	January.	February.	March.	April.	May.			
Ontario	...	$2 \cdot 2$	13.5	$20 \cdot 1$	$25 \cdot 1$	14.9	19.9	$2 \cdot 2$	S	959	58	89
Quebec	...	2.0	13.9	$23 \cdot 2$	31.8	16.4	17.5	8.8	1.4	115.0	60	94
New Brunswick	...	$1 \cdot 3$	10.1	31.9	19.2	19.6	15.3	$10 \cdot 2$	$0 \cdot 8$	108.4	58	107
Nova Scotia	0.8	4.0	$21 \cdot 9$	17.6	$18 \cdot 9$	11.8	13.3	$1 \cdot 1$	92.4	62	117
Prince Edward Island			125	26.9	$15 \cdot 8$	$22 \cdot 1$	17.6	$17 \cdot 2$	0.5	$112 \cdot 4$	78	129
Manitoba	3.1	48	11.6	$8 \cdot 9$	7.4	13.4	9.7	$3 \cdot 6$	0.0	62.5	59	62
British Columbia			6.0	8.7	10.0	$5 \cdot 5$	$3 \cdot 3$	S	$0 \cdot 0$	33.5	27	68

Dates of Certain Periodic Events at Toronto and 3 Ifntreal.

Year.	Toaonto				Montasal.			
	Flrit Soow.	Firot Frost.	Last Snow.	Iec ieft Bay.	First Snow.	Firse Frost.	isat Snow.	left hiseor
1849	October 20	September	April 27	March 29	Novcmber 27	October	April 18	April 7
1850	November 10	"	(1) 20	April 3	O, 17	14	" 24	9
1851	October 25	"	May 8	March 24	October 25	$\because 2$	$\cdots{ }^{-1}$	- 9
1852	November 11	$\because 13$,1 20	April 17	17	Scptember 17		, 19
1853	October 25	" 12	10	March 31	24	12	", 14	24
1854	18	", 19	April 29	April 8	15	$\cdots 11$	30	25
1855	12	28	May 8	" 16	vir 24	August ${ }^{9} 9$	3'9 $\quad 11$	
1856	30	$\because \quad 22$	30		Norember 1		May 31	-124
1857	". 28	". 21	10	March 30	October 20	September 7	April 27	
1858	8	"1 18	April 25		November 4	August 25		
1859	, $\quad 19$	6	Juac 4	June 27	October 20	October 7	צ19 $\quad 23$	
1860	September 25	21	April 25	March 15	September 29	September 3	May 20	
1861	October 24	22	May 6	29	October 23	5	April 17	24
1862	25	Augusi 30	April 23	Fcb. 28	November 10	August 24	Mlay, 7	". 28
1863	November	-. 28	May 5		11	October 24		
1864	October 8	September 17	April 13	March 2	October 8	September 26	April 18	$\cdots \quad 18$
1865	26			April		October 21	$\cdots \quad 20$	
1866	31	$\cdots \quad 15$	- 26	") 2		September 16	May 3	., ${ }^{4} 19$
1867	Novemoer 4	" 11	May 2	March 27	Norcmber 5	23		, 22
$1368{ }^{\circ}$	October 16	., 17	April, 23	April	Oclober 17	October 24	April 23	$\therefore 17$
1869	18	August 31	May $]$		Scptemier 27	September 28	May 3	23
1870	Noyember 10	.1 27	April 6		Uctober 29	... 6	April 6	
1871	Octaber 17	September 18	" 12	March 13	13	- 8	Mlarch 27	, 68
1872	15		.' 23	April 9	13	October 12	April 24	
1873	20	15	, . 25	${ }^{2}$	29	29	Mray lt	
1874	13	30	26	18	31	13		

As will be seen from the previous tables, January and February are the coldest months of the gear. Throughout the whole of Canada steady sleighing is reckoned upon during those months. In Quebec and in Manitoba a longer period of sleighing can be relied upon. In Nora Scotia, New Brunswick, and Prince Edward Island, and also on the Pacific coasts, the temperature is modified both in summer and winter according to vicinity to the sea. Abrupt changes of temperature occur both in summer and in winter. A period of great cold early in the month of Jonuary is
so frequently followed by a complete change that its periodicity is reckoned upon under the name of the January thaw Snow finally disappears in Quebec about the middle of April. In Ontario it is generally gone a month earlier. 'The table of average fall of enow given above shows its prevaleuce at various central points in each of the provinces of the Dominion, from October to the end of April.

Ploughing usually commences in Octario about the middle of April, and in favourable seasons is prolonged into the mouth of Decenher, - But, buvoghout the Dumi-
laion, atretehing as it does across the continent, and embracing an area nearly equal in size to Europe, the period varies with the locality, and is affected by the vicinity of the great lakes or other local influences. Cattle are turned out to graze in April, feeding in part upon the tender shoots of the spring forest growth, until the appearance of the young pasture with the disappearance of the snow. Before the end of July barvest begins ; and with the rapidity of growth under the warm Canadian skies, the hay, grain, and root-crops follow in swift succession; the cleared land is brought agaiu under the plough, and the autamn sowing of wheat is carried on till another abrupt change brings the eeason to a close. In this way the Canadian climate is marked by the striking contrast of two seasops-summer and winter,-bringing with them alternations of fruitful labour and of repase intermingled with profitable industry and pleasure. This characteristic prevails with slight variations throughont the greater part of the Dominian. Manitoba presents in this respect no morked diversity from Quebec or Ontario. Spring opens nearly st the same time from Red River to the Athabasca. Early in April the alders and willows of the Saskatebowan country are in bloom; the prairie adamone covers the southern exposures to the very verge of the retreating snow. May there brings with it more of the true summer beat than in the provinces on the St Lawrence. But the nights are cool, and throughnut the period of greatest heats, the cool night breezes beget o welcome and refreshing change, accompanied with heavy dews. This protects the cereals from the effects of drought even in the driest sessons, and produces a rieh growth of prairie grass, making the elimate peculiarly favourable for the stack farmer. The Rev. Professor Bryce, of Winnipeg College, thus writes: "The juneture of the seasans is not very notiecable. Spring glides insensibly inta summer, summer into fine sutumn weather, which, during the equinos, breake up in a seriss of heavy gales of wind accompanied by rain and snow. These are followed by that divine aftermath, the Indian summer, which attains its true glory only in the north-west. The haziness and dreamy fervour of this mysterious season have often been attributed to the prairie fires, which rage over half a continent in the fall, and evoke an enormous amount of heat and smoke." His own observations ineline him to accept this explanation. Winter begins with crisp clear weather, which grows increasingly cold and cloudy. Tho wind wheels to the north-east, and with it comes the snow, and the long stesdy winter of the Canadian year.

The cheracter of the Manitoba winter is thus described by the same intelligent observer:- "The winters of the north-west, upan the whole, are agreeable, and singularly steady. The moccasin is dry and comfortable throughout, and no thaw. strictly speaking, takes place till spring, no matter how mild the weather may be. The snow, though shallow, wears well, and differs greatly from castern snow. Its thake is dry and hard, and its gritty consistence resembles white slippery sand more than anything else. Generally speaking, the farther wost the oballower the snow, and the rulo obtains even into the heart of the Rocky Mountains. In south-western Ontario the winter is milder, no doubt, than at Red River; but the soil of the north-west beats the soil of Ontario out of comparison; and after nll, who would care to exchange the crisp, eparkling, exhilarating winter of Manitobs for the rawness of Esses in south Ontario."

But the frasts of spring and autumn, not those of winter, are what the Canadian farmer learns to regard with any dread; and this is still more true in reference to the Cauadian fruitgrower. But in this respect the north-west olimate is exceptional in its character. Frosts are common
there in the nighta of September; but the fact has been noted by many independent observers, that frost which would injure grain in many other countries, sppesrs to be innacuous on the Red River and the Saskatchewan. Various reasons have been assigned - such as the dryness of the atmosphere, the heat-retaining character of the soil, and the sudden change of temperature that enables vigorous plants to bear an atmosphere at 20° better than at 35° when the latent heat of the earth and the plants has been given off. But whatever, be the true cause the fact appears tc be well attested. The chief lesson which experience has taught the farmer is to sow his wheat early in the spring, so that the ear shall he past the milky stago before the frast cames.

The cl:mate and other conditions to the west of the Rocky Mauntains are necessarily marked by much greater lacal varations owing to the braken character of the eountry, with its ravines and deep narrow valleys. Stock raising has hitherto largely occupied the attention of the farmers on the Pacific slope, where the farms are called "ranches," after the fashion of the stock farmers of California and New Mexico. The ground produces bath cercals and vegetables where irrigation is resorted to, as in the plains and valleys of those states. But the rich natural grass which abo nde furnishes nearly all that is needed for the profitable raising of stock; and until a large female immigration restores in some adequate degree the natural proportion of the sexes, the rough life of the "ranch," with its "corral," or cattle pen, will be preferred to the mare settled industry of the agriculturist.

The capacity of the different provinces for profitable industry, and the character of their native productions, will be found set forth in detail in the separate articles, on each province. It is vain to attempt any detailed aecount of the soil and other local specialties of balf a continent. The Geologieal Survey, carried out under the able direction of the late Sir W. E. Logan and his successor Mr A. R. C. Selwyn, has largely contributed to an accurate knowledge of the agricultural capabilities, as well as the mineral resonress of the country. Vast areas consist chiefly of luam, with is substratum of gravel, overlaid throughout extensive tracts of forest by a rich vegetabla mould, the aceumulation of ages. The prairie lands are not less available; and they are now being surveyed and explored, alike for the requirements of the settler and for economic and scientific results.

The Reports of the Geological Survey of Canada embody in this way a readily accessible guide to the resources of the country, and the suitability of its various distriets and proviaces for settlement. Entire districts of many square miles in extent prove to be composed of elluvial deposits from 30 to 40 feet deep, of soil in places so rich as to bear good crops of wheat for successive years without manure. Others of nearly equal value are found resting on red sandstonc, trap, serpentinc, limestone, and other strata most favourable for agriculture. There are also, as along some of the rivers, for miles in succession, soils too rich for wheat, others of a good sandy loam, suitable to and requiring the usual English rotations. In many parts, on tho other hand, there exist considerable tracts of poor, thin, and stony soils. The Reports of the Geological Survey, in presenting an nccount of the geolagical distribution of the various strata, and their agricultural capabilities, will prove of great value to the immigrant, as well as to others interested in the lands of Canada.

The sail and climate of Canada are such that the country' produces a much greater pariety of grains and fruits than is usually grown in Great Britain or Ireland. Besides wheat, barley, osts, rye, pease, turnips, potatocs, hemp, Gax, hops, and the other ordiany agricultural products of

England, which are all raised in abundance, Canada grows tobacco, rice, maize or Indian corn, and fruits of warmer climes than the British Ishiods. The full and steady beat of the summer matures with supprising rapidity the most valuable productions, while the long period of repose of the Canadian winter is not only amply atoned for by the rapid und lnxuriant vegetation of the summer, bat;-no doubt, contributes to sucb results.
in Fruics and Vegetables.-The fruits of Canada embrace, all that are familiar to the English gardeuer, with others which the summer there is not warm enough to bring to maturity. The finest melons are grown in abundance in the oper. ground. In favourable seasons peaches are plentiful in the Niagara peninsula, and in the south-western portions of Ontario, along the abores of Lake Erie and the Detroit River. The vine is cultivated largely in open gardens. The Isabella, the Delaware, Clinton, and other varieties of grapes attain to perfect size and excellent flavoar in the open air; and the manufactare of native wines is now successfully prosecuted to a considerable extent.

Wild fruits abound in grest variety throughout many Canadian districts. The wild vine (Vitis vulpina) is abundant everywhere, twining its tendrils around the trunks and over the branches of the forest trees, and yielding clasters of small grapes, inviting to cultivation.: Among the other wild fruits may be mentioned plums cherries, raspberries, brambles or blackberries, strawberries, whorleberries, blueberries, gooseberries, black and red currants, juniper berries, cranberries, bickory and bazel nuts, and walnuts. The raspberries ripen in such abundance that euormous quantities are annually preserved and sold both in the Provinces and the United States. The blueberry is also extensively sold; and the wild strawberry furnishos an agreeable dessert in many parts of the castern provinces throughout the latter part of July and August.

Apples and pears are now largely cultivatcd. The island of Montreal has long been famous for its fruits; and the annual produce of the orchards of Ontario is exported to the States and to Europe. Vegetables for tho table are also successfully cultivated in greater varieties than in Eagland, and in such quantities that they sre largely exported. The tomsto flourishes and yields an abundant crop. Caulitower, vegetable marrow, squash, French beans, pease, lettuce, spinach, celery, asparagus, rhubarb, and all the more common vegetables are gronn in abundance in the older provinces. The climate of Manitoba, notwithatanding its exceptionally low temperature from December to March, gives promise of equally satisfactory results. Professor Bryce, after noting such esamples of agricultural produce as that of one old settler who obtained 420 bushels of wheat from 11 acres, and snother who by garden culture produced the enurmons yield of 134 bushels per acre of oats, thus proceeds: "These are given both as proof of the capabilitics of the country, and of the advantage of careful culture. The ordinary table vegetables are surprising in their groxth, and reach a prodigious size. The writer has scen nothing io his previous experience equal. ling the vegetable production of the province; and the late licutenant-governor, Hon. Mr Archibald, after testing the watter in his orn garden, gave the same as bis experience."
The exports of fruit and vegetalles, the growth and produce of the five castern provinces of Canada, for the year 1874, included fruit to the value of $\$ 128,904$, and vegetables to the value of $\$ 332,068$. But π hile this produce of the finer fruits and vegetables for the table shows exports to the value of $\$ 460,972$ in a single year, and thus bears evidence to the rharacter of the soil and climate, it ennveys a very imperfect idea of the actual produce of Canadian orchards. Apples especially are in constant use at the table. Throughout the southera portion of Ontario
thousands of acres are planted with froit-trees," gielding valuaille crops' of the finest quality, and forming an ever increasipg source of wealth to the farmer.

Flowers.-The flora of Canada naturally comes in order along with its agriculture and garden produce; but to dea* with the subject effectually would require a botanical treatise on the whole flora of North America. There is the rich flora of the forest, which disappears with the clearing of the land for parposes of agriculture, and is even replaced in part by an immigrant fiora, brought in with the bay and grass seeds of the European settler. - Again, there is the brilliant flora of the prairies, which, in the full season of summer bloum, are resplendent with blue, scarlet, and yellow petals. The Rocky Moustains, and the rugged slopes of the Pacific province, bave alsó their characteristic flora; while the shallows of the lakes and rivers abound with beautiful aquatic plants, foremost among which is the Nymphoca odorata, the magnificent sweet-scented white water-lily, which converts many a broad lagoon into a beautiful loating garden.

It will better accord with the practical aim of this article, to note that the honey-bee flourishes in all the provinces of Canada; aud, as will be seen by the following table showing the produce of a single year, is cultivated with protitable success in the four older provinces :-

	ntves of becs.	Pounde of Money.
Nova Scotis.............	3,038	21,374
New Brunswick........	5,854	90,004
Quebec	41.295	648,310
Ontario..................	94,604	1,239,612
Total...............	144,791	1,999,300

Forests.-The forests of Canada abound in fine timber, adapted to almost every variety of useful or ornamental work, and furnishing one main elcment of wealth to the proviace. Foremost in point of utility are the white and red pine, anuaally exported in large quantitics to the United States and to Europe. Three-fourths of the square and flatted tumber produced in the Ottawa region in 1873 was of white pine. Cedar, red pine, and railway-ties chiefly made of tamarac, were the others which were produced in largest quantitics. Pine trees of 100 fect high are not uncommon; and instances are not rare of trees greatly exceeding that beight.
The pine prepared for exportation is made into squared timber, measoring from 60 to .70 feet in length; or into waney timber (as it is called when only partially squared or flatted), averaging generally the same lengths though sometimes running to 100 , or eved 120 fect. For the native market the unsquared iog is cut into convenient lengths of from 12 to 15 fect for the saw-mill. The white oak, besides bing made into squared timber not greatly inferior in dimensions to the white pine, serves also largely to supply staves both for the English and the West Indian narkets. The number of pieces of squared and flatted timber produced in the Ottawa district alone in 1873 was 303,268 , and the number of unsquared logs for the same year amounted to , 2,024,980. The elm, beech, ash, maple, walnut, cedar,' birch, and tamarac are all valuable products of the Canadian forests. The black walnut and the birds'cye and curled maples are now io special demand in Englend for cabinct and fancy work. The sugar maple is also of value for the sap which it yields during early spring, from which excellent sugar is made in ever-increasing quantities. The yield of maple sugar produced in the four older provinces in 1871 amounted to $17,276,000 \mathrm{Db}$. A maple grove, as it is called, is accordingly regarded as a valuable feature on a Cunadian farm.

The value of the inmense ferests of Canada is becoming more apparent every year. The year 1874 was one of reduced exports and imports, as compared with nay prevous year since the confederation of the proviaces. Nevertheleas the tutal produce of the forest exported dunng that year, a $1^{m t t}$ from , what was required for use withiu the Pruninion, amumited in value to $\$ 26,817,715$. Of this ember to the value of $\$ 14,928,403$ was exported to Great Britain; the United States recenved to the valne of $89,654,800$; South America to the value of $\$ 920,309$; the British West Indies to the value of 8602,487 ; and the remuinder went to the Spauish, French, and Dutch West Iudics, to France, Portugal, Belgium, Germany, and Ilolland, and to regions and colones beyond the Pacific Australia took to the value of $\$ 60,081$; China, $\$ 38,024$; British and Dutch Guiana, 23,452 ; and Honolulu, the Azores, South Africa, and other countrics, in lesser proportrons. In addition to all this, the forest produce required for bome consumption during the sane period cannot be estimated at a less value than $\$ 3,000,000$.
Canada is becoming cvery year more inportant as an agricultural country. It is experting not only grain but also cattle to the English market, and when the rich praíric lands of the North West are brought under cultivatien its agricultural produce will probably rank foremost in value of that of any riation in the world. But at present the produce of the Canadian forests exceeds in value any other yield of the growth, preduce, or manufacture of the Deminion. The total value of the exports of Canada fer 1874 ameunted to $\$ 73,926,748$; and of this $\$ 26,817,715$ was the preduce of its forests. The importance. of this branch of native industry cannot therefore be overlooked. The Governments of the different provinces grant licences to these engaged in the timber trade to cut timber over vast tracts of land, under the uame of "timber limits." These are in most cases remoto from the settlements; and muich ability and foresight are required to make adequate provision for the large bodies of men, horses, and oxen, to be employed in catting down and preparing the timber for the market, and transperting it to suitable points for rafting. Nuch capital is accordingly embarked in the trade. Hay and other requisites bave to be accumulated at suitable stations. Large gangs of lumberers follow at the proper season. Lumber shantics are constructed capablo of accommedating 'from 25 to 50 men. The structure is made of logs bewn on the spot, and forms a square or oblong edifice surrounded on three sides with the baulks, or sleeping-berths, of the men, while the fourth side is occupied by the dresser or working-table and other requisites of the cook. The centre is open to the sky, and underneath this only opening for light or air a huge wood fire is kept constantly replenished. Over it stretches the crane on which the cook hangs his pet; and thus the fire answers the double purpose of warming ond ventilating the dormitory and cooking the food of its inmates. The shauty-cook is an important member of the little community. Salt perk and beef, pease-soup, wheaten bread and tea, with petatocs, white beans, and omions, are the staple of the lumber-shanty fare. As a rule, intoxicating liquors are absnlutely excluded; aud thus provisioned the fercman selects the proper trees, and lumbering operations prececd throughout the winter. Many thousands of men are busy through the whole winter felling the trees, cottiag then wito logs, or hewing them into squared timber, and transporting them over the snow to saitable poiats for floating them down the rivers to the mills, or directly to the place of export. As the rivers are in many pincea interrapted by falls of a character unfitted to the safe passage of timber over them, large sums are expendod in constructing timber-slides; and on seme of the main chan-
nels, as ou the Ottara, the construction and maintenance of the cliief timber-slides are undertaken by the Goverument.

It is erroncously supposed by many, who are unfamliar with the character of the Canadian forest, that the work of the lumberer results in the clearing of the land. Only the finest full-grown trees are selected for the lumberer's axe, and it is calculated that the same district may be gone over by the lumberer every twelve or fifteen years. Hence if tho destructive fires which from time to time do such immense injury can be guarded against, and the operations of the lumberer are carried on with due care, under proper oversight, there is no reason why the forests of Canada should not remain a permanent source of national wealth.

In the new clearings in the vicinity of lumbering districts, the farmer finds a ready demand for all his produce, and empleyment for himself, bis horses, and bis oxen during the leisure of winter. In this way the lumbering business helps to promote the settlement of new districts, and attracts a population to localities which otherwise might long remain a wilderness. In irec-grant districts, as in the Muskoka region on the Georgian Eay, where ncw settlers are engaged in their first hard struggle to transform the wilderness inte fruitful farms, the earliest savings of the farmer are frequently expended on a yoke of oxen; and thus provided, has services are welcomed by the lumberers, and ho can find proftatle employment throughout the winter. On the breakiag up of the frost in spring the produce of the winter's lumbering is floated down the rivers. There, at suitable points on every available rapid or waterfall, large mills are crected for sawing up the logs, chiefly for the English and American markets. The squared tumber for the foreign markets is pat together in cribs and rua dow the rivers to suitable points, where they aro formed into great rafts, and se floated down the lakes and rivers, as on the River St Lawreace to Quebec. There they are fally broken up, and shipped for their foreign destinations.

Few among the many sights which meet the eye of a voyager on the St Lawrence are mere striking than one of those fioating villages, consisting of ten of 150,000 cubic feet of timber, bound tegether into one great raft, with its shanties, its blazing fires, securely kindled on an carthen hearth, and its bauners streaming in gala fashion, as it glides along. IIuch skill is required in piloting these rafts down the great rivers. 'like cribs floated from the far inland timber limits are collected inte what are called drams; each dram has its own gang or division of the raft's crew, and se many drams form a raft. But at every considerable rapid the raft is again breken up into its componeat parts, and the cribs taken down separately, to bo again put together on reaching smooth water. Thus united, the reft moves onward with the corrent, aided at times by sail and ear, until it is safely secured within tho boums of the great timber merchants in the coves above Quebec.

Animals.- Looking to the native fauna of Canada in an economic point of view, it is abundantly evident that the animal life of its seas nod rivers is one of its great and inexhaustible sources of wealth. Alike on the sea-cosst, in the estuaries, and throughout its great inland lakes and rivers, the nost valuable fish abound; and on the Labrader coasts and those of Newfoundland the seal fisheries are another annual souree of wealth. The sturgeon is caught in Canadian waters, frequently weighing from 80 to 100 it ; the finest salmen abound both in the eastern rivers emptying inte the Gulf of St Lawtence, and in those of British Columbia; lake trout is caught in large quantiiies weighing from 10 to 40 B ; and tho smaller rivers and lakes teem with beautiful speckled treut, frequently waighing from 4 ta $6 \mathbb{D}$. The white fish and maskinonge are
esteemed for their delicacy and richness of fiavour ; and the returns of the fisheries, as given in the separate accounts of the various provinces, show the relative abundance of cod, haddock, mackerel, herring, salmon, balibut, white tish, and other produce of the Canadian fisheries.
1 The returns of the last census show that in 1871 Canada produced 82,844 quirtals of cod and haddock, and 685,272 barrels of fish of various sorts, besides 678,894 gallons of fish oil ; and the total value of the produce of the fisheries exported during the fiseal year 1874 was $\$ 5,292,368$. The quantities here stated are exclusive of the valua of Nerfoundland, which employ large leets, and yield a corresponding return from cod, salioon, herring, mackerel, and other fish, from the oil of the whale and cod, and from seal-skins.
Neither British Columbia nor Manitoba has yet been brought witbin the provisions of the Fisheries Aet; and the total yield of their fisheries can only be approximately estimated. Valuable oyster beds exist on the Pacific coasts of the Dominion. The salmon fishery prumises, if rightly protected and regulated, to prove a valuable braveh of industry. During the year 1873, 195 tons of salmon were canned for export; and 4000 barrels were salted. In the great lakes and rivers of Manitoba the white fish are no less abundant; and they constitute an important source of supply of food in certain seasons of the year throughout the whole North West. The total value of the yield of the fisheries of the Dominion for the year 1874 was estimated at not less than $\$ 1,000,000$.

Canada has been esteemed from. its carliest discovery for its valuable furbearing animals, and was prized chicfly on this account so long as it remained a dependency of France. In 1670 Charles II. granted tho charter to the Hudson's Bay Company, whereby they acquired the exeluaive right of trading with the Indians in the vast regions vaguely recognized as surrounding the great inlet from which the company took its aame. In 1783 a rival company was established under the name of tho North.West Company, which claimed that, as the Royal Charter of their rivals had not been confirmed by Parliament, all British oubjeets were free to engage in the fur trade of the NorthWest The results of the jealousics and bostilities of the two companies played an important part in the early history of Canade, and in the first attempts at settlement on tho Red River, which paved the way for the rise of the new province of Manitoba. After many bitter contentions, and after impeding each other's operations for years, the rival companies at length effected a junction in 1821 ; and the fur trade has since been euccessfully prosecuted uuder their joint action, till the aequisition by Canada of the northwest territory as a necessary step towards the prosecution of the plans of confederation, and the formation of new provinces throughout British America.
There still remains, however, not only a vast extent of unoccupied territory in which for many years to come the bunter aod the trapper will find undisturbed sway, but the regions around the Hudson's Bay, and stretching westward to Alaska and northward to the pole, must ever remain a shelter for far-bearing animals, and a resort of the hunter. All the furs collected for the great fur company are shipped to London :-in part from their factories of York Fort and Mooso River, on the Hudson's Bay, which are visited by a ship from England every year, and in part from Montreal and Columbia River.

- In the vicinity of Canadian elearings deer are still found in aburalance, and venison is plentiful during winter in all the markets of Canada, But wherever the deer abound wolves are sure to follow; and wherever they occur sheep-farming is impossible, and their depredations on the fanner's stock make them on object of special dislike. In
order to encourage their extermination a premium is paid by Government for the head or scalp of each wolf produced to a local magistrate, end it is not uncommon in new dis tricts for the settler to pay his taxes in wolf scalps. By this means they rapidly disappear from the neighbuurhood of the settlements. The bear is another mischicvuns native of the Canadian forests. The winter furs both of the hear and the wolf are prized for robes; and their value furnislies an additional stimulus to the extirpation of both wherever the country is settled. Beyond the settlements, in the remote recesses of the uncleared forest, the beaver,atill abounds. Fozes of diverse kinds (silver, grey, red, end black); racoons, otters, fitches, martins, and minks are po less abundant. The musk rat is to be met with on all the Cazadian rivers; and the red, black and grey squirrels sport everywhere io the forest, and at times even invade the clearings and make free with the farmers' crops. In the more remote regions, now also being invaded by settlers, vast herds of buffilo are met with; and beyond them are the moose, the wapiti, the reindeer, the white Arctic fox and the polar bear, whose hounts are safe from the invasion of the settler, however rapidly the Dominion may extend, and carve out new provinces in the great wilderness of the North-West.

The total value of the furs exported from Canada in I871 was $\$ 1,633,501$. This is distinct from bides and other products of the farm. In the abstract of the ralue of goods, the growth, produce, and manufacture of Canada; exported from the Dominion during the fiscal year 1874 , animals and their products are elassed under one head, showing a total value of $\$ 14,670,169$. This includes a classification of farm and dairy produce along with the products of the chase, the elief jtems of which may be stated as follows, the same being cxclusive of all homo consumption :-

Anlma's and their Produce.	Value.
Horsesnumber 5,390	8570,544
Horned Cattle........................... ., 39,62?	051.269
Sheep	702,504
Swine......... ", 6,983	56,894
Ponltry..........................	79,224
Pork, Beel, and other meatscwt. 300,003	2,172,581
Butter, Clicese, nid Eggs.................................	6,781,105
Lard and Tallowtb 3, 232,488	306,860
Hides, I'clts, Hams, and Hoofs.........................	394,069
Wcol it ${ }^{-2,764,706}$	983,846
Furs, dressed and undressed...............	1,633,501.

Cultivated Land and. Agricultural Products.-Canada is pre-eminently a country of yeoman fatmers. The land is held in possession and tilled by the settler on his own account; and with every addition to the numbers of its industrious population fresh aeres are recovered from the wilderness, and added to the productive resources and tha wealth of the Dominion. The number of persens occupying land within the four provinces of Nova Scutia, NewBrunswick, Quebec, and Ontario aecording to the census of 1871 was in all 367,862 . Of these there were 324,160 owners, 39,583 tenaots, and only 2119 farm labourers or servants. Those facts alone suffice to illustrate the striking contrast between the condition of Canada and most of thes countrics of Europe. By patient industry and frugality it is in the power of every Canadian to become owner of a house, and proprietor of whatever amount of land he can turn to profitable account; while the character of the population resulting from this condition of things checker the accumulation of extensive landed estates in tho handa of single proprietors. The majority of the farms are small, tilled by the proprictor with his own hands, with the help of his sons and occasional hired labour ire the forsy seasoni
of harvesting. But capital is also successfully applied to farming, and beautiful large stock farms are now entering into rivalry with those of the United States and even of England. The following table shows the extent of holdings, and the subdisision of land:-

The greater number of occupiers and owyers of hividings of tea acres and under are to be found in Quebec and the Acadian settlements of the maritime proviaces, where a continual subdivision goes on among families under the influeace of old custom and the operation of the French law of iaberitance. In Quebec the old French seigniories established and perpetuated a large class of landed proprietors with their tenant farmers; and notwithstanding the abolition of the seigniorial tenures in 1854, their influence still survives, so that the number of bolders of land above 200 acres is greater in Quebec than in any of the other provinces. The climate and other attractions of Upper Canada tend to secure to it the largest share of immigration; and the rapidly increasing quantity of culisuated land in the province of Ontario is at once an evidence and a guarantee of the substantial progress of the country. In 1842 the population of Upper Canada numbered 486,055 , with $1,927,816$ acres of land nader cultivation. Ia 1852 the population bad increased to 952,004 , and the land under cultiration to $3,697,724$ acres. According to the ceasus of 1871 the total popnlation of Ontario, as it is now called, numbered 1,620,851, with $16,161,676$ acres of land in process of improvement.

Besides the grand staple of the cereal grains, the Canadian farmer derives large returns from bis crops of hay, clover, and grass seeds, carrots, mangel wurzel, beans, hops, flas, bemp, and tobacco. In 1852 Upper Canada produced $i 64,476 \mathrm{tb}$ of tobacco, the greater portion of which was grown along the western shores of Lake Erie, and on the peninsula between that and Lake St Clair, where the soil and climate specially favoured its growth. At the same date Lower Camada produced 488,652 1b; but in 1871 the returns for the province of Quebec alone amounted to $1,195,345$ th of tobacco. Hops are cultivated with still greater success; and flax and hemp are 'additional sources of proft to the farmer. The value of the bops, flax, and flax seed exported during the year 1874 amounted to $\$ 161,908$. The folloring tabular statement of the ralues of some of the chief agricultural products exported during the year 1874, apart from the amounts retained by Canada for home consumption, will suffice to illustrate the increasing salue of this important branch of native industry:-

Wheat................... ${ }^{\text {bushels } 6,581,217}$	§8,886,077
Barley, Rye, and Oats , 4, 440,820	4,532,669
Indian Corn..................... , 235,864.	81,224
Flour............................barrels 540,317	3,194,672
Meal......, 53,162.	230,820
Flax cwit. 782,054	113,256
Flax and other Seeds.......... bushels 19,083	12,306
Peas and Beans , , 1,807,208	1,526,689
Haytons 26,725	203,210
Hops is 169,726	40.177
Brancwt. 13,888	27,992
Tobacco.............................is 125,844	3,568
Fruit and Vegetables.................	460,993
	\$19,403,653

The total value of the grain and other agricultural proluce of Canada exported during the year 1874, apart from Hic produce for home consumption, was $\$ 19,590,142$, of which Great Britain received to the amount of $\$ 9,867,047$,
the United States. $\$ 8,680,997$, and the remainder mas dis tributed as sborn here:-

Great Britain	S9,867,047
United States	8,680,997
France.	189,600
Belgium	92,000
Neufoundland.	595,909
British West Indies.	37,427
Spauish West Indies	29,343
French West Indies.	4,490
Davish West indies.	7,240
Duteh West Indies.	1,373
St Pierre	64,164
Madeira.	1,812
british Guiana	15,617
St Domingo ...	3,123
Total.	\$19,590.142

But a false estimate of the actual arricultural resources of Cauada is apt to be produced by testing them by its exports. Canada is a conatry of yeoman farmers tilling their own laods and living in abundance on the produce.: The requirements for the table of the farm labourer are on a scale consistent with the resources of the country. The home consumption is accordingly great as compared with the number of the population; and it is therefore impos. sible to estimate, even approximately, the total annual value of all kinds of produce resulting from agricultural labour within the Iominion.

Minerals.-.The mineral resources of Canada bave as yet' been very partially developed. Quebec and Ontario are devoid of coal, thougls both have access by convenient transport to rich coal-fields in adjoining provinces or states ; but the maritime provinces, Manitoba, the northwest territories, and British Columbia are all rich in coal. Other valuable mineral resources are still turned only to the most partial account ; but as the work of the Gcological Survey proceeds, new fields are opening up for cnterprise every year. The rich silver ores of Lake Superior have already yielded wonderfully valuable results to the miners; and the neighbouring districts are now being carefully surveyed. Extensive tracts of gold-bearing quartz are also reported, and Mr Bell, who took the charge of the Geologi. ${ }^{1}$ cal Survey on Lake Superior in 1872, states that within the basin of the Ncepigon, which extends to about 170 miles in length by 80 in breadtb, the upper copper-bearing' series obtains the greatest development. Distinct belts of rock extend from thence along the line of the lake coasts by Thunder Eay to Font du Lac; and in one of those, styled the Lake Shebandowan band, the gold-bearing rock is found. Gold-bearing veins are alse reported to occur at Cross Lake on the lied River ronte; and far beyond the province of Manitoba, a rich copper region has long been known on the Mackenzie Fiver.

As railways are extended, and the great project of a Canadian line from the St Lawrence to the Pacific is gradually made an accomplished fact, the resources of the regions traversed by it will be fully disclosed and turned. to account. The ricinity of the great coal-fields of Pennsylvania and Michigan to Lake Erie and Lake Huron, must always give them an advantage in auy competition for the surply of Ontario with fuel. But the development of the railway system of the Dominion cannot fail to render its own mineral resources arailable to a much larger extent, not ouly for home consumption' but for exportation. . Tho Intercolonial Railway has opened up an extensive country to the coal miners of Nova Scotia; and the liko results will follow both in the north-w cst and in British Columbia, when the great coal-fields of those regions are traversed by roads and railways, and their fertile praidics aui ricb alluvial valleys are settled by an industrious population At present Canada both exports and imports coal, thoigh
the imports as yet greatly exceed the exports The total produce of the mines of Canada, including coal, exported during the fiscal year-1874 amounted in ralue to $\$ 3,977,216$. The following tabular statement shows the present resourecs of the Dominion, and its dependence on external sources for its supply of coal :-

Canadian Export and Import of Coal for 1574.

	Export in Tons.	Import in Tone.
Nova Scotia	360,184.	67,349
New Brunswick	6,627	142,503
Prince Edward lsland ...	213	696
Quebec	655	1,221,158
Ontario.....................	...	2,372,250
Manitola		665
British Columbia	50,671	696
Total.	418,357	3,805,317

Trade of Canada.-The abstract of the ralue of the growth, produce, and manufactures of Canada, as shown by its exports, is classed in the official returns under six principil heads, viz., the mines, the fisheries, the forest, animals and their produce, agricultural produets, and manufactures. The results show, by a comparison with the carlier statistics of the eountry, the rapid progress it has made in a single generation.

The trade of Canada at a period not rery distant was confined chiefly to the exportation of furs, seal-oil, and timber;' little execeding $\mathcal{E} 100,000$ annually. Prior to the year 1759, when the country, with its population of 65,000 inhabitants, was transferred from the Covernment of France to that of England, the amount of its amual exports was $£ 115,415$. She prineipal trade was furs, in pursuit of which the great forests were traversed by bands of resolute adventurers. A few ships were occasionally built. Agriculture was n aglected, if not actually despised.

Upon the aequisition of the eountry, however, by England, the cultivation of the soil attracted the attention of the settlers; and the germs of a trade sprung up which has now grown to be one of real magnitude and importance. -In 1769 the exports in furs, oil, fish, de., amounted to $£ 355,000$, and the imports in British manufactured goods and West India produce, reached $£ 273,400$. This trade cmployed seventy vessels; about twelve vessels were at the same period engaged in the fisheries of the St Lawrence, and abont six were sent to the West Indies.

In 1;99 and the three following years we find comparatively large exportation of grain taking place. In 1802, 1,010,000 bushcls of wheat, 38,000 barrels of flour, and 32,000 ewts. of biseuit were sent abroal. The number of vessels at this period engaged in the trade of the colony was 211, the aggregate burden of which amounted to 36,000 tons. Io 1809 the first steamboat appeared in the barbour of Quebee.
In 1809, 1810, and 1812, the trade of Canada, benefiting by increased dutics levied upon Baltie timber imported into Britain, seems to have been comparatively aciive. In the first of these years 440 vessels, hanug an aygregate toninage of 87,825 tons, arrived at Quebee. In 1810 as many as 635 vessels arrived in the St Lawrence, with an aggregate tonnage of 138,057 tons; and in the same year 26 vessels, having a tonnage of 5836 tons, were built in the province. In 1812, 532 vessels, with a tonnage of 116.687 tons, eleared at the port, 37 of whieb had been built at Quebec.

The war which commeneed in 1812 between the United States and Britain severely checked the commeree of the St Lawrence, which was greatiy dependent upon the Anericana And, notwithstanding that Britain slightly
reliesed the import duties on wheat in favour of Canada in 1814, we fod that the trade of the eclony from 1810 to 1820 remained almost stationary. The aggregate tonnage which arrived at Quebee in 1820 (a more prosperous year, if shipping be taken as the criterion, than any of the preceeding ten) amounted only to 9697 tons aver that of 1810. In 1810, 26 vessels had been built in the colonr and only 7 were bualt in 1820.

According to the old system of colonal monopoly, the St Lawrence was rigidly closed against the entrance of foreign vessels, nor was any Canadian vessel allowed to enter a foreign port. The presperity of the colony difring this period of its infaney was believed not to have been materially ehecked by these restrictions, as the mother country at all times afforded an outlet for its surplus produce. After the United States bad achieved their independence, their vessels were exeluded from the ports of the British colonies; and Canada, as a reward fur its luyalty, reeeived the exclusive privilege of supplying the West inda Islands with timber and provisions.

In this manner, as the tráde of Canada had been confined and shackled for the supposed benefit of the mother country, so now she was rewarded with compensating privileges to the direct injury of the sister colonies of the West Indies. The United States ports were the natural resorts of the West Indies for timber and provisions, their distance from these beiog about one-balf less than the ports nf the St Lawrence. Eut the additional freight, which on säch bulley articles constitutes a great proportion of the expense, was not ouly enhanced by this circuitous ronte, but the West Indies had to pay besioes for trausshipment upon what was surplied by the United States to Canada for the West Indian market. The West India planters were thus laid under contribution for the support of the Canadian shippers and faruics.

These regnlations were, however, so far relaxed in faveur of the West Indies in I822, that the wheat and lomber of the United States were allowed to be improrted direct! y on payment of certaio duties; but atothe same time duties were imposed upon agrieultural produce entering the British American colonies as well as the West Indies.

The immediate result of this measure, so far as it affected Canada, was that one-half of the export trade of the St Lawrenee was at onee destroyed. The simultancous abundance of the English harvest, together with the restrietions then in force upon the inportation of grain into lritain, even from ber own colonies, forbade any'exports thither, and thus seriously aggravated the depression of Canadian commeree, and afforded another illustration of the roinuus poliey of bolstering up one class by privileges and exemptions, and shackling another by restrietions and dutics.

In 1825 Britain admitted Canadian flour and wheat into her ports at a fixed duty of 5 s . sterling per quarter. Mcanwhile a fresh trouble had already arisen to try the vered fortunes of Canada. Previous to 1822, American exports had to a considerable extent sought the route of the St Lawrence, as if they had been of Canadian origin, contributing very materially, of course, to the bencfit of the trado of the colony. But the opening of the Erie and Champlain canals in the United States, in 1825, drew off into a different channel those American exports which had formerly sought the Atlantic by way of Quebec, and the trade of the Si Lawrence was thus seriously injured.
In 1826, however, the prospects again appeared to he brightening. The Americans were allowed, after four years of exclusion, to export timber and ashes for the British market into Canada free of duty. The duty upon Canadian Hour for the West India market was also redueed.

The trade of the colony likewise profited by the disputes between Britain and the United Statea which led to the
interdiction of the American expert trade to the West Indies. This was reduced from $£ 500,000$ in 1826 to less than $\mathfrak{L} 500$ in 1830 . While the results were such to the United States, we find the trade of the St Lawrence in 1830 wot only fairly recovered from the cffects of the Imperial Acts of 1822 , but far surpassing its position at any fermer periud. The arrivals at Quebec in 1830 were 967 vessels, having a tonnage of 238,153 tons.

In 1831 the trade of the colony was still further favoured by the action of the Home Government. The forest and agricultural products of the United States were admitted into Canada free of duty, and could be exported by the St Lawrence, as Canadian produce, to all countries except the United Kingdem. A difierential duty was also at the same time imposed upon foreign tmber entering the West Indian and South American possessions, greatly to the benefit of the colony, which also profited by the scarcity of fuod existing in Britain at this time. The arrivals at Quebec during this favoured and prosperous year, were 1016 vessels, with a tonnage of 261,218 tons; and the exports of flour and wheat by the St Lawreuce were about 400,000 barrels, chiefly to Britain.

Between 1831 and 1836 we find a complete reversal of the order of trade between the colony and the mother country. The crops in England during that period being unusually abundant, and a scarcity of bread-stuffs existing in the United States, wheat was, in 1833, shipped from Britain to Quebec. A supply also came from Archanyel. These imperts from Europe to the St Lawrence amounted in 1835 and 1836 to about 800,000 bushels. The relaxation by the mother country of her protective policy in 1842 was viewed with alarm by the colonists as fraught with disastrous consequences to their interests. Up to 1842 Baltic timber bad paid an English import duty of 55 s , per load, while Canadian timber onterèd England upon payment of 10 s. per load. The duty on foreign timber was now reduced to 30 s. and Canadian to 1 s . per Joad. At the same time the free importation of United States flear fato the colony was stopped, and the West Indies were Illowed, on the payment of a duty of 2s. per barrel, to import their flour direct from the Americans.
These serious blows to the trade of the St Lawrence fell upon the colony at the period of a commercial crisis, and were therefore felt more severely. The number of vessels that eutered the St Lawrence in 1842, from the sea, was 377 less than during the previous year.
In 1843, Canada was allowed to import American wheat under a comparatively nominal duty, and to export it throngh the St Lawrence as native produce to the British market. This measure, which may be viewed as having been the first indirect blow at the English corn-laws, amounted to a virtual premium of about 6 s. sterling per quarter upon American exports to Britain through the St I/awrence. The British ports were thus at once in a great soeasure thrown open to all the great wheat-growing countries of North. Anerica. Cavadian exports were rapidly swelled in consequence; and in 1846 half a million of barrels, and as many bushels of wheat and flour, were ebipped by the St Lawrence. The timber trade of the coluny, which was also seriously threatened in 1812 by the large reduction of the duty on Baltic timber imported into England, witnessed Jikewise in 1845 and 1846, not merely a revival, but a very material increase. The number of vessels that entered the St Lawrence rose to 1699 duriag each of these years, with an aggregate burden of over © 20,000 tuns,- this being a much larger anount of shipping than had cver in any previous year entered the St Lawrence.

The history of Canadian trade enters upon a new stago from 1846, when the commercial policy of England at
length relaxed the old restrictive navigation laws in refer? ence to her colonial posjessions. One of the most practical evidences of its beneficial influence on Canadian trade is shown in the increase of its traffic with the United States, at the very time that its trade relations with the mother country were being annually augmented in a corresponding ratio. From 1821 to 1832, the aggregate annual traffic between the United States and Canada averaged no more than $63,257,153$. From 1833 to .1845 the average increased, with the growing population, industry, and wealth of both countries, to $\{0,313,780$ per annum. But under: the influence of the more. liberal policy inaugurated by Great Brituin in 1846, the tralic rose between that year and 1853 so rapidly that its annual average amounted to \$14,230,763.
But the concessions made by the mother country in favour of the timber and corn trade of Canada were still only partial. The exportation of colonial produce from the St Lawrence could only be carried on in British ressels; and thus there grew up a class of vessels specially appropriated to this trade, which made only two woyages in the ycar to Quebee or Montreal ; and these having a monopoly of the whole esports of the St Lawrence at privileged rates, the colony was rirtually subjected to a heavy tax both on its exports and imports. Tea, coffee, sugar, and all the manufactured articles still required to be obtained from abroad were thus only obtainable through English ships; and hence the Canadian merchant was greatly restricted ir the cheice of the best and cheapest narket. In return, however, the colonists had certain privileges accordect to them, foremost amongst which were those already referred to in connection with the import of wheat from the United States, and its export from the St Lawrence as native produce,-the Canadian merchants having an advantage 1 thereby over their competitors in New York and other American ports.
The abolition of the British corn laws deprived Canadal of the privileges thus aceorded to her in the export of: bread-stuffs, and seemed to threaten the trade of the $\mathrm{St}^{\text {s}}$ Lawrence with grievous disceuragement at the very time when the transactions of the colony with the United States were in a great measure interdicted by a bustile taritf. The changed and more enlightened views, however, which entered into imperial legislation materially assisted the growing energies and intelligence of the colonists. Tho lonperial Government formally abandoned in 1847 all control over the customs of the colony, which immediately set itself to the task of regulating its own trade. One of the first measures of the colonial legislature was to abolish in a great degree the differential and prohibitory duties on colonial imports along the United States frontier; and the Americans upon the other side of the St Lawrence were by this measure placed, as regards matters of trade, upon an equal footing with England. The beneficial effects'of this measure showed itself at once in increased commercial activity and prosperity over the whole of Canada

On the lst of January 1850, England completed her free trade measures by reliewng the colouies from the injurious effects of the British navigation laws. The value of the wore enlightened views which thus entered into beth imperial and culonial legislation has șince becn most satisfactorily tested in the growing wealth and prosperity which have attended the progress of the colony. Tlie same year is memorable for other events affecting Canadian proyress. It was in 1850 .that gold was first discovered in British Columbia, and coal at Nanaimo, on Vancouvcr Island; and so the steps were accelerated which led to the organization of the first province of the Domimiou ea the Pacific. The same year was marked by the organization of the opposition to ecclesiastical endowments, as well as to
other exclusive rights and privileges, which resulted in 1854 in the final settlement of the vexed questions of the clergy reserves and seigniorial tenures in Upper and Lower Canada. The Grand Trunk Railway, which had been commenced in 1S47, was now hasteaing to completion. Nova Scotia bad already its first railway; the important local line comnecting the Georgian Bay with Toronto, was developing the resources of Upper Canada; and in the same ycar, 1854, the Great Western Railmay mas commenced. By this line Toronto is not only placed in direet communication with Detroit, Chicago, and the whole Western United States; but by the extension of the line from Hamilton to the vicinity of the Niagara Falls, and the construction there of a suspension bridge, on a grand scale, for railway as well as ordinary traffir, the Great 'Western Railway of Canada has become an important link in the main lines of transit from Boston and New York to the Western States. Since then the building of railways and the development of railmay traffic bave been energetically prosecnted. The Intercolonial Railway has been completed, as a material bond of union betreen the older provinees of Canada and the maritume provinces, and a route through Canadian territory, at all seasons, to the seaboard. This has been followed by the nore cumprebensive scherme of a Canadian Pacific Railway, the surveys for which have been already made; and its first Jinks are now in process of execution. The actual mileage of the railways within the Dominion completed, up to the close of 1874, extended to 4022 miles. The following tabular view of the railmay traffic returns for the two previous years will suffiec to illustrate their influence on the rapid growth of Cauada in recent.years :-

Rallways.	$\begin{aligned} & \text { Total } \\ & 15 \pi 3 . \end{aligned}$	Total 18.2	$\begin{aligned} & \text { Mllea } \\ & \text { 15T5. } \end{aligned}$	$\begin{aligned} & \text { stice } \\ & 1972 . \end{aligned}$
Brockwille and Uttawa (7 months)...	281,431/	280.209	$8{ }^{\circ}$	86
Canada Central (0months)...........	84,012!	40,509	28	23
Carllon and Grewvike (no tetuin) fur 1S73) \qquad	...	\because	121	193
Cobourg, Pcterbiro and \$1armbera\} (C montis. \qquad	61,785	41.653	22	22
European and Nouth American) (30 return for 18:3)	.	2:6,189	108	109
Gieat Western	5.614 .239	4,960.317	3:19	3511
Grand Tiunk..	3.342.2\%	8,531.890	1.377	1-7\%
Intercolonitil	821.424	241,461	269	261!
London and 「ort Stanley (no re- tutn for 1873)	$\ldots-$	39,508	241	241
Midland of Canida (7 months).......	172.918.	1261.737	89	89
Northern do (6 months).......	401.980	2583,728	141	120
New Drunswlek and Csnada (3 montis)	51,180 ${ }^{\text {\% }}$	115,303	138	121
St Lawrence and Ottawa	183.2\%	125.144	54	:4
St Lowrence and Industry (\% months)	12,\%n3!	4.6.8	12	12
Toronto and Nipissing 13 months)...1	53,38:\%	...	88	
Toronto Grey, und Bruce (no re-l Lum for 1973).	,	\ldots
Findsar and Annapolis (no rctuin)	-...			
for 1873))	101,618		\cdots	\cdots
Wellard (9 mas.).	101,648	530.929	25	25
Tota	12.132,8:6	13.12C.U18	2.6381	2.5054
18 monthe 210 Emeathe.	month.	4 5 nont		

Telfaraphs. During the same period telegraphic lines of communica. tion have been no less energetically prosccuted. At the end of 1874 thio Montreal Telegraph Company had 23,267 miles of wire, and 1288 different offices; and to both additions are being rapidly made. The Dominion Telegraph 'Cumpnny, nore recently' organized, with its bead office in Torunto, had at the same date 6000 miles of wire, connectiug 300 different uffices; and the British Conlumbia Tele. graph, which was assumed by the Dominion Government, at the admission of British Columbia into the confederation, had already placed the head office at Vietoria in commonication with twenty-nne offices, the remotest of which was then distant 557 miles.

No less important is the bankiug system of the Dominion. From the banking returns published in the Canada Gazette it arpears that the banking eapital has more than donbled
since 1870, and this by a steadily progressive increase.' The tables are imperfect, owing to some of the banks having omitted to make the requisite returns; so that, while the following tabular statement illustrates the progressive rate of inercase, it falls short of the full amount :-

Banking Capital of Canada.

1870	.829,801,013
1871	36,415,390
1872	45,134,003
1573	55,102,959

Besides the Post-Ofice Savings Banks, establisbed of the same principle as those in Great Britain, there are local and other savings banks, building and other societies,and the admission of every new province adds to the number of such socipties,--in all of which large amounts are deposited at interest, dithout acecssible returns. The building societies advance funds for we erection of churches, halls, and other pubiic building-s, as well as for private dwelling-houses; and the majority of the residents in citiee and towns are proprictors of the Loonses which they oceupy. The following tabular statement affords an illustrative view of the accumalating fruits of industry within the Dominion.

Bank Deposits.

Summary.- The cvidence of the prosperity, and growing wealth of Canada may be completed in a tabnlar view ef its exports and inports for two snccessive years, as derivec!. from the latest official returns. The imniediate result of confederation was a rapid progress in many ways. New railways were [rojected and brought into operation; new lines of stcamships were established; fresh avenues of rative and loreign trade were diligently songht out; and a sucecssion of prosperous years was marked by a stcady zommercial expransion which attained its naxinum in $18 ; 3$. Since that date various causcs, and especially the difficultics created by an untedeenable paper elureney in the neighbouring United States, havo tended to bring ahout a reaction; but it is a mere temporary ebb of tho advaneing tide, in which the commercial world at large haw sharcd.

The following is a rerroduction of a condensed compara.tive statement of the Comnissioner of Customs, as given 1.3 the trade and navigation tables for 1874; to whicls are added from were recent unpublisticd returns, those of the year 1875, showing the influence of a period of reaction and great depression, alike on the exports and imports of the cumbry.

Tiscal Y'car.	Tons Espors.	Total Impors	Entered fo: Consump. ton.	Duty.
1858.	537 ,563. 858	873.4.9, $0+1$	\$ 51.985 .304	88, w $17.4 .11 \cdot 63$
1869.	60.474 .881	20.413.16.5	$67.41{ }^{2} .170$	8,598091971
15:0.	73.383 .490	74.814 .333	71.237 .543	9.1102.510 ${ }^{\text {c }}$ +4
1871	74, 173,418	$519.14 r_{6} 971$	84.547.192	11, $4.43,468,75$
1472	82.804	111.430 .627	107,749,11F	13.045,493:50
1 k 3.	$89 \% 0.048$	125.011. 251	127.814.501	13, 1117,73017
1831.	84.331 .529	128.213-2	1:9.194.169	11.421.88: 67
1873.	78,043.970	123.408.uy ${ }^{\text {d }}$	115.502,87	13,051,16380
Agimestate for) Eqght leares	605,620.160	803.505.002	719,823,311	91.261 .20767

The apparent annual increase shown in the above table: is modified by the following clements, which must bo taken into account. The first three years represent the business, only of the first fonr provinces of the Dominion. Manitoba was received into the confederacy in 1871; and the
statistics of that year include six months' returns from the new. province, amounting to $\$ 254,063$ total imports, $\$ 286,857$ entered for consumption, and $\$ 15,723 \cdot 22$ duty collected. In 1872 the exports of Mapijoba were valued at $\$ 85,541$, the imports at $\$ 942,247$, and entered fur consumption, $\$ 1,020,172$, on which $\$ 46,839 \cdot 90$ duty was collected. In the same year the returns for British Columbia appear as follows :-exports, \$1,912,107; imports, $\$ 1,790,352$; entered for consumption, $11,767,068$; duty collected, $\$ 342,400 \cdot 48$. In 1874 tho returns of Priuce Edward Island give the following additional elements to swell the aggregate amount :-exports $\$ 222,129$; imports, $\$ 1,90 \$, 522$; cutered for consumption, $\$ 1,913,696$; duty collected \$219,45807. Deducting thore smins and values from the years named, there remains ajundant evidence of a steady and rapid increase in the commerce of the four older provinecs up to the year 1874, when the depression prevailing in the United States, in part due to reaction resulting from the effects of the southern war, began to be felt in Canada as well as in other countries. The great
expansion which has taken place in the commerce of Canada since 1867; and the influence of the reaction of 1874, ara shown in the following conseeutive statement of the joint value of exports and imports for the years from 1868 to 1875 inclusive :-

Exports and Imports.

	\$131,027,
1868-69	130,559,9
1869-70	148,387,829
1870-71	170,266,589
1871-72..	194,070,190
-1872-73	217,801,203
1873-74	217,565,510

The relative wealth and progress of the different provinces of the Dominion vill' be illustrated by the following comparative table, showing the last year of ncarly unchecked progress, and the first of reaction. It shows the value of the goods exported from, and entered for consumption in the Dominion, dnring the years ending the 30th Jane 1874 and 1875 :-

Propince	Year 1573-4.			Year 18:4-3		
	Exports. Value	Entered for Consurajtion.		Experts Value	Entered for Consamption.	
		Value.	Duty.		Value.	Duty.
Nova Scotia	\$ 2.650 .547	S10, 875, 140	\$1, 109,094	86,968,139	\$10,6\$8,213	S1,420.543.77
Now Brunswick....	-6,503,934	10,321,492	1,390,930.75	6,542,329	9,855,533	1,370,611.42
Prince Elward Island	-722.129	- $1,913,608$	219,458.07	1,307,590	1,984,278	318,976.43
Quebec.............	46.893,845	- $51.981,227$	$6,613,509 \cdot 50$	39,801,041	50,618,588	$6,732,503 \% 0$
Ontarie	25,157,087	48,375,522	4,361,236.00	20,016,101	42,781,070	4, , $0 ¢ 8,074$
Manitoba.	394,762	1.853,6.59	67,471.37	585,958	1,227,890	171,430.86
Breislı Columbia	. r. 120,624	2,048,345	3-36,494.47	2,824,712	2,487,293	413,991-50
Total	889,351,923	8127, 308,972	Si4,407,19442 14,56490	$878,048,870$	$\$ 119,022,871$	$815,343,931 \cdot 04$ $7,231 \cdot 56$
			214,421,559.72			S15.351,163.50

Ackministration of Juztice.--So long as Canada consisted of the two provinces of Upper and Lower Canada, even when united fur legishtive purposes they retained their diverse laws and distinct judicial systems, while the Privy Council of:Great Britain const tuted the final court of appeal fur buth. . In the province of Quebee the old French law, which was.introduced under Louis XIV., is still the basis of the law of property. There the tenure of property remained strictly feudal, until the settlement of the claims of the scigmories by the Act of 1854 brought the old system to an end. But before that was effected new townsuips had been surveyed, and-land disposed of to settlers to be held in free and common saccage. The commereial Law is regulated partly by the old French code, but modified by the Enghsb customs, and by later Canadian legislation. The criminal laws of England, and the right of trial by jury. were introduced by l4th Greo. III c. 83 . Since then all additions fo the criminal law, or modifications of the statutes: have depended on the Acts of the colonal legislature. The religion, laws, language, and custums of the French population were all guarateed to them at the time of the cession of Canada to England; and the rights and privileges pertaining to the Roman Catholic Church, among a population suarding its oreed as their mational religion, help to perfriuate essential differences, by maintammg what is still practically an established if not a state chareh.

By the constitution of the Dominion, as embodied in the British Nurth American Aet of 1867 , the criminal law, with the establishment, maintenance, and management of penitentiaries ; a!l laws relating to lankruptey and solvency, marižage and divorce, naturalization, aliens, Indians, and Indian reserves; and generally, all subjects not expressly assigned to the provincial legislatures, pertain to the Domidion promament. The juages in all the provinces are
appointed by the general Government ; and the pardoning power is vested in the governor-general per se, whilst his authority in all other respects is exercised under the advice of his prify council, or ministers for the time beins. The powers entrusted to the local legislatures include generally all strictly local legislation not affecting in any way the rights of other provinces. The judges by whoru the laws are administered must in the case of Quebee be selected from the bar of that province ; and the judges of the superior courts in all the provinees hold office during good behaviour, and are removable by the goveruar-general on address of both houses of Parhument.

The rights and privileges of each province being thus secured by its own parliament and courts of law, the prorisions of the Act of Confederation have been completed by the establishment of a Supreme Court and Conrt of Exchequer at Ottawa, consisting of a chief justice and five other judges, two of whom, iucluding the chef justice, have been selected from the bench of Ontario, two from the bench and bar of Quebec, and one each from the bench or bar of Nova Scotia and New Brunswick. The court thus constituted is the supreme and fiual court of appeal, from all the conrts of law in the varions provinces, -with this exception that, while no appeal lies from the Supreme Court at Ottawa to the Privy Council, litigatita have stall ile right of choice between the two as their inal court of appeal.

Education.-Almost from the firt organization of Upper Canada as a separate province, stepes were taken for providing means for the estallishment of efficient schools and colleges. So carly as 1797 \& grant of 500,000 acres of the unoceupicd lands of the province was set apart for tho purpose of establishing and endowing a university nad four rogal foundation grammar schools. Of this one half was appropriated is a university endowment, and one-fourch
of the remainder was granted to Upper Canada College, which assumea in Canada the functions of the great public schools of England, and still continues to hold its place at the head of the grammar or high schools of the province.

In the earlier years of Upper Canada, the "Clergy Reserves," set apart originally for the support of a "Protestant" clergy, were appropriated exclusively by the ministers of the Church of England. Upper Canada became an archdeaconry of the diocese of Quebec; and the venerable Archdeacon Strachan, whose first labours in Cangda had been as master of the Cornamall Grammar Schonl, became the leader both in ecclesiastical and educational inatters, and ultimately a privy councillor, member of the legislative council, and bishop of the diocese of Tnronto. Ho was a man of great energy and decision of character; and under his guidance the lands set apart for the endowment of a provincial university were appropriated to the purpose, and a royal charter was granted by George IV. establiohing at Toronto, or York, as it was then called, "one college, with the style and privileges of an university, for the education and instruction of youth and students in arts and iaculties," under the name of King's College. The bishop of the diocese became, ex officio, visitor; and when at length the college was organizcd, it had its divinity faculty, and its professor of divinity, along with its daily religious services according to the use of the Church of England. The special denominational character thus given to the provincial university excited opposition, and led to the establishment of Queen's College, at Kingston, under the control of the Church of Scotland, and of Victoria College, Cobourg, under the Wesleyan Methodist Church. To those have since beed added Albert College, Billeville, under the management of the Episcopal Methodist Church; and Ottama College, and Regiopolas College, Kingston, in connection with the Church of Rome. All of those possess oniversity powers, cither by Royal Charter, or by Acts of the provincial legislature. By subsequent ejactraents tho constitution of King's College Las been greatly modified. Its divinity faculty bas been abolished, ail denominaticoal restrictions have been remored, and its functions divided between a university proper, modelled after tho university of London, with a senate, on which devolves the fixing of the requirements for degrees, the appointment of examiners, and all other university work, as distinct from teaching. The latter is under the conduct and regulation of the profeseors, who constatute the council, of Unirersity College, and undertake all the dutics of proparing the under-graduates for the university examination's in arts and science. Other colleges and schools, both in the faculty of arts and in those of law and medicine, are affiliated to the naiversity, and part of the funds at the command of the senate is appropriated for scholarships, to be competed for at the examinations in the different faculties. On the passing of the Act of 1853, by which the divinity faculty and professorship were abolished, a royal charter was obtained for the establishment of Trinity College, in connection with tho Church of England, with all the powers of a unirersity

The systelo of public instruction for Ontario has hitherto been carried out under the direction of a permanent officer, styled the Chief Superintendent of Education, with the adrice of the Council of Public Instruction, originally nominated by the Crown, but latterly including representatives of the universities, of the school inspectors, and the masters of high and public schools. But by a recent Act of the Ontario Legislature, the functions of the Council of Public Instruction have been transferred to a committee of the exceutive council ; and the functions and duties of the chicf superinteadent are vested in one of its members,
to be designated the Minister of Edacation. The intro duction of the representative element into the Conacil of Public Instruction was immediately followed by a conflict between that body and the officers of the department in reference to various proposed modifications; and the changes now introduced am at bringing the administration of the system of education more directly under the control of the people through their representatives.

There are two normal schools for the training of teachers, one at Toronto, and one at Ottawa; and it is proposed to establish others at Kingston and London. The high schools. are divided into (1) collegiate institutes and (2) bigh schuols for teaching classical and English subjects, and (3) bigh schools, in which instruction may be limited chiefly to English subjects. Of those tuere were 108 in all, including 8 collegrate institutes, in 1875, with an attendance of 8437 pupils.

The pramary schools for junior pupils are styled public schools. The schoul population, including those betreen 5 and 16 years of age, was returned in 1874 as numbering 501,869 . At the same date there were 4732 schools in full operation, whth an attendance of 460,984 pupils. In all the above schools every feature of a denominational character is exeluded. The collegiate mstitutes and bigh schools are under the control of trustees appointed by the county municipalities, and their maintenance depends on their share of the legislative grant and endowments, supplemented by the anmual assessments of the city and county municipalities. The pubhe sehools are in like mauner supported by legislative grants, and by assessments levied on the requisition of the school trustees in each schoul section. The essential feature of the whole system is that tho people, directly or through their representatives, lave the entire control of the schools, including the selection of the teachers, the fixmg of their salanes, and the management of the school funds.

The one exceptional feature is the Roman Catholic separate scbools. Any Noman Catbolic ean require his school-tax to be paid for the maintenance of the separate schools of his own church; and wath this fund, supplemented from other sources, there were, in 1875,170 separate schools in Ontario, with an average attendance of 11,123 pupils, or of 2,073 on the schuol rolls. Aecording to the proportion of the Roman Cathohe population, this is less than a third of their chatdren of school age. A large proportion of the remander attend the publuc schools. Musters of high schools are required to be graduates of universities, and to bave had prevous experience in teaching. Teachers of puoblic schools must hold a normal schuol or other recog. nuzed certificate of qualification.

The prinerpal features of the system of education thus brought into efficient operation liave been modelled on those of the states of New York and Massachusetts, and on the normal schools of the Insh National Board of Education. The systems of the other Canadian provinces, with the exception of Quebec, have been framed on this model. In the last-named province, where the great mass of the people are Roman Catholics, the education is in the hands of the clergy, and is arowedly carricd on iu connection with the Church of Pome. But dissentient or Protestant schools are recoymzed as a part of the pulhic school system; and the permanency of this state of things is guaranted by a clause in the Act of Confederation, which excludes it from the interference of the general legislature.

General Remarks.-The position which Canada now occupies as a Dominion formed by a confederation of self= governing provinces, united under a central Governuent, with its own governor-general, cabinet ministers, senate, parliament, and supreme courts of law,-yet nevertheless remaining an integral part of the British Enpire, and
acknomiedging the sovereignty of its Queen,-is unique in the history of nations, and strikingly illustrates the adaptability of British institutions to the novel requirements of a free people. The peculiar circumstances resulting from the union of a colony formed onder the fostering restraints of French ecclesiastical and civil rule with one of purely English origin, and settled in part by loyalist emigrants from the United States, begot difficulties which were more. and more felt as the mother country removed from Canada one after another of the restrictions on self-gorernment. It will form an interesting ehapter in the bistory of Britain io relation to ber colonies, to note the freedom with which, when those of - Britioh North America had, as it were, attained their majority, they were left to frame a scheme of confederation suited to their circumstances; and when, after free deliberation, it had been matured to the satisfaction of those most directly interested in the results, the Imperial-Government received it at their hands, and the British Parliament gave it the force of law. At the yery period when this novel experiment in the history of colonization had been carried out to completion, and was open to the test of experience, the vie-regal duties, were entrusted to the earl of Dufferin as governor-general of Canada In the exercise of bis duties he has visited many portions of the Dominion; and towards the close of an extensive tour in the summer of 1874, he thus gave expression to the results of his observations:-"Everywhere I have learnt that the people are satisfied,-satisfied with their own individual prospects, and with the prospects of their country ; satlsfied with their Government, and the institutions under which they prosper; satisfied to be the sobjects of the Queen; satisfied to be members of the British Empire. Indeed, I cannot help thinking that, quite apart from the advantage to myself, my early journeys through the provinees will have been of public benefit, as exemplifying with what spontaneous, uncencerted unanimity of laoguage, the entire Dominion has declared its faith in itself, in its destiny, in its connection with the mother
country, and in the well-ordered freedom of a constitntional monarchy. It is this very combination of seatiments, which appears to me so wholesome and satisfactory. Words cannot express what pride I feel as an Englishman in the logalty of Canada to England. Nevertbeless I should be the first to deplore this feeling, if it rendered Canada dislogal to herself,-if it either dwarfed or smothered Canadian patrotism, or generated a sickly spirit of dependence. Such, however, is far from being the case. The legislation of the Parliament of Canada, the attitude of ita statesmen, the language of its press, sufficiently show how firmly and intelligently its people are prepared to accept and apply the almost unlimited legislative faculties with which it has been endowed; while the daily growing disposition to extinguish sectional jealousies, and to ignore an obsolete provincialism, proves how strongly the young heart of the coniederated common wealth has begun to throb with the consciousness of its national existence. At this moment not a shilling of Britisb money finds its way to Canada; the interference of the Home Government with the domestic afiairs of the Dominion has ceased; while the imperial relations between the two countries are regulated by a opirit of such mutual deference, forbearance, and moderation, as reflects the greatest credit upon the statesmen of botb. Yet so far from this gift of autenomy having brought about any divergence of aim or aspiration on either side, every reader of our anoals must be akrare that the sentiments of Canada towards Great Britain are iufinively more friendly now than in those early days when the political intercourse of the two countries was disturbed and complicated by an excéssive and untoward tutelage; that never was Canada more united than at present in sympathy of purpose, and unity of interest with the mother country, more at one with her in social babits and tone of thought, more proud of ber clam to share in the beritage of England's past, more ready to accept whatever obligations may be imposed upon ber by her partnership in the future fortunes of the empire."
'D. W.)

CANAL

NAVIGABLE canals may perhaps be most conveniently treated under two classes, Barge or Boat Canals, now in many cases almost superseded by railways and Ship Canals, which, judging from the stupendous works of this class recently esecuted and now in contemplation, seem as yet far from baving exhausted tho important aids they are destined to afford to navigation.
After giving a historical notice of carly canals, the following article contains a brief notice of Barge Canals; a digest of general engineering principles applicable to the construction of all canals; an account of Ship Canals recently constructed; and a notice of Ship Canals which bave been proposed and are cre long likely to be carried into execution for facilitating ocean navigation.

Pariy Lis sory.

From the writings of Herodotus, Aristotle, Pliny, and other ancient historians, wo learn that canals existed in Egypt before the Cliristian era; and there is reason to believe that at the same carly period artificial inland navigation also existed in China. Almost nothing, however, cave their existence has been recorded with reference to these yery early works; but soon after the commencement of the Christian era canals were introduced and gradually extended throughout Europe, particularly in Greece, Italy, Spain, Russia, Sweden, Holland, and France.
lovertion In speaking, however, of the carliest of these works, it is not to be supposed that they resembled the modern canals now constructod in our own and other countries. Early as inland navigation was introduecd, it was not ontil the
invention of canal-locks, by which boats could be transferred from one level to another, that inland navigation became generally applicable and useful, and it has been truly remarked "that to us, living in an age of steam•engines and daguerreotypes, it might appear strange that an invention so simple in itself as the caral-lock, and founded on properties of fluids little recondite, should have escaped the acuteness of Egypt, Greece, and Rome."1 Nst only, however, had the invention escaped the noticuof the ancients, but what is more striking, the several gradations made towards the attainment of that simple but valuable improvement appear to bave been so gradual that, like many discoveries of importance, great doabts exist as to the person and even the nation that was the first to introduce canal-locks. One class of writers attributes the discovery to the Dutch, and Messrs Telford and Nimmo, who wrote the article "Inland Navigation" in Brewstr's Edinuurgh Encyclopedia, adopt the conclusion that locks were used in Holland nearly a century before their application in Italy; while, on the other hand, the invention has been strongly and not unreasonably elaimed for engineers of the Italian sehool, and in particular for Leonardo da Vinci, the celebrated engineer and painter. ${ }^{2}$ Without, however, entering into a diseussion of this question, which it is now perbaps impossible to solve, we may safely state that during

[^76]the 14th centary the introduction of locks, whether of Dutch or Italian origin, gave a new character to inland navigation, and laid the basis of its rapid and successful extension. And here it may be proper to remark, that the early canals of China and Egypt, although destitute of locks, do not appear to bave been on that account formed on a uniformly level line, unadapted to varying heights. It is very doubtful, indeed, if the use of locks has even yet been untroduced into China, intersected as it is by many canals of great antiquity and extent, the imperial canal being about 1000 miles in length. "This canal appears to have been completed in 1289, and is said to extend for a distance of forty days' navigation, and is provided with many sluces, and wheo vessels arrive at these sluices they are hoisted by means of machinery, whatever be therr size, and let down on the other side into the water." ${ }^{1}$ Nevertheless the invention of locks was, as has been stated, a most important step in the history of canals; and that mode of surmounting blevations may be said to be elmost unversally adopted throughout Earope and Amerce. Inclined planes and perpendicular lifts have, it is true, been employed in those countries, as will te noticed hereafter; but the mstances of their application are undoubtedly rare.

Gangutdoc

Genal
But without tracing the gradual introduction of canals from country to country, we remark at once that we find the French at the end of the 17th century, in the reign of Louis XIV., forming the Languedoc Canal, designed by Riquet, between the Bay of Biscay aod the Mediterranean, a gigantic work, which was finished in 1681. It is 148 miles in length, and the summit level is 600 feet above the sea, while the works on its line embrace upwards of one hundred locks and fifty aqueducts, an ondertaking which is a lasting monument of the skill and enterprize of its projectors; and with this worl as a model it seems strange that Britain should not, till nearly a century after its execution, have been engaged in vigorously following so laudable an example. This seems the more extraordinary, as the Romans in early times bad executed works in England, which, whatever might have been their original use, whether for the purposes of navigation or drainage, wero ultmately, and that even at an early period, couverted into navigable canals. Of these works we particularly apecify the Caer Dyke and Foss. Dyke cuts in Lincolnshire, which are by general consent admitted to have been of Roman origin. The former extends from Peterborough to the River Witbam near the city of Lincoln, a distance of about 40 miles; and the latter extends from Lincoln to the River Trent, near Torksey, a distance of 11 miles.
Fose Dyke. Of the Caer Dyke the name only now remains, but the .Foss Dyke, though of Roman origin, still exists, and as it is the oldest British canal, the reader may be interested to learn the following facts as to its history. Camden in his Bríannia states that the Foss Dyke was a cut originally made by the Romans, probably for water supply or drainage, and that It was deepened and rendered in some measure navigable in the year 1121 by Henry I. In 1762 it was reported on by Smeaton and Grundy, who found the depth at that time to be about 2 feet 8 inches. ${ }^{2}$ They, however, discouraged the idea of deepening by excavation. They say they found "the bottom to be either a rotten peat earth, or else a running sand," and that though the deepenung of the navigation is in "nature possible," yet it "cannot be effected without remoring one of the banks in order to widen the same," which would not only turn out expensive, but would "occasion much loss of time and profit to the proprietor while the work is executing." Nothing

[^77]followed on this report; but in 1782 Smeaton was again called in, and deepened the oavigation to 3 feet 6 inches, not, bowever, by widening the canal or dredging, but by raising the water-level 10 inches. ${ }^{3}$ From that period nothing more was doae to enlarge the water-way, or adapt it to increased trafic. Meantime the adjoining Witham nangation having been improved, the defects of old Fose becatne more apparent, and in 1838 Mr Vignoles was consulted, and made an claborate report on alternative schemes for mereasing the depth to 4 and 6 feet; nothing, however, was done till 1840, when Messrs Stevenson were employed to design works for assimilating the Foss Dyke as far as practicable, both as regards width and depth, to the navigable channel of the Witham. The depth was found to be 3 feet 10 inches, and its breadth in many places was insufficient to admit of two boats passing each other, and for their convenience occasional passing places had been provided. It was resolved to increase the dimensions of the canal, and to repair the whole work. Accordingly it was widened to the minimum breadth of 45 feet, and deepened to the extent of 6 feet throughout. The entrance lock communicating with the River Trent at Torksey was renewed, and a pumping engine was erected for supplying water from the Trent during dry seasons, and thus that ancient canal, which is quoted by Telford and Nimtno as "the oldest artificial canal in Britain," was restored to a state of perfect efficiency, at a cost of $£ 40,000$, and now forms an important connecting link between the Trent and Witham navigations.
Notwithstanding the existence of this early work, how- Bridga ever, and of some others in the country, particularly the witer Sankey Brook navigation, opcned in 1760, it eannot be doubted that the formation of the Bridgewater Canal in Lancaslure, the Act for which was obtained in 1759, was the commencement of British Earge Canal Navigation, of which we propose first to treat, and that Francis, dule of Bridgewater, and Brindlcy the engineer, who wcre its projectors, were the first to give a practical impulse to a class of works whieh, under the guidance mainly of Smeaton, Watt, Jessop, Nimmo, Rennie, and Telford, has been very generally adopted throughout. the country, and has undoubtedly been of vast importanee in promoting its commercial prosperity. ${ }^{4}$

According to Mr Smiles, the barge-canals laid out by Brindley, although not all executed by him, were: ${ }^{5}$ -

It is believed that the length of the inland boat navigations constructed in Britain exceeds 4700 miles, and the system has been extensively carried out both in Europe and America. Many of them were made at great cost through hills and over valleys. The Hareesstlc tunnel on the Grand Trunk Canal, made by Brindley, and efterwards doubled by Telford, is nearly' a mile and a half in length, and the Pont-y-Cyssylte aqueduct, on the Ellesmere Canal, over the Dee, constructed by Telford at a cost of $£ 47,000$, bas nineteen openings 45 feet span, and is elerated 126

[^78]feet above the river, the canal being carried across in a cast-iron trough. ${ }^{1}$

It must be obrious, that to construct a navigable channel through a country varying in level, and affording, perbaps, no great facilities for obtaining a supply of water, infers high engineering skill. Vast rescrvoirs must in some cases be formed for stering the water necessary to supply, during dry seasons, the loss by lockage, leakage, and evaporation. Feeders must be made to lead this water to the canal, hills must be pierced by tunnels, valleys must be crossed on lofty embankments, or spanned by spacious aqueducts, and, above all, the wholo must be conceived and laid out with scrupulous regard to the all-important object of securing the works against injury from an overflow of water during floods, and a consequent inundation of the surrounding country. Moreover, the necessity of laying out the canal in level stretches, and surmounting elevations by means of locks or inciined planes, occurring at intervals, often ocea. sions much difficulty and greatly restricts the resources of the engineer. Taking, then, all these circumstances into consideration, and bearing in mind that canals were the pioneers of railways, we think it may safely be affirmed that the canal engineers of former days had more serious physical difficultics to contend with than are experienced in carrying out the railways of modern times, if we except such works as the Britannia Bridge, the high-level bridge of Newrastle, the Boxhill tunnel, and some other kindred works. But, indeed, their mechanical difficulties were also greater, for the introduction of steam, and its wide-spread application to all engineering operations, afford facilities to the engineers of the present day which Smeaton at the Eddystone, Sterenson at the Bell Rock, and Renuie and Telford in their early navigation works, did not eajoy. The distinguizhed merits of the engincers who practised in the former and at the commencement of the present century, cannot indeed be over-estimated, and had it been within the scope of this article it would have been profitablo and instructive, to have described in detail somo of the grand aqueducts and otber works on the lines of our canals. For this reference is made to the articles Aqueduct, Bridge, Tunnel, and Reservoir, all of which are more or less applicable to the formation of canals. We shall only therefore offer to the student the following summary of engineering principles generally applicable to all eases.

A canal cannot be properly worked without a supply of water calculated to last over the driest season of the year, and in that respect, except as to the quabity of the water, demands all the care requisite in inrestigating the sources of water for supplying towns. If there be no natural lake in the district, available for supply and storage, the engineer must select situations suitable for artificial reservoirs, and the conditions to be attended to in selecting their positions are the same as those for water-works. They must command a sufficient area of drainage to supply the loss by leakage, evaporation, and lockage, due to the length of canal, number and size of the locks, and probable amount of irafic. The capability of the district to afford this supply will depend on the area of the basin drained and the annual amount of rainfall. The oftets fram the reservoirs must be at such an elevation as to convey water to the summit-level of the eanal. The cmbankments for retaining the water must be erected on sites affording a favourable foundation, and, if possible, in situations where an embankment of swall height and length may dam up a large amount of water. It is further necessary to consider whether the subsoil of the valley forming the reserroirs is throughout of so retentipe in nature as to prevent leakage,
and it is essential to provide, by means of waste weirs, for the discharge of floods. The Caledonian Canal, to be afterwards noticed, is in this respect very farourably situated, the whole supply being obtained from natural lochs. In other cases, such as the Union, Forth and Clyde, Crinan, Birmingham, and other canals, it was necessary to construct large reserroirs in which the water is stored in winter and led in feeders to points convenient for supplying the canal in summer. Where the canal communicates with the sea or a tidal river, and where the natural supply is small, as at the Foss Dyke already referred io, the water is raised by pumping engines. It will readily be seen, therefore, hors important it is to reduce to a minimum the loss of water due to leakage from deficient workmanship, as well as to lockage of the traffic through the canal, and (while on this subject) it may be stated that the up consumes a greater amount of water than the down traffic, for an ascendeng boat on entering a lock displaces a volume of water equal to its submerged capacity; the water so displaced flows into the lower reach of the canal and the lower gates are closed, the boat is then raised, and on passing into the higher reach of the canal its displacement lost on entering is supplied by water withdrawn from the higher reach. A descending boat, on the other hand, on entering a lock likewise displaces a volume of mater equal to its submerged capacity, but the water in this case flows back into the higher reach of the canal, where it is retained When the gates are closed. Mr Falton gives the consumption of 25 -ton boats through locks of 8 fect lift as about 163 tons of water in ascending, and 103 in descending. ${ }^{2}$ Several proposals hare been made for reducing the loss of water by side ponds to receive part of the rater, but'all such plans delay the traffic and have not come into general use.

The barge-canals constrncted in this country are between Sectional 4 and 5 fect in depth. When the sail in which they were aresso. made was retentive, they were formed as shown in the barge cross-section, fig. l. But when the soil was rorous, clay

Fio. 1.-Section in retentive soil.
puddle was introduced, as shown in fig. 2. Professor Rankine says the depth of water and sectional area of water-way should be such as not to cause any material

increase of the resistance to the motion of the boats beyond what it would encounter in open water, and gires the following rules as fulfilling these conditions:- ,

> Least breadth at bottom $=2 \times$ greatest breadth of boat.
> Least depth of water $=12$ foot + greatest draught of bont. Least area of water-way $=6 \times$ greatest midship section of boak.

In laying out a line of canal the engineer is more restricted than in forming the route of a road or railway, where gradients can be introduced to suit the undulating surface of the country. A canal, on the contrary, must follow rigidly the bases of hills and windings of valleys, to preserve a uniform level, accommodation being made for the road traffic by crecting suitable "fised" and " movable" bridges. It is important. as already stated." to lay out the work in long lerel reaches, and to overcomo

[^79]

elevations in cumulo by gronps of locks at places where it can be most advantagecusly done. This leads to a saving of attendance and expense in working the canal, and canses fewer stoppages to the traffic. But to prevent waste of water the locks must be placed sufficiently far apart, say 100 yards, or an intervening pond or increased width of canal must be furmed, so that a descending boat does not let off more water than the area below will receive without raising its surface so much as to lose the surplus water over the waste weirs. The mode of overcoming the difference of level between the various level reaches is, with few exceptions, by locks, which generally have a lift of 8 or 10 feet, though in some cases it is somewhat greater. The dimensions of the locks ought to be regulated by the traffic; but they should, in order to save water, be as nearly as possible the size of the craft to be passed through them, allowing from 6 inches to a foot of extra breadth and draught of water. The barge-canals in England bave locks about 8 feet in breadth, and from 70 to 80 feet long, and their use in raising or lowering boats from the different reaches is so well known as not to require explanation; and for details as to the construction of the masuary of the chamber and walls, and the timber and iron work of the gates and sluices, reference is made to "Rankine's Eugineering." The water is generally admitted into and flows from cach lock by sluices formed in the gates, and the passage of a boat occupies from three to six minutes, depending on the lift. Sir William Cubitt, on the Severn mavigation, introduced the water through a culvert parallel to the side wall of the lock, and opening in the centre by means of a tunnel, which admits of 16,000 cubic feet of water flowing into or out of the lock in $1 \frac{1}{2}$ minute; and in little more than that time loaded vessels can be passed through. ${ }^{1}$

Inclined planes and perpendicular lifts, which have the adrantage of saving water, were adopted so long ago as 1789 on the Ketling Canal in Sbropshire, and afterwarils on the dukc of Bridgewater's canal. Mr Douglas of New York constructed the Morris Canal in the United States with 23 mclined planes, having gradients of about 1 in 10 , with an average lift of 58 feet. The boats weighed, when loaded, 50 tons, and after being grounded on a carriage, were raised by water-power up the inclines with great case and expedition. The length of the Morris Canal, between the rivers Hudson and Delaware, is 101 miles, and the whole rise and fall is 1557 fect, of which 223 were overcome by locks, and the remaining 1334 by inclined planes. ${ }^{2}$ When first describing this work the author stated that the principal objection to the inclined planes for moving boats was the injury they were apt to sustain in supporting great weights while resting on the cradle. A slimly-built canal boat, 80 feet long, aud loaded with 30 tons, could not be grounded on a smooth surface without straining her timbers, but this objection has to some extent been overcome on an inclined plane constructed by Mr Leslie and Mr Bateman on the Monkland Canal, where the boats are not wholly grounded on the carriage, but are transported in a caisson of boiler-plate containing 2 fect of water, and are thus water-borne. This inclined plane is wrought by two bighpressure steam-engines of 25 horse-power each. The beight is 96 feet, ind the gradient 1 in 10 . The maximum weight rased is 80 tons, and the transit takes about ten minutes. The average number of boats passing over the incline is about 7300 per annum. Mr Green introduced on the Great Western Canal a perpendicular lift of 46 feet. Sir W. Cubitt also introduced three inclined planes, having gradients of 1 in 8, on the Chard Canal, Somersetshire.

[^80]One of these inclines overcomes a rise of 56 :ent; and thes are said th act very sativiactorily. ${ }^{3}$

An essential adjnuct to a canal is a sufficicnt number of Wasto waste-weirs to discharge surplus water accumulating during weirs floods, which, if not provided with an exit, may overflow; the tow-path, and cause a breach in the banks, stoppaye of the traffic, and damage to adjoining lands. The numbori and positions of these waste-weirs mus: depend on the nature of the country through which the canal passea.: Wherever the canal crosses a stream a waste-weir should lo formed in the aqueduct; but independently of this tho engineer must consider at what points large influxes of Water may be apprehended, and must at such places not oniy form waste-weirs of sufficient size to carry off. the surplus, but form artificial courses for its discharge into the nearest streams. These waste-weirs are placed at the top water-level of the canal, so that when a flood occurs the water flows over them and thus relieves the banks. The want of these bas occasioned overflows of canal banks, attended with very serious injury to the works, ard lengthened suspension of the trafic; and attention to th:s particolar part of conal construction is of essential importance.

Stop-gates are necessary at short intervals of a fow miles for the purpase of dividing the canal into isolated reaches, so that in the cvent of a bresch the gates may be shut, and the discharge of water confined to the small reach intercepted between two of them, instead of extending through. out the whole line of canal. In broad canals these stopgates may be formed like the gatee of locks, two pairs of gates being made to shut in opposite directions. In small works. they may be made of thick planks slipped into grooves formed at the narrow points of the canal nuder road bridges, or at contractions made at intermediate po'nts to receive them. Self-acting stop-gates havo been tried, but their success has not been euch as to lead to their goneral introduction. When repairs have to he mado stop-gateg allow of the water being run off from a short reach, and afterwards restored with comparatively little interruption to the traffic. Their value in obviating scrious accidents has been well exemplified in the author's own experience. The water during a flood flowed over the towing-path of the Union Canal connecting Edinburgh and Glasgow, and the uncontrolled current carried away the embankinent and the soil on which it rested to the depth of 80 ieet, as measured from the top water-level. The stop-gates were promptls applied, and the discharge confined to a short reach of a few miles, otherwise the injury (which was, even in its modified form, very considerable) would have been encrmous, not only to the canal works but to the adjoining lands.

For tho purpose of draining off the water to admit of repairs after the stop-gates have been closed, it is proper th introduce, at convenient situations, a series of exits call 3 "ofllets," which aro pipes placed at the level of the bottora of the canal, and fitted with valves which can be opened when required. Thege oftets are gencrally formed at aqueducts or bridges crossing rivers, where the contents of the canal can be run off into the bed of the stream, the stop-gates on both sides being closed so as to isolate the part of the canal from which the water is withdrawn.
In executing the work, provision must be made for the proper drainage of the tow-path, which should be made highest at tho side neat the canal, and sloped with a gentle inclination towards the outside. The drainage of the tow path should bo carried to a sky drain, and at intervals passed below it into the canal, as shown in 6 g 3.

[^81]The preservation of the banks at the water-tine is also a
 matter of inportance. "Pitching" with stenes and "facing"
with brushwood are empleyed, and in the author's expernence the laiter, if well sxecuted, ferms an efonomical and effectual protertion.

Fio. 3. - Showing Drainage of Tow-path.
In forming the alveus or bed of the canal care must be taken, especialiy on embankments, and even in cuttings where the soil is porous, to provide agamst leakage by using puddle, as shown as fig 2. An all-mportant matter, as affecting the censtruction of the works, is the pessibility of getting clay in the district, or such other soll as may be werked into pudale, on the geod quality of which the stability of the reservorr embankinents and the imperviousaess of the beds and banks of the canal mamly depend.

These are the ouly points of general application, in the construction of canals, to which refcrence can bere bo made; and in applying them to each case the enginecr must be guided, first, by theorctical knowledge, to bo acquired by a careful study of his profession; and, secondly, by that knowledge which can be gamed only by experience.
Made of conducting raffle on enuala.

Net a little has been written on the best mode of conducting traffic on canals, and the reader whe wishes to study the snbject fully is referred to the ohservations made by Mr Walker and Mr Geerge Renne in the Transactions of the Reyal Society and of the Institution of Civil Engineers, -nd especially to the valuable rescarches on hydrodynamics by Mr J. Scett Russell in the Transactions of the Rocal Society of Edinburgh. Mr Russell while experimenting on propelling beats at high speeds found that the primary wave of displacement produced by the motien of a boat moves with a velocity due to the depth of water in the canal, being the relocity that 18 due to gravity acting through a height equal to the depth of the contre of gravity of the cross-section of the channel bolew the surface of the fuid. The velocity is in no degree dependent on the form or velocity of the bedy which gencrates it, or on the breadth of the canal. A wave that had a relocity of 8 miles an hour was traced to a point where the clannel hecame deeper, and its velocity was suddenly accelerated, the channel became alternately narrower and wider without producing any sensible cffect, but when the ware once more reached that part of the channel which was of the ongmal depth it resumed its original velocity. A fact of great practical value was establislied, thet a boat, uf rased by a sudden effert to the top of a primary wave, could be drawn along at 10 miles an hour with less fatgue to the herses than if drawn at the rate of 0 miles, while the waste was 1ess severe on the banks of the camal. These mrestgations wers mado befere the general establishnent of ralways, when awift canal traveling scemcd a desirable attamment. But thengh loats propelled at high speed on canals have given place to raizuay carrages, yet the canal traflic at slow speds must he conducted, and the cheapest means of effecting the "hanlage" with the least danger to tho hanks is still on inportant inquiry, and has withe tho last few years uforded matter for some highly kiteresting papers and sinteroents in the Procedings of the Institution of Civil

Engineers. These are communications on the emplogment of steam-power on the Gloucester and Berkeley Canal, by G. W. B. Clegram ; ${ }^{1}$ on the Grand Canal, Ireland, by Mr Healy ; ${ }^{2}$ on the Forth and Clyde, by Mr J. Milne; ${ }^{3}$ and on the Arre and Calder, by Mr W. F. Barthelemew, to all which reference is made.

One great objection to high speeds on canals is the wasting of the banks by the displacement produced in propelling the vessel through the water. The wasting, indeed, takes place even with very lew speeds, and as a matter ef canal engnecring it is necessary to notice it. To give an instance of the effect on the large scale:-Mr Ure says that the river steamers on the Clyde, geing at a speed of 8 to 9 niles per hour, preduce a swell which commences to rise when the vessel is " 2 or 3 miles off,"-a circumstance which was first noticed by Mr J. Scett Russell in 1837. The swell gradually increases as the steamer approaches, and at last becoming a wave of translation, it breaks on the river walls nearly abreast of the vessel, following ber on her course aleng the river, as a violent breakiog wave, measuring 8 or 10 fect from the hellew in the channel to the crest on the wall. A ceating of heary whinstone rock, from 2 to 3 feet thick, extording from low to high watermark is feund necessary to enable the banks to withstand it Mr Ure alse found that the action of passing steamers, though very destructive to the banks, was useful in stirring up the mud from the bettem, which was carried off by the currents.to an extent which be estimates to be from 20 to 25 per cent. of the whole quantity dredged from one particular part of the river where he carefully measured it. It will at once be apparent, that howerer inconvenient these wasting waves may be in a river, the waves in a canal, thengh smaller, are nevertheless a source of greater anxiety, acting as they do in a narrow artificial channel, fermed at some places on high embanknents, the failure of which would be attended with serious censequences.

The wasting on canals where the traffic is cenductea at a moderate speed is found to extend not more than 18 inches to 2 feet, that is 1 feot above and below the water-line, and Mr Clegram states that he has feund on the Gloucester Canal that a facing of stenc filled into a recess cut in the banks formed a complete pretcction. Broshwood, as already neticed, is alse an effectual remedy.

What has recently led to the consideration of the best S:emp means of protecting the banks of canals is the substitution texing.0 of steam for horse power in working the traffic, which has been entirely successful. The first attempt at using stcampower en canals was made on the Forth and Clyde Canal with Symingten's boat, in 3789 . Vanous experiments were made te introduce tugs, but these were ultumately abandoned in faveur of steam-lighters, which now in great numbers navigate the canal, and make passages to Letth, Greenock, and ether trading ports en the Firths of Forth and Clyde.

This system, however, would not suit the trade of the steam. Gloucester Canal, wheh is chiefly frequented by sea-berne towing on ressels, and stean-toming bas been introduced on that Gloucestis navigation. The following extracts from Mr Clegranis Caval paper ${ }^{5}$ seem generally apilicable to all narigations where toming is to be adrpted. He says the ship canal leads from the Severn at Gloucester to the Severn at Sharpness Point. It is $16 \frac{1}{2}$ niles in length, and has a depth varying from 18 to 18 fect 6 nehes, narigable ly vessels of 700 tens register. Pror to the year 1860 all sea-going ressels passing through were towed by horses, the number of herses being regulated ly a scale varyag from 1 horse for a vessel of 40 tons to 9 harses for a vessel of 420 tons. The cost of this amounted Eencrelly to about one farthing per ton per mile on th.

[^82]register tonnage of the vessel. The speed varied from one mile to three miles per hour, accopding to the size of the vessel and the state of the weather.

In 1860 steam-tugs were placed upon the canal to do this work. They are iron boats, 65 feet long, 12 feet beam, and draw 6 feet 3 inches of water, fitted with high-pressure engines; the diameters of the eylinders are 20 inches, stroke of 18 inches, pressure of the steam 32 it on the inch, and the cost of each $£ 3000$. Nearly the whole of the sea going craft are now towed by these tugs. The vessels range from 30 tons up to 700 tons register, with a draught of water from 6 to 16 feet. They are towed either singly or in a team, according to circumstanees. Sometimes as many as thitteen loaded vessels of from 50 to 100 tons register have been towed by one tug at the rate of 3 to $3 \frac{1}{2}$ miles an hour. The hea viest load drawn by any one tug has been 1690 tons of goods in three vessels. Their draught of water varied from 14 feet 6 incles to 15 feet 6 inches, and they were taken the whole length of the canal at the speed of 2 miles an hour. The smaller vessels are towed at a speed of 4 miles an hour, to which as a rule they are restricted.

The employment of steam for towing has been found very advantageoue. The vessels rub less against the banks, the power being right ahead, and not on one side as with herses. The wear on the ropes used in traeking is reduced, the speed is increased, aid ressels can be moved along the canal in weather which would have prevented horses doing the work. With a strong wind athwart tha canal vessels cannot be tracked in train; they must then be taken singly, or at most two at a time. When vessels are towed in train, as a rule the largest and heariest draughted are placed first, and the hawser leadiog from the first vessel to the tug is taken from each side of the bow. With this arrangement, and a skilful management of the tug, the vessels can be kept fairly in the line of the canal.

The only disadvantage of this system, on a canal the sides of whieh are unprotected, is the additional wear eaused by the run of water between the sides of the large vessels and the banks. Such vesselp occupy a large part of the sectional area of the canal, and being taken along at a much greater speed than they were by horses the wash of water is more prejudieial. When the vessels or trains of vessels are heavy, and the tugs are working up to their full power and speed, the water thrown baek by the action of the serew against the bow of the first vessel is thrown off by it to the banks on either side, and is the cause of considerable wash. This has been attempted to be remedied by placing the first vessel farther back from the tug; but in praetice it is found that a diatance of 40 to 50 feet is the farthest separation that can be allowed without sacrificing that hold between the two which prevents the vessel shecring from side to side. The first vessel being kept steadily in ber course, the others follow without much difficulty.

The employment of tugs has afforded an unexpected facility fer cleansing the canal from deposit of mud. Furmerly it was difficult to remove this deposit from the slopes of tha banks on which it collected, sometimes inconvenicutly contraeting the capacity of the canal. Siace the vessels have been moved at greater speed and in trains this deposit has been eatirely removed from the slopes to the bettom of the canal, whence it can readily be taken out by the dredger.

But though all efforts to improve barge-canals can never bring them to compete with railways in the quick conveyanee of passengers, it is surprising to find in how many places they still command an enormous traffic in goods and minerals, and thus act as a valuable relief to orerburdened railways. This is specially the case in tho manuincturing districts of Euglaud, where the Birmingham Grand Junction ead othe: carale seem to carry on as brisk a trade as timo
did in days gone by when they had no competitors bat the stage coach and the carrier's van.
These remarks, bowever, as to railway competition do Shp not apply to Ship-canals, which, undisturbed by competiag canule schemes, retain all the monopoly they ever possessed; and indeed, in the recent construction of the Suez and New Ansterdam cauals, they hare acquired an importance before unclaimed for works of that elass-an importauce which entitles them to the highest consideration in any engineering treatise; for, apart from their structural interest to the engineer, their usefulness in affording a short and sheltered passage for sca-borne vessels bas long been acknowledged and can bardly be orer-estimated.

The Langucdoc Canal already mentioned, by a short passage of 145 miles, saves a sea voyage of upwards of 2000 miles throngh the Straits of Gibraltar. By the Forth and Clyde Canal sea-borne ressels, not exceeding $8 \frac{1}{2}$ feet draught of water, can pass from opposite coasts of Scotland, through the heart of the country, by 35 miles of inland navigation and aroid the dangers of the Pentland Firth; the Crinan Canal substitutes a short inland routo of 9 miles for a sea voyage round the Mull of Kintyre of about 70 miles; and the last great canal between Suez and Alexandria saves ressels a tedious yoyage of 3750 miles on their route to Iudia.

To most of the early ship canals that have been executed, the principles of construction already atated are generally applieable-the depth of water and dimensions of the locks and all other works being increased to suit the larger size of craft which use them, and therefore further notice of such details is not required. But having still to illustrate the larger class of works, we proceed to describe some of the.largest of the ship-canals already constructed and projected, and in doing so, we shall consider shipcanals under the following three elasses :-

First, Canals which on their route from sea to sea Thr e trarerse high districts, surmeunting the elevation by locks claseses of: supptied by natural lakes or artificial reservoirs, such as the ship canalieLanguedoc in France, or the Caledonian Canal in Seotland;
Second, Canals in low-lying districts, which are carried on a uniform water-level from end to end, and are defended against the inroad of the sea at high water by deuble acting locks, which also retain the canal water at low tide, such as the canals of Holland and other low conntries;
Third, Canals, of which the Suez is the only example yet made, without locks at either end, and communicating frecly with the sea, from which it derives its water supply.
The Caledenian Canal in Scotland is as good a specimen Cairdonias of works of the first class as can be selected.
In 1773 Jaines Watt was employed to survey the country between the Beauly at Inverness and Loch Eil at the mouth of the river Lochy, a distance of about 60 miles, with the view of forming a ship canal between the two seas, to save about 400 miles of coastiog voyage by the North of Scotland through the stormy Pentland Firth. The district referred to, called the "Great Caledonian Glen," as will be seen from Plate XXXVI., embraces a chain of fresh-water lakes, which, in connection with the surroundiag glens, have afforded an interesting field for the speculations of the geologist; and no doult the first conception of a caval through the district owed its origin to the apparent facilities for' inlaud navigation elich the lakes afforded. ${ }^{1}$ In 1801 Telford was employed by Covernment to repert, adod the ultimate result of that report was the construction of the canal, which was opened in 1823.

The summit-lerel is at Laggan, between Loch Oich and Loch Lochy, whence the drainage flows to the Eastena and Westera seas.

The district which discharges into the castern outlet comprehends an area of about 700 square miles, chiefly of high mountainous country, intersected by streams and lakes, which discharge themselves into Loch Oich, Loch Ness, and Loch Doughfour, and thence are conveyed into the Moray Firth by the River Ness. Loch Oich, the summit-level of the canal, has an area of about 2 square milés, and the present standard level of its surface is understood to be 102 feet ahave the level of mean high water of neap tides in Beauly Firth. It receives the drainage of Loch Quoich and Loch Garry. The waters of Loch Oich are discharged through the River Oich into Loch Ness, which is about 24 miles in length, and has an area of about 30 square miles. Loch Ness receives the waters of the Tarff, the Foyers, and Glenmoriston, and the drainage of numerous other streams and lakes of less note. It discharges its waters through a comparatively narrow neck, called Bona Passage, into the small loch of Doughfour, whence they find an exit to the Beauly and Moray Firths by the River Ness, on which the town and harbour of Inverness are situated.

The drainage of the western district of the country, including Loch Arkegg, finds its way into Loch Lachy, which is about 10 miles long, and thence by the River Lochy to the Western Sea at Loch Eil.
The two locks in Loch Beauly at the northern entrance to the canal are each 170 feet long, 40 feet wide, and have a lift of about 8 feet. At Muirtown, a little further on, are four locks of 170 feet in length and 40 feet in width, having a rise of 32 feet, raising the canal to the level of Loch Ness, which it enters at Bona. The works westward of Loch Ness are an artificial canal with seven locks communicating with Loch Oich. Between Lochs Oich and Iochy are two locks; at the south end of Loch Lochy is a regulating lock, and the canal is carried from this point on the level of Loch Lochy to Banavie, where it descends 64 feet by eight connected locks, forming what is called in the country " Neptune's Staircase ;" finally at Corpach the canal descends by two lacks to the level of Loch Eil.

Of the whole distance, about $37 \frac{1}{2}$ miles are natural lake ravigation, and the remaining 23 are artificial or canal navigation. The canals were made 120 feet in width at top-water level, 50 feet at bottom, and 20 feet in depth. In the course of inquiries as to the state of the canal, onder a remit from the Admiralty, the author found that the sallows at Loch Oich and the cutting at the summit level originally contemplated had not been carried to the full depth, and an additional depth had been gained at that place by raising the level of Loch Oich; but still he was led to the conclusion that the standard depth of the canal cannot be regarded as more than 18 feet, giving access to vessels of 160 feet in length, 38 feet beam, and 17 feet draught of water. ${ }^{1}$

In carrying out this remarkable work Telford had to deal with difficulties of no ordinary kind, in rendering available rugged Highiand lakes, and surmounting the summit-level of the glen. The work, which cost about one million sterling, is a noble moaument of his enginecring skill.

The camals of Holland are specimens of the second class of works to which reference has been made, and of these a very remarkable one is the North Holland Canal, completed in 1825. It was designed by M. Blanken, who. instead of the high rugged Highland glens of Scotland, had to deal with the proverbial lowness of the country, and to protect his works not from the assaults of mountain torrents but from encroachments of the waves, for there vessels are locked durn from the sca into the canal. It extends from

[^83]Ainsterdam to the Helder, is 80 miles in length, and is formed of the cross-section shomn in fig. 4. It enables vessels trading from Amsterdam to avoid the islands and Eand banks of the dangerous Zuider Zee, the passage through which in former times often occupied as many weeks as the transit through the canal now occupies hnurs.

Fio. 4.-Cross-section of North Holland Cansi.
But the North Holland Canal, which has long proved so Amateruseful to the commerce of the district, is destined soon to dare Canol be superseded by the new Amsterdam Canal, a work of great magnitude, which it is proposed to describe as an illustration of ship-canals of the second class. from details furnished by Mr J. C. Hawkshaw, C.E.

The rapid increase in the trade of the ports to the south: ward and eastward of the Helder, effected by the construc. tion of railways throughout Europe, rendered it imperative for the merchants of Amsterdam to provide better communieation with the North Sea than that afforded by tho North Holland ship canal already noticed, or suffer its trade to pass to other ports more favourably sifuafed for over-sea traffic.

In 1865 a company was formed for the purpose of con-' structing a canal from Amsterdam, in nearly a direct line, to the North Sea, threugh Lake I and Wyker Meer, a distance of $16 \frac{1}{2}$ miles. Sir John Hawkshaw and Mr Dirks were appointed the engincers to carry out the work, a plan and section of which are given in Plate XXXVI.

The harbour in which the canal terminates in the Nor:b Sea is formed by two piers built of concrete blocks foundal on a deposit of rough basalt. The piers are each 5063 feet in length, and enclose an area of about 260 acres Abont 140 acres of this area are to be dredged to a depth of $26 \frac{1}{4}$ feet, the remainder is to be left at the present depth for the accommodation of small craft and fishing-boats.

From its commencement at the harbour tie canal passes by a deep cutting through a broad belt of sand-hills which protect the whole of this part of the coast of Folland from the inroads of the sea. The cross-section of the canal at this place is shown in fig. 5. This cuttlr.g is about 3 miles

Fio. 5.-Cross-Section of Amsterdam Canal.
in length; the greatest depth of cutting from the surface to the bottom of the canal is 78 fect, and the amount of earthrork excarated is $6,213,000$ cubic yards. On emerging from the sand-hills the canal passes by the village of Velsen, in the, neighbourhood of which it is crossed by the ailway from Ilaarlem to the Helder, and there enters the Wyker Meer, a large tract of tide-covered land. After traversing the Wyker Meer it passes by a cutting of 327,000 cubic yards through the promontory called Buitenhuizen, which separates that Meer from Lake Y, another large tide-covered area. The rest of its course lies through Lako Y as far as Amsterdam.

There are two scts of locks, one set at each end. The North Sea locks are at a distance of about three-quarters of a mile from the North Sea harbour. These locks, as shown. in fig. 6 , have three passages. The central or main one is 60 fect wide and 390 feet lorg, nnd will be furnisheu with : tro pairs of gates at each end, pointing in opposite sirec.
tions, and one pair in the centre. The northernmost side passage for barges is 30 feet long and 34 feet wide, with three pairs of gates; that to the sonth is 227 feet in fength and 40 feet wide, with five pairs of gates.

Fia 6. - Plan of Locks on Amsterdam Canal.
In construeting the canal, which is (1876) now far advanced towards completion, the cuttings were first begun. The material proceeding from these cuttings was deposited so as to form two banks 443 feet apart, through the lakes on each side of the main canal, as shown by the hard lines on the plan, and also to form the banks of the branch canals on either eide. The total length of these banks is $38 \frac{3}{2}$ miles. The nucleus of the bank is formed of sand with a coating of clay, and protected during its pregress with fascines; and when the banks are far enough adranced, the deep channel for the canal is excavated by dredging. The cross-section of the canal and banks through these meers or lakes is shown in fig. 7.

Fig. 7.
The formation of the banks through the Wyker Meer and Lake Y will enable about 12,000 acres of the area, as shown on the plan, which is now occupied by tiesc lakes, to be reclained. For the purpose of this reclamation, and also to provide for the drainage of the land on the margn of the lakes, ineluding a large portion of what was formerly Haarlen Meer, pumps are provided by the company at various points on the main and branch canals. The Canal Company are bound to keep the eurface-water of the canal about 1 foot 7 inches belono sverage high-water level. In order to insure this level being maintained, three large pumps have been erected in connection with the locks hercaifter to be described, on the dam between Amsteriam and the Zuider Zee. They consist of three Appold pumps. the largest of the kind yet made, the fans being 8 fcet in diaructer. Each pump is worked by a separate engine of 90 nominal horse.power. The maximum lift is 9 feet 9 inches, at which the three pumps are capable of discharging 1950 tons a minute; with the ordinary werking lift of $3 \frac{1}{2}$ feet they will discharge 2700 tons a minute.

Lake I extents about $4 \frac{1}{2}$ miles to the eastward of Amsterdam ; and here it was necessary to form a dam with locks for the passage of vessels. The dam crosses Lake Y at a point about 2 miles to the eastward of Amsterdam, where it is contracted to 4265 feet in width. As it was neeessary to eonstruct these locks before completing the dam across Lake Y, a circular cofferdam 590 feet in diameter, consisting. of two rows of piles 49 fect long, was constructed in the tideway, and within this dam the locks were built. Thicse locks have three main passages, each
with five pairs of gates, and one smaller passage with three pairs of gates, arranged mueh in the same manner as the North Sea locks in fig. 6. The whole of the masonry and brickwork for these locks and sluiceways was founded on bearing-piles, upwards of 10,000 in number. The bottom where the cofferdam was placed consisted of mud, and some difficulty was experienced in maintaining it till the work was completed. The dam across Lake Y , as shown in section, fig. 8, consists of clay and sand, placed on and

Fic. 8.-Section of Dam scross Lake Y.
protected at the sides by large masses of wicker-work, which is afterwards covered with basalt in the manner usually adopted in Holland.

All the lock gates at both ends of the canal pointing seawards:are of malleable iron; the gates pointing iniwards towards the canal are of wood. The necessity, for drainage purposes, of maintaining the surface water of the canal at the preseribed low level calls for a suffcient barrier being provided against the sea at both ends, as the sea-level will not unfrequently, at high water, bo several feet above the level of the canal. This necessity, as well as the difference of level and periods of high wate: in the Zuider Zee and the North Sea, required a totally different design from the Suez Canal, to be aiterwards described. The contract sum for the exceution of the Amsterdam Canal is $£ 2,250,000$, and it is expected that it will be ready for traftic un 1877 .
Of the third class of werks there is, as yet, only a single example in the Suez Canal, one of the most remarkable engneering works of modern times; but though it is called a cinal, it bears little resemblance to the works we have described under that name, for it has neither locks, gates, reservoirs, or punping engues, nor has it, indeed, anything in common with canals, except that it affords a short route for sea-borne shals. It is in fact, cerrectly speaking, an artificial strat or arra of the sea, connecting the Mediterranean and the led Sea, from both of which it derives its waicr-suply, and the fuct that the two seas are nearly on the arme level, and the rise of tide very small, allewed this construction to be adopted.
The adea of formug this connecting link between sea and sea is of very ancent orgun, and its author is unknown. It is understond, however, that a water communication for small vessels between the two seas was formed as early as 600 ycars before the Christian era, and existed for a perood of about 1400 years, after whicb it was allowed to fall moto disuse. Baren De Tott in his Memoirs of the Turis and Tartars, ${ }^{1}$ wniten u 1785, after giving quetations from the hastorian Dodorus as to the existence of certan portions of the early work, and ats having been, abandoned in consequence of the supposed difference of lcrel between the two seas, and threatened inundation of Etypt, says there still exist those early traces of worl. "qu'un leger travail rendrait navigable sans y emplóyer d'ecluses et sans menacer l'Eyspte d'inondations." Do Tott's opinien expressed in 1785 has certuinly been carried out, but on a scale and at an expenditure of labour and money far beyond the conccption of the French diplematist.

The idea of restoring this ancient communication on 3

[^84]scale suited to modern times is undersurd to be due to Napoleon I. who, about the elose of the last eentury, obtained a report from M. Lepère, a French engineer, which however was followed by no result, and it remained for M. de Lesseps, in the present day, to realize what were thought the dreams of commercial speculators, by earrying out the long-desired passage between the two seas. But the postponement of the scheme unquestionably favoured the chances of its commercial success, for had the caval been completed even a few gears earlier, comparatively few vessels would have been found to take advantage of it. Masters of sailing-vessels would not from choice have navigated the Mediterranean and encountered the passage through the canal and the tedious and difficult royage of the Red Sea. They would undoubtedly have preferred to round the free seaway of the Cape of Good llope, with all its ocean dangers and excitements, to threading their way through such an inland passage, involving risks of roeks and shoals, protracted calms and contrary winds. But the introduction of ocead-going serew-steamers was an entirely new feature in navigation. Being independent of wind for their propulsion, and being admirably fitted for navigating narrow straits and passages, their rapid and general adoption by all the leading ehipping firms in the world afforded not only a plea, but a necessity for the short communication by the Mediterranean and Red Sea. It was indeed a great achievement to reduce the distance between. Western Europe and India from 11,379 to 7628 miles, equal, according to Admiral Riehards and Colonel Clarke, R.E., to a maving of thirty-six days on the royage; and this is the great result effected by cutting the Suez Canal between the Mediterranean and the Red Sea.

Ms Bateman, C.E., who visited the canal as the repreeentative of the Royal Society, eommunicated to that body a description of the works, in which he gives the following account of the early negotiations of M. Ferdinand Lesseps, who has the eredit of having brought the work to a successful issue: ${ }^{1}$ -
"The project" of M. Ferdinand Lesseps "was to cut a great canal on the level of the tro seas, by the nearest and most practieable ronte, whieh lay along the valley or depression eontaining Lakc Menzaleh, Lake Ballah, Lake Timssh, and the Bitter Lakes. The eharactir of this route was described in. 1830 by General Chesuey, R.A., who examined and drew up a report on the country between the Mediterranean and the Red Sea. At that time a difference of 30 feet between the two seas was still assumed, and alf proposals for canals were laid out on that assumption. General Chescey summed up his report by stating, -'As to the executive part there is but one opinion; there are no serious difficultios; not a single mountain intervenes, ecarcely what deserves to be callod a billock; and in a country where labour can be had without linit, and at a rate infinitely below that of any other part of the world, the expenso would be a moderate one for a single nation, and scarcely worth dividing aunong the great kingdoms of Europe, who wonld all be benefted by the measure.'
"M. Lesseps was well adrised therefore in the route he selected, and (assuming the possibility of keeping open the canal) in the character of the project he proposed.
"From 1840 to 1854 he was oceupied in maturing his project. In the latter year Mahomet Said Pasha became Yiceroy of Eypyt, and aent at once for M. Lesseps to consider with him the propriety of carrying out the work. Tho result of this interitiew was, that on the 30 th of November a commission was signed at Cairo, charging M. I easeps to constitute a eompany named 'The Universal Kuez Canal Company.' In the following year, 1855 , M.

[^85]Lesseps, acting for the Viceroy, invited a number of gentlemen, eminent as directors of public works, as engineers, and distinguished in other ways, to form an Inter-l national Commission for the purpose of eunsidering and reporting on the practicability of the scheme.
"The Commission met in Egypt in December 1855 and" January 1856, and made a careful examination of the harbours in the two seas, and of the interrening desert, and arrived at the conelusion that a ship canal was practicable between the Gulf of Pelusium in the Mediterrauean and the Red Sca ncar Suez. They differed, horrever, as to the mode in which such a canal shomld be constructed. The three English engineering members of the Commission were of opinion that a ship canal, having its surface rased 25 feet a^{3} 隹e the sea-level, and commnnicating with the Bay of Pelusium at one eud and the Red Sea at the other, by means of locks, and supplied with water from the Nile, was the best mode of construetion. The forengn members, on the contrary, beld that a canal baring its battom 27 feet below ses-level, from sea to sea, without any loek, and with harbours at each end, was the best system,-the harbjurs to be formed by piers and dredging out to deep water.
"The Commission met at Paris in June 1850, when the views of the English engineers were rejected, and the report to the Vieeroy recommended the system which has since been earried ont.
"Two years from the date of this report were spent io conferences and preliminary steps before M. Lesseps obtained the necessary funds for carrying out the morks. About half the eapital was subscribed on the Continent. by far the larger portion being taken in France, and the other half was found by the Vieeroy. Further time was decessarily lost in preparation, and it was not till near the clese of 1860 that the work was actually commenced.
"The original concession granted eatraordinary privileges to the Company. It included or contemplated the formation of a 'sweet water' canal for the use of the workmen engaged, and the Company were to become proprietors of all the land which could be irrigated by means of this canal. One of the conditions of the concession also was that the Viceroy should procure forced labour for the execution of the work, and soon after the commencement of operations, and for some time, the number of workmen so engaged amounted to from 25,000 to 30,000 . The work thus commenced steadily proceeded until 1862. when the late. Viceroy, during his visit to this country at the time of the International Exhibition, requested Sir John Hawhshaw. to visit the eanal and report on the condition of the works and the practieability of its being suecessfully completed and maintained. His Bighness's instructions were that Sir John Hawkshaw should make an examination of the works quite independently of the French cumpans and their engineers, and report the results at which he arrived."

We quote these results as given in Sir John Baw kshaw's report, because they show the nature of the diffieulties that bad been raised and the soundness of the advice which Sir John gave-advice which undoubtedly greatly contributed to the successful completion of the work.

The following are given by Sir John as the objections to the work:-

[^86]Having analysed each of these objections, and fully weighed the naguments on which they were bosed, he came to the followivg coaclusions as to the practicability of construction and mainterance:-
" Ist, As regards the engineering construction, there are ne works on the canel presenting on their fece any unasual difficulty of execution, anc there are no contingencics that I con conceive likeis to arise that would introduce diffculties inswmountable by engineering skill.
" $2 d l y$, As regards the maintenence of the canal, I am of opinion that no obstacles rould be met with that would prevent the work, when corlpleted, being maintained with ease and efficiency, and without the necessity of incurring any extraordinary or musual yearly expenditure."
"Saïl Pasha died between the period of Sir John Hawkshaw's examination of the country and the date of his report. Ho was succeeded by his brother, Ismail, the present Viceroy or Khedive, who, alarmed at the largeness and un eertainty of the grants to the Canal Company, of the preprictorship of land which could be irrigated by the sweet water zanal, and anxious to retire from the obligation of finding forced labour for tho construction of the works, refused to ratify or agree to the concessions granted by his brother. The whole question was then referred to the arbitration of the late Emperor of the French, who kindly undertook the task, and awarded the sum of $£ 3,800,000$ to be pail by the Viceroy to the Canal Company as indemnification for the loss they would sustain by the withdrawal of forced or native labour, for the retrocession of large grants of land, and for the abandonment of other privileges attached to the original act of concession. This monev was applied to the prosecution of the works.
"The withdrawal of native labeur invelved very important ehanges in the mode of conducting the works, and oecasioned at the time considerable delay. Mechanical applianees for the removal of the material, and Euronean skilled labeur, had to be substituted; these laal to be recruited from different parts of Europe, and great difficulty was experienced in procuring them. The accessory canals had to be widencd for the conveyance of larger dredgingmachines, and additional dwellings had to be provided for the accommodation of Europcan labourers. Uitimately a!] diffieulties were overcome, and the work procceded."

After the works had been narly completed, the Lords of the Admiralty instructed Admiral Richards, the hydrographer, and Lieutenant-Colonel Clarke, R.E.. to visit Egype, and report as to the condition of the canal. These officers accordingly made a most minute survey of the canal and its terminal larbours, and issucd a most interesting report, ${ }^{1}$ from the information contaned in which the plan of the canal, Plate XXXV'., has been mainly constructed. From this plan it will be seen that the canal extends from Port Said en the Mcaiterrancan to Suez on the Red Sea: and that, as shown by the section, it traverses a comparatively flat country. This route has been selected so as to take allvantage of certain valleys or depressions which are called lakes, but were in fact, jrevious to the construction of the canal, low-lying tracts of country, at some places below the level of the Neditermnenn and Red Seas. These valleys were found to be coaterl with a dcep deposit of salt, and are described as having had all the appearance of being covered with snow, bearing evidence of thicir having been at one period overflowed by the sea. As will be scen from the plan, Lake Menzaleh is next to the Mcditermenen, Lake Timsal about balf-way across the isthmus, and the Bitter lakes nest to the Red Sea. Lake Timsah, whirh is about 5 miles long, and tho Fitter Lakes, about 23 , were yuite dry before the cutting of the canal, and the mater which has converted them into large inland lakes was supplied from the Red Sea and Mediterranean. The water

[^87]began to fow from the Meditermanan ita February is69, and from the Red Sea in July, and by the leginning of October of the same year these riast tracts of country, which had formerly been parcied anci arid valleys, vere converted into greatolakes navigated by vessels of the largest class. It will be seen from the section that the surface of the ground is generally very low, the chiel cuttings being at Serapeum and El Guisr, where the sandy dunes attain ai elevation of about 50 to 60 feet. The cuanmel threus sh tis lakes was ercavated partly by hand labour and parily hy dredging, and for a considerable portion the level of the valieys was so low as to afford sufficient depth withont excaration. The material excarated appears to have heon almost entirely alluvial, and easily removed; the anly rack was met with at El Guisr, where soft gypam oecurred, removable to a considerable extent by dredging, so that ite canal works fresented no physical difficulty.

The whole length of the navigation is 88 geographical miles. Of this distance 66 miles are actual canal, formed by cuttings, 14 miles are made by dredging through the lakes, and 8 miles required no works, the natural depth being equal to that of the canal. Throughout its whole length the canal was intended to have a navigable depth of 26 feet for a milth of 72 feet at the bottom, and to have a width at the top varying according to the claracter of the cuttings. At those places where the cuttings are deef, the slopes were designed to be 2 to 1 , with a surface width at the water-line of about 197 fect, as shown in afg. 9, which

Fig. a.-Crossescction of Suez Canal at El Guisr.
is a cross-section at El Guisr; in the less clevated por tions of the land, where the stuff is softer, the slopes arf increased, giving a surface width of 325 feet. It will te understood that in the lakes the canal consists of a navigable channel of sufficient depth and breadth to adnit the trallic. the surface of the water extending on either side to the edge of the lake. Fig. ${ }^{10}$ shows a cross-section at Lake

Fio. 10.-Cress-section at Menzaleh.
Menzaleh. The decp channel through the lakes is marked by iron beacons on cither side, 250 fect apart, and the Admiralty reporters staie that " in practice it is found more difficult to kecp in the centre while passing through "kese beacons, than it is when between the embankments." At every 5 or 6 miles there is a finising-place, to cnabie large ressels to moor for the night, or to bring-up in order to allow others to pass, all thess movenerts beng regulated by telegraph from Fort Sind, Ismailia, or Suez. Peihaps the most interesting cuestion to the engineer is the action of the tide in the narrow shanal betreen the two scas, atd the observations made on this cehbect are given in the following quotation from the Admitalty report:-
"The tidal observations which we were able to make were necesserily somewhat imperfect from want of time, hut they were made at that period of the moon's age when their efect wodd be greatest: the results show that in the southera portion of tho canal, between Suezand Great Litter Lake, the lidal intluence from the Red Sea iv felt, here baing is sefular flow and ebb, - the food raming in for abont seven nours. and the ebbruming ont for fis hours; at the Suez entrance, the rise at springs, unless effected ! strous wimis, is hetween 5 and 6 feet: abont half way from Suez to the Emaif Bizter Lake, a distance of ofmiles, it is under 2 feet; st tho snoth end of the Small Bitter Lake, a few inches only; while at the so"e? end of the Great Lake there is scarcely any perceptible tidal inlluance. We were informed by the anthoritues at lsmailia, that suce ${ }^{-3}$ e Great Lake has hepn filled the level of Lase Timsab, ntich vis
flled from the Dediterranean in April 1867, has risen 12 centimetres, or about $\&$ inclacs, and that its waters are continually run. ning at a slow rate into the. Mediterranean; certainly this atatement agreed with what we ourselvee remarked, for we always found a current running northward from Lake Timsah at the rate of from half a mile to a mila an hour. Limited, however, as thesa tidal obeervations were, they were taken with great care, and appear euff. cient to ehow that, except at the Sues end, the tides will not materially affect the passage of vessels; at thet end, therefore, large ressels must regalate their tims of passing ; indeed, the greatest difficulty which will be experienced will bo not from the tides, but from the preveiling north-east wind in the canal, which will make close eteerage difficult in going from north to south."

It thus appears that the tidal column of 5 feet range in the Red Sea is reduced to 2 feet at tho distance of 6 miles, and is practically annihilated by the wide expanse of the Bitter Jakes. But it would be highly interesting to have this conclusion confirmed by further systematic tidal observations.
In executing this otrange work of the desert, and converting dry eands into narigable lakes, it is stated that there have been about eighty millions of cubic yards of matcrial excavated, and at one time sixty dredging-machines and vearly 30,000 labourers were employed. For their cee a supply of fresh water was conveyed from the Nile at Cairo, and distribnted along the whole length of the canal, a work which of itself was one of no small magnitude.
The cost of the whole undertaking, including the harbours, is stated to have been about $£ 20,000,000$. The terminal harbours are important adjuncts of this great work. That on the Mediterranean is Port Said, which is formed by two breakvaters constructed of concrete blocks, the western one 6910 feet in length and the eastern 6020 fect, enclosing an area of about 450 acres, with an average depth of only 13 or 14 feet, excepting in the channel leading to the canal, where the depth is 25 to 28 feet. The entrance to the canal at Suez is also protected by a breakwater, and in connection with the harbour at this place there are two large basins and a dry dock.

The canal may be regarded as a highway for steamers of 400 feet in length and 50 feet beam. A delay of three days is calculated on for the passage across from Port Said to Suez

It is satisfactory to learn from the report of Commander Whartun, of E.M.S. "Shearwater," "thai the canal retains its depth of water. That report states ihat "comparing goneraliy the depth of the canai in 1873 and 1875 it seems that it is in about the same condition, with perhaps a slight balance in favour of increasod depth not; while its average minimum may be stated at 26 feet, there are yet considerable tracts whero 25 feet and erea es listie as 24 feet will bo prased over." Tho survey of Lieutenadt Millard. also reported to the Admirulty in 1875, shows that at the entrince to Port Sald harbour the 27,30 , and 33 feet contoyr lines were seaward of those obtained before, proving that some shallowing of the water at tho cntrance has taken place.

The use mado of the canal may be judged of from the Erowing table of the traffic passing through since its commencement ${ }^{1}$:-

Tear.	Number of Vessels.	Grass Tonnage.	Recelpts.
1870	486	651,915	$£ 206,373$
1871	765	$1,142,200$	359,748
1872	$\mathbf{1 0 8 2}$	$1,744,481$	656,303
1873	1178	$2,085,072$	915,822
1874	1264	$8,423,672$	994,375

The tonnage has thus been quadrupled in five years; and the best means of enlarging thie canal to accommodate increas-

[^88]ing trade must soon become an mportant question ior its owners.
Such works as the ship canals we have been descrîing entirely revolutionize ocean navigation, and consequently dennand the zealous attention of all nations whose interests they seem to affect. Of this zealous watchfulness the interest taken by the Powers of Europe in the distribution of the property in the Suez Canal may be cited as an example. But notwithstanding the difficulties, legal and political, which the execution of such works are almost sure to create by severing continents beiore united, and connecting seas before separated by thousands of miles of exposed navigation, we may safely conclude that wherevci the perils and delays of ocean sailing can be lessened by forming canals these valuable helps to navigation will at all hazards be carried out. Viewing then the subject prospectively, we offer no apology for noticing trwo important short sea passages which, though still une eceuted, will doubtless in some form be eventually carried out.

One of these canals is designed to obviate the narigation fropoces of the dangerons strait between Ceylon and the mainland Yum mon of India, which is shallors and narrow, and in some states cana.. of the wind bes a violent current, so that it can only be navigated by vessels of small draught. Ships of the larger class have to circumnavigate Ceylon in making their passages to the eastern section of Hivdustan. The importance of aroiding this detonr round Ceylon of 350 reiles of exposcd navigation in the direct Suez route to Calcutaz and Madras will be readily acknowledged, and the execution of the work cannot long be delayed.
The strait to which we allude is the Paumben passage leading irom the Gulf of Manaar on the west to Palk Ray on the east, as shown in fig. 11 ,aod many attempts have been made by blasting to clear away the rocky obstructions that at present render its narigation dangerous. But in order to provide a safe passage of the strait between Ceylon and India for the ships which now navigate the Suez Canal, nothing will suffice but a canal affording the same depth and width, though very much shorter in length than its great pioneer in shortening ocean sailing; and accordingly surveys have been made and schemes have been proposed to effect this important izaprovement. Mr George Rohertson, Civil Eagineer, when inspectiag the harbours oi India, was asked by the British Governmeut to visit the locality and report on these schemes; and from his Report on Indian Harbours wo find that the site he selected as most suitatle is through the island of hamaseram, about a mile east from Paumben lighthouse. The distance across from sea to sea is about 2 miles, the ground keing a flat sandy phain, raised on an averige about i ieet above high water, and from the bering that have been made it is not espected that much rock will be found in the course of the casal. In order to assimilate it to the Suez Canal the navigable deptb should if pussible be about 26 feet. On the zorth side the distance from high water mark to 30 fect at low vater iz, according to a chast by the SurveyorGeneral at Colombo, upwards of a mile; on the south side the distance to the same depth is still greater, so that very considcrable works of dredging will be necessary in forming and aftervards maintaining tlie entrances to the canal. The south cond of the canal is under shelter of a coral reef, but the north end may perhaps require to be protected by break. waters. The cost of cutting the canal has been named at $£ 40,000$.

The other scheme to whicle wo referred has a far figher Attantic importance, its object being to separate the continents of add aceioc North and South America, and to give a frce navigation capai between the Atiantic and the Pacific Occans, by oreroviuing the physical difficulties presented by the climate and the geonecical formation of the Isthmus that separates the two
eoas, to which has to be added the problem of making and mantauning a deep-water channel from the ocean to the entrances to the canal
This bold scheme, first proposed in the 16th century, f its at various intervals been the subject of many deputations and much correspondence between the American and Suropean powers; and mure recently, in 1845, when Louis Napoleon was confined as a state prisoner at Ham, be spent much of his exile in investigating its practicability, and in making arrangements for carrying out, under the name of the "Napoleon Interoceanic Canal," a passage between the two seas from Port San Juan to Port Realejo. But we bave not space to reeord the various early attempts to
realize this project, and must therefore conine our remarks to giving an idea of the present state of negotiations regarding it.
The recent enormous growth of Californian trade bas led to the revived consideration of the seheme by the United States of America, who would be the greatest gainers by the work, and therefore are its most natural promoters; and what we propose is to give a sketch of the present state of the question, as afforded by reports and documents recently issued by the Government of the United States, from which alone authentic information can be derived.
It appears from these doeuments that two routes have reeently been investigated :- Firsst, that of the Isthmus of

Fio. 11.-Shozing Suez Caral and Proposed Canal at Ceylon.

Pmposed
 Oarien
 Cuabl.

Larien, shown in fig. 12, under the direction of Commander Selfridge, U.S.N.; and second, that of Nicaragua, also shown in fig. 12, uader the direction of Commander Lull, U.S.N. To both of these expeditions were attached a large staff, including maval offieers, eivil engineers, surveyors, mineralogists, de., and their surveys appar to have extended over the years 1871, 1892, and 1873.
The results of these surveys are thus summarized in the report of the ミerretary to the Navy subritted to the Government of the $1 ;$-itcd States in 1873 , from which we take the following infurnation. Of the Darien route, it is said that it ineludes 100 miles of navigation of the River Atra:0, which has been carefully scunded, and found to be fully capable of being navigated by the larcest class of oca.insteamers. Between Atrato and the Pacifie a canal or artificial cut must be formed of 2 S miles in length. The canal for 22 miles of this distance passes througb a plain having a gradual rise of 90 feet. There will then reman 6 miles to the Paeifie, three of which will be in moderate open catting, and 3 nuiles will be tunneling. It is estimated that the work will cest between $£ 10,400,000$ and £12,600,000, and that it can be conipleted in ten years. T:e tunnel, being for the passage of ships of the largest siza, is propused to be 112 feet ligh and 60 fect wide, and is $t 0$ have 87 feet of clear headway above the surface of the water. - The canal is to be 25 feet in depth, witb a bottom width of 50 fers, and a surface width of 70 feet. The
locks, twenty in number, are to he 427 feet long, 54 feet wide, wath a lift of 10 feet. 'The water suply is to. be derived from the Napipi river, and the gaughts and obser. vations made on evaporation lead to the conchusun that there is a grent excess of water atove the supply required for the canal. Commander Selfrilge gives two alteriative schenies, by which the tunneling is inereased in length and the number of the locks diminished, at an estimatud cost of from $\mathcal{£} 17,000,000$ to $\mathcal{S} 18,000,000$ respectively.
The cxploration of the Nicaraguan route, uniler Com- roponed mander Lull, the position of which is also shown in fig 12, vicaragua is sald to lave proved the existence of a practicable route, Canal. banng Lake Niearazua as its sumnit-level, being 107 foet above mear tide. It is proposed by this route to connect the lake with the Pacific by a canal 16.3 miles on length, beginning at the month of the Rio del Medio and terninating at lifito. The first 7.5 nides will require an excavation averaging 54 feet in depth, and will be the most expensive part of the whole work. Ten locks and one tide-lock will be required between the lake and the sea. There will bo 56 miles of lake navigation.

Slack-water navigation in the San Juan from its nead to the mouth of San Carlos is considered perfectly feasible, and it is proposed to improve the river by four dams, at Castillo Rapids, Balas Rapids, Macbuca Rayids, and at tho mouth of the San Carlos River, at all of which places there are excellent stes for dams. A short section of canal witb

C A N A L

one lock will te required to get around eash of the upper three dams. From the fourth dam to Greytown in the Caribbean Sea an independent eanal will be required 41.9 miles in length with seven locks, which apparently presents nodifficulty. The total length of the proposed canal is 61.7 miles, and no tunnel is required. The harbour of Greytown has been partially destroyed by a silt which comes from the San Carlos, and others of the lower tributaries of the San Juan, and the branch of the river leading to Greytown has becoms so much filled up that it is now, st the lowest stage of the water, only 324 feet wide and 6 inches deep at the fork. It is proposed to shut of this branch entirely and send all the silt bearing water through the Colorado mouth, which empties into the sea 18 miles from

Greytorn, and to admit to the barbour on!y the water $0^{\text {a }}$ the eanal, which, being drawn from the man river above the mouth of the San Carlos, will be perfectly clean. The harbour then cleared out, will leave nothang to deteriorate it again.

Short breakwaters will be required to protect the entrances from the surf, hoth of which are included in the estirate for the work.

Careful gauging at the lowest stage shows that L.ke Nicaragua, which has a surface area of 2700 square mits, and a dranage area of 8000 square mules, will suphly thity. eight times the maximum possible demand of water.

The depth of water is to be 26 feet, the wadth at botwon 72 feet. and at surface 150 feet. The locks, twenty-ome on

Fig. 12.-Liees of proposed Darien and Nicaragua Canals.
number, with a lift of from 8 to 10 feet, are to be $400 \mid$ taiding permenent deep water through an extensive shallow feet long and 72 feet wide. The estimate is stated at $£ 15,900,000$.
M. Lesseps, in a lecture on the Suez Canal, delivered before the Cociété des Gene de Lettres at Paris, has given it as bis opinion that unless the Atlantic and Pacifie can be united by simply piercing the Isthmus from sea to sea without locks, so at the Suez Canal, the proposed scheme cannot possibly succeed as a commercisl enterprise, because of the inadequacy of a eanal with locks to pase the traffic that will frequent it, and also of the uncertainty of sufficient water to supply the loekage and evaporation. This latter objection, however, seems to be disproved by the researches of the American engineers who have investigated the subject. A further diffeulty arises in maintaining a sufficient bea-water depth to the canal even after it has been formed. On this point the writer of this article, judging from documents prepared under the sanction of the Gevernment of the United States and submitted to him by an authorized offieial of the Covernment, arrived at the conclusion that there are very formidable obstacies to the establishment and huture maintenanee of a deep-water entrance to the proposed Nicareguan Canal ot Greytown in the Caribbean sea. These obstacles involve tbe engineering probleor of maia.
foreshore composed of soft materials and exposed to heavy seas. The reports state "that at Greytown there are now islands where trenty years ago there was water enough to float a frigate." It remains to be seen whether the same difficulties apply to the entrance to the proposed Darien scheme; and, to show that such fears may not be unfounded, we may remind the reader that the difficulties exist, as we have stated, at the Mediterranean entrance to the Suer Caval.
The question as to the best routo for transit between the Atlantic sad Pacifie is, it will be secn, still far from being solved, but the necessity for free access from ses to sea remains an acknowledged fact. Its importance, especially to the United States, but in some degree to all the world, is such that, great as are the enginecring diffieulties, this long-eberished bold idea may yet become a stupendous reality.
(D. s.)

Referenco is made to the following works:-Chapman, On Canal Navigation; Frisi, On Canals: Fulton, On Canal Navigation: Tatham's Economy of Inland Norigation; Vallancy's Trealise on Inland Navigation: Principles and Practice of Canal and River Engineering, by David Stevenson, 2d edition, A. and C. Black, Edinburgh ; Report of the Sacritary of ta Uu:idd Efatis Naey for 1878

Canal, or Canaletto, Antonio (1697-1768), a Veneman painter, born 18th October 1697, was bred with his father, a scene-painter at Venice, and for sorue time followed has father's line of art. In 1719 he went to Rome, where he employed himself chiefly in delineating ancient rums, and particularly studied effects of hight and slade, in wheh he becarne an adept. He was the first painter who made practical use of the camera lucida. On returning home he devoted his povers to views in his natise eity, whieh he painted with a clear and firm touch and the most facile mastery of colour in a deep tone, intro. dueing groups of figures with mueh effect. In his later days be resided some time in England. His pictures, in their partucular range, still reman unrivalled. He died on 20 th August 1768 . Bellotto (commonly narned Bernarde) Canaletto, 1724-1780, was his nepherw and pupil, and painted with deceptire resemblance to the style of the more celebrated master.
CanaNDalgUa, a town in the United States, capital of the county of Ontario in New York, is stuated at the northern end of a lake of the same name, 29 miles S.E. of Rochester by rail, in $42^{\circ} 54^{\prime} \mathrm{N}$. lac. and $77^{\circ} 27^{\prime} \mathrm{W}$. long. It ia a railway junction of some importanee, and bas a court-house, an academy, and two printing-ofices. Its incorporation dates from 1815. The lake is a beautiful sheet of water about 15 miles long, with a breadth varying from less than a mile to more than a mile and a half. It ia about 437 feet above Lake Ontario. The population of the town is 4862 , and of the township 7274.

Canavore. See Kananore.
Canara. See Kanara.
CANARY (Fringilla canaria), a well-known species of Conirostral Bird, belonging to the fanily Fringillide or Fincles. It is a native of the Canary Islands and Madeim, where it occurs abundantly in the wild state, end is of a greyish-brown colour, slightly varied with brighter hues, although never attaining the beautiful plumage of the domestic bird. It was first domesticated in Italy during the 16 th century, and soon spread over Europe, where it is now the most common of cagc-birds. During the 350 years of its domestication, the canary has been the subject of careful artificial selection and of crossing with allied species, the reault being the production of a bird differing widely in the colour of its plurage, and in a fem of its varietiea even in size and form, from the original wild apecies. The prevailing colour of the most admired varieties of the canary is yellow, approaching in some cases to orange, and in others to white; while the most robust birde are those which, in the dusky green of the upper surface of their plumage, ahow a distiuct approach to the wild forms. The least prized are those in which the plumage is irregularly epotted and speckled. In one of the most esteemed varieties, the wing and tail feathers are at first black-a preculiarity, however, which disappears after the first moulting. Size and form have also been modified by domestication, the wild canary being not more than $5 \frac{1}{2}$ inches in length, while a well-known Belgran variety usually measures 8 inches. There are also hooped or bowed canaries, feather-footed forms, and top-knots, the latter having a distinct crest on the bead; but the offspring of two such top-knotted canaries, instead of sbowing an increased development of crest, as might be expected, are invariably bald on the cromn. Most of the varieties, however, of which no fewer than twentyseven were recognized by French breeders so early as the beginning of last century, difer merely in the colour and the markings of the plumage. Hybrids are also common, the canary breeding freely with the siskin, goldinch, citril, greenfinch, and linnet. Some of the bybrids thus profuced, are, aecerding to Darwin. almost completely fertila.
but they do not seem to have given rise to any disunct breed. It is the female canary which is almost invartably employed in crossing, as it is diffioult, if not impossible, to get the females of the allued species to sit on the artificial nests used by breeders. In a state of nature canaries parr, but under domestication the male bird has been residered polygamous, being often put with four or five females; still he is said to show a dintinct preference for the feruale with which he was first mated It ss from the others, bowever, that the best birós are usually obtancd. The canary is very prolifc, producing eges, not exceeding six in number, three or four tumes a year, and in a state of nature it is said to breẹd sull oftener. The wock of bulding the nest, and of incubation, falls chitly on the female, while the duty of feeding the roung resta manly with the cock bird. The natural song of the canary is loud and clear; and in their native groves the miles, especially during the paring season, pour iarth thear song with such ardour as someumes to burst the deicate ressels of the throat. The rales appear to compete with each other in the brilliancy of their melody, in order to attract the females, which, according to Bechstein, always select the best singers for their mates. The canary readily imitates the notes of other birds, and in Germany and especially. Tyrol, where the breeding of canaries gires employment to a large number of people, they are usually placed for this purpose beside the nightingale. In England they are taught in a similar way to imitate the woodlark. Thes are also taught to whistle one or two arrs, thd even to orticulate a few words. The female possesses considerable vocal powers, but her notes are weaker than the male's and her song usually less consecutive.

CANARY ISLANDS, Tae, he in the North Atlantio Ocean, between the parallels of $27^{\circ} 4^{\circ}$ and $29^{\circ} 3^{\circ} \mathrm{N}$. lat., and the meridians in $13^{\circ} 3^{\prime}$ and $18^{\circ} 2^{\circ} \mathrm{W}$. long. The seven principal islands cover an area of 3256 English sq. miles, and had a population of 237,036 in 1860 :-

	Teneri		Palma	$\underset{\substack{\text { Lanta. } \\ \text { rote. }}}{\text { ded }}$	fuerte. renturs.	Goruera mierta
Ar	7	758:3	718.5	323.5	$326 \cdot 1$	169.7
「'op	93,709	68,970	31,138	15.837	10,996	11.

Fuerteventura lies nearest to the African coast, the interval being between 50 and 60 miles. Resides theas there are many islets, most of which are uninhabited.

History. - There is ground for supposing that the Phoeicians were not ignorant of the Canaries. The Romans, in the time of Augustus, received intelligence of them through Juba, king of Mauritania, whose account has been transmitted to us by the elder Pliny. He mentions" Canaria, so called from the ruultitude of dogs of great size," and "Nivaria, takıng its name from perpetual snow, and covered with clouds," doubtless Temerufe. Canaria was said to abound in palms and pine trees. Both Plutarch and Ptolemy speak of the Fortunate Islandy, but their description is so imperfect that it is not clear whether the Madeiras or the Canaries are referred to. There is no farther mention of them until we read of their rediscovery about 1334, by a French vessel driven amengst them by a atorm. A Spanish nobleman thereupen obtained a grant of them, with the title of king, from C'lement VI., but want of means prevented bim from carrying out his project of conquest. Two expeditions subsequently set out from Spanish ports, and returned without having taken possession. At length three vessels, equipped by Jean de Bethencourt, a gentleman of Normandy, sailed from Rocbelle in 1400, and bent their course to the Canaries. He landed at Ianzarote and Fucrteventura, but being opposed by the natives, and finding bimself deficient in means to effect his purpose, he repaired to the court of Castile, and obtaining from Henry JII, a grant of the ialands, with the title of
king, he sailed in 1404 with a strong force, which mastered Lanzarote, Fuerteventura, Gomera, and Hierro, without bloodshed. Being repulsed in his attempts on Palma and Canary, he returned to Europe in 1408 to obtain further assistance. He was well received at the Castilian court, where he was promised aid ; but he died shortly afterwards in France. Bethencourt's nephew had been left governor of the islands, and claimed to succeed to his uncle's rights. Being charged with many acts of misgovernment, he went to Spain to clear himself, and whilst there sold his rights to Don Enrique de Guzman, who, after expending large suins in fruitless endeaveurs to reduce the unconquered islands, sold them to another Spaniard named Paraza. His successers, about 1461, took nominal pessession of Canary and Teneriffe, but the natives effectually resisted their occupation of them. Meantime it appeared that Jean de Bethencourt's nephew had fraudulently made a second sale of the islands to Portugal, and the difference thus arising between the crowns of Spain and Portugal was ended by the cession of the islands to the former. Grand Canary, Teneriffe, and Palma.remaining uasubdued in 1476, Ferdinand and Isabella of Spain compelled. Paraza's successors to sell those islands to the crown; and the following year 1000 men were despatched to reduce them. After much bloodshed, and with reinforcements from the mother country, the Spaniards, under Pedro de Vera, became masters of Grand Cauary in 1483. Palma was conquered in 1491, and Tcueriffe in 1495, by Alonzo de Lugo. All the islands still continue in the possession of Spain.

Inhabitants.-As to the derivation of their original inhabitants, the Guanches, nothing certain is known. The most prebable supposition is that they came from the Edjoining coast of Africa. Pliny states that the islands were uninlabited at the time of which he wrote. If this were so, we might infer, from the absence of any trace of, Mahometanism amongst the people found there by the Spaniards, that the migration took place between the time to which his account refers and the time of the conquest of Jiartary by the Arabs. Many of the Guanches fell in opposing the Spanish invasion, many were sold by the conquerors as slaves, and many conformed to the Poman Catholic faith and intermarried with the Spaniards,-se that all trace of them as a distinct race is lost. They wore said to be of tall stature, and Humboldt styles them the Pategonians of the Old World ; but the skeletons of Gaanches when measured have been found to he less than average slielctons of Europeans. The Guanches embalmed the bedins of their doad, and placed them in caves; and many mummies have licen found at different times in a state of extrome desiccatom, each weighing mot more than 6 or 7 lb . Two inaccossible cares in a vertical rock by the shore, three miles foom Suta Cruz (Teneriffe), are said still to cintain bones. A few worls of the languages spoken by the ancient inhabitants have hen preserved, nad a resemblance of some of them to words of North Africin dialects has been noticed. On the outer hand, the Guanches had customs, such as that of preserving their dead, in which they differed from the Berbers. Conncillor Von Löler, one of the most recent investigators of the question, finds that the names of flaces in the interier of the jsland are gencrally either of Beber or of Teutonic origin, and maintains that the Franches were in nll probability the descendants of Vandal an? Guthic inmigrants.

The present inhabitants are slightly darker than the peaple of Spain, but in other respecis are scarcely disiir gishable. The men are of middle height, well-made, and strong; the women are not striking iu respect of beanty, but they have good cyes and hair. Spanish is the oniy language in use. The people have most of the traits If tho people of the peninsulat; they are sober, but given to
gambling; they are quick, but lazy, faithless, and superstitious. The lower orders are quite illiterate, and the better classes not very enlightened. A few booksellers' shops of a minor description exist at Santa Cruz and Las Palmas. The sustenance of the lower classes is chiefly composed of fish, potatocs, and gofio, which is merely Indian cora or wheat roasted and then, when ground, kneaded with watcr or milk.

Government, \&c.-The Archipelago is pelitically considered part of the province of Andalnsia. The gevernorgeneral, who resides at Santa Craz, has chief command both in civil and military affairs. The actual administration of affairs is in the bands of t wo lieutenant-governors, who reside at Santa Cruz and Las Palmas. Oa the other ishinds are deputy-governors, acting under the lieutenant-governot to whose district they belong. The military force is composed of a battalion of soldiers of the line, numbering about 1000 men; six regiments of militia, amounting to about 8000 men, distributed amongst the islands; and a few companies of artillery. There is a military commande on each island. The great court of appeal sits at Las Palmaa. Courts of first instance sit at Santa Cruz, Orotava, and Las Palmas. The land in great part is strictly entailed. The islands form two bishoprics, Teneriffe and Grand Canary. The whole ecelesiastical revenue is estimated at upwards of $£ 36,000$. The monkisb establishments have beou suppressed, and such of the monssteries and convents as are not kept up for secular purposes are falling to ruin. No form of religion except the Roman Catholic is tolerated.

Climate and Meteorology.-From April to October a north or north-east wind of more or less strength blows upon the islands, commencing at 10 A.M. and continuigg until 5 or 6 P.Mr In summer this wind produces a dense stratum of sea cloud (cumuloni), 1000 feet thick, whose lower surface is about 3500 feet above the sea at Teneriffe. This does not reach up to the mountains, which have on evcry side a stratum of their own, about 500 feet thick, the lower surface being about 2500 feet above the level of the sea Fetween these two distinct strata there is a gap through which persons on a vessel approaching or leaving the islad may obtain a glimpse of the peak. Travellers who ascend the mountains look down on these stationary layers of clouù. The sea cleud conceals from view the other islands, except those whose mountains pierce threugh it. On the south-west cousts there is no reguhar sea or land brecze. In winter they are occasionally risited by a bot south-east wind, calle. Levante, from the African continent, producing various disurgreable conseguences on the exposed parts of the person, besides injuring the vegetaition, cspecinsly on the higher grounds, Locusts have sometmes been brought by thes wind. Ja 1812 it is said that lecnsts corered some fields in Fucrteventura to the depth of 4 feet. Hurncanes, accompanied by waterspouts, sometimes canse much de vastation; but, on the whole, these islands are singularly free from such risitations. The climate generalls is mild, dry, and salubrieus. On the lower grounds the temperature is equable, the daily range seldom excceding 6° Vahr. The rainy seasou occurs at the same period as in southern Europe. The dry scason is at the time of the trade-winds, which extend a few degrees farther north than this latitucle. "In no part of the world is the barometer more susceptihie of atmospheric changes than amongst the Canary Islands. A rapid rise is the sure precursor of an easterly wind, whilst the contrary as certainly indicates a change to west or soutl1-west " (Lieut. Arlett).

Agriculture, Mínufactures, and Commerce. -In ordinary years suficient grain and petatoes are produced to supply the wants of the islands. The soil on the lower part of tho islands, where water is plentiful, is productive; in some places two crops of Iudian corn ard one of potatocs
can be obeamed from tue same pice of grount in a ewiove month. Except at Fuerteventua, the vine is much cultivated, but chielly at Tcneritic, the best wines beng produced on the north-west coust. None, bowever, is considered fo good as the wine of Madera. The most esteemed kind is sent to England under the name of Vidona. The grape disesse made its appearance at the Canaries in 1853 , and destruyed nearly the whole crop. Previously the tutal annual produce was estimated at about 40,000 pipes, of whel 25,000 pipes were produced in Teneritfe. Between 8000 and 9000 pipes were exported. The price per pipe on buard ranged from $£ 8$ to $£ 20$. Sume of the wine is distilled into good brandy. Sumach, canary-seed, aud a little thax are grown. Sweet potatues, maize, gourds, purupkins, tara (Colocusia antiquorum), lentils, Cicer arietinum, beans, kidney beans, and lupines are extensively cultivated for food. From bad managenient the fruits are generally inferior. They include oranges, figs, bananas, dates, jineapples, pomegranates, papaws, guavas, custard apples, and prickly pears. There are no cocva-mut trecs or bread frnit trees. A little oil is obtancd from the olive in Grand Canary. The agave is abundant, and supplies a material for supes, girtbs, de. The leaves of the date palm are made into bats and baskets. A gond deal of urebillichen is gathered for exportation; and the ice-plant is grown in small quantity for barilla. The sugar manufacture, once largely carred on, has fallen before the American and West Indian trade; the only two existing naills are on Palma. Wine having been for soune time so little remuderative, other products have received attention, the chicf being cochincal. This insect, which feeds on a species of cactus, was introduced in 1825, and is now targely produced on sll the islands,-land formerly occupied by grain and vines bergg devoted to its cultivation. In 1873 upwards of $5,724,000 \mathrm{th}$, of the total value of $13,894,205$ pesetas, or about $£ 555,849$, were exported, 1 rincipally to France and England. The silkworm is reared to a sinall extent, chiefly on Palma. Raw silk is exported, and some is manufactured on the spot into stockings, ribands, de. Some linen and woullen stutfs of a cuarse kind are made for home consumption, but the great bulk of the elothing in use is of Dritish manuiacture. The island goats (a peculiar and esteemed breed) furnish milk, from which butter and cheese are made. Pigs and slecep of a small cuarse-woolled breed are numerous. "Horses and cattle ere scarce; domestic fowls and rabbits are plentiful. Asses and mules are much used. A fishery on the Africao coast, which gives employment to many persons, has existed from an early period. The fish, principally bream, is salted and largely consumed et the Canarius.

There is a good deal of intercourse by means of boats and small sailing vessels amongst the different islands. In this way wine, raw sills, cochineal, barilla, and dried fruits are taken to the places of export; and grain is conveyed from those islands where it is abundant to thuse where the supply is deficient. The priacipal foreigo trade is with England, the chief articles of export being winc, cochineal, barilla, and orcbil. The inports consist of iron, metal goods, glass, crockery, leather, and silk, cotton, and woollen manufactures. There is also a considerable trade with the United States and the countries bordering the Mediterrancan. With Hauburg and France an exchange of commodities takes place. The ships employed in this commerce are foreign, chiefly British; but the islanders seod a few vessels of their own with brandy, coarse carthenware, and siils goods to the Spanish West. Indies, bringing back cigars, angar, coffee, rum, cocua (the material of chocolate), and a few other articles. Santa Cruz, Orotava, and Las Palmas are the only ports engaged in foreigntrade; pearly 300 vessels enter these ports in the course of
a year. in 1 ovi tae ports were pratically made frecthe sroall duty of 2 s. per cent. only beng now levied upon imported goods, with the exception of tobacco, which paya 5d. per Ib., and cigara which pay JUd. per It. Spanish steamers ply between Cadiz and Santa Cruz. The Spanish Government packet on its outward voyage to Havana touches at Santa Cruz once a month; and the same port is visited by the English mail stesmers it therr voyages to and from the African coast.

Zoology. - The indigenous mamalals and reptiles of tho Canary Islands are very few in number. Of the former, only species of dog, of swine, of goat, and of sherp nere foum upon the island $b ;$ the Spanisb conquerors. The race of large dogs which is supposed to bave given a nane to Canary has been long extinct. A single skeleton has been funad, which is deposited an one of the muscuns at liaris. The ferret, iabbut, cat, rat, rouse, and two kinds of bat bave become naturalized. The ormithology is more interesting, on atcount at once of the birds native to the islames and the stragglers from the African coast. The latior are chacfly brought over in winter when the wind has blamn for some thme fiom the east. Among the furmer are sume birls of prey, as the African vulture, the falion, the buzzard, the sparrow bawk, and the kite. There are also two species of owl, three species of sea-ruew, the stockdove, quail, ruven, magpie, chaffinch, golulinch, blackeap, canary bird, titnouse, blackbird, bousc-swallow, de. The bird with the sweetest song is a variety of the blackeap ur Sylvia atricapilla. As to the insects, mention may be made of a species of gnat or mosquito which is sometimes troublosume, esprecially to strangers, and the cockroach. The list of reptiles is limited to three lizards and a frug The only fresh-water fish is the eel. Tho marine fishes are not nurnerous, the reason perbaps being that the stcepness of the const does not allow seaweed to grow in sufficient quantity to support the lower forma of marine animal life. Whales and seals are occasionally seen. The cuttle-fish is abundant, and is sought for as an article of food.

Botany. - The position of mountainona islands like the Canarics, in the sub tropical division of the temperate zone, is highly favourable to the development, within a small space, of phants characteristic of both warot and cold climates. Von Buch refers to five regions of vegetation in Tencriffe:-1. From the sea to the beight of 1300 feet. This he styles the African region. The climate in the hottest parts is similar to that of Egypt and southeris Barbary. Here grow, among the introduced plants, the cuffectree, the date-palm, the sugar-cane, the banana, the orange tree, the American agave, and two species of cactus; and among indigenous plants, the dragon trec on the worth-west of Tencriffe. A leafless and fantastic euphorbia, E. canariensis, and a shrubby contosite plant, Cacalia K'leinia, give a character to the landscape about Santa Cruz. 2, Between 1300 fect and 2800 feet. This is the region of Suuth European vegetation, the climate answering to that of sunthern France and central Italy. Here flourish the rine and tho cereals. 3. The region of indigenous trees, including various specics of laurel, an Ardisia, Mer., Rhamnus, Olea, Myrica, and other trees found wild also at Madeira. The clouds rest on this region during the day, and by their humidity support a vegetation amongst the trees, partly of shrubs, and partly of feras. It extends to the height of 4000 feet. 4. The region of the beantiful Pinus canariensis, extending to the beight of 6400 feet; bere the broad-leaved trees have ceased to grow, but arborescent heaths are found throughout its whole extent, and specimens of Juniperus oxycedrus may be met with. 5. The region, of Retama (Cytisus nubigenus), a apecies of white-tlowering and sweet-scented broom, which is found as high as 11,000 feet. At the upper edge of this region a lilac-colonred
violet clings to the soil, and above there is nothing but a little lichen. The number of wild flowering plants may be estimated at 900 , upwards of 270 of which are peculiar to the Canaries. The forms of regetation must in the main be considered North African, since the origin of many of these which they bave in common with Southern Europe should be looked for>in Africa. The character of the vegetation in Lanzarote and Fuertevcotura islands, cemposed of extensive plains and low hills, with few springs, is different from that of the other islaods, whesh are more elevated and bave many springs. The rood is more abuedant, and the vegetation more luxuriant.

Geology.-Recent soundings beve proved that the Canary Islands, like the other island groups of the North Atlantic, are the summits of mountains that are surrounded by an ocean of great depth. The lower and exterior portion of these islands consists for the most part of basalt, compact, vesicular, or scoriaceous, interstratified with beds of variously-coloured tufa. The compact variety of basalt frequently contains ecattered grains and crystals of augite and olivine. In some cases the rock is chiefly trachyte. In Grand Canary the fossils contained in the tufas prove that movements of elevation hegan in the Upper Miecene period. Thes continued down to the Pleistucene period, for raised beaches containing shells of the receot period exist both in Teneriffe and Graad Canary. Simultaneously with the upheaval subaerial eraptions were taking place. Many of the superimposed streams of lava are divided from one another by red baods of laterite, probably ancient soils formed by the decomposition of the surfaces of the lava, and showing that the building up of the islands was a slow process. In Teneriffe the basalt and tufa form an exterior mass, through which in the centre cmerge the felspathic or trachytic rocks forming the nucleus of the volcanic cone, and over them fragments of pumice and streams of modern lava have been thrown. These trachytic recks contain numerous disseminated erystals of glassy felspar. Obsidian is found in several parts of Teneriffe, and is usually spotted with white crystals of felspar. The few minerals that bave been found in the Canary Islands are those charaoteristic of volcanic regions. A little iron exists, but is not turned to account. In no part of Teneriffe has there been discovered any sedimentary rock. The old lavas in Lanzarote are covered by a thin layer of white concretionary limestone, 'the origin of which is obscure. In Grand Canary and Fuerteventura there is also calcareous stone, but its nature does not appear to be known.

Teneriffe, the largest island of the group, lies between Grand Canary and Gomera. It is of irregular shape, 60 miles in length, with an extreme breadth of 30 miles. Not more than ene-seventh is cultivable. A chain of mountains traverses the island in the direction of its greatest lengtl, and in tho midule of the broadest part rises the celebrated Peak, locally known as the Pico de Teyde, whieh, with its supports and spurs, occupies nearly two-thirds of the whole island. It has a double top; the highest point, El Fiton, is 12,200 feet above the sea; the other, Chahorra, connected with the first by a short narrew ridge, has a beight of 9880 feet. They are both orifices in the same grand dome of trachyte. Neither reaches the line of perpetual snow. There is, however, a natural caveru, 11,050 feet above the sea, where snow is preserved all the year Snow remains about four months on the upper part of the Peak.

For more than onc-half of its circhmference the base of the true peak rises from an clevated but comparatively level tract, called by the Spaniards El Llano de la Retama (retama being the name of the Cytisus nubigenus which abounds there), and by the English the Pumice-Stone Plains. On the south-east, south, and sauth-west there is a high curved riden noerlonking the Pumice-Stone Pl : O .
and presenting a very steep face to the Peak. -This is the analogue of the Somma ridge of Vesuvius. Berween the ridge and the sea the slope is more gradual, and there are intervening table-lands. A path used by the country people in going from one side of the island to the other crosses this ridge at the height of 8000 ftet. Peaks rise from the ridge, one of which (Guajara) attains the height of 8900 feet. This ridge (the Llano) and the modern volcanic cone resemble in espect a fortress with circular ramparts and a fosse. The ramparts are ebout 8 miles in diameter, and tower in some places more than 1500 feet above the fosse. They coosist, as shown in the sections, of beds of trachyte, greenstone, and tufa of various thirk: nesses, and intersected by dykes and faults. On the north-west comparatively late eruptions bave filled up the fosse. The modern cone, then, is a pile of lava, pumice, and ashes, thrown up in an ancient crater which had become greatly enlarged either by a falling in of the upper part of the cone, or by a series of violent explosions. Both El Piton and Chahorra bave craters on their summits, from which issue steam and a little sulphureous vapour. The crater on El Piton is partlysurrounded by a wall of lava, which has been made white by the action of sulphureous vapours, and every crevice contains small crystals of sulphur. The thermometer rises considerably when thrust into the ground. The crater is about 300 feet across, with a depth of 70 feet. The average slope of the lower part of the cone is 28°; that of the sugar loaf at the top is 33°. The crater on Chahorra bas a diameter of 4000 feet; its depth is scarcely 150 feet. The view from the bighest point, when no clouda jatervene; is rery extensive. All the islands of the Archi pelago are visible, and the horizon ia 140 , miles distant Neither the coast of Africa nor the ialand of Madeira is within the range of vision.
"The ascent of the Peak" is usually made from-Orotava, on the northern side of the island. After the cultivated grounds are left, the region of arborescent beaths is crossed. This zone extends over the zones of laurels and pines which have here disappeared: Above this is a belt covered with codeso (Adenocarpus frankenioides), nod this extends to the region of retama, the first bushes of which are met with at the pass which admits the traveller into the Llano de la Retama. The'scenery bere is in striking contrast with whät it has previously been. Instead of a steep and rugged ascent among black basaltic rocks, the traveller enters upon gently aloping ground, covered to a considerable depth with white pumice gravel, amongst which spring bushes of retama. The tender shoots of this slirub serve the wild goats for food, and the flowers yield a rich boney to the bees. The entrance to the Llano at a sort of portal (called Portillo) between two basaltic hills, is about 7000 feet above the sea. Between two and three hours are consumed in crossing the Llano to the base of the . cone, the lower part of which (ifonton de Trigo) is ascended to a point 9750 fee: above the ses, called Estancia de los Ingleses, where the mules aro usually left, and wher travellers frequently pass the night. Then comes the Malpays, 1000 feet in altitude, consisting of rough black lava streams broken up into blocks and stones. These cease at the neck called Rambleta, the lip of an older crater over which the lava poured before the sugar-loaf cone of pumice and ashes was threwn up. The pumice is in such quantity that at a distance it bas the appearance of soow coating the Peak. From twenty to twenty-four hours are cousumed in ascending the Seak and returning to Orotara.

To the north-west of the grand cone some thousands of feet below Chahorra, there are many small cones of cruption, showing that the intensity of volcanic nction was greatest on this side. Eastward from the ridge boundiug the Pumice-Stene Dlans exteods a chain of mountaine in
the north-eastern extremity of the island. The highest peaks are Izana (7374 feet), Perejil (6027), and Cuchillo (5467).

We have uo account in histery of eruptions from either crater of the Peak. In 1795 a great quantity of lava was poured out from three vients on the easteru side; and in the same year lava streams issued from a crater near Guinar, halt-way between Santa Cruz and the Peak. In the year 1706, a veat on the nerth-westera side of the Peak discharged a copious stream, which flowed down to the sea, and nearly filled up the barbour of Garachico. For three months in 1798 much lava and other volcanic matter were ejected from orifices to the west of Chahorra.

Santa Cruz de Santiago, on the south coast, is the residence of the governer-general of the Canaries, the civil lieutenant-governor of the Teneriffe district, and the military governor of the island. Its position is $28^{\circ} 28^{\prime} 30^{\prime \prime} \mathrm{N}$. lat. and $16^{\circ} 16^{\prime} \mathrm{W}$. long. It is a well-built and tolerably clean town of 10,830 inhabitants, lying on a small plain bounded by bare and rugged volcanic rocka, amougst which lie narrow valleya called barrancos. Scarcely any vegetation, except thoray cactuses and euphorbias, is to be seen in the veighbourhood. The streets are at right angles to eacin other, narrow, but provided with side walks. There are three public aquarea. The houses are generally luw, with flat roofs; those of the better class are large, with a court-yard in the middle, planted with shrubs in the Spanish fashion. The market is well supplied with meat, fruits, and vegetables. Goed water is brought from the fine forest of Mercedes, which is composed of taurels and other iadigenous trees. A British consul resides in the town, and several Eaglish families. The accommudation for straugers is neither plentiful aor good. The Spanish cloak is much wern by the men, and the white mantilla by the women. Dromedaries brought from Laazarote and Fuerteventura are in use for the coavefance of merchaudise and io agricultural operationa. A good animal costs from 30 to 40 dollars. A few wheel-carriages are in use. Much ground in the neighbourbood is planted with cactus (Opuncia Tuna) for the auppert of the cochincal insect. The town is dofended by several bstteries; snd it was by a abot from one of these that Lurd Nelson lost bis arm, when he unauccesafully attacked the place in 1797. Some English flags lost on that occasion are atill hanging in one of the churches The anchorage is good, and a mole facilitates landing. About 200 vessels annually visit the port. The climate is dry and mederately warm, the sanual mean being 71° Fabr. The mean of the coldest month is $63^{\circ} 8$ Fair., sad of the bottest $78^{\circ} .8$ rabr. Rain falls on an average of thirty-six days in the year.

Layunu (population 4645) stands at the distauce of four miles from Sauta Cruz, in the centre of a plain where much grat: $1 s$ produced, elevated 1725 feet above the sea, and nearly surrounded by mountaius. The situation is beautiful, but the towa itself is gloomy. It contains several deserted convents and a cathedral. Is summer the temperature is refreshingly coul, and for that reason Laguna is then resorted to by the rich of Santa Cruz. In winter it 18 cold and damp, the plain being frequently ladd under water by rain. This is in consequence of three acrial currents ineeting there, from the north, co t, and seuth-west. The mean temperatury of the year is $\left\{3^{\circ}\right.$.2. Fabr. Snow has never been known to fall bere. TL humidity of the atmosphere is ahown by the quantitie of sempervivum growing on the houses and walls.

A good road connects Santa Cruz and Orotara, a town on the aorth coast 25 miles distant. It passes through Laguns and Matanza, -s place deriving its name from the overthrow of the invading Spaniards by the Guanches in 1494. All travellers apeak in terms of warm admiration of the
scenery in this part of the island. Humboldt says he " never beheld a prospect more varied, more attractive, mere harmonivus in the distribution of the masses of verciure and of rocks, than the western coast of Tenerife." Date palms form a striking feature in the landscapes. The town of Orotava (population 3228) is 1040 feet above the sea. The bouses are selidly built, but it has a deserted aspect. A stream of water is conducted through every street. The famous dragun-tree, which so many travellers bave described, was lately destroyed by a storm... Port Orotava, three miles from the town, is a clean place, with between 4000 and : 5000 inhabitants, amongst whom are three or four Englisu families. The streets are broad and the houses well built. The roadstead, protected by a fort and some batteries, affords little or no shelter against wind. The betanic garden, founded by a patriotic Spaaish nobleman, is now in the bauds of a masikec-gardener. At Icod de los Vinos, a pretty town of 4000 nobabitants, farther to the weat, iu a fertile district, is a dragon-tree, the largest now existing in the island. The stem near the ground has a circumference of 38 feet, and its height is upwards of 60 feet. Near the towa is an immense cavern, in which many Guanche bones are to be seen. There are several other towns of less importance, priacipally in the nerth-west, not far from the coast. The luighest inhabited place is Chasna, on a plain mora than 4000 feet above the sea, to the south of the Peak.

Grand Canary (Gran Canaria), the most fertile island Grand of the group, is nearly circular in shape, with a diameter Cunary. of 24 wiles and a circumfereace of 75 miles. The interior is u mass of mountain, reaching to the lieight of about 6000 fect above the sea, with ravines radiating to the shore. Its highest peak, Los Pexos, is 6.400 feet above the sea. Large tracts are covered with aative 1 ine (P. cunariensis). There are several mineral springs on the island. From the nature of the ground only a small part is under cultivation. Las Palmas (population 12,572), the seat of the local Governmeat, is a well-built aad clean town oa a small bay on tho north coast, deriving 1 ts name from the numerous palm trees. Is contains a handsomo cathedral, a bospital, a college, scveral secularized convents, and an alameda or public walk. Its clinate is more humid than that of Santa Cruz. Water is brought into the principal streets and squares by an aqueduct. The harbour, Puerto de la Luz, is defended by several forts, and affords good anchorage and shelter aganost all wioda except the south-east. A British vec-cousul resides bere. Io 1851 the chulera visitsd the island, and 9000 persens died, whilst not a siogle case occurfed on any other island. Telde, the second place in the island, stands on a plain, surrounded by palm trees. At Atalaya, a sbert distance from Laa Palmas, the making of earthenware vessels employ some hundreds of people, who inhabit bolcs made in the tufa.

Palma (correctly, Sau Miguel de la Palma), 26 niles long, Patran with an extreme breadth of 16 miles, lies 67 miles W.N.W. of Teneriffe. It is traversed in ita longest direction (north to south) by a clain of nountains, the higlest of which is 7900 feet above the sea. At the broadest part is a crater nine miles in diameter, known as the Caldera (i.e., cauldron), from which, on ita south-west aide, ruis a ravine to the sea. The bettom of the crater has an elevation above the sea of 2300 fect, and $u t$ is overhung by peaks that rise more than 5000 feet above it. Somu of these pcaks are covered with snow for scveral months in the year. Extensivo woods, principally compesed of chestnut and pine, lic on their flanks. Palna contains several mineral aprings, but there is great want of frcsh water. The only stream which is never dried up is that which issues from the Caldera. In 1677 an eruptien, proceded by an earthquake, took place from a.volcano at the southern catremity of the island, and much damaye
was done by the ejected ashes, stones, and lava. The sugar-cane is grown on an elevated plann called Los Llanos. Sinta Cruz on the eastern coast is the principal town (population 4400). Ribands and stockings are manufactured there from silk produced on the island. The anchorage is good. The cultivated soil is fertile, but the labouring classes are in a wretched couditon, notwithstanding theır industrious habits.
Lanzuole.
Lanzarote, the most easterly of the group, has a length of 31 miles ad a breadth varying from 5 to 10 miles. It is naked and mountainous, bearmg everywhere marks of te voleanic origin. Montaña Blanca, the lighust point, attains a height of 2000 feet, and is cultuvated to the summit. In I730 the appearance of half the island was altered by a volcanic outburst. A volent earthquake preceded the catastroplre, by which nine villages were destroyed In 1825 another voleanic eruption took place accompanied by earthquakes, and two hills were thrown up which still emit smoke. The port of Nas oa the southeast of the island affords safe auchorige. It is protected by two forts. A short distance inland is the town of Arrecife (population 2700), where a British vice-consul resides. The climate is bot and dry. There is onty a single spring of fresh water on the island, and that is in a postion difficult of access. From the total failure of water the inhabitants were once compelled to abandon the island. Grain, wine (which is of superior quality), hrandy, barilla, orchil, and raisias made from the muscatel grape are the principal articles of export. Dromedaries are nsed as beasts of borden. Teguise (population 1000), on the north-west coast, is the residence of the local authorities. A strait of about 6 miles in width scparates Lanzarote from Fuerteventura.

Graciosa, a small uniababited island, is divided from the northeastern extremity of Lanzarote by a channel a mile in width, which afords the most capacious aud only safe harbour for large ships at the Canaries; but basaltic cliffs, 1500 feet high, prevent intercourse with the iahabited part of Lanzarote. A few persons reside on the little island Allegranza, a mass of lava and cinders ejected at various times from a now extinct volcano, the crater of which bas 'still a well-defned cuge.

Furiteren.

 turaFuerteventura lies betreen Lanzarcie and Grand Caary. It bas a length of 52 ailes, and an average width of 12 miles. Though less mountainous than the other islands, its aspect is barren. The springs of fresh water are only two, and they are confined to one valley. Lava streams and other signs of voleanic action abound, bot there bas been no igneons activity since the Spaniards took possession. At each of its extremities are bigh mountains, which send off branches along the coast so as to enclose a large arid plain. The highest peak reacbes 2500 fect. In external appearance, climate, and productions this island greatly resembles Lanzarote. An interval of three years without rain has been known. The wine is bad. Barilla and orehil are largely exported. Oliva, with 970 inhabitants, is the largest town. A smaller place in the centre of the island named Betancura is the residence of the authorities. Cabras, on the eastern coast (population 1000), is the chief port. Dromedaries are bred bere.

Gomera lies 20 miles south-west of Teneriffe. \cdot Its greatest leagth is about 23 roiles. The coast is precipitous and tho interior mountainous, but it has the most wood and is the best watered of the group. The inhabitants are very poor. The palm trees produce excellent dates; and wine, brandy, orchil, raw silk, and dried fruits are sent to Teneriffe. Dromedaries are bred on Gomera in large numbers. St Sebastian, the chief town and a port, has 2240 inhabitants. Columbus resided here before sailing in search of the Now World

Hierro, or Ferro, the most westerly aad the smallest islaod of the group, is somewhat erescent-shaped. Its length in about 18 miles, its greatest breadth about 15 miles, and ${ }^{1+s}$ careumference probably 50 miles. It lies 92 miles W.S.W. of Teneriffe. 1 is coast is buund by high steep rocks, which only adinit of one barbour, but tho interior is tolerably level. Its hill-tops in winter are sometimes wrapped an snow, which, however, does not lie ling. letter aad more abundant grass grows here than on any of the other islatids. The island is exposed to westerly gales, which frequently commit great danage. Fountains of tresh water are fer, but there is a sulphurous spring, with a temperature of 102° Fahr. The once celebrated and almost sacred Til tree, which was reputed to be always distilhag water in great abundance from its leaves, no longer exists. Only a small part of the cultivable land is under tillage, the inhabitants beiag proneipally employed in pasturage. Wine, brandy, orehil, excellent dried figs, and sheep are sent 10 Teneriffe. At Valverde, the principal town, with 4640 inhabitants, the local authorities reside. Geograpbers were formerly in the babit of measuring all longitudes from Ferro, the most westerly laod. known to them. The longitude assigned at first has, bowever, turned out to be erroneous; and the so-called "Longitude of Ferro" does not coircide with the actual longitude of the island.
See Bethencourt, The Canarian, published by the Hakluyt
Society in 1872 ; Vou Buch, Descripion des Res Canaries, 1803 ;
Bory de Saint Viacent, Les Mes FortunEes, 1825 ; Fritsch, Reise-
bilder von den Canarischen Inselin, pubhished as the 22d supple-
mental part to Petermann's Mittheilungen; C. Piazzi Smyth, Tene. riffe, 18 cs.
(J. Y. J.)

CANCALE, a seaport town of France, in the department of Ille-et-Vilaine, 10 miles E. of St Malo, on the bay of St Micbael. A considerable trade is carried on in oysters, which are found in the bay in great numbers and of excellent quality. In 1758 the duke of Marlborongh disembarked an army of 14,000 English bere for the purpose of attacking St Malo, but retired without aecomplishing anything. Population in 1872, 3814.

Cancao, Cancar, or Kang-Kao, othermse known as Poothiamus or Potai-mat, or in Chinese, Ha Thian, the capital of a small state in Western Cambodia, on the eastern side of the Gulf of Siam, at the mouth of the River Cancao or Klong Chanda; in $10^{\circ} 14^{\prime} \mathrm{N}$. lat and $104^{\circ} 55^{\prime}$ E. long. 'The town was once a great centre of Cambodian trade, its port having been declared free by a man of Chinesa origin, whe took advaatage of the civil troubles of Siam to effect his purpose. In 1717, however, the Siamese expelled the merchants who had flocked to the place; and though a considerable exportation of rice and salt is still maiatained, the prosperity of the town has largely diminished. The barbour is shallow, though the river in general has a great depth of water. A canal gives communication with the Mekong River.

CANCER, or Carcinoma (from cancer, or кapetyos, an eatitig uleer), is the rame given to a class of morbid growths or tumours which occur in man, and also in certan of the lower animals. The teria is apt to be some what loosely employed, partly owing to the fact that there are not a few forms of diseased growth respecting which it is still a matter of debate whether they are to be regarded as cancerous or not; and in some reasure also to the difi. culty often experienced in recognizing true cancer particularly in its earlier stages.

The disease exists in various forms, which, although differing from each other in many points, have yct curtain common characters to which they owe their special signif. cance.

1. In structure such growths are composed of nucleated cells and free nuclei together with a milky fuid called
enacer juice, all contained within a more or less dense fibrous stroma or framework.
2. They have no well-defined limits, and they involve all textures in their vicinity, while they also tend to spread by the lymphatics and veins, and to cause similar growths in distant parts or organs called "secondary cancerous growtlis."
3. They are undergoing constant increase, and their progress is usually rapid. ,
4. Pain is a frequent symptom. When present it is generally of a severe and agonizing character, and together with the local effects of the disease and the resulting condition of ill health or "cachexia," bastens the fatal ecrmination to which all cancerous growths tend.
5. When such growths are removed by the surgeon they are apt to return either at the same or at some other part.

The chief varieties of cancer are Scirrhus or bard cancer, Encephaloid or soft cancer, and Epithelial cancer.

Scirrhus is remarkable for its hardness, which is due to the large amount of its fibrous, and relatively small proportion of its cell elements. It is of comparatively slow growth, but it tends to spread and to ulccrate. Its most common seat by far is the female breast, though it sometimes affects internal organs.

Encephaloid is in structure the reverse of the last, its suftness depending on the preponderance of its cell over its fibrous elementa. Its appearance and consistence resemble brain substance (hence its name), and it is of such rapid growth as to have given rise to its being occasionally termed acute cancer. Its most frequent seats are internal organs or the limbs. Ulceration and hxmorrhage aro common accompaniments of this form of cancer.

Epithelial cancer is largely composed of cells rescmbling the natural epithelium of the body. It occurs most frequently in those parta provided with epithelium, such as tho skin and mucous membranes, or where those adjoin, as in the lips. This form of cancer does not spread so rapidly nor produce secondary growths in other organs to the same extent es the two other varieties, but it tends equally with them to involve the neighbouring lymphatic glands, and to recur after removal.

Various views are entertained, and much discussion has taken place respecting the eausation of cancer, but little has as yet been satisfactorily ascertained on the point. By some the discase is held to be from the first an entirely local affection, due to some siteration in tho nutrition of the part, irrespective of any condition of the system gencrally, but in course of time coming to assurne a malignant form, and to infect the system secondarily. Others, on the contrary, maintain that a certain constitutional condition, either as regards the blood or some of the tissues of the body, must exist drior to the development of the disease to which it gives rise. A third view is that the concurrence of a constitutional and a local cause is necessary for the production of cancer. Without entering into an examinaThon of these opinions, it appears cuident that a constitutional element cannot be excluded in view of such wellknown facts as a bereditary liability to cancer, and also of its occasional appearance in several parts of tho body at one tinie.

The hereditary tendency in some persons to this discase has long been reeognized by medical men; but its extent was not accurately ascertained till Sir James Paget affirmed, as the result of his observations, that in one out of every three cases of cancer a family histcry of the malady could he traced, and further, that evea this probably does not represent the whole extent of the hereditary predisposition to cancer.

Cancer is essentially a disease of degeneracy, all statisties going to show its relatively great frequency after middle 4-30
life; and the mortanty, accorang to Dr Waishe, goes on increasing with each decade until the eightieth year. Cancer may, nevertheless, attack persons of any age, and instances of its occurrence are not unknown even among young children. It affects females to a much larger extent than males,-this, however, being fully explained by the greater liability of the female breast and of the nterus to the disease than any other organs of the body; for, apart from this, cancer is quite as common among men. It occurs equally among all ranks of life.

The commencement of a cancerous growth is frequently attributed to some locai injury, as in the case of blows on the breast, or in the well-known instance of cancer of the lip following the irritation produced by smoking a short clay pipe. But it is only as exciting causes that the influence of such injuries can be admitted; and there must still remain, as necessary to account for the disease, some antecedent condition of the system which gives the particular direction to the form of morbid action in the part.

Cancer tends to advance steadily to a fatal termination, but its duration varies in different cases according to the part affected, and according to the varicty of the disease. Soft cancer affecting important organs of the body often proves fatal in a few months, while, on the other hand, cases of hard or epithelial cancer may sometimes last for several years; but no precise limit can be assigned for any form of the disease. In some exceptionslly rare instances cancerous grewth may exist for a great length of time, and underge a kind of spontaneous curer or at least prolonged arrestment.

With respect to the treatment of cancer the only hope of success lies in the entire removal of the disease. This can obviously be only accomplished where the growth affects parts which are within reach of the surgeon. When in such cases the tumour is of receut formation, is limited in its extent, does not largely affect the neighbouring lymphatic glands, and has not as yet produccd any marked deterioration of the general health, the surgeen is warranted in operating. Although it must be admitted that the results nre generally disappointing from the intense tendency of the disease to recur sooner or later, yet the relief to suffering and the prolongation of life obtaiued are alone sufficient to justify operative interference when otherwise admissible, not to mention the fact that in some rare instances a cure has thus been achieved. Nor is the view of the constitutional and hereditary nature of cancer necessarily inconsistent with the adoption of such remedial measures,-since, from the analogy of other hereditary diseases, it is probable that these intluences are more potent at certain times of life, and that by prompt treatment the period of special liability may be tided over, altheugh the inherent tendency cannot be eradicated. When from the extent of the discase or its existence in internal organs no attempt at removal can be inade, all that can be hoped for is the relief of suffering, and it is certain that even in such circumstances much may be done by appropriate medical treatment. It is painful to think how many of the unfortunate sufferers from this malady place themselves in the hands of ignorant persens who profess to bc able to cure cancers, hut whose violent remedies, if they do not actually destroy life, as has often been the case, only aggravate suffering and entail disappuintment.

Cancer is known to occur in many of the lower animals, being probably most common among the domestic tribea, but it presents no special peculiarities as a disease beyond those already referred to.
(J. o. A.)

CANCRIN, Franz Ludwig von (1738-1796), a German mineralogist and metallurgist, was born in 1738 at Breitenbach. After acting as professer and holding municipal offices in Hesse and at Altkenirchen, the nt
tracted the notice of the Eoppress Catherine of Russia, who made him director of the salt-mines of Staraja-Russa, councillur of the Imperial College, and, three years before his death, councillor of atate. He is the author of a large number of works in German on mineralogy and metallurgy, of which the most important, the Grundzuge der Berg. und Salzwerkshunde, published at Frankfort in 13 vols., during the years 1773-1791, has bceo traoslated into several languages He dıed in 1796.

Candahar See Kanoabar.

CANDELABRUM, in Classical Antiquities, a stand for a lamp or lamps, usually of such a height as, when placed on the floor, to be serviceable to a person seated or reclining on a coneb. The material varted according to the circumstances of the owner; only those of bronze have survived; but they are many. Generally the form consists of a heavy base resting on three spreading claws. From the base rises a tall usually fluted stem, branching out at the top into two or more arms from which the lamps were bung. こ. 3 caadelabra of this simple form the unly place a vailable for ornament was the top of the stem, on which a statuette or a group of figures could be plaeed, and it appears that very many of the small bronze statuettes now existing in museums had originally served this purpase. Or the lower part of the stem, immediately above the base, could be converted ato a figure supporting the stem, as may be seen in several very beautiful examples in the British Museum. There was, however, no limit to the extent to which the original form might be departed from, as many of the candelabra from Pompeii show.

- Candesh, or Kandeise. Sce Kilandesh.

CANDIA, tho modera nanre of the island of Crete (q.v.)
CANDIA, formerly the capital and still the most populoas city of Crete, to which it has given its name (see Crete), is situated on the northern shore somewhat nearer the eastern than the western end of the island, in $35^{\circ} 20^{\prime} \mathrm{N}$. lat. and $25^{\circ} 9^{\prime} \mathrm{E}$ long. It is still surrounded by its extensive Venctian fortfications, but they have fallen inta disrepair, and a good part of the town is in a dilapidated condition, mainly from the effects of earthquakes. The princepal buildings are tho pasha's palace, the mosques, which are fourteen in number, the twe Greek churches, the Armenian church, the Capuchin menastery, the baznars, and the baths. Tho town is the seat of a Greek nrchbishop, and one of the churches ranks as a cathedral. The chief trade is in oil and soap, both of whech are of excellent quality; 900 tuns of the former were exported in 1873, and of the latter 40,000 ewts. The coasting tude, which is of considerable impertance, is mainly carried on in Turkish vessels. The manufacture of leather for home consumption is an extensive industry, and wine of geed quality is produced in the neighbourhood. The harbuar, which had grown almost inaccessible, was deepened by Mustapha Pasha between 1820 and 1840. It is formed for the most part by the ancient moles, and was never deep enough to admit the larger vessels even of the Venetians, whieh were accustomed to anchor in the port of the neighbouring island of Standia. A short distance from St George's Gate there is a small village exclusively inhabited by lepers, who number about seventy fanilies. The popuIation of the town is estimated at from 15,000 to 18,000 , about two-thirds being Turks. Candia, or as it is frequently called, Megalo Castro (the Great Fortress), occupies the site of the ancient Meracleion, the seaport of Gnossus, and is still known by that name to the Greek speating population. The ruius of the mother city are situated at the distance of about two miles and a half to the S.E. at the village of Makri Teikos or Long Wall. Fonnded by the Saracens in the 9 th century, Candia was fortified by the Genoese in the 12 th, and was greatlv extended and strengthened by the

Venetians in the 13 th, 14 th, and 15 th centuries It was besieged by the Turks under the Vizier Achmet in 1667 ; and, in spite of a most beroic defence, in which the Venetians lost $30,000 \mathrm{in}$ killed and wounded, it was forced to surrender in 1669 . (Spratt's 7ravels in Crete, 1865.)

CandiaC, Jean Louis Pierre Elizabeta de Montcaly de, a child of astomishing precocity, burn at the Chatteau de Candiac, in the diocese of Nimes in France, in 1719. At four years of age be read Latin, etther printed or in manuscript ; and at six he uaderstood Greek and Hebrew, bad an astonishing acquaintance with arithmetic, history, georraphy, and beraldry, and had read many of the best authors. His extraordinary powers attracted the attention of the learned; and it was for his benefit that the typo graphic. board was contrived by M. Dnmas, who superintended his instruction. He died at Paris in 1726.

CANDLE, a cylindracal rod of solid fatty or waxy matters, enclasing a central fibrous wick, and designed for giving light.

The raw anaterials mosily used for candles are tallow and palm oil; they are also made from wax, cocoa-nut oil, parafin, spermaceti, the mineral wax called ozokerit, de. For urdinary tallow candles, the mutton or ox tallow, taken as soon as possible after separation from the carcase, is sorted, cut into pieces, and melted in a pan; the membranous matters, which are known as graves or cracklings, collect at the esurface; and the liquid tallow, after being strained tbrough a sieve and washed with boiling water, is ready for use. The candles are made enther by dipping or by moulding.

The common tallow candles, however, are greatly inferior, both as regards illuminating power and absolute expense, to those now obtained from raw fats by processcs based on the researches of some French chemists. The stearine or stearic acid industry, which is now of large proportions, originated in M. Chevreul's discovery that fats are composed of one ur more inflammable fatty acids combined with a comparatively uninflammable base, glycerine. Thus, tallow or palm onl consists of palmitic, stearic, and oleic acids, with glycerine. An economical method of separatung the acids and the glycerine was first discovered in 1831 by De Milly, who used lime for the purpose, in place of potash and soda, the substances adopted by Chevreul and Gay-Lussac in their patent of 1825. The factory established by De Milly and Motard near the Barrière de l'Etoile, in Paris, gave the "star candles" their name.

In this saponification by means nf lime, the melted fat is stirred some hours with a mixture of lime (about 14 per cent. of the weight of the fat) and water. The lime combines with the acids to form a soap, and the glycerine, dissolved in the water, is then run off. Next, the lime soap is decomposed, under heat, by means of sufphuric acid, which unites with the lime, the fatty acids being set free. 100 parts of the fatty acids, at this stage, give on an average 45.9 parts of a maxture of stearic and palmitic acids. The acids are washed with water, and allowed to cool and solidify. They are then pressed in press bags, buth in the cold state and with application of heat, to expel olese aeid, whach is liquad. After further purification, they are ready to be made into "stearme candles."

Various other methods of sapmification have come into practice. Thus it was found that the amount of lime in the foregoing process might be greatly reduced if the misture were heated to a higher temperature with superheated stcam. In another method, suluhuric acid is added to the fiat, and the mixture is heated. The black mass produced is washed with boiling water till all the fatty acids are completely freed from sulphuric acid. Then they are distilled with the aid of superheated
etcarn, couled and pressed. This process offers advantages in treatment of impure and refuse fate, but it involves some waste of fat. Distillation has been dispensed with in the simpler process of Da Milly (who found that fat could be saponfied with sulphuric acid without furmation of tarry inatter), and more recently in that of Bock. According to the latter, most neutral fats consist of small fat splierules, with thin albuminous skins. A little strong aulphuric acid introduced, under given conditions, has the effect of partly carbonizing the skins and liberating the deutral fat, which is then ready for decomposition by boiling with water in open vessels. The fatty acids obtained after decomposition (they are about 94 per cent. of the original fat) are of a dark colour, from the presence of portions of the carbonized skins. By suitable oxidation with acid, the colouring matters are rendered precipitable. The fatty acids are afterwards pressed A mucthod of saponification specially suitable for palm oil is that of heating the substance in a still to a temperature of 290° to $315^{\circ} \mathrm{C}$., and passing a current of superheated steam through it. Sapunification by water under high pressure seems to have been first observed by Faraday in 1823; and the process has been developed industrially by Tilghmann, Melsens, and ethers.

The wicks of candles are generally of cotton-yarn, and, to secure good steady combustion, they should be of uniform thickness, and free from knots or loose threads. The parallel threads of the wick are commonly twisted into a loosa spiral. Plaited wicks were introduced by Caimbacérès, his object being to do away with the necessity of snuffing. Through twisting of the plaited wick as it burns, the protruding end is kept just outside the flame, and consumed to ash by the surrounding air. In stcarine candles, the combustibility is often aided by impregnating the weks with a solution of boracic acid; a glass bcad is formed at the top of the burning wick threugh the action of the acid on the censtituents of the ash, and this by its weight turns the wick out of the flame. Another furm of wick for atearine candles is prepared by first winding cotton-yarn round a wire. The covered rod is ioserted in the mould, and after moulding ia withdrawn from its covering, which remains as the wick. Macbinery is now used in making parious kinds of wick.

In the production of candles by dipping, the wicks are first arranged in pendant position on sticks on a frame correaponding in aize to the dipping-trougb, and each frame is auspended from one of a number of cross arms projecting from and jointed with an upright beam which turns on pivets. The workman turos these arms round, and as each frame comes over the dipping-trough, he presses the frame down, so that all the wicks are immersed in the tallow. This coats the wicks with one thin layer, the arms are then turhed round, and each frame, as it successively arrives over the cistern, is treated the same way. The layer of tallow added in the dipping becomes consolidated before the turn comes for that sct of candles to recerve a second dip, and the orms are turned round and the candles dipped agan and agan, until all have acquired the requisite thickness and weight, whicb is known by a counterpoise fixed to the arm.

In the process of moulding, on the other hand, a number of slightly conical pewter moulds (ten to elghteen), finely. polishod inside, are fixed by the larger extremity to a kind of trough, their taper ends projecting downwards. The wick is then fixed in the centre of the mould by being drawn through an aperture at the point of the unould which forms the upper end of the candle, and is retained in its place at the open extremity within the trough by means of a wire or other arrangement. The liquid maternal, being Irured intro the trough, fills all the moulds, and as soon as
it is solidified, any redundance is remosed and the candle drawn out of the mould by the end of the wick which has been held by the wire. Moulding-machines are in commou use, in which as one set of candles is discharged from the moulds, the latter are, by the same movement, rewicked for the next process of filling. A reel of wick is connected with each mould. The discharged candles are beld in a horizontal position, whale a knife severs the wicks. Befora recenving the fat, the moulds are slid on a rallway into a bot closet to be heated. Each machine holds about 200 frames of rooulds, and each frame contains 18 bobbins. each of which at first has 60 yards of cotton wack.

The stearine candles aremade by moulding. A difficulty arose from the tendency of stearic ach to crystadize in large foliated crystals, the candles produced beng thus rregular in structure and brttle. The rentedy at first adopted was the addition of a little arsenious acid, but this proved detrimental to health. The method now employed is to mix 2 to 6 per cent. of white wax with the stearic acid when multen, or to add about 20 per cent. of paraffin.

Wax is a material not very suitable for moulding on account of its contraction in cuoling and adhesion to the moulds. Several varieties of wax, besides that of becs, are used in candle-naking. The wax is first submitted tu a bleaching process; and the candles are geverally made by ladjing molteu wax upon the waks from a large basin oves which they are suspended frow an aron ring. When the proper thickacss bas becn acquired, the candles are taken down and rolled on a marble slab, or wooden table, and are then cut and trimined. Where wax candles are made by the hand, the wax, beng kept soft in hot water, is applied bit by bit to the susjended wick. I'resses have been contrived for making wax candles; they are of similar arrangenient to those for making continuous lengtbs of lead and blocktin prpes. The wick is so directed that it is concentrically surrounded with soft wax when ejected from the spout of the cylinder of the pess, thus forming a continuous candle, which is afterwards cut up into lengths. Wax tapers of various thackness are produced by drawing the uncut wick through molten wax in a pan, then through a draw iron provided with somewhat conical apertures, arranged like those for wre-drawing, in the side of the vessel. The waxed wick is wound very slowly on a drum, the wax having tume tosulidify in its passage. The process may be repeated several tumes with drawing irons of increasing aperture.

Parafin, now largely made into candles, is obtained from native petroleum (Rangoon oil), or from the products of dry distillation of peat, brown coal, Boghead mineral, lignite, bituminous schist, or ozokerit. The paraffin of candles is generally a mixture of several parsfins baving different melting points. A little stearic acid (5 to 15 per cent.) is usually added, in order to make the candles more rigid, and in some instances to rase the teniperature of fusion; it also facilitates colouring. The candles are moulded much in the same way as steanine candles. The molten paraffin, however, 19 solidified suddeuly by immersion of the wum moulds in cold water, the paraffin being thus prevented from becoming crystalline and opaque. For Llack parafin candles the paraflin is heated with anacardium shells, the resin of which is dissolved by it.

The mineral wax or paraftin known us ozokert is found in the Carpathian Mountains, Galicia, Bohemia, and elsowhere. At the low temperature of $66^{\circ} \mathrm{C}$. it beconies fluid, and other less fusible substances can then be added. Dr Letheby has observed that the light of 754 ozokerit candles equals that of 891 paraffin, or 1150 wax candles. Spermaceti is the sulid matter obtaincd from the oil of the sperm whale by filtration. In furtber preparation for candles it is hardened aud whitened by prossure. and refined ly a weak
alkaiine ley. A little wax or paraffin is added to prevent crystallization. Sperm candles have a high illuminating power, and notwithstandiag their costliness, a considerable trade is dene in them. The well-knewn composite candles re made of a mixture of palm-acid and thestearine of cocoaaut oil in various proportions. Belmont sperm is made of hot-pressed distilled palm-acid, Belmont wax of the same mineral tiaged with gamboge. Night lights are short thick cylinders of fat, with a very thin wick, calculated usually to burn from six to ten hours. In making them, the melted fat is poured into shallow moulds having movable bottorns, with a projecting wire which moulds a narrow tube for tho wick. By pressing up the bottom the cylinders of fat are cjected; a wax-covered wick supported on a small piece of tin is afterwards inserted, and is cemented 3t the bottom part by pressing the night light on a warm porcelain slab. Child's night lights are made in paper cases of the nature of pill boxes, having a hele in the bottom through which the tia-supported and waxed wick has been inserted.

A candle is a simple but ingenious contrivance for supplying a flame with as much melted material as it can consume without smoking. If the thickness of the candle be properly adapted to that of the wick, the fatty matter immediately below the flame is melted, so that a cup-like reserveir is produced, always properly filled for feeding the flame: The fibres of the wick act as a cougeries of capillary tubes which convey the fluid fat iato the flame, where, beiag expesed to a high temperature and sheltered frem the air by the outer shell of flame, it becomes subjected to a dry distillation. The inflammable vapour thus produced rises, and by constant combustion diminishes in quantity and coasequently is diameter, until at length it entirely disappears in a poiat. A current of air from below is produced by the heat of the flame; the oxygen of the air, aided by the high temperature, decomposes the inflammable vapour of the fat into bydrogen and carbon, and unites with these to form water and carbonic acid.
The interior dark part of a caadle or other flame contains unignited inflammablo vapour which will not of itself support combustion; it may be drawn off with a glass tube and ignited at a distance. According to Frankland, the lumiaosity of an ordinary candle, lamp, or gas flame is due, not, as commonly supposed, to the separation of solid particles of carbon, but to that of very dease hydrecarbons, which produce the same effect as the vapours of arsenic and phosphorus in their respective flames.

The excise duty of $\frac{1}{2} \mathrm{~d}$. per lb . on tallow candles, and $3 \frac{1}{2} \mathrm{~d}$. per lb . on wax and spermaceti candles, was repealed in 1832.
(A. B. м.)

CANDLEMAS, a church festival, held on the 2 d of February, which has in Scotland been chosen as one of the four term-days. The festival commemorates the purification of the Virgin; and the observances to which it owes its name, viz., the lighting of candles, aad, in the Romaa Cathelic Church, the consecration of the candles which are to be used during the year for ecclesiastical purposes, are said to have an emblematical refereace to the prophecy of Simeon that the child Jesus should become "a light to lighten the Gentiles." The institution of this feast dates probably frem the reiga of Justinian, and the year 542 is sometimes fixed upon as that of its first celebration. It is supposed to have grown out of the heathen festivals held in this month,-a viow which is supperted by the following considerations:-(1), The werd February (connected with februare) denotes purification; (2), in this month the purification of the people took place ; (3), the rites of the Lupercalia, which were celebrated on the 15 th, included the lighting of candles, in allusiou to these Fed by Ceres in her search for Proservine: and (4), tho
origin of other Christian feasts appears to have been similar.

CANDLES'TICK, in the earlier meaning of the word, was the name applied to any form of support on which lights, whether candles or lamps, were fixed; and so it happens that what would now be called a candelabrum is still sometimes spoken of from tradition as a candlestick, e.g., as when Moses was commanded to make a. candlestick for the taberaacle, of hammered gold, a talent in weight, and consisting of a base with a shaft rising out of it and six arms, and with seven lamps supported on the summits of the sis arms and ecutral shaft. When Solomon built the temple, he placed in it ten golden candlesticks, five on the north and five on the south side of the Holy Place; but after the Babylonish captivity, the golden candlestick was again placed in the temple, as it had been before in the taberaacle by Moses. On the destruction of Jerusalem by Titus, it was carried with other spoils to Rome. Representations of the seven-branched candlestick, as it is called, occur on tho arch of Titus at Rome, and on antiquities found in the Catacombs at Rome. The primitive form of candlestick was a torch made of slips of bark, vine tendrils, or wood, dipped in wax or tallow, tied together and held in the hand by the lower ead, such as are frequently figured on ancient paiated vases. The next step was to attach to them a cup (discus) to catch the dripping wax or tallow. See Candelabrum.

CANDLISH, Robert Smita, D.D. (1806-1873), an eminent Scottish clergyman, was born at Edinburgh on the 23d March 1806. His father, who was a teacher of medicine, having died a few weeks after his birth, the widow and family removed to Glasgow, where young Candlish was brought up and educated. In 1818 he eatered the University of Glasgow, and after a curriculum of five sessions, during which he carried off many boaours, he duly graduated M.A. Entering immediately on his professional studies, he passed during the years 1823-26 through the prescribed course at the divinity hall, then presided oves by Dr Stevenson MacGill. While carrying on his studies he had been largely occupied, according to the commoa Scotch practice, with private teaching, and on leaving the divinity hall be accompanied a pupil as private tutor to Eton. On the termination of this engagement in 1829, he entered upon his own proper work, having been licensed to preach during the summer racatiou of the previous year. He was employed for two years at assistant to the minister of the parish of St Andrems, Glasgow, and he subsequently occupied a similar situation for about the same period in the parish of Bonbill, Dumbartonshire. In each case the entire duties of the charge devolved upon him, and he fulfilled them with characteristic energy and zeal. It was not until 1834, after he bad offered himself for service in Canada, in the belief that be was not to find a sphere of labour at home, that he obtained a settled charge as minister of the important parish of St Gcorge's, Edinburgh. Here be at once took the place he so loag beld as one of the ablest preachers in Scotland. Destitute of natural oratorical gifts, and somewhat ungainly in his manner, be attracted and even rivetted the attention of his audience by a rare combination of intellectual keenness, emotional fervour, spiritual insight, and power of dramatic representation of character and life. His theology was that of the Scottisin Calviaistic school, but he combined with the narrowness that springs from strong conviction the breadth that springs from tender sympathy. With sucb qualities it was natural that he should gather round him one of the largest and most iatelligent congregations in the Scottish metropelis.

From the very commencement of his ministry in Edin burgh. Candlish took the decpest interest in ecclesiz.
tical questions, and be soon became involved as one of the chief actors in the atruggle which was then agitating the ehurch. His first Assembly speech, delivered 10 1839, placed him at once among the leaders of the party that afterwards formed the Free Cburch, and his intluence in bringing about what is known as the Disruption was inferior only to that of Chalmers. As a debater he bad pewers of the highest order, which would have won for bim a foremost place in any deliberative assembly. Great as was his popularity as a preacher, it was in the ecclesiastical arena that his ability chiefly showed itself, and probably no other aingle man had from first to last oo large a shars in shaping the constitution and guiding the policy of the Free Church. He was actively engaged at one time or other in aearly all the various schemes of the church, but special mention should be made of bis services in the Education Committee, of which be was conveaer from 1846 to 1863 , and is the unsuccessful negotiations for union among the non-established Presbyterian denominations of Scotland, which were carried on during the years 1863-73. In the Assembly of 1861 he filled the moderator's chair.

As a theologian the position of Candlish was perbaps inferior to that which he held as a preacher and ecelesiastic, but it wes not inconsiderable. So early as 1841 his reputation in this department was sufficient to secure for him the nomination to the newly-founded chair of Biblical Critloism in tho University of Ediaburgh. The appointment was, however, not ratified by the Home Secretary in consequence of a representation made in the House of Lorda, by the earl of Aberdeen, that Candlish had set himself in opposition to the law of the land by preaching in the parish of Huntly in spite of an interdiet from the Court of Session. By a somewhát curious coincidence a second appointment to a professorship was also nullified, though in this case by his own act, and after a few montha' teaure of the office. In 1847 Candlish, whe bad received the degree of D.D. from Princeton, New Jersey, in 1841, was chosen by the Assembly of the Free Church to aucceed Cbalmers in the chair of divinity in the New College, Edinburgh. After partially folfilling the dutiea of the office for one session, be was led to resume the charge of St George's, the clergyman who had been chosen by the congregetion as bis successor having died before entering on his work. In 1862 be was again connected with the New College, being epponted principal is auccession to Cunningham, with the uaderstanding that be abould atill retain his position as miuister of St George's. Some months before this he had obtained the assistance of a colleagus in his pastoral work, but be continued to preach, with one or two intervals of somewhat protracted illuess, until within a short time of bis death, which occurred on the 19th October 1873.

Though his greatest power was noi displayed through the press, Candlish made a number of somewhat important contributions to theological literature. In 1842 be published the first volume of his Contributions towards the Exposition of the Book of Genesis, a work which was completed in three volumes several years later. In 1854 be delivered, in Exeter Hall, London, a lecture on the Theological Essays of the Rev. F. D. Maurice, which be afterwards published, along with a fuller examination of the doctrine of the essays. A treatise entitled The Alonement; its Reality, Completeness, and Extent (1861) was based upon a smaller work which first appeared in 1845. In 1864 he delivered the first series of Cunningham lectures, taking for his subject The Fatherhood of God. Published immediately afterwards, the lectures excited considerable discussion on account of the peculiar views they represented. Further illustrations of these vipws ware given in two works
published about the same time as the lecturés, one a treatise On the Sonship and Brotherhood of Believers, and the other an ,exposition of the first epistle of St John. Among bis other works were Life in a Risen Saviour; S'cripture Characters, Reason and Revelation; and The Christian's Sacrifice and Service of Praise. A posthumous volume of sermons with a short prefatory biographical sketch appeared in 1874.

Candolle, Augustin Pyrame de. See De Candolle.

CANE, a name applied to many plants which are possessed of long, sleader, reed-like stalks or stems, as, for example, the sugar-cane, the bamboo-cane, or the reed cane. From the use as walking-stieks to which many of these plants have been applied, the name cane is iunproperly given to sticks irrespective of the source from which they are derived. Properly it should be restricted to a peculiar class of palms, knuwn as ratans, included uader the two closely allied genera Calamus and Diemonorops, of which there are a large number of species. Tho plants are fonad widely extended throughout the islands of the India: Archipelago, the Malay Peninsula, China, India, anci Ceylon; ad examples have also bcen found in Australi and Africa. They were described by the learned Rumphius, under tha name of Palmijunci, as inhabitants of dease forests into which the rays of the sun scarce can penetrate, where the form spiny bushes, obstructing the passage through the jungle. They rise to the top of the bighest trecs and fall again so as to resemble a great length of cable, adorised, however, with the most beautiful leaves, pianated or terminating in graceful tendrils. The plants crecp or trail along to an enormous lengtb, sometimes, it is said, reaching 500 feet. Io the Paris exhibition of 1855 two examples of Calamus verus, measuriag respectively 270 and 230 feet, were exbibited. The stcm in few cases excecds 1 iach in diameter, and it is mostly of much smaller dimensions. When growing it is sheathed in a base of numerous leaves, which the natives, is preparing the eanes for the market, strip off by pulling the cut plant through a notch made in a tree. The canes always present distinct rings at the Junction of the sheathing leaves with the stem. They assume a yellow colour as they dry; and those imported from Calcutta have a glossy surface, while the produce of the Eastera Arcbipelago presents a dull exterior.

Canes, on account of their lightaess, length, streagth, and texibility, are used for a great variety of purposea by the inlabitants of the countries in which they grow. Split into thin atrips they are twisted to form ropea and ships' cables, an application mentioned by Captain Dampier in his Voyagd. A more important applicatiou, however, is for bauket-work, and for making ehairs, couebes, pillows, \&c., as the great strength and durability of thin and easily-prepared strips admit of auch articles being made at once airy, atrong, and flexible. Much of the beautiful and elaborate basket-work of the Chinese and Japaacse is made from thin strips of cane, which are besides used by the Chinese for larger works, such as door-mats, heuses, and sbeds. The use of cane as a material for constructing bridges in Ceylon is mentioned by Sir James E. Tenaent, and Dr J. D. Hooker instances a similar application of the material in his Himalayan Journal.

A very large trade with Western countries and the United States is carried on in canes and ratana, the prineipal centres of the trade being Batavia, Sarawak, Singapore, Penang, and Calcutta. In addition to the varieties used for walking-sticks, whip and umbrella hendles, suc., the common ratans are ia exteasive demand for basketmaking, the seats aad backs of chairs, the ribs of cheap umbrellas, saddles, and other harness-work; and generally for purposes where their strength and 0exibility make
them eficient substitutes for whalcbonc. The walkingstick "canes" of commerce include a great many varieties, sume of which, however, are not the produce of trailing palms. The well-known Malacca canes are obtained from Calamus Scipionum, the stems of which are much stouter than is the case with the arerage species of Calamus.

CaNEA, or Khania, the principal seaport and since 1841 the capital of Crete, is finely situated on the northern coast of the island, about 25 miles from its western extremity, on the isthmus of the Akrctiri peninsula, which lies between the Bay of Canea and the Bay of Suda. Its latitude is $35^{\circ} 31^{\prime} \mathrm{N}$., and its longitude $24^{\circ} 1^{\prime} \mathrm{E}$. Surrounded by a massive Veactian wall, it furms a closelybuilt, irregular, and overcrowded town, though of late years a few of its strects hare been wideged. The ordinary houses are of wood; but the nore important buildings are of more solid materials. The Turks have a number of mosques; there are Greek churches and a Jewish synagogue; an old Venetian structure serves as a military hospital; and the prison is of substantial construction. The town is the seat of a Greek bishop, who is suffragan to the metropolitan at Candia; and it is the official residence of the Europeaa consuls. The larbour, formed by an ancient transverse mole nearly 1200 feet long, and protected by a fighthouse and a fort, would admit vessels of considerable tonnage ; but it has been allowed to silt up until it shoals off from 24 feet to 10 or even 8 , so that large vessels have to anchor about four or five miles out. The principal articles of trade are oil and soap, of which there were exported, in 1874, 530 tuns and 50,000 cwts. respectively. Λ few small ships are built in the port, and there is a pretty extensive manufacture of leather. The fosse is laid out in vegetable gardens; public gardens have been constructed outside the walls; and artesian wells hare been bored by the Government. To the east of the town a large Arab village bas grown up, inhabited for the most part by natives of Egypt and Cyrenaica, who act as boatmen, porters, and eervants, and number from 2000 to 3000 ; while about a mile off on the rising ground is the village of Khalepa, where the cousuls and merchants seside. The population of the town is estimated at 12,000 . Canea probably occupies the site of the ancient Cydonia, a city of very carly foundation and no small importance. During the Venetian rulo it was one of the strongest cities in the island, but it fell into the hands of the Turks in 1646 , several years before the capture of Candia. In 1856 it suffered from an earthquake. The neighbouring plain is famous for its fruitfulness, and the quince is said to derive its name Cydonia from the town.

CANEPHORI was the titlo given to the girls who at Athons were annually selected from noble familics to walk in tho procession at the Panathenaic and apparently also at other festivals, carrying on their heads baskets containing the implements and apparatus necessary for a saerifice. The gracefulness of tho attitude which may be seen in the figures of Canephori on the frieze of the Parthenon in tho British Museum, is known to have suggested itsclf as a subject for scuipture to Polycletus and Scopas. This type of statue also came to be used in architecture to support light entablatures, in which case they are sometimes identified with Caryatides.

CANGA-ARGUELLES, José, Spanish statesman, was born in 1770, and dicd in 1843. Tie took an active part in the Spanish resistance to Napolcon, in a civil capacity, and was an energetic member of the Cortes of 181%. On the return of tho Bourbon line in 1814, Canga-Arguelles was sent into exile in the province of Valencia. On the restoration in 1820 of the constitution of 1812 , he was appointed minister of finance. He continued at this post till the spring of 1821, distinguishing himsclf by the zcal and
ability with which he sought to reform the fnances of Spain. It was high time; for the annual deficit was greater than the entire revenue itself, and landed and other property was, to an unheard-of extent, menopolized by the priests. The measures he proposed had been only partially enforced, when the action of the ling with regard to the ministry, of which he was a member, obliged him to resign. There after, as a member of the Moderate Liberal party, CangaArguelles ad vocated constitutional government and financial reform, till the overthrow of the constitution in 1823, when he fled to England. He did not return to Spaia till 1829, and did not again appear in public life, being appointed keeper of the archives at Simancas. He is the author of three works:-Elententos de la Ciencia de Hacienda (Elements of the Science of Finance), London, 1825; Diccionario de Macienda (Dictionary of Finance), London, 1897 ; and Observaciones sobre la guerra de la Peninsula (Observations on the Peninsular War), in which be endearoured to show that his countrymen had taken a far zore effective part in the national struggle against the French than English historians were willing to admit.

CANGIAGI, or Candiaso, Luigi ($1527-1585$), a distioguished painter, was born at Genoa in 1527, and died at the Escorial in 1085. He reccived his first lessons in the art of painting from his father, and completed his education at Rome, where he studied with particular care the masterpieces of Michelangelo. At a very early age he had gained a high reputation as an artist, and in 1583 he was invited to Spain by Philip II., who desired his assistance in the decoration of the Escorial. He painted the ceiling of the choir, representing the Assemblare of tho Blessed. It is considered his best work. Among his other productions which were highly esteemed were the Rape of the Sabine Women, the Sleeping Cupid, and Judith. Most of his paintings are in Genoa and Spain; the Sleeping Cupid is in the royal collection at Paris.

CANICATTI, a town of Sicily, in the province of Girgenti, which dates, it is believed, from the Saracenic occupation. It is well built and finely situated on the slope of a hill. The rine, orange, olire, and almond grow abundantly in the neighbourhood, and the iohabitants devote thentselves chiefly to agricultural pursuits. Population, 20,908.

CANINA, Luigi (1793-1856), an Italian archæologist and architect, was born at Casale in Piedmont. He became professor of architecture at Turin, and his most important worls were the excavation of Tusculum in 1829, and of the Aprian Way in 1848. He is the author of a great number of works on archacolozy and architecture, of which several were published in a most magnificent and costly form by his patroncss, the queen of Sardiniu. Of thesc may be mentioned L'Architettura Romana, 1830; L'Achitettura Gireca, 1833; Descrizicne storica del foro Romano e sue adjacense, 1834; Descrisionc dell antico Tusculo, 1841; Sull Architctura più propria dei tempi cristiani, 1843.

CANINI, Giovansi Agsolo (1617-1666), a designer and engraver, born at lome in 161\%. He was a pupil of Domenichino, and afterwards of Carbalunga. He painted some altarpicces at Rome, including two admired pictures for the church of San Martino a' Monti, reprusenting the Martyrdom of St Stcphen and of St Bartholomew. His painting aimed nt general cffect, not at precision of detail. Having accompanied Cardiaal Chigi to France, he was cncouraged by the minister Colbert to carry into cxecution his pruject of designing, from modals, antigue gems, and similar sourccs, a scries of portraits of the most illustrious characters of antiquity, accompanicd with memoirs; but shortly after the commencement of the undertaking C'anini died at Rome, in 1666 . The mork, however, was pro. sccuted by his brother Marcintonio, who, with the nssistance of l'eard and Valet, completed and published it in

1699, under the title of Iconoyrafia di Cio. Ay. Caminn. It contains 150 engravings. A reprint in Italian and French appeared at Aaisterdam in 1731.

- CanitZ, Friedrich Rodolpa ludiwg, Baron von (1654-1699), a Gernan poet and politician of nuble family, was born at Berlm in 1654. He attended the universities of Leyden and Leipsic, and travelled in England, Fraces, and Italy. In 1650 he became councillor of legation, aod Frederick I. made hini councillur of state, privy councillor, baron of the empire, and plenipotentiary at the Hague, all which positiuns be appears to have filled with credit. His reputation is, however, founded upon bis verse. He beleved that a great relorm might be effected in German literature by the introduction of the rules of French taste ; and, consequently, he became an imitator of Boileau, and through him of Horace,-the polished grace of whose verse be autained in some measure, though be does not always avoid turgidity and benbast.

CANNFE, in Ancient Geography, a town of Apulia, on the River Aufidus, G miles from its month. It is famous for a terrible defeat which the Romans received: there from the Carthaginians under Hannilal, 216 b.c.: A great diversty of opinion has prevailed as to the exact spot on which the battle was fought, whether, as has been the general belief, on the south side of the river, tor of the north bank, as is maintained by the best authorities, including Nicbubr, Swinburne, icc. Thn site of the town, which continued to exist at least till the 13tb century, is still marked bytancient ruins, among which the most important are those of an aquednct, an amphitbeatre, and a triumphal arch. In a neighbouring rock are several large sepulchral excavations, in which vases and paintings bave been discovered.

CANNES, a seaport of France, and the clief town of the department of Var on the Mediterranean, 15 miles S.W. of Nice and 25 miles N.E. of Draguignan, in $43^{\circ} 34^{\prime} \mathrm{N}$. Lat. and $7^{\circ} 0^{\prime}$ E. long. It enjoys a sonthern exposurc on a seaward slope, and is defended from the northern winds by ranges of Lills. Previous to 1831, when it first attracted the attention of Lord Brougbam, it mainly consisted of the old quarter (named Sucquet), and had little to show except an ancient castle, and a church on the top of Mont Chevalier, dedicated in 1603 to Nötre Dame d'Sspérance; but suce that period it has become a large and impertant town, and one of the most fashionable winter resorts in the sonth of France, much frequented by English visitors. The neighbourhood is thickly studded with villas, which are solidy built of a stone so soft that it is sawn and not bewn. There is an excellent quay, and a beautiful promenade runs along the beach; and numerous sheltered roads stretch up the valleys amidst groves of olive trees. On the top of the hill behond the town are a Roman Catholic and a Protestant cemetery. In the inost prominent part of the latter is the grave of Lord Broughan, distingurshod by a massive stone cross standing on a double basenent, with the simple inserip-mion-" Henricus Erougham, Natus mecclxxymi, Decessit moccelx vin.;" and io the immediate vicinity lies James, fourth duke of Montruse, who dicd December 1874 The country around is very beautiful and highly fertile, orange and lemon trees are cultivated like peacb-trees in Eugland, while olives, almonds, figs, peaches, grapes, and other fruits are grown in abundunce, and, along with the produce of the fisheries, form the chicf exports of the town. Essences of various kindsare manutactured, and flowers are extensively cultivated for the perfumers. The climate of Cannes has been the subject of a considerable variety of opinion, -the preponderance beng, Lowever, in ite favour. According to Dr De Valcourt, it is remarkable by reason of the elevation and regularity of the temperature during the height of the day, ide clearness of the atruosphere and
abundance of light, the rarity of rain and the absence of fogs. The following are a few of his oumerous observan tions of winter temperature, given in degrees Fahr. :-

	1866-1867.		1872-1873.	
	Maxima	Minima	Maxima.	Minime.
November.	72 to 56	56 to 3 º	67 to 47	59 to 34
December.	$69 . .52$	56,34	60.14	44, 28
January.	$65 ., 47$	50,27	$62, \ldots 50$	50 , 34
February.	65, 56	53, 38	69 , 52	50, 39
Mareh.	$71 ., 49$	54 ., 38	$69 \ldots 56$	54., 39
Aprit.	$76,{ }^{68}$	58 ., 39	75,57	58 ,, 35

Cannes is a place of great antiquity, but its earlicr lristory is very obscure. It was twice destroyed by the Saracens in the 8th and the 10th centuries; but it was afterwards repeopled by a colony from Genoa. In 1815 Napoleon landed in the ricinity after bis escape from Elba; and opposite the town is the island of St Marguerite (one of tha Lerins), in the citadel of which the Man with tbe Irun Mask was confined from 1686 to 1698, and which las acguired a recent notcricty as the prison whence Marshal Bazaine escaped in August IS74. Iopulation of the town in 1872, 9618.

Sce De Valcourt's Cannes and its Climate, London, 1873, and Cli matolugic des Stations Hivernales du Midı de la France, Paris, 1505.

CANNIBALISM, the eating of human flesh by men. This ןractice has existed from the most ancient times, and has given rise to descriptive terms such as Gr. ár $\theta \rho u \pi$ roфáyos (Lat. anthroyophagus), Anglo Sax man-ata, Eug. man-cater. Since the discovery of the New World, the name of tho Caribs of the West India 1slands, recorded by Columbus under the Latinized forms Canibules or Caribales, has conis into popular use as a generic term for man-enters, comenibuls.

Man being by mature carniverous as well as frugivor. ous, and human flesh being not unfit for human food, the question first arises why mankind generally have not only avoided it, but have looked with horrer on esceptional iomividuals and races addicted to cannibalism. It is evident on consideration that both emotional and religious motives must bave contributed to bring about this prevailing state of mind. Simple association of thougbts causes the remaing of a dead kinsman or frend to be treated with respect and tenderncss, as may be seen from the conduct of smae of the rudest races. Acting in another way, the same ideai association attaches the borror of death to any thing connected with the dend, so that many tribes will avoid the mention of a dead man's naus, and will even abandon his hut, and destroy the furniture he has used; this sentiment must tend to preserve the corpse from violation. Nore. over, the religious ductrme that the soul outlives the body, contmuing in ghosly shape to visit the living, and retain. ing a certain comection with the mortal remains it onco inhabited, has evidently led the survivors to propitiato this honoured and dreaded sjurit by respectful disposal of the corpse. Taking this combnation of causes into consideration, it is readily unlerstood why aversion to cantubalisin must be taken as a rule cstablisbed at a very carly stage of culture, and we have only to consder what causes bave from tome to tine led to its infraction. The principal of these have been the pressure of faminc, the fury of batred, and sometimes even a morkid kinducss, with certane motives of magic and religion, to which must be added the strong teudency of canuibalism, once started in any of tbese ways, to develop a confirmed appetite whicb will afterwards be indulged for its own sake.
I. Fumine-The records of shipwrecks and sicges prove that famune will sometimes overcome the horror of cannibalism among men of the bigher nations. Thus it is uot surprising thas asvages, from their want of food adaptod
for storing as well as from their reckless improvidence, should in severe climates be often driven to this extremity. For example, it is known that the miserable natives of 'lierra del Fuego, when starving in winter, would throttle and devour the oldest woman of the party; when asked why they did not rather kill theır dogs, they replied, "Dog catch otters'" (Fitzroy, Voy. of Adventure and Reagle, vol. ii. p. 183). For aecounts of cannibalism and murder under stress of hunger in Australia see Salvado, Memorie dell' Australia, p. 240; Waitz, Anthropologue der Naturvolker, vol vi. p 749 , among Amencan tribes, Baneroft, Nutive Ruces of Pacific States, vol. 1 p. 120, Baek, Exp. 10 Great Fish River, p. 227, Waitz, vol. iii. p. 89; in Polyncsia, Ells, Polyneszan Researches, vol. i. p. 359 ; Martin, Mariner's Tonga Islands, vol. 1. p. 116

II Fury or Bravado. - The North American Indian phrases as to eating the flesh and drinkiug the blood of their encmies are not to be taken as mere motaphor, but as referring to acts really done. There is even an Iroquons legend of a dialogue between the Manitu (Great Spint) and a warrior who defends the cating of slain enemies as satisfyjing at onee bunger and revenge (Crèvecœur, Journey in Pennsylvana; Klemm, Allgememe Cuturgoschichte, vol. i1. p. 28). For actual details of this ferocious custom see Schooleraft, Indian Tribes, vol. iii. p. 242; Hennepin, sol. ii. p. 159 ; J. G. Müller, Amerikanische Urreligionen, p. 145 ; Waitz, vol. iii. p. 159. Among the Polynesians, there is similar evidence of warriors devouring the flesh and drinking tho blood of the slam enemy, where the $I^{\text {urpose seems clearly that of inspiring terror and gratifying }}$ vengeance. (Sce Ellis, Polynesian Researches, vol. i. p. 309 ; Turner, Polynesia, p. 194; Waitz, vol. vi. p. 158.)
III. Mortid Affection.-Cases of the dead being devoured by relatives and friends (especially children by parents) from a sentiment of affection are recorded among low savage tribes, see Spix and Martius, Reise in Brasilien, vol. ii. p. 692; Angas, Savage Life in Australia, dc., vol. i. p. 73; Howitt, Impressions of Australia, p. 134; Gerland, Aussterben der Naturvolker, p. 66. Such accounts are not, however, numerous, and sometimes, at least, may preperly belong to other classes. The most remarkable is the often-quoted passage of Herodetus (iv. 26), describing the funcral feasts of the Issedones of Central Asia, where the relatives ate the body of the deccased with other meat, the skull bcing set in gold and preserved; these were sacred rites done in honour of the dead. As lately as the 13th century, William of Ruysbruck was told that the people of Tibet had till recently kept up this custom of eating their deceased parents, and still used their skulls as drinking enps (Rubruquis in Pinkerton's Coll. of Voyages, vol. vii. p. 54).
IV. Magic.-Few notions belongıng to primitive savage magic are more intelligible or more widely spread than the belief that the qualities of anj animal eaten will pass into the eater. This motive naturally leads to cannibalism (see Stanbridge, in Trans. Ethnological Soc., sol. i. p. 289), especially in war, where the conqueror eats part of the slain enemy with the avowed purpose of making himself brave. This idea is found among the natives of Australia (see Macgillivray, Voyage of Rattlesnake, vol. i. p. 152, vol. ii. p. 6), and not less distinctly in New Zealand (Ellis, vol. i. p. 358) ; among the North American Indians, when warriors would devour the flesh of a brave enemy, and particularly the beart as the seat of courage (Keating, Long's Expedition, vol. i. p. 102) ; also in Ashantee (J. L. Wilson, Western Africa, p. 168). An English merchant in Shanghai, during the Taeping siege, met his Chinese scrvant earrying the beart of a rebel, which he was taking home to eat to make him brave (Tylor, Early IFistory of Monkind, p. 133). The imagined value of buman flesh
in giving magical powers to the eater is known to the savage world both in Australia and America (Eyre, Centrat Australia, vol. ii. pp. 255, 329, Angas, vol. 1. p. 123, Keating, vol. 1. p. 103, Vaitz, vol. hii. p. 159, vol. s. p. 748). This idea even holds a place in the more cultured magıcal traditions of Asiatic and European nations (sce Gerland, p. 66 ; Schaalbausen, in Archiv für Anthropologie, vol. 18 P. 247).
V. Relogon.-One of the strongest reasons for considering anthropophagy as baving widely prevailed in pre. historic ages is the fact of its being deeply ingrained ir. savage and barbaric religions, whose gods are so often looked upon as delighting in human flesh and blood. The flesh of sacrificed buman rictims may even serve to provide cannibal feasts. The understood meanilig of these rites may be either that the bodies of the victims are vicariously consumed by the worshippers, or that the gods themselves feed on the spirits of the slam men, their bodies being left to the prosts and people. Thus in Fiji, " of the great offerings of food, natire belief apportions merely the soul thereof to the gods, who are described as being enormous eaters; the substance 13 consumed by the worshippers. Cannibalism is a part of the Fijian religion, and the gods are described as delightung in human flesb " (T. Tilliams, Fijr and the Fïians, vol. 1. p. 231). In Mexico, the anthropophagy which prevalled was distinctly religious in its ongiu and professed purpose. That the primary meaning of the human sacrifice was to present victims to their deities is shown by the manner in which the saerificing priest, who tore out the heart, offered it to the sun, and afterwards went through ceremonies of feeding the idol with the heart and b'ood. It was the Aztec worship of the war-god Huitzilopochtli which brought on the enormous prevalence of sacrifices of prisoners; to obtain supplies of such eaptives became a motive for frequent wars; and it was the limbs of these victims which were eaten in the sacrificial feasts that formed part of the festivals. (For particulars and authorities see Preseott, Conquest of Mexico; Bancroft, vol. ii.; Waitz, vol. iv.) In Africa, also, cannibalism has in some cases evidently a sacrificial character (see Lander, Records, vol. ii. p. 250 ; T. J. Hutchinson. Ten Years among Ethiopians, p. 62, dc.)
VI. Habit.-The extent to which anthropophagy bas been carried among some nations is, no doubt, mainly due to the andulgence of the appetite onca aroused. In such cases this reason is openly avowed, or some earlier motive remains rather in pretext than in reality, or the practice is justified on the ground of ancestral custom. It scems, for instance, that the cannibal feasts of old Mexico had become in themselves acceptable to the people, and that we most refer the suckening herrors of Fijian anthropophagy more to sensual gratification than to any religious motive. Among conspicuous cannibal races may be mentioned the semi-civilized Battas of Sumatra, whose original instiga. tion to eatiug their enemies may bave been warlike ferocity, but who are deseribed as treating human flesh as a delicacy, and devouring not conly war-eaptives but criminals, slaves, and, according to one story, their aged kinsfolk (Junghohn, Batta-länder; Marsden, Mist. of Sumatra, p. 390; see also Wuttke, Geschichte des IIcidenthums, vol. 2. p: 172 ; Friedmann in Zetschrift für Ethnologie, 1871, p. 313). Cannibalism assumes its most repulsive form where hunan Gesh is made an ordinary article of food like other meat. This state of things is not only mentioned in past times in deseriptions of West Africa, where human flesh was even sold in the market (sce Pigafetta, Regnum Cmoo, in De Bry; Wuttke, vol i. P. 171), but still continues among the Monbuttu of Central Africa, whose wara with neighbouring tribes are carried on for the purpose of obtaining human flesh, the bodies of the slain being dried for
transport, while the living prisoners are driven of like cattle (Schweinfurth, Heart of Africa, and in Zeitschrijt für Ethnologie, vol. v. p. 9). Where cannibalism for its own sake becomes popular among a warlike people, its effect in thinning population, and cven in exterminating weak tribes, becomes perceptible. This subject has beed investigated by Gerland (Aussterben der Naturvölher, p. 61).

As to the histery of anthropophagy, the most interesting question is whether at any early peried it was ever a general habit of the human race. This has been debated on the evidence of prehistoric human remains (see Schaafhausen, ubi supra, p. 264; Proceedings of Congresses of Prebistoric Archæology, Paris and Copenhagen. It has been well argued that had the men of the quaternary period been cannibals, we sbould find the bones generally cracked for the marrow like those of beasts, which is not the case (Le Hon, L'Homme Fossile, p. 68); also that, as regards the ancient people of the shell-mounds, had they eaten their own species they would bave thrown the human bones into the rubbish heaps with those of beasts and fishes (Lubbock, Prehistoric Times, p. 232). The discovery of some few ancient hunan remains, the state of which scems to indicate that the fiesh had been eaten, may perhaps be taken to show that prehistoric savages were in this respeet like those of modern times, neither free from cannibalism nor universally practising it. During later ages, it may have even increased rather than diminished with the growth of population,-its greatest excesses being found among bigh savage tribes or nations above the savage level. But with the rise of civilization to its middle and upper levels, it is more and more kept down by the growing sense of the dignity of man, and eventually disappears, as we may bope, irrevacably.
E. B T.)

Canning, Geerge (1770-1827), one of the greatest of English statesmen and oraters, was born in London on the llth April 1770 . He was deseended from an ancient family; but his father, having incurred the displeasure of bis parents, was cut off with a scanty allowance, and obliged to try his fortune in the metropolis. Here he studied for the bar, but literature proved too attractive for him, without yielding him even a tulcrable livelihood. Ilis affairs were not impreved by a marriage with an Irish lady, of good conncetions and some beauty, but as poor as limnelf. He died of a broken heart, a year after the birth of his son. The widowed mother took to the stage without achieving any great success, and in this new way of life married twice,--neither time wisely.

It was thus, in the society of the stage, that the future premier of England passed his earliest years. It was well for him, therefore, when one of his paternal uncles, a wealthy banker in London, took upon himself the care of bis education Young Canning was then in his eighth ycar, and from that time had all the advantages of the best education and the most cultured seciety, fer Burke, Fox, Sheridan, and other leading Whigs were guests at his uncle's house After spending a few years at a London achool he went in due time to Eton and Oxford. At buth places he highly distinguished himself. He was a brilliant schelar gave promise of the future orator in the debating societies, became known as a wit in a wide circle of admiring friends, and even at Eton, at the age of sisteen, gi.e decided evidence of literary talent, in a periodical got up amongst his schoolmates From Orford he returned to London with the reputation of a man able to perform great things. And now he had to choose between two careers, not easily to be combined by one who had his own way to make in the world. The generous enthusiasm of youtb tempted him into a political career; worldly prudence pointed bin to the bar as the safer profession for a man without means. Circumatanees decided in farour
of the former. Pitt ras now being drawn into the terrible crusade against the French Revolution, and greatly needed able associates to make head against the fiery eloquence of Fox and Sheridan. To Canning, who soon became known in the clubs and other political circles of the metropolis as a young man of the most brilliant promise, lie made the offer of the nomination borough of Newport. This was accepted, and Canning entered Parliament as an adherent of Pitt in 1793 , being twenty-three years of age.

Canning is charged with haring taken this step from interested motives. In the debating societies of Oxford and the metropolis he had been all enthusiastic Liberal, and had long been the friend of the Liberal leaders. Nor, when the prospects of the Whig party were becoming gloomier erery day, this crassing over to the ranks of Pitt had a suspucious appearance of convenience. But there is no real ground for such suspicion. With regard to the French Revolution, which was now the all-absorbing political question, Cannang simply underwent the same change of opinion as the immense majority of elucated Englishmen, Pitt included, hailing it at first as the dawn of a new day for France and Earope, but turning away from it in dismay and indignation, and determined to oppose it, when he saw it was more likely to subvert than to reform society

Eram his entrance into Parliament till the death of Pitt in 1806, Canning was an ardent and devoted supporter of all the weasures of that statesman. In the House of Commons he soon took his place as one of the most brilliant and successful debaters of the time, though unhappily his efforts needed to be directed against his own friends, Fox and Sheridan ; and he gave proof of his business capacity in some of the less prominent departments of the adminigtration. Out of Parliament he fought the Revolution almest as effectively by starting (in 1797) the Anti-Jaciobin, a weekly paper, iu which the principles of innovation in morals, in literature, and above all, in pulitics, were mercilessly attacked, and their advocates covered with ridicule and abuse. Canning consributed many of the humorous articles, and in this way extended the reputation for caustic wit he had already acquired in Parliament.

In 1800 Canning married Miss Joan Scott. The marriage was in every way a haply and a fortunate one, based on mutnal love and estecn, which continued unbsoken to the end; while Miss Scett had a large fortunc, and was conneeted with some of the highest of the aristocracy.

On the death of Pitt in 1806, and the fermation of a Whig ministry by Fox and the Gireavilles, Canning went into oppresition, and shewed that, even on a question of humanitarian interest, he was not above the pettiest feclings of party. Ile supported, but very coldly, the bill for the abolition of the slave-trade.

On the return of the Tories to porer in 1807, Canning entered on his first great Government office, the secretary: ship for Foreign Affairs. It was one of the darkest periods in the history of England. The great Europeau coalitign had been overthrown at Austerlitz, Austria compelled te an ignominious peace, Prussia nearly amihilated, and Russia obliged, at the peace of Tilsit, to connive at the supremacy of Napoleon, or induced to share in the division of the Continent. Canning performed the arduous dutics of his office with extraordinary tact and energy. It was he that planned the expedition to Copenhagen, for the scizure of the Danish fleet, with such secrecy and despateh as completely to anticipate Napoleon, and excite in him the liveliest astonishment and wrath. The negotiations for peace opened with the English Government by Napoleon and Alcxander, and the invasion of Spain, still further complieated the difficulties of his pesition, only to throw new lustre on his genius. He soon saw that the Peninsula was the battefield on when. England could bring her strength adrantage ously to.
against the armies of the French conqueror. He encouraged the spirit of resistance in tho Spanish nation, supported the Spanish armies, first with supplies of arms, and then with the active co-operation of the English forces, and was one of the first to recognize and employ the military capacity of the future duke of Wedlington. Unfortuately, an event soun occurred which deprived the country of his services, when the need was greatest, and when he was the only statesman in England whose talents were of the first order. In 1809 , Lord Castlereagh, as Secretary-at-War, bad organized the expedition to Walcheren, the worst conducted and the most disastrous of the whole war. In consequence of it a dispute arose between bis lordship and Cammer, which resulted in a duel, and in the resignation of both. From this unfortunate incident till 1892, Caming took wo very prominent part in the Government of the country. This is particularly to be regretted, as the perioul in question includes the decisive years of the Napoleonic strugete, and the new settlement of Europe by the peace of Vienna, when Canning might have done good service by insisting, more than was done, on the claims of uationality and constitutional liberty. In this he was not free from blame, as he allowed his personal dislikes too much to interfere with his duty to his country. But the chief reason was his advoeacy of Catholic Emancipation, which lost him favour at court Men's motives must always remain to some extent doultful; still it secms clear that at one time his dislike of Castlereagh, at another his insistance on Catholic Enancipation, prevented him from resuming his place in the Foreign Office. He lived to regret this deeply, and to declare that two years of othice at the termination of the European struggle would have been worth ten years of life. Evén now, however, he was not inlle. In 1812 he made a powerful speech in favour of Emancination, which was carried in the Commons by a large majority, but rejected by the Lords. From 1814 to 1816 be was ambassador at Lisbon, and from 1817 to 1820 President of the Buart of Control for India As a member of the Cabinet during the latter period be was very active in support of Government, strongly advocating the cuercive measures employed at Lome during the years which immediately fonowed the Revolution. It is indeed a noteworthy fact in his political eareer that, though unable to act with Castlereagh in the most dangerous crisis of the French war, he found it riglit to join him and his associates in such severe measures of repression,-noteworthy, but quite explicable, as Caming never professed to be anything else than a disciple of Pitt.

At the head of the loard of Control, Caming gained the entire confidence of the directors of the East India Company. In consequence, they hat appointed him to the governor-generalship of India, and he had proceeded to Liverpool to tako leave of the constituents who had four times returned bim to larhament, when news camo of the daath of Castlereagh (then earl of Lomlonderry). The voice of the country had already uamed him successor in the Foreign Oftice, and, in this eapacity, under the premiership of Lord Liverpool, Caming entered upon the last and most brilliant period of his carcer. The state of Europo had greatly changed since his resignation of the same office in 1809 . The Ituly Allance now aspiral to regulate the afthars of the world. lnangurated ly the emperor of linssia, under the inspiration of Madame lirudener, it was at first a sincere attempt of the rulers of Burope to govem on Christian principles. liat even the liussian emperor was soon frightened from the path of benevolent reform by the revival of the revolutionary anirit and its apyearamee in his own army; while interested statesmen hike Mettemich so utilized the pions aspirations of kings to the protut of despotism, that the Huly Alliance soon became a bynord in Eurone. Castlereagh had yidded tou fur to this torn
dency. The country mas getting weary of it. Aud now Canning came forward to assert the free action of England and the universal right of self-government. He was, how ever, no revolutionist. In his home and foreign policy alike be aimed at holding a ruiddle course. At home he advocated Cotholic Emancipation, and believed in Free Trade, but strenuously opposed Parliamentary Reform. In his foreign policy lis prnciple was that England should bold the balanee between the reactionary and the revolutionary parties, "that in order to prevent things going. to Extremities, she should keep a distinct middle ground, staymg the plague both ways." Seeing that the reactionary party predominated in 1522, he judged that England should throw the weight of her influence into the Liberd scales. In accordance with these views, he protested arainst the doctrine that free mstitutions should be beld only as a spontancous gift of the sovereign, and disapproved of the measures adopted at the Congress of Verona in 1 Sot, especially of the French invasion of Spain for the restors. tion of absolntism in 1823,-a year, too, which was marked at home by the passing of the Recoprocity Act, the fir t step in the direction of Free Trade. In order to render the protest against the iuvasion of Spain more effectual, it was determined in 1824 in recognize the independence of the South American colonies. On the threatened invasion of Portugal by reactionary Spain in 1826, Canning again interposed with the utmost decision, and the invasion was abandoned. The speeches he made on these occasions, and bis general attitude of defiance to despotism, had a marvellous effect, not only in Parliament and in England, but in all civilized communities. He was everywhere bailed as the champion and spokesman of national and popular liberty. The party of progress recovered from the torpor consequent upon the Revolution, and returned to new life. The enthusiasm for his name was heightened when it became known that he had taken the initiative in another act of intermational justice, by proposing (1826) to France and Russia that combination of the three Powers which led to the battle of Navarino and the establishment of Greak independence.

But ere that result had been attained the great statesman was no more. Early in 1827 Lord Liverpool, who had been the nominal bead of the Govermment since 1812, was disabled Canning, who now became premier, expected the co-operation of the members of the late administration, but was disappointed, and had to struggle on under the greatest difficulties, and against the most virulent opposition. His exciting labours and the alienation of so many friends were too severe for his sensitive temperament. He caught a severe cold, and died on the Sth of Augus! 1827. He was buried in Westminster Abbey, in the Statesmen's Corner, by the grave of his master Fitt.

His death created a sensation commensurate with his world-wide fame and with the hopes still entertained of bim. The splendour of his talents nas only matched by their versatility. In his bigh and brilliant career he had proved hiuself equal to anything-from guiding the destiaies of a great nation through the storms of the Napoleonic wars, down to the editing of a comic journal He had all the natural endowments of a great orator,-a gracuful and commanding form, a musical voice, a perfect mastery of the choicest language, and a ready wit that played with all the resources of his intellect. In private life he was even moro admirable,-in his orn family an almost perfect model of all the Lousehold charities, and towards his mother, whose imprudent marriages had codangered his iufaney, full of the tenderest and mos: allectionate piety.
(T. K.)

CaNNiNG, Chablesiohn, Earlano Viecoust (1812-

of the subject of the preceding notice, and was born at Brompton, near London, on the 14 th December 1812. He was educated at Christ Church, Oxford, where he graduated B.A. in 1833, as first class in classics and second class in mathematics. In 1836 he entered Parliament, being returned as member for the town of Warwick in the Conservative interest. He did not, however, sit long in the House of Commons ; for, on the death of his mother in 1837, he succeeded to the peerage which had been conferred on her with remainder to her only surviving son, and as Viscount Canning took his seat in the House o[Lords. His first official appointment was that of Under-Secretary of State for Foreign Atfairs, in the administration formed by Sir Robert Peel in 1841,-his chief being the earl of Aberdeen. This post he held till January 1846 ; and from January to July of that year, when the Feel administration was broken up, Lord Canning filled the post of Commissioner of Woods and Forests. He declined to accept office under the earl of Derby ; but on the formation of the Coalition Ministry under the earl of Aberdeen in January 1853, be received the appoint ment of Postmaster-General. In this office be showed not only a iarge capacity for hard work, but also general administrative ability, and much zeal for the improvement of the service. He retained bis post under Lord Palmerston's ministry until July 1855, when, in consequence of the death of Lord Dalhousie, and a vacancy in the governor-generalship of India, he rras selected by Lord Palmerston to succeed to that great position. This appointment appears to have been made rather on the ground of his father's great services than from any proof as yet given of special persoaal fitness on the part of Lord Canaing. The new governor sailed from England in December 1855, and entered upon the duties of his office in India at the close of February 1856. His strong common sense and sound practical judgment led him to adopt a policy of conciliation towards the native princes, and to promote measures tending to the betterment of the condition of the people.

In the year following bis accession to office the deepseated discontent of the people broko out in the mutiny which grew into the Sepoy War. Fears were entertained, and even the friends of the viceroy to sonse extent shared them, that he was not equal to the crisis. But the fears proved groundless. He had a clear ege for the gravity of the situation, a calm judgment, aad a prompt, swift hand to do what was really necessary. By the union of great moral qualities with high, though not the higbest, intellectual faculties, be carried the Indian empire safely through the stress of the storm, and, what was perhaps a harder task still, he dealt wisely with the enormous difficulties arising at the close of such a war. established a more liberal policy and a sounder finaneial system, and left the people more contented than they were before While rebellion was raging in Oude, he issued a proclamation declaring the lands of the province forfeited ; and this step gave rise to much angry controversy. A "secret despatch," couched in arrogant and offensive terms, was addressed to the viceroy by Lord Ellenborough, then a nember of the Derby administration, which would have justified the viceroy in inmediately resigning But from a strong sense of duty be continued at his pust; and cre lung the general condemnation of the despatch was so strong that the writer felt it necessary to retire from office. Lord Canning replied to the despatch, calmly and in a statesman-like manner explaining and vindicating his censured policy. In April 1859 he received the thanks of both Houses of Parliament for his great services during the mutiny. He was also made an Extra Civil Grand Cross of the Order of the Bath; and in May of the same year he was raised to the dignity of an earl. By the straiu of
anxiety and hard work his bealth and strength were serivusly impaired; and in the hope that rest in his nativo land might restore bim, he left India, reaching England in April 1862. But it was too late. He died in London an the lith of June followigg. About a month before his death he was created K.G. As he died without issue the title became extinct.

Cannon. See Guis and Guxiery and Artillery.
CANO, Alonzo (1600-1667), ene of the most vigorous of the Spansh painters, and also, like Machelangelo, with whom he is usually compared, an arebitect and sculptor of great unerit. He has left in Span a vory great nuniber of specimens of his genius, wheh display the boldness of bis design, the facility of his pencil, the purnty of his tleslitints, and his knowledge of chiaroscuro. He was a native of Granada, and a contemporary of Velasquez and Pacheco, whom be rivalled without imitating. As a statuary, bis most famous works are the Madonna and Ctild ill the church of Nebrissa, and the colossal figures of San Pedro and San Pablu. As an architect, be mendulged in too profise ornameatation, and gave way too much to the fancies of his day. Philip IV. made him royal arehitect and king's painter, and fare him the church preferment of a canon. He was notorious for his ungovernable temper; and it is said that once he risked bis life by committing the then capital offence of dashing to pieces the statue of a saint, when in a rage with the purchaser who grudged the price he demanded. His known passionateness also (according to another story) caused him to be suspected, and even tortured, for the murder of his wafe, though all other circumstances pointed . bis servant as the culprit.

CaNO, or Canus, Melchion (1523-1560), a learned Spanish bishop and thrologian, who was pupil and successor of Vittoria as professor of theulogy at Salamanca. He had one, and only one, inval as to erudition in Spain, Bartolomeo de Carranza, like himself a Dominican, and the university was divided between the partizans of the two professors. On account of his vielent opposition to the establishment of the Jesuits in his native country, be was summoned by Pope l'aul 111. to the Council of Trent, and appointed to the distant see of the Canaries. But his intluence with Pbilip 11. procured his recall to Castile, Where be became frovincial of the Dominican order. His principal works are entitled Pralectiones de Panilentia, De Sacramentis, and Locorum Theoloyionum Libri X'Il.

CINOE, a species of boat. In several Eastern languages the word kan means something bullow, with a certan degree of streagth. Mliny says sume Indian reer ${ }^{\text {b }}$ are long enough to form a boat for thrie men between $: \therefore$ joints. The French canot, Spamsh canver, lialan canoe: " derived from the Latin canna; but a canos is sometian". called $1 n$ France bateau, lit, piroyue, caurue, chaloupe, nuti. , nacelle, or périssoir, and the paddle pragaye, and the canocist pagayeur. The English wurd "canoe" may he defined as a boat propelled by one or more paddles used without a fixed fulcrum on the boat, and thereforo in. variably with the satter facing towards tho bow. The Veuctian gondola and the Maltese boats, and many other, are romed by men who face the bows, but they always hase a fixed rest for the rowluck. Canoes are made of various substances. Those of the Esqumanus are of seal. skin stretched over whalebone, and are propelled by the double-bladed paddle, 7 feet long and 6 inches broad, used by one man, whose dress 19 united with the deck coverin!, so as to be watertight.

The North American "dugo out" canoe is made from a tree bollowed by fire, while the bark canoes are fonned 1 y birch baik sewn together, accordang to the sizo reguiret, until the craft will bold as many as seventy men. Paper canoes have ben used in the United States. Cork leathe:
would probably be a very good material. Canoes of tin and of india-rubber have been used in England, but practically all the best canoes now built in England, America, and France for general travelling are of oak, cedar, or pitch pine. The canoe was popular in England more than twenty years ago at Oxford and Cambridge, but only for short river practice, until in 1865 one was specially designed for a long journey by water in seas, lakes, and rivers, and by carriage on land in railways or carts or on borseback, or by being dragged over rough ground or borue on men's skoulders through woods and over hills.

The general type of this "Irob Roy" canoe is built of Galk with a cedar deck. The length is from 12 to 15 feet, nad the beam from 26 to 30 inches, the depth 10 to 16 inches. The paddle is 7 feet long with 6 inches of breadtb in the blade, and is either double-bladed, or, if it is used with a single blade, a rudder is worked by the foot to counteract tho lateral swerving. A backboard swinging with the paddler's motion enables the canoeist to sit in a comfortable position for many hours at a time, and a mast with some 1 .ht sails completes his equipment, so tiat a favourable w:ad eases the muscular exertion. An ordinary travelling c noo when complete weighs about 70 ft . It, will float with its paddle and 10 Bb of luggage in 5 inches of water. In the Indian canoes of America the single paddle is usually employed, and the men knee! to tue work. The canoeists in the Straits of Magellan paddle standing. The peculiar advantages of a canoe may be summed up thus:-

1. The canoeist faces forwards io the direction of his progress, and therefore be can readily steer without turning his head round.
2. His centre of gravity is five or six inches below what would be necessary in a row boat, and therefore the canoe is more steady, und is very suitable for shooting from. When the action of the prddle stops the canocist is at oace in comfortable rest. In de Hccodiug a rapid where rocks or anags are numerous, the canoetst has much power of seeing and avoiding danger, while he cao also wet out readily, and can sit on the denk in phaces where the feet, boing in the water, are of gervice in wardiag off collisioos.
3. The knees of the canoeist press ontwards agaiost the sides of the "well" or opening io the deck, so that io high sens there is ninple "purchase" for counteracting au upset, while the canoeist cad use great power with his paddle at a critical moment for lifting the craft over a wave. The alteroate action of the arms opens the chost, and the legs are cootinually exercised by pressure against the - ntretcher, while the sway of tho whole hody at each stroke of row. iag is dispeased with.
4. He can instantly hoist sail without leaving his place or shifting ballast, and he can fislo or ahoot convenieatly without changing his seat. He can sleep in the caooe when it is properly prepared.
5. Tho canoe being impelled without rowlocks, by jressure through the legs to the feet resting ou the stretcher, and by only one imple. ment (the paddlc), the joints of the planks aod the nails and fast. eoinge, are not loosened, as in other boats, by the jerky leverage of. forlocks.
6. The deck coveriog (out fessible in a row-boat) protects the paddler a ad his luggage from wiod, raio, and sea, and adds to the "stiffness" of his craft, so that it can be dragged on rough ground without injury. A cance should have a very flat floor aod amall keel; this secures stability, while it diminishes speed to a verj small extent.
7. Ladies and young childrea can conveoieatly use the canoa because of its safety and the simplicity of its mode of propulsion. Many double caroes are used io Eogland, and some with four padalers together.

Fur actual speed over a short and straight course the ordinary sculling skiff is superior to the canoe, but for long journeys of more thad a week's duration, and in strange rivers, or with frequent portage, rough usage, intricate navigation, or unexpected diffeulties, the canoe is found to be much more conrenient than the rowing boat. Forty miles a day in lakes can be kept up for weeks together in a travelling cance, wiless against a contrary wind. Fast racing canoes are 20 feet long and 18 mehes broad, and attain a speed of 8 miles an hour. Canoes for "upset races" (where the canoeist has to jump out, tow bis boat while swimming. and then get in) and for the race "over land and water" are spectally built for their purpose. Other canoes are built chietly fur sailing, and these corry "drop keels," "rockers," and heary ballast.

In 1866 the Royal Canoe Club was formed in Englant, and the Prince of Wales became commodore, while about 500 members bave been elected in various parts of the world. After the English canoes were seen in Paris at the Exhibition of 1867 , others like them were built in France. Brancles and clubs were formed also at the English universities, and in Liverpool, Hull, Edinbusgh, Glasgow, and New York. A publication called The Canoeist records the more important cruises in canoes in almost every country on the globe. Ohe member of the club crossed the English Channel from Dovar to Boulgone in his canoe, another from Boulogne to Dover, and a third crossed the Irish Cliannel from Scotland to Irelafd. Many old and new rivers bave been explored for the first tirue ins canons, among which the most interesting were the hitherto inaccessible parts of the Jordan, the Kishon, and the Abana and the Pharpar at Damascus, as well as the Lake Menzaleh in the Delta of the Nile, and the Lake of Galilee and Waters of Merom in Syria. So far as has been ascertained, not one of the members of the Royal Canoe Club bas been drowned in any of the numerous long cruises performed.

See Macgregor's A Thomsand Miles in the Rob Roy Canoe, Th, Rob Roy on the Ballic, and The Rob Roy tm the Iordan. Fod Sea, Nile, and Cemesarcth, de.; Canor Travelling, ly . W. Baden Powell Cuuise in a Cochle Shell, by A. H. Reed; The Canoent (Royal Canon Club).
(J. $11{ }^{4} \mathrm{C}$.)

APPENDIX

AMERICAN REVISIONS AND ADDITIONS

TO THE

ENCYCLOP EDIA BRITANNICA
 (NINTH EDITION.) •

A DICTIONARI OF
ARTS, SCIENCES ANI) GENERAL LITERATURE

BY
II. H. DE PCY, ID., LL.D.,

ASSRTED BY A CORIS OF TRAINED WRITERS.

CHICAGO
R. S. PEALE COMPANY
189?

manufactories, several mosques and two unique circular towers of unknown origin.

BOGENHAUSEN, the site of the Royal Observatory of Munich. It is a village situated on the Iser, about two miles from that city.

BOGOS, a tribe of negroes who inhabit the highlands north of Abyssinia. They are estimated to number about 10,000. They are nominal Christians and are tributary to Abyssinia.

BOHTLINGK, OTto, Sanskrit scholar, born of German ancestry at St. Petersburg. From 1835 to 1842 he studied oriental languages, especially Sanskrit, at Berlin and Bonn, and, aiter 26 years in his native city, settled in 1868 at Jena. Among his valuable works are the first European edition of the Indian grammarian Panini (1839), a Sanskrit chrestomathy (1845; 2d ed. 1875), and a great Sanskrit dictionary (7 vols., $1850-75$).

BOIS DE BOU LOGNE, a celebrated park, situated on the right bank of the Seine, about three miles west of Paris. It is the favorite rendezvous of the élite of that city and of its devotees of fashion and splendor. It suffered serious mutilation by fire and the axe during the siege of Paris in 1s\%o,

BOISE CITY, the principal commercial city of Idaho, capital of the State, and county-spat of Ada county, beautifully situated on the Boise liver, at the head of the fertile valley of the Snake River, about 50 miles above the contluence of those streams. It is the trade center of an important mining region, and of a rich agricultural and grazing countrs. It contains a United States assay oflice, and gold is the chief article of export. There is also a penitentiary, and several manufactories, principally for flour and lumber. The altitude of lkoisé City is nearly 3,000 feet, and its climate is mild. The town was settled in 1863. It was incorporated as a city in 1865 . In the latter year it became the capital of Idaho, which was admitted as a citate in 1590 .

BOISE-DUYAL, JEAN, an eminent Freneli physician and naturalist, born at Tichoville in 1sol. Ile has published many raluable works on botany and entomology, and was noted for his valuable professional services during the cholera epidemic of 1835.

BOISSY D'ANGLAS, Frixcons Anthne, Couxt, French statesman, born at St. Jean Chambre, in Ardeche, in 175月, died in Paris Oct. 20, 1s응. 11e was for some time major-domo to the Count of Provence (Lonis XVIII), and a member of the States-general. During the lieign of Terror, fear of the "Mountain" kept him quiet; but, yielding to the solicitations of Tallien atad Barire, he joined the conspiracy against Robespierre. Ewo months after the execution of the tyrant he was elected secretary of the Convention, and shortly afterward a member of the Committee of P'ablic safety, in which eapacity he displayed remarkable talent and discretion. Ile was subseduently president of the Council of Five Ilundred; was called into the Senate by Napoleon, and was made a peer by Louis XVIII.

Boivin, Marie (1733-1841), French midwife. Sho became a nun, hut after the destruction of the nunners at the Revolution, she devoted horself to midwifers. So distinguished was she as superintendent of the Maternity at Paris, that the king of Prussia conferred an order on her, and Marburg University the degree of M. D. .

BOJADOR, C.IPE, a headland on the west coast of Africa, in $26^{\circ} 7^{\prime}$ north latitude, $14^{\circ} 29^{\prime}$ west longitude. The Portuguese doubled this cape in 1432.

BOJANO, an ancient Italian town with a cathedral. sitnated ou the Biferno, 13 miles southwest of Campobasso. Population, 3,506 .

BOKER, GEorge Hexry, author and diplomatist, born in Philadelphia Oct. 6. 1823, died there Jan. 2, 1890. Aiter graduating at Princeton, he studied law and traveled in Europe; on his return wrote poems and plays, several of the latter oeing brought out successfully. Under Grant he served as minister to Turkey and also to Russia, and, returning in 1878 , was elected president of the Union League, which, in 1862, he had helped to form. This position he occupied until his death.

BOKllARA, a Russian rassal state adjoining Turkestan and Afghanistan. Area. about 42.000 square miles; population, about $2.600,000$; capital, Bokhara, with a population of 70,000 .
The reigning sovereign is the Ameer Sayid Abdul Ahad, fourth son of the late Ameer, by a slave girl: born about 1860; educated in hussia; succeeded his father in 18 sios.

The modern state of Bokhara was founded by the C'shegs in the fifteenth century, aiter the power of the Golden Horde had been erushed by Tamurlane. The dynasty of languts, to which the present ruler belongs, dates from the end of the last century: In 15.3 a treaty was signed, in virtue of which no foreigner was to be admitted to Bokhara without a Russian passport, and the state became practically a lussian dependency.

Amers of Bokhara-Gayid Ameer Hyder, 1790 182t; Mir"lhussein, 180t; Mir Omar, 1826-2\%; Mir Nasrulla, 152す-60; Muzallar-ed-Din, 1860-85.

Karshi has a population of 25,000 , and Hissar 10,000. The religion is Mohammedan.
The Ameer has 25,000 trows, of which 4,000 are quartered in the city. A proportion of the troops are armed with limssian ritles and have been taugh: the liussian drill.

Bokhara producos eorn, fruit, silk, tobaceo, an hemp; and breeds goats, slieep horses and camel; The yearly produce of cotton is said to be abous 32,000 toms ; of silh ! 67 tons. Gold, salt. alum, ant sulphurare the chief minerals found in the country. The exports of raw silk to lndia in one year are estimated at iat tons. The exports of cotton in 1854 were 12e,0(t) bales. By the treaty of $18: 3$ all merchandise belonging to Russian iraders, whether imported or exported, pays a duty of ex'e per cent. ad ralirem. No othir tax or import duty can he levied on Russian goods, which are also exempt from all transit duty. The Ameer has forbidden the import of spirituous liquors, except for the nse of the Russian embassy.

The liussian Trans- (aspian hailway now rune through Jokharat from Charjui, on the Oxns, to a station within a few miles of the capital, and thence to Samarkand; the distance from Charjui to the liussian frontier station of Katti Kurghar being about 186 miles.

There is a telegraph line from Samarkand to Bokhara, the capital.

Russian paper roubles are current everywhere.
Bot.AS (Spanish, "halls"), missiles used loy the natives and gauchos of southern South America, and eonsisting of two heavy halls. generally of stone covered with leather, connected by a plaited thong is to sfeet long. One lola is held in the right hand, while the other is swong rapidly round the head, at the full extent of the thong, and both are discharged at the animal to be captured, so as to wind round its feet and loring it to the ground. In another form of bolas there are three balls, differing in size, connected at the common center by three short thongs or ropes.

BOLERO, a Spanish national dance, invented ir. 1780 los the dancer Sebastian Zerezo. It is danced in moderately quick three-quarter time by two per: sons to the accompaniment of the castanets and
the guitar．The name is also applied to the air to which it is danced．Like the fumblyo，it is said to be originally a refinement of an Airican dance still performed by the Congos under the name of chikia．
BOLETUS，a genus of hymenomycetous fungi． Most of the species resemble the common mushroom and other species of ifurims in general form，but are distinguishahle by the pure－like surface occu－ pying the place of gills． $1 t$ is generally found growing on the ground in woods and meadows， especially in pine woods，and in moist，warm seasons it sometimes appears in prodigiousquantities，some of the species are edible．

BOLGRAD，a town in the Russian province of Bessarabia， 28 miles northwest of Ismail，at the head of Lake Yapuch．It is well built，and has some trade and manufactures of soap，candles，jut－ tery，ete．Population， 7,530 ．

BOLIVAR，a village of llissouri，county－seat of Polk county，ahout 30 miles morth of Springfield． It contains important manufactories，principally of cotton，wool and flour．

BOLIVAR，a village of Tennessee，capital of Hartleman county．It is situated on Hatchee River， at the head of navigation，athout 30 miles south of Jackson．It is the seat of St．．lames Female College and of a number of academies，and the center of trade of a rich cotton and lumber region．It has an extensive water－power，and contans various pros－ perous manulactories．
BOLIVIA，a South American republic．Area， about 770,001 square miles；population， $2,191,591$ ； eapital La Paz，with a population of about bu，ifuo． For history and productions，see Britamica．Vol． IV，pp．10－1s．Bolivia has no sea－jort；its former port，Antofogasta was ceded to Chili in 18s4．It was formerly comprised in the spanish viceroy－ alty of Colombia under the name of leru，and de－ rives its name from its great liberator．Simon Bolivar．In the war against Chili in 1879 it equipped an army of alont 6,000 men．
The mincral productions of Bolivia are very valu－ able；the silver mines of Potosi are believed to be almost inexhaustible，while gold，partly dug and partly washed，is ohtained on the Eastern Cordillera of the Andes；coppar，learl，tin，salt，and sulphur are also found．Its agricultural prorluce consists chiefly of rice，barley．ats，maize，cotton，cueva， indigo，india－rubher，coca，jotatoes，the choicest fruits，cinchona hark，medicinal herls，ete．，which are also its principal expmrts；its chief imports he－ ing iron，hardware and sulks．
Public revenme．15si－sk

Public expermbitire，linst－an
The constitution of Penlivit was adopted in 1 Seli， but has recoived varions amentments．Its chief executise（Presidnat）is clocted in the same years and for the same term as the lresident of the United Stales，amd hy universal sulfrage．Two vieporesidents are elected with him，and he is assisted by a commelor ablimel of live ministers． The congress consists of al solate and house of represontatives，ulocted hy miversal sulfrage． There are nime departments，each having a gov－ ernor nominated by the Iresident．

BOLKllot，a cathedral ©ity of liussia，on the River Nusra． 37 miles morth of Orel．It mamufac－ tures leather，roves，hosiery，and somp，and has an active trade in tallow，hemp，wil，frnit，and vege－

Boll，a medsure for grain，cte．．usid in seothand and the Nurth of England．In Sootand it is equiv－ alent to six imperial bushels，hut in England it varies from that to two bushels－the＂new boh．＂It
is also a measure of welght．containing，for flour， 10 stone（equal to 140 pounds）．

BOLOGNA sTONE，or Bosoman Stose．In the end of the 16 h or liegimuing of the 1ith century，Viu－ cent Cacimrolo，a shoemaker of Bologna．made the discovery that the mineral now known as heary spar （harium sulphate），when reduced to a fine powder， mixed with gum，dried，and strongly heated in a covered crucible，is ronverted into a substance hav－ ing the properts of shining in the dark．Casciorolo commmaniatod his discosery to the alchemist suipio Baratrollo and the mathematician Maginus． and fle latter made the substance famons by the sucimons which he sent about．Peter Potier，a French chemist，resident in Pologna，first puhlished a recibu for making it．It was calied by its discor－ erer＂capis solaris，＂lut was soon generally ealled Cologna stonc．from the place where it was pre－ pared．Its phosphorescent character depends rery much upon its preparation．It shines in the dark mily after absorling light．The now well－known ＂Inminous paint＂is composed of this or of similarly prepared sulphides．See Ligit，Britannica Vol． ざげ，p 603．

BOLOAETER，an instrument insented（18si）by Professor Langley，of the United States，for the measurement of the intensity of radiant leat．Its action is based upon the variation of electrical re－ sistance produced by changes of temperature in a metallic conductor．The instrument mas he made much more sensitive than a thermopile．It indi－ cates accurately changes of temperature of much less than $0001^{\circ} \mathrm{F}$ ．The boloneter（also ealled thrmir bulumee and actinic balance）has been used in the sludy of the distribution of heat－energy in the solar，lanar，and other spectra．

BOLSWAMD，an old town of Friesland， 15 miles southwest of Leeuwarden．It has a fine Gothic chareh．P＇opulation，5，939．

BOLTON，Saraf KNowlea，born in Farmington， Comn，about 1840 ．She married Charles E．Bolton． She has writien much for the press；has been eon－ nected with the Boston＂Congregationalist：＂has been one of the corresponding secretaries of the Woman＇s National Temperance Enion，and has traveled in Europe and studied social questions Of her lowks，the Poor Boys 117% Breame Famous and Girls 11 Tho birame Fomous are the best known． She and her son，Charles Knowles Bolton，have published a juint collection of poems．

BOLCS，a solt mass of any kind ui medicine in－ tended to be swallowed at once．It differs from a pill in being larger．Also used firuratively of an unpalatabl．doctriue or argument that has to be tolerated．

BOMDiA，anopprobriousepithet lrestowed in Italy on Fardinand II．of Naples（181（1）－5！），in consequence of his cruel bombardment of Nables．Messina，and other citios of his realm during the revolutionary troubles of 18.49.

BOMPARIllER，the lowest nonerommissioned officer in the Dritish artillery，ranking with cor－ porals in the infantry and caralry．Tho name was applied in the lith and 18th centuries to a man employed about the mortars and howitzers－pieees of ordnance amplayed in tombarding．
 species of heotles of the werara brachimus and Lptimus，in the sub－family rambidat．The name Prefere to their aftensive and eatonsive habit of dis－ charging an arrid yolatile thad with explosive fore from the abdomon．Fume ants and other inseets Whihit the same curions protective devies．These beetles are usually fommel under stmes or at tree ronis，often in great companies．The larger and more brilliant species are tropical．

BOMBARDMEXT, a continuous attack upon a fortress or fortified town by means of shot and shell to destroy the fortifications or buildings. It is an especially cruel operation when, as is often the case, it is directed against the civilians and their buildings, as a means of inducing the officer in charge to surrender the place and terminate their miseries. In modern times a bombardment is generally adopted as an adjunct to a siege, and is more frequently a navaf than a military operation.
BOMBAY DUCK, or Bemmaloti (Saurus ophiodon), a fish of the family Scopelidx, nearly allied to the salmon and trout family. It is small but voracious, with very large fins, and a mouth the gape of whieh extends far behind the eres, and which is furnished with a great number of long slender teeth barbed at the points. It is a native of the eoasts of lndia, particutarly of the Bombay and Malabar regions. from which it is exported in large quantities, salted and dried. It is highly esteemed for its rich flavor, and is often used as a relish.
BOMBAZINE, a fabric of which the distinguishing characteristic is that the warp is silk and the weit worsted. It is rather fine and light in make, and may he of any color. It was manufactured in England as early as the reign of Elizabeth. The fabric is now little used.
BOMB LANCE, a lance-like missile used in whate fishing. It has an explosive head. and is so arranged as to be shot from at musket and to explode within the body of the whale.
BODB-1PROOFS, military structures of such immense thickness and strength as to resist the penetration and shattering foree of shells. In every fort the barracks, hospital. stores and macrazines are covered with masorry and earth. or with thick armor-plates, so as to be impervious to the fire of the most powerful siege-guns and mortars. The mont effective shield against modern projectiles is constructed of timber covered and ficed with massive embankments of earth.
BOM JARDMI, a town of brazil, beautifully situated in a fertile valley, about 20 miles south of Crato, in the provilee of hahia. It contains inportant manufactories oi millstones.

BOMMEL_ a town in the Dutch province of Gelderland, on the Wal, 20 miles southeast of Ueent. Population. 4,0 0) 0 .

BONA. 1DEA, the good goddess. a Roman divinity who is variously described as the wife. sister, or daughter of Faumus. She was worshiped by the women of Rome from the most ancient times. tler sanctuary was a grotto on Mons Aventinus; but her festival (the list of May) was celelnrated in the house of the consul. At this celebration no males were allowed to.be present : even portraits of men were veiled. The solemnities were generally performed by high-horn vestals.

BONA FIDES, a Latin expression signifying good faith; without irand or deception. It enters largely
into the consideration of matters of ayreement. contract. damage trusts. and other departments of the law, and in all of them it requires the absence of fraud or unfair dealing. The term is irequently used as a compound adjective in the sense of honest. gennine. Bona fide possessor, in lar, is a person who not only possesses. but who honestly believes his ittle good, and is maware that any person elaims a better right. Bonn-tide purchaser, in law, is one who has bought property and paid for it before recriving any notice of adverse claim, and who has seen no reason to suspect that such claim existed. As a general rule penple are supposed to contract with caution. and thereiore there is not much zoom for the doetrine of bona fides in consid-
ering business agreements, which depend in the true construction of the documents exehanged. Positive misrepresentation or frand will, of course, upset a contract if it lead to error; hut it is only in certain classes of contracts, such as partnership, suretyship, insurance. etc., that the plea of undue concealment has much force. The amount of damages recovered is sometimes affected by the good or bad faith of the wrong-doer, as in the case of willtul trespass of mining boundaries, where the nature of the subject renders a severe check necessary. In trust administrations the beneficiaries are entitled to place much confidence in the trustees, and bad faith on their part is severely dealt with.
BONANZA (Spanish, "prosperity"), a term originally applied in the mining territories of the United states to the discovery of a rich vein or "pocket." A mine was said to be in lomana when protucing profitable ore. It has since been used of suceessiul enterprises generally, in the sense of a "mine uf wealth?"
BONAPARTE, a village of fowa, situated on the Des Mnines liver, about thirty-five miles northwest of Keokuk. It coutains an academy, tlouring mills, sash, duor and blind factories, and one of the largest wonden factories west of the Mississippi.
BONAPARTE, Elhzametn Pathersos, born in Baltimore Md.. Feb. 6,155 , died there. April 4 , Is9. Her iather was a ship-owner, and. next to the Carrolls, the wealthiest man in the state. Miss Patterson and Captain derome lonaparte met at a batl, and their engagement soon followed. Fraring trouble might arise from such an alliance, Mr. Patterson carefully complied with all legal formalities: the contract was drawn up by Alexander Dallas. the ceremony performed by Archbishop Carroll, and witnessed by many distinguished persons. The young couple sailet for Europe in one of Mr. Patterson's shipe (March. 1sta), and tried to land at Lishon, but Napoleon 1 was greatly displeased. and had sent a French irisate to hinder Hadame Bonaparte from coming ashore. She was obliged to go to lingland, where the found a home. Here her son was hern. Napoleon 1 asked l'ius Ill to dissolve the marriage hat he refused. The imperial comncil of state granted a divorce. and Jerome gave up his American wife to marry the daughter uf the King of Wurtemherg. By her he had three children. Metame Imaparte sought by every means to defend her marrige and establish the legitimacy of her son. Iter life was very unhappy, as both her son and hushand were alienated irom her. She spent much of her time in Europe, where her misfortunes attracted sympathy and attention.
BONAPARTE ferover, King of Westphalia. See Britannica. Yol. N. p. 30.
BoNAPALTE, Jerome Nipolion, son of Jerome and Madame Bonaparte, was horn in Camberwell,
 187i. Ile was a llarvard graduate: a student of law inut never a practitioner. He married a Miss Williams, of Roxbury, Mass. He never leeame an American citizen, but cultivated :n intimacy with his father and the French court. Me left two sons.
BONAPARTE Jerome Napoleos, son of Jerome Xapoleon, born in Baltimore, in 1832, grauuated at the Cnited States Military Academy ; served for a short time on the Texas frontior. and in the French arms in the Crimean war and the Italian campaigu. He was a gallant soldier and many honors were conferred upm him. His brother, Charles Joseph (born in 1551) graduated at Harvard Unirersity and the law school, and practiced law in Baltimore.

Bonaparte. Napoleon Josepil Charles Paul, Prince de Jontfort, generally known as Prince Napoleon (Jerome), and commonly as Plon-Plon, was the son of Jerome Bonaparte, sometime King of Westphalia and yonnger brother of the great Napoleon. His mother was the Princess Catharine of Wirtemberg, whom Jerome Bonaparte was forced to marry after the romantic affair with Niss I'atterson, of Baltimore, had come to an end. Prince Napoleon was born in exile at Trieste, on the Adriatic, on September 9, 1822, and died at Rome, Mareh 17. 1891.

BONAL, Rev. Dr. Horatius, Eree Church minister and popular hymn writer, born in Edinburgh, Dec. 19, 1s08, died there July 31, 1889. Educated at the High school and University there, he was ordained to the ministry at lielso in 1897, where he remained for nearly 30 years. Ite afterward took charge of Chahmers's Memorial Free Church, Edinburgh. For a time editor of the "Christian Treasury," "Prosbyterian Review," and "quarterly Journal of Prophecy," he has published besides more than 20 volumes of a religious character; but is best known as the author of $I_{!} / m$ us of Fuith reml Mopp (three series, 1857-66), selections from which have found their way into all collections for church use.

BONARD, Lours, born in Rouen, France, in IS09, died in New York city, Feb.20, IS7I. Hecame to New York in 1851, and lived a secluded life, in apparent poverty, but at his death willed to Henry Bergh p150,000 worth of property for the use of the Society for the Prevention of Cruelty to Animals.

BONASIA, a genus or sub-genus of gatlinaceons birds of the grouse family, comprising the hazel grouse of Northern Europe, and the ruffed grouse of North America.

BONAVISTA, a bay, a cape and town on the east coast of Newfonndland. The town is a port of entry, and one of the oldest seftlements in the island. Its people are mostly fishermen, but agriculture is also carried on. Population, 2,600 .

BOND, Edward Augustus, LL.D., horn at Hanwell, England, Dec. 31, 1815. In Is3s he became keeper of the MSS. in the British Museum, and in 1878 was appointed principal librarian. He has published catalogues of MSS. and fac-similes of Anglo-Saxoncharters in the museum, and among other works, he has edited the Statutes of Orford University (1853), Fletcher's Russe Commonurulth and Horsey's Tretels in Russia in the Sixternth Cfmthy (I856), for the Haklayt Society, Speeches in the Tride of Warren IIasting. (4 vols., 1859-61), and Chwo ica Monasterii de Melsa. Ife has also helped to edit the Fuc-similes published by the Palcographic Society, of which he is a founder and president.

BOND. See Britannica, Vol. XVII, pr. 704-5.
BONDAGER, the term applied in the south of Scotland and in Northumberland to a female laborer whom a "hired" or married farm-worker undertakes to supply for the regular field-work on a farm as a condition of his tenancy of his house. She is frequently a member of his own family, or she may be merely engaged and boarded by him. The origin of the bondager system is the want of a sufficient rural population for the field-work of the neighborhood.

BONDED WAREIOUSES. The warehousing system lessens the pressure of customs duties hy postponing payment of them until the goods on which they are levied are required hy the impurter, when he pays the daties and the wombs ate released. Contil that time the taxabhe property is ander the supervision of the revane aticers. hut no compensation will be made for damage sustained by fire or other accident oeeurring in the
warehouse. The system in the United States date from 1846.

Bondi, Clemente, an Italian poet, born at Mezzano, in Parma, June 27, 1742, died at Vienna, June $20,18 \because 1$. He was educated by the Jesuits, and when still very foung was appointed to deliver lectures on rhetoric in the Rosal Convent at Yarma. Here he produced his first work, Giomata lillereccia (1773). For having celebrated in verse the abolition of the Jesuit order lhe was compelled to fly to the Tyrol. He found a patron in the Austrian Archduke Ferdinand, who appointed him his librarian at Brünn. Later he lived at Vienna. His poems are lyrical, descriptive, satirical, and elegiac, written in pure style and graceinl verse.

BONDS, interest-bearing of the Lnited States. The public debt of the Cnited states reached its maximmm Ang. 31 , I665, and amounted to $\$ 2,84,-$ $649,626.56$. The non-interest bearing obligations amounted to $* 461,616,311$, leaving the interes:-bearing debt at w2 $_{2}, 353,033.315$. On Ger. 31, 1840, the in-terest-bearing delt had leeen reduced to $\% 696,906$, 902. For full description of the honds, see Debt of the United Etates in these Levisions and Additions; also Britanniea, Vol. MXIII, pp. 7so, 784, 82S.

BONE-ASH, or Bone-Earth. is oltained by the complete combustion of bones in an open furnace, when the oxygen of the air hurns away the organie matter or gelatine, and leaves the earthy constituents as a white friable mass, having the semblance of the original bone, but readily reducible to the condition of coarse powder, which is bone-ash. Bone-ash of good quality contains about so per cent. of phosphate of lime, and 20 per cent of car bonate of lime, phosphate of magnesia, soda, and chloride of sodium. Bone-ash is employed to some extent as a source of phosphorus, and in the making of cupels for the process of assaying ; but the most extensive use is in the manufacture of artificial manures. See Eritamica, Vol. XVIII, p. 815. Many thousands of tons of bones are ammually exported from South America to Enrope for this purpose; India also contributes a large ammunt, the IIindoos being prejudiced against the use of bones as manure.

BONE-BEIS, the name given ly geologists to thin beds or layers whieh are largely made up of the fragments of bones, or in which bones and teeth occur in conspicuous quantities. One of the liest known is the Ludlow bone-bed, in England, near the top of the Upper Silurian. This lued, only a few inches in thickness extends continuously over an area of not less than a thonsand square miles and is full of fragments of bones of reptiles, fish, crustaceans, etc. Others are the Bettes bonebed of the Bradford Coal Measure, the Rhet ic bonehed, and the Tilgate stone of the Wealden series. In the bone-beds of the more recent geological age mammalian remains abound, as in the suffolk bone-bed of the Coralline eras.

BONER, Ulricu, one of the oldest German fabulists, was a preaching friar of Berne, and is frequently mentioned in documents of the sears 132 $4-49$. Ilis collection of a hundred fables was entitled Der Ledelstein, and was first printed, with wood-cuts, at Bamberg in]itiI. Only two copies now exist. Breitinger published a complete edition of the work at Zurich in 1757, under the title Frheln aus den Zeiten der Vimncsinger, which supplied materials to Lessing for his studies on the philosophy of fable. A mure complete edition was puhtished in Istl ly Franz lefeiffer as volume IV of Dichtungen des lheuschen Mithelulters.

BONESET, the popular name of Eupatorium per foliatum, so called because of its supposed properties

BONESETTERS, a class of persons who often possses considerable local reputation for success in the treatment of injuries to the limbs. The name is usually applied to those who have a knack at setting bones. but are not regularly qualified surgeons. As they are ignorant of anatomy and of the signs of disease, they sometimes do immense harm by applying their methods to unsuitable cases; but, without doubt, they have sometimes effected a cure where regular practitioners have failed.

BONFIRE, a fire kindled in celebration of some event of public interest, or as a beacon; applied also to any great blazing fire of whatever material. It is usually kindled in some onen and conspicuons place, such as a hill-top or public square or the center of a village green. Such tires were formerly lighted on certain anniversaries, the the eves of St. John and St. Peter, and their origin in the old conntries can be traced to pre-Christian times.
 of venomons serpents allied to the genera Flups and Naja. The species, which appear to be fewonly two being certainly known-are natives of the East Indies. Bongra cervleus (paraguda) is very poisonons, and has a dark-blue gromid color, with narrow white lines in front and coms-rnmo of spats hehind. Rongur awouldris (pamah). also very poisonous, has black rings on a yellow grommi, may be over six feet in length, and is founsl in Ceylon and China as wel! as in India.

BONGARDLi, a genus of herbacenus plants of the natural order Borberidea, native of the Eat lndies. One suecies (Bongudi lionmolfii) produces tuhers which are eaten, boiled or roasted, in bersia; and the leaves of another (chasmontmm) have an acid tatste, and are eaten as a satad.

BONHAM, a cify of Texas. combty-eat of Fannin connly, situated on bois a'i ree ('reek, alou! 30) miles east of Sherman. It is the trade center of a fertile prairie district, in which ereat quantities of wheat, oats, eorn and wher cereals, and more than 25000 bales of cotton ammally, with large amounts of bromm-erra and tobaceo, are raised. The mannacturies inchude flour, machinery, carriages and wagoms, bromms mattreses and tebaceo. Bonham is the seat of Bonham Masnite Female Institute and Carlton and Fannin Conlleges.
BONHEUR, Rosa, arrnel artist, horn at Lur-
 struction from her fathor. haymond bonheur, an artist of merit, who died in lsas. In 1841 she figured for the first time in the salon, showing a couple of small works-Timo Ruhbits and fomets ctult Sheep-that indiated tho departmem in which she was to attain fulure eminence. These were followed by a number of tinely tinished ermpositions; and in the year 1849 she produeed what some consider her masterpiece, thoghing with "orn. now in the Laxembourg. Iler famons Horew Fal, was the chief attraction of the salon in les3. It was purchased in 185 from the stewart collection ly Mr. Cornelius Vanderlilt for $\$ 53.500$ and loy him presented to the Netropolitan Museum of irt, of Sew York. In 1865 slie exhibited a large landscape, Mammathing in Autargne. In 1 sin3 she became entitled to the Cross of the Legion of lIonor, but hecause of her sex the decoration was withheld until 1865. I buring the siege of Pari- ($157(1-1)$), her studio and residence at Fontainustlean were spared by special order of the then ('ruwn Prince of Prussia. Iler success in painting amimals has been largely due to her conscientious study of living subjects.
BONIN, or (Japanese) Ogasawaka Ishands, a rolcanic group in the Pacific Ocean, 700 miles
sontheast of Japan, having an area of 32 square miles. They were discovered ly quast and Tasman in 1639, and were taken possession of for liritain in 1827 by Captain Beeches; but in 1575 the rapanese reasserted their sotereignty. with the riew of making them a penal settlement.

BONINGTON. RICHARD 1'ARKEs ($1801-2 \infty$), painter in oil and water-colors, born at Arnold, near Mottingham, England, Oct. 25, 1801. His father, aiter many ricissitudes, settled at Calais, and placed his son under the instruction of Louis Francia, the water-color painter. He afterwards studied in Paris-in the Lourre, at the Institute, and ander Baron Gros. Ilis water-colors sold rapidly. In 152 he hegan to exhihit in the Salon, and reeeived a premium from the soutite des Amis des Ante for bis riews of liare and lillebonne; and two yearslater he was awarded a medal at the Falon, when Constahle and Copley Fielding were similarly decorated. About this time he began to oceupy himself with lithorraphy. I fine collection of his work of this kind is preserved in the printrom of the Eritish Musenm.
In lánle tomk up (il-painting, and in that year visited Enaland and ltaly, subsequently producing his splendid V'anice' views of the Durel J'there and the fimmel famm, which figured in the salon of

 don. lle also exhibited in the royal Academy and the liritish Institntion. Ilis besition was at this time fully assurnd. and commissions eame th him in ahondanes; bat having contractod an attack of hrain fore from expmenre while skething in the - Un, his hatth faiberl. He visited lamdon for
 latu years the fame of bunington has heen rapially incereasing. amel her is recognized as a most aceomHished and oriwinal painter of latudevare and arehftectural subjects, atwoh as of sernes of histurieal fort. Ile is espereially almired for the purity and hrilliance of his embering. The Lewre witatins suveral of his stmdes and an almirable example of his tigure-pieres in vil, lomencis l, chacter rad the Jhuhtw de Eitemper. The Natimal (iallery las the Pinzath. N. Motros, Jinire rithmet, and ihree water-colors he the artiot.

LOSITO. a bame common to several fishes of the mackerel family (sicomburiba), ami to whers related to them or sipposed to resemblu them.
 stripe-hellifel tumy, athe of thr same getus as the tunny, is well known to salors as an inhabitant of the trupical parts of the Atlantio and lnelian Oceans, and as one of the fishes most fredibutly
 conor, clarker wh the batek, and whitish helow: and is marked with four dark longitudinal lines on the belly. l1s hosh is not ennsidered wholssome. The sindue mediterome is the lmome of Ammriean tishermen and markets, and the "leetred hemito" uf houks. It is of the same color, hut is distinguishod by ohlique stripes. It is plontiful in the libick Sear and has been found in the North Sea. its flewh is estemmed. Surdu (hilensix, closely related 10 s. meditromen, oceurs in the l'acific Ocean. It is known as "lonito" along the California coast, hut also misealled "Spanish mackerel." l wris thetered is of a more unifurm hlue color. without stripes or hands, and having widely separated dorsal fins. It is the pain bonito of the English. but along the New England coast is called "frigate mackerel." Its flesh is little estepmed when frwh.

BoNNAT, líos Juafir Florentine, a French artist, born at Bayonne in 1833. Ile studied at

Madrid muder Frederic Nadrazo, and in Paris under Léon Cogniet. He gained the second Giound Prite de home, and, aided by his friends, went to Italy to study art in 1858, where he remained for four years. He was first brought into notice by his fdem and Ete Finsling the Borly of Ibel (1560), now in the gallery at Lille; and his Pasqua IIaria (1868) was much praised. He deroted himself to Italian gence pieturns of moderate size, varied by such religious subjects as The Iosumption (I669), and the realistie thoist om the Cposs (187t), commissioned for the I'alais de Justice, Paris. Nore recently his works have dealt with Eastern life, and he has produced several remarkable portrats, among others those of M. Thiers and Vietor llago.

BONXEN, LuBERT, an American publisher, born
 Irish parentage. He came to the United states in early youth and leamed the trade of a printer ; and In $1 s^{5}$ he became proprietor of the "Sew rork Ledger," the suhseluent phenomenal success of which is wholly due to his husiness tact and energy. He has made liberal donations to eqlucational and other institutions, principally to the College of New Jersey at Prineeton. De is known as an adnirer of the horses, and as the owner of the celebrated Mand S. and Dextar.

BONNET-PIEOR, a Scoteh gold coin, no called on account of the king's head being decorated with a bonnet instead of a ceown, as was usual. It was first issued in 1599 by Tames V of sootland, and Worth at the time of issue forty shillings sootch. James V was the tirst scottish sovertign to place dates on his money, and to diminish the size of coins by inereasiny their thicknes. Ilis bonmedpieces were struck of nativegold, and are now muth prized by collestors.
 Fremeh studens of German literature, born at Evrenx, March 13, 17tio, died Nov. 9, 1sis. Among his earlier works are Xoncman Thintor Illeamme (12 vols., 17s"- - in), a collection of (rerman tales, and a translation of Shakespeare. After the lievolation he edited several newspapers, but his moderation and tibesality renderad him obnoxions to the ruting party, ant he was thrown inter prison. llis Histuria de l'Eurup" Moherne (3 vols. 1Ts M-42) and his 1) I' Esprit des heligions (1 Tinl) arestill reatl.

BONNY, or BoNi, a town amd riser of Guinea, now in the British Niger protectorate. The river forms an eastern debanchure of the Niger, and falls inta the Bight of Biafra. It is anoessible at all times of the tide to vessels drawing as much as eishmen fent of water, and sale anomoge ath all seasons of the year is fonme within its bar. Its banks are fow, swamps, and uncollivated. On the east side near its month, is the town of Bomys, motorions irm the lith to the lath centiry as the rendezyous of stave-trading ships. Tha homes forminer the town stant in a swamp, where lewer prewait; Enropean traders ermorally take ap thar fatre ters on river-bonats momed in the rument of tha Bonly. It export: considerahbo phatilios of palmoil.

BGNOMI, Josmpa, burn in Romm, O.t. ! 17:

 Esybtian remains. ILe repeatedly visited Eispht and the thoty land, and illustrathed important works by Wihinsm, Birch, Lharpar, Lepsius, amt other Eigyptolomists. Ine also publishod a work of his werl mit Nimeved.
 It is generally madi if an extra diviland griven of sharthoteres if a company from surphus profita; a
portion of the profits of an insurance company distributed among polics-holders. A premium giren for a luan, or for a charter or other prisilege granted to a company, is also called a bonus.

BONYILAD, or BoxiAhs, a market town of IJungary, in the counts of Tolna, about 100 miles south of Buda-Pesth. It has sume trade in corn, wine, and tobaces. lopulation, 5! 10.

BONZE, a morlified Japanese word applied by Europeans to the Buddhist priests of Japan and China

IbonDY (Sula leurngution, see Britannica, Vol. X, p. \quad r, a species of gannet, which has received this name from its apparent stupidity. Accounts vary fury much, however, as to this characteristic of the booly, some representine it as : ingular in not taking alarm nor becoming hore wary even when it has had reasmon to apmehend danger from man; while others, as Audubon, assert that it does learn to be upon its guard, and esen becomes difficult to approach. The booby is not quite solarge as the common gamet; is of a blacki:h-irown color beneath, and the sexes differ very little. except that the female is not quite so large as the male. It feeds npon fish, and the expansibility of the gulle enables it to swallow those of considerable size. The booby is found on almost all tropical and sulf-tropical shores, and sometimes even 200 miles from land. On the east coast of North Anterica, it reaches as far north as Cape Ilatteras, but is much more almondant farther snuth. The flesh of the booby, although sometimes caten uy sailors, is dark colored, and not very agreable.

BOUDY ISLiND, a level rock in Torres Strait, in $10^{\circ} 3 t^{\prime}$ sonth latitude, and $1+10^{\circ} 53^{\prime}$ ens! longitude, 3 feet above lifgh water, and ${ }_{3} 4$ mile in liameter. Leing dangrous to marigators, amb destitute of resomrces of its umn. it is pretty resularly =applied with provisions and water hy passing vessels, for the hemeft of shipwrecked sailurs.

BOOF-LICE, rarious small insects which damage books. In the family P'sucilia, in the order Orthontho, there are mmerous minnte wingless insects which shelter in books and among papers, and do "spectial damage to collections of insects. One of them (-Itrop"s pulnaturius). long eredited With being the Death-watrh, is very destructive to old borks, especially in damp places, and to collections of dried plants, etc. The elamely allied Troctes dieniutontus is a y et commoner pest of entunological cabinets. Among beetles, two, in the wood-boring
 to attack lums with wood in the linding.

BOOK-I't. ATES, the linglish name for a label bearing a name, crest, monogram, or other design, placed in a book to indicate its ownership, place in a library, utr. The use of book-plates is of somer antiquity, and montion has been mate of me dated in the middle of the 15 the entur!. Wut at present the tine bouk-phatos of Bihbabdu- L'irekheimer (Jtion 80), dosigned ly Alhert birrer. hold the foremost place in print of time. The erlion English engrawed how-uhate knomin is lma of sir Xicholas
 dated 15\%. Mant distinguished artists have condesconded to produce bond-plates. The name of Aheert bürer has alroady horn mintioned as the desioner of Jirekhermerest wo plates: and Kogarth charatul a lamk-plato fur duhn Iholand, heraldie attist, and ant her for fienore Lambert the seme painter. of liogish matavers, William harshal and lomert illift may he especially mentioncol.
 arachnid, in apparatmen lotwem senrion and mite. The fiona of the budy is scorpion-like. and
nears a transverse dorsal groove: the posterior body is flat, with ten or eleven rings; there are two eyes; the respiration is by means of air-tubes. Spinning-glands are present, and the body is sometimes corered by the secretion. The size is about one-eighth of an inch, the color brownish. The book-scorpion lurks among old books and papers, and probably helps their preservation by killing book-lice, mites, and other small insects.

BOOKWORM, any grub which feeds on the paper of books. The name more especially belongs to the larva of two species of small beetles. Anobinm pemicoum and Ptinus brumpus. belonging to the family Ptinida. In America. hooks in libraries are free from the ravages of the bookworm; the creatures are extremely rare in Britain, especially since so many chemical substances have been introduced into the manufacture of paper, but in Southern Europe the book-eating anohium is still common enough.

BOOM, in a ship, is a general name for the long spars which jut out from certain supports or uprights, to stretch or extend the bottom edge of sails. According to their connections, they recejve the names of jib-boom, flying jib-boom, main-boom, square-sail boom, etc. The term boom is also applied to a strong barrier, as an iron chain or calile, beams, or a combination of spars, etc.. lashed together with chains, and employed in barring the navigable passage of the mouth of a river or harbor. The wooden boom across the harbor was an important feature in the famous defense of Londonderry in 1689. In the United states a chain of floating logs fastened together and stretched acros: a creek or river to stop floating timber is termed a boom.

BOOM, a word frequently usad for a start or rapid development of commercial activity or speculation. as when shares go off, or priees goup"witha boom." It is a recent American use, originating in the West, and first made familiar in 1s.s. The word is assumed to le suggested less by bom in the sense of noise. rather than by the sudden activity, the rush, which the noise often accompanies.

BOONE, DwNa, born in luacks county, Pa., Fels. 11. 1735, died in Missouri, Sept. 26. 1520 Hle was a pioneer of Kentucky and a famous hunter. Ifter his marriage to Reliecea bryan he set out (1ana) with a party of six men to explore the wilds of hentucky. Thes met with various adventures and succeeded in buiding a fort on the Kentucky Ricer. which he called Boonesborough. Returning to his old home le organized a company of thirty persons. including his wife and daughters, and saiely ernducted them to his fort. Boone had many encounters with the Indians, and once was captured and adopted into the family of a chiof, hat he made his escape. Boone bad considerable trouble in getting the government to acknowledge his title to land. He was obliged to give uphis clam at Booneshorough, and eventually settle in Missouri. His grave is near Frankfort, Ky., a frw miles from the site of Fort Boonesborough.

BOONE, a city of Iowa, about forty miles nortio of Des Moines, an important shipping station for coal. immense quantities of which are mined in the vicinity. It contains also extensive manufactories of flower, iron, carriages, woolen goods, and gloves.

BOOXESBOROUGH, a village of Kentucky, situated on the Kentucky liver, about twenty miles southeast of Lexington. Daniel Boone here erected and successfully defended, in 170. the first fort built in Kentucky.

BOONESBOROLGII, a village of lowa, counfyseat of Boone county, situated near the Des Moines River, about two miles west of Boone. It contains
manufactories of agricultural implements and of carriages, and in the vicinity are extensive mines of bituminous coal.

BOONEVILLE, a city of Missouri, county-seat of Cooper county, and a river port, situated on the right bank of the Dlissouri liver, about 200 miles west of St. Louis. lt stands on a bluff about 100 feet above the river. Coal, iron, lead, marble and lime are found in the ricinity. The city eontains important manufactories of iron, earthenmare, wine and textile fabrics, and is the seat oi the Cooper Institute for ladies. It was the scene of a hattle fourht June 17,1861 , in which a Contederate force under Colonel Marmeduke was routed by the Lnion troops nimder General Lyon.

BOONTON, an important manufacturing torn of New Jersey, situated on the Rockaway Ricer, about fifteen miles west of Paterson. Its iron-works are among the most extensive in America. lesides blast-furnaces, rolling-mills, plate-mills, nail-mills and nut-mills, there are manufactories of hats and of flour, and a thricing trade in general merchandise.

BOOXVJlLE, a village of New York, about 25 miles north of lome. It contains manufactories of lumber, leather, cheese. charns, gloves and chairs.

BOORIDE. AYnREW ($1490-1549$), born about 1490 . near Curbtield, in Sussex, England, and hrought up under the stern discipline of the Carthosian order. About lats he sncceeded in getting a dispensation from his vow, and subsequently studied medicine at (Irleans, Tonlouse and Wittenherg. On his return to lingland he was patronized by Cromwell, and afterward traveled in bis service on a confidential mission throngh parts of France and spain. The year laisi was spent in the study and practice of medicine at Glasgow. IJe returned to london, and thereater crossed the seas and traveled by Antwerp, Cologne, Venice and Rhodes to Jernsalem. After bis return he lived in London and Winchester, where his thagrant immoralities brought lim inte serious trouble. In the spring of Itt9 he was committed to the Fleet prison in London. and sion after died. Boorde's chief works are his D!!etcre! and the Fiyrst Boke of the Introductime of K"moridolge, edited ly Dr. Finnival for the Early English Text Society in Iso. His Limerar! of Europe has perished, hint the Ilam-hook of Eminpe survives, and the Itinerary of Emglom or Pemerinutime of Hoctor boorde was printed by Jlearne in 1735. The earliest known sweimen of the Gypy language occurs in the Introduction. It has been asserted by some that Boorche, who was a fantastic reprobate, was the original "Merryandrew." see Britannica, Vol. IN. p. 3 tis.

BOORILANPOOR, or Bertaspoor, the amcient capital of Canderish, Jlindostan. The streets and housts are well built. The (ireat Indian leninsular Railroad has a station here. I mosque built by Arungzebe is one of the remarkable buildings. Flowered silks, brocades and muslin. as well as gold and silver thread, are manufactured.
 berm at lluttenried, in Bavaria, Dec. 25. 17iog. IJe was from about. 1790 the oririnator of a religinus movement closely akin th those of the Protestant lietists. From i806, when he settled at dallnenkirchen, his intluence spreat widely among the Catholic laity. and extended to about sixty of their priests. Himself a stanch (atholic. Ie was often hitterly persecuted, till, in 1817, the Prussian government appointed him a professor of theology and teacher of religion at Düsseldorf. In 1819 he removed to sayn. near Semwied, and died there Aug. 23, 1820.

Boot, Jons Fletcher, a Cheroke warrior and memher of the executive council of the Cherokee Nation, who was converted to Chriatianty in 1-9.5. and breame an elogutit and powrriul Methodist preachar. He preached to his perple in thoir native lagnage, and was the first of that mathon to arminister the sacrament of the Lord's supper. He died in 1853, leeing about sixty gears ald.

Booter, in freme mythology, the son of bemmter and lasion, who, heing plimdered of all his possessions hy his brother, insented the plow, and coltivated the soil. He was translated to hearen under the name of Bentes ("ox-drivar"), which is still barne liy a monstellation heside the Gruat bear. It is supposed to repmosent a man lolding a erom and driving the batar. The bright star Lommon is in Brötis.

Burli, a eovereal stall or hut at a markif ur fair, from whieh grods are sold, still much usid in the mast of Europe and in Asia, and in Fhgrand at Weyhill Fair (see Britannica, Vol. VIll, p. stic) near Andover. As towns sprang up, the yearly fair Wat more or less smpplanted by the weekly market, and the slight hooth had a temedency to berome permanent.
The records of the $12 t h$ and some following centuries are full of complaints against the encroachments which were in this way made upon the market-places and strents. Stow relates that the houses in Old Fish street in London, "were at the first lut inosable luards set ont on market days to show their fish there to be suld; lont, procuring license to set up sheds, they grew to shops, and liy little and little to tall housps." So in Edinburgh the rang" called at lirst "The Boothraw," and afterwards "the Luckn-booths," arose in the very center of High street. Traces of the Middle Are booth still remain in Enghand, and in France there are many perfert examples, some believed to he of the 12th eentury.

Bootll, Eowin Thomas, named for Edwin Forrest and Themas Flynn, born in Bnd Air, Md., Nus. 3, 1s33. His education was insultory, and at an early age his father, Junius Brutus booth, took him on his probessional trips as dresser and attendant. Fhring we of these ledwin mate his first regular apparamee on the stage. This was at Boston in 154. IIs father did not approve of the son's choiev of protession, but did not appose him. In 183 his father was ill in Nisw Yark eity, and the son trok his part as hichard III. The elder Booth whe night ohsurved his som drussed for the part of Jaller in lemice Prowerm, and sail, "You look like Hamet ; why don't you play it?"
Fatwin Banth $1+\mathrm{ft}$ his father and trapeded about. goiner to Anstralia and the Sambich Islands, and asperienced many privations. Returning through California to the Fastern states he played an a star in many eities. He had now aemired experience and considerahle famm, which latter was areatly increased in the yars that followed. Ite "woformed the then ereat feat of playing llambet for one hundred conserutive nights (Now. 21, 1stit, (1. Mareh 24, 186斿). Ha became manager of the Wiater farden The:atar, Now York (18tis-ain), and brought out magniticant pratuminns of shakesparasereatest works.
lin side lboeth's Theater wats dedieated; it was run ly him for thirteen years, but did not prose a tinamoial sheorss, and after it was fort down he wat obliged to earn another fortume to pay oft the donts it luft on his hands, Lawremen barreat. Watuin L. Davenport, J. WV. Wallark, Jr., Juseph
 were annons the stare thet anporam in hooth's thenater.

Edwin booth has made trips to Germany and England, and within the last few years han inde starring thur, in company with lawrence liarett throurth the principal caties of the United states Hu was married July - ISto, to Jiss Mary levlin of Troy. who died in Doreliester, Mass., Fobo…1 1, wis, leaving a danghter. Edwina, a year old. In 1sti: Buth was again married, the hady heing Miss Jary Rumimn Me licker. She died in $1: 51$ and left no thithen. Booth"s faworite and best impersonation is in the character of IIamet.

BOOTII, Joms HOLKE\&, actor, born in 1839, was shot by Sergeant Corbett, April 26, 1863. He was a son of Junius Brutus Booth. Ilis name has been rendered infamous by his assassination of President Iincoln. See Britannica, Vol. XIV. p. ifit.

IonotH, I'xus Brutus, born in London, May 1. 1545, died Sow. 3, 1852. He received an excellent education and was undecided what profession to enter. After trying painting, poetry, law and other oceupations he entered the dramatic professiun, contrary to his father's wishes. After trips in Holland and Belgium he went to London, and within four years had hecome a great success.

In 1821 Booth arrived in America, where his dramatic career was most brilliant. At one time he serionsly contemplated learing the stage and hecoming a light-houst keeper. He purchased a sylvan retreat twenty-five miles from Laltimore, where he oecasionally retired for reereation. On this little farm he found pleasure in rural pursuits, and it was to this place that he brought his old father, wh: had always leen a great admirer of Anerica. Mr. Booth acted in New York, Baltimore, New Orleans (here he gase French plays with great success), Richmond, Philadelphia and San Franciseo. II is son Edwin traraled with him through the West, playing companion characters.

Booth died on a trip up the Mississippi River from New Orleans. Ilis life was made unhappy by the death of three ehildren, by attacks of insanity, to whieh he was subject, and by his own habits of intemperance. He appeared with such actors as Kean, Forrest and llamblin in many of shakespeare's plays, and also the dramas entitled The
 'gur, The liouls and liches. His best impersonation was the charactor of Richard III.
booth, Mary Lomse, horm at Millyille (Yaphank), N. Y... 1 pril 1!1, 18:3, died in New lork city, March 5, 184:. She was of French deseent, and as a chidd displayed talent. She taught schond with her father in Williamsburg. L. I. but gave it up on acconnt of ill-health, and adopted literary work, sending sketehes to the newspapers and translating Freneh stories. During the late war she angaged in transkang works of famous Frenclamen who wore in favor wit the Colion canat. Ine diasparin, Laboulaye and cochin were among the athors whose works she translated and with whom she corresponded. Her patriotic work remived the praise of President lineoln and wher statesment. She translated the Mistory ti Fommen by Menri Martin. She was aluthor of the Miston' of the rity wi Sew low which was brought duwn to the date 1880. In 1stï" "1harper's Bazar" was cotablished. and Mise Booth was its adion until her death.
 fhe salvation Army, forn at Fothingham. England,
 1sifl aded as a ministor of tho Methodist New Connewton. From the first he was a zealous evaluelist, bat the new dapartura which led to the ereation of thas satuan Army momitary limos leman in 1, sta, with mission work among the lower elane of on

Since 1578 Booth's organization has been known as the Salvation Army, of which he has continued to be the main spring and controlling power. directing its movements at home and abroad from his headquarters in London. His enthusiasm and wonderful organizing power have given life to the religious military system. of which he is truly "general." Booth has written several hymms and religious works dealing with the movement.

BOOTHBAY, a village of Maine. situated on the Atlantic Gcean at the mouth of the Damariscotta River. Its harbor is an excellent one, and is open during the winter. The chief industry is fishing. The town is a prosperous trade-center and a popular summer resort.

EOOTLE-CUM-IINACRE, a northern suburb of Lirerpool. including a large portion of the Liverpool docks, but since 1868 forming a separate municipal borough. Population, 27.112.

BOOTON, an island of the Malay Archipelago, separated by a narrow strait from the southeastern bay of Celebes, and from the ishand of Muna. It is high. but not momitainous, and thickly wooded; produces fine timber, rice, maize, sage, etc. The people are Malays. The sultan, who resides at Bolio. is in allegiance to the butch, an under-resident being stationed on the island. Area. 1,700 miles; population, 17,000.

BOOTY, the victor's share in property captured from the ranquished; plunder; pillage. It is generally a military term, the word prize being more frequently used in the navy.

BOPPARD, a town of Rhenish l'russia, on the left bank of the Rhine, 10 miles south of Coblenz. The Bondobrige of the Romans, it was afterwards an imperial city till 131", and the seat of a diet in 1234. Population, 5.594.

DORA, Kitharina vos, the wife of Luther, born of an old family in the district of Meissen, Jan. 29 , 14%. died at Torgau, Dec. 20, 150\%. At at very earls age sheentered aCistercian consent of Nimptschen, near (irimma. Becoming acquainted with luther's doctrines, she found herself very unhappy in her monastic life; and. finally. with eight other nums, whose relatives, like her own, refinsed to listen to them. she applied for assistance to Luther. Luther obtained the services of Jomhard koppe, a citizen of Torgau, and by him and a few assoctates the nine nuns were liberated from the convent in April, 1523. They were brought to Wittenherg. and Katharina beeame an inmate in the house of the burgomaster Reichenhach. Luther, through a friend, Amsdorf, offered her the hand of Dr. Kaspar Glaz. She dechined this proposal. hut declared herself ready to marry Amsdori, or lather himself. Her marriage with Lather took phace June 13.1525. See Letmen, l3ritannica Vol. XV. p. \quad In. She bore her husband three sons and three daughters, and is hest described in luther"s own words as "a pious, [aithful wife, on whom a hushand's heart could rely."

BORAGE (Borago), a genus oi plants of the natural order Roratinnorio oi which genas there are few species. A European plant. Jonrofo opticinalis, the principal representative of the genus. is an herb of somewhat stout and coarse appearance, but with beatiful bhe tlowers. Porage was formerly much cultivated and highly esteemed, being classed among the combinl flowers, and supposet to possess exhilarating analitios for which it no konger receives eredit. It was frequmaty put in wine and, although it has no semsible properties. its traditional virtues still retain for its leares a place in the preparation of claretecup. The yomes leares and tender tops are pickled.and neca-ionally boiled for the table, and are still used in sulads in Germany.

BORAGINEA, or Boraginacere a large chiefly herbaceous order of corditoral dicotsledons. the alternate exstipulate leaves generally rough with hairs which proceed from a thick, hard base, the flowers regular, and the fruit consisting of four distinct nutlets or of a drupe containing four nutlets. The order includes the forget-me-not, the lefiotrope, borage, alkanet, comfrey, etc.

BOFAN LAKE. a small body of water situated in Lake county, Califormia, and separated from Clear Lake, on the west, hy a dike of olsidian. It is remarkable as the source of supply of immense quantities of borax, which is found in the form of crystals in the mud at the bottom of the lake. The water is a strong solution of borax. and in the vicinit 5 of the lake are numerous mineral springs.
EORDES. Gatl. inventor, born at Norwich. N. Y., Yor. 6, 1801, died at Borden. Texas, Jan. 24, 1874. While on a surveying expedition his attention was called to the need of suitable foods for emigrants, and he began a series of experiments. He produced "pemmican," a kind of meat biscuit which was carried by Dr. Kane in his Arctic expeditions. In 18 D̄6 he secured a patent for his methou of condensing milk. and afterward produced beef extract, condensed tea, coffee, and cocoa, as well as condensed fruit juices. Mis matents brought him much wealth.

BORDENTOWY, a eity of New Jersey, situated on the Delaware liver, about six miles below Trenton. It was founded in 1717, and is noted as having been the residence of Francis lopkinson, Josephllophinson, Admiral (harles stewart, Joseph Bonaparte, and I'riner Xhrat. The Bonaparte mansion is still standing. bordentown is the seat of Lordentown Female Cohlege and of a military institute and eontains a number ui important manufactories, ineluding iron, machinery, shirts, and shipbuilding.

BORDERS, TuE, as a term denoting the tract of commtry lying immediately on both sides of the frontier lime between England and scothand, it is somewhat plastie in its signification. Crogrophically. the frontier line runs diagnally nort heast or sonthwest, between the head of the solway Firth at the latter extremity, and a point a little north of the mouth of the Tweed at the other extremity ; the counties touching upon this line heing comberhand and Jorthumberland on the Finglish side, and Dumfries, Roxburgh, and Berwiek an the Seottish side. The distance between the two extremities is nearly 70 miles as the crow flies, lut following the frontien line in its irregularities aloont 110 miles.

White the aluobe may he taken as letining the Border in a gengraphical sense, the word has for historical purpuses a wider significalion, especially on the scotish side. The territory thas indicated on the seottish border includes the whole of the eount ies oi Berwiek, Joxburgh, Selkirk, and Peelnles, a considerable portion of mamfriesshire. and part of Galloway. Athough the name of the burder, or Borders is not perhaps older than the 13 th century, it is ni interest to mote that from the very dawn of British history the distriet so called has whibited in its amals the characteristics of a fromber. in that it has almost constantly formed the mint of contact between enntending races and natims.
The Borders have been the scene of some great historical battles. To narrate all the invasions that toonk place on either side of the Porter would be to repeat great part of the general histury of England and sentand.
There is yet a third and more popular sense in which the word Border is used. This, which may be called the litrary sense of the term, arises out of the prominence whieh has been given to the vale of the Tweed, including its tributaries the larrow,
the Eitrici. and the Teviot, by the romances and poems oî Sir Walter Scott, by the poetry of Leyden and of the Ettrick Shepherd, by the ancient and traditional ballads relating to the district, and bs the pathetic songs and legends more immediately comnected with the Yarrow, and glorified by the genius of Wordsworth. Hence, when Border tales or Border ballads or Border traditions are spoken of, it is the Scottish rather than the English side of the frontier that is referred to.

BORDER-WARRANT, an obsolete form of diligence used in the border counties of Scotland for detaining the person of an English debtor. It was more rigorous than the general meditatio fuge warrant.
BORDIGHERA, a winter resort in the Riviera, North ltaly, on a hill overlooking the Mediterranean, seven miles southwest of San Remo by rail. It was founded in 1470 , but its modern progress dates from the opening of the Cornice road in 1823 , and of rainway communication. Bordighera suffered in the earthquakes of February, 1887. Population, 2.556.

BORDONE, Paris, a painter of the Yenetian school, born of noble parentage at Treviso, Italy, in 1500, died at Tenice in 1570. He studied under Titian and under Giorgione, and much of his earlier work was done in his native town, in Vicenza, and in Venice. In 1538 he was invited to France by Francis I, who employed him to paint portraits of himself and of leading members of his court. He was knighted by Francis 1I. He painted at Augsburg in the Fugger Palace, and at Milan in the chapel of St. Jerome. His most important monumental work in painting was the six sacred subjects with which he decorated the dome of San Vicenzo, Treviso; and his Fisherman Prescnting the Ring of st. Murl: to the Doge, now in the Academy, Yenice, is ranked as masterpiece among his easel pictures. He is represented in the National Gallery, London, by Duphnis and Chloe, and A Portrait of a Genocse Lad!!.
BORE, a tidal phenomenon at the estuaries of certain rivers, also called Eagre. When a river expands gradually towards a very wide mouth, and is subject to high tides, the spring flood-tide drives an immense volume of water from the sea into the riser ; the water accumulates in the estuary more rapilly than it can flow unto the river, and thus there is gradually formed a watery ridge strerching across the estuary and rushing up towards the river and over the level sands with great velocity and much noise.

The most celebrated bores are those of the Ganges, Indos, and Brahmaputra. The last is said to rise to a height of 12 feet. In the lloogly branch of the Ganges, the bore travels 70 miles in four hours, and often appears suddenly as a linquid wall over seven feet high. In the Amazon and other rivers in Brazil the bore reaches a height of irom 12 to 16 teet. In England the phenomenon is most noticeable in the Severn, Trent, and the IVyo, and in the Solway łrith. The bores in the Bay of Fundy are very remarkable. On the Amazon this phenomenon is called the prororocu: on the Seine, the berre, and on the Garonne and Dordogne. in France, the mascaret.

BORE, the internal cavity of any kind of fire arm. It is in most cases eylindrical, hit in the Laneaster gun it is owal, and in the Whitworth hexagonal, both being also spiral, while in all riffed firearms it is furrowed with spiral grooves, and for the same reason: to give that rotation which enabies an elongated projectile to be used. The diameter of the bore is called the "ealiber." In rithed gruns the bore is measured, not from the luttom of the grooves, but from the smooth surlaces between them, called the "lands."

Heavs iron guns were formerly cast solid and then lored out, but as it is essential that the surface of the bore should be extremely hard to prevent itsbeing " scored " by the shot, endeavors were made in America to attain this object by casting them hollow, and cooling the inner surface more rapidly than the rest of the metal. Large guns of modern construction are, however, either made entirely of steel, as in the "Krupp" process, or, as in the Woolwich and Armstrong systems, have a steel tule, toughened in oil, for the bore, and strengthened outside by coils of wrought iron shrunk on over it, so that the hardness of the bore is assured.

BORERS, a name applicable to many beetle-like or coleopterous insects in the family of wood-eaters or Nylophaga. but peculiarly applicable to the genera I'tinns and lnobium. Thes are mostly inconspicuous inseets, resting during the day in the larral tunnels, active and roving at night. Ptimus fur is common all the world over. and is very destructive to herbariums, collections of insects, stuffed birds, etc. The larra of Anobium striatum does great damage to furniture made of soft wood. Its little round tunnels, looking as if made by a drill, and fuil of the finest powder formed from the devoured wood, are familiar enough. The species Anobium tesselutum and Ahobinm pertinax are also found in furniture, but more usually on trees. There are many other genera of borers, Lymexylon navale on ship-timber, Ptilinus on books, and Lpate on oak furniture. The Closer-root borer, a small scolytid beetle, Hylesinus frifolii, imported from Europe into America, is very injurious to clover. The perfect beetle is a little over two millimeters in length, oral in form, and of a dark-brown color. The Grape-root ?orer, the larra of Egeria pulistijomes, a moth of dhe Eqcribde family, is a white ileshy grub which eats the bark and sap-wood of the grape-root.

LORGNE, commonly called Lake lorgne, a bay of the Gulf of Mexico, about twenty miles wide, exlending from Mississippi Sound sixty miles westward to within twelve miles of New Orleans, and communicating by Rigolet's Pass with Lake Pontchartrain on the north. It is a part of the route of steamers rumning between New Orleans and Mobile. Its shores are a narrow and almost continuous ridge of shells. Which separate it from numerous surrounding marshes and cane-brakes.

BORLS:OV. a town in the Russian government of Minsk, on the leresina, 418 miles southwest of Moscow by rail. Population, $14,23 \overline{3}$.

Bolik LiJ, one of the East Frisian Islands, at the mouth of the Ems. 25 miles northwest of Emden. J'opulation 68t, inereased in the summer by over 2,000 visitors.

BOLMMO, a town of Italy in the province of Sondrio, 27 miles northeast of Tirano. It has a number of hou sulphur baths. Population, 1,itt.
bokN, Bektrand de. a famous trouladour, born about $11+0$ in Perigord. The played a conspicuous part in the struggles of the English king Henry II, and his sons, during the latter part of the 12th century. He died before 1215. More than 40 of his ponims are extant.

1OORNA, a town of Saxony, on the Wyhra, 17 miles southe ast of Leipsig by rail. Population, 7,350 .
BORNEO CAMPIIOli, a variety of camphor produced in Sumatra and burneo. It is obtained from the tree Drymblanops canphoma. and is highly prized by the Chinese, who give for it a much higher price than for ordinary camphor.
lOKNLN(i, e process of judging of the straightness or level of a surface or line by the eye, which looks along two or more homing or boming rotls or pieces sel up for the purpose. The term is used by masons, surveyors, and surdeners.

BORNU (Bornoa, or "Land of Soah"), a Mohammedan state in the Central Sudan. Area, about 56,000 square miles. Population, over $5,000,000$. Capital, Kuk, or Kukawa, lying on the west side of Lake Chad. See Eritanica, Vol. IY, pp. 60, 63.
The Sultan, whose official title is Mai, is an absolute monareh. He is assisted by a council comprising the Kokenawa, or military chiefs, the oflicial delegates of the various subject races, and several members of the reigning family. The standing army of about 30,000 men is partly armed with ritles, and the cavalry still wear armor, either imported from Eastern sudan or manufactured in the country. There is also some artillery, and a few companies even wear European uniorms. In lieu of pay the men receive allotments of Jand.
Most of the people, who call themselves Fia-nuri, that is, "People of Light," are of mixed Negro and Dasa (southern Tibu) descent, and speak a Tibu dialeet that has been redueed to written form by the Protestant missionaries. The other chief elements of the population are the Tuareg Berbers in the north; the Arabs mainly in the sontheast; the Makari and Marghi Xegroes in the south; the Wanga, Bedde, and other pagan tribes in the cast; and in the center the Jagomi, who claim kinship with the royal dynasty which for many centurics ruled over the united lornu and Kanem states. These and the Kanuri are regarded as the most cultured people in Central Africa, and their woven fabrics, pottery, and metal-ware are highly prizol throughont the sudim.

BORODASO, a village of linssia, 70 miles west of Noscow. It is situated on the Faluya, an ampert of the Moskwa, and gave name to the great better fought between the French amy unter Napmen
 battle of Borodino was une of the mint obstimately disputed in history, and the has in both sides was almost equally great. Out of 2-ithon men engaged, between 0,000 ind 80 , 000 were killed or wanded. The Russians retreated on the following day. but in the most perfect order, and therefore chaim this battle as a victory. The homor is atso elamed ly the French, who nom the lattle frum lloskwa.

BOROGLYCEIADB, a eomponat! composed of about 25 per cent. of glyeeryl bomat, or propenyl borate, and io per cent. of free boric steid and elycerine in equal proportions. It is extensively used as a preservative of food, and also in antisoptic surgery, combining, as it docs, the valuable jremerties of the abovernentioned substanecs.
BOROUGH, or, in scotland, Imers. See liritannica, Vol. 1 , Pp. 6z-6.t. in Compectieut, Liow Jersey, Pemsylvania and Minmesita the bormgh corresponds in general to the tom in wher states.
 East Dereham, Norfolk, Englind, July 17, 1803. His father, a captain of militia, moved about withi his regiment to Scothand, Ireland, and many parts of England, finally settling at Jorwich, where young Borrow attended the grammar selinol (tsio-1s), and lor the next five years was artieled loa firmi of solicitors. Ile already deserved his. gypsy title, Lavengro ("word-master"), having picked up is knowledge of Irish, French, German and Danish (these two under Taylur of Norwich), Welsh, Latin, Greek, even of Romany, the hamuage of that strange gypsy race of whiel he was almost an adopted nember. On his father's death in $1 s^{2} 3$ he went to London to seek his fortune, and lor a time made a precarious living by writing. Tiring of this he gielded to his love of Nature and love of adventure and spent considerable time in rambling about England gypsy-wise Subsequently as agent of the Bibte Sueiety he visited st. Petcrsburg (1833).
and Portugal, Spain, Morocco (1835-59). In 1840 he married and settled down on a small estate at Oulton, near Lowestoft. where, after travels in Southeastern Europe (184t), a tour in Wales (185t), and a residence of some years in London, he ended his days, July 30, 1881. The chief of his fourteen Pablished works are : The Zincthi, o. Gippsirs of spuin (1st0): The Bille in Spaia (1843): Larimyro (1s51), its sequel The Romomy Rye (1857); Hild Hales ($18 \mathrm{si2}$); and Rimano Laro-Lit, or 13ord-book of the EnglistiCypsy Lenquaqe (1574). He has been likened to Cervantes, Defoe, and Lesage. In truth all three were in some ways his literary progenitors; none the less he is always original, alwars George Borrow. His rare mastery of good, stroner English, his rarer power of depicting mankind and Nature, are, however, often marred by mannerisms, transparent myst iifeatims and unreasoning crotchets.
BORhoWDALE, a beantiful yalley of West Cumberland, England, asconding from the Derwntwater towards the Monister lans. In this walley is the Bowder stone, x^{\prime} fect is circumference, and 1,971 tons in witht. The famous plumbago mine at Seathwaite in Borrowdat, whech long yielded enormous pronts. was closed in 1850 .
BORROMING PAIS, the last three days of March (odd style), summed in seoteh folkwere to have been horrawd ha 21 rel from h_{1} ril, and to he especially sturmy. In (heshime the tirst aleven
 add style thiny lelonsed to ipril.
BORSAB, a thw in the nom thern divison of the

Monsoli, i Hugarian county hathsparn miks in area. It probuens coal, wipper, iron truit hemp. wine and tolaceo; is a iertile provinco and lios on both side the sajo hiver.
 13^{2} mina sontheave of lidinhnegh. It is 1 k thet high, and monsures -t he mation. It was fomded
 spent four d:yss here. Firichtom ('aisle. whono beattiful court-yard is so fintaly inserinod in Stominn. stands 1 ', baime to the cast.
 seuptor, hom at Jonave, March 1:17th, dind duly 29.185. Jlustutiod art first at laris, aitorwards in Italy, and first berame famons by the fienters which, at the reguest of Napolem, he esentod for the columar in the Ilace Vondmpe horis XVIII and Charles X also patronized berin; the fomer made him rojal sculitur, the later a harm, it the time of his death he was director of the Iealemy of Fin Ant in laris.
foswll and hrezacoras. provinem of Ans-tria-Hungary Tutal area, 23, ot whare miles. Population (1sec), 1 , 4, 0 (1). For early histury, ste Britannica, Kol. 1 Yip is.
By the treaty of lierlin, duly 13, 150, these pmo inces were transterred from Ottoman comand to that of the - Aastro-IIngarian governmon!. The present govermmental administration is mbluctod by a Bosnim hureau at Viema in the name of the Emperor-King. The chiei anthority in the prorince itsolf, with its seat in Sarajoro, is the provineial government (Landesregierung), in thre departments for internal affairs, finance, and justice. For administrative purposes. there are if districts (Kreis) and 48 county (Bezirk) authoritics. The provineial government is provided with an advising hody, composed of the ecelesiastical dignitaries of sarajevo and 12 reprosentatives of the pepmace. Similar comeils are alse provided for the district and county anthritios. Posnia and Lerzegovina contain six districts (Krmise). The Sanjak of Novi-

Bazar is cocopied by an Austrian military force, though administered civilly liy Turkey. In lnaj the popalation (without military) numbered 1.3:3,(0, 11 (ros,025 males and (bis1, nity ifmales); with militars $1,360,000$ Greek Oriental Christians, $571200 ;$ Nohammedans. 452,710 ; loman Catholies,
 sorvian ; only in the southem districts are Amants, and here and there gypies. The most populous towns are the capital, sarajow, with (in 1885) 2h,2ati; Mostar, 12.6tis; and Banjaluka, 11.35. There is sone higher gymmasium, two gymasia, four commercial selouls, :4B ehmentary schools, with one (ireek-0riental and one Roman Catholic seminary for priests, and one training eolloge for teachers. There is an uper court of justice in Sarajevo, the six district (Kruje) courts and the county (Be\%irk) authoriting as courts of first instance. Dgriculture is in a very low state of development, though the suil is rery fertile. Maize, wheat, larley, oats, rye. millet and hackwheat, potatoce, flax. hemp, and thaceo are cultivated. Both provinces have a superahbodance of fruit, prineipally plums. Iried phame are the chicf article of export. In inha wer f(0, (ho hoxes (39,368 tons) were cxported, valued at 200.0607. Cat le-grazing is important. In 1579 there whre, it is estimated, 108,034 horses, 3,134 asses and
 sheep, 52,123 roats, and 430,354 swine. Forest-hand occupies ty per ennt. of the whole area. Dlinerals art ahundant; mining is now carried on for iron and copper, mangranese, chromium, antimony. There are salt-pits at Dolnja-Tuzla. There were, in $1 s, 10,: 3+2$ miles of railway, and 1,743 miles of teln'graph lines. Military servied is compulsory over ©0 years of age. The native troups comprise fonr infant ry battalions (each seven companjes), with a total of $2,4+4$ men on peace footing. The AustroHungarian troops of oecupation lave at present a strength of 23,860 men.

BGSPllORUS, Cmmerma, an ancient name for the Strait of Yenikale, or Kaffa. It emmects the Sea of yov with the Black soa.
 marshal, horn Nov. s. 1810, at Mont-de-Marsan, in Landes, died Feh, 5, 1s6in. Dle entered the Alges rian army in 180.4. and reached the rank of general of brigade in 1848. During the Crimean war he contributed greatly to the victories of llma and Inkermann, and trok a leading part in the capture of the Malakoff, where be was severoly wounded. In 1856 he was made tield-marshal of Franere.

BOSS, a term applied in America to one who employs or superintends; a head manor manaper. It is a moditied form of the Intch hotes, "master," a term used literally and fisuratively like bose in American use. In Ynited States polities, a briss is an influential polititeian who uses the machinery of a party either for private ends or for the henedit of a elique or ring. To "loss" is to play the master.

BOSSL'T, ('HARLEA, mathematieian, born at Tartaras, near lyons. Franor, Ang. 1I, 1730, died at l'aris, Jan. 14, 1814 . Iha was assisted in his early studies by Clairant and d'Alombert. From 10: until the Revolution he was professor at Dezieres, and under the Empire in the Polytechmic Schools at Paris. In the eompulsory retiremont that followed the Revolution he wrote his famous E'ssai sut l'Mistoire Genfale des Mathemutiynes.

BOSTAN (EI), "the garden," a town of Asiatic Turkey, situated in a plain on the kihun, on the north side of Monnt Tanrus, to milos northwest of Marash. Jopulation, s.500.
boSTON, the chief eity and capital of Massachusdts. For its history, see Pritamiea, Vol. 1V,
 Bustom (Noddle Island), orisinally containing 660 acres, the suburle of South Boston, Charlestown, Dorehester, loxbury, West hoxbury and Brighton, with their miner villages. Cambridge. Jonton, Somerville and Chelsea are suburban cities. Ilany of the strects of liosto s. once so erouked and inregular, have hawn straightoned at pubic upense, since the great fire of 1872. Itorse rallways trayerse the principal strects. running out several miles into suburban towns. The old South Church. in which Franklin was baptized. Whitetield preachod, and the election sermons vere delivered for 160 sears, still stands on Washinestonstreet. It was sold in 1s 66 to a patriotic as-cciation, and fitied up as a muselam.

Boston stands high among American eities in the number and extent of her libraries and schools of learning. The buston l'nhlic Library, on Boylston street, inchuding its branche.. is the largest library inthis country, and is free to all. Some of the other principal libraries are the Boston Athenseum, Massachusetts Histurical society.state. Social, Law, Boston Medical Jenociation, New England llistoric Gunealogicatsociety, Congregational. General Theologieal. Irsides many smaller ones. IIere also are many art and scientitic institutions. and as a corporation Boston supports several schools of industrial and meehanical drawing. The Bustum Inseum of Fine Arts is an immence building, oceupring 97.000 square feet. There is als, the Boston Art Clat. Boston Society of Decurative Irt. American Aeademy of Arts and Seiences, lemtonsociety of Natural History, and the Warren Inseum of Natural llistory. Music is also extemsively cultivated, as indicated by such institutions as the Mandel and Maydn Society. the oldest musicial organization in America, founded in 1s15; the ITarvard Musical Association, Apollo Club, Boylston Club, Cecilia CIul. Orpheas Musical Seneicty:

The first free schools in Ameriea were established in Boston ahout 250 years ago, and mom the system of publie sehools is very elaborate ant complete, tmbracing every grade from the primary to the high Normal and Latin schonls. The Boston Latia school, preparatory for collese, was founded in 1695. The huilding for the New English lligh and Latin School is said to be the largest in America devoted to edncational purpoess, and the largest in the world used as a free publie school. Poston Liniversity (Methodist), founded in 1869. includes three colleges, four professional schools, and a post-graduate departmont of Universal science. There is also the Boston Taniversity Seheol of Medicime, open for hoth sexes; loston Colloge (Loman Catholic); Tuft's ('ollege (Tniversalist): Tassathusets lnstitute of Teehnology, and Lowell Institute, which provides for ammal echurses of free lectures upon the most impurtant branclaes of natural aml moral seienee. llere is also the lerkins Institution and Massachusetts. school for the blind, founded in 1829; the first institution in the world Where a systematic oducation of the blind was attempted, and which has been a motel for others of the kind. Here also is the Horace Mamm School for the Deaf, Boston Asylum and Town sehool for Indigent Boys and Massachusetts School for Idiotic and Fenbleminded Vouth, the lirst in America. Hospitals, asylums, homes and dispensaries abound.

Boston Common, in the center of the city, is a handsome natural park of lifty acres, shaded by about a thousand statcly elms, with broad walke, a beautiful sheet of water, the original "Frog Pond," and many objects of special historic interest. Adjoining this on the west is the J'ublic Garden. containing 24% acres, one of the most attractive spots
1.2 the city. The population has increased from 250 ,526 in 1870, to 362.839 in 1880, and to 446,507 in 1890.

BOSTON UNIVERSITY. See Colleges, in these Lievisions and Additions.
BOSWELLIA, a genus of balsamic plants, natural order Burspraceat of which the species are still very imperfectly known, although the product of some of them-olibanum, generally believed to have been the irankincense of antiquity-(see Britannica, Vol. IX, p. 708) has long been of considerable commercal importance for the preparation of incense. The most important species appears to be Bosuellia Cartirii, though several other varieties from the bot and dry regions of Eastern Africa and Southern Arabia have been described. Bosucllia thurifera or serrata of Coromandel yields a resin which is used in that country as incense. Bosuellia Frereana yields the primitire gum elemi, a highly fragrant resin largely used in the East as a masticatory. The Abyssinian Boswellia papyrifera (so called from its laminated paper-yielding bast) also yields an olibanum, but it is not collected.

BOSWORTII, or Market Bosworth, a small English market town in Leicestershire, southwest of Leicester. It was on a moor two miles south of Bosworth that the battle was fought (1485) in which Richard III was slain, and which terminated the Warsof the Roses. On an elevationcalled Crown IIill, Lord Stanley placed the crown on the head of the Earl of Richmond, Henry VII. Simpson the mathematician was a native of Bosworth, and Dr. Johnson served there as an usher in the grammar school. Population of parish, $3,9 \mathrm{~A}$ s.
BOSWORT1, Josern, D. D., an Anglo-Saxon scholar, born in Derbyshire in 1789 , died May 27 , 1876. ITe was educated at Repton, Alerdeen, and Trinity College, Cambridge. I'resented in 1817 to the vicarage of Little Horwood, 弓uckinglamshire, he devoted all his spare time to literature, and especially to researches in Anglosiaxon. The result of his labors appeared in his Elements of Inglo-Saron Language (1838), a new edition of which, ly Professor Toller, has been issued from the Clarendon Press since 1852. Bosworth resided as British chaplain in Ilolland from 1829 to 1840 , when he obtained the vicarage of Waithe, in Lincomshire, in 1857 becoming rector of Wator Shelford, Ruckinghamshire. and in 1858 professor of Anglo-Saxon at the University of Oxford.

BÖSZÖRMENY, a town of Hungary, situated 10 miles northwest of Dehreczin. Population, 19,035. BOTALLAClI is the name of a famous mine on the west coast of Cornwall, s miles north of Land's End. The works are on the edge of the cliff; part of the underground workings (ahandoned in 1875), extended 2,448 feet heneath the sca. The mine was worked as a tin mine in 172l, and in 1841 was famous as a very rieh copper mine. It has subsequently been wrought for one or bot li of those metals.

BOTANIC GARDES, a garden devoted to the culture of plants for the promotion of botanical science. Like the science itself, the botanic garden owes its birth to the needs of pharmacy; thus at the earliest European school of medicine, that of Salerno, there is record in 1309 of the medieal garden of Mattheus Sylvaticus; while in 1333a similar garden was established by the liepublic of Venice.

The botanic garden in the modern sense is usually dated from a private one founded at Padua (between 1525 and 1533). from the public one of Pisa, established by Cosmo de Medici in 1544, or from that of Padua, which dates from the following year. The other great Italian cities soon followed this example, and a botanic garden was also founded at the University of Leyden in 15\%. At Paris a royal garden was founded in 1597 , but it
was not until 1626 that its scientific purposes were defined. In 1635 chairs of botany and pharmacology were founded, and it soon became famous as the Jardin des Plantes. The establishment of gardens continued during the 17 th century and those of Oxford (1632), Chelsea (1677), and Edinburgh (1680) may be particularly noted.
A further impetus was given by the popularization of botany in the last century by Limmeus, and by the consequently increased importance of the sulject as a branch of academic education; most European universities, including all German ones, have now their botanic gardens, as well as many purely commercial cities. The leading American universities and cities have followed suit, the gardens of Washington, St. Louis and Cambridge being especially wel] known.

The mode of arrangement of botanic gardens varies infinitely in detail. The Linnean system has been replaced hy the natural, but in their mode of expressing this no two gardens agree: in some the principle of arranging plants according to their geographical distribution is also largely followed, while economic or medical interests have had a variable share.
BOTANY OF NORTII AMERICA. See britannica, Vol. 15. pp. 70-163.

BOTETOUR'T SPRINGS, a village of Virginia, about eight miles from Salem, the seat of Hollins Institute for Cirls, and the site of Johnson's Spring, noted for its mild and pleasunt medicinal waters.

13OTIlIE, originally a humble cottage or hut of Scotland, but the term has of late years been popularly applied to a barely furnished and uncomfortahle habitation for farm servants, and contined to the eastern and northeastern comoties. The bothie of modern times is situated either under the same roof as the stable, or at a short distance from the steading, and the furnishings are of an uninviting, some times actually repulsive character. The oceupants are usually unmarried men, who frequently have their own food to prepare. Some of the larger farmers, howeyer, provide a woman to do the cooking and cleaning.

BOTMRIOCFPHALUS, a tlat parasitic worm allied to the tape worm (Tania), in the class Cestoda, of which the broad tape worm, Bothrincophatus latus isthetype. See Tapewonss, Britannica, Mol. XAIII, pJ. 49-5t.

BOTIIWELI, a village of Canada, situated on the Thames, about 25 miles southwest of Chatham. It is the eenter of industry of the petroleum region, and has also extensive manufactories of lumber and a large trade in lumber, eattle, grain, and woolen goods.

BOTOCUDOS, the most barbarous of the Indian tribes of Brazil, inhabiting the east coast range, between the Rio Pardo and the Rio Ioce. Their name is derived from the Portuguese botoqu" " bunghole," with reference to their under lip, pierced to hold a dise of wood. They are of middle height, sturdily built, and have small hands and feet; their features are strongly marked with broad check-bones and repulsively thick lips and nose, redeemed ly white, regular teeth, and sparkling black eyes. They gencrally go quite naked, have no fixed settlements, and their food includes anything not absolutely poisonous. Their speech is entirely distinct from that of the other Indian nations; they have no religion, properly speaking, but are abjectly afraid of spirits, and pay a certain worship to the moon as creator of the world. Through systematically cruel treatment they have been almost annihilated, and now number not more than 4,000 .
BOTOSHANI, a town of Moldavia, on the Shiska, 62 miles northwest of Jassy, at the terminus of a
branch ralway; has an active trade in country produce. Population $399+1$, (ii) per cent. of whon are Jews.

13-TREE, the Pricus relighos, or pippul-tree of India. It is ineld sacred liy the hoddhists as the tree under which Sakyamuni, the founder of their religion, is said to have become" enlighterted," and to have erolved the four nohle rutho by whel mankind may be delivered from the miseries attendant upon birth. life, and death. The particular hottee under which this occurrul is said to have been produced at the date of his hirth. The bu-tree of the sacred but ruined eity Inuradhapura, 80 miles north of kindy, is in all probability the uldest tree in the world. It is said to have been manted e. c. 258, as a branch of tho trpe under which Sakyamuni sat when he hecamm liutulas. The main stem of this tree was broknof off liy a sum in Getober, 1885. The severed funtion was sulemnly cremated wilh religious rites

BOTliPTIS, a large grmas of hyphomycete fungi, containing many of the plants commonly callod mold and mildew, and usnally growing upon deid wood and leaves. The silkworm disease hnown as muscardine is cansed by Potrotis hensionu. A larse number of species which occur on living plants were iormurly included in this genma, bat are now referced to Pironospmorn.
botta, Pate thele (1s0j-T0), a distinguished archeologist and iraveler. Was born at Turin in 180. Diter extensive tratels in the New World and in Egypt, he became in $1 \mathbb{S}_{3} ; 3$ French consul in Ahesandria, and thence umertaling a journer 10 -irabia, published the results in his Relation if th Yobate dens ! I'men (1846). Ile was soon aftere appointed consular agent at lusul. and commenced a verios of discoveries which form an efurh in arelnomegical science. Early in the spring of Is, Botta beqan his search in the heaps if ruins mear tho Tigris for monuments of Asyrian antipuily sue livifannica, Yol. IV, f. (liab, and the "Joumal lsialifte" som contained accounts of his enterprise and disquisifions on the enneiform wrihing, whim afterward apneared as a separate poblication moler the tithe
 The French government took up the matter warmly, and a commission of learned men was appointet to conduct the pablication of the magnitieent arehat-

 In 1816 Botta was appointed consul-general at derualom, and in 15% at Tripuli. He returned to France i't 186s, and dind at Deheres, near Poissy, April
 at Urema, in Lombirdy: lece. 3 . Ineis. A concert tour, begun in 1810 , and "xtending folmerica, established his fanm as the grealest master of the double-bass tiddle. From Intiln vas director of Itanan opera in Havama, liaris. l'alermo, and Larcelona, and in lest bersan as serise of empositions which ultimately inchoded four operac and an oratorio. Ilis best work, hemerer, is his standard Wíthode Complete de Comire-hetsose
bÖTTGER, Jonins frabobllo, improver of porcelain manufacture, was horn in heuss-schleiz
 an enthusiast in the swareh for the philosopher's stone, and found patrons at the rent of saxony. The king. dissatished with his whlmelingr, sought to arail himself of the skill which liaterar really possessed. and the latter was eompedeal to poter upon those experiments of which the endebrated Meisen pureelain was the result.

BOTTLE-bRUSH PLANTSA a name applied tu specios oi dienasideros. ('allistrmon, and other
genera of Myrturta, which agree in having sessile crowden! Howers with reduced Horal enrelopes, but large chaspicunst compound stamens; the whole intlorescence thus suggesting a botule-irush. Also applied to the liedd-lorsetail, Equiseium arcense and the maresotail. /limpris culgutio.

BuTTLE UIIART, a marine chart which purports to s!ow the trach of sealed bottles thrown from shipsimu: the stri. during long rosages, and washed uph the heach or pirked up loy other ships. Lieutellant litelyw an Enelish naval officer, constructed in 1xt3 a chart of butthe royages in the AtIantic. so as to illustrate the currents. The time which Adpses betwern the launching of the bottle from the ship and the finding of it on shoze or at sea has saried from a fow days to sixteen sears; while the straight-linte distance berween the two points has varied from a lew miles to 5, momiles. The Bottle Charthas from time to time been re-edited and repmblistext.

1:OTTLE-GOL"liD, Lageneria rugaris, natural wher : 'h'urboturre a native of India, but now common almon werywhere in warm climates. It is a climbing mask-sented annual. having its fowers in clusters and a large fruit, from one to even six feet in length, which is usnally shaped somewhat like : bottle. The fruit has a hard rind. and when the pulp is remored and the rind dried it is used in many conntries for holding water. and is called : matutnat. The hotlle gruard is grown in some parts of the Thated states. Another species, Lagemurn idmulutrien. is a sarred plant of the Ilindoos. much employed in thatir religinus caremonies.
 whatus in the same famils as the sherm Physot(widil, less erereetly hut more popularly known as

BOTTS. , Joms Msior. statesman, horn in Dumiriss. Priner William comty, Va., Sept. In, 1802 , lied in folpuper. Va.. Jan, ট̈, 1864. Me was earty Teft anorphan, hat reecived a gond education, and was admitted to the har at the age of 1 N . He was sent to the siatelerislature and hen to Congres (is:3). He cuntinuod in thelatter for most of the time upto lista. lle was an earnest supporter o: Henry ('lay and a personal friend of Johr Trler up to tha time of his becoming president Learning that he was abont to secede from his party, Bots cerisin to be friendily with him. He op resed the rupeal of the Miscouri compromise, and was generally in sympath. with the Southern representatives in Cungres. 11 . used his utmost efforts to heep Vir winia from stueding. lut, on his fature. retired t" his ham noar Culpeper court-house, where he re mainol during the war. One night a party of men came whis homse and arrested and carried him 10 jail. where ho was contined for cight weeks: le was suspected of writine a secret history of the war, amel the midnight raid was for the purpose of dinding it. ln their searela they were unsuccessful. Alter due war Mr. batts publishere a rame entithed, The birmt Relollion: Its serret Mistury. Risere.
 owron by both armiess and he was subject to many ineonvonitnens; yet after the war he was a delegate lothe Philadelphia national eonvention of Southern loyalists, and latur on signed his name to the hail-hend of Jefforson] avis.

BOUClIER, Fmseota (1803-70), a French painter, hornat Jaris in 103; studied at Fome, and became a member of the Scademy (1734). and painter to Lonis CVV (1-isi). Ite was an artist of much ability, and equally facile in the production of tisure or lambeape piatures. The number of his picturesandrawings is sal tohave exceeded 0.000 : he atso executel enarravings. At his death, which
occurred May 30, 1770, he was director of the French Academy.
BOUCHER DE CRÉVECGUR DE PERTHES, Jacques ($1788-1868$), anthropologist and writer, was born at Réthel, Franee, Sept. 10, 1788. Through his father, an active botanist, he came under the notice of Napoleon, and wa employed in numerous missions to Italy, Germany, Austria, and Hungary. From the Restoration he lived at Abbeville, where he died Aug. 5 , 1S68. He was a writer on yarious subjects, but only his works on the arehrology of man (see Britanniea, Tol. II, p. 115) are of consequence now. The first, Deld Création (five volumes, 1839-41), brought him some reputation, but his long investigations on stone weapons and olher remains of early human eivilization in the Tertiary and older Quaternary diluvial strata made him famous. His most striking discovery was that of a fossil human jawbone in the quarries of NoulinQuignon, near tubeville, in 1863.

BOUCICAUL'T', Diox, a British dramatist, born in Dublin, Ireland, Dec. 26, 1822, died in New York city, Sept. 18, 1890. He studied civil engineering, but turned his attention to dramatio writing. In ls. 3 he leetured in the United States and took part in dramatic representations. IVe then spent $1+$ ycars in England, writing and adapting plays. In 1s7.t he returned to the United states, where he afterwards resided. He had charge of the Yew York Mctropolitan Theater for a tinie and other theaters, but was best known as an autlon of plays. The Colleen Bawn, The Octoroon, the Ladief uf Lurtmour, The Strets of London, Rip tion llamle, and the Parish Clisk (plays rendered famous by Joseph Jefferson's acting), How , she Luwes Mim. List at sion, Jonet's Pride, Forst and Marguritr, and many others, are notable for their hrimht dhaloge, humor, pathos, and dramatie action.
BOUGAINILLLE (named after lonis intoine de Bougainville, Freneh navigator. See Britanniea, Vol. IV, p. 169), at mentropical geme of the order Nyctopinatere, fremently trainod over trellises or under the roofo of grecolomses, on account of the beanty of its peculiar intloresence; the mand flowers, which grow in theose being almont concealed by as many membramons trats of rosy ur purple color.

BOUGIl, Smmer, R. S. A. ($182-78$), buntsape painter, born at Carlisle, England, Jin. \&, 1ses. He received some assistane from warinus pinters, but never obtained any systematic art instruction. In 1845 he was a seene-painter in Mauchester, and later in Glasgow, where Daniel Macnee, afterward P. R. S. A., cneouraged him to berume a landscape painter. Among the more important of his nil pictures are: Elinburyh from the (anal (1stio): Holy islant (1863); In the Trosach (1805); The Fale of lofth
 ance, and Royal Tolunter Rorion (1seio). Fiongh settled in Edinturgh in 185, where he died Nov: 19, 15 s.

BOUGHTON. Geobce Ileser, artist, born in Kortolk, England, in 1836. There yers iater the family came to the United states and the hoy passed his youth in Abany, N. Y. He carly began to sketch with pen and ink and to paint in oils. With money earned from the sale of his pictures he went to Jondon for studs. On his return be settled in New York, where he soon heeame known as: landscape painter. After a time he went to France. where ha spent two years in study and then moved to London. Mr. Boughton depiets Puritan lifo with much felicity and delicatr. Among his; pietures are The Scorlet Lofter, Refurn of the IImflower, Puritans Roing to Church, Rose Standish, Th, Testy Gorrmor. Waning of the Honeymoon and Canterbury Pilgrims.

BOUGIES, slender cylinders, smooth and flexible, used for distending mucous ecmals, as the gullet, bowels, or urethra. in cases of stricture or diseases of those parts. For the urethra, they are frequently of German silver or pewter, and vary from one-sixteenth to one-fourth of an inch in diameter, though even larger sizes are sometimes used by surgeons. For the other canats, they are usually made of plaited thread, impregnated with a substance called gum elastic, of which the chief constituent is India-rubler. The name is also applied to rods of similar shade made of gelatin, cacaobutter, or some such substance, which melts at the temperature of the body, and charged with medieaments, which it is desired to apply to the mucons membrane of the urethra or the nasal eavities.
BOLGUEREAU. Whlinm Anolpif, Fremeh artist, bora at La Fochelle. Franer, Nov. 30, 1825. He received instruction in art while engaged in business at Tordeaux and preeeding to Paris worked under Pisot and in the Feole des Beanx-Arls, where in JE50 he gained the Grond Pric de Rome, which entitled him tortudy in Italy. Ile first attracted attention by Th, Buth of st Cecilia Borne to the Catucomps. (185H), which wifh his Ihilomela and Procae (1sti) is now in the lusemhours. Weria Consolatric (1sit) was also a government commission. Amoner his other wushs may be named The Bather

 Perens (1ses). He has painted oreanimal portraits, and among his domratiw. Works are subjects in the Hitel lireine, buris, a chiling in the theater, Bordeanx, and paint inge in the churedre of st. Clotilde and st. Augustin, baris.
 De, a distinguiven French gemeral, born at the catlle of cinate, in tuverghe in 1739, died in Londem, Nor. 11 , isim. It the age of for hentered the army, and socyed with distinction in Cormany during the sown lears' liar. In bitis he was appointel governor of the lisland of chadelompe, and atterwards commandor-in-chief of all the French forews in the West halies. When war hroke ont in 17ise, he took surcessively from the Iritish Dominica, Tolago, St, Eustache, Saba, St. Nartin, St. Christopher's, and Xevis. lie was momated by Lomis XVI in hisi-as as a member of the AssemWy of Sotables, and in 179 he was made comman-der-it-chici of the army of the Sleuse, the Saar, and the Mosothe. 11 is decisin of character prorented the dissmatim of the army and the batbreak of civil war. For his share in the attempted eseapee ii Louti- XV'I he was obliged to tlee from Franee and in fom he entered the service of ciustavis In of sweqlen, and afterwards served in the (w) of the l'rime of Conde. he sulsemuently went to lingland, whore his adrice in West Indian affairs was usiful to the sorernment and whre he wrote his Mímuits sna lo Rérolution Frouculis.
BOUlliLOS, a duchy, onginally German, now included in the Relgian province of Laxemburg, consiting of a woolech and hilly district in the Ardennes alout 1 in somiles in extent. This duchy was the possersion of the famous crnsader, codfrey of Bonillon, who, in order th raise money for the erusade, pledged it in 1095 th thr hishop of Líge. It was conquered hy France in the war of 1 tian. By the peace of 1sIt the greator part of it was included in the grand-duchy of Laxemburg, and the sovereignts passed to tr king of the Xetheriands. By the revolution of 1s:0, Buillom, with Lusenburg, was separated irom the Xetherlands. ata 1837 united to Belgium. The principal town

Bonillon, situated between the steep hills on the Semoy, near the French frontier. Population, $2, \mathbf{0} 65$.
boU'ILJY, Jeas Nitholas, French dramatist, bmen at La Coudraye, near Tours, Jan. 24, 1763, died at Paris, April 14. 1st?. He was possessed of rare elevation and sincerity of character, and during the perion of the Revolution tilled with prudence several important public oflices. Jis writings are somewhat marred by prolixity and over-sentimentality. Of his plays the following are most deserving of mention : The eomic neera Pierre le firond
 (18010) ior cherubim's music; Funthon and Nim

BoLlace, butak, Buthove, or Behak, the port of Cairo, situated on the Nile about one mile northwest from that city, of which it forms a suburb. It contains the enstom-house and warehouses of Cairn, a schonl wil engineering, cotton, sugatr, and paper faturies, the government printing press, and the splendid and famous nationat museum of Egyptian antiquitios. In the latter are stored the results of extensise and systematic excavations, including also many of the historical relics lorought to light by the ageney of the Egyptian Exploration Fund. Poputation, 20,000 .
bot"LACGER, Gehrge Eresest Jean Marie. French generat, Jorn at Remes in 1837. He wan educated at St. Cyr, and served in Algeria, Italy, and Cochin-China; he was with Bazaine at Mrotz, but escaped to Paris. and heled a lientenant-molunetey under the Government of National Defense. In Isi6 he headed the deputation of French atiears at the celebration of the centenary of American indepentence; he became brigadier-genmat in 1sso, through the influener of the Due d'Aumale: and in 1884-85 commanded the army of oceupation in Tunis, till an arhitrary attemjet to exalt the military over the civil authority led to his recall. Ile was wounded in action in lialy and during the Commune. Ile died in 1891.

Bonlanger was ministor of war from January, 188t, to May, I887, and urged forward the expulsion of the Duc d'Aumale and the other prinees from France, and, through the introduction of some desirable army reforms and the appearanee of a fortunate music-hall song in his praise, he was, adopted as the embodiment of the "revenge" policy by the Parisians, who for some months suffered from what was termed the Bonlanger feser. In 18st, while commanding an army corps at eler-mont-Ferrand, he was, for his remarks on the then Warminister, ordered under arrest for 30 days ; and in the same year he challenged Jules Ferry for publicly referring to him as a caféconcert hero.

In Mareh, ISs8, fur thisubedience to orders he was deprised of his command, and placed on the retired list, and in April he was elected deputy for bordogne. When he appeared in the chamber of Deputies (July, lsss) a stormy seene arose, ujon his ealling for a dissolution of the chamber. I. Flotuet hegan an altereation with M. Roulanger. and the hatter rephed in such language that 11 . Floguet challenged him to fight a duel. It was fought, and the general was wounded in the neck. The following year he was the sucerssful candidate for a seat in the Chamber of beputies. Ile was tried by the senate on the eharge of having appropriated a large amount of publie money for his own purposes while minister of war. being convieted, he tled to escape arrest to lielgium and then to England. In September. INs: he was again successful in a general elention, lut the election was ammulled.
BoUf/Ay, de La Meurthe Avtotse: (1761-18.10), count, French statesman, born al Chaumouzey, in
the Vosger. in 1761. He favored the Revolution hut hold monterate principles, and in the council of the Fise IIundred he became the opponent koth of Jachhinism and of the despotism of the Directory. Cuder the Empire he assisted in the preparation of the 'ould 'irit, and afterward labored with zeal in the administration of the national domains. Ile adhered to the cause of Napoleon, whohad created him count in 1813. and was conveyed by the liassians, after the second restoration, into Germany. Returning to Franee in 1819, he lived in retirement at laris, where he died Feb, $\because, 18 t 0$. Je published an essay on the Commonuralth in E゙mglad (1-4:!), an Bumpromme et ses Erteltrs (1830).

BOLLIDER, an important eity of Colorado, county-seat of Boulder county, situated on both sides of Boulder Cruek, near the east base of the Rocky Jlountann, about 25 miles northwest of Venser. If represents interests of immense wealth in gold and silver mines, in eoal mines. and in agriculture and stock-raising. Iron, lime and build-ing-stone are also ahmmant. The orelards in the ricinity are among the largest and most fruitiul in the state Among ther principal manutactories of the city are flouring-mills. iron foundries, and smelting and s:mpling works. The altitude of lonulder is $5.1 s t$ feet; its climate is delightiul. and its proximity to the famous Boulder ('añon and to numernas medicinal springs has made it an attractive resort for tourists and invalids. It is the seat of the Cniversity of culorado.
BOÜLDER-CLAY. a stiff. tenacions clay. which has a very wide geographical distribution. It has been traced over vast regions in British America and the Northern States of the Cnion, and overspreads extensive areas of Europe. It varies in thickness from a few feet up te 20 or 30 yardsheing generally thickest upon low-lying regions, and thinning away as it is followed up towards the mountains. It is unstratified, and contains stones scattered confusedly through its mass. The included stones are more or less local in character, as is also the colur of the elay. Fossils hase been met with at rare intervals in boulder-clas; but these are always derivative, and not onfrequently they are smoothed and striated as are the stones.

The origin of boulder-elay, which was formerly the subject of much discussion, is now hardly in dispute. It is unquestionably the product of glaciation; and from phenomena observed it is lelieved that this stony clay is simply the bottom-moraine or gromot-monaine of extinet glaciers, which formerly had a most extensive development in the northern and temperate latitudes of the shohe. Boulder-clay is kuown in Scotland as fill-a term which many geologists prefer, inasmueh as boulderelay is often rather a stony earth than a clay. it was also formerly designated as dilurium and drift. but these terms are now seldom or never used.

BoULINERS, Enkatic, large masses of roek fount at a distance from the formations to which they belong. The term is generally applied to detached masses found lying on the surface. These bomlders or fragments of rocks appear to have been transpurted from their original sites by iee in the Pleistocene period. Large blocks of Sandinavian rocks are seattered over the plains of Denmark, l'russia, and Northern Germany, and from their magnitude and number freguently form a striking feature in the landscape. They also ahound on the shores of the Firth of Forth.

The pedestal of the statue of Peter the Great, in St. letersburg, was hewn ont of a large erratic boulder 1,500 tons in weight, that lay on a marshy plain near that city. The boulder called lierre de Marmettes at Mouthei, in the eanton of Valais, con-
tains 70,630 cubic feet, and is large enough to have a chalet built on it. From the nature of the stone it is believed to have been carried by glacier action a distance of 35 miles down the valley. The wellknown "Boulder Stone" of Borrowdale is not a true boulder, being simply a detached block, which has fallen from the adjacent crags. The erratics of America extend as far south as 40 degrees, hut on the old continent do not occur much beyond latitude 50 degrees.

BOULEVARD, the name given in France to a broad street or promenade planted with rows of trees. Originally it was applied to the bulwarks portion of a rampart, then to the promenade laid out on a demolished fortification. The bonlevards of Paris are the most famous. The line from the Madeleine to the Bastille lecame a walk in the days of Louis MIV, and then a street. The su-called outer boulevards date from 17 sti , and were also old fortifications, leveled and planted. The name is now sometimes extended to any street or walk encirching a town, and also to a wide shaded st reet of park-like appearance, which is not used for heavy teaming.

BOLLOCNE, a town of France, in the department of Seine, situated on the right bank of the river of that name, about tive miles southwest of Paris, from which it is separated liy the bois de Boulogne. The riser is leere crussed by a tine stone bridge of 12 arches. Population, anows. The Bois de Boulogne is traversed by many watks. During the Revolution the tress of the older ones were mostly cut down. But whan Napuleon chose St. Cloud, in the immediate neighhorhond, for his summer residence, new walls wre phanted and hat off, and the inclosing walls were restorefl. All traces of the injuries inflicted during the siege of 1870-71 have now disalpeared.

BOUND, or Bocsmany, the utmost limits of land by which the same is known and ean he described. These are recognized in darious ways-for example, by a line of stones, a hedge, a diteh, by roference to possession of tenants, ly reforemed to a plan, and by measurement. The plan is the safest, because least ambigueus, boundary. I bomodary fence generatly belongs suatly to the two neighbors

BOUND BROOK, a village of New Jorsey, plasantly situated on the liaritan River, alont :0 miles west of New York. 11 is an important railroad and manufacturing eenter, and the headquarters of an extensive trade in lumber.

BOUNDING CILAla'RE, in the Sentel law, a charter which deseribes the lands by their boundaries. It gives right to evprything within the bounds, but it prevents the acequisition ly possession of any piece of property mutside the hounds. even although the charter contains a clause of parts and pertinents.n This rule. however, dues not apply to servitudes which can ly acquired beyond the limits of a bounding charter, nor to such an incorporesl right as salmu-fishing. When the grant is described toth hy measurements and homdaries, the boundaries determine its extent. although containing a larger quantity uf gromod than the measurement.

BOUNTY, a term applied to any sum offered by a government to induce men to enlist in the public service, or towards creating or encouraging some branch of industry. It is also applied to sums of money appropriated by different State legistatures for the destruction of wild beasts and destructive birds in sparsely settled sections of country.

BoURBAKI, Charles Denis Salter, a French general, born at Pau, France, April 22, 1816 . He entered the army in 1836, and fought in the Crimea and Italy. In 1870 he commanded the Imperial

Guard at Metz, whence he was sent to England on a secret mission to the empress. Under (iambetta he organized the Army of the North, and commanded the Army of the Loire. From 1583 tu 1879 he commanded the lith Irmy Corpsat Lyons, and in 18s1 retired from active service.

BOCRBON, an educational and manufacturing town of Indiana, pleasantly situated in a fertile agricultural region, about fifty miles west of Furt Wayne. It is the seat of Salem College. It contains important mamfactories of flowr, loots and shoes, carriages, and furniture. The surrounding country is rich in oak, maple. poplar. heech, walnut, and uther valuable timber.

BOURBONNALE, a gently undulating, terractformed district in the center of France, northward of the highland e if Auvergne. abounding in gram, fruit, wine, iron, marble, and mineral springs. From 1327 to 1523 it formed the duchy of pourbon, and afterwards, hecoming a dominion of the crown, it formed a separate jrovince of France. It now constitutes the department of Allier and part of the department of C'her.

Bothliolley. a lathing resort in the French department of P ay-he-Iome , on the lordogne. It has mineral springs of sho-1en Fo. recommended in scrofulous, mervous, and thematice atlections. I'mplation, 1,1:7.
 the middle of the has cembury at st. Remy, near Compriegne. Ihe was a fanatical revolmonist. tom an aetive part in the storming of the Tuiteries on Ang. 10, 179^{2}, and under a false name obtained a seat in the Convention. Bourdan contribated to bring alout the rxecution of Louis XVI, and the destruction of the firondists. In La Viondée howewer, he aligected to the cratelties of the extreme party, and thus berame suspectet by the followers if Rolnespierre. whom he helped to werthrow in 1604 . From that time he indined more and more to the moderate or even royalist part y , till in $\mathrm{F}_{\mathrm{a}}^{-1}$ the Wirectory had him proseribed and transported to C'aymme, where hes died som afterward.

BOFRGEOISIF, a Fremeh term demoting the middle erasest of society as distinguished from the mobility and the working classes proper. It iswiturn applifi to the middle classes of any country, more particularly thase engagal intrade.

Bu[blifit, les, a vilage six miles northeast of laris hy rat, during the siege of the capital in 1siot the serme of a series of howety st ruggles disast rous to the French, of which the most important were thene of Wet. 301 h and lhece: Inst. The Lacedubourget, the largest wholly Ferech lake in the department of savie and the hasin of the khones, hes 7 G0 feet above seal level. It has an area of if sifuare mites.

BOLIEGET, Pact, an eminemt French novelist, born at Amiens, france, Nept. \because, Is, I I w was edncated at the lyeum of Clermont-Ferrand, where his father was professor of mathomaties, and at the Foblege of sainte barle. He legson to write in 1873, but it was not until ten years later that he found his true work. Inuring this time he contributed numernus artiches to the mapazines, and poblished three volumes of verse. LIs Jisxatis (IS83) gave the first indication of marked ahility. The second sories, Vourfamx Essais de Psyrhologic ('ontomporaine (1886), was a subtile and searching inguiry into the causes of pessimism in contemporary France. Bourget's first novel, L'Irriparahle' (188.4), was followed
 Andre Cornelis (1857), and Mensonges (1857). These works have placed Bourget in the front rank of contemporary French novelists.

BuCRMONT, Louts ue Ghanse, Cumte de (1:13-184i), French marshal, the comqueror of Algiors, born in 1ia3, at his paterna! castle of Bonrmont, in Anjou. He went into exile daring the Revolution, and from 1793 to $17: 4$ was actively pngaged in the anti-revolutionary struggle in Vendee. sulsequently he obtained tin linor of Napoleon. and for his brilliant services in the campaigns of 181;-1t was promoted to the ramk of general. In March, 181t, he declared fur the bumbons: yet on Napolmon's return from Eiba he went aver to him, only once more to descrt. on the eve of the battle of Ligny, and to hetake himself to Louis XVIM at Gimat. Hisevidnce went har tobring about Nev's execution. He was appointed minisier of war in 1.2?, and in 1×30 received the command of the expedition against Algiers, the rapid success of which Was atseribed to his prudence and $\operatorname{conergy}$. For this he recpired the marshal's batom, but on the July revoluti ot he was superseded, and went to England tushare the exile of Charlos X. Refusing to take the lasal wath, he was struck ofit the lists of the Fromeh army and parage in 183\%. In 1833 Dom Mimued oi portugal placed himat the head of his troops, but the campaign was hrief and unsucensfinl. Bourmont finally settlod or his patate in Anjou, and died there Get. 27,1846 .
 Primitive Dlethodists, horn at Fordhays, parish of Stoke-npon-Trent, stafordshire, Enerind. April 3.
 assistant to his father. who was a farmer and whelwright, he afterwards herame a preacher amoner the Westeyan Nombodints. Hlis mothod of conducting sprices, and his zeal for onen-air meet-
 mominatim, and in fatis he wats whe from the Wesleyan connection. Wis prowhine was, however, wonderfully acceptahle to the mibile, and he som gathered remud him a large 12412 , we ed deroted adparrents. In Xapels, lsla, a commanfoe of tom membere was formedat standley, near liomertes. This is regarded as the first move fowad whenal organization of the body. which in lise adopted the same Primitive Mathodists. The first chapel of the body was fommerf at Tunstallin 1st1, by bourne and his brother. For the greatpr part of his lifolar worked as : empurnter and buider, lut found time to visit fromlami, dedamd, and the lnited states. Among his writings wats a Mistory of the Primition Mothotists

Bol RONIDILRH. a town in the province of IrakAjemi. I'raia. situated in a fortile valley lat miles northmest of j -paham. J'opulation, 12,000.
bolssidgilllot. Iew bintiste a French agrientural chemist, burn at l'aris in 1802. 11at visited South Ameria, where he arred as a colonel under binlivar. Oh his return hat beamberofessor of chemistry at Lyons, was admitiod into the institute in les!, and in 185 was math commanter of the lagion of tomor. lle pmberliad the results of his
 tramblarion 1sta), Which won lor him a European repuation. Of his other works the most important
 1stili-st).

Bon restidute (French, "rhymod andines"), a kind uf vors. the making of which forms : sereial ammsment. The rhymes mentingent atamatare
 uphy ubors. It was at one timm a very popmar ammanent, experially in Framere.

 fing his routh on his father's farm he hecame at morehant in croton, where be remamed till 1855.

He studied law and pursued a course of reading to make up for lack of colloge training. In 1×10 he entered politics. He was sent seven times to the legishature, was thrice deieated as candidate fur Congress, and once for governor. In $18 \overline{1} 1$ and 180, he was elected to the latter office. IIe was a Democrat, lint on the fomation of the Republican party he helped in its organization, and has since belongeil to that party. He was a delegate to the Chicago
 the department of internal revenue, and was its tirst (commissionar ; he was twice elected to Cangress: wat chairman of the committee 10 report articles of imprachment, and was one ai the seven managers of Julman's impeachment. President tiratht called him to be secratary of the tresoury. ln this onfire he was incosed of violating law. but althoush the house abisolved him Mr. Boutwell resigned and took his seat in Congress. He was fur si: yeare ain urersom of Harvard, and has writen oh macational mopies taxation, and politics. He has of late years pratieed law in Washington, 1 . C.

 Triph the has oblong ternate leares ant beratiful corybs sf searlet Anwers produced from Jinta to Xerember. It is among the fasorite omaments of Hower-hurders, but reguires earefil protection from irost.

Bot VINES, a fillage in the French deparmont wi Corl, pight miles southeast of Lille. the scent of the "inory of Plitip Aucmstus of Framen over the

] wo wom the bustrians under Kinsky and the vietorious Fremeh Army of the Sorth.
 ure, raprespnting as much as one ox, out of a co"prative team of eigh? Conk plough in a seasm. I hovaln was thus the pighth of a cmoneme or work of a phow-am. The area variod ancording to circomatances form is to 18 , or sométimes pren 24 ateres.
 which derives its name from being tound at Rover.
 eavations being filled with water.

13oll, the general namu for the stem and forepart of a ship, heginning where the the sides trend inmarcl, and terminating where they chose or mite in the prow. The word is often used in the plural. the ship leingr considered to have starhord and port-hows. Starlmard is applied tor tho right-hatad side, and fort to the left-hand side, lowhing forward. I narrow bow is called by seamen a hon bow. and a broad whe is called a beid or hoff how. The " ${ }^{2}$ form," or "["-furm" is a nomenclature adoptod by the naval architect to denote the character of a smotion of a bew.
 burn in šatam, Mass., dan. 1ä, What, died in Brookline, Mase., dpril tis, Istio. He was: tharvard graduate, studiod law, and became a eonverancer. It was sable vearrely a transien of real estate tomk place in Bersom withont his pamination of the fithe: for in this kind of legal husiness he hecame very proliodent, and hiz serviens were in great domand. ile dorived a large income from his pro-
 lego for seholarshipe and bowks. He was interextem in pumbie institutiono of motom, and published at his own expense a history of it- (ioneral Fhospital.
 pareme at dshley. near Rath. July 11. 175t. It
sixteen he went to St. Andrews to study medicine, but graduated M. D. of Edinburgh in 1776, and after some years of travel settled in London, deroting himself mainly to charitable work. He lived for ten sears at St. Boniface, Isle of Wight, and for the last fiiteen years of his life at Rhyddings, near Swansea, where he died Feb. 24, 18:5 .
In 1818 Bowdler published "The Family, Shakespeare, in 10 volumes, in which nothing is added to the original text; but those words and expressions are omitted which cannot with propriety be read aloud in a family." The work had a large sale, and was long popular, spite of the ridicule it bronght down upon the head of its over-prudish editor, whose name has been immortalized by the addition to the English tongue of the term Boudlerisin as a synonym for senseless expurgation.
The last years of Bowder's life were devoted to preparing a parified edition of Gibbon's History, which was published in six volumes the year after his death, edited by his nephew, under the title: Gibbon's History of the Decline mat Fall of the Dionam Empire, "for the use of families and young persons. reprinted from the original text. with the careful omission of all passages of an irreligious or immoral tendency." In a note the editor says that "it was the peculiar happiness of the sritur th have so purged shakespeare and Gibhom that they could no longer 'raise a blush on the cleeek of midest innocence, nor, plant a pang in the heart of the devont Christinn:"
BOWDOLN, James, an American statesman and auther, born in Boston, Anges. $172 \cdot$, diet Sios. 16 1790. He gradnated at llarvard in 1745. In $17 \pi 8$ he was president of the convention lor which the constitution of lassachusetts was framed. Nhe was governor of Massachusetts in $1 / 85$ and 17 sit. In the latter year he suppressed the shays relollion. Bowdoin College was named in his hmor, his son having donated to that institution his raluable library and paintings with gifts of land and money.
boivdoin. James, son of the preceding. borm Sept. 22, 1752, died on Naushorn Island, liuzzard's Bay, Mass., Oct. 11, 1811. He was of Fromeh lhurunot descent. He graduated from llartard, spent a year in college at Oxford. England, trayeled in that country and on the continent, and on his return to the United States engased in politics and literary pursuits. He was a member of the state Assembly, Senate and Comeil. The government sent him as minister to Spain in 1s0t, and commissioned him to treat with that foreign eountry with regard to " wronginl captures and it her injuries" inflicted by the spaniards. On the nstahlishment of bowdoin College he gave it formu acres of land, el, ith and at his death his will bequeathed a large librarr, paintings, and collections of minerals and philosophical apparatus to that institution, which had been named in honor of his father.

BOWDOL COLLEGE. a Congregational institntion founded in 1794 at Brmswick, Maine. See Colleges, in these Revisions and Additions.

Bolven, Fraxcis, anthor, horn in Charlestown. Mass.. Sept. 8. ISII, was a llarvard graduate and after finishing his course gave instruction there in intellectual philosophy and political conomy. He went to Europe in 1839, and made the aequaintance of Sismondi and other selohars. On his return to Cambridge in 1841 he devoted himself to literary labors, and two pears later he started the "Horths American Reciew." He edited this periodical for 11 years, much of the time contributing the larger part of the articles. Yil 1850 he lectured bufore the Lowell Insitute on Political Economy, and two years later on the Origin and Develop ment of the

English and American Constitutions. In 1853 he was appointed to the Alford professorship of Natural Religion, Moral Phinsophy and Civil Polity in Harvard College. Prof. Bowen opposed Adam smith's views on free trade. Ricardo on rent and Malthus on population. He has lectured much on the English philosophers and written several books, among which are Primeizles of Folitical Econamy Applied to the Condition. Pisources and Institutions of the - Americar People, and Gleanings irom a Literary Life. He died in 1890.
BoliEf, Bowmaker, Walter (3 s-jo-1449), completed the historr of Scotland which is known as the Seutichoonion, and which was begun by Fordun. See Britannica, Yol. X XI, p: 540 ; Yol. 1N, 397. Of Bower's personal history little is known except his own statement that he was born in 13s5, and that in the manuseript of the Scotichroniomwhich manuscript is known as The Black Beok of Paisley-he is spoken of as "the venerable father in Christ. Walte: lower, Ahott of the Monastery of "t. Colmmba." This momatery was situated on the Island of Incheoim in the Firth of Forth. He died in 14t?. Boner has been somewhat overlooked as one of the authurs of the sutichertirm. which is fremently quoted as though written entirely by Fordm. whereas his share of the work, with the exception of cpetain further materials which he had collected, ents at the chase of book V , with the death of havid $1(1153)$. Lower continwed the histury to the death of lames 1 (143^{7}) ; and, as he was was contemporary with the later events which ha describus, he is for this period certainly entitiol to be regarded as an imbepondent historian. Like Fordun, lar wruts in latin. The only edition of this himory is that printed hy Walter Goodall. Ellintmrgh, in 1 and and no complete 1 ranslation oi it has yot apeared.
BOWERBLIKLA, a common genus in the class
 lout highly-organized animals, fomerly included
 monsly placed at a much higher level. If. imbinate is one of the british coast forms. lt grows on spaweds, corallines, stones, ete., hetween high and low-water mark, or in shathow water, and forms branching tutts sometimes the in hes in height. The branchos are small and trimsparent, and bear numerome individual animals of micruseopic size. Tha gemus is named after dames sion Bowerbank, whowrata famme monographen the biritish sum-

boweldhllal, a name given to cortain Australian liocds remarkable for thoir habit of making bower-like erpections, called " runs" by the coldenists of lew south Wales, and for adorning hem with gay feathers, rags, hones, shells, and such other white or bright-whored oljectsas they can pick up. These howers are not used as nests, but they appear to bu places of resort. lime specimens of them, transperted with no little diticonty. were depesited in the liritish Muspum he Mre Gomble, in whose magnitienent work on the liondo of A Instratia (184) a full ancount of them was tirst given to the world.
The bowers of the satin lower-liart (Itilumminn-
 of some tree, and appear th bu repaired and frequented from year to sear. The base consists of an extensive and rather cunvex alathorm of sticks firmly interwoven, on the center of which the bower itself is built ai mare t!exible twigs. It is chiefly at or near the entrance that the shells: feathers, etc.. employed for decuration are placed.
The satin bower-hird is particularly alundant in the mountainous districts of the west of New South

Wrates, and is found in all the "hrushas" irom the mountains to the comst. The adult male has the whole plumage of a deep, shining black. The colors of the female are grayish, urpan and brown, euriously mingled.

The bowers of the spotted hower-hird (6 hlamydodere maculuta, Britamica, V.1. T11, 1. it0), are longer and more arenue-like than those of the satin bowerbirl; they are placed upon the ground, are outwardly binit of twigs, and lowatifully lined with tall grasses so diwosmat that their lieads mearly neet. The deenration ponensity appears in the highost degree in thin spous. The spoted bowerhird is restrictod exmbirdy to the interior of Australia. It is rather smallor than the satin bower-bird, has a gemeral color of rich brown beatutimbly marked with blati and lutt; a band of elongated feathers of light rosp-pink erosses thes back of tho neck, and forms a broad, fan-like, oceipital erest. The regent-bird (s,rimblus metimes) is also known to form bowers.

BOWIE-KNIFE, a heary sheath-knife, used both as a hanting dagger and weapon. It was namod after its inventur, Colomel James Buwie, who fell at Fort Alamo in the Texan war (1 shif), and was first used in Kentueky ind inthr parts of the United States. The blate is from 10 to 15 inches in length, duableedged near thr point. The best knives formerly used on the frontier were made of old horse-rasps and the like, and consequently varied much in pattern and size. The term is now frequently applied tu any large sheath-knife without regaril to shape.
BOWLES, Simet, jumalist, born in Springfield, Ilass., Fel. ! ! 1: 2 , died there, Jan. 16,187 . After receiving a pablic sehool edueation he beran work at the age of 17 in the oflice of the "Springheld loppulitican," a paper wwhed and published ly his father. The boy was very aetive, and soon learmed to do all hinds of newspaper work. It was throngh his persuasions that the paper became in 1int a daily. From this time the phater flourished. Br.J. G. Iloland was editor, the elder Jowles devoted his attention to the financial deparfment, and the son threw all his anoreries into the management of the paper. In doin, he the death of his father. young Bowles, then only y years of age, wasobliged to assume entire cantrol. Ihaing the civil war the "-pringtiold Ropubliean " acomierd a national
 it supported the nomination of fremey for tha presidency, and sinee then has bem independent in phlities.
BOWLANG daEFN, a botutiful dity of kentueky, emonty-sat of Warron comnty, situated an
 miles north of Naslaville. It is the trade-enter of Somthern Kintueky, and an imporlant shipping puint for pork, monco, hay amd grain. Its industries include mandiactorits wi iron, woolens amd cereal products. It is the suat of a college ant a Catholic acadmy, amb contains excmbont puhlic schools.

Bollomin, sur Whans, molist, bum in NantWiek, duly eo, [81ti. IJa stadied ehithly in Lomelon,
 came curator of the Anatombal hasenm. In connjunction with Tond lon puldished the valuable
 volumes, 1 sta-nio, and gatinel a hish reputation as an oculist by his Lecters an "pusetious on the E!t! (18t:1), followed by his (hosmonions on the Artificiol polit. lhe was professobl oi lhysiology all

 is a follow of the Royal suefey, became comalt-
ing surgeon and riee-president of King's College: London (18Ti) and a baronet (1884).

BOWMANTILLE, a thriving town of Ontario, pleasantly situated mear the shore of Lake (matario, about to miles northeast of Toronto. It is a port of entry, has an excellent harbor, and contains manufactories of machinery, castings, leather. boots and shote, woolen goods, earriages, cabinetware, lamber and leather.

BOWSPliLT, a strong boom or spar projecting wer the stern of a ship or other vessel. Its use is to support the jib-boom. a longer and lighter siar. forming a ecntinuation of the bowsprit, which receives the lower ends of the foremast stay-ropes.on which sails are carried.
boWstlainfe the string by which a bow is Irawn and the arrow diseharged. The term is specifically used for an old Turkish mode of execution, the offender being strangled by means of a lowstring or similar cord.

BOWSTRINT LIEMP, or Moorss: the fher of a species of sanseriera (especially causeriena Zeylemira), a plant of the natural order Liliows, tribe IIrmerucalliz', used in the East Indies for making howstrings. The fiber is hair-likn, silky and elastic, and in stiength is apmarently about equal to hemp. A very similar species (stuspcierl guineensis) is found in abundanee on the we it coast of Afriea, and its tiber has been imported as Ifrican bowstring hemp.

BOWIER, sm Geunte, born at ludley, England, mer (Matord, in 1411, died in London, June T. 1883 . He was eall d to the bar in 1889, represented Wundalk in Parliament in 1852-68, and the county of Wrexforl 1874-60, when his home rule prineiples estranged him from the Liberal part \because and in 185it led to his expulsion from the hariorm Club. Ile sueceeded his father as seventh baronet in 1860. IIe was author of several able works on constitutional haw and Roman Catholic subjects.

Bow Yer, Whama, an eminent English printer and classical scholar, born in London, Dec. 19, 1690, diod Nov. 1s, 1-T. ILe was educated at Cambridge, and in toy joinet his father in trade. Appointed in 17:3 printur of the rotes of the Inouse of Commons, he subseduently heeame printer to the sodiety of Intiquaries and to the Royal suciety. In 1767 he was numinated printer of the Rolls of the Honse of Lorch and the Journats of the llouse of Communs. lowyer edited several volumes of Swit's works, and the first translation of lons-
 of two essays am the (rigin of Printing (17at): hat his chan prothetion was an edition of the New Testamme in Creek, with critieal and commentatary notes.
fox-lolvs days appointed ly the Court of gusions in sut land, during the vacations. on which pleadinst or whor law papers mas he hoiged or filad. the objee being to expedito the procedure, notwithstanding the vacation. Themame is derived from the fact that all printed papers in the Court of Sessions must beplaced in hosesone for each judge, for wath legal suriety, and for the repurters. These hoxes wera intrudued in lothe in avollt the evil of privater solicitation of julgos.

 whan the ship is tow neare the shore to allow room fur feering. The aperation is etteeted he hateling the head-shoms to wimbard. hatang tha headyarde alack, and siguring the after-vards, the helm at the same time lining pht a-les. Foring-ngl is a very similar "peration
BOXIN゙i-l MY, in England, the first werk-day after Christmas, and wealled from being the day
on which Christmas－boses，or presents，are given to servants and others．

BOITEL，a town in the Dutch province of North Brabant， 38 miles sontheast of Utrecht．An Anglo－ Dutch army，under the Duke of York，was here de－ feated with great loss by the French in 1794．Pop－ ulation，5， 03.

BOA－THORN（Lycium），a genus of the order Solctaces，having funnel－shaped or tubular flow－ ers and two－celied berries．Soveral species are na－ tives of the south of Europe．thorny shrubs，with long slender shoots and simple lanceolate leaves． Lyeium europrum may be trained to a height of 30 or 40 feet，and is often planted－as are also other species－to cover walls，etc．Lycium mhoure has been sparingly naturalized in the United States． Lycium fuchsioides，although destitute of spines，is used as a hedge－plant in the Andes of Quito．

BOTAR，a title conferring a rank in the state， given to the highest class of hussian otheials previ－ ous to the reign of Peter the Great．They ranked next to the knjazes or knjeses（ruling princes），and were universally looked up to by the mass of the people－so much so that the most powerful rulers considered it prudent to add to public papers＂The Boyous have approved it．＂Their power acted as a wholesome check upon the authority of the princes， in consequence of which the later becance their bitter enemies．Peter the Great tinally abolished the order hy giving them a place amone the Russian nobility，but at the same time stripping them of their peculiar privileges．The higher nobility of Roumania are also called boy：r．s．

BOYACX（French，＂bowels＂）are the zigzag ap－ proaches used in siege operations to combet the parallels．
BOY－bISHOP．The custom of electing a boy－ bishop on St．Nicholas＇s day dates from a very early period．It spread over most Catholic comntries，and prevailed in almost every parish of England．The election took place on St．Nicholas＇s day（Dece，if）． and the anthority conferred lastod to IIoly Jnno－ cents＇day（1）ec．2s）．The boy－hishop，chosen from the children of the chureh or cathedral choir，or from the pupils at the grammar school，was arrayet in episcopal vestments，and，attonded hy a crowd of subordinates in priestly aress，went alout with songs and dances from house to house，Whessing the people．The mock prelate exacted implicit obr－ dience from his fellows，who，with their superior， took possession of the church，and performed all the ceremonies and otlices except mass．In Ioma Edward I，on his way to scotland，permitted a boy－ bishop to say vespers before him at llaton，near Newcastle－on－Tyne．It salishury the low－hishop， it is said，had the power of disposing of such pre－ bends as happened to fall vacant during the days of his episeopacy．The custom was abolished in England by a proclamation of II 1 ney VIII dated July 2e，15t2；it was restored by Rum Mary in 1554，and again abolished during the roignoi Eliza－ beth，though it seems to have lingered here and there in villages till about the elose of her reign． On the continent it was the sudjeet of a formal interdict at the Council of Basel（ $14: 3$ ）：and at Zug，in Switzerland，a similar usare was suppressed so recently as 17：\％．

BOY゙COTTING，tise system of embininer to hold no relations，social or commereial，with a person or company，on account of political or other differ－ ences．or of disagreement in business maters．em－ ployed as a means of pumishment or corecion．It was tirst formulated by Mr．Parnell，the Irish leader， at Ennis on Sejt．19，1880，and derived it－name from one of the first victims，Captain Buycott．a Mayo factor and farmer．The worl．like the
practice．soon became common throughout the English－speaking world，though the term＂ex－ clusive dealing＂is much preferred by its apolo－ gists．

Boy＇D，Rev．Andren Kexaemy Iletchison，D．W．， born at Auchinleck．Ayrshire．Norember，1825．He was etucated at King＇s College，London，and crlas－ gow University，where he took the highest honors in philosophy and theology．110 first became known in literature by his essars，poblished in ＂Fraser＇s Magazine＂under the now familiar intials，A．K．H．B．，most of which have been re－ printed．He is author of Recreations of a Comntiy Parsom（three series．1859－1861），and of many rol－ umes of sermons．His works have been exceedingly popular in America．

BOY゙DES，Setir a noted American inventor and manifacturer，lorn at Foxhoro，Mass．，in 178s，died in 1870．Ile began the manufacture of patent leather in 1819 at Newark，N．J．．where he invented a machine for splitting leather，and a process for making spelter．Among his other inventions and discoveries were a doming－machine for hats and a process for making Rusia sheot－iron．He built one of the first locomotives with outside cylinders， and is thonght by many to have made the first daguerreotype in the Lnited states．

BOIDEN，Unian，an American inventor and philanthropist，born at Fowhoro，Mass．，in 1801， died in lsil．He is known for his improvements in hydratulic engineering，and as the inventor of the modern improved form of the turbine water－wheel． Ile fondedt the Boyden Fund for the promotion of ednc：ation，and spent the latter years of his lifo in the encouragement and support of chemistry and physics．
 Frederiekstern，Norway，Sopt． 23,1 N上，He was educaled at the rymasium in Christiania，amb graduated（18iS）at the C＇niversity of Sorway，hat－ ing pursued a eourse of study at Leipsic，Germany．
 leceame editor of＂Fremad，＂：St Sandinavian paper printed in Chicago．From 1sity to 1880 he tamert German in Cornell，and then was called to the same work at Columbia College．During his resi－ dence in this comotry，he has shown a marked aptitude for writing stories and peotry in Englie？． Whe has been a fromuent contrihutor ta the magri－ gines of the day．A partial list of his lemoks is as follows：Gumatr：＂Kops limanmer a Sorsimm＇s
 schiller：their Liers and Horks；＇？n，wh Temen：
 last mentioned has heon dramatized and suepers－ fully performed in N゙ew lourk．

BOYDAE，a town in County hosermmon，imband． （see Fritannia，Yol．XX， B ． 8 m 0 ），situated on the river Boyle ahowe its expansion into langh Kas， 108 miles northwest of bublin by rail．It has a thriving trade in coma tha，butter，and provisions． An abory built hore in the twelth century was redued io its present rumed state in born by the Earl of Tyrone．I＇opulation， 3 ：0，
 to a sohntion of sulphide of ammonimm obtamed ly distilling a mixture of shand limas．sal－ammoniace． and sulphur．The same shbtance is produced by passing sulphareted hydrogen into a solution of ammonia．It is a straweobored liduid．liberat－ ing subphareted hydrogan on addition of an acid or exposure to the alr．

BOZEMAN，a thriving aty of Jomtana，comby－ seat of Gallatin，luantitully situated on a small affluent of the callatin liver about a hundred mile－south of llefona．It is the seat of an acad－
emy and a universit achool, and contains important manufactories of flur and humber. Gold and siber are mined in the richinty, and rast agricultural and grazing interests cantior here.

BOZZOLO, a town of North Italy, furteen miles southwest of Mantua. Population, 4.15t.

BLiABASCONNE. the parriotic song of the Belgians, originafly sung by the insurgents during the resolution of september, 1 s:30, when the threw off Futch rule. The woris wre written liy a young French actor named demeval. then at Bruseels. Thu verses end vith a reirain relating to the sul, stitution of the Troe of liberty for the Orange, in rfference to the house of Orange. then ruling the Netherlands. The music: Was composed hy Campen!ont.

BRACCDO, Furtebrices, count uf Mentone
 Perugia, of an whe natrician family, in 1368. He was fingaged in warfare from his early youth. and had already given his sword to various causes, when in thit he obsained the sovereignty of his native city: He accepted from Queen Jomna oi Saples the command of her land forces, and for his services was created Comat of Foggia and I'rince of Capua. In li?3, by the quech's command, he Was crowned at Perogia, as Prince of Aquila and Capua. His ambition num soared to the throme of Naples itself. Ite verran Campania and Apmlia, and atvanced into Calabria, but in a hattle before Aphila was wonnded and taken prisoner. He died three days later, June $5,1+2+4$.

LHACE, in carbentry, an ollique piece of wood used to bind together the principal timbers of a roof ur other woden structure. The name is alsu used of a curved instrument of iron a wond for holdincr a bit, used by carpenters for loring.

BRACE, on shiphoard, a rope attached to the yard-arm, and employed tuturn or swing the yard remind.

RlidCE. Gumaes Lorivg, philanthropist, born in Litchfeld, Comnos Jon -1826 , died in Switzeriand. Aug. 11, 1400 . II is father, John Pierce Ibrace, was comerted with the Litchfield Academy and subsequently with the Ilartford Femase seminary. The son graduated at Yale (1846), and studied theolngy at that college and also at the I nion Theological Seminary. He was not connected as pastor with any chureh, but frequently preached. He made a pedestrian tonr in England in 1s50. and his complamion. Frank ohmstead, gave a deseription of the journes in the book Hallis and Tall: of an Anvriaten Fiermer it, Engheml. In llungery he was arrested, imprisoned and tried by a court-martial on susperion of hoing in loague with llumgrian revolutionists in Americal. The T. S. minister at Vicmat ohtained his relomes. In his further travels in Europe he paid spacial attention to schmols. prisons and the condition of the manses. On his return to the I'nited states (18:2), he associated himself with Rex. Mr. lasm in missionary work at the Fixp loints, amb amoner the prismors and in-
 assisted in fundiner the Chidrmos Aid Society, and a yatr lator "proned the first newshers' lodging lonses. The bepewolent projeets originated by Xr. Prace have enlisted pablie altontion and serenred heaty anperation on the par at many ; ludging hansers for hass have multipiand and the 'hildrens Ait society has acemphished great mood. Ar.
 how object, and was sent as delegate to the hatern:ational Comemtion for children's (haritios in Lamaton (hina), and also to the laternatimal lrison Comsention in lomdon (1s72). Amoner his pult lishod homk ara: IHmetry in 1sist; Homer Life in

Girmmeny; Short Srmons for liwsboys; and The Iturgorates rowsess of Tene York.

Bhach or bracue, an old term (origin unknown) fur a dog that hunts by the scent; a scenting hound.

BliACHAAL ARTEliY, the arterial trunk supplying the upper arm: the divect contimation of the axillary artery. It runs down the front and inner side of the upper arm, giving off several branches as it proceeds. and at a point about an inch helow the bend of the elbow it terminates by clividing into radial and ulnar arteries.

BRACHYPTERE (Gr., "shrirt winged"), an ornithological term applied in Cuvier's srstem of dassification to such aquatic birds as penguins. puttins, atuks, divers and grehes, whose wings are short and whose feet are placed so far back as to compel them to assmme a nearly eract josition when on land.
BRACHYURA, a technical name applied to short-tailed decapod crustaceans or eralis, in contrast to the Macona. long-tailed forms like the lobsters, where the abdomen is not tucked in on the under surface in the characteristic crab fashiom. They are divided into ahout sixteen families, without super-family grouping. The term is also applied to a family of short-tailed bats, including Mystacina and Noctilio.
BRACKEN, or Brake, a large genus of ferms of the division Polypodiz, distinguished by sporecases in marginal lines covered liy the refiexed margin of the frond. It is very widely distribuned. from arctic and temperate to tropical countries. The common brake or leracken (I'teris aquilime; sue Pritannica, Vol. IX, p. 103) is very abundant in rocky thickets. try fields. etc.
 near Campbeltown. Scotland. in 17 tsi, died in Carlisle Pa.. Tmme ${ }^{2} 5,1 \mathrm{sin}$. It the age of five he came to America with his father. and ther settled in Pemnsylrania. The graduated from Princetion 1:71), then spent some years traching there and in Maryland. At about this time he wrote for his pupils a drama. Bunko, Mill (see Britannica, Val.1, p. 720), plited the " [nited States Magazine." studied divinity and served as chaplain in the army. Iropping these raried pursuits he applied himself to law. was admitted to the bar. prace ticed in Pittshurgh, Pa., and som oltained such prominence that he was elected to the legislature (Fisti Daring the "Whisky lusurrertion" he used his intluence to bring about an adjustment of the dificulties. In 1709 he was appointed to the supreme hemeh of the State. and held the atiere up to his death. He was author of poems and essays: hut his hest known work is a story in the form of a political satime which is tamely drawn from his cwn expminhous. It is eatithed Moultru chareltry,
 gen, his Sirment.

ElidC'KET, an omamental projection from a wall. uned for the purpose of suphorting a statue, bust, or the like. brackets are tither of stome, wood. or metal. and are frequently elaborately drespued and rarsed. The term Iracket is also emplowed in joinary to desinnale a woolen support of triangular watine placol urdor shelves. galleries. ote. and is also generally applied to such gaslights as projeet from the wall. See Britannica, Vol. 11. pe thit.

HRE'KETT. ANM, an Ameriean writer and teacher, born in hoston in 1s3ti. She has heon prominent in eomocetion with the work of various edneational institutions. has phblished several Works an pedagog, and has comtrihnted mmeraus able articles to matarines adod of her periodicals.

BRACKETT, Walter M., painter, born in Units, Me., Jume 14, ISO3. Charles Sumner, Oliver Wendell Holmes, and Edward Everett sat to him for their portraits. Of late jears he has painted fishing scenes, among which is a series representing salmon-catehing with a fly. The ariist resides in Boston, Mass.
BRACKLESHAM BEDS, a group of highly fossiliferons strata in the middle Eocene formation, included in the Bagshot series.

BRACQUEMOND, a noted French artist, born in Paris in 183.3. See Britannica, Vol. XVI, p. 5.

PRADPURY. William Bacnelder, musician, borm in York, Me., Oct: 6, 1816, died in Montclair, N. J., Jan. \bar{i}, isis. He inherited a taste for music from his parents, and by the time he was fuurteen years old he had mastered many musical instruments. In 1830 he resided in Boston, where he became acquainted with Dr. Lowell Mason, and took up the study of the organ. In 1840 be began teaching singing school and giving concerts in New Vork and Brooklyn. He became vers poputlar. and in 1847 he decided to risit (icrmany for the purpose of receiving instruction in music. In $185 t^{2}$ he and his brother, E. G. Iradbury, began tha" manuiacture of pianos in Sew Vork. Villiam Bradbury composed and published a series oi musical collections for the use of choirs, dayschools and Sunday-schools. For thirty years he was engaged in publishing his works atid so popular were they that over 5,000000 copies have leen suld. The Golden rhain. The shanm, The Jubiled. Temple Choir, and Fresh Lourels were the titles of some of his song collections.

BRADDOCK, a mamfacturing tuwn of I'emsydvania, situated on the right bank of the Monongathela, ten miles southeast of l'ittshurgh. It comtans important mannactories of raitroad ears atad steel rails, and is noted as the site of the battle of braddoek's Field, in which, in 1755, (reneral liraddeck was killed and his British army deleated by the French and Indians.

BRADDOCK, Emwath, Tritish soldier, borm in Perthabire, Scotland. abunt 1695, died near Pittshurgh, Pa., July lo, 175. The hat served forty years in the British Guards, and attained the rank of major-general, when in 1700 he was ordered to America to assist the colonists in th ir war with the French and Indians. The plan of his campaign was to march his soldiers from Frederitoknown to Fort Duquesie, now littsburgh, Pa., thence to Xiagara. and on to Frontenac. Benjamin Frankina and Washington (then aides-de-camp to iradalack). warned the general that the Indians would be likely to give him trouble on the way to Fort Duquesne; but Braddock, who was very opinionated, would heed neither advice nor warning, trasting that the discipline of Pritish soldiers was superior to any variety of barbarons warfare. The army set out for the fort and before they reached it were attacked by the savages who were hidden hehind rocks and trees. Sn sudden was their apparance ant soterrifying their war-whonp that the English soldiers, not being able fu see their antagonists, fell back with rapidity, would not obey their oflicers, and the fore suffered a terrihle defeat. They retired to Great Meadows, where in a few dajs General Braddock died from a wound received in the engagement.

BRADDON, Miry Elizabeth (Mrs. John Maxwell), novelist, born in Soho Square. London, in $183 \overline{7}$. She very carly showed a turn for literature. Which she indulged in the usual manner, by sending verses and other triftes to the magazines ant newspapers. These were followed by a comedietta brought out at the Strand in IS60, a volume of
verse and one or two norels, none of which were very successiul. In 18tio was published Lady dudley's Secret, which attained an enormons popularity, in three months reaching itseighth edition. Aurora Floyd (IS63) was little less popular of all her fifty novels the best, perhaps. is Ishmmel (158t), a tale of the Second Empire, which depends not so much on sensation as character. Several of them were puhlished in "Temple Bar." "St. James's Jlagazine." and "Belqravia." She vas for some years editor of the last-mentioned magazine.

BRALFORD, a viliage of Massachusetts, siluated on the south bank of the Merrimac, opposite 1haverhill. It is the seat of Bradiord Female Academy and of an excellent high school.

BIADDEORD. a city of Mekean county, Pa., on a branch of the New York \& Erie Railroad and also on the Rochester and Pittsburgh Railroad. It is 6.3 miles southeast of Tunkirk, N. I. It has two national banks. fome hotels, two daily and weekly newspapers, several churches. excellent schools, it handeome park, water-works. streets well lighted with nat ural ras, and is noted for its many oil wells. lt was imorporated as a city in 1579. Population in

BL:ADF゚Ol: a village of Vermont, sitnated on the Comeretiout Ricer, alout thirty miles southeast of Monturtier. It is the sat of liradford Acadeny and Trion Iligh schemb, and carries on important manufactures of paper, mathinery, iron, thour, casks. and wombern grods.
 the (irat bilite (Lower Galite a blae elighty calcarmats clay: ocenring at bradiond in England, and extoming for some miles in the vicinity It is alout 10 fent thick at bradinat, lat may be thicker at Farleigh. It is remarkahbe for the oce urrence in it of large numiters of a erimod. In iomerinites farkinsomi. Thenomith liradferd clay is considered a lotal depmost. Yet doposits combaining the same fossils necur in Dorsetshire. Ses Lititamica, Vol. N.pp.

 batal on bow hides of the Aron and on the kembet and Avon canal. nine miles sonthe:at oi Bath. It is an ancient tewn, and still shows smme galble-fronted houses, built and roured with stome. Formerly it was theseat of important wollen manulactures.and kerseymers were first mate here. The tiny chareh of St lawrenct, built hy. Ahthelm between hiog and Tu9. is the only perferet buildingut pre-Noman timme now remaning in England. Near by. on the site of Mhhelm's monastery, is the parish church of thas lhaty Trinity, of varions dates from the loth to the foth century and restored in istim-dit. On the summit of Torr lifll are that ruins of a $1+$ th-century chapel of the Virgin. In the neighburhood is the pleasant valley of dwon, with many pieturestur shots. At Bradford. Cenwalh, king of the West Saxons, gamed a great victory over the Wrosh in

 Austertichl, Forkshire, England, March, 15ss, died in I'lymonth, Ma-s. May 9. 16at. From childhome he was rolisiously incilined. and at an early age joined the luritan congrogation in crowly llanor. See
 in N tinghamshirs and the Juritans, or Separatists. emigrated to liollant as ther muld find of portumity. See Britmmic: Vol. NA, prens. diter imprismment and delay liralford and his companions reached Amsterd:imi in bios, and joined the colony there, which on lisit removed to Leyden.

Bradiord scon bogan to agitate the question of amigrating to Virginia. lint not until livo was he able to put lis scheme in practice and on sept. oth
of that year 100 pilgrims took passage from Southampton on the Vuafonm. (See Jritamica, Vol. Sll, p. Fob.) Stormy weather drove the ship to the shores of Massachusetts, and taking this as an indication of the hand of Providence, they ahandoned the idea of settling in Virginia and entered Plymouth harhor. On the death of Carver, the first gorermor, Bradford was chasen by the colomists to the oflice. With the exception of tive yrars (which were not successive), he held theoffee from April 21,1621 , until his death.

A patent was obtained for the settlement from the New England council, in 16 ? ! It was a grant of the I'lymonth plantation to William Rradford, his heirs, assuciates, ete. In latohe made orer the property to the body of cotonists, reserving for himself no more than one settler's share.
tur. hradforil was a man of culture and possessed some knowbedge of the classics. His leisure was largely sumt in writing, and atter his death the interpsimg manuscripts were published. Among them were the followines: A biaty of bemomers (relatind the history oi the colong during the first year. and written with the help of Edward Wins-

 Memair of Ether Diotesto; and Mistory of Plymonth Itrututione.
blisidForD. Whafm, painter, bom in Sew Bedford, Mass.. in - 1wet. [p to midule life he followed the mercantile proiession, when he met with reverses and began to paint marine views as a means of livelihood. Ile had previonsly attained some artistic proficiemey by practice in leisure honrs. Ile does work in molors, India ink and oils. He made an Aretic mxeursion with lir. Hayes and others, and from stuthos of show, ships and icen bergs then made he painted many famus scenes. Some of his hest works ares shipurerle (aft Nenturlet:
 Labretor, and simast in the Wineth.

BRADINtr, a small but ancient town, once a parliamentary horough, in the Esle of Wight, fonr miles south of liyde liy rait. In lsso the remains of a lioman rilla, with a tesselated floor, were unearthed near the town. In the ruins, assumed to he thase of the villa of the Roman governor, were fomod mumerons coins and tiles; there are also traces of a whole row of buildings.

BRAfLAUGIl, (marles, a promiment social reformer, hat vigorons anti-sucialist. born in Lemelon in 1s,3:, died Jam. 80, 18:9. Early dependent upon his own efforts, he was in turn errand-loy, small coalmerchant, and trooper at lerlin. Praming his discharese, he remmed to Lomdon in 1s53, hecame clerk to a sulicitor, and ston a hosy secularist lecturer, and pamphemeer moder the name "Icomelast." In insu ha was elected 31. F. for Northampton. llo at tirst refused to take the parliamentary oath, then offered to take it; but as he had heen loud in his a wowal of atheism, the Ilouse refused to allow him repu to adfirm, the was thrice re"̈oeted by Northamptom, and at length, in hsts, having taken the ath, he vas athowed to take his seat. In Parliament he gatued respeet by his strong sense and delating powne and he carned wida popmarity liy his aritation arainst perpetat pensions. Of bradaughowriting the hest kmwn
 republication, in conjunction with Ins. Ambe Besant, of at old pamphlet, The Fruits of I'hilosophy,
 ment and a time of $\mathfrak{E b}$ an, hat the eonviction was quathed on appeal duriner what prosed to be Mr.
 was made and atarriod in the llouse of tommons
that the action of Parliament, by which he was ejected from that body in 140 , be expunged from the recortl.

BAAIMEY, liev. Enwand, better known by the peoudonym of "Cuthbert liete." was horn at kidderminster. England, in 152 . and educated at Durham [niversity. Ile was successively rector of Tentom. Iluntingdonshire, of shelton, near Oakham, and of Lenton, near Grantham. His facetious description of Oxford life in Aelrentures of lonlent ficell (1ñ3-5T) has been exceedingly popular, and was followed by the Book of Bectuty (1856), Fuiry Faldes (185s), ritenrraggan (1861), Tales of ColWy Lite (1862). Litlle Wi. Bommer and Mes Frreme
 which have equaled his dirst book in polularity.
BRADLEY, Joseph I'.. LLL. In.. jurist, born in Berne, N. Y., March 14, 1813. In his youth his educationaladvantages were at first verymeager, but a clergyman prepared him for college, and he pursued the course at latgers. He studied law. was admitted to the har in 1839, and for a number of vears practiced in Newark, N. J. IUis services irere sought in important cases, and he was highly esteemed as an orator. In 1sä President Grant appointed him to the supreme court bench and circuit justice for the sonthern circnit: later he was assigned to the third circuit. comprehending the States of I'ensylvania, New Jersey and Ielaware. While in the supreme court many and intricate cases came up for decision-civil war cases, maritime cases, and others of like importance. In 14,7 he was a member of the electoral commission. He has mever been a poditician, but was a member of the Whig party and now of the Republican, atways supporting the Government.
FiADNTREET, smms, eolonial govermor of lassachusetts from lise to lixis, and from 1659 to 1642, born at Ilorbling, Lineumshire, England, in 1603, died at Salem, Mass. in 10:7. He was educated at Cambrider, and, havimg been chosen assistant judge of the court to lie estallished in the Massachusetts colony, sailed for the New World and arrived at salem in 1630 . During his pulblic life of more than 60 years he held prominent and responsible grwernment positions, in all of which he showed himsolf able and trustworthy. Tle risited England in 1660 as agent for the colong and to congratulate Charles it on his resturation. Ihadstreet opposed the witcheraft delusion atsalem in 1642. Ihe was one of the founders ui C'ambridge. and was comeeted with the settling of other of the carly New England towns.
ERAETAAL, a highland district of seothand, occupying the southmest enrner of At wrdeen-hime. in the heart of the Grampian Monntains, and traversed by the upper waters of the Dee. In the nastern part is Balmoral, and near fts center. it miles soutliwest of Abordere, is the village of Castleton of Braemar, a facorite resort for travelems. sportsmen, and lovers of grand seemery. See liritamica, Vol. I, p. 4 .

LaRili, a game at cards, so ealled hecause each player endeavors to impose upon the others. and to make them l clicve that his hand is better than it really is:-same as pmire and butp.

BRAGB, Bhavos, soldier, horn in Warren coment. N. (... Marel, we. N17. died in (valveston,
 and was appoint d to military service in llorida duriner the seminole war. ile took part in the Mexican war, and was heremted lientemant-colomed fur his gallant services during the campaign. From this time antil the civil war he was mustly engaged in fromtier service. In lati, when the war broke out, les was commissioner of publie works in Loulis-
iana, and taking the Confederate side he was appointed brigadier-general and assigned to duty in Florida. On the death of A. S. Johmston at the battle of Shiloh he was promoted general. After the evacuation of Corinth he suceeeded to dieneral Beauregard's command. At Perryville. Ky.. where he led a force of 45,000 men, he retreated after the battle without sutficient cause. He was on this account removed from command and arrested, but soon restored to rank. Ile was beaten at Murfreesboro, by Rosecrans Dec. 31, 186… and Jan. \because, IS63, but retaliated at Chicamanga in September. Grant inflicted a severe defeat upou lis troops at Chattanooga in November, and soon after he was relieved of command and called to Richmond as military adviser to Jefferson Davis. IIe performed no other important service during the war. Afterwards he beeame chief engineer of tlabama. and superintended the improvements in Nabile Lay.

BRAGI, in Northern mythology, son of odin and Frigga, god of poetry ayd ropluence. Epon hitongue were engraved the runes of spoed. so that he could not utter a sentence that diu not contain wisdom. Aecording to the elder or poetic Edda, he is the most perfect of all scalds or paets, and the inventor of poetry, which is designated ly a kindred word, may!. Bragi is represented as an old man with a long flowing beard, but his brow is always mild and unwrinkled. Together with llermothe or Hermode, he receives and wellemmes all those hernes whohave fallen in hattle, on their arrival in Vathadla. On festive oceasions, as well as on the burial of a king, agoblet called liragafull (Brasios gohlet) was presented, before which cach man rose up, made a somemn row, and emptied it. Soe Eritannica, Vol. 1, p. 211.

BRAHMA. Hindu deity. See Britamica, Vol. IV.p.207; Vol. XXIV, p. ils.

BRAMMASE. hinducaste, See Britamical Vol. V, p. 188.

BRAHMANBARIA, a town of India, Tipperah district, in the presideney of Bengal, on the Titas River, It has sea amd ratlway communication witl Calcutta, and some trade in rice. Population. 17, 43 s.

BRAHME, Jonswist, born in llamburt, (iormany, in 1 RH3. Je is the greatest living composer, His father being a musician, Brahms rocojved a thorongh musical educatinn and at the age of $\because=1$ gave such signs of extriordinary powers thit sehnmann became convineed that he would be the man Who would carry on the progressive development of modern music. Juring his gouth he remained mostly in retirement, studying ind eomposing. In 1861 he removed to Vienna. So comparison hetween Brahms and Wagner, the othor great motern composer, is possible, as they have necupied different helds of activity. Wayner's fame is entirely founded on his operatic works, while lirahms has devoted himself to choral and chamber music, and is without a rival in these directions.

The genius of Brahms is conservative in suirit, contrary to Wianmer and the so-called "selhonl of the future; " he hases his art upom systematic principles of musical form, and it is only in style and construction. and the character of his inteas. that he differs from other composers. His intellectuality is intense. and will probably prevent his masie from hecoming popular with the great mass of music lovers, for he sometimes sacrifices leantry of sound to the more forcefal expression of an idea.

His works have now reached Opus 10s. The "Deutsches Requiem" and Symphonios are his greatest compositions. As a pianofirte player Brahms is well known, especially as an interpreter

BRAlD, J.MEs, horn in $179 \mathrm{~J}_{4}$ in Fife. studipd medicine at Edinturgh, and settled as a surgeon in Manchester, where he died March 25,1850 . He is noted for his researches on animal magnetism, which he named hymutism. See Britamica, Vol. CV,p.2-s.

ERAILVOOD, a city ol Ihinois abot 20 miles sonth of Ioliet. It is noted for its extensive mines of hitmminous coal.

RRAFMWOOD, Tmomss, teacher of deaf mutes. See britamnica. Vol. VIT, p. 6.

BlisilitE, Luns, the inventor of the Braille system of raised letters for the hind, was born near Paris, France. Jammary, 1809. He became hind the result of accident) at the age of three. In lsler he lecatae a propil of the institution for the bind in Paris, and submequently was elected a protessor in the institution. While there he devised a system of points or raind dots, instead of raised lines. for the uses ai the blimd in reading or writing. See Burnm, lienmak; fola, in these Revisions and Additions.
 name for corals of the semus Monuirine, family Miomblimidir. bedomering to the aporose division of stome-corals. The intivilual anmals which compose the colony are arranged in long winding roms. Those of one ruw ire 1 oht sobarated irom one anather by the nenal rumal walls. and thas elongated continuoss iurrows are formest not unlike brain con-voletions-hernere the name. The entire shape is roushly hemirpherical: the rate of growth slow; the total size whm large. They are atmondant in the West hadian wean. Ahmif 20 smedes of lhe anflime are known, some living, others occurring from the chalk wh to tertiary strata.
 gian provine of thaination the semme, lat miles southwest ui Rrussels. It has an ald ehureh of the 13th century, cotton amb corn mills, dre-works, breweries ete. Some of the dinest llax is grown in the thistrict. Population, $5,1-6$.

BLALNERE, a eity of Mimesota, county-se:a of Crow Winer count y , abont 115 miles west of Dulat? It contanis the shops of the Northern lacitice.
BRAETTRER, Mass. Supplementary List, Vol.11I.
BKAKle. Ser lritamica, Vol, IV, p. oll.
BRAMA. or Rav* Buswis (brmmen mii), a bony lish elosely related to the remphimet. or "(d)f. phins," amil ther"fore nearly allicil to the mackern family. In this gemas the hody is laterally com:pressed and more or less denp. The spinous pu:tion of the long charsal tin is nut well Wereaconat, and the tail is doeply forked. Ray': brean is found from the Cape se:ts northwaril to the Nediterranean, and even to Hitish enasts. Its total length may he as much as two feet.
BRAMDHEF, a name common to plants of the genus Rubus. in lingland the popular name for common backherrs. Rubors firticostes. Brambles are little cultivated in liritain; but in America, where they are called hlackberries, they are exfonsively cultivated for their froit, amo of late Amprican varieties have leen with advantare introluced into ZBitain. Species of Ruthe very similar to the common liramble. or varieties of it, ahuand in the northern parts of Asia, and in the llimabaya Mountains.
RRAXBLING RJRD. see hritamica, Vol. IX p. 193.
 Puritan Irish prelata. horn in 15:4, and thueated at Sidney-Susex colloge, ('ambridge. Jo was already sub-dean of hipen, on the roat to high preferment, when hw went to Treland as Wentworth's chaplain in 16:3. He soon became archdeacon of

Meath and mas consecrated Bishop of Derty in 1634. Bramhall's intolerance ronsed the wrath of the stubborn Senteh settlers in his diocese, and ruined the king's cause in Uister. When the civil war broke out, for satety sake, he crossed whe England, but the Royalist diaster som drose him to the continent. The Restoration gave him the metropolitan see of Armagh, which he filled till his death in 1663. Bramhall closely imitatod Latud in policy, but was far his inferior in intellect. Not strong, but merely ohstinate in purnose, the socalled Athanasins if Ireland. by his impolitic intolerance, sealed the form of episeopalian supremacy in Ulster. Sep Britannica, Vol. Nll, p. 8 ; F Vol. Xll1, p. 2bii
BRAMIPCOA, a bery ancient town of cumberland, England, nina miles northeast of ('arlisle ly rail. The chief manufacture is the weaving of checks and ginghams. There are cod mines in tha vicinity. Two miles to the (ast stands Lanercoast Abbey, founded in 116 .

BRAMPOOX. a village of ontario. countymat of Preel county, about 20 miles west of Toronto. It is an important grain and Hour market, and contains also manufactories of iron, of agricultural implments and of pmoms.
 order of crandreans. Sre Jritannica, Vol. VI, p. 643.

BRANCO RIO, a riser of northern Brazil, which rises an the Parima Momatans, on the ver horters of V'rneznela; and after a sontherly course of abont 400 males joins the Rio Negro. of which it is the pronempal 1 ributary.

BRAND) Jome (1Ttt-1NOM, antiquars, born in Wurham connty, England, fing. 19, 174t, was apprenticed to a corlwainer in Newcastle, and educated at the grammar school there. Mis industry procured him patrons, whe sent him to watord. where he graduated B. A. in 1725 . He had tween ordainet some years previously, and in 1-int he was presented to a rectory in Landon, and in the same year waz plected rosident secretary of the Society of Andinaries, to which other be was reclected an-
 on Pompitt . Intiquilios, tirst published in 1727, and edited wilh additions by Sir Tlenry Lills (three yolumps 1818: new edition hy W. C. Mazlit, 1870), is considered the best work on its suliject in the English language.

BRANHES, Genrg, a Danish literary eritic of Jewish family, burn in Copenhageno Fels. f, lstz,
 Sererat bow- \quad an athetie and philosophic subjects brought wh him a charge of skepticism, which was not remosed livan epuch-makingeries at lectures, clelivered before largo andiences, and published under the tilles. The Ciant Tradmains of Nimteenth
 the later intellectual pusitimof Europe, as broken away from the orthodoxy and romanticism of the beginuing of the century, hrought on him tha hitter altacks of all the romenomy fores in ben-
 logical analysis, appeared in 1sio. The hosility of his rememes induced him in the same year to lave Wenmark, and sette in Berlin, where he joblished, among other works, Gationl Bioutaphiss of Laswelle"

 fark bronght a poworfal party bohis side, and in 1sse he mefarmed to Copenhagen, his combrymon having guaranted himan income of t, (hat eromms. with the wer stipulation that be shomd dsliwe publia lecturss on literathre. Ilis latar works in-

hography oi Luturig Hollorg (1SS5). See Britannica, Yol. V11, p. 93.
BRANDIN(i has been practiced from rery early times. The Greeks marked their slaves with the stigmo; in Rome, runaway slaves (iugitiri) and thieves (furs) were branded with the letter F ; and the slaves who worked in the mines, and convicts condemned to the games or to the mines, were also hranded on the forehead for identification. Constantine limited branding to the hand, arm or calt. The canon law provided for this punishment, and in France, down to 1832, galley slaves were marked T F (traconc fores) , but in Germany it has never Wen recocrizid by common law: The famous Glatute of Vagabonds under Edward VI of England authorizad the branding of the letter V on the breast of a rumaway servant, and in the same reign brawhing in chureh was punished ber branding with the letter F on the cheek as a frimmaker. Huring the three centuries of persecution to which the gypsies were subjectad throughout Europe, hhis was considered a mild form of punishment. From lins to liot theit and petit larceny were punishable by branding in the left cheek. This form of punishment was discontinued in the reign of feorge lII, and finally done away with in 1829 . Army "branding" or "matkia" with the leter D い. 1) C (descrter or bad character, by tatwoing with needles and Inctian ints, not by luming, was abolie? ed in 1s:

BRANDOS. EyRaint old market-town of England, -ithated on the Little wase, sif miles nurtheast of london. In the neighburhood anc the Grimes Cimens, domonstrated hy Canom Greonwell to ie Neolithie hint-workings. Gun-flinta are still made here, chiofly for the Ifrican marlat; and the confinuity of his industry can be traced : t Brandon in untroken sequence 10 the early prehistorie priods, whon the fint was excarated with stone fools and picks made of the antlers of the red deer. Population of parish. 2.309.

BRANDYWINE CLEEK, a siream rising in Chester county. lo.. finwing with al general sonthrasierly cumre into blaware, and emptring into Christitan Crek at the cily of Wimington. During the War of Jademendence a hathe was fought on its banks, Sipt.11, 17T, in which 13, 000 Americans under W"ashington were defeated i,y a force of 1s:jn Britinh under lord Ilowe.

Filidivolit, a hanufact uring town and summer rewort of Commecticut. It is situated on Long Islatal sound, right miles past of New llaven. It has a gond harlor, a granite guarry and various manufacteres, and is the soat of an ademy.

BRDNK, or Btaxks, an instrument formerly nsed for the punishment of scolds in England and Ceothand, and often in the fornmer commery called "Hhe seodl's hridle," or "gossip"s bridle." When the hrank iors camo into was is unkmom, lent it is foum at Fdinhurgh as early as 1min. Aecording to Mir. Lhewellym Jewit it w:s nevor a legalized instrument of punishment, althonerh corporations and lords of the manor in Eagland. and town commeik, kirk-sessions, and hamis courts in Scotland, wercised the riglat if intlicting such punishmunt. Men were put in the stureks or pillory, women in the branks, for such petty misdemeanors as are now termed bratales of the peace, using abusive, insulting or threatening lagmage, cursing and swearing. and eontumacy.

The brank in its simphest form is a loop of irom, opening hy hinges at the sides, su a to inclose the head, and factemed fin a staple with a padlock at the hack: a patw within the frant ot the hoop pro-
 ralput, and leg presing upon the tongue be an
effectual gag. The brank was used at Longholm, in Dumfriesshire. in 1722 ; at Morpeth in 1741 ; it ras used at a later date at Manchester and at Macclesfield; and at Bolton-le-Moors in 1856 the iron bridle was stated to be "not many years since in use" for the eorrection of immorality. Brank was at one time a common name in Scotland for aus sort of bridle, and the mord is so used by Burns.

ERANT, Joscpe, called Tharendanegea, a Mohawk chief, born on the hanks of the Ohio in 1742, died at the old Brant mansion. Wellington square, Canada, Nos. 24. 1807. His father was a fullblooded Mohawk Indian. The son, heing a favorite with Sir William Johnson, was sent at his expense for a year's tuition in the "Moor Charity School," which afterwards became Darimouth College. Ile was employed by General Carleton in making raids on the colonists during the Revolutionary war; the Cherry Valley and Minisink massacres were participated in by him. At the head of a clan of Hurons he marelied against Fort Stanwix and afterwards took part in the battle of Oriskany (1779). When the war elosed he used his influcnee for peace and helped the Indian commiswioners to secure a treaty with the lliamis. He was a convert to Christianity, and helped raise funds by visiting England (1786) for the erection of the first Episcopal churel in Upper Canada. The Gospel of St. Mark and the "Book of Common Priver" were translated by him and Colonel Daniel Clans into the Mohawk language. Ite is said to have been faithful to a friend, a caulous warrior, an accomplished diplomat, and humane to a eaptive. At Brantford, Canada, a monument was erected to his memory in 1886.

BLASSEY, Thomas, Baron. K. C. B.. son of the great railway eontractor, born at strafford. Figgland. in 1836. He was elected to farliament for Devonport in 1865. and afterwards represented Hastings (1868-86). As Civil Irird of the Almiralty (1880) and Secretary (1854). his influemee has been felt in naval questions, and he is author of several works on seamanship and waval alfairs. He was made $K . r^{\prime} .13$. in 1880, and was raised to the peerage in lssis. Ile is a vetoran yachtsman; and Lady Brassey's pleasant records of their yaclit voyage round the world in 1si6-7. and of succeeding trips of the Sunbeam, were widely popular. She died on the homeward voyage from dustraliat, Sept. 14, 1887, and was buried at sea. Lord Brassey is author of Hork and Hagrs (1si2). Brilish sfament (1875), The Eastern question (1878). Fineigu llorli naid English Wages (189), The British Viry (tive vols., 18s2-83), ete.

BRASSICA, the 1 urnip and cablage gemus of Grucifera, containing abont loin species, all matives of Europe and Northern Isia. The eultivated species are of great economie importance. Brassica olerace gave rise to all the forms of eabbage. canliflower, kale, kohl-rahi, broceoli, cte. Brassiru campestris (see Britannica, Vol. NII, p. 2se) is the sonree of the turnip and the rutabaga, in which the nourishment is stored in the root, and of the eolza and rape, whieh are raised for the oil of the seed. Brassica alba and Brassica uigra are the white and blackmustards. See Cambice, Britanniea, Vö. IV, pp. 617, 618.

BRATHWAITE, Richame, minor poet, horn in Westmoreland, England, about 15ss, died near Richmond, in Yorkshire, in 167:3. He entered Oriel (college, Oxford, at sixteen; passed afterwards 10 Cambridge and thence to London, where he devoted himself to poetry and play-writing. In 1611 he puhlished The Golden Elbere, a collection of poems, and in 1614 three works, one of them a book of pastorats, en-
titled. The Poct's Willou. In 1615 he published the collection of satires, A Streppado for the Devit, in imitation of The Aluses IThipt and Stript of George Wither. The latter part of his life was spent in Westmoreland and Yorkshire, where he lived the life of a country gentleman, without, howerer, ceasing his literary activity. Of his numerous books the most noterrorthy one is Burnubs Itinerasimm, or Bamabee's Journal, published in 1638 , and often reprinted under the title of Drmeken Burabl,!": Fura Joumoys. This lively book, in rhymed Latin and doggerel English verse. was popular in the 1sth century, and had the honor of an eleventh edition in 1876.

BRATTLEBORO, a heautiful town of Vermont. is situated on the Commecticut River, about nighty miles south of Rutland. It is the seat of the Vermont Asylum for the insane. It is an important center of trade, and contains extensive manufactories of organs, machinery, furniture, and earriages.

BRALN, Amexander, born at Ratisbon, Bavaria, in 1805, professor of hotany at Berlin from 185: till his death, March 29, 1877. He did special service in the clepartments of the morphology of plants, systematization, and the lower cryptogams.

BRAUN. digust Emil, archeologist, horn at Gotha in 180!, died in Rome. Sept. In, 185t. He studied at Götingen and Munich, and in la33 went to Rome, where in a short time he was made seeretary to the Archacological Institute. He wrote many valuable works on art and mythology in German and Italian. Of these the most impurt ant are his Torschule der Kiensturythotegie (1554), and an admirable guide-book. Dhe liuitupu und Vusten Roms (1854), hoth of which have been translated into Euglish.

BlidVo ("excellent!" "well done!"). an ltalian exelamation of praise. the superlative form of which is bracisximo. It is commonly used in England without distinction of number or gender: but the ltalians say brano! to a male singer or aetor, hera! to a lady, and brari! to a company of singers.

BRIVOES, those persons in Italy, hat especially in Veniee, who undertook to perform any dangerous deeds for money. The name is now employed chiefly to designate hired assassins.

BKATURS, an lalian word, in music applied to a composition as well as a style of performance. As a composition, the bravura is a thorid air ar song. with many diflicult and rapid passages, reduiring great spirit and dexterity of execulion. The term is chietly applied to vereal comprsitions. hat necasionally to instrumental.
 anold statutory offense in the ecclesiastical eourts. If it was committed ly words only, the hishop might exclude a lay wifender from church, and inight suspend a priest. In more serious casps excommunication and branding were the punishment. Anglican primests may still he pumished for such conduct he their own courts; lut the riotons. violent, or inderont conduet of laymen in any phace wed for religinus worship is dealt with by the ordinary eriminal eurts.

PRINTON: Cirter. signer of the beclaration of 1ndeprentence, born in Newington. King and Queen connty, Va., Sept. 10, 173ri, diod in Richmond, Va, Oct. 10, 179\%. He inherited a large estato. and was educated at Wihliam and Mary College. In 176il he entered the house oi burgeses and remained in the public service until hir dwath. He supported Patrick Henry's stamp-act resolutions, and favored independence. He was a membar of the last house of burgesses; of the general convention at Richmond (July 17, 1-75), which organized the militia;
and in December, 1775, when the president of the Continental Congress died, Mr. Braxton was chosen for the ottice. He signed the Declaration of Independence July 4, 1776. In 1777, 1779, 1750, 1781, 1753 and 1785 he was a member of the I Iouse of Delegates. In 1786 he was chosen to the council of state; in 1791 he was elected to the legislature; and from 1703 until his death heserved as a member of the executive council of the General Assemhly. Mr. Braxton's fortune was greatiy reduced by the events of the Revolntionary war and the depreciation of the currency.

BRAY, Anna Eifa (hé Kempe), anthor, born in London, England, Dec. 25,1790 , died there Jan. 21, 1883. She studied for the stage, but in 1818 married the artist Charles Alfred Stothard, whose death occurred in 1821 (see Britamica, Vol, XXII, p. 578). In 18.2 she married the Rev. E. A. Bray (1758-1857), vicar of Tavistock, and after his death settled in London. Between 1820 and isit she published a score of romances, books of travel, and other works, the best being The Borders of the Tamer and the Tary (1836); Lije of Thomes Stothard, R. . 1. (1851) ; and A Peep at the Pixies (1854).

BRAZIL, United States of, a republic of Central Sonth America. Area, $3,218,032$ sip. miles; pepnlation (estimated in 1888), $14,002,335$; capital, lio Janeiro, with a pupulation of $3 \overline{5}, 332$. For the early history, productions, and government of Brazil, see Britamica, Vol. IV, pp. 221-240.
In 1887, an oflicial estimate gave the white population at about one-third of the total poputation; slayes, $1,500,000$; the remainder were mulattoes, half-eastes, freed negroes, and nomadie Indians. In 1888 a law was enaeted freeing the slaves, and since that date every person in that great country has been permitted to claim the right of citizenship."
Brazil contains 20 States, 16 of which have a coast frontage. The following table give- the names of the states, their areas, severally, and their popmations in 18s.

states.	Area: Engli*h sq. mile.	$\begin{aligned} & \text { lopnla- } \\ & \text { fion, } 14 \times 5 \text {. } \end{aligned}$	$\begin{aligned} & \text { Density } \\ & \text { persq. } \\ & \text { m., } 10 \text { s. } \end{aligned}$
Amazonas	73.2046	80,154	0.11
Pará.	$413,45 \%$	417350	091
Maranhat	17\%,5i	4.65,433	27
Piauhy	116,214	24i4, 93	2.2
Ceará	40,23:3	952,60	23.tj
Rio Grande-lo-Norte	12,190	305,noz	13.9
Paruhym	25,5i	496,618	17.0
Permambued	49,325	1,140, 8.1	120 0
Alagots	2, 55:	1, 159,371	20.9
Sersipe	7,30	232,640	310
Bahial	144,64!	1, $, 121,050$	110
Espiritosanto.	17,312	121., ${ }^{\text {a }}$	7.0
Rio de rameiro......	-26, 6 \%	1. $60.4,46$	43.7
Municifio N゙cutro (City os Rio)	5	4060.908	756.0
Santa Cathurima.	27.4	23\%,36	8.6
Rio Grandu-do-sul.	91,35	5115927	6.18
Minas Geraes.	292, 160	2,018,807	13.58
Matto Grosso	5:32, 304	79,850	0.149
Goyaz	94x, 40	211.721	0.77
I ${ }^{\text {aranaí. }}$	85,153	187,919	219
Sam Paulo.	112,3\%	1, \%ixiow	1234
Tolal.	3,209,598	14, 100.205	4.36

[^89]The apparent increase in 16 years ifom 1872 to 1888), was 41 per cent., or at the arerage rate ot 2.56 per cent. per year. In 1.548 the latest estimated population of the chief cities other than the captal was as follows: Bahia, 140,000; Permambuce, 130,0100 ; Pelotas, 45,000 ; Belem, 40,000 ; San Paulo, 40,000 ; Campos, 40.000 ; Campinas, 35,000 ; Maranhāo, 35,940 ; Porto Alegre, 35,000 ; Careteba, 34,000 ; Ouro I'reto, $20,000$.

In 1658 there were 5,281 miles of railway open, and 869 mites in course of construction; also 7 , 10.5 miles of telegraph wire, and 1,816 post offices. It is unerualed for the number and extent of its rivers. The Amazon, though not the longest, is with its tributaries, the largest in the world.

The public delot of Brazil on Yov. 15, 1889, was officially reported as follows:

$$
\begin{aligned}
& \text {..... }
\end{aligned}
$$

Later, some additions to the above were made, and in December, 1sh!, a further loan of $\$ 100,000,000$ was successfully floated.
The Brazilian army in 1889 consisted of 13,000 men, on a peace footing, and the navy of 59 vessels, inclusive oi 9 ironclads, 17 gun-hoats, and 9 torpedo boats.
Asexplanatory and preparatory to the more recent and most radical changes in the Brazilian government we summarize in this connection a few salient items of the earlier history. The territory was acruired by Portugal early in the sixteenth century, and resolutely held hy her against all claimants. When the French over-ran Portugal in 1807, the royal family took refuge in Brazil. In 1815 the exiled monarch Dom Joño, issued a formal decree declaring the colony to be a part of "the Kingdom of Portugal, Brazil, and the Algarves," and thenceforward assumed the title of "King of Brazil." In 18:1 he returued to Portugal leaving his son Dom Pedro as regent of Brazil. There had been for some time a tendency toward separation, and in 182. when the Portuguese Cortes adopted a resolution requiring Dom l'edro to retarn to Lisbon, a crisis was precipitated, and the Brazilians deciared for independence. Dom Pedro put himself at the head of the movement, and summoning a general council he was declared by that body to he "Constitntional Emperor and Perpetual Defender of Brazil." In 1824 a constitution was adopted by the Emperor and a vote of the people. A year later the independence of Lirazil was recognized by Portugal. In 1834 a law was passed giving a federat character to the empire, delegating to the provincial assemblies, both legislative and executive, authority within the provinees. The presidents, however, were to be appointed by imperial selection. The constitution deelared that "The Empire of Bra\%il is the political association of all Brazilian citizens," and that "the representatives of the Braxilian nation are the Emperor and the Genoral Issembly:"

Among the powers of the General Assembly were these: "To receive the oath of the Emperor, Prince Imperial, or Regent, or Comeil of liegenes; on the death of the Emperar: in the event of the throne becoming vaeant, to institute an inquiry into the administration whieh has come to an end, and to reform the abuses which have crept in; to select a new dymasty should the present fail; to make, interpret, suspent, or ahrogate the laws; to take measures for the maintenance of the Constitution, and for the general welfare of the nation."

The imperial dynasty continued until Nov. 15,1859 , when, with romarkable manimity by the
principal citizens in the national capital, a declaration was adopted in favor of a republic, and a provisional guvernment assumed control. The revolution was sudden and boodless. The Emperor was regarded as a very weak personare. but as one having good intentions, and patrivtic purposes toward all the people. Ite was, thereiore, most kindly treated, and most generous provision was made for his support. Lest his presence s'mould open the door for trouble during the reorganization of the government, he was transferred to his kindred in Portugat.

The preference of the people was for a repultic, formed on the American model, and hence the provisional administration immediately and vigorously proceeded to formmate a new constitution on the general plan of that of the Cnited states. The draft of the new constitution was promulgated June 23, Is90, under the povisinal presideney of Marshal Deoduro da Fonseca. Tinere was no serious trouble in the administration-everything went on as usual; the imperial officiats became repultieans; most of the ambassadors to fureign courts continued at their posts; only a lewimpurtant changes were made.

The froposed constitution provided ior a presidert and The proposed constiment provided ior a presters and lege for six years: two lexthative ehmabres-viz, it sertate, elected by the state legislature for nime seare, mad a chamber of deputies elected bypopmar vote for three yearu: a sapremefederal tribunal of tiftern judice, aphoincict for afe, and a iederal judicial system; a fuderal district for the artional eapital, like the District of Columhia, hmt witly pris bleges of representation in the two chambers and in the prestidential election likemay state: the transiormation of
 frage to all (excetat illiteratus. mendicants, solaliers, ramb

 to the prejudice of thoif persomal libertyt: gharantene for life, property, and political rizhts: revmeibility of the presdent and bite cabinet heine the law: relisions irevdon and separation of charch ant state, obligatury civil marriages. etc. The president of the febluration wis dermecil abosec res sponsible to the mation, and the mbilstur- wete replaced by

 powers of the wo danmbers were to be firredy degindive wonht not neceizarily cutath at khage of ministey. This

 1sth, the shlpporterat of the prosfolom! wovernment obaming a large majority at the polls. As the reant of the ev ele etions
 had been montirmed bey the poode, and that the laepublic hat

The prinelpal aeta of the provisiontal govermaneht durine

 sume month the bumk of the frited atates of lirazll wa- an-

 prises on foot required this inerease of the currente. Ons.p.

 November both, all import daties were to be pual iat coln, is decision whi"h it was stated wonld bring withen millions sterling anmally finto the trensury
At the meeting of the depmetes to the First Nintomat Asembly, the propostal Conatitution was submitted to ncomat mission eongosed of one depnty from eath sinte fat the Republic, and was favorably reworted tank to the Nutional Assembly and diseussed at great lemuth, mamerons amembments being projosed mad alopeted or formally rejected. The tirst suction of the chastitution was mophted about the midde of January, 1 ane The next formalmet of the new lis. ghat
 the Gnited states of Brazil." Ile had been dentified withall the important movements of the frovisional government during the whole resolntionary probed, nad had manifested wot only great sarncity and courase. but also sound senze moderate temper, and commendable falirness of suirit. He had met all the trying dillimities of his chitf exeentive position in such a statesmanlife mammer that this critical feriod of translion was passed for the whole commtry in entire peate of transition was mased inde the whole commery jhentire peate \cdots The whate conntry seemed to have been durmg the jeriod a great debating school, where thentmost freedom of opinion oud of syeech had been permitted to all parties, in all pos-
sible ways, so that no occazion for omplaint was givent tc any State or person in the Reputhre." The completed constitution was formally adopted by the Assembly, Feb. 24, 1541, and the United states of Brazil thence fotward was constituted a government in lam a - Well as il fact.
The new fag of the new Hepmblic is of urean color with a large yellow lozenge, in the center of which is a blue sphere: crosing the sphere is a white ribbom inseribu "Order e frogresso" in green letters. Twents white stars, indscat ing the twenty states, are arraneed in the form of the smathern constellatione the Crose ath the scorpion, while another larga star is intenald to sympolize the capitallio de Jauriro.

In the autumn of 1891 President Fonseca, atirming his bethef that the political condition of the country required for a temporary period a stronger centralized government, practieally assumed a dictatorshije and issued a manifesto dissolvine the Congress which had refused to execute his wishes

As had also been the ease in the troubles in chili and the Argentine Confederaey had financiering hadmueh to do with the politieal disturbances. The majority in the Braziliancongress favored an extension of Enylish loans, which had heen steadity opposed by lresident Funseca. Exercising his undoubted constitutional right. he vetoed several important tinancial measures of the Congress, and also laws intended to restrict his wwn actions within constitutional limits, and then, incensed at its attempt tooverrule his views. he dispersed the Congress by forea, and seized upon the reins of government. Fonseea thus hecame, In all intents and purpuses. a dictatur, though he insisted that he was warmly attached to the republican form of government, and that he would call for new elecfioms of representatives in the mational hegislature not later than next damuary. He intimates also that the ofpmation was engayed in phots for a restoration of the empire. The great ludy of the peophe, however, refusid to follow his lead, and rone against him, compelling him tor resign, leaving the experutire government in the hands af ViepPresident lenixotio. what lipeame his constidutionat sucorssor. levixotor has promulyated a mamionto which has givengreat satisfaction, in which he disowns any clam to arbitrary or dictaturial anthority, and dechares that the logaborder of affate is res stored. It declarwithe state of sipge raised, and summons then atd congress for reassemble on Dre. Is. In his measage to Cungress. President Peinotor stated that then lirazilian people, during the eventson Sow en the dato of Fonseca's resignation and l'rexitent Peixntto's accession to the presideney shownd their jeatous regard for the national libertion whioh were threatened by Fonsmar. It is now the duty of congress, the President dechares, to deal with the existing commeratiat crisis by prefecting a reorganization of the lanking system. He estimates the detind in the budent of 1s:00 at $30,1 \%$ contos of reis. For the current timancial year the deticit wonh he slight.

BKi.ZAL, a mining and manufacturing town of Indiana, county-seat of 'lay count y, situated abmut 15 miles cast of Terre llaute. II comtains patemsive manutactories of pig-iron and numerons mints of block-enal. There are also mannfactories of hoilers. terra-cotta, pottery, chairs and four.

 entered the French navy in lsin, and served in Africa on the Gabom station. In lations he made a famous exphoration of the Ugoway and of some of the northern trihutaries ol the Congo. In 15:* the French government gave him 100,000 franes for exploration of and the promotion of French interestsin the country of the Congo, where he secured rast grants of land for France aud
fromded severral stations, that ealled Brazzaville, being on the northern shore of Stanley Pool. In 1,3 he retmmed to extend the territory ecured to France, this time with a government grant of $1,-$ $2 \%, 000$ francs, besides stores and provisions of all kinds; and liy the end of 1885 he had established 26 statims. of which Francerille was the chief. The securng for France of her great dependency in Africa, lying between the Gaboon and the Congo, is mainly his work; and of that dependency he was made governor in 1sits.
BRENI. See BAEiNa, Britamica Val. 1II, Mr. 250-58.

IBREAD-NUT, the fruit of the tree Diosimmom alicastrom, natural order Vifinamia, a native of Jamaica, elocely allied to the bread-fruit. The breadmat tree is diocious, with wato-lancenate evergreon luaves, and abommels in a tenatious gummy mik. Its leaves and young shoots are eaten liy cattle, but deleterions qualities are said to be developed in them as ther beerme old. "The fruit is a mo-seeded drupe, and the kermels, boiled or roasted, form an agreeable article of food. and are eaten instead of bread. Their taste resembles that of hazel-nuts. Another species, Brosimum !ntactolendrm, is the cow-tree of South America. Prosimum nubletic of Dritish Guiana and Trinidad yields heartwood of a deep nottled brown, hence called letterwood, snakrwoot, or leopardwood. It is chietly used for veneoring.

RRENKIN(i BULK, in Scots law, signities making use of an article supplied in bulk, or in quatitity, by which act one is said to break bulk, amu is in conseduence prevented from afterwards objectiner to it, and returning it to the seller.

BRESKING INCLOSTRES, the technieal name of an old statutory offense in Scotland, which consisted of injuring plantations or breaking their inclosures. Special pumishments were provided for the purpuse of favoring planting and inclosing, in the intl century. The offense wonld now he termed malicious mischief.

BREAM, a poular name applied to three very different kinds of tish, but especially to the fresh. water liream (Alramis bramu), a common little European tisli, nearly allied to the bleat. It has an elongatol, laterally compressed body, a short blunt snont, and long anal fins. The color variess from silver gray to brown. It may measure over a foot, and usually weighs hetwem two and four pounds, thomgh often more it is little valued for food. The white liream (.lowmis bliera) is another European species, much like the preceding. Quite distinct from these is the largetimily of sea-breams or Simeithe, represented in Fingland liy the speries
 United status by Lagomom rhombnides the sailur"schoice, and biphilus linlliooki, the pinfish. The term bream is also applied to Bromm romi, a widely distributed fish of the mackerel family.
BLEASTl'LITE, also called briot-phote of juldwent an ornament worn by the Jewish high-priest. See Britannica, Vol. X. p. iss.
BREASTl'LATE, in ancient armor, a plate of iron, steel, or other metal, so fastened as to protect the chest of the wearer. It was mut commonly used until the early part of the lfith contury, when armor for the limles was being abandomet.

MIECCIS. in genlogy a term adnpted from the Italian to des gnate a conghmerate in which the framuents are angular instoad of being rounded.
 commonly applie! to masess compersad of such fragmonts as have ber me cenented foredher before hemg rameled lis friction. Bones and freyments in bones cemented together by ealcarenos matter
often occur upon the floors of caves in limestone; these accumulations are termed bom-l,

BRECKENRIDGE, an important mining town of Colorado, county-seat of Summit county, situated on lilue liver, on the western slope of the Fiocky Monntains, about 30 miles northeast of Leadville. Its history is coincident with that of the later city. The surrombling country was one of the rich and populous placer-mining diggings of 1859-60; it is now a leading producer of silver, copper, and lead, as well as gold, and contains nomerous smelters, mills, and sampling works.

HRECKENRIDGE, JonN, clergyman, born at Uaboll's Dale, Jexington, Ky.. July t. 179\%, died ther". Aug. 4. 1stl. Ile was a graduate of Princeton, was licensed to preach (18 o-2), was chaplain to Con(ress (182-23). and pastor of a church in LexingTin , 1825-97, when he liegan the publieation of a religious newspaper called the "Western Lnminary." In 1831 he was appointed secretary and general agent of the board of education of the Presbyterian church, and five years later he was called to the chair of theulogy at l'rinceton. He engaged in a printed controversy with Archbishop Hughes on the question "Is the Roman Catholic Religion in any or in all its Principles or Doctrines inimical to Civil or lieligious Liberty ?" Mr. Breckenridge was a keen debater and engaged in the controversies of the Presbyterian chureh. He upheld aldschool doetrine, and was the anthor of nomerous prlemical writings. Excessive work caused his denth just after he was called to be president of Oglethorpe University, in Georgia.
MliECheNlijoge, domi Cabell, vice-president of the Cnited States, born near Lexington. Ky.. Jan. $21,18: 1$, died in Lexington, May 17, 15\%.5. II is graudfather was a United States Sellator and attorneygeneral. Ile was educated at Center College. Danville, and at the Transylvania Institute. and then practiced law in Lexington. He served in the Mexican war, and in his return was sent to the legislathre and to Comgress, 1851-53. Ile was eleeted to the vicu-presithey when Mr. Buchanan became president. At the conclusion of his term of office he was nominated (1860), for the presidency by the sunthern delegates to the Demeratic eonvention; Sorthern delegates at the same time nominating Stephen A. Douglass. Mr. Lincoln was elected, rewiving 180 wotes in the electoral college against i2 in faror of Breckenridge. In 1861 he became C. S. Senator and defended the Confederate cause in that official hody. He joined the rebel troops in the same year, and was expelled from Congress. He was at the battesof Shiloh, Baton Rouge, Durfreeshoro, Chickamanga, Chattanooga, Cold Ilarbor, and in other engagements. In latio he was Confederate Secretary of Wiar. At the elose of the war he essaped to Florida Keys, thence to Cula and to Europe. lieturning in 1868 , he devoted himself to his profession. Ile was the goungest man ever elected the the office of vice-president, heing at that time 3-5 sars olv.
 mam, boan in l'abrell's bale, Ky.. March s. lsoto, died in Hanville, Ky., lece 27, 1sif. He studied at Princetom. Yald, and inion Collegresamd graduated at the latler in $1 s 19$. lle read law, and practiced in his native State for eight yoars. Four years he sat in the legislature, then hic abondoned politics, and began a private study of theology. Lis dirst pastorate was at the seeond l'respyterian ehurch in Baltimore, where he remained 13 years. He hecame president of Jefferson ('ollegn, Pa. (1sti) : then was - hosen (1845) mperinumblent of publie instruction for Kentucky, whither he had remored in the same fear. The new theobngieal saminary of Tanville
called him to the chair of didactic and polemic theology, and here he remained till his death. He was an eminent theological disputant, and in politics was anti-slavery and intensely loyal.
BRECKNOCK, or Brecos, the capital of Brecknockshire, Soutb Wales, situated in an open valley in the middle of the countr, at the confluence of the Usk and Honddu, 183 miles northtrest of London by rail. It lies in the midst of fine mountain scenery, the triple-peaked Brecon Beacons (2,910 feet) rising to the south. The town was founded by Bernard de Newmarch, who built a castle bere in 1094. Flannels, coarse woolens, and hats are manufactured. Population, 6,247.
brederode, Hesry, Count of (1531-68), born in Brussels, December, 1531. Ie was a leader of the disaffected nobility in the struggle against Spain. He drew up the "Compromise" of 1566 , and headed the deputation to which the name Gueux was first applied. He was active in organizing the fraternity, but the failure of an attempt in the following year to raise an armed revolt in Amsterdam olliged him to flee to Germany, where he died at Recklinghausen, Aug. 24, 1568.

Bree, Mattifas Iginties Vin, a Flemish painter, was born at Antwerp in 1773, died Dec. 15, 1839. In 1797 his Death of Cato gained for him the Pric do Rome, which entiticd him to stuly in Italy. On his return to Antwerp in 1804, he became director of the Academy of Fine Arts. His chici works are the Entrance of Napolcon into Antwerp, the Death of Rubens, in the Antwerp Museum, and l'atriotisn of the Burgomaster at the Sirge of Leyten, 1506, in the town-house of Leyden.

BREEDÉ, a river of South Africa in Cape Colony, rising in the Warm-liokerveld, and flowing southeastward into the sea at Port Beanfori, about 60 miles northeast of Cape Igulhats. It is one of the largest rivers of the colony, hut its mavigation is impeded by a bar at its nouth.
Breifin, Alfred Epmesp, naturahist, lorn at Renthendorf, in Thuringia, Fels. 2,1509 , died there Fov. 11, 1sst. lle was son of the pastor there, Christian Ludwig Brehm (1887-180t), a noted ornithologist. After five years of travel in Afriea, lirehon went to Jena and Vienna to study matural science, and subsequently traveled in Spain, Norway, Lapland, Siberia, and Turkistim. In 1863 he became keeper of the Hamburg Zoological Garden, and in 1867 founded the Rerlin Aquarium. His greatest work is the Illustriertes Thicrleben (2d edition. 10 volumes, $1876-79)$.
BREISACH, Alt, a town of Baden, situated on an isolated basalt hill (804 feet) on the right side of the Rhine, 14 miles west of Freiburg. The Mons Brisiacus of Cresar, it was taken by Arioristus when he invaded Gaul; being regarded as the key to the west of Germany, it figured prominently in the wars of the 17 th and $18 t h$ centurics. The minster is a 13 th century structure, with several old monnments. Population, $3,10 t$.

BREISGAN, a Germandistrict which in the middle ages extended along the right bank of the Rhine, from the episcopal territory of Strasburg to Basel, embracing Freiburg and the sonthern Black Forest. Since 1810 it has been part of laden.

BREITENFELD, a village of Saxony, five miles north of Leipzig, remarkable for three battles fought in its nelghborhood. In the first, fought on the 17 th of September (old style, 7 th), 1631 , Gustarus Adolphus inflicted a decisive defeat upon the imperialists under Tilly, who, as well as his generals, Pappenheim and Fürstenberg, was wounded. The second battle was also a rictory of the Swedes under Torstenson, over the imperial forces under the Arch-duke Leopold and Piccolomini, Nor. 2d
(old style, Oct 23?), 1tif?. The third hattle was one act of the great "lattle of the Nations" at Leipzig, Oct. 16, 1 si 13.
BREMEN, one of 1 be Free Cities of the German Empire, located on both sides af the Weser. Area 99 sq . miles, population (in 1855) 166.392 . For early history, map and constitution, see Britannica, Vol. 11I, p1. $250-26$.

The constitution was proclaimed Jarelı $\overline{5}, 1849$, revised in 1854, 1575,1878 and 1579. It is governed by a senate of 16 members, forming the executive, and a representative Convent of Lurgesses ("Burgesschaft") of 150 members, returned by a vote of the citizens. The citizens who have studied at a university return 14 members; the merchants, to members; the mechanics and manufacturers, 22 memlers; and the other taxpaying inhabitants of the Free city the rest. The Convent and Senate elect the 16 members of the Senate, 10 of whom at least must be lawzors. Two burgomasters, the first elected for four years, and the second ior the same period, direct the affairs of the Senate, through a ministry divided into twelve departments. Ali the ministers are senators.
Bremen, with Bremerhaven, is one of the chief outlets of German emigration. The following table shows the emigration statistics of the years 1886-88: $1886,76,509 ; 1857,99,476 ; 1888,95,200$. Public revemue in $185,0,14,320$; expenditure $\$ 3,214,680$; imports, $\$ 129,1,2,6: 0$; exports, $112,760,5$ -
BRENDAN, SMAT, of Clonfert an lrishabbot, born at Tratee in 484 , died in $5 \overline{7}$. Iie studied under St . Jarlath of Tuam, and was ordaineel by Pishon, Ere. llis name is memorable chietly for his voyages in seareh of "the mysterious hand far from human ken." Aiter severi yeare' iruithes wandering he returued, lat mene more, in a ship of wood instad of hides, set sail with sixty friends, and at length after many wanderings reached it that paradise amid the waves of the sea." Bremlan founded a monastery at what is now Chonfert. Ilis festival is on the lhith of May. The Mertigution of st. Brendan was a very popular benk in Wisturn Europe as carly as the 11 th century ; but the two royages were compressed into one, and many other adventures, added. In majs before Columbus's day, "St.1 Brendan"s country" is placed to the sonth of the island of Antilia and west of the Cape Verde Islinds.
BRENHAD, a thriving tomo of T was, comatyseat of Washington county. It is situated in a fertile cotton and grain region, about a hundred miles east of Austin. It contains manufactori s of iron, carriages, and lumber, and is an important center for the shipment of cotton.
BileNT. a river of Nortl Italy, iswing from a small lake in the Tyrol, and flowing 1:0 miles southward and east ward through the Yenetia? territory, till it falls into the Gulf of Venice at the haven of beondolo. The old bed of the river was made use of as a canal, which forms the chinf communication by water between Senice and I'alua, while the Brenta is but little used for navigation.
BRENTLNO, Lato, political comomist, born at Aschaffenburg, in Bavaria, Dee. 18, 1N4t, He studied at Duldin, and at four iocrman Universitics, and after attaining a post in the royal atatistical seminary in Borlin went to England to study the condition of the working classes, especially trades associations and unions. The result of his observation was his work on the Ifistory and Development of English Guids (1.ondon 1870): Die Arlucitergilden der © 1871-72). He became professir of political coonony at Preslan, and in 18s2 at Strashurg. ITe has written works on wages (1877), labor in relation to land
(1875), and compulsory insurance for workmen (1881), on the English Chartists, on the Christian Socialist morement in England (od edition Leipzig (1883), and numerous political pamphlets.

BRENT-GOOSE, or Brent Barxacle (Bermicula brentu), a species of wild goose, inhabiting most of the northern hemisphere. It is smaher than most geese, and has the head, neek, long wing-feathers, and tail black, the belly white, the rest slaty gray. It breeds in the far north, coming south in winter in great numbers. It lives on marine plants and small animals. There are twelve other species. See Britannica, Vol. X , p. 778.

BRENTWOOD, a market tomn in Essex, England, 10 miles southwest of Chelmsford by rail. It has a richly endowed grammar school, founded by Sir Anthony Browne, chief-justice of England, in 1567. There are remains of an old chapel, dedicated in 1221 to St. Thomas i Becket. Population, 4,653.

BRENZ. Jomsna, the Reformer of Würtemberg, born at Weil, in Swabia, June 24,1499 , died at Stutgart, Sept. 11, 1570 . He went in his 13th yeal to study at Heidelberg, where in 1518 he became one of Luther's zealous adherents, and after his appointment as a preacher in the imperial free city of Hall, in Swabia (1522), he openly attached himself to the Reformation. He was at the Marburg Disputation in 1529, and the Diet of Augsbing in 1530, and in 1536 was summoned by luke Ulrich to Würtemberg to lead the Reformation there. For his opposion to the intrim of Charles V he was forced to flee to stuttgart, where in 1593 he became "propst" (or superintendent). Brenz was coauthor of the Wurtemberg Confession of Faith, and his Catechism (15.i) has held the next place to that of Luther in Protestant Germany.

Bl?ESACH, one of the thetland lsles, separated from Lerwick by Bressay Sound. It is six miles long, one to three miles in breadth, and 10^{3}. square miles in area. Flag and roofing stones are quarriod ior exportation lopnlation $84 \bar{t}$, chiefly fishermen. Eressay somad is one of the finest natural harbors in the world, and is a rendezvous for herring-boats, and for whalers and other vescels proceeding north.

BRETIGNY, a village in the French department of Euro-et-Loir, 20 miles wuth of Paris hy rail. Here. in 1360, Edwaid 11 I concluded a peace with France, by which John 11 of France was released from his captivity in Ensland on arreeniry to pay three million crowns for his ransom, while England renounced har claims to Jormandy, Anjou, Iaine, and Touraline and was confirmed in possession of (iascony, Guionne, and several other parts of France, recently achuired ly compuest.
 eated atst. Omer and at Danai. ITe received his instruetion in art under Folix bevime at Ghent, and in Drülling's atclior at l'aris. The subjects of his earlier pietures are takn from the French Revolutionary period, hat he won turned to scenes from peasant life, which ho had treated with an admirable union of stybe with rablism. In fase he exhibited Le hetour dis hemsommoms, and in 1855 his aplebrated Les Glumensis. lle is represented in the Luxembourg ley La Bénítiction des Blís (1857); $L^{\prime \prime}$ Rappel des (ilancuses. (1s59), and Le soin (16il). Bréton is also known as a puet. Ilis brother, Emile-Adelaid is also a noter landseape painter.
 spanish dramatist, born at Quel, in the provinee of lowrnono in 1796, diod at Madritl. Nov. 18, 1573. Hoseriod as a rohnteer in the army fram 3 ata to

182?, and subsequently held several government offices for short periods. His poems till $\overline{5}$ volumes (Madrid 1850-5ㅇ), and he brought out upwards of 150 plays, partly original, partly adaptations from the older Spanish classics, and partly translations from the Italian and French, most of which have been highly popular. See Britannica, Vol. XXIl, 1). 361 .

BRETsCHNEIDER, Heinmich Gottfriedson, vos, a satirist of unsettled life and eccentric habits. born at Gera, Germany, in 1739, died in 1810. From the Moravian Institute at Elbersdorf Bretschneider passed to the Gymnasium at Gera, and at seventeen entered the arnay. In 1778 he became librarian to the University of Ofen (Buda). and in 1782 Joseph 11 gave him a government appointment. Of his numerous works, including plays and poems, the chief are his satires. Amanacll der Meiligen avf (1778) and Ilaller's Leben und Sitten (1793).

BRETTEN, a town of Baden, the birtliplace of Ielanchthon, 16 miles northeast of Karlsruhe by rail. The house in which the Reformer was born belongs now to a foundation bearing his name for the support of poor students, established in 1861. A monument was erected in 1 siai. Population, 3.932.

BRETTS AND SCOTS, tife Laws of the: the name given in the 13 th century to a code of laws in use among the Celtic trilues in Sootland. In the year 1305 an ordinance of Edsard 1 of England, who appeared then to have reduced all scotland to his subjection, decreed "that the usage of the Scots and the Bretts lie alolished. and no more used." It is unknown how far this prohibition took effect. of the code which it prescribed only a fragment has heen preserved. It was printed by Sir John Skene, in his Regiom Majestuteme (1609): and by Thomas Thomson and Cosmo Innes, in the Acts ut the Parliaments of Sotland, volume 1 (1S44). where the laws are given in three languages-Latin. French and English. The French version, which is the oldest, is printed from a manuseript of about 1200, formerly in the public library at Berne. in Switzerland. now in the Register House at Edinhurgh. The fragment of the "laws of the Brett: and Scots" thus published is of much the same nature as the ancient laws of the Anglo-saxons, the W'elsh, the Irish, and other nations of Westem Eurupe.

BIEETVALDA. a title of supremaey among the early Anglo-saxon kings, the exact signification and history of which are highly uncertain. The - Anglo-sarom Chromicle says of Egbert, " and he was the eighth kine that was Bretwalda;" and the word only oceurs elsewhere in an English and Latin charter of thelstan in 90, in which that king is styled "King of the Anglo-saxons and firytaemualda of all the island."
BREV'ARD, EPMAMM, patriot, Iorn about 1750, died in Charlotte, N. C., about 17s3. He wis a Princeton graduate, studied medicine and practiced in Charlotte. Ile was secretary of the noted Mechlonburg eonvention (Xay 31, II-J), at which he trew up a "decharation" which preceded the formal I Peclaration of Independence lyy a vear. With six bonthers Ir. Brevard entered the Continental service, but it was his misfortune to be captured and kept in prison till the ills he there suffered catused his death som after he was liberated. IIf was a man of many aceomplishments, and very influential in promoting the earse of Independence.

BliEVE, a note in music. The name was orisinally applied to the shortest of the three notes used in early music. ${ }^{3}$ al in modern motation it is appropriated to the longest mote usw. having douhle the duration of a semi-hreve. It necurs lint
seldom except in chureh musie, modern music being divided into bars, which usually fall slort of it in length.

BREVE, or Brieve: in Scots law, a writ issuing from chancery, in the name of the crown, to a judge ordering him to try by jury the points or questions stated in the breve. In ancient times these writs appear to have been the foundation of almost all eivil actions in Scotland; but latterly they have been much less used.
BREVET, in the British and American armies, a eommission to an officer which promotes him to a higher rank irrespective of there being any vacaney in its established number. In the British army this promotion carries with it the higher rate of pay, but is neither purchasable nor salable. It has never been given to officers below the rank of captain, and is now only conferred for distinguished service. The holder retains his place and rank in his regiment if it is alone, but if acting with other troops he will take command of the whole force, provided that he is senior by brevet to the other officers. In the United States army, brevet rank extends from first-lientenant to lientenant-general; does not entitle the holder to the higher rate of may, and gives no adranced command except by special assignment of the President. Brevets are conferred by and with the consent of the Senate for "gallant actions and meritorious serviees."
BREVIPENNES (Latin. "short-winged"), a name applied by Cuvier to the first family of fralle, comprising the ostrich, rhea, emu. ete. in which the wings are rudimentary, and not used in tlight. The term is no longer in use.
breyoort, James Clisos, born in New York, eity, July 10, 1818, died in Browklyn, N. Y'. Dee. 7, 1887. He was educated in France, returned to the United States, and in 1838 accompranied Washington Irving as secretary when be went as minister to Spain. He traveled much in Europe. He eame to reside in l3rooklyn, where he held several offices. He was made president of the Long Island Historical Society, regent of the University of New York, superintendent of the Astor Library for two years, and member of various historical, scientific, literary and geographical societies. He made valuable collections of books manuseripts, medals, coins, and entomological and ichthyological specimens, which were given to public institutions where they would be preserved for reference.

BREWER, Jous Sherres (1810 -79), burn at Norwich, England, in 1810; gradnated with classical honors at Queen's College, oxford, in 1833, tork orders, and was appointed professor of English in King's College, London, in 1841. For nearly twenty years he labored in the Record Office editing the Monumenta Franciscana (1558); the Opus Tirtiun and Opus Minus of Roger Decton (1859): Tolumes I-III of The Horks of Ciraldus Cambrensis (1861); the Calindar of the Carev Papers (18til), with the aid of Mr. Bullen; and volumes I-IV of the Calomtar of Letters and Papers, Forcign and Domestic of the Reign of Henry TIII (1862-T2). As an editor Brewer possessed patient industry and a rare sense of order. besides sound judgment and extensive knowledge. He was elected Ilonorary Fellow ni queen's College in 1870 , and in 1877 was presented to the living of Topplefield, in Essex, where he died Fel. 16, 1879.
brewing statistics. For the general subject of brewing and for numerons statisies relating to varions countries, See Britannica, Vol. IV, pp. 264-75. The following statistics showing the numher of barrels of beer produced in the several States and Territories for the calendar years ending Dee. 31, 1889, and Dee. 31, 1890, were compiled by the

L'nited States Internal Revenue Bureau for the "Western Brewer":

Alahama	188	$1890 .$
California	749,021	761.550
Colorado.	175,925	204.863
Commectient	-286.643	314.512
Georgia	27.815	16.800
Illinois	2.129,978	2,304,807
Indiaua	188,398	55-469
Iowa	89,141	102,173
Kansus	4,410	2,110
Kentuck	:301,931	248,396
Lonisiau:	172,502	21,9375
Marylaud.	676,907	703.830
Massachtreetts	971,255	92×842
Michigat	-3\%,522	2xt, 28
Minuesota	:18,288	
Missouri	1,751,928	2,404, 061
Moutana	Tu. 192	81.917
Nebraska	164,141	16.0.33
New Hamp	374.462	370.85
New Jersey	1.433 .128	1,386, 2664
New Mexic	(1.402	752 U
New York	8.3n3.407	S,010,674
Ohio.	$2.232,054$	$2,568,841$
Orecou	$140,4 \mathrm{ar}$	202.924
Pennsylvania	2uma, Sint	3,016,55
South Carolina	9,354	8,580
Tennessee	57.048	80,134
техas	61:38	s2,086
Virgiuia	48,070	54.200
West Virginia	112,76	128.97
Wisconsin	1.649,808	2,313,201
Total barrels	26,211,520	29,528,5\%

The net increast for 1×6 over 1009 is $: 11 \% .216$ hatrels. The list of Stutes is givan us constitufod for purboses of collea-
 returi includes Ševala; (iolorado inclutes WFomiug: Conneeticut includes hhome lshand; Lonisiana inc ludes Mississippl; Maryland includes jelawarc. the District of Columbia. and two connties of Virginia; Montanainelndes lana and Trall: Neloraska ineludes the lakotas: Now II ampshire inclukes Maine rad Vermont: New Muxico juchales drizoma; Oregon ineludes Washington amk Alasku.
The monthly sales for ison ranme from the lowist. $1,682.51$ burrels in January, to the himbext. $3,304,695$ barrets in 3 uly.
 Satem county, X.J., Oct. 13, 1816, died in Philadelphia, Pa, April 4, $18 s 8$. In was a graduate of l'rincton in 18:5, and was admitted to ther Philadelphia har in 1838; was Indian commissioner in 1sthi, attorney-greneral of Pemsylvania in 1s(i7-fis), and of the Cnited States under i'resident Arthur, 18s1-8.5. He prosecuted the famous Star lonte trials.
BREWSTER. Dames, born in Preston, Comm. Aug. 6, 1788, died in New Haven, Nor. 23, 1866. He was adeseendant oi Ehder Brewster. Thrown on his awn resources at an early age he learned the trade of carriage building. and eventually employed a large foree of men, in whose welfare he tonk a philanthropie interest. He was president of the New llaven and lart ford Railroad Company, giving up his husiness for four years that he might attend in the buikding of the road ($183-38$), and assuming large financial responsibility in its interest.
 loorn in Notlingham county, England, about 15io, died in Plymouth, Mass., April II, 1tidt. Authoritjes differ as to the exact dates. He was of good family, and after studying at C'ambridge entered the serrice of William Darison, ambassudor, and afterwards secretary of state to (queen Elizalbeth. with whom he visited the Netherlands. Subsequently returning to Scrooly, he liold the honorable and important office of postmaster. He had become a "Separatist" and as this seet was the object of persecution he madetwo attempts to emigrate to Amsterdam. The first offort ended in arrest and imprisonment, as the skipper of the vessel betrayed him and his companions; the second attempt was successful. He was onliged to teach English on
arriving at Amsterdam in order to support him－ self．Here he set up a printing press and published religious books，which were prohibited in England． Sir Edward Sandys，treasurer of the Virginia Company，secured for him a grant of land in North America；and Elder Brewster．with a company of one hundred pilgrims，set sail in the Mayflover and landed where Plymouth，Mass．，is now located．Dec． 21,1620 ．Brewster was made ruling elder of the church and teacher in the colony．All the hard－ ships were patiently borne by him．He left four sons and a daughter，and their descendants are among the highly esteemed families of New England．
brianclion，Charles Jelien，French mathe－ matician，barn at Sevres in 1785 ，died in 1865 ．He contributed some important papers to French mathematical journals；but is best known by a theorem（see liritannica，Vol．A．p．39－3），the correla－ tive of l＇ascal＇s，which he published in 1806.
BRIARE a town in the French department of Loiret．on the Loire， 102 miles southeast of Paris by rail．The Canal－de－Briare（ 35 miles long），which unites the loire and the Seine，was the first con－ structed in France（16t2）．Population，5，03t．

BRLAR－ROOT，a fine hard wood obtained from the roots of a species of very large heath（Erica arberea），which grows in the Pyrenees，in Corsica． andinAlgeria．The mame is a corruption of the French bruiter（＂heath＂），and has nothing to do with briter：See Britannica，Vol．NLX．p． 112.
bRIPEIT：See Britannica，Vol．IV，prest－89． The Constitution of the United States numbers brib－ ery among the crimes for which the I＇resident and other civil officers may be impeached．In the several states the definition and punishment of bribery are generatly fixed by statute．
brice，Saist，Bishop of Tours，commemorated as a confessor in the beginning of the fifth century． St．Bricers Day，in 1002（in the reign of Ethelred II），is notorimis in old English history for a great massacre of the Danes．It was believed that it was a concerted attempt to exterminate all the

Danes in England；but，failing of its bloody iur－ pose it led to reprisals by the Danish king sweyn．
BRICK．See Britannica，Vol．IV，pp．279－284．
BRIDEWELL a well between Fleet Street and the Thames，London，dedicated to St．Bride，which has given its name to a palace，parish，house of correction，hospital and an industrial school．
BRIDGEPORT，a city and seaport，one of the capitals of Fairfield county，Conn．，situated on Long lsland sound． 58 miles northeast of New York，on the New York，New Haven \＆Hartford Rail－ road，at the suuthern terminus of the Housatonic and Naugatuck Railroads．It lias a safe barbor， which is accessible for small vessels at all seasons of the year，and has a regular passenger steamboat seryice to New York．Bridgeport is distinguished for its manufactories of sewing machines，metallic cartridges，carpets，malleable iron，copper，cold－ rolled steel－plates，steam engines，etc．The streets are well paved，handsomely shaded and lighted with gas and electricity．Horse－cars traverse all parts of the city．It has an efficient police force and fire department and an abundant water sup－ ply．A new court－house and a United States building for post－office and custom－house have recently been completed．It has a city high school．systems of public schools，sereral prirate schools，a public library of 18,000 volumes．and a number of charitable institutions．The city has four handzome parks Population in 1870，15，9世9； in 1840． 27,643 ；in 1890，43，856．See Britannica，Vol． IV，p． $28 t$.
BRIDGEPORT，a village of Ohio，is situated on the Ohio River，opmsite Wheeling．It contains important manufactories of iron，glass，stoves，ma－ chinery，barrels and lumber．In the vicinity are extensive coal mines．

BRIDGEPORT，a heantiful town of Pennsylya－ nia，situated on the schuylkill River，opposite Nor－ ristown．It contains manufactories of paper， woolens and iron，and in the neighborhood are nu－ merous lime－kilns．

PRIDGES．For an elaborate illustrated article on bridges，with an extended discussion of the ten－ sile strength of materials，architectural finish，and practical construction of various kinds of bridges． see Ibriannica，Vol．IV，pp．2st－34．The following is an alphatetical list of the principal hridges throughout the world，with descriptive notes of those which are most recent ：

Albany－（over the 11 udson）－stone：length， 1.740 feet．
Aleantra－stone；lentrth，dis fect：semi－cirenlar ureh．
Alma－Stone：leurth，jo feet ellintical areh．
Almarnz－stone；length，wisfeet；semi－circhlararch．
Arthor Kill－stutun 1sland，ぶ．У．See deseriptive notes be． low．
Arcnenil Aquenturt－atome：leneth．1．27！feet；semi－cireutar arch．
Ariela Vinduet－stone：length，xhi fent：semi－cireular areln．
Athlone－Wrought iron：lewgth，ibifuet；truss．

Buctivor－Lencrin，1，xit foet．
Ballorlimyl Fimbuct－stone；lungth，fif fut；wemi－cirenlar flrch．
Barentin Viaduct－stome；lemoth，1，ju fuet；semi－circular arch．
Parnes－Cast iron；leneth，and fle＊t；arioh，sengment．
Bassuno－Timber：length， 202 fect；trus，
Beatarency Víduct－stone：loneth，！11 foet；seml－circular area．
Bu］fast－Leng th，2，5m feet．
Bellocour－stone；length， 11 fuet：elliptical arch．

Hewdley－stonc：lempth， 187 fect；nreh，semmont．
lideford－Stone；leligth，Jan fuet；ogival
 arch．

Bismarek（over Missouri River）．－see notes below．
Iilackiriars－stone：length．ghn fext ：ulliptical arch．
bombas－（Madras）；length．3，ten fuet．
Boston－Lewgth，B．Asis feet．
Bourbou－Wrought iron；length． 250 feet；susperded．
 001.

Brighton Viaduct－13rick：length．oto ieet；somi－cireular arch．
Bristol－stone；length，ling ievit ogival．
Britannia－Wrought iron；length．I．tsi jet；tulutar：cost．

Brooklyn－（Enst River）．See notes below．
Cabriel－stone：length， 304 feet；sentieireular arelh
Carpentras ．tylleduct－stonc：lensth，2，5ivieet；semi－circu－ lar arcla．
Cisertn Agueduct－Stone；length， 1,6 if fect：sembecireular nreh．
Chalons－stone：length，天as feet：semi－cirkular arell
Chanmont Viaduct－lenarth， 1 ，whifeut：semiteireular arch．
Chavanes－stone：length，ted fevt；ellipticonl areh．
Chelsen－levoeth，Fou feet；susfension．
Clupstow－Cast and wronght iron；leneth，fes fect；tubular．
Chirk Acheduct－stome：leneth，Flifect；stmi－eireular arch．
Cincinnati nud（ovington－（over the ohio）：built 18：； lenerth，，dris jeet；suspenston．seemotes below．

Clifton－（oyel Niagura River）；lengrt，，2inicet；suspension． see notes below．
Coldstream－stone：length，＊is fert：areh，segment．
Colosne（over the Rhine）．Iron，length， 1 ， 5 in foct；areh．
Congle＇ton Vinduet sione：leserth，＂s of leet；arch：segment．
Crumblin Vimbuct－Iron：length．d．0it feet；truss－gird；cost． $\$ 195$, v16．
Curthint Craigs－Stone：lemgth．IN feet：semi－circular arch． Dunule（near stadlan，Anstria）－Trou；length． 2.50 feet．
Dela Ture Viaduct－Stono：lunwth，s凶 feet；semp－circular arch． bean－stone：length，thonerenrob，segment
Dee Vinduct（Delnware river，la．）－stone；length， 1.8 SE foot：semb－cirenlar areh．
Della Trinitn－Gtomu：liguth，gon feet：elliptical areh．

Innting Viade Viaduct－Timber；length，l．sin fect；arch，seg－ ment．

Dolhain Viaduct-Stone; length, 786 feet ; semi-circular arch.
Douro (Portugal)-Iron; length, 115 feet; areh,, 758 feet.
Dubuque (over the Mississippi)-I ron; ength,
Dunkeld-Stone; length, 470 reet; areh segmen
Eanplet-Timber;]ength, 1,148 ; segment ribs.
Elsterthal Viaduct-Stone; length, 892 leet; elliptic
Emilins-Stone; length, 500 feet; semi-circular arch,
Florence (over the Arno)-Bnilt 1569; marble; length, 322 feet; elliptical arch.
Forth-Scotland; See notes below.
Franzdorí Viaduct-Stone; leugth, 1,916 feet: semi-circular arch.
Fribourg (built 1832)-Wire rope; length, siofet; suspension ; cost, $\$ 125,000$.
Gignac-Stone; length, 412 feet; elliptical aren.
Glasgow-Stone; length, 406 feet; arch, segment.
Grdavery Irrigation Aquednet-Stone; length, $2,3 \mathrm{3} 6$ feet; arch
Gegment. Goefzschthal Viaduet-stone; length, 1,900 feet; elliptical arch.
Gnetia-Stone; length, 1,476 feet; semi-circular arch.
Harlem River Aquednct-Stone; length, 1,40 feet; semi-cir-
cular arch, (New South Wales)-Iron and steel, leagth, Hawkiof feet ; cost, $\pm 350,0041$; orened May $1,1 \times 4 \%$.

Hexham-stone; length, 524 fect; areh, segm
Hungerford-Length, 1,350 feet; susjension.
Hungerford-Length, 1,350 feet; susiension.
Indre Viaduct-Stone; length, 2,408 feet: semi-eıreular ureh.
Indre Viaduct-Stone; length, 2,463 leet: se
Invalides (1)-Length, 480 feet; snspension.
Invalides (3)-Stone; leugth, tis fect; ureh, segment.
Jena-Stone; length, 5wifect arch. serment.
kelso-Stone: length, 410 fect; elliptical areh.
 Kentucky, 1877. See notes below.
Kieff-Length, 2.56 feet; suspension.
 Landore
Langon-Wrought jron; length, wis feet; gimer.
Larbert-Stone; length, A:3 feet; areh, segnent.
Libourne-Stone; length, tho fect : cllipteal areh.
Limerick-Stone; length, il: feet; elliptitnl areh.
Lisbon Aqueduct-stonk; length, 3 monitet; ogivn!.
Lockwood Viaduct-Stone; length, 1.42 fert; semi-cireular areh.

 cost, f1,458,311: opemed, iss1.
Loulsville, Ky. (over the Ohio)-Length, 5,311 feet, se notes below.
Lune Aqueduct-Stone: length, the fort: semiciredur nefl.
Mantenon Aqueduct-stone; length, 16,3 sis feet; semi-ciren-
Maranay. Yiaduct-Stone; length, suo ieet; semi-cirenlar Malann
Mayence (over the Rhine)-Length, 3,3n0; areh, segment.
Menai (built 1819-2) - Length, 1,0.50 fedt; shlspertion.
Mersev-stone: length, 117 feet: semjevirenhar arch.

Montpelier Aqueduet - stone; length, 1,21 ; semi-cireular areh.
Muhldorif-Timber; length, 30 feet: truse.
Nabresina-Stone; length, 2,15 feet; semi efrethlar arch.
Namur-Stone; length, tio feet ; areh, segment.
Navilly-stone; length, wob feet; elliptienl areh.

 elliptical urch.
Newcastle Inigh Level- (rast lron: length, sol fect.
 $\$ 100,000$.
Niagara (18s:, - I ron and stecl: hacth between anchorage and piers, 9.10 feet; cantlever. sees notea lelow.
 Nogentirentarch
old London-Stone: length, 92 f fet ; ared, sexment.
Old London-stone: length, 92, fet area, secment Ste noteg below.
Orb Canal Aqueduct-Stone: leneth, tix feet; elliphical areh. Orense-Stone; length, 1,2 fert; ogival.
Orleans-Stone; length, 1,10 feet; elliptical areh.
Onse Burn Dean Vinduce-Ttmber: length, nisu foct; areln, seg-
 arch.

Paria-Stone; length, 620 feet; ogivnl.
lavia-Stone; length, Ge feet; ogivind
Deacock-Timber; length, ow icet: lattien
Pesth (built 1840-19)-Length, 1 , 中b: iecti suticusion.
Po (near Mezzano-Cortz, Italy)-Length. 2, wi feet.
Potomac-Length, 5,300 feet.
Pont de la Concorde-Stone; length, finfect; areh, segment, Pont Neuf-Stone; length, eng feet.
Pont du Gard Aquednet-Stone; length, min feet; semi-eirenlar arch.
Pont y Cys sylte Aqneduct-Cast irnn, length, 1,007 feet; urch segment.
Ponte dell Arcute Aqueduct-Stone; length, wiofect; semieireular arch.

Ponte Corvo-Stone; length, 640 ieet ; semi-careular arch.
Portage Viaduct-limber; length, s76 feet
Pouglkeepsie-Iron and steel; length, 6,767 feet; cnntilever: opened, Feb. 1, 1889. See notes below.
Prairie du Chien (over Mıssissippi)-Length, 7,000 fect; drawbridge. See notes below.
Prague-Stone: length, sen feet
Pyrgos Aqueduct-Stone; length, 223 feet; semi-circular arch.
Quincy (over Mississippi)-Irou; length, 3,200 feet, See Quincy
notes below
Ratisbon-Stone: length, 994 feet; semi-cireular arch.
Riga-stone; length, 2,600 feet: semi-eirenlar areh.
loan-st-stoue: length, 62 feet ; elliptieal arch. 2
Fochester (new)-Cast iron; length, tys feet; areh, scmment.
hochester (old)-Stone; length, 560 feet : arch, segment.
Koyal Border Bridge (Berwiek)-Stone; length, 2.160 feet; semi-circular arch.
Ribule-stone ; lengith, dinfect elliptieal areh.
Lomin Aqueduet (near Lyons)-stont: brught, fin feet: semiecircular areb.
Saltask-Wrought iron; length, 2, 145 feet: yirter
Sanmar-stome; length, weo feet: ellipicnarela.
Schmihansen-Timber: kength, inf fen; frame truss.
 areh.
Schuylkill-Timber'; total length, 1, too ieet; frame truss. See notes lelow
schnylkill-Cust iron; length, 1 , (i00 feet; nely, Ser notes below.
sitterbrucke-I ron: length, Sinj fecti matime:

spoleto-stolne: leneth, sififert; ogival.

St. Charles Mo. M-1ron; lehoth, tivimifet.
St, Esprit-stone: length, when feet; arch, aryment.
St. fermain Viaduct--tone; length, selt feet; semi-circular arcli.
St. Louis bover the Missisaipif-Iron: length, 1,50 fect; arch.

Staines \rightarrow tonte; lemeth. thu fert: areh, sequent

sukkur-(over luehs)-lron; length of main F'an, sog fect; cantthever.
Snsquehmma-stome; lemgth, oran feet; somi-cireular areh. Sce notes liflow
Taraseon- (ast iron; lenuth, 1 nin fuct ; areh, segment.
 circeular areht.
Tay fat Immees)-Iron; lensth, 10, its fect: viaduct; cost, Ex

ryme vindurt-stone; lempth, gex feet; semi circularareh.

 Val fleury Viadnct-stone: lemgth, him feet; semi

Veromat Cocraglios-stonk ; lengeth, 1, inh feet ; nglval.
Vletorla (st. Lawrevce)-Wronght iron; hagth, 9, dio feet; tulblar.
vistula hiver (near Dinsoban, Germany - - ron; length, 2.750

 stere; length.
 wellitiond arels.
 semi-circularareh.

Notes on the Foregong List-With the exception of the Tower bridge and Forth lifilge these described in the following notes are all American, a number of them having been constructed during the past decade. They are phaced in alphabetical arder for the purpose of convenicnt reference:

Th" Alban! bridgr, 1.710 feet in lonetb, wh: buit over the Hudson River at Almany to combert the wow york erntral Railroad with the darlom, bostom und Altany ronds. It has altogether 15 spans, nat a swing hrige ein foet long.
${ }^{3}$ The sithur Kill, a drawbridse, wh mathorized by act of Congress of June 16,1 whi, bul on tume 13, 1has, was pronounced in working orter. Ths hill is intimitrest of the
 bridge, not including prpronelies is ron fect. The tho shore spans are each 150 foet in length, ind are covered hy fixed trusses and two rlraw "pans each whf and go4 feet in the clear. The total length af the draw-hringe is ing feet, and it can be opened or eloserl in about two minutes. The total cost of the bridge was \$40, $0 \% 0$.

The Bismarck Bridge orer the Missouri River. between Bismarck and Mandau, North Dakota, forms an integral part of the Northern Pacific Railroad. The construction of the hridge. which was hecrus in April, 1881 , involsed the control and reetification oi the river. This consisted in conhining the river oi the dike, and the protection of the east shore with riprap. of the dike, and the protection of the east shore with riprap. 30 as to reuder it doubly secure from the eroding aetion of
the water. There were used in the construction of the dike the water. There were used in the construction of the dike , 0,00 tons of granite boulders for riprap, besides a large yards of clay. The bridge proper consists of three through sunns, each measuring 400 feet hetween centers of eud pisers, and two aplroach spans, each 113 feet. The east end of the east approach span is supported by a small abntment of grauite masonry founded on the natural gronnd of the blnff. The west ead of the west approach span is supported bran iron bent resting on two cusbing cylinders, which are supported hy piles driven into the sand bar. The three long spans are supported by font aranite piers containing each 600.4 .0 pounds of wrouglit iron, 38.797 founds of steel, and 25.75 pounds of cast iron. The bridge was completed Oet. 7 , 1he George S. Morrisou was the engineer during construction.
The Brookl!te Bridgc, of East River Snspension Bridge, which conmects the city of brooklyn with New York city, was formally opened on Mar et, 1583. The designs were coms. pleted by the late Johm A. Joebling at least ten rears before the work of construction was begun, which occirred Jaw. g. siv. The caisson for the Brooklyn tower was sunk in 1851, ind the easson for the New York tower was laid the wear iollowing. These caisson were sunk us the pnenmatic process, and the compressed aiy caused many cases of caissou-disease, The Brooklyn tower, which contains es, 21 cobic yards of masonry, was colapleted in May, 15\%, and the New lork tower, coutaining th, 45 cubic sards of masonrs, was finishet in July, bosti. The first wire was run ont May 29 , wo. The cable-making conmenced Tume 11. 18.7. Eneb cable contanins 5.296 parallel galyanized stecl oil-conted wires.closely wralped in is solid cylimer 15^{3} inches in diameter. The total lieight of towers above the high-water line is 2 is feet, Tbe clear height of hidge in center of river span above high water is 1 sis feet. The depth of fonndation below high-water mark is tw feet for Brooklyn tower, and 88 feet for New York tower. The length of cach land span is ghe icet, and 1.50 foet. respecticely; length of Brooklyn anproach. 971 feet ; length of New fork aprroach, 1.562 feet; makine the totallength of the hridge 5,989 tect. The length of the suspended structure irom Gato tons. The termini of the bridge are despectivelr olposite 6.tio tons. The Lermini of the bridge are respectivelr olposite
the Cits Hall, vew fork, and at the junction of Sands and the city hall. New hork. and at the greets, Brooklyn. The bridge has a width of 85 feet. The roadway is divided into a central promenade with a single track ou either side for rapid transit, and a platform for passengers, which is in turu lianked by a tramway for wheched proicles. The netual cost of the bridge was nearly $\$ 1.2,000,004$.
 ton A. Rocbling, was placed in chare of the work. The latter was prostrated carly in 18.2 hy a yeculiar form of caiss a-disease, which compelled him for awhe to give up active worl,
 Martin was principal assistant engineer, and has held the position of sumerintendent and principal engineer since the completion of the bridge.
The Clijtur Friduc, though of less importunce than the Simgura bridge poper, is quite remarkable irom its peculiar constraction. The end resting on the left hank is threequarters of a mile below the great Horse shoe Fall on the casting on the right bank is som fards below the Ameriean Fill. The spanletween the centers of towers is 1,2 andert 4 Fun. The sjanhertween the centers of towers 1s ter onert the Canada side. and ins fect on the American sitle, and the clevation of the conter is from 190 to 19 fect neerrding to the season. The total lumblh of each cable is 1, ws feet. The length of the hridsci irom roek to roek is 1,140 feet.
The Cincinnuti and fibington bridge, erected over the olio
 in 1soit. The man span, iron center to center of towers, is 1, لin feet, and the otal lengtla letwere abutments is 1 , 619 feet. The elevation of floor alowe low water at eenter in 10 : feet. The leveth of the cincimati aproach from frout sect. The hength of the chacmanat aproach trona front brldge including aproanhes is 2, Sis fere. There nre two eables taeb 12^{1} з inches indiamuler.
Firth of Forth Brilef. In lata an duet of Parliament was bhtained for the constraction of a contileser lidide over the
 18s., nind formally opened on Mareht. 1sh. The briclye consists of two approach viandets and of the cantilever hridge pisting of the cuntral tower on hachgarirt, thatere the Fife

 inebes from center to eenter. The sonth apprmeh vinduct is 1.97 feet tons from center of cantilever ent pier to entl of

 length. three arehes of in feet, 31 feet, atad thfect. center to
center, respectively, and 14 feet $3 \frac{1}{2}$ inches made up br abutments. The total length of the structure is therefore 8295 feet 9 incues. The two main strands are 1.710 feet irom center to center of vertical columns, made up of two cantilevers of 600 feet each. and one central girder 250 feet. The cost of the bridge was $£ 1.600,400$ and orer 20.000 tons of steel were nsed in the construct jon.

The Kenturky River Bridgr, erected on the line of the Cincinnati sonthern Railway, hasa length between abutments of 1.136 feet. The erection was commenced Oct. $16,15 \pi 6$. The bridge Was eompleted Feb. 20, 1sit, aud the official test was made April 20 of the same rear. The engineer who designed the oridge and carried ont the work of constructiou is \mathbf{C}. shaler smith. The iron work is of shperior quality.
The Louktill Bridgr, whicherosses the Ohio Ricer at Louisville. is one oi the largest irou bridges in America. It has 25 spans, ind a total length of 5,310 iect.
The Fiag'ry Cantilfor' Bridge, Over the Siagara River, about two miles below the falls, and 300 feet aluore the railroad suspension bridse, spans a chasm of 850 feet in width, and 210 feet in depth to the suriace of the water. The river is 425 feet wide at the bridge site. The banks.slope at about 45 degrees from the water's edge to about 50 feet below the top oi the cliff, above which they are perpendicular. The structure carries a double track. It cousists of two cantilevers resting on the towers, the shore end heing anchored to the anchorace piers, and the river ends connected by an intermediate span. The distance between centers of anchorage piers is 910 feet 2_{2} iuches; length of each cantilever. Sas feet: length of intermediate span, 120 feet. Each cantilever consists of a share arm 195 Teet long, one panel 25 feet over the tower, and a river arm of 15 feet in length, C. C. Schneider was appointed chief engineer ifril ob, , sss. The
work was vigoronsly pushed.and the bridge was completed work was vigoronsly pushed. and
and opened for tratite bee. 20, 1 n 3 .

The Omeler frider, which crosses the Missouri liver at Oamba, bas 11 spans of 2 fof cach. The total lengtb is 2,500 feet.

The Poughterpsie Bridge, across the Hudson Eiver at Poughkeepsie, was oririnally promoted by the Pennsylvania Rall road Company in $15 ; 3$ but aiter the fonndation stone of the castern shore pier had been laid the project was abandoned In 1576 the scheme was revired, and the actual work of build. ing began, hut was suspended in 1575 and not resnmed natil 1Fifi. 13 this time a cantilerer design had been decided on, and the 500 feet center to center of end piers necessary to reach these bluffs was made common for all three cantalever spans. The clear span, with the half width of the towers added, made the spans next the shores 5 sf feet, and the conter span 540 feet. whieh, with the connecting ones of 505 feet, center to center of piers. lorated pier 6 in the face of the rock on the eats shore. The total lengtb hetween anchorages was thas established at 3.093 feet 9 inches, the total length inclading vialuets, 6.76 feet 3 inches. The general design of the river piers is a crib and grillage. extending from the gravel to 10 fect helow high water. On this is the masonry to 30 feet above high water, upoo which is a steel tower 100 feet high to pedestals of trusses. The towers at the end of the spans werefirst erected; next commencing at the tixed end the botton chorl wis laid along in place on canber blocks; the botton chord wins hat along in place ob canber bocks; then conmencing from the midade the traveler erected the levers of liuffet were creeted by means of projecting travelers, cosuposed of two trusses its feet loug, with chords and vertical posts of wood and iron ties and splice plates. The bridge was opened for trattic on Fub. 1. 18x9; it rednces the distance between the anthracite fields of Fenusylvania and points east of the Hudson from 116 to aj miles.
The Prairi, du Chirn, Puntoon Railroad Rridit, wus built in 15it across the Mississiphi River between Prairie da Chien, in Wiscousin, and North Metireggor, iu fowa, for the purpose of conneeting the divisions of the chicago, Milwankee \& St. Paul hailwar Co., terminating, respectively, at the points named. The river here is divided hy an interjacent lsland into two ehammels. hoth of which are naviguted The Mcincegor chamel is 1,5 ne feet wide, while the width of the the Winconsin ant] Iowa shores, cmbracing the ishand, is T.00n iect. Which corresponds to the length of the bridge. Each of the draws is a single flont 30 feet wide at the botom, 6 iect deces, 11 feet on deck, nod tosfeet in length. Fach draw 6 iect decer, 11 feet on deck, nod tos feet in lenget
eontains mont formo feet of phank and timber,

The guinth Iron frithect whieh erosists the Mississippl at a point where the winth of the river is 20200 feet, has 17 spans. aud was desimhed und constriveted under Thomas C. Clarke

The schumbill Arhitruss Bridge constructed by Lewis Wernwar in 1sta, at lhiladelphia: was inmilarly known as the "Colossus of Fuirmount," having a single span of 340 iect $:^{3}{ }_{4}$ inthes. In consideration of ft: leaghth of span (longer than any one whieh had yet been erected). Its solidity aud its strength, it was regarded by its visitors as a veritable " wondel of the world." "this was Wernwag's thited bridge. From that date until $1 \times i 4$ he built any additional bridges, one of them being the famous "Fecmony" hridge erected over Xeshaminy (reek. la. and specialy noted for its simplicity and inexpensivenest oi emstrution. Its type was numb like that of the cantilever hridges prevalent at hater dates.

The " Colossus" bridere was destroyed by fre in 1529. and comatry, It was planmed ama ereeted by Charles Ellet
who, later, desigued and built (in 1847) the railway bridge across the Niagara Ricer below the Falls, and who, still across the Niagara Rirer below the Fals, and who, still later, built a suspeusion bridge at Wheeling, W. Ya. See biographical sketches
visions and Additions.

The Schuylkill Cast-iron Arched Bridge, erected at Chestnut street, Philadelphia, Pa., over the Scbuylkill River, was finished in 1866 . It has two main spans of 185 feet. The total length is 1,000 feet. The cost of construction was $\$ \mathbf{5 0 0 , 0 0 0}$.
The Susquchomm Bridge, which crosses the Susquehammat River, is located on the Pennsylyania Railroad, 5 , miles northof Harrishurg, Pa. It is supported on 22 piers and two north of marrishurg, Pa. . The total length of the bridge is 3.500 feet.

The Ton \dot{r} Bridqe, now in conrse of construction across the Thames lifer, London, has a total length of 2 , Giofeet, including the necessary approaches on both sides. The distance between the abutnents on the two sides of the river is 850 feet. The two massiveniers of masonry, each 10 feet widc, have been built in the bed of the river, leaving a central openins 200 feet wide above high water, and two side opeaings, each $2 \pi 0$ feet wide, the area of waterway being 20.040 square feet. Along the approaches and across the side spans the rondway will be 60 feet wide. tut across the central span the width will Will be 60 feet wide, hut across the centralsuan the width will
be reduced to 50 feet. The headroom under the bridge be reduced to 50 fect. The headroom onder the bind river traffic. To allow the lasiage of veassels of preater beight, the central span will he made in the form of two leaves nicely balanced, so that they may be easily rained to bring the roadway into a vertieal position, hydratic machinery being used for that purpost. The raising of these leaves will, of course, interrupt the tramic of velicies. but foot passengers will be able to cross at anll tintes by two permanent high level gangways. The quantities of materials in manent high level qangways. The quantions of materiation

proaches, while 15,000 tons of iron and steel will be used in the bridge proper. The end of 1892 is the limit given to the contractors to complete all the work, so that the bridge will contractors to complete all
probally be opened in 1893.
probably be opened The indon bridge buit over the Harlem River at 181st St..New Yorkcity, derives its mame partly from its contiguity to Washington Heights and Fort Washingtou, and partly from having been opened at the Washington Ceutennial, Mas 1, 1859. The total length of the bridge and aproaches is 2,330 inet. Each approach is 660 fett long, leaving 1,060 feet for the main bridge. The wasoury superstrueture is of granite, and includes an east and west appromeh, terminating in abutmedudes an east and west appronch, terminating in abut-
ments from which the two great arehes spring. The western ments from when the two ereat arehes in ing on the western approach is level; the frst portion ebidfeet in fength, is int
earthwork supported by masonry sidewalls. The west is in earthwork supported by masonry sidewalls. The west is in feet suan. The eastern approach starts on a lower grade and for part of its length rises townrls the bridge. There aresuo fectin tarthworks, and the remaining ofoleet include three semi-eirenlar arehes of to feet span, and one sevenemitered of 5 fieet span. A elear width of so fect is afforded over this portion, an well as over the remainder of the strmeture, 50 pet of which are roatwar, while do ieet are devoted to the sidewalks. The roadway is pared with asphatt. The supporting wembers of the brithe proper consist of two stety
 the river level. On the approaches it is bordered by a hand some stone parapet, with bronze ornaments. The bridge proper has an iron and bronge rail. William Hintton was the chief enginuer, assisted be Theodore Cooper. In order to seeure al munber of meritorionz phans, preminma were offered for the best desirn The firstandsecomelprizes were awarded
 plans wer" followed as regards the general fentures of the bridse

A Rustic Brince, admirably adapited to farm and park uses, is shown in the accompanying cut. A model of a similar bridge exhibited at Philadelphia in 1876, was 8 feet long, 8 fect 10 inches high, 16 inches broad from out to out, and its largest spars were only $1 \frac{1}{8}$ inches in diameter. Its strength, however, was such as to bear the weight of a fulhgrown man. A person eapable of making an ordinary hayriek can easily constrnct such a bridge. Tonails, cleats. bolts or screws are needed; indeed, they are worse than useless. Hempen rope is used to lash the timbers together, as shown in the eut; or, when greater permanence is required, wire rope or chains may be used instead of hempen ropes. Rongh timbers with the bark on are the best materials for this purpose.

A seale is given as a convenient guide to the farm buider. But without this, assuming that the length of the bridge is 100 feet, the proportionate dimensions of the other parts shonk he as follows The standard pier frame $A, 82$ feet loner ; the supporting standards $B, 56$ feet long; the tension timbers $\mathrm{C}, 31$ feet; the cross-timbers 1 , 35 feet; tho width of the bridge, out to out, 16 feet; width between standards of pier frames, 12 leet; and width of roadway, 11^{1} g feet; the chief timbers. 11s feet in diameter, and the others in proportion.

There should be 15 short pieces, like E, setting on the split spars I to bind the planks. In the binding of the spars together, all unnecessary lashing
should be avoided; hence follow the hints here given: Do not lash the timbers B at the top, or to secure the cruss-pieces F G and the upper spar at II. All ropes should be well secured, and safe knots tied as shown, and with sufficient lashings to resist the strain. If, in case of a heary bridge,
chains are used, the safest fastening would ive made by passing one link through another, and then fastening as a "toggle" a piece of stout wire or small bar of iron through the inserted link, bend ing the ends so that the "toggle" will not slip out.

CLOVE HITCH.

timber hitch.

METLGO OF RASHING A DHAGONAL FRACE TO AS IPRBGHT Sr'AR.

BRIDGETON, a city, port of entry and the capital of Cumbertand comnty, N. J. It is situated on hoth sides of the Cohansey Creak, which is navigahle from Delaware Bay to Bridgeton for vessels of eighty tons. It is on the Vincland Lailroad, and a branch of the llest Jersey Railroad, thirty-eight miles south of Philadelphia and eleven miles from Vineland. The Brideston and Port Norris Railroad runs southeastward to the mouth of the Naurice River-abont twenty miles. Bridgeton has many churches and execllent public and private schools. three weekly and two monthly papers, one National Bank, a rolling mill, mail factory, glass works, woolen mills, leathar factories, machinery works and a carriage factory. Dopulation in 1880, s, 720 ; in 1890, 11.7.1.

BRIDOEDVATER, a village of llassachnsetts. twenty-seven miles south of liaston, the seat of the Bridgewater Academy a nd of the Bridgewaterstate Normal schonl. It mamfactures cotton-gins, colton grods, iron, augers, and paper. The slate workhouse is in lridgewater township.
 author, horn in Tuskegee, 1 la., Nov. 10, 1817. While but a child he desilard his intontion uf beeming an artist, and when only sixtome years of age he went to New York and apprentioed himseli to the American Bank-note company in the eneraving department. He improved his hernare meantime hy studying in the Aeademy of lesign in New York and the Brooklyn Art sehool. At the nere of moneteen he went to I'aris and enjoyed the homor of
being one or the first American students of Gérime. At twenty-one he sent Jeu Breton to the l'aris salon. and it was his fortume to have it huns "on the line." For several years he ammally sent a paiming to the samon: The Firton rhilden in Curnient Time, The Americen Cireus in Brithny. thallo C'rerying A whel rymene, bringing in the Mevis. The Fiuneral of a Mummu, Pastime's of an Assurien Kine. and Procession of the Bull 1 pis were his contribu-
 1sis and lsog. Mans of his paintings were suggested by trips throngh the Pyrentes. excursions on the Nile, and residence in Hriers. since 1871 he has heen a frequent exhibitur in the New York National Acadrony. Tu the Inited states centemat exhibition he sent the three
 and The Vmbich sitory-Tellor. Mr. Dirigeman Was awarded a medal of the second class and decorated with the legion of Jloncr. at Paris in 18is; he was chosen a member of the Xew York National lead. emy of hesign in 1ssl. His latest paintings are
 the Bospheatus. He residno in laris.
 born in Hanovar. N. H.. Der. 2l. 1se?, died in Bostom, Jase., May 2t. 1ssu. When two yars ohd a sebere ilhess cheprived her of sight. hearing and the sense of smell, ath impuired her spmot of taste. The ditlicult task of aducating so unfortmate a child was int rusted to lor. Samunt G. Howe of the Perkins Instintion fur the blind (see Britannica.

Vol. III, p. S30), in which school she spent most of her life, becoming eventually a successitul teacher there. The methods employed in her training are of interest. At first objects were given her to handle which bore their own name in raised letters; the words were then given her, and next the separate letters. These she was taught to put together to form words. The manual alphabet was next taught her, and then the use of a lead-pencil. Following this came instruction in aritlimetic, geography (with relief maps), sewing and housework. Her teacher was able to explain to her concerning the existence and character of God; her religious ieelings were strongly deyeloped after this, and she found much pleasure in reading her bible. Her hand was more susceptible to sound-vibrations than her ear. Her left eye was sensitive to a strong leam of light. Space relations were not readily comprehended by her. She seemed to enjoy life notwithstanding her great privations, was cheerful, and of a social disposition, and for years was one of the chief attractions of the school.

BRIEF, in law, a concise, systematic memorandum of the points of law or of fact to be developed in argument or nsed in the examination of a witness. In English law, the name given to the written instructions on which barristers advocate canses in courts of justice. It is an abbreriated statement of the pleadings, proofs and allidavits at law, or of the bill, answer, and other proceedings in equity: with a concise narrative of the facts and merits of the plaintiff's case, or the defondant's defense. The briei is often called "olservations" in chancery proceedings. In scotlend, the corresponding term is memorial. Breve in Scotland has a different meaning. This paper should he confined to the starement of facts without argument or quotation.
BRIENNE-LE-CHATEAU, a town of 1,800 inhatitants in the French department of Auhe, on the right bank of the river lube, $3 \overline{\mathrm{n}}$ miles northeast of Troyes. At the military school here (suppressed in 1790) the great Nipoleon spent five years. Here, too, he was deffated hy the Allies, aifer a desperate struggle, in the last days of danuary, 1sit. This victory opened the way to Paris, and led to the fall of the empire.
BRIENZ, a Swiss town, heautifully situated at the foot of the Bernese Aps, on the murtheast shore of the lake of the same name, 30 miles southeast of Berne. Population, 2, ins. The lake of Brienz, which is $\mathrm{S}^{3} \mathrm{G}$ miles long and 1 in breadth. is an expansion of the river Aar and is believed to have been at one time united with Lake Thun. It lies 1,850 feet above the sea, is 859 feet deep at one point, and is surrounded by lofty mountains, the principal of which is the Rothorn.
BRIERLY HILL, a town of Straffordshire, England. It is a place of much activity, the distriet abounding in coal, iron and fireclay; and there are here numerous collieries, large iron-works, glassworks, brick-works and potteries. Population, 11.5+6,

BRIG, BRIGANTINE. A brig is a square-rigged vessel with two masts. A brigantine is a twomasted ressel with the mainmast of a schooner and the foremast of a brig. A brig's mainsail is the lowest square-sail on the mainmast, whereas the mainsail of a brigantine is a fore-and-aft sail hike that of a schooner.
BRIGANDINE, a medireval coat of mail, made of overlapping scales of steel, sewed upon quitted linen or leather and covered with a similar substance to hide the glittering of the metal. The brigandine formed part of the equipment of the infantry soldier.

BRIGANDS, a name originally given to the mercenaries who held l'aris during King John's imprisonment (1355), and who made themselves notorious for their ill-behavior. It was applied by Froissart to a kind of irregular foot-soldiery, and from them was transferred to common robbers; it is now used especially of such of these as live in bands in secret mountain or forest retreats. In this sense the pest has been common to most countries, by whatever name the robbers may have been knownwhether the escaped slaves and gladiators of Rome, the pre-lslamite brigands of Arabia. English outtaws and highwaymen, German robber-nobles, the later bandifti of Mediterranean countries and of Mexico, American stage-coach robbers, Australian bush-rangers, or the dacoits and hill-robters of Asia. Vigorous steps have been taken during the last fifty years for their repression, and in some countries with signal success.

BRIGANTES, the most powerful of the old British triles, inhabiting the country between the Humber and the Loman Wall.
brigGs, Carmles Acgestis, theologian, professor in Union Theological Seminary, born in New York city, lan. 15, 1841. Ite studied in the University of Virginia for three years, in Union Theological Seminary fur two years, and at the University of Berlin for thiree years. On his return to the United States he lecame pastor of the I'resbyterian chureh at Roselle. I. I. that he was installed in the chair of Hebrew in [niwn Theolugical Seminary, New York eity and in January, 1891. was appointed to the chair of Bithical theology. He has puthished Biblicel study. Anerican Irestipterianism, Messimic Prophry, and is one of the editors of the "Presbyterian leview,"
BRIAGS, Chames Fmomack, author, born at Nantucket, Masw. 180t died in lirooklyn, N. Y, June 20. NJI. He early removed to New Fork, where for many years he was connected with the press. The"Brooklyn Journal." "l'utnam's Magazine." "New, York Times"" "Evening Mirror," "1rooklyn Union" and the "Independent" were papers with which he was successively connected. He was a humorous writer and fond of depicting New York life. He wrote IIar'y Prenco: "Tali of the Girect Pomic; The Itemeded Merchant and Trippings of Tom Pepper.

BRIGILIAN CITY, an important trading town of Utah, county-seat of Box Eher county, situated near the sonthern shore of cireat Salt Lake, at the west base of the wasatch range of mountains. Woolen gonds, leather and thour are extensively manufactured here, and it is the seat of an academy.

BLIGHT, Jows, a politician, son of Jacob Bright, a cotton-spinner and mamufacturer at Rochdale. Lancashire, England born at Greenbank, near that town, Nov. 16, 1811, died in March, 1889. The family were members of the Society of Frients, and Bright was educated at a Friends' Sehool at Ackworth, and afterward at York and at Newton. White in his father's factory he took a great interest in public questions, and before he had attained his majority made speeches upon such subjects as capital punishment, church rates, temperance and parliamentary reform.
In 18:35 Bright made a foreign 'tour, and on his return delivered lectures on the subject of his travels, and on topies connected with commerce and political economy. When the Anti-Corn-Law League was formed in 1839 , he was one of its leading members, and with Cobden engaged in an extensive Free-trade agitation. In is +3 he became member of Parliament fcr Inrham, and, until their repeat, at public meetings and in Parliament was
meessant in his opposilion to the Corn Laws. In 18ti, elected one of the members for Manchester, he couperated with Cobden in the movement in favor of financial reform. He was reclected for Manchester, and strongly opposed the policy of the Crimean war (1854). A severe illness compefled him to withdraw for a time to the Continent, and in his absence be was rejected by his eonstituencs. Elected in 1857 for birmingham, he seconded the motion against the second reading of the Conspiracy bill, which led to the nverthrow of Lord Palmerston's government.

When the civil war in America loroke out, he warmly supported the cause of the North, although his own business and the whole of the Lancashire cotton-trade saffered severely in consequence. In 1868 he accepted office as J'resident of the Board of Trade, but in 1870 was again obliged to retire in consequence of serere illness. Jis health having heen restored, he took office in 1873, and again in 1881, as Chancellor of the Juchy of Lancaster; he was appointed Lom Rectur of Glasgow University in 18s0. Mr. Bright retired from the Gladstone ministry in 1882 , being umable to support the gosermment in its Egyptian policy. His subseruent appearances in puhlic were infrefuent; but in 1sco: he defended himself in the Ituse of commons from a charge of breach of privilege in connection with sperches delivered at lirmingham. In Jn6-8S he opposed the lome rulo policy of Ar. Giadstone.

BRIGIlT, lanomb, bhyician. Bom at Bristol, Sept. DS. 1sta. diod low. 16. Jsis. Ile studied at Edinburgh, Berlin, and Yimma, and from 1 上ol was connecterl with liny's lospital. He made many important medical obsorvations, and wrote numerons medical dissertalims. Sere liritamica. Vol.
 (1815) contains a raluable accombt of the (irpsies.
 Italy, in 180t. died in New York city, oct. 30, $388 t$. He was given a fine musical rducation and became a talented pianist. He began his vocal training at 21 , and, enconraged by his cuncert-roum success appeared in opera in Paris, Lonkon and the Vnited states. Brigmoli pessessed a tmor voice of great rolnme and sweetness.

BRIGUS, a town of Newfoundand. capital of the district of Brigus, and a port of entry, sitnated on Conception Pay. about to miles northwest of st. fohms. The larbor is cool, and the inh mhitants are chictly engaged in fishing. There is also a consid--rable trade in agrientural products. The principal huildings are the district jail and a convent of the sisters of Morey.

BRHHLEGA, a town of New Castice, span, situated on the Tajuña, e0 miles mortheasi of Guadalajara. Popmlatinn. tito. Hore, in 1710. during the War of the Sueression, the English general Stankere, owing tuthe iature of hisallios to afford him support, was defrated hy the Thke do Yondime, and compelded for shirender his foree of :thout 5,5010 men.

BRIHL, a common Larojean diat-fish, Fhombus lapres of the family Jhommomider (see lisitamina,
 the turbot, from which it is thistinguished ly its heing mone elongated in form. by the absenee on bony tulereles, by the small, almot smooth seales, ete. It is seldom abowe righl perands in weight.
 tronomist, hom at bedey, April 1. 1-7. died Feb. \therefore 1826. lle was a depuity in 17 s. and mayor of belley in 1ans ; ine a time resiclent in switmerland, le afterwards came to Amoriea, where he payed in the orchestra of a theater in Xing Vork. Return-

Cassation, which position he held from 1796 until his death. Shortly before this event, appeared his Ihysiologie du Gioit (1825), an elegant and witty compendinm of the art of dining. It has been repeatediy republished and translated; the latest English form being A Handbook of Girstronom!!. with 5: ptehings by Lalange (188t).
BRINE-SHFIDH', a genus of small animals belonging to the Branchiopod division of Crustacta. Atomia salinn, found in brackish water and in brine. They are hatched at the lowest level of crustacean life as Xauplii. The full-grown animal is about half an inch long, and, having no shell, is tramsparent. There are five species of \mathbf{I} itemna, all found in salt-lakes or in brine-pools where salt is manufactured. Of thess species the most unlike are Artemia setiure and Artemta millonesponio.

BehiNK, Bervarn Tex, philologist, born at Amsterdam in 1stl : studied philology at Münster and bonn; in 1870 hecame professor of modern languages and literature at Marburg. and in 1873 at Strashurg. He has devoted himself largely to English philology. Among his works are Chaure, studion (187(0), Gieschichte der Emplisehow Literatur (1874; English translation 18s3). "'humer"s spacho mid jorstimst (1584), and a book on Beowulf (1855).

BRJXK, Jan Tex, a dutelı writer, born June 15. 1834, at Appingadam; studied theology at Ctrecht. but early devoted himself to literary pursuits. After a short residence at Batavia he returned in 1sti-2 to teach Futch at The Hague, and since that time he has earmed for himself a prominemt place as a critic, especially in the departments of fietion and helles-lettres. A popular novel of his is JI.
 whe h mantus (1885) is a valuable eritique of modern novels.
BRINTLLLiERS, Mafie Maneleine Marquiff. be, poisunner, was the daughter of Drenx d'Aubray. lientenant of Paris, and in insl, while sill soung. was maried to the Marquis de limvilliers. She afterward horame infatuated with a handsome young officer, the seigneur de Sainte-Croix. Her father callsed him to be imprisoned in the Bastille. where lae learned from an ltalian the pronerties of arsenic. On his release he imparted this knowledge to his mistress, who, to test the elicaey of the puisom.triod its effects on patients in the Hotel Hieu. Having satistied herself, she resolved to destroy her father and after eight monthe of ston poisoning she administered a dose which eaused his death. No whe suspected his daughtrer. whe with the assistance of sainte-Crois and a domestic. next poismed hertwotrothers and her sisters ; her ohject being to procure means for eontinuing her extravagant tyle of living with her paramour. She made sereral attompts to poison her hushand: hut sante-croix is said to have administered antidotes, dreading that he should he "ompelled to marry the widow. Sainte-Croix died suddenly in 16\%, and left docmments inculpating the marchioness. She escaped to Englind, afterwards traved in crematy, and finally took refuge in a convent at lisge. From this. bowever, sho was decoyod ly an otherer of jublor disguised as an ahbei, and comseyed tw Paris. Among her papers was fond a general comfersion of her crimes, the fruth of which she acknowledged on bring put to the turturn, and on July lif. Ithat, she was be headed at learis.
likItlle'TVE, the name, originally lireneh small briek"), givan to a comparatively new form of fuel-an admixture of enal-dust with piteh or sume other ementing material. molded hy pres--urn and heat into a lorick or hall.

BRISTOL, a manufacturing village of Connecticut, about twenty miles west of Hartiord. It has manufactories of clocks, water-wheels, and stockings, and several foundrics and machine shops. Copper is found in the vicinity.
BRISTOL, a village of Tennessee, situated on the boundary line of Tirginia, about a hundred and thirty miles east of Fnoxville. That part of the town which lies in Virginia is known as Goodson. Here are important manufactories of machinery, brooms, flour, tobacco, veneer, canned goods, cottons, woolens, iron, and lomber. Bristol is the seat of King College and of Sullins College.
BRISTOL BAY, an arm of Bering Sea, lying immediately to the north of the peninsula of Alaska. It receives the water of two large lakes, by which communication with the interior is opened up for a considerable distance.
BRISTOL CHANNEL, an inlet to the Atlantic Ocean, in the southwest of England, between South Wales on the north and Devon and Somerset shires on the south. It is about 50 miles long, and 5 to 43 miles broad; the depth ranging from 5 to 40 fathoms. It is the largest inlet in Pritain.
BRISTOW, Beasamis Helm, statesman, born in Elkton, Todd county, Ky., June 20, 1s32. Tle gradnated at Jefferson College, Pa.; entered the legal profession and practiced in Kentucky. IIe enlisted in the Union army and served throughout the civil war. He successively held the oflices of State senator, elected while still in the field ($186 ; 3-15 \overline{5}$), U. S. district attorney for the Louisville district (1865-70), solicitor-general for the United States (1870-i2), attorney for the Texas Pacitic railroad, secretary of the treasury under President Grant (1574-76 when he resigned). In 1876 he was one of the candidates for presidential nomination.

BRISTOW STATION, a village of Prince Williams county, Va., on the Orange and Alexandria railroad. Two battles were fought here betwern the Confederate and Union forces, one on Ang. $\mathrm{Qa}^{\prime \prime}$, 1862, the other Oct. 14, 1863.

BRITANNIA METAl, an alloy see Britamica, Yol. XVIII, p. 725), of which the essential metal is tin, with varying proportions of antimony and copper, to which bismuth, zine, and leat are occasionally added. This alloy is extensively used for tahleware, being thinly coated with silver and sold as silver-plate. The manufacture was legom at Sheffield in 170, and Sheffield and Birminghamare still the chief seats of the mannfacture. In 1se2 it was made in Taunton, Mass., by lsaac Babbiti. Since electroplating came into general use the trade in Britannia metal-wares has greatly increased.

BRITISH ASSOCLATION, an assuciation whose object is, by bringing together men eminent in all the several departments of science, to assist in the progress of discovery, and to diffnse over the whole country the latest results of scientific rescarch. A prevailing impression that England had fallen lerhind other countries, both as to the general estimation in which scientific men were held and the prosecution of science itself led to its formation, and the honor of being its founder helongs to Sir David Brewster. See Britannica, Vol. IV, p. 277. A meeting of those who were favorable to the design was held at York in the year 1831 , at which the constitution of the society was determined, the several sections had their provinces assigned to them, and subjects were proposed on which reports were to be drawn up and read at the ensuing meet ing. This took place at Oxford in 1832. and from this date it may be said to have lreen in complete and successful operation. The annual meeting takes place about the end of August and lasts mure than a week. At the close of each meeting the
place at which the next meeting shall be held is determined two years in advance, and a president appointed. Many of the successive presidents have been men of social and scientific eminence. A volume is published annually containing reports on the progress of science, addresses delivered, papers and abstracts of papers read at the meetings, and eopies are presented to societies and libraries at home, in the colonies, and abroad.

BRITON FERRY, a seaport of South Wates, in Glamorganshire, at the mouth of the river Neath, 21^{2} niles from the huss town of Neath, to which it serpes as a port. Population of parish, 6, (Ht1.

BRITTLE-STARS (Ophiuroilea), one of the classes of Echinodermata, including forms not far removed from star-fishes, hnt differing markedly in the more centralized body, more sharply defined arms, and more active habit. An illustration is given in Britannica, Yol. ViI, j. 634. The popular name "brittle-star" rofors to the extreme ease with which the arms hreak. Another common name. "sand-stars," refers to their necasional occurrence on the shore: the technical title. Ophinroid, describes the snake-like coils of their "arms."

BROADDUS, ANBREW, clergyman and author, born in Caroline connty, Va., Nov. 4, 1720, died in Salem. Va., Dec. 1, 184S. Ilis education was limited, but he had a mind of great rapacity. At the age of eighteen he united with the Baptist Chureh.and soon began to exhort and then to preach. His eloquence and enthusiasm made him popular, and he received thattering ealls to pastorates in New York, Philadelphia, Boston, and other cities, alt of which he refused, jreferring the lifo of a country pastor He published a number of books and wrote much for the press.

BROAls, tus Nombom, a suries of mband lakes of Enelaml, usually said tolo formed by the widening or "broadening" ont of the rivers. Jlore probably their wisin is due to a change in the general level of the land surface of that county even within histuric times; for the river Yare was an estuary of the sea, in which herrings were caught at the time of Domesday. The hroads par ercillenef are those up the Bure or Yorth Fiver. and its tributaries, the Ant and the Thmene. The first (Wroxham) is the largest and deepest, there being sailing.water for large bats all wer it. If the Ant there is a fime loroad at barton, and up the Thurne there is a very large one at lickling and two others at Martham and Horsey. The broads have grown greatly in favor with holiday-nakere of late, and the intlux of visitors has destroyed the extreme guict which was the great charm of the place to naturalists and tishermen. To the antiquars the district is full of intorest, the ruins of st. benet's Jbbey, of burgh ('astle (loman), and many interesing churehes, being within easy reach.

BRO.ADSIDRE, the simultaneous disebarge of all the guns on one side of a ship of war. Thee fighting power of a ship was formerly estimated by the wright of all the shot and sholi that could be fired off at once from one side, or half of the ship. With ironelad turret-ships the term is inapplicable.

BROADSWORI, a term applicable to any form of sword having a lroad, flat bade of which the side as well as the point is used for cutting. The term is applied to such a sword as is distinguished from one with a narrow biade or from a threc-sided thrusting-sword.
RROATUS, Jons Anemet, elergyman, born in Culpeper county, Va., Jan. 24, 1827 . He completed his edneation at the I niversity of Virginia, and for two years taught there as assistant proiessor of ancient languages. IIe belonged to the Bapti=c denomination. and his first pastoral work was an

Charlottesville. In 1859 the Southern Baptist Theotosical Seminary, Greenville, S. C., now in Louisville, Ky., called him to the char of New Testament interpretation and homiletics. He has published The Pepmation and Delivery of Sermons; a series of papers on Recollections of Tramp; Lectur's on the IHistory of Preaching; Three Qurstions on the History of Prothing; Commentary ou Mothew: and somons cent Addrsses. The lirst book mentioned in the list has heen largely adopted as a text-book in theological schools. Dr. Broadus is considered the thest Greek scholar and New Testament critic in his denomination in the Routh.

BROCA, Patl, a distinguished French surgeon and anthropologist, born at Sainte-Foy-le-Grand, (ifonde, in 1834, diet July 9, 1850 . After parsuing his medical studias with elistinction he was named professor of Surgical Jathology in the Faculty of Medicine in Paris, antl surgeon successively of the four hospitals of Bicetre, the salpetriere, Saint-Antwine, and la Pitié. Ile was also director of the Laboratory of Anthropolory in the High sehool of Paris. Celebrated not only as a surgeon, Broca was regarded as one of the most learned masters of the existing school of anthropology. He founded the Paris Anthropological Suciety, of which he was secretary till his death, and he was a member of all the leating medical, holorical and anatomical societies of Paris and the Continent. Silected a member of the Academy of Medicine in 185t, ho was decorated with the Legion of IIonor in 1S6s. Liroca was a voluminous writer, and among his more important works may be mentioned the following: In's Ineorismes it de leur Tonitrment (1856), sur I'Anésthosie Chirmraicale Mymotique (155!), Etules sur lis Animune Ressuscidants (1sti0), Instructions Cénérales pour les Recherch's Iutherologiques (1865), Troite des Tumours (18(6), 'moctere lhysitue de l'Homme of des Primutes (1sth: Me also eoblathorated in the production of several important medical and physiological works. In 187 s he presided over an International Congress on Anthropology held in Jaris.

BlaOCADE (Spanish, brocodu). Thisterm is applied to a silk material variegated with gold or silwer, or ornamented with raised flowers, loliage, and varions sorts of ligures; the mame is also applied toother stuffs wrought in the same manner. Oriental brocades date from a remote period, but there were probably no European stuffs of this mature earlier than the 13 th or 14 th century, when they were made in Italy and Spain. In eommon with damasks, figured tissues, and other varieties of ormamented silks made in past times, Italian ant Spanish brocades, dating from the 14 th to the 17 th eentury, as well at those of Persia and Asia Minor, extendins over a Inger period of time, are extremely valuable objects of study for the pextile designer and decorative artist. Fine examples of these are to be found in some eont inental museums.

IBROCCOLI, a well-known and much esteemed garden regetable, one of the many varieties which cultivation has produced of the bivessien nterereat, the common kale or cabbage. Ser Hritamica Vol. IV, tis; Vol. XII, p. 279. Broceoli is said to have been originally brought to laty from dyprus about the midille of the 16 th century. It is closely similar to the eauliflower, having the same peneral characteristies, hut a hardier constitutim,

BROClIS, the local name applied in the morth of Scotland to the aneient, dry-huilt, circolar castles known also to the Gaedic-speaking propla as dums. See Britanniea, Yol, XVII, p. Sts: als, Rownit Towner, Yol. XXI, p. 2e.

BROCHERE, : Freneh word (form bowhor. (o) stitch,aguivalomi to the English word pamplatet.

BROSK, Sir Isaac, soldier, born on the loland of Guernsey, Oct. 6, 1769; killed in lyattle at Queenstown, Can., Oct. 13, 1812. As a member of the British army he served in Jamaica, Barbadoes, the North Holland expedition and along the Baltic. In 1810 he Was sent to Upper Canada, haring been appointed lientenant-general. He prepared for war with the United states, advanced to Detroit and compelled the surrendar of the place. From here he went to the Niagara frontier.where a battle was fought with the Americans in which Brock was killed. He had been promoted to the rank of major-general. The governmont awarded pensions to his father's family, and a church and monument were erected to his momory.

Rliocke (Mons Bructerus of the Romans), popularly known as the Blocksherg, the highest summit of the Harz Momntains. It is in Prussian saxony, about 20 miles southwest of Halberstadt, and has an elevation of $8,7+1$ feet above the sea. see Britamnica, Vol. X1, P13.304, 507.

BLOCKPORT, a village of New York, situated in a tertile and wealthy agricultural district, about 17 miles west of Fochester. Farming implements and ot her machinery are extensively made here, and it is the seat of a normal sehoul. Population in 1890,3,742.

BROCFRAM (signifying" broken rock"), is the local name given to the breccias of Lower Permian age which ncenr in the North of England, or near Appleby and kirky-stephen. These breccias consist largely of fragments of limestone set in a red sandy matrix, and are occasionally quarried for limestone and building-stone.

BROCLTON (formerly North Bridgewater), a wealtly manufacturing town of Massachusetts, about 20 miles south of Boston. It contains extensive establishments for the manufacture of boots, shoes and other goods. Population in 1840, 27,294.

BROCKVILLE, a beautiful town of Ontario, Can., county-seat of Leeds counts, and a port of entry. It is situated on the St. Lawrence River, abont lös miles above Montreal. It is an important center of trade, and contains numerous and extensive manufactorics of mathinery, steam engines, agricultural implements, stoves, hardware, chemicals, whitelead, sash and blinds, leather, gloves, flour and lumber.

BRODHEAD, a town of Wisconsin, situated on Sugar River, ahout $3 \overline{5}$ miles south of Madison. It is the seat of a high sehool, and manufactories of flour, machinery, carriages, wagons, corn-planters, and phows.
broglae, Albert Dice de, son of Achille (spo Dritannica, Yol. I Y, pp. 359-60), born Jume 1.3, 1821 ; elected Academician 1862; returned as a deputy 1871, and was for a few months ambass:udur at London. As leader of the Conservative Right Center he procured the plection of MacMahon in 1873 ; in the same year, and again in 187, he was made premier, but was both times foreed to resign by (iambeta's exposure of his reactionary tactics. His most important literary work is The Church anel the Lioman Fompior in the fromth Cerntury. He has also written two works on Frederick the Cirat from family papers.

BROGUE, a light shoe made of rawhide, with the hair outward, g:athered rount the ankle, which was formerly in use among the native lrish and the Leottish llighlanters. The term brogue is also used to designate the peculiar prontmeiation of English that disinguishes natives of Irelant.

BRONE-GRASS, a popular name for grasses of the genus Bromis, of which there are numerous specin's distributed eprietly through the northern temperate mone. They are mostly eobarse grasses. of omparatively little value.

BROMELIACEE, a natural order of endogenous plants, allied to A maryllidacex, but usualls distinguished by their perianth-whorls differentiated as calyx and corolla, and by their habit. The species are all natives of tropical or subtropical regions of America. Many of them are epiphytic, and are often called air-plants. Tillandsia usucoides, Beard Moss or Spaniard's Beard of the West Indies and of the southern United States, hangs from the trees like the lichens of colder elimates. It yields a fiber which is used instead of hair for stutting matresses. The order includes the pineapple (inanas) and some valuable fiber-plants of the genera Bromelia and Karatas. Many speeies are cultivated in hothouses on account of their peculiar regetation and showy flowers.
BROMIC ACID, the best-known compound of bromine and oxygen. It forms a whole series of salts called Bromates, none of which are of importanee. They are mostly crystalline, but their watery solutions readily decompose when exaporated. When heated, they liberate oxygen and form bromides. Mixed with sulphur or charcoal, thes explode by percussion, and in this and other properties resemble the chlorates.
BROMSEBRO, a village and castle of Sweden. 2π miles south of Kalmar. Treaties were signed here between Sweden and Denmark in 15H1, 16il, and 1645.

BRONI, a town of Northem ltaly, with mineral springs, 11 miles sontheast of Pavia. Xear lis is the eastle of Broni, where l'rince Eusene obtained a rietory over the French in 1003. Pomulation, 5, 14 .
PROXY. Hensmen Georg, a German naturalist, born at Ziegelhansen in 1su, died July $\boldsymbol{\pi}$, 1sti?. Ie was educated at IJeidelberer. where in lios he commenced a course of lectures on matural listory and palecontology. In 18:3 he was nominated professur of physics, and was afterwards apmintel to the zoingical lecturesh h. 11 is most important geohyical work is Lethe (iengnostica (1 s 34); other works are Geschichte der Satur (1841-19), and Allometion Zoalogic (1550). The last mentioned work was the first attempt io develop zonlogy in its entirety with reference to extinct orsanisms.
BRONZE-WING and BEnzE Pheon, names given in the Aust ralian colonies to certain speies of wild pigeon, on account of the bronze colve of their phamage. The common bronze-wing or bronze-winged ground dove, thaps chatcopterce, athmands in all the Anstralian colomies. It is often suen in flueks, ferds on the ground. and builds its next cliofly on bow branches of trees growing on meadow lands or near water. It niten flies long distances to water and is considered a sure withe. It is a plump lired. oftem weighing a pound, and is mueh estormed for the table. The lrush broma-wing, fhups eleqeas, not su plentiful, is found chienly in Tarmania and the somt hern parts of Anstralia.
BRONZITE, silicate of marnesia and ferrons oxide, a rock-forming nineral lonlonging to the Pyroxine group. It somet imes has a hronze-like luster due to microsenpic inclusions. See Eritannica, Vol. XII, p. 415.

Bhooke, Stoppord Amatia, bom in Letterkemny, Donegal, Irelant, in 1532. Diter a brilliant course at Trinity College, Indin, he took orders, and after hotaing varions curacics was incumbent of St. James's Clapel from wist to 15π, and sulsequentls of Bedford Chapel, Ploomsturs, where his ability soon secured him a prominent phee among the preachers of London. In 15:2 he was appointrid chaplain-in-ordinary to the Queen. In 1880 , from conscimations motives, he sccedel from the Chureh of England but contimued to preaeh in his propriftary chapel in Eloomsbury. Ilis work comprise

Life of Fralerick Robertson af Brighton (1865), Theology in the English Poets (18i4), Primer of English Literature, and Milton (1876), and six volumes of Sermons ($1868-88$).
BROOL FARM, Assoctation for Edication ant Agrictlurure, The. See Britanifica, Vol. NX, p. дtī.

BROOKFIELD, an important railroad center of Missouri. It is situated on Yellow Creek, about 25 miles east of Chillicothe. It contains the extensive machine shops and romd-house of the llannibal \& St. Joseph Railroad. Coal is found in the rieinity.
MROUKHAYEX, an important manufacturing and lumbering town of Mississippi, the county-seat of Lincoln comity. A female college is here located.

Bh:00KIAGS, a town of south Dakota, conntyseat of Brookings countr, situated in a fertile agricultural district. It has large milling interests, and is the suat of the state Agricultural College.

BHOOKLDIE, a plant (leronica Beccebungn) having a slight resemblance to water-cress, growing in ditehes, water-courses and wet places near springs. It is a species of speedwell.
HROMNLIS, a city oi lowa, about a hundred miles west of Davenport. It contains a number uf grain-elevators, a steam flouring-mill and a large round-house.
BronkLiN, the second eity of the state of Sew Yok. Fur its carly histury and local map, see Pritannica, Vol. IV, pr. :0-7. It population

 has been greatly improsed, and the two humbevards consected witl it have been extended. .ne to Comer Inland and the other to Last Now Kork. The city now cosers an area of nearly en sumare miles, and its hondary line rewhes an extent of aloont matew, with at water iromtage of of and me-half miles. The Long letand Railway setem commects the city with corry part of lom island, and two extemsimemated rilway sumens (he first (pened in 1sis) furnish rapicl tramit from the sumlunsion bridere and the principal furries to the more distant pertions of the city. The Athantie bock embrates within its piess an area of about 41 acres. Lrooklyn lasin th acres and the Eric lanin tilacres. They are the most extensive works ,if the kind in the t'nited states athl are lined with immense storehouses for erain and other froight, forming pobably the lateest grain depot in the word. The 1'.s Say Yard necupies about ti apres, and contains extensivo work-shops and an
 principal puildic haidfing are the Comer House. ('ity laall. Powtotien (completel in 1091), Acatemy of Musie, will sating capacity of oftu, Acarl-
 Howse of Correction, Ams Itome Lunatic devlum, and Deai Mutas' Lsym. Charitable institutions are numerons The Sency Mothodiet Howital, eompleted in 1was, is one of the largest and most thoroushly erguped hospitals in America. The Churehes momber about 300 . There are 11 distinct librariss: the lirooklyn library amtains 10 , 0no volumes; the Long lishad llisturimal library, 5 (0in) Yolumes: The Brooklyn Inst itute and Youths' Free Library, If,non; Live Libeary, 11,600; Long Is and Free liluary, ang; Pratt Institute library, 20, 100, and the K. It. C. . . l library, 10,000. Educational institutions alnumd, many being of a high order. There are is publie sehools, and in 1850 there were registered mind mupils. The value of school property is abuat s, manon. Among the higher insfitutions of laming are the lirooklyn Institute, emliracing 1 ddepartments; Alelphi icademy : Polytechnic Institule; lratt Institute: St. Mraneis Col-
lege, and St. John's College. There are seven gaslight companies, using for distribution tiy miles of mains, and several electric lighting companies. There are 26 wards, the government of the city being rested in a mayor and hoard of altermen.
blooghs, Caroline Shaw, sculptor, born in Cincinnati, Ohio, April 28, 1810. She first attracted notice by modeling in butter a head of Iscaming Iolonthe, and exhibiting it at the Centennial Exhjbition in 1sit. She subsequently chisled marble busts of Garfield, George Eliot and others.

Bhooks, Charles Thmotny, author, born in Salem, Mass., June 20, 1813, diad in Newport, R. I., June 1t, 188?. He graduated from Harvard in 1832, and after pursuing a course of study in theology began to preach in 1835. Two years later he hecame pastor of a Unitarian church in Newport. R.l. IIe puhlished poems, sermons, and a book coneerning his travels in India. He is lest known its a German translator. Some of his translations are Schiller's Hilliam Tell: IIomage of the Arts; rioethe's Foust: Richter's Titron, and Hesperius.
BROOKS, Erastes, brother of James Brooks, Forn in Portland, Me., Jan. 31, 1815. Me was a printer and journalist, being suceessively connected with the " llaine Yankee," the "Ilaverhill "azette," and the "New lork Express." During 16 suecessive sessions of Congress he was Washington correspmilent of the "Express." In 1843 he went alroad as foreign correspondent. He was -everal times elected to the New York Iegislature by the bemueratic party.

BlaOOKs, Inmes, journalist, born in Portland. Me., Nov. 10, 1810, died in Washington, D. C., April 34, 173 . Ile found mueh diticulty in obtaining an education on account of his father's death and the poverty of the family. Ifis employer aiding him he graduated at Waterville in 1831, and jegan the study uf law. IIe was already a newspaper correspondent, and in 1832 he went to Washington and from there contributed artieles to the "Portland Advertiser." These were the first "Washington letters." and they set the fashion. He traveled through the Somth and Europe, sending to the newspaper accounts of his trips. In 1836 he started the "New York Express." He was a member of the llaine legislature (1835), the Nrw York legislature (1st7), and of Congress (18t!). Ite was a mentwr of the American party up to 1sfin, when le hecame a lemocrat. From litis to late he was in Consress. In the last-mentioned year he was eensured by Congress for having stock in the Credit Aoniber. The mortification catused by this rebuke is thonght to have hastoned his death. Ile was in Lstis ont of the (iovermment directors of the Union Pacitic raimad. In $18: 1$ and 1872 Mr. Brooks made a voyare arnund the world, and wrote a the seription of his trayels.
BROOKN, Mari, Gowes, born in Mictlod. Mass., about 1795 , died in llatanzas, Cula, Xov. 11, 1sf5. Her lather was a man of liturary tastes, which she inherited. At the agroof 1 ! she wrote lyries and a netrical romanet. She pullished Imith, Esther,
 whit: Ledomen, or the Felle of Jimuri, and an (ole to The Ieprevted.
blaoks, Noun, author, born in Castine. Me.
 " Dllar Califarnian," "New Yorli Timos," and "Tribmate." hat is best known as a magazime writor amd the author of books for young peopple.

 vard, and finen stumited thoology at the seminary in Alexambria, Va. Ito wats ordained in jsas. and mate rector of the ('hureh of the Advent at Phitalepphas.

Three years later he was called to Holy Trinity in the same city, and after remaining with that church for seven years he became rector of Trinity Church, Boston, where he has since remained. Mr. Brooks is considered one of the finest orators in the Protestant Episcopal Church. He is noted for his "low church" views, and has frequently preached in the pulpits of other denominations. He is a very popular lecturer and exerts a powerful influence, especially over young men. He has declined calls to several churches, and also a professorship at Ifarvard. Lecturrs on Piffching: Semons; The Intluence of Jesus; Baptism and Confirmation, and Sermons Preached in English Churches, are among his published works.

BROOKS Prestun smith, Congressman, born in Edgefield District. S. C., Lug. 4, 1519, died in Washington, D. C., Jan. 27, 1857. He graduated at the State University; was admitted to practice law, elected to the legislature in 184, and served in the Mexican war. He was three times sent to Congress as a State-rights Democrat. He is remembered chiefly from his brutal attack on senator Sumner, May 29, 1856 (see Britannica, Vol. XXII, p. 643) on the floor of the Senate after the adjournment of the members. He repeatedly struck Sumner on the head with a cane, till the latter fell insensible to the fluor. Sumner-s speech on Kansas had provoked the wrath of Southern members, and Browks took this method of showing his disapproval. The yote was taken afterwards to expel him from the Senate, but his friends were in the majority, and the motion did not pass. He was aftervards implicated in a quarrel with inson Burlingame, and a duel was arranged to be fought in Canada, hut Brooks failed to appear ;-he dared not risk "going through the enemy's country."

BROOKVILLE, a village of Indiana, countyseat of Franklin eounty, situated on the Whitewater River, alout $t 0$ miles nof hwest of Cincinnat i . The river furnishes an immense water-power for the manufacture of paper, flour and machinery. Brookville is the seat of Brookville College.

BROOD1, a popular name given to a number of species of shrubs, characterized by long. slender hranches and yellow flowers. The common broom, Cutisus, or surothomnus seomarius (See Botavy, Ibritannica, Yol. IV. pl. 5), is a well-known native of Britain, the continent of Europe, and Northern Asia. growing in dry soils, and ormamenting hedgebanks, hills and hushy places in May and June. with its large yellow lowers. It is famous as the Plantu genista (French Plante grnet). Which was the badge of the Plantagenets. In South Germany it is sometimes planted for its fibers; the flowers were formerly employed in medicine, and as a yellow dye. Spanich hroom (Sputium juncmem), a elosely allied species, is a native of the South of Europe. It is the spmotimm of the ameients, and the fiber of the branchlets has been used from time immemorial in sone parts of ltaly, France, and spain for the making if camvas, nets, ropes, ete. Dyers broom (Gienista timetorio) is, with other members of the same genms, a well-known source of yollow coloring matter.

Blooni-c olsN. a varietyof surghum rulgare, a redelike grass, arowing to a height of eight or fen feet. It is a mative of India, hut largely eultivated in North Ameriea for the mannfacture of brooms athl whisks. which are made of the fops of the culms atud the hranches of the panicle.
 Canada in Lsta, and migrated to New Zealand in 1857. Seven years later, whild on a visit to England, be marriet lady baker, whose station Lifir in Kiun Zealand (1sei!) yuickly hecame popular.

Broone subsequently returned to England, and in 1870 was appointed Colonial Secretary of Natai, two sears later of Mauritius, and at the close of 1882 Governor of Western Australia. He was knighted in 15io.
BRORA BEDS, a series of strata vecurring at Brora, a rillage in sutherlandshire of the same age as the Inferior Ölite of Yorkshire. They are chiefly remarkable for the occurrence in them of a seam of coal of good quality 3^{1}, feet thick, being the thickest stratum of true coal hitherto discovered in any secondary strata in Britain.

BROSE, a Scoteh dish prepared by pouring boiling water, milk, or the liquor in which meat has been boiled on oatmeal, and mixing the ingredients by inmediate stirring. When the brose is made writh water, butter is usually added. The dish is denominated, aceording to the liquid used. kailbrose, water-brose, or twef-brose. Athole-brose, a famous Highland cordial, is a compound of honey and whisks, so called irom Athole, a district of Pertlshire, Seotland.
BI:OTHERHOODS RELGHOs. numerous societies instituted in the Middle Ages for pions and benevolent purpozes. Where the rules of monastic life appeared too narrow and severe, the lemmish Chureh favored a freer form of consecrated life without vows other than that of devotion to groch works or penitential exercises; but in many other respects. as in living together and the like. the hrotherhoods. resembled the spiritual orders. Several of the co:fraternities that either did mot seek or did not oh. tain the recognition of the Church, assumed the charater of sect, and being suspected of heress were severely persecuted. Ewen within the l'rotestant churches single brotherhonds haw ben formed, as the Ranhes Hans, foundell by Wichern at Hamburg in 183% : those formed by Father Lhantius and the Cowley Fathers at Osford are Anglican brotherhoods.
BROTHERS, a name given to a eroup of six or eight rocky islets immediately unteide the st anit
 feet. Brothers is alsi the mame given to lhred inn lated monntains near the conat of Now sunth Wiales. between laarington fuld to the south and loort Maequarie whe north. They are valuat wa landmarks.
 of the Anglo-lsranlite craze, born in Newfomdland in 175\%, and in 176e centereal the lifith nave, which he quitted with a licutemant's half-pay in lis!. hefusiner. from conscientious scruples, in take the oath requisite to canable him to draw his half-pay, he was redueed to great distress, and hecamet an inmate of the workhose. In 1703 he amomured limself as "the Sephew of the Nlmighty. and Prince of the llehrews, appointed to lead them to the land of Canam," and in 1794 he pmbished a hook, 1 Reverled Kuombedge of the Piwhlucies und Times. For prophesying the death of the king and the destruetion of the monarehy he was eommitted in tas to Newgate. and thence som ator transferrea to a lunatic areslum. Ilie disciplom int cluded Nathaniel Halhed. the 11. P. and orimatist: Sharp, the engraver (See Britamica, Vol. XN1. p. 781); and Finlayson, a lawyer from Fife. Brothers was released from the asylum in lwhe and died Itan. $25,1824$.
BROTHERS, LAY, an inferior chas of monks, nit in holy orders, but beund liy monastic rules, and employed as sercants in monasteries.
BROTHERS OF THE CHRISTLAS SCHOOLS an order of Roman Catholic laymen devoted chiefly to the education of the poor. It was fonded in France in 16ig. The order has under its control
nearly fifteen hundred houses in various parts of the world. In the United states it has many colleges, academies, and other institutions, mostly educational, under its management.
BROLGH, Jons, the "war governor" of Ohio. burn at Marietta. Ohio, in 1811, died in Clevetand. Aug. 29, 1865. His early education was obtained chietly in printing oftices, and he fitted himself to enter the Dhio University. He was for a time proprietor of the "Washington County Republican" and later of the "Laneaster Eagle." He was clerk of the Ohio senate, and aiterwards sat as a member of that body. Elected to the office of State auditor he gave careful attention to the financial system. He was next connected with the " "incinnati Enjuirer" and at the same time practiced law. Each paper with which Mr. lirough was successively connected became, under his management, a powerful Iemocratic urgan. In 1850 he left polities, but during the civil war, in 1863, he was urged to accept the nomination ior governor, Clement l. Vallandigham, who had been court-martialed and was then living in exile, heing the opposing candidate. Frough was elected by a wery large majority. He served his State with patriotism and fearlesshess
Blancillimi. Joms, actor and phaywriter, born in Dublin, Ireland. May s. 1810 , died in New lork. Inne i. 1sco. Ilis father, an lrishman of good family, ded yonng, laving his widow in great destitution. The som was bromeht up by an ecentris and rich undie. Whe sent him to the Cniversity. The stage attracted him, and whon his uncte met with timancial mifortune the young man went to London in 1500 and entored the dramatie professim, tinding a friend in $1 /$ mo. Von ris, atterwards Mrs. Charles Mathews, what that time was manaser of two theaters. For fifty years he followed the profession, as anthor of phys, manager of the fers, and actor in bablins lomdin, and New York. and was usually surecssinl; yot, hut for the gencrosity of friends, his lasi years would have bern pent in luwerty. A benetit was given him in New look, and mannuity hought with the

 pars Hewanditor and propretwrof the "Lantern," a romic parer. and puhtished collertions of his Writings, entilled - 1 baskitlof Chios and the Bunstiy lepers.
BROLAHONS, lams, movelis, mative of Forth

 lar, and wavelowly followed lọ Nit Hzsely but Tow

 Ahes (10.ta)
 a iawrite watering-place, on the Firth of Tay. 312 miles eat of lumdere. On the shore stands a catiste buitt in thas, and repuired in wistu-fi, as a defense for the Tay. Population, $\overline{7}$, me

 ington. B. ('., March s. lan A lawrer. in the legislature almast cominnully from isel to lane, he was elected to Compros in 189. 1-41 and 1843; was governor of Tennessen, and held other political ollices under the Democratic party and was poat-master-general under Tresideat linchanan. He instituted some reforms in his department, such as shortening the mail routc to Califirnia by erossing the isthmus of Tehuantepere.
BROWX, REwnms Giaty - hatesman and soldier, born in Lexington. Ky., May 24.1506 , died in St. Lonis, Mo.. Iec. 13, 18s5. Ile graduated at the Transflvania (niversity in his native city in 1845
and at Yale in 1847; studied law at Louisville, and about 1550 took up his residence in St. Louis. He was a member of the Missouri legislature from 1s5:3 to 1858 , during which time he established the "Missouri Demoerat," which advocated Republican sentiments. During the civil war he favored the Union and saw some military service. From 186:3 to 1867 he was United Statos sinator from Missouri. and in 1870 was elected governor of the state. In 180^{2} he was candidate for vice-president on the Greeley ticket.

BROWN, Camd, or Cilabl, alder in the Baptiot church. The dates of his birth and death are umcertain, but he probably died in 16is. He was the first elder of the oldest chureh of the denomination in America, and was chosen to suceeed Roger Williams as leader in the Providence colony. Many religious and civil controversies arose in the settlement which. but for Ehder Brown's lirmness and judicious rulings, would have been settled by physical force. The good elder earned the name uf " l'eacemaker," and to his memory a stone was erected over his grave a century after his death.

PROWN, Fons MIndox, atuthor and painter. born at Calais, France, in 1821. Ile pursued his earlier studies at Antwerp umber Baron Wrapers. After a lriet period spent in portrait painting in England, he resided for three years in Paris, where he produced works intensely dramatic in feeling, but somber in coloring. A visit to Italy about 1845 led him to seek greate variety and richmess of coloring, and its results were apparent in his subsequent works. In 1850 he was a contributor if verse, lrase and design to the pre-Raphanlite paper. "The Germ." (See lassetra, Britannica, Vol. XX, plp. 858-59). He is known to some extent as a bookilhustrator, and among the examples of stained glase which he has desimned may be mentioned the rindows in St. Oswald Church, Hurham.

BROWN, OLINER Mamox, EOn of the preceding, author and artist, barn at Finchley, near London. England, Jan. 20, 1sis, died Nor: 5, 1874. At the age of 12 years he exeduted a water-color pieture, Whatmet of tujon uml the Rohbr of very comsiderable merit ; two years later his chiron was shown at the Dudley Exhibition; in 1500 his equestrian Ecereise found a place in the Resyal Academy ; and already several of lis designs haid been engraved. In 1871-72 he wrote his lirst movel, The Black saman. a marvetous production for a lad. The tales of The Duale Bluth and M'lolitrh's Le'focth, with some minor pieces, were incomplote at tha time of his early death.

IROOVN. GEntad, ('anatian journalist, born in Edinburgh, Sombam, Noy, 29, 1518 , died in Toronto. May 9, 18s0. He assisted his fither in the printing business in Toronto. then came to Now York, where he published the "Iritish colomist" lor his father. He returned to Canata, smed in $184 t$ established "The Ghobe." Twonty years later, having made this a successful daily paper", he started the "Canadian Farmor." In lsiel he entered the Canadian parliament, and som bevame a poyrornl leader. In Augnst, 18ise, he wat called to assist in forming a govermment, and tho lifonn-blorion administration came into being ; hut our arcount of dissatisfaction in the ascmably, brown and his colleagupe resigned. In the movemont for constitutional chanues, which wats leerom in skit. lan was hader of the reform section, and the rejurt ,if the eommitter which he formen was earried out in lxid. Ile was twice offered the honor of knighthood: sat in many puldie conformens: was sent als dedegatio to Lomdin in latio, and th Washingon in fsit to assist in formulating a emmmercial traty. Ilerleelined the lientenant-gevernorship of Ontaris in 1st5. Ilr.

Brown's death resalted from his being shot in the leg by a discharged employee. In Queen's Parh, Toronto, there is a statue which was erected to his memory in lsst.

Linolvis, sin Geonge, Fritish general, G. C.B., Jom at Linkwood, near Elgin, Scotland, in Tive, died at Linkwood, Aug. $2 \overline{4}, 186 \overline{0}$. He entered the army in $180 \mathrm{t}^{\circ}$; served through the Peninsular campaign (1808-13), and in $181 t$ joined Ross's expedition against the United states. In the Crimean war (10.5-in), he commanded the Light Division, and was severely wounded at Inkerman. In 1 sbio he became commander-in-chief in Ireland.

BIOONN, Genhge Loming, painter, born in Luston. Mass., Feb. $:_{2} 1814$, died in Malden, Mass., June 2^{5}, 1889. He studied art in Boston under Washington Allston, and in Paris with Eugene Isabey, and became noted as a landscape panter. some of his best pietures are: The bay of New Yran, Niagure hy Moonlight, Finice, and Loge's Pelare at semures.
BTEDWN. Gembir, grammarian, born in Providence, R. I., March 7: 1791, died in Lym, Mass., Mareh 31, 1s. Me was of Quaker deccent, taught school in Lihode Ishand and in a Friend's school in Dutchess county, $\mathcal{N} . \mathrm{Y}^{\text {., }}$ and in 1.513 removed to Xew Yurk city, where he conducted an academy Cor ouer twenty years. He published grammars which were great improvementson those previnusly in use, and were authorities for years. Their titles Wrora: Institutes of English Girammor. First Limes of English Cirammuli. - 'Grammar of Énglish Craniแus.
 in 17:5, died in ('liton. N. Y.. Mareh 31. 1s. $\frac{1}{2}$. In 1s18 he sradmated at the United States Miiitary Aeademy, and rerved successively in the Black ITawk expedition, in Florida in 18:60; in the eampaign against the Seminoles; on the Canadian border, and again on the Mexican border. Me was wrdered asainst the seminoles in 18503 -5and again in 1sjt-an; was commander of the Washington dofenses unil 1 pril 4. 1861; was ordered to Fore l'ickens, slorida, foti-fig, and his last inportant services wore rendered in Sew York rity. July 12-16, 186\%, during the draft riots. For this he was breveted majur-meneral, U.S. A. In the same year he was rotired from active service, having had his mame on the Jrmy Register formore than fortyfive years.
 delphit, l'a.. Toe. 1,1817 , died there lug. $21,15^{-2} \because$. Ile was a Yale aratuate, studied law in Columbin. froveled in leurope and the East, and un his return became famoms as an urator on historical.social or molitical necasioms.

BROWN, Hrym Kimae, seulptor, burn in Levden. Jlass., Fel. 24.1814 , died in Newburg. N. M., July 10. 1rist. It an armly age he began to lation and at the ake of surntern studied with Chester llarding. a portrait-painter, Boston. Removing tw Albany, he made port rait-lusts of Inr. Wm. D.Epragur. Erastus Corning and others. Ile spent fuur Years in Europe. and in ISti requrned to Xew lowk, where assisted hy skilled fareign workmen, la attenipred the first brome castine ever done in Ameriea. ITe constructed the altar-piece for the Chureh wi the Annunciation in Sew lork, and modeled portrait husts of his friemds, Tr. Willard larker and William ('ullen Bryant.]le made the statue of De W'itt Clintonfor Crbenwond Cemetery. Forseseral years he lived in south Carolina, where he was engaged wh an ideal sroup to idorn the Columbia state Ifomse. Fnfortumately. Sherman's army destroyed this work of art hefore it had heen completed. The war compelled Str. Brown to go North for, ahthough he hat made many warm southern iriends and was
arged to espouse the Confederate canse, his sympathies were with the North. He served on the Sanitary Commission. Among the works executed by this artist are: D. George II. Bethune, in Parker Institute, Brooklyn; Lincoln, in Union Square, Jew York; Equestrian Statue of Gcneral Scott; General Philip Kearney; Richard Stockton, and An Equestrian Statue of General Nathamicl Greene. Most of Mr. Brown's works are owned by public or national associations. His equestrian statues are ranked as his best.

BROWN, Jacob, soldier, born in Bucks county, Pa., May 9, 1775, died in Washington, D. C., Feb. 24 , 1828. In early life he engaged in surveying, teaching, writing for nemspapers, studying law and in military service. He fought at Ogdenslurg Oct, 4 , 1812; at Sackett's Harbor May 29,1813 ; at Chipperra July 5, 1814; at Lundy's Lane, luly 25, 1814, and at Fort Erie, Sept. 17, 1S14. He was very successful in leading his troops, and it was said of him, "No enterprise that he undertook ever failed." Congress awarded him thanks and a gold medal, and he succeeded to the chief command of the United States army, March 10.1821.

BROWN, Joms, grandson of Chad Brown, born in Providence, R. L., Jan. 27, 1736, died there Sept. 20, 1803. He was a wealthy merchant, and his were said to be the tirst ships trading between Rhode Island and the East. Anticipaling the American Revolution, he had his ships from the East freighted with gunpowder, which went to supply the soldiers of Cambridge. The corner-stone of the first building of Brown University was had ly him. He was one of the largest contributors to that institution, and for twenty years its treasurer.
BROWN, Jons Cames, soldior, born in Giles county, Temn, Jan. 6,1 , $\frac{2}{2}$, died in Macon emunty, Temn., Aug. 17,1859 . The grathated at Jackson College, Tenn, 18t6, and sonn thereaftor began the study and practice of han; in which he suceeded. His health heoming theticate, he traveled extensively in Europe. Lsia and .frica, and, having recovered his health, returned to Ameriea and resumed his profession in lis native commty. lle was elector of his Congressional district on the Whig ticket in 1860. He entered the military service of the State of Temessee in 1 shi as cantain of a company; was soon aiterward elefted colonel oi a regiment, and was transterred from the military service of Temmessee to that of the Confederate States in which he served with increasing distinction till the close of the civil war in 1 stathating been successively promoted to the arades of hrimadier and major-general. Ar was captured al lint Donetson, Tenn, in Feliruary, 1side, when the Confederate forces at that plaee surrendered to Gen. Grant ; was a prisoner of war at Fort Warren, Mass, for abont seven months, when he was exphanget and reentered the Confoderate army with his command at Chattanoora, Tenn., in scoptemher, 18 R2. and was with Gen. Bragg on his Kentneky eampaign; participated in the battles of Perryville, Ky. : Murfreeshoro or Stone River, Chick:manga, Inssionary Ridge. Kentraw Mountain, in the battles near thanta. Ga.; at doneshoro, Gat., and at Franklin, Tenn. At the latter bat the, which was one of the fiereest and bloodiest of the war, he commanded a division of Tennesseans (formerly Cleatham's division). and when the adranced and inferior line of the Federal foress had been stormed and routed, and had sought refuge in their main ine, strongly int renched, and near a half mile to the rear, he shouted to his command to "gointo the works with them." Itis order was oncyed and a portion of his division, under command of Briga-dier-General Geo. W. Gordon, were the only Con-
federate troops that made a breach in the main line of the Federal works. But the Federals leing opportunely reëniorced at that point, the Confederates were driven lack to and on the opposite side of the main line of works-Gordon being captured and the battle proving a disaster to the Confederate arms.

After the war. Gen. Brown successfully resumed the practice of the legal profession. He was elected president of the Constitutional Convention of the state in 1870, in which capacity he served with eminent satisfaction to the people, and was twice elected governor of Tennessee. serving as such from 1871 to 15π. About this time, retiring from pulplic life, he liecame vice-president of the Texas Pacific Railroad. He sulsisuluently became solicitor for Jay Gould's western system of railroads. and more recently became receiver of the $\overline{\text { issouri Pacitic }}$ Railroad, the vast and varied interests of which he managed with signal success and efliciency. He was a well-1alanced. many-sided, potential man, with a vigorons, well-disciphined and practical. yet cultivated, intelfect : suceess crowned his aried effort: and enterprises with remarkable uniformity.
BRGilX, Jme Camen, merehant, philanthropist and book collector. born in Providence, R. 1., Ang. 28,1597 , died there Jmm $10,15-1$. He was a son of the merchant-phitanhorphist, Xichohas Brown. In 1s16 he graduated at limwn leniversity, and entered the coming-room of his fatber. Ife gathered a line library, which numberel benjo vomes among which were to containing the journats and letters of the North American Jesuite. He was a liberal patron of Brown Cniwersily.
BROWX, dons Pomen, ©riental sehmar, burn in Chillicothe Ohio, Ane. 1i Wht diel in Cometanti-
 service till his uncle. Detwid bortor, was sent as minister to the Porte in 1 sis, when we areompanied him abrode and. giving his athontion th the study of Oriental literature, adhieved a high reputation. In rarions capabition he spent furty years in Tarkey, daring the has fourtoen of which he was secetary of tegation. He irmpenty contrihnted to American magazines, translated Ahmed Ben Hemden's Torkish Euning Lutrtaimments: Comstentine's. Inciont ant Moulch Constantinonte and wrote torrishes, of ririmal Spimenalism.
BROW, duserf Fherns, statexman, horn in

 as presidemtial chector, and was governor in 185 . 1854, 1 stil and latis. Ile expensed the sonthern cause when the eivil war onvened, seized forts Pulaski and Jackson, and atterward the l'nited States arsenal at savanah; this was done caly in the first monthe of the war. He raised an amy of 10,000 men, consisting largely of prems usully exempt from military service. When In oferson lavis called for this force to dight ont side the ctite, fovernor Prown would not send them, Inelin ving such an order uneonslitutional. At the chose of the war he was imprismed for a time. Inot in Nefif visited Washington and hecame consinowl that the lest course for his state was 10 summit th the reconstruction measures. This policy mate him unpopular for a time, and he voled with the Republicans when Grant was elocted lresident. The tide of popnlarity turned. and ex-fiteruor Brown has represented his state in the United States Senate from 1sio to 1 son, being elected by the Demoerats.
BROWN. Ntomest, philanthropist, great grandson of Chad Brown, born in Providrnee. R. I., April 14, 1769, died there sept. $27,18+1$. He was a graduate of Rhode lsland College and for many years
a member of the State legislature. Rhode Island College is as renamed in his honor. He gave nearly $\$ 100,600$ to Brown University. Hope College and Manning Hall were ereeted Ly him, the former being named for his sister, Mrs. Hope lyes. For 50 years he was oflicially connected with the college. He was a liberal bencfactor of other literary or charitable institutions.
BROWN, Olympla, lecturer. born in Prairie Ronde, Mich., Jan. 5, 1s:05. She was educated at Mount Holyoke Female Ceminary and at Antioch College, Yellow Springs, Ohio. She studied theology at the Universalist school at Canton, N. Y.. and in I8ta was installed pastor of a church in Weymouth, Mass. She has since been pastor of Weutern churches, has lectured. and is president of the TV isconsin Woman Sulfrage Association. She is married to Henry Willis.
BROWN, Shmel, physician, born in Rockbridge county, Ta., Ian. 30, 1769, died in Alabama, Jam. 12, 1830. He graduated at Diekinson College, and studied medicine with Dr. Kush in Philadelphia. For six years he was professor of medicine in Transylvania University, Lexington, Ky., and he aiterwards assisted in stating a medical school in that city. Dr. Brown had a large practice, yet found time to invent various industrial and agricultural improvements ; the claritlcation of ginseng was une of these. Ile was founder of the first American medical association.

BROWN, Sa Whafam, founder of the Liverpool Free Library, horn at Ballymena, cunty Antrim, Irelantl, in 1 Tist, died March 3, 1sti4. In 1509 he established at Liverpool a branch of his fathers linen business, and laid the foundation of one of the largest mercantile firms in the world. He took a prominent part in local and public affairs, being especially interested in the promotion of cducation among the people. In $18 t 0$ he was eleeted member of Parliament for South lancashire, and was thrice afterwards redected. In 185̃, at a cost to himself of $£ 40,000$, he founded the Free Public Library of Liverpoof, and in 1859 he raised a corlss of volunteer artillery. IJe was made a haronet in 1863.

BROWFN, Močt, in the Iiocky Mountains, near the somree of the Colmmba liver, and on the hordere of British Colmmbia and Abberta. It is 16,000 fixt high.

BHOWNE, Enwamb ILAmad, English divine, born March 6, 1si1, at Mortun llouse, Bucks and ediseated at Eton and at Emanuel College, Cambridge, where he became a Fellow and tutor. He was made professor of Ifebrew at Iampeter in 1s41, and Norrisian Professor of livinity at Camhridge in 14.54; was eonsmerated Bishop of Ely in 186t, and translated of Winchester in 183. II is works comprise several volumes af sermons, a book (an the Pentateuch, and the well-knom Expmatlime of the Thinty-uin' Amicles (1850); 12th edition, 1482).
 of many clever and humomons bow illustrations, horn at Kembingtoll. Survor, England, Jume 15, 1s15, died at wesi brightom, dinly s. Mas. Ite arly showed a taste for drawing, aml was aprenticed to Finden; but, disliking tho laborions methods of lineangraving, he took to the froer pronesses of ctching
 motal from the somiety of Arts for an ctehing of Duhn Cithsin. In 1s:3ti browne surepeded Seymenr

 for the work; and hes soon enjoyed at repatation Whinh was continned and presered by has desisus

ens's works. He also illnstrated many of Lever's and several of Ainsworth's novels.
mrownell. Hexry Howard, author, born in l'rovidence, I. I., Feb. 6, 18:0, died in East Hartford. Conn., Vet. 31, 18i. He studied law, but applied himself to teaching in Hartford. During the early part of the civil war he versified Farragut's "General Orders" to his fleet in the attack on New Orleans. The bright little poem came to Farragut's notice, and the poet and commander met each other. Through the influence of the latter, Brownell's desire to wituess a naval battle was granted, for he was appointed acting ensign on the flag-ship Irutiort. Ile was present at the battle of Mobile bay. The Litur Fight and The Bay Fight are his best foems, and are warmly praised by Oliver Wendell Holmes. Brownell published a volume oi poems, and a few other works.

BROWNELL, THomas Chtrach, Bishop of the Protestant Episcopal chureh, born in Westport, Mass.; Oct. I9, 1779, died in Martford, Comn., Jan. 1:i, 1Sij. Dle studied at Brown, graduated at Cnion ats valedietorian of his class in 1804, was appointed Greck and Latin tutor, professor of Logic and lelles-lettres in 1800 ; lectured on Chemistry, and in 1s14 was elected protessor of Rhetoric and Chemistry. A little time previous to this his religious views had changed; he abandoned the Calrinistic theory, and began the study of theology with the intention of becoming an Episcopal clergyman. He was ordained deacon in 18I6, and two years liater elected assistant minister of Trinity Church, New York. In 1819 he was consecrated hishop. He labored earnestly for a church college in Connecticut, and in Ises the charter for Washington (now Trinity) College was granted. He was its first president, but continued in wifice only a year, as the duties of his episcopate remuired his whole time. He organized churehes in the South, published sermons and religious books, ind during the 45 years of his episcopate ordained 179 deacons and eonfirmed 15,000 people.

BLOW'オIAN MOYEMENT, also and originally called 7rumomicu Motion or Morement, an incessant vibratory motion frequently olserved in very small, sulitl particles when suspended in water, as when gamboge is rubbed up in water, and first deseribed by liobert Brown ($175 \overline{3}-1831$), a setutch botanist and agriculturist. The same morements are also manifested by microscopic germs but the Brownim movement is entirely phyical, not vital. Its cause is somewhat obscme, hut may perhaps be explained by the fate that the proticles being in delieate equilibrium are extremely sensitive to change of temperature.

IBROMNTE. kint of domestie sinit in the folklore of cowland. Se Britamica, Vol. I1. 1. 204.
 Gamberwell. May $\mathrm{T}, 181 \%$, died lec. 12,1889 . Ite recoised a local education, attended leetures at Tnisersity Colleme and then trayeled abroad. While atill a youth be aequired the triple reputation of pret, musietion and modeler. Joulime a dramatice poem, written at the age of I 19 was pablished in 1s:3. Two years lator apmared his fora"dsus, which revaled at weator forer. In $183-$ he wrote his tirst tragedy, Nhotomot, hat this and subsepucht plays were not of the usnal popular stage orter. Surdello, which ior its insolutions of thought, has given more trouble to Irowninge readers than any wher of his works. appared in 1sto. A seria of plays, tragedies and chmatio lyries was issum natior the collective tithe of hidla wind jomegromutex (1 sll-lis), containing some poems which became and still remain the most popular of all browning's writings.

In 1846 Browning married Elizabeth Barrett, herself a gifted poetess, and with her went to Florence, where they resided for 15 years. In 1850 Browning published Christmas Eve and Easter Day, and in 1855 Men and Women. After the death of his wife, in 1861, the poet settled permanently in London with his only son, Robert Barrett, born in 1849. His generally aceepted master-piece, The Ring and the Book, was published in 1869. Herve Riel, a poem upon a French sailor hero, was published in 1871, the proceeds being given to the fund for the relief of Paris. From 1871 onward, works by Browning appeared in rapid succession.
The "Browning Society" of London was established in 1881 for the purpose of promoting the study and influence of the poet's works, and the example of London has been followed by many other large centers in Great Britain, the colonies, and the United States. Browning is the most subtle and intellectual of contemporary English poets; his lyrical facults, dramatic energy, and power of psychological analysis have rarcly been equaled at any period; but his style is foo frequently obscure and difficult ; his versification hard and rugged, and his rhymes foreed.
Brownlow. Williay Gavsiway, born in Wythe county. Va., Aug. 29, 1805, died in Knoxville, Tenn., April 29, 1877. He was an itinerant Methodist preaeher, who in 15 ses began to inturest himself in polities. He soon became known as the "Fighting Parson." IIe was opposed to nullification, in favor of slavery, but opposed to secession. He was editor of the "Knoxville Whig" from 1ses to 1861, at which last date his papor was suppressed. He was persuaded to leave the town. for he would not take the oath of allegiance to the Confederate government, but on his return was treacherously arrested and imprisoned. Julah P'. Benjamin regarded him with distrust, and advised his leeing set at liberty. Brownlow was put inside Union lines, and then made a trip North, lecturing in prominent cities to large andienecs. In 1sith he returned to Tennessee, and the following yar was elected frovernor. He served a sepond term. The Ku-Klux trouble broke out at this time, and the governor was obliged to proclaim martial law in nine comnties. He was elected to the United states spmato in 1869. and, at the close of his term remined to Knoxville, purchased a controlling interest in his old newspaper, and edited it till the time of his death.
Brown-séQU.ARd, Chames Edencabd, physiologist and physician, born in Mauritius in 1s18. his father being a sea eaptain from Philadelphia, Pa., who married on the island a lady hamed schuard. The son studied at Paris. and gradnated M. D. in 1st6. He has since received numerons prizes for the results of valuable experiments in various departments of physiological scieuce, principally connected with the blood, the brain, and the nervous system. He has edited several medieal journals, and held the chair of medicine in the Paris sehool of Medicine, and since 18 - 8 the chair of Experimental Medicine in theCollege of Franco and again in the French Academy of Seiences. He ocenpied the chair of physiology in Harvard College from 1sit till 1sis. He also practiced medicine in Sew York city from 1873 to $1 \times 2 \mathrm{~s}$.

Bhow Son, Orestes Aceustes, horn in Stuekbridge, Y't., Sept. 16, 1803 , died in Detroit, Mich., April 15, 1876. In 1822 he united with the l'resbyterian elmurch at Ballston, N. Y.. but his religions views changed, and three gears later he became a I'niversalist, preached in Nerr York and Vermom,; and conducted successively the "Gospel Advocate" and the "Philanthropist," organs of Universalism. In 1ses
attracted by the views of Robert O wen, he helped to form the working-men's party. The writings of Dr. Channing next influenced him to study Unitarianism, and he became a preacher in that denomination in 1832. He was a popular Democratic leader, and in Massachusetts a favorite stump-speaker; he was one of the fonnders of the "Locufneu" party in Xew York, and a supporter of Yan Buren. By writing articles on eclectic philosophy he gained the reputation of being a philosopher; he started the "Boston Quarterly lieview," which was afterwards ineorporated with the "Demoeratic Leriem" of New York. In $184 t$ he joined the Roman Catholic elhureh. Dr. Brownson adroeated his ideas on polities and religion in the paper published in New York as "Brownson's Quarterly Review," still the leading Roman Catholic periodical of the United States. Mis orthodoxy was questioned, lut Cardinal Franzelin pronounced his pubtished works undeserving of censure. His last years were spent at the home of his son in Detroit. The collected edition of his works is published in mineteen whlumes, among these being Essays and Rerious; The Spirit Ropper; An Iutobiayraphy; Cherles Eturaol, of the Infidel Conterted; and C'muresations on Liberalism and the Chureh. In politics as in religion. Dr. liruwnson was unstable and liable to a clange of views. Is a stumpspeaker and as a writer he was vigorous and acrimonious.
BROWX SPAl:a amm often given ly mineralogists to eertain variot ide of dolmite, or magnesian limestone distinguished hy a hrownish or reddish color, and a puarly luster, on accoment of which they are also somstimes called perer spur.

BROWスislulde, a town of Pennsylamia, situated on the cats bank of the Monongahela, about 30 miles sonth of littsharg. It contains extensive manufactorics of glas, iron. maelinery, flour. steam-engines, and lumber. Coal is mined in the vieinity.
 of Haywnel cempts. It is situated in a fertile cottonHrowing regim, alum dive mites northof the latehie River and 2π miles wert of lackson. It is the seat of four conleges, and an important shipping point for cothon.
hanlisisllate, a city of Texas, county-seat of
 on the lito Grande, oppusito Matamoras, Nexico. It is historical as the scene of two engagements, the first being an unsuccess fal at ack hy the Mexieans in May. Isti: the second lwing the capture of the eity hy Gucral hanks in Toveminer, 1s63. It contains a chetm-house and is the seat of a Roman Catholie collope and convent.
 Revisions and Additions.
BLOMVYMALE, one of the oldest towns of NeIraskal, comaty-seat of Nomaha county. It is phaseantly siluated on tho Missouri liver. alront 129 miles, lis water, lielow Omaba. It cemtans several mitts and factorics, and has a flourishing loeal and river trade.
BROWViYOOB, a cily of Texas, county-seat of Brown eonnty. It is sit inated in the becan liver. now the fomt of the Comanche Ahmotan, about 75 miles northwest of hampasas. The surrounding country is rich in pasturage, and in the vicinity are valuable groves of oak, anhe olm, and other timber.
BRONBURS, a mining and manufaturing village of Scotland, sithated on the Union Canal. 12 miles west of Edinhurgh. It is chiefly notable ior its shale-oil works. Soe Britannica, Vol. XVHIT, p. 240 . Thase of tho liruxharn Oil Company, built in 1×78, employ about 1, till mennatud turn out anmually about 10,000, evo gathens of crute paratine oil from
the shale mined in the neighborhood，besides par－ attine candles and wax，sulphate of ammonia，and other products．Iopulation， 3,210 ．
BliUCE，AlexixDer，a Scotch clergyman and educator，born in Perthshire in 1831．ITfe became profescor of New Testament exegesis in the Free Church College at Glasgow in 18π. works are chiefly theological．

BRCCE，Blisene K．，born in Prince Edward county，Va．，March I，1841．He is an African，was born in slavery and continued in servitude till the civil war，when his young master enlisted in the Confederate Army．Toung Druce had received some education from his master＇s tutor，and he tauglit school in Hamibal，Mo．，and then entered Oberlin College．After the war he became a Mississippi planter，was eleced to several county and State wfices，and in 187．5 was elected on the Republican ticket to the Cnited States Senate．Sinee ］sis he has heen a member of every Lepublicanconvention． In 1581 he was appointed by President Garfield to the ofice of Register of the Treasury．Senator］Iruce is highly esteemed as a platform lecturer as rell as politicuan．

BIECE．GEorge typefounder，horn in Edinburgh， Scotland，fuly 5 ，h．si，died in Nen Tork city．July 6，1866．Coming to New York at the age of 14 lie was apprenticed to a book－binder，and with his bother David afterwards drifted to Philadelphia，Abrany， them lack to Nes York．They had had some print－ ing－house experience，and in 1806 upened a book－ printing otice．Three years lator they were able to move to a better locality．In 1,12 the secret of stereotyping was learned ly David during a visit to England，and the brothers henceforth employed the process in their work，tinding it necessary to cast their own type，and in barions ot her ways orercome obstacles．The New Testament in bourgeois（1814） was their first steraotyped work．In 1816 they abandoned the printing lonsines and hecame ex－ clusively typefounders，erecting in 1818，on Cham－ bers street，the prosent foundry．George Bruce in－ troduced many improvements in types，and，assisted by his nephet Tavid，his brother having retired from the lusiness，invented thenuly sucerssful type－ easting machine．Mr．Bruce was connected with varions industrial societies，and was noted for intes－ rity and benevolence．

BhUCE，Jums C＇mbngwoun，antiquary，horn at Neweastle in 1su5．graduated at Glasgoti in 1seth， and was trained for the Presbyterian ministry，but devoted himself to teaching．Ite was moderator of the English Preshigterian Chureh in Is81．If is works include The homun llall（1s．n；third edition，1stif）； The Brapeur Tuptstry Stucidutod（1850）；Lupudacium Septentrionale（1920），an aceount of all the Roman monuments in the Nortl of England：and a Mand－ book to the Romen Ileall（1smi：；；third edition，1485）．

BRUCEA，a genus of Timbintheria named aftor J．Bruce（ $1730-9.4$ ），the Sirican explarer．Semed untidysenterion or fromgim＂is an Abyssinian shrob． the leaves of whicl are said to be thnic，astringent，
 a native of the Indian Arohipelago，china，etc．， possess the same medicinal proproties．They are intensely hitter，heir properties resombling those of quassia．Th，Ahyssinian speries acquired a fardi－ tious importanee in the beginning of the 1 lathern－ tury，from a mistaken belief that it produced the dangerous False Angostura bark，and in this belief the name brecin was given tw an alkatoid really produced by siturlonos mur－vomion．

BhUCH，Max，a German eompunr，born at Cologne in 1sis．Ile is the comporn of the tamous Lorty．Oi his larever works his semes firm the Frithing sugu，and semos jom the Udyss，＂are con－
spicuous for masterly treatment and strong con－ trast of rocal and orchestral tones．

BRUCIN，a regetable alkaloid present in strych－ nos mutermire．and St．Ignatius＂bean．Its action on the animal economy is similar to that of strych－ nine，but much less powerful，and on this account it is seldom employed．It is capable of being con－ verted into strychnine by heating it with five times its weight of dilute nitric acid，carbonic acid gas leing given off．

BRUGG，a town in the Swiss canton of Aargau． situated on the right bank of the Aar， 36 miles southeast of Basel by rail．Near it is the site of l＇undonissa，the chief Roman station in Helvetia： and it was also the cradle of the house of Hapsburg， whose ruined castle，founded in 1020 ，crowns a wooded height two miles from the rillage．Nearer is the abbey of Konigsfelden（1310．converted in 18：－ into an asylum），in the vaults beneath which are interred miny of the members of the Austrian royal family．Zimmermann was a native of Brugg．Popu－ lation， $1,4 \%$ ．

BRUGSCTI，Ifenrich Kari．，an eminent Egspt－ ologist，born at Berlin，Feb．1s，1827．At the age of 21 he published a Latin treatise on the demotic writing，which gained him the favor of King Fred－ erick William［V，by whose aid he was enabled to visit the museums of Paris．London．Turin，and Ley－ den．He visited Egypt in 1853，taking part in the excavations of the French archapogist，Mariette． at Memphis．He was called to the chair of Oriental Languages at Güttingen，but returned to Egypt in 1s50，on the invitation of the vieeroy，to take charge of the selool of Egyptology at Cairo with the rank of Bey，receiving the title of Pasha from the vice－ roy in 1 man ．In IS8t he aceompanied the German embassy to I＇ersia．Brugselis works on Eggptology are mumerous and valuable．Of these the chicf are： Cíngraphische＇Iusehwitton utägyptischer Denkmäle： （three volumes，185i－i0）：Geschichte Entpeens untic den Phavomern（1875；English translution，1879）； Hicroghphisch－drmotisches Iloterbench veren vol－
 des Etudiants（ $187-2$ ）：Thetimnaime Gemprophique de T＇Lucicme Egipte（15：G－80）；Thesenus Inseripionum －Egmitururum（1882）：and Peligion ann Muthologie der when Egypter（188t）．

BRÜHL，a town of Rhenish Prussia．eight miles southwest of Cologne br rail．It has a finm castle． erected in the early part of the 1sth cemtury ly the Elector Clement lugustus of Bavaria and restored by the king of Prussia in 18t？．After his hamish－ ment from France in 10⿹勹巳 ，Cardinal Mazarin took uphis residence in Brühl．Population，t． 1 B\％．

BRÜlll．IfeInmich．Covent vox．prime minister of Augustus III，king of Poland and plector of saxony， memorable among unworthy ministers and renal statesmen，born at Weissenfels in 1700，died Oct．Es． 176i3．In early life he entered as a page into the service of the duchess of Saxo－Weissenfels．Hi， wiming address and tact gainet for him rapid pro－ motion through several otlices of state，until in 17 th he hecame prime minister to dugustus If（sen Fritamica，Vol．NXI，p．35s）．While humoring the whims of his unworthy master he contrived to enrich himself and to aecmmalate homors and titles． mantaining the most splendit restablishment in the kinglom．The ethect of this robhery of the mational finamees was felt at the outhreak of the seven Years＇War，when the country could furnish only 17，001 men to oppose Freterick of l＇russia，whosur－ prised and captured the whole saxon army in its campat Pirna．Jurustus and hrïhl tled to ľarsaw， returniner to beexten when peate was conchaded．

R1SVAMIRE（Fremoth，＂foggy month＂），a division of the year in the Iepublican calendar of Franee．

It includes the time from Oct. 22 to Nov. 20 . The celelbrated 18th Brumaire, which witnessed the overthrow of the Directory and the establishment of the sway of Napoleon, corresponds with Nov. 9, 1799, of the Gregorian calendar.

BRUMMELL, George Bryan ($1778-1540$), better known as "Beau Brummell," born in London, June 7,1778 , the son of Lord North's private secretary. At Eton, and during a brief sojourn at Oxford, he was less distinguished for stndiousness than for the exquisiteness of his dress and manners, and, after four years in the army, having come into a fortune of $£ 30,000$, he entered society as an arbiter of elegancies, in which vocation he proved a brilliant success. His wit proved too fine for his 20 years' patron and admirer, the Prince Regent, resulting in a quarrel in 1813. Three years later Brummell was forced by gambling debts to flee to Calais, where he continued his reckless course for 14 years. From 1830 to 1832 he held a sinecure consulate at Caen. He subsequently became imbecile, and died in the pauper lunatic asylum of that city, March 30, IS40.

BRUNAI, an independent Mohammedan territory in the northwest of Borneo, whose sultan was formerly overlord of the whole island. Area, about 18,000 square miles; population estimated at about 200,000 , divided into trade castes. The capital, Bruani, situated on a river of the same name, is a squalid town, built on piles. It has 30,000 to 85 ,000 inhabitants, who carry on considerable trade with Singapore and other ports.

BRUNANBURGH, the scene in 937 of a hloody battle, in which Athelstan deteated an allied army of Welsh, Scots, and Danes (see Britannica. Vol. YIII, p. 285 ; Yol. XVIII, p. 570 ; Yol. XXI, p. 479). The exact location of the place is not known. Df the Anglo-Saxon poem on the victory, preserved in the Anglo-Saxon Chronicle, there is a spirited rersion by Lord Tennyson.
brune, Gumbume Marie Asxe (1763-1815), a French marshal of the First Empire, born at Brives-la-Gaillarde, Mareh 13, 1763. At first a Paris bookseller, he became a member of the Cordeliers' Club, and a friend of Danton. In 1792 he was sent as civil commissary to Belginm, bat he soon entered the army, fought in the Vendean war and in Italy under Massena, and after Rivoli was made general of division. Sent by the Directory to Switzerland in 1798, he exceuted his orders with brilliant success (see Britannica, Vol. XXII, p. 793). In 1799 he was made commander of the army of Holland, where he ackieved the reputation of being one of the best generals of his age. In 1803 he was ambassador to Turkey, ant in 1804 ohtained the dignity of marshal. ILe became governor-general of the Hanseatic towns, hut was recalled by Napoleon. After the return from Elba he joined the Emperor, was made a peer, but, like many better men, had his prospects blasted by Waterloo. He was brutally murdered by an infuriated mob at Aviguon, Aug. 2, 1815.
BRUNIG, a Swiss pass ($3,3: \%$ feet), forming the shortest and easiest route between the "Forest Cantons" and the Bernese Oberland. It road was formed in 1857-62, and in 1888 a Brunig branch of the Berne-Lucerne railway was opened.
BRUNI ISLAND (North and South) lies off the past coast of Tasmania, from which it is separated by D'Entrecasteaux Channel. It has a length of 32 mi.ess, a varying breadth of one to 11 miles, and an area of 160 square miles. Coal is here mined.
brunnow, Pmlipp, Count yon (1797-1875), diplomatist, born at Dresden in 1797, and entered the Russian service in 1818. Sent on a special mission to London in 1839, he was accredited as
permanent ambassador there in the following spring. In this capacity he soon acquired distinction as a diplomatist. On the outbreak of the war in $185+$ he retired from London, and represented Russia at Frankfort. He was atterwards appointed to the conrt of Prussia, but in 1855 he returned to his old place in London, where he represented Russia at the conferences in 1864 and 1811 . He was raised to the rank of count in 1871, and in 1874 retired to Darmstadt, where he died April 12. 1875.
BRENO TllE GREAT, arelhbishop of Cologne, one of the most eminent men of his time, born about 925 , died at Kheims, Oct. 11, He "as the third son of Henry the Fowler. He liecam, archbishop of Cologne and chancellor of the enpire under his brother Otto I, and afterwards, as a reward for his service, duke of Lorraine. Distinguished alike for piety and learning. he strove to reform the monasteries and adrance the love of learning among the elergy.
BRUSSIIICK, a ducly of the Geman empire. Area. 1.44 siquare miles ; population, $37,2.580$; capital Brmswiek, with a population of sj, 17t at the census of Dec. i, 1885. For early history and institutions, see Britamica, Vol. III, נp. 401-3.
The budget is voted by the chamber for the period of two years, but each year separate. For the year 1858 the revemue and expenditure of the state were made to halance at 11, lan 000 marks. and of the domains at $2,44,000$ marks. Yot included in the hudget estimates is the civil list of the duke-1,105,000 marks in lsis. The pultic debt of the duchy, without regard to a premiumloan repayable in rates oi $1,200,060$ marks yearly till 1924, at the eommencement of 1 ss was 28.971 .000 marks. four-fifths of which were contracted for the estahlishment of railways: the productive capital of the state was at the same time topsor.000 marks, besides an annuity of $2,625,000$ marks till 1934, stipulated at the sale of the railmays of the state. In $j 888$ there were 250 miles of railway.
The last duke of Brunswick, Wilhelm I (horn April 25, 1806; crowned April 25.1831), died Oct. 18 . 1s84. With him the ducal house of Lrunswick became extinct, his son Duke Charles having died in 1873 without issue.
The heir to Brunswick, the duke of Cumberland, was excluded, owing to his refusal to give up claim to the throne of Hanover. The duke of Cambridge (cousin to Queen Yictoria, and commander-in-chief of the British Army), the nearer "quate heir, was also not accepted owing to his refusal to give up his English appointments and residence.

The Brunswick Regrency law of Fel. 16, 1879, enacts that in case the legitimate heir to the Irrmswick throne be absent or prevented from assuming the government, a council of regency, eonsisting of the ministers of state and the presidents if the Landtag and of the Supreme Court. shumbld carry on the government, while the Cierman Emperor should assume command of the military forces in the duchy. If the rightul heir, after the space of a year, is unable to claim the throne the Brunswiek Landtag shall elect a regent from the nonreigning members of German reigning families.
Under this provision of the constitution. Prince Albrecht, son oi the late I'rince Albrecht, of Prussia, was unanimously elected regent of Brunswick by the Diet, Oct. 1,1885 . He is the son of the late Prince Albrecht, brother of the late William I, King of Prussia and Emperor of Germany. He is, therefore second cousin to the present Emperor, William II. He was born May 8, 1837, and married April 19, 1873, to Princess Marie, daughter of Duke Ernst of Saxe-Altenburg. When
chosen regent he was commanding-general of the tenth corns d'armée.

BRUNSWICK, a city of Georgia, county-seat of dilynn county, and a port of entry. It is situated on St. Simon's Sound, about so miles south of Savannalı and 8 miles from the Atlantic Ocean. The harbor is safe and commodious, and the chief industry is the manufacture and export of rellow pine lumber and cyprus staves. There is also a considerable trade in naval stores and cotton.

BKUNSWICK BLACK, a varnish employed for coating over coarsely finished iron grates. fenders, etc. It is prepared hymelting together asphalt, linseed oil and oil of turpentine. For tiner work it has been superseded ly Berlin black, a similar composition of tiner quality.

BrUSil, Charles Franchs, inventor, born in Euchid, Ohio, Jarch 17, 1849. His early years were spent on a farm, and he attended the Cleveland public schools. Physics, chemistry and engineering were favorite studies, and his leisure was spent in scientific experiments. Ife graduated at the University of Michigan in 18ta, and became analytical chemist in a laboratory of his own, established in Cleveland. In 18 to he built a dymamo machine, which could supply several lamps in one circuit with the right kind and amount of electricit y. Ilis next important invention was an eleftric lamp. In 1876 these inventions were successfully introluced in the United Statos, and since then he has olntaned half a hundred patents, most of which are highly remunerative

BRESII, GEntGE JAnvis, mineralogist, lorn in Erooklyn, N. Y., Hee. le, 1831. While attending a course of lectures on agriculture at Yale, with the intention of becoming a farmer, he became so interested as tuextend his stay from six month to two years, meanwhile takine up chemistry and mineralogy. In 140. he was assistant professor of chemistry in Louiswille l'niversity, and from $188^{2}-$ 53. ehosen for the same work in the University of Virginia. For two jears in Germanty and in 1 sot became professor of mineralogy in Jale. Je has for tears leen prominent in the management of the Shetlited ridentifie schonl of Yale. l'rofessor Brush assistet l'rof. J. I. Danat in preparing a De-
 Mannal of Intermimatior Mineraleq!!. 1 le is a eontributor to several journals, and amember of various seientitic surietios.

BRUSSELS INTERNATIONAI TREATY. In the summer of lsoo, representatives of England, Germany, France, Italy, Jortugal, and the United States agreed upm a troaty, fur the suppression of the slave trade in the C'entral Africanterritory. This treaty was unamimounly approved ly the quited states Senale. Ian. 11. 149:. As passed, the treaty includes a clause substantially declaring that the United states has no desire to take any part in the establishing of territorial boundaries, or in the division of political power among the European Powers now holding territory in Africa. An advalorem duty of not more than ten per cent. will le levied ly the Congo state upon products imported from the E'nited states, the proceeds to be used in suppressing the slave trade.

BRCTTSUM, the country of the Pruttii, andently the name of the southwest peninsula of saly
bliYAN, a village of ohio, eutuny-segt. of W'illiams eount y, ahout fifty miles west of Toledo. It is noted fur its artesian wells. It is the seat of an academy, and contains important manufactorites.
PRYAN, a city of Texas, county-seat of Brazos county. It is situated about five miles east of the

Brazos River, and 100 miles northwest of Houston. It is the seat of two colleges, including the state Agricultural and Mechanical College, and of two academies. It is an important shipping-point for cotton, and contains extensive manufactories of cotton, tobacco, soap, oil, flour, chairs and carriages.

BRYANT, Wibifan Celles, poet and editor. born in Cummington, Mass., Sov. 3, 1794, died in New York city, June 12,]sis. He was descended from noble Puritan stock, his mother being a descendant of John Alden. When but 13 years old he wrote The Emburgo a clever, satirical poem. In $1 s 10$ he entered Williams College, where he remained a year, then returned home to study law. It was at this period that he wrote Thanatopsis. In 1815, he was admitted to the bar. The Yellow liolet, Inseription for the Eutrance to a 11 ood and To a IVatrifonl, were poems written before his 2lst fear. He was married to Miss Frances Fairchild in 152l, and the proms entitled 0 . Fairst of the Rural Madels, The Future Life and The Life That Is, were among the poems addressed to her. Mr. Bryant practiced law for 10 years, first being located at Plainfield, Mass., and afterward at Great Barrington. In 1825 he removed to New York city, and became assistant editor of the "New lork Review and A thencum Magazine." The paper did not flourish, was soon consolidated with another, and Mr. Bryant became assistant editur of the "Evening Post." and in Is.6 editor-in-chitef. continuing in this position until his death. Under his control that journal took high rank. It was antislavery in tone, a firm supporter of the Union cause. and Democratic in politics. Mr. Bryant visited Europe in 1834, 1845, 1849 and 1557 , and published accounts of his travels. Ile was frequently called upon for public addressts, and his last public appearance was at the unveiling of a bust of Nazzini in Central Park, Hay 24, 18.8. He made an eloduent address, but was overcome ley the heat, and on reaching the house of his friend. James Grant Wilson, he fell on the front steps and lived only two days after the fall. He was a honlthy, athletic man, and very fond of walking. In the poetry of Bryant the influence of lope is plainly seen, and Cowper and Thomson probably also modified his verse.

BHCCE, J_mes, an eminent Pritish anthor and stataman. Lorn at Pelfast. Ireland, in 1sis, and educated at Glasgow and Oxford. In 18.0 he became regins frotemor of civil law at Oxford C'niversity. Ile has breen a member of parliament since 1 sso, and was under-secretary for foreign affairs in josti. De is a representative liberal, and is noted for his study of the "Eastern question," and his derp, interest in the condition of the Armenians. Itr. Irryce's tirst book was Ther Holn homan Empire, which estahlished his literary reputation. Amring his nther works are Trumsinucusia and Arerat, and various eontributions to magazines; bot he is best known in this comntry hy The Imerican commonurulth, pullished in lisi, the result of 20 years' study of the comury and its institutions. Mr. Bryee has made four visits tu the Enited States, the last in 1 sin .

BRYEANTOS, Pimboticos. I. I., Metrobolitan of Vicomedia, 'born at ('motantinople in 1833 , studied at the theological selowl in Chatce, near Pyzantimm, and after heing ordained deacon, attended lectures at Lapsig. Derlin and Munich (1850-61). Ho was for some sears a teacher at Chalee, and presided ower the Greek school in Constantinople from 1 sis to 1si4. He was oue of two representatives of the tireek chureh at the old Catholic conference in Ban in lsan, and while abo sent there was chosen thetropolitno of serree in

Macedonia. In 1877 he was translated to Nicomedia. Author of several minor works, Bryennios is chiefly known as the editor of the Epistles of Clement and of the Didache.
BRYN-MAWR COLLEGE, a college for women, situated in the village of Bryn-Mawr, on the Pennsylvania railroad, nine miles northwest of Philadelphia. It was founded by the late Joseph Taylor, M. D., in 1879. See Colleges, in these Revisions and Additions.
BRYONY, or Briony, the common dame of species of Bryonia, a genus of Cucurbitacer, of which the common bryony, Bryonydioica, and Lryony alba, are beth natives of Europe. The former is frequent in the hedge-rows in England, but becomes rarer in the north, and is not indigenous to Seotland. It has cordate palmate leaves, axillary bunches of Howers, and red berries about the size of a pea. Brymy, alba, which is monocions, with black berries, is common in Central Eurole. The root of both varieties is applied to bruises, was formerly in use as a purgative, and its tincture is still employed in bonieopathic and veterinary practice. The roots of bastard bryony, litio (Cissus) sicyoides, are also aerid and murgatice, and are used medicinally in the West Indies; hot it is said that the root of Bryony alyssinich, when cooked, is eaten without danger. Black bryony, Tomus commmis, is a plant of a different natural order (Difosoreic). In habit and distribution it is similar to briony proper, but it may le readily distinguished by its simple, entire heart-shaped feaves, which are smooth and somewhat glos-y. See britamica, Vol. SXIY, p. 727.
BRYOPII YLLUM, a genus of reussutaceir. Bryophylum calcyrinum, a sueeulent shruldy plat. native of the Moluceas, with oblong, emmulated leaves, and large dropping paniches of granish-yellow flowers, is not infreguent in northern hothouses, being regarded as an oljeet of interest on account of its produeing buds on the edges of the leaves more readily than almost any of ther phant.
BRYUM, a large and important genus of common mosses. They are small, generally grow in dense patches, and are characterized by fruit borne at the ends of the branches.

BUACIIE, l'mmirpe, a Freneh gengraphor, hom in 1700 became in 1799 royal geographer and in 1730 a member of the Aeallemy of seimees, dimit in 1 Fi . He published athases and gengraphical works. Hi: nephew, Jean Nieholas Buache (174i-1821), was also a celebrated gengrapher.
BUACIEE, an island off the west eoast of Australia, separated from the mainlam ly Cocklourn Sound, which is a raluable harbor for ocean steamers.
BUAZE, an asclepiadaceons shrub found hy Livingstone north of the Zamlesi, where its twigs are employed as a souree of fiber, which much resembles flax.
BUBALIS, an animal belonging to the antelope famity, but distinguished from the majority of those animals by its lack of gracefulmess. It is clumsy in appearance, a litthe larger than the average stag, and resembles an ox, exeept that the heat is rather longer. The horns, which form the base to the tip are deeply indented with heary rings, are long and somewhat cireular in form, the tips pointing backward, and the looly is covered by a brownish coat with a tuft of hack on the end of the tail, and the animal feeds on reqetables. It is found on the banks of the Nile, and mumerous pieces of ancient Egyptian arehitecture and seulpfor bear engravinge of the 13. It is, however, a native of Barlary. The Cammi of Simithern Africa is the antelope most nearly related to it.

BUBO: in medieine, an inflammatory swelling of the glands in the groin ; used uceasionally also of the armpit.
BUCCINATOR (Latin, from buccunar, "to sound a trumpet"), the trumpeter's musele; a flat muscle forming the wall of the cheek, so ealled because when the cheeks are distended with air, the contraction of this masele forces it out, thus assisting in blowing wind-instruments.
BLCENTAUR, the name of the State barge in which the doges of Venice used to sail out annually, on Ascensiondar, amid great festivities, to Ierform the ceremonial marriage of the State with the Adriatic, in token of perpetual sovereignty. The ceremony was already in use in the 13 th cen-
 was burned hy the French, but some portions, spared for their gold mork, are still preserved in the arsenal. The word signilies a mythical monster, hali hull, hadf man, sueh as may originally have been depicted on the ressel.
BCCEPILAL"'s (Greek, "ox-head"), the name of the favorite charger of Alexander the Great. See Britamica, Vol. I, p. 4.4); probahly also the name of a peculiar hreed of horses in Thessaly. The young hero was the tirst to break in the steed, and thus fulfilled the condition statecl by an oracte as necessary fur gaining the crown of Matedon.
BUCHAN, DAMD, Aretic explerer, loorn in 17e0, leeld a lieutemant's commission in the liritish navy in lank, and in 1810 was in command of a schooner on the Xcwfompland statim. He explored the river Lxploit (1611), and juntrated lifo miles into the interior. L'romoted commander in 1 sig, he was two yars later anminten to the command oi a Polar expelition, at the same time that Russ and Parry started on the ir wage in seareh of a northwest passage. buchan reachod S'pitzbergen with
 :319) ; lut all attempts to pierce the gigatie ice: barrier were in vain. On his return he commanded for a time on the Sewfoundand station, was at pointed high-sherift in ise5, and a fow years hatcr sailed on another royage to northern waters, from which he mever returied. Ifis name was remened from the list of hiving captains in 1s 3 s.
brcilis. Term, eollector of tombish ballads. hom at Peterhead, somtland, in 179t, died in Lamdon, Sept. 19, Jsist. At $2+$ he publishad a volume of original verse. He tanght himself eopper-engraving. learmed the art of printing at stirling, and set up a prese at letertatal in 18th. Weafterwards removed to lenden, hut returned after two years to Peterhead. Buchan's Burimt Ballends and Smags of the Jorth of siothent was publisheed at Edinburgh in 18,8. A second collection was edited for the lercy Soriety, in 1str. by J. In. Dixom. Buchan was the author of a mumber of buks, among them flo mals of Pitochond (1819), and The Eplintom Tomma-

Bl'cidAN, Whlam, physician, bern in 17e9at Anerm, Roxtargshire, seotland, died in Landon,
 in Etinburgh, where he subsequently practicerl, and lectured on natural phikwophy. Itis Domestic Wedicine appeared in 1ata. Its shecess was great and immediate-19 large editions, amounting to $\mathrm{s} 0,0 \mathrm{now}$ copies, luing sold during his life-time. Other of his work wre Cold Bothing (1886). Diat (1797), and Opiress and thtios of a Mother (1s00). Ile remeverl to London in lite, where he diad, and was louried in Westminster Aliter.
BUCllANAN, Clatmes, horn at Cambuslang, near (Hasgow, sonland, Marth 12, 17 Gifit died Fel). 3. Jsis. Ile studied for two years at Glangow Cniversity, and at the I'niversity of Cambridge (to9t-

95）．In 1707 he became chaplain in the East Indian Company＇s service at Barrackpur，where he stud－ ied Hindustani and l＇ersian；in 1799 he removed to Calcutta，and became vice－provost of the College founded by Lord Wellesley at Fort William．He translated the Gospels into I＇ersian and Hindus－ tani，and traveled througlo southern and western India，but was delyarred as a chaplain from directly engaging in missionary work．lle returned to Eng－ land in 1808 ，where he succeeded，through his ser－ mons and his periodical，＂The Star of the East＂in ex－ citing such interest as to secure the appointment of an English hishop to Calcutta．His Christion lispermes．in Iedia was published in 1855.
BUCHANAN，Ronert，a versatile writer of poetry and prose，born in Warwickshire，England，Aug．1S， 1sth．He was edueated at Glasgow University，and while a mere boy went to London to seck hiss for－ tune．His first work，Uulevtones，a volume of verm published in 1863，was well received；but his first distinct suceess was Lombon liems．published in 1sib．Later volumes of verse are a translation of Danish ballads，and H＇uysild I＇usies（1866）；North Const Pemens（1．867）；Napman Fullew：＂Lyrionl Dramet（1871）；The Dramu 保 Kiange（1871）；Balleds of Lore，Life，and Ifomor（15se）；and The City＂f Drean＇（LiSS）．He has contributed prose to the magazines，and has written several nowels，among thein i（lhitd of Nature（1579），Gorl and the Wam （1881），The Mariydem of Varleline（1882），and Fur－ glope Kanor（JS84）．He was successful as a drama－ tist with I Nine Detys＇Queen，Lerly Clure，Storm－ muten，and Sophia．
BUGMANAN，a village of Michigan，is situated on the st．Joseph River，about eighry－five miles pat of Chicago．It contains a number of manu－ factories，and is the trade－center of an extensive farming and fruit－growins rexion．

BUCHANITEA，a sect of fanatics which sprang no in the west of Scotland in the last quarter of the lnth century．Its founder was Elspeth Buchan， In rn in 17iss，the daughter of Iohn Simpson，a wayside im－keeper near Banff．Separating from luer husband，Robert Buchan，she began to preach strange religious doct rines，which she professed to find in the Scriptures．Expelled from the town＇ly the magistrates in 17St，she established herself near Thombill with a few followers．The poet Furns，in a letter（August，1784），speaks of their idleness and immorality．Mrs．Puchan died in May， 791 ；the last survivor of her sect died in 1848.
BÜCHNEK，Lunwis，a Greman plysician and materialist p $^{\text {hilosopher，horn at Darmstadt，Mareh }}$ ©！，1set．He studied at Giessen，Strasburg，Würz－ jurg，and Vienna；became a lecturer at Tübsingen University，and in 185π published Kraft mud Stolit （1th ed．，1876；English translation，Foref and Mutter，1870），in which he attompted scinontitieally tonestablish a materialistic viow of the umiverse．As a result of the controvorsy caused hy the appear－ ance of this work，Bünhmer was compelled to resign his Unisersity post，and hegan medical practice in Ibarmstadt．He has beena frequent contributor to periodicals on physiological and pathological sult－ juets，as also in support of his atomistic philusophy． X̌utur mel Geist（1857；Brd ed．，1876），and Al＂s Niftur ＊ond ITissenschaft（1862），are works in the latter de－ partment．He has also writtenom Darwinism，the idea of（rod，the intelligence of anmals，and has 1 romslated Lyell＇s Intignity of Mon（1kifl）．

BUCK，Demey，born in Ilartford（＇imm．，March 10，1839．IJe studied at Trinity Colloge，and re－ edived a musical edueation at the lapipic（omserva－ tory of Masic，and afturwards was instrumed by llampman，lijetz，libhter．labidy，Moselulles．and

Boston，assistant director of the New York garden concerts，composer of the centennial cantata sung at Philadelphia in 1876，organist of Holy Trinity in Brooklyn，and director of the Apollo Clun．Ir． Buck has written operetta，organ compositions， song music，and has published Dictiontery of Musi－ cal Torms，and Inftumes of the the Organ in Mistory．

JUUCKAU，a manufaeturing town of Prussian Sax－ ony，practically a suburl of Magdeburg．Popula－ tion， $16,0+49$ ．

1；UCK－hean，Bog－Benv，or Marsh Trerohe， common names of Menyanthes trifuliath，a species of （imbticnuca，widely distributed in the more tem－ perate parts of the northern hemisphere．It has trefoiled leaves，small fringed flowers，and usually Hrows in marshy places．It is a bitter tonic．The root－stock was formerly used as a sort of starchy food in Northern Europe．

FLCKEYE an American name for several trees and shruls of the same genus（IEsculus）as the horse－chestnut．The more commonly distinguished species are Esculus glabra，known as fetid buckeye， Esmulus C＇elifomict，California quekeye，and I：xeu－ lus tura，the sweet buckeye．

IUCK－11OCND，a species of hunting－dog．re－ sembliug a small staghound，used by sportsmen for hunting bucks．

BUCK1E，a fishing－town of Banffshire，scotland， situated 13 miles northeast of Elgin hy rail．It is the head of the fishery district from linatit to find－ horn．The present harbor，constructed of concrete at a cost of $£ 60,000$ ．consists of an outer and an imer basin，with an area of nine acres．Population，tann．
 traveler and lecturer，was born at Flushines，near Fal－ mouth，in 1Fiti，and went to sea at an early age．After years of unsettled and wandering life，he pstah－ lished a journal at Calcutta，the boldness of whose strictures on the Indian government led to his＋x－ pulsion from liengal．In London lie established the＂Oriental Ilerald＂（1824），and the＂Athenaum＂ （1s？8），now the leading weekly literary journal． We subsequently traveled through the Tnited States．lle was projector of a literary cluh，the British and Fureign Institute（1843－46）：and presi－ dent of the London Temperance League（18n））．Te－ sides eighteen books of travel，etc．，he had pult lished two volumes of his autobiography when he died，Jume 30.1855.

BUCKlANF，Cross，inventor，born in Man－ chester．Conn．，Aug．10，1799，waseducated at a com－ mon schoul．At the age of twenty－one he became interested in mechanical pursuits．and in lses en－ tered the Finited States armory at springtield， Mass．，as pattern－maker，where he subsequently lem came designer of machinery and tools for the man－ ufacture of fire－arms，While oecupying this posi－ tion lie made great improsements loth in the ma－ chinery used and in the guns，raising the standard in all the meehanical departments．IIs ehiof in－ vention was a set of machines for working up gun－stocks from the rough state till ther were eom－ phete，except the outward smoothing．So important was this invention that the British Government sont commissioners over to coly the machines and to ohtain skilled workmen from the springtield armory．Mr．Backand recoived no compersation for his valuable inventions leyond his daity wages； lom at his retirement in 185！，Congress roted him ＊10，000．

BUCKRER，a sort of shimld used in ancient and mediaval times．It was nsually grasped by the hand only，and in combat was interposed to re－ exive the how of a sworl．The early Roman stye was four feet long and 24. fore broad；it was plated on the outside with iron and lined with sheep－skin
and linen. Later on the shield was of a square or rounded form, generally composed of wicker-work or hide, plated with metal.

BUCKLEY, Jimes Monroe, a prominent Methodist divine, born in Rahway, N. J.. Dec. 16, 1836. He was educated at Pennington Seminary, N. J., and Wesleyan University. He has been pastor in Detroit, Mich., and in Brooklyn, N. Y; has three times been a member of general conference, was elected editor of "New York Christian Advocate," and has written Tuo Weeks in the Tosemite Talley, Cats and ITild Cats, Land of the Czar and the Nihitist, and other books.

BUCKNER, Smon Bolifar, horn in Kentucky in 1823, graduated at West Point in 1s4; was there made professor of ethies in 1846, and assistant instructor of infantry tactics from 1848 to $185 \overline{5}$. Fle subsequently practiced law, and at the outbreak of the civil war joined the Southern Army. IFe surrendered Fort Donelson to Gen. Grant, Feb. 16, 1862, was imprisoned in Boston harbor, and on his release took command in Bragg's army; was made major-general, fought at Murfreeshorough and Chickamauga, and surrendered at Baton Kouge, May 26, 1865.

IUCKSKIN, a soft leather made of deerskin or sheepskin; also a strong, ivilled woolen cloth. cropped of nap and carefnlly finished. "Fuckskin breeches" are usmally of this cloth, not of the leather.

BUCKSPORT, a village of Maine, situated on the west bank of the Penolscot.t waty miles helow Bangor. It is the seat of the East Maine Conference Seminary, and contains various manufactories. The harbor is accessible to large vessels, and shipbuilding and fishiner are the chiof industries.

BUCKSTONE, JonN Bumwis, comedian and dramatic writer, horn at Imaxton, London, in 180: died Oct. 31, 1sig. Maving, in 1soe. exchanged an attorney's oflice for the provincial stage, he apppeared the next year at the surrey Theater. His success was so mequiveral that in 1827 he was engaged by the Adelphi Theater, where he eontinned till 1833 as leading low comedian. Vxcept for a visit to the United states in 1sto, and short algagements at bury hame and the lyceum, low theneeforward played chiefly at the Haymarket.of which he was hesive from 18.33 till 18is. Buckstume's acting was noted for it $\boldsymbol{\text { distinct }}$ appreciation of the peculiar traits in each individuad character he assumed. Jee was also a prolific dramatic anthor, and several of his pieces have bern highly popular.
BUCKTHORN (Rhmmmes), a gemms of Pilhmnucree, including a number of species distributed through temperate and tropieal reginons. The common buckthorn, Rhammes cothutions, is characteri\%ed by its spinous and eroselike hranchlets, sorrate leaves, and yellow-green dimenous thowers. Tha therries are violently purgative and wore formerly much used in medieine. They sulply the sap green of painters. The hark affords a luautiful yellow dye. Dyers' buck thom, fihmmus inforforize, is a Jow shrub, abundant in thensouth eif Wirope, whose unripe fruit yields a brilliant yellow dye. Thatadarbuckthorn, Rhammes firmgum, wr. in the Fnited States, Rhammuc Cumtinimm, is spineloss, with oval entire leaves, and small, whitish. asillary howers. The chareoal of the wood is light, and is used by gunpowder-makers. The soa-huckthorn, of the coasts of Europe, tha Hipmophar rhomnoides, is a shrub of a different genus and order. Southern buckthorn, of the [nited States, is a small sapotaceous tree, Bumplia lyriaines.

BCCOLIC, a term derived from the Greek word signifying " belonging to herdsmen," nearly equal to pesturel from Latin. It is reperiahly ustd of a
kind of pastoral poetry representing rural affairs, or the life, manners, and occupation of the shepherds. The great bucolic poets were Theocritus. Bion, Moschus; and V'irgil's Eelogues are sometime: called Bucolion.

BUCYRLS, a town in Ohio, county-seat of Crawford comnty. It is situated on the Sandusky Kiver, sixty-five miles north of Columbus. It is the center of an extensive farming district, and the headquarters of numerons manufacturing industries. I fussil mastodon was discovered here in 18:S. In the town and its vicinity occur a number of valuable mineral springs.

BUCZACZ, a town of Austria, in Galicia, situated on the Stripa, an atlluent of the Dneister. ti miles northeast of Stanislau hy rail. A treaty of peace between the Poles and Turks was signed here in 169. I opulation, 19.90.

BlDDING, in horticulture, a process in the propagation of lignemus plants analogous to grafting. See Llompictettre, Dritamica, Vol. XIf, p, zit.

BLDllleA, a genus of shrubs of the natural order scmphturiucria (sulb-order Lomaminceir), of which many species are known, all natives of the warmer parts of the world, and some of them much admired for their beantiful thowers. Buddlate ghebose, a native of Chili, is hardy mongh to endure the elimate of most parts of England, and several half-hardy seecins have also been introduced.

H"DKǐN, a seaport town of Asiatic Turkey, sit uated on tha nowth shore of the Ginlf of Kos, about (10) mile's smuth of smyrna. It is the site of the ancient lablearnassus, the birthpace of llerodotus and Dionysins. P'opulation, ti, (NO.

BUELJ, box (Gmons, an American othere bem
 loint in 1stl ; surved in the Jlexiean war from lidi
 fon in lists and fat9, and at headquarters on vartobe
 gatizing the Army of the Potomace and some after superseded ©rin. IV. T. Sherman in tho department of the Combertand, afterwards the Ohio. In Ratio he was made major-general of volunterers, and in July of the same year assistant adjutant-general. 1h. Was engaged at the hathe of shilnh and the sege of Corinth. Ilis army retreatod lowne Heagg': throngh Temmessed to Lumisville from whieh phate, beinis rexinforeal he thomas, he pursued Brage. who was obliged to farn obuthward, and was shanly driven from Fentucky. Fuell did mot foree anothir congagement, as it wasthumgh her shatd have dons. and his command was transferred to General lanecrans. There was an otheial investigation of his condect, but the report was mot made fullic. The

 Worki i i kinturky. and later prosion asent at louisvilla. kiv.

BLEXASHATIRA, a town on the Paditie anast of the lewphbia of colombia. It has a hot, siokly - limate, hut is the port for the heathful amed riche

1:1 ENA $\mathrm{Y}^{-1 S T A, ~ a ~ r i c h ~ m i n i n g ~ e i t y ~ o f ~ C o h o r a d n, ~}$ connty-seat of chatlees commts. It is situated at an altitude of mearly aight thomand leet, mear the conflemer of cottonwond (reek with the Arkansas larer, about thirty-fiwe miles south of Leadville. The inturests of many of the richest silver mines of the state enter hire, and the surrounding country includes also at small but fertilu agricultural section. The climate is mild and heath hat, and in the neightorhood are a number of fawnito heathand phasure resarts.
l:CENA VINTM, a village of thexien, seven miles south of saltillo, where, on Feh. $2 \cdot 2-2,1$ sta, some

5,40 tinited states troops under Taylor defeated 2n，000 Jpxicans under Santa Anna．

BUEN－IIIPRE，a Wrest Indian island， 60 miles from the coast of Venezuela，and 30 east of Cura－ cao，belonging to the Dutch．It produces timber， cattle，cochineal and salt．Area， 127 spuare miles； population，4， 898 ．
buENOS AYRES．For the history and early growth of this greatest city of the Argentine Re－ fu＇lic．see Britannica，Vol．IV，pp． $4+0-4 \pm 2$ ．The later statistical returns shom progress in several important items．The rapidity of its growth in population is most remarkable－statisticians pro－ nouncing it without parallel．It the date of the last eensus，which was taken in September，1887， the effective population of the city，including visit－ ors，was 433,375 ．The legal population－that is to say，the popmation born on the spot－was only Finte．The balance consisted of 129,472 born in rarions parts of the republic，and 2os ityl foreign－ Ar．At the time of the last preceding census， waide was taken in 186！，the total poputation of the city and suburbs was onty 187,126 ；so that it has more than doubled in 18 years．The present am－ nual increase of population in Puenos Ayres is greater than that of Chicago or any other forth American city．The propertion of foreigners is 11 ？ to every 100 Argentines．of the $228,4 / 4$ foreigners Italians are the nost numerous，numbering 31.1 per cent．，while Sorth Americans number less than t per cent．

The eity has natarally inereased with the growth of its bopulation．In 1869 the city and sumbers con－ tained a total of 20,858 houses，while in 1887 the consus gave a total of 33,804 ．The increase is really much larger than the figures indieate．for a large namber of lats or ranehos wore returned as housps ly the consus of 1 win．which have since been re－ placed by larger add substantial buildings．
ln religious fath the rity is overwhelmingly Loman（atholic， 97.8 per cent．professedy belong－ inser to that faith．There are six street raliway com－ baies，with 109，37．kilometers of track， 342 ears． and 5,45 horses．Juring the first three monthe of $1 s(1)$ these railroads transported $10,177,078$ passen－ gers
（rieat progress has alsobernmade in educational matters．There are two universities with a total attendance of 993 students．In 1889 2：$\%$ diplomas were delivered，inchuling si to doctors of law，sin to medieal practitioners，and 11 to civil angineers．In addition to steveral enlleges and normal sehools，
 rected by 1.071 teachers and attended by ot， 009 pupils．it large proportion of the school－houses are the property of the nation．Ahout 100 period－ icals are published in the eity．

In commeree，in the arts，and in mannfactures the Argentine capital has made remarkable progress， there being upwards of（i，0on industrial estalilish－ ments in the city，giving omployment to more than 10.000 persuns

REFPSLo，in zö̈hgy．Nep Britannica，Vol．IV， P．tfor see also lisus，in theser litvisions and Addi－ finios．

RUPFALO，a city of N゙יw Vork，located at the （atern extremity of Lake Eric，where the lake contracts to form the Nampara livar．See Britan－ niea，Vol．IV，p．43．It has a water front of nearly four miles on the lake，and about the same on the Niagara rimer．That portion of the city fronting on the lake rises gradually to a height of of feet abow the level of the harbor，and at a distance of about twomiles becomesan extended modulating platoat． The wher portion，fronting on the riber，is ons a What bio feet in height．Theratreets ate hroad and
straight，intersecting at right angles，and are gen－ erally lined with trees．Water is brought through a tmmel extending into the middle of Niagara River，through which $43,000,000$ gallons are daily distributed through 281 miles of mains to con－ sumers．The park system includes Forest Lawn Cemetery，containing 75 acres，and a beautiful lake dotted with mumerous islands，covering 40 aeres． The harbor is protectod by a breakwater 7,600 feet in length，rinning anallel with the shore，and a shore arm of piles and crib－work 4,100 feet long． running out towards the sonthern end of the main or detached breakwater．Bulfalo is one of the greatest railroad centers in the world，having with－ in the eity limits 638 miles of railroad．

The grain trade of IBuffalo is immense．In 1843 Joseph Dart erected the first elevator for storing and transferring grain ly steam－power．It had a storage capacity of 55， 60 inshels，and a transfer ca－ paeity of 15,000 bushels per day．In 1890 the aggre－ gate storage capacity of the mumerous elevators was 13，050，000 bushels，and the daily transfer－capacity $4,000,000$ bushels．In 1840 the grain receipts were 89，3i2，800 bushels．The trade in live－stock is also rery extensive，the stockyards eovering so acres of ground，well pared，and protected by sheds．

Public huildings are mumerons，and display supe－ rior arehitectural taste．Among the more note－ worthy are the City and County llall；the Erie county jail；the Postolice builing；Police head－ quarters；Nusic llall；Bullalo Library；State Insane Asylum；County Almshouse；Young Iler：＇s Christian Association building；and the State Sormal and Training Sehool．

Buffalo has 40 publie schools，and upwards of 50 private schools and colleges．One of the public sehools（No．31）is the largest in America，having 2,775 registered pupils．There areseverallibraries． the Buflalo library ranking among the foremost in the eountry．Population in 1880，150．134；in $1590,254,457$.

BUFFINGTON，Aueldert R．，soldier，horn in Wheeling，Ya．，Noy．20，18：37．He graduated at the United States Military Aeademy in 1861．He drilled rolunteers at Washington for the eivil war for a month（18is）and was made first－lientenant of ord－ hance in 18io．Fur a year he was engaged in mus－ tering Miswori and llhinois volunteers，afterwards assisted in the defense of Pilet Knob，and was successively commander of the arsenals at New York，Laton Rouge，Watertown，Detroit．Water－ rliet，Indianapolis，Alleghany，and in 1881 was plaed in command of the National Armory．For eleven years he was on leave of absence inspecting arms for the Egyptian government．He has per－ fected rarions inventions，among them the magazine gun and earriages for light and heavy ginns．I Ie redneed the cost of manufacturing rifles at the Springtield armory，and was the originator of the nitre and manganese method of bluing iron and strel，in use at the National Armory

BUFP LEATIIFR．See Oil Lehtheh，Britanniea．

BUFFOON（Italian，butin，＂a triek＂），one who entertains others hy tricks，wedd gestures，and other vulgar pleasantries；a chwwn．From the same word eomess bufto＂a conlie antor or singer＂；and the freneh name．phom－mon！for comie opera． sue loom，liritamica．Vol．IN，p．Biti．

BUFORD，Jown，American ollicer．half－hrother of N．l＇．Buford，born in Kentucky in 1s：5，died in Washington，I）．（．．．Dece 16，Is63．He was a West Pinint eraduate，served against the Indians on the plans，and at the commencement of the civil war Was assistant inspector－general．In lifio he entered atetivererver，leing ont the stall of General Pope
in Sorthern Virginia, engaged at Madison Court Fonse, the passage of the Rapidan, Kelly's Ford Thoroughfare Gap, Manassas, South Mountain, Antietam, Fredericksburg, Gettysburg and many other battles. Just before his death he was assigned from the Army of the Potomac to the Army of the Cumberland. Buford was an admirable cavalry officer. He died from the effects of exposure and wounds.

BuFord. Nipoleon Boxaparte, American othcer and engineer, born in Woodford county, Ky., Jan. 13, 1807, died March 28, 1883. He was a West Point graduate; served as lieutenant of artillery on varions surveys, and was appointed as instructor at West Point. In 1861 he entered the Lnion army : was engaged at the battles of Belmont, Mo., Island No. 10, and at the sieges of Corinth and of Vicksburg. In 1865 he was brevetted major-general of volunteers, and five months later (August) mustered out of service. Ifter the close of the war General Buford was United States commissioner of Indian Affairs (ISAS) and inspector of the Union Pacific liailway ($18(6,-69$).

BUGBANE, or BcGwort, a name given to species of plants belonging to genus Cimicifinge, in Europe applied to Cimirijuga jutons, and in the Enited States to Cimicijuge rocemona and Cimirigug 1 mericana, from their reputed virtues as destroyers of insects. The term is sometimes applied to the white bellebore, romatram rivide.

BUGEAUD, Thoms, French marshat. horn at Limoges in 1784, died of cholera at Paris, June!! 1s 19. He entered the army at the age of 19 and by his bravery during theNapoleonice campaignsearned a coloneley. which was bestowed in lalt. Iewalled from a 15 years' retirement to ative lifor ly the duly revolution of 1830, he was eleated deputy for Prerignetux, and soon gained Louis lhilippors isteem; in 1836 was dispatehed to Sheria. Where he distinguished himself against Nbl-el-Kather, aml in 1sto was appointed gevernor-general. The \%omabesmed their organization to him. In Ist:? he received the marshal's bitom, and the following year his viotory at Isly over the Emperor of Morocers forens unimed him the title Duce d'lsly. In the revolution of lederuary, ists, he commanded the army in l'aris.

BUGGE, Elsexschmats, a Norweqian phiblogist born at Laurvik. Jan, in, Lson : studied at ("hristiamin, Copenhagen and Berlin, and in 1 shiwas appeinted professor of Comparalive Philologry and old Norse at the University of Christiania. Dlis Ohl Nirse batlads (1s5s) and historical leg(ands 1N(it-lio) : critical edition of the earlier Liden (1atio) : stmdios in ancient Italian dialecta (1s\%). and on the origin of the seandinavian legends of gods and heroms (188I-82), besides manerons dissertations on all departments of the Toutonic and Romanic lamguages. place him in the first rank of living philohegists.
BUGLE, the common English name of . 1 juga optons. a low labiate plant of Europe. Its flowers are generally blue, but white and purplish varietios are sometimes grown in llower-borders. Ajugu alpine is one of the beantiful thowers of the Swiss Alps.
lUGGLE. a name for the slender, elongated kind of head, usually black, used in decorating female apparel.

BUGLOAS, a name popularly applind to many plants of the natural order limenimet. morestrictly to Inchusa offrimalis. The small wild hogloss is Asperugo pror"mbins; viper's bugloss is the Englisli name of the beautiful Erhimn rulymer. Both these plants are naturalized in the Inited states. Other varieties are the small lougloss. Lyfopsis areensis, and the sea-bugloss. Vertemsin matima.

BUHRSTONE, or Burstone, a name givan, without reference to geological relations, to eertain vari-
eties of stone, whose dressed surfaces present a keen-cutting texture, which adapts them for use as millstones. Buhrstones are quarried at Conway in Wales, at several places in Scotland, and in various parts of the United States, but the most desirable varieties are obtained from the quarries of La Ferte-sons-Jonarre, in the department of Seine-etMarne, near Paris, and from the Eocene strata of south America. The stone is found in heds or in detached masses, and the mode of quarrying is peculiar. When the mass is large, it is cut out into the form of a huge cylinder; around this srooves are cut, at distances of about is inches, the intended thickness of the millstones; into these groores wooden wedges are driven, and water is thrown bpon the wedges, which, causing the rood to swell, splits the cylinder into the slices required. It is not musual to form millstones oi pieces of buhrstone cut into parallelopipeds and hound together hy iron houps.

BUILDIDG ASEOCLITONS See Eritamica, Vol. IV.11F. 18 -14.

BIILlMNT-LEASE, a lease of land for a term of years, muder which the lesser is bound to erect certain buidelings on the land aceording to specification, these buildings tol hecome the property of the landowner on the expiration of the lease. The term of ninety-nine years has come to lee associated with building loases in England, hut such leases are granted fur varions perinds. In the United States baiddine laasos may contimbe for any torm of years agreed upon by the paties. nu time lwing specified by Stateor L'nited ctatos law.

BERKl゙li, a fortifed island of the Indus, in Sind, between the fowns ni lahei and sulkur. The fortress occupie silmust the whole island, but hats now 130 militars valme.

ECTCi.iliI. a prineipality mow ineopmated with Eastern lommelia and innher the suzerainty of Turkey. Irea. including that oi South bulararia. E. Rommolia swo stuare milos, popmation, 3,1.040ヶt. For barly history and productions. see Britamica Vol. II. pposti-17; capital, sofa, with a population in Is,
Rulgaria, matd a primeipality by the treaty wf Ferlin, duy 13. lise, wats to be governed ly a prince ohocted hy the national asstmbly (Solranje). with a legislature and a constitution. Prince Alexander, of lattonberer, Was elected sowreign, and at a moeting helel in lssl the Sobranje invested him with witranrulinary powers and authorized him th comwere, at the close of seren years a sobranje In form ar rosised constintion to be jermangated in 14.s. The Prince, howerer, was comperled to abelicato in 1085.

On July Tami. Prince Fordinand, of Saxe-Coburg (horn in Viphmat in lsol. youngest som of Princt Augustus of Sax"- (ohneg and Princess Clementina. danghter wi Louis lhilipper), was elected tu till the racancy cansed by the depusition of Irince Alexander Heacerpted the position, and lowh the vath of oflice at Timova. It the time of his uretion he wasanofficer in the Aust riam army. Ilis sowereiguty has not been recognized hy the lowers, and his tenure of oflice is generally resarded as precarious. Russia is strongly opposed to hix inemmberney. He is now (1s:n) 30 yars of age.
The province of Eastern Rommelia, which received its antonony in lsis, united itself with the principality of Bilgaria in ICSN, ant six months later Turkey agreed to the union. Lulgaria, which had previously paid no, tribute, agreed in 1887 to pay 900,000 a yarar ats the Roumelian contribution to Turkey.

In 1590 the emmbined puhlie deht of Bulgaria was reported as about $\$ 10,000,000$, of which about
\$. 1100,000 was the share of Eastern Iommelia-exclusive of the liadsility to Turkey

An electoral law passed in 1882 pstablishes two grades ol electurs to the Sobranje. Those of the first degree included all persons holding public office, graduates, ecclesiastics, owners of real estate and their children, and persons practicing an independent calling, such as merchants, farmers, manufacturers, and employers of labor. Every 50 electors of the first degree were to nominate one of the second degree; and the men so nominated were to elect the deputies by semtimole-liste in the thirteen departments. The normal period of election is six years. Other laws were sulsequently passed to determine the method of municipal elections, to establish the judiciary organization, and to provide for the institution of a Second Chamber. Some of these measures are already in operation; but the frequent distumance of the country has made it impossible to ehange the electoral machinery, and in the meantime the Great Sobranje, or National Assembly on the wider tranchise, has had the direction of affairs in its own hands.

BClBLL, a Persian name for the nightingale. which was introduced into English pootry ly Moore, Byron and others. In ornithology fue name is given to a very different hird, I'ycumotus hemmrhous, usually ranked among the bahbling thrushes. It is a little bird of brilliant plmmage, remarkable for its pugnacity. The name bubbul is also applied to several related forms.

BULL, a ludicrons bhunder in speceh implying some obvious alsurdity or contradiction. The origin of the name is supposed to be due to the eontrast in papal bulls between the assertion of excessive humility in the title, by which the popestyles himself "servant of servants," and his assump, tion of absolnte supremacy and authority over the world. Bulls are commonly regarded as especially characteristic of the Irish. Coleridge, remarking on the well-knuwn bull."I was a fine child, but they changed me," says: "The bull consists in bringing together two ineompatihle thoughts, with the sensation but without the sense of their comection.'

BL"Ll, Jons, a generic name for an Englishman as a persmifieation of what is suppesin to be the English tye from Arluthont's use of the name in his Mistom of Juhn I; ull (1712; reprinted complete
 of bull is bery similar to the familiar figure in the pages of "Punch."
 Norway, Felf. 5, 1810, died there Aug. 18, 1880. It the age of tive he began to show musical talent ly his performances on the violin, and at nine yearsot age phayed as tirst violinist in the theater where his father was an actor. Alter unsatisfactory experiences with varions teachers and sehools he went to Paris, where he was befriended hy ladame Villeminot, and, unter the paronage of the Dake of Nontehello procured muans for a tour through Switzerland and ltaly. riving eoneerts and stoppiner at Milan to study musie. Wis first great suecers was aehleved at bologna; was followed hy a surios of successlul eoncerts in the primeipal eitios of Italy. and he returned $t={ }^{\prime}$ liaris in las\% with an established reputation. Dle subsuphonts visited London, the varions conatrise of Euragn. a raveled throngla the lonitod States, ('amada amd the Werst Indies, retuming to Norway in 18ts. 10 1ster ho paid a second risit to demerica, where bed -pent dive

 sucoessfal. Fin moreral brars he spolat his winturs in America and his sunnmers in liurope. Hiv lifo
has been written by his widow; the book is entitled Dle Bull: "Memuir.

BCLLACE. I'rmons insititin, a shrubor small tree, larger and much less spiny than the slow, but bery closely allied to it. as it is also to the plum. so that many hotanists regard them all as one specios. The fruit is larger than the sloe, generally globor. and is used like damsons. The bullace is a narive of Asia $\$ linor and southern Europe, but now connmon in hedges and coppices in England, and is sparinyly naturalized in the United States. Bullace is a popularname of Meliouco bijurge, a common West Indian tree; in the Cuited States it is given to the muscadine grape, litis mplume.

BULLLE, or Blebs, are collections of serous fluid, situated immediately beneath the cuticle. and raising it from the true skin. Tley differ from resicles only in being of larger size. The most familiar examples are the "blisters" produced on the hants by rowing or the feet by walking. They are accasionally met with in many diseases of the stin, as eczema, erysipelas, etc.; but in pemphigus and in some forms of hydroa they constitute the chief feature of the disease.

BULL-BATING, a barbarous sport once very popular in England. Anumber of dogs were set on to attack a bull, whose nose, that he might be made as furious as possible, was sometimes blown full ix beaten pepper before he was turned lonse. Another form of the sport was to fasien the luth to a stake. by a rope some yards in length, and to set bull-dogs on him, one at a time, which were trained to suize him ly the nose, and when this was accomplished it wascalled "pimning the bull." But no small part of the enjoyment of the spectators was derived from the success with which the attacks of the dogs were met by the bull lowering his head to the ground, and receiving them on his horns. often tossing them to a great distance. King dames I delighted in this sport; and when the Czar Nicholas of Russia visited England, before his aceession to the empire, a boxing-match and a bull-bating were got up to show him English tastes. Bull-hating was declared illegal in 1835.

ISLLLET, the leaden projectile discharged from any kiad of small-arm. Case-shot or canister and schrapnel shell are also filled with spherical bullets hardened by the addition of antimony to the leal. Formerly all hullets were spherical, and east in molds. The bullet used for rifles of rexent contstruction is chongrated and conieal at the apex, with a hollow at the linse, into which some kind of plug is inserted, which, driven into the lead by the force of the explosive, forces the base of the bullet ontward till the lead takes the grooves in the ritled barrel. flats giving the bullet a rotation during the motion forward. The plug is sometimes omitted, the base of the bullet being furced into the grooves by the expansive force of the powder. The adyantage of rotary motion is that it stodies the hall, catsing it 10 travel point tirst. thas enabling a heavier, hecanse longer, projectile to he tired with alecuracy from a smaller bore than was formerly used, thereley presenting loms surfane to the resistance of the air, and sin increasing the range.

The dimmeter of rifo-hullets lats hem deareasing pror since their introdnction. liullets are now made ly means of a machane. which mondeds a leaden rimb ,it the propmer thickness. cuts it intor the reduired length, and stamps the hullets into shape by means of slondies, dropping them into a lux
 prerhonr.and ont man ean attend to four machines.
 tree of the Wres lation and tropical Smeriea, valued for its wand. which is solid, heary. close-
grained, and durable, and also in some species for It fruit. The bullet-tree of Guiana, Mimusops globosa, yields balata-gum, a valuable substitute for India-rubber. Other fruit-bearing congeners are Bumelia retusa, the bastard bully-tree, and Bumelia ingens, the black bully-tree, while Lucuma mammosa, of which the fruit is called the marmalade, is sometimes called Jamaica bully-tree.
BULLETIN, diminutive of hull, an official report concerning some public event, especially a report of news recently received, and issued for the information of the public.
BULL-FIGHT, a combat of men with bulls for the entertainment of the public, common in Greece, particularly in Thessaly, and in Rome under the emperors, though in later times forbidden both by emperors and popes. The bull fight is still a favorite spectacle in Spain and Mexico. Formerly the most magnificent bull-fights were instituted by the monarchs themselves; at present, both in the capital and in the larger towns of Spain, they are held either as speculations or for the benefit of public institutions. Every large town in Spain possesses a Plaza de Toros, and so do many towns in Spanish America; those of Madrid, Seville, and Caceres are especially handsome. Bull-tighters personally are esteensed much as prize-fighters are in this country; but they are the idols of the lower classes, from whose ranks they are drawn.
bULLFINCII. See Britannica, Vol. IY, p. 518.
bullock, Rufus Brows, born in Bethlehem, N. Y., llareh 28, 1834. For many years he was connected with the Adams Express business in the Southern Atlantic States; he was active in extending telegraph and railroad lines and in the organization of the first national bank of Georgia. Ile was delegated to the convention which framed a new State constitution after the civil war, and was elected governor of Georgia in 186s. During his term the reactionists in the legislature secured a majority, and the colored nembers were expelled from their seats; but the gorernor was enabled, throngh authority conferred by Congress, to reassemble the legislature and restore them to their rights. His course in this matter developed the spite and abuse of many, and charges of corruption were brought against him, but he was vindieated by the courts. During his term the state increased much in prosperity, but at its close he refused to take any further part in politics.

PLLLOCK, Wibham, inventor, horn in Greenville, S . K^{\prime}., in 1813 , tied in Philadelphia. Pa., April 14. 1867. He becamean iron-ionder, making a careful stady of mechanics. After engaging in warious enterprises he commenced the pullication of the "Banner of Truth," for the printing of which he made a hand-press of wood turned hy a crank, and having a self-feeder attached. Hie continued his experiments in regard to printing-presses, and soon constructed a fast press on the planetary system. which was used for printing "Frank Leslie's Illustrated Weekly." This made him famous, but he attained to even better results. He built a press consisting of a single machine which was self-feeding, printed on both sides, cut the paper at regular intervals and delivered 12,000 sheets an hour. Further improvements raised the speed of the press till 30,000 sheets could be delivered in an hour. Mr. Bullock's presses rapidly took the place of all preceding ones. Since their invention the idea has been enlarged upon by other inventors and further improvements made.

BULL-ROARER, a tos made of a thin piece of wood usually about eight inches long and three broad, sharpened somewhat at the ends, to one of which a string about 30 inches in length is tied, by
meaus of which it is whirled rapidly in the air, causing ly its revolution a loud and peouliar whizzing noise. An instrument of the same kind is to be found in almost every country in the world. It has been identified with the rhombos used in the ancient Greek mssteries, and is to this day employed in religious rites or mysteries in New Nexico, New Zealand, and South Africa.

BULLS and BEARS. In the slang of the stock exchange, a "bull" is a person who seeks artificially and unduly to raise the price of stock, and speculates on a rise. On the other hand, a "bear" is one who speculates on a fall; who sells stock for delivery at a future date, in the hope that meanwhile prices will fall, so that he will buy at a lower price what he has sold at the higher price.

BULL-TROUT, a name applied to certain species of the salmon genus, especially to Salmo cambricus. By anglers it is considered next to the salmon as a prize, and by many is mistaken for it. The laws for fishing salmon apply also to the bull-trout. See Britannica, Vol. XXí, p. 222.
BÜLOW, Hass Gudo vos, a German pianist and composer, horn at Dresden, Jan. 8. 1830 , the son of Karl Edward von Bülow (1503-53), poet and author. Hans cualified at Leipsig and Berlin for a legal career; hut, subsectuently resolving to give himself to music, spent sone time with Richard Wagner, and in 1857 became the pupil of Liszt, whose daughter he married. In list he became Prussian courtpianist, in 1864 pianist to the Bavarian court and head of a music school at Nlunich. In 1869 family troubles led him to resign his appointments and retired to Florence, and sobsequently be undertook the great concert tours through which he hecame known in England and America. In 1850 he settled as director of music to the court at Meiningen. Ho is a brilliant pianist, remarkable for skill in conquering technical difficulties, and is fanoms as a concert director, and as a representative of the Liazt-Wagner school. He has produced works for piano and for the arehestra, as also numberous editions of pieces ly the great musicians, with arrangements and transcriptions from the works of lperlioz, Wagnerand Liszt.
BULRUSH (formerly sometimes written bullrush), a popular name for large rush-like or reedlike phants growing in marshes, not very strictly limited to any one kind. The term both in literature and botany is more particutarly applied to two distinct plants of somewhat similiar regetative habit; namely, Typha latiotia and Nrirpus lacustris (see Britamica, Vol. XX, p. 319), perhap more generally restricted to the latter, a tall rush-like plant from which the bottoms of chairs mats, ete., are manuiactured. Tupha latifolio, also called reedmace or cat's-tail, is a large handsome plant of grass-like habit, and reaehing a height of 5 to 7 or s iret,and applied to uses almost identical with the preceding. In the United states the name is given to species of Juncus. The bull-rush of Expyt is the papyrus Cuperus papyrus.
BULSAR, a seaport of India, in the district of Surat, on the estuary of the river of the same name, 115 miles north of Bombay by rail. Timber is the chief export. Population, $13: 2 \times 2$?
BULTI, a name given to the northern part of Kashmir, once an independent state.
RUL-TSO ("Borax Lake"), a lake of Thibet, 100 miles northwest of Lassa. Its area is 24 square miles.
BUMBOAT, a boat used in peddling provisions, fruit, and small wares among vessels lying at some distanee from the shore.
butbury, hesey Whana, an English caricaturist, born at Mildenhall in Suffolk in 1750, died in 1811. Educated at Westminster and Cambridge,
he early became distinguished for his humorous designs, which gave him the right to rank alter Rolandson and Gillray. He usualw avoided political subjects. He drew mainiy in pencil and chalks, but also prodnced water-colors.

BUNCE, Oliver Bell, author, born in New York city, Feb. 8, 1828 , died May 15, 1890. He was educated at the then famous lands Academy of his native eity, and became a bookseller and publisher. He was on the editorial staff of "Appleton's Journal" during its publication, and was a contributor to other periodicals. He is well known by his popular little book on manners, entitled Don't. His other writings are A Buchelor's Stor!, The Romance of the Revolution, Life Before IIim, Bensley, Bachelor Bluff, My House An Irleal, Timias Terrystone, Marcos Bozzaris, and Low in 'ro.

BUNCOMBF, EDWard, soldier, born in St. Kitts, West Indies, died in Philadelphia, Pa., in 1777. Ile was educated in England, but came to live in Tyrrel county, N. C. He fought in the Revolutionary war at Brandywine and at Germantown. In the latter battle he was wounded, captured and died soon after from his wounds. A county of North Carolina was named for him in 1791.
BUNDEHESII, the name of a book in the Pehlevi language, which is one of the most important sources of information as to the Zoroastrian system of belief. There are translations by Justi (1868) and West (18:9).

BUNGALOW, the kind of house usually oceupied by Europeans in the interior of India, and commonly provided for officers' quarters in cantonments. The bungalow is a one-storied thatched or tiled house, usually surrounded by a veranda; houses of masonry, with terraced roofs, are distinguished as pucka houses. The name bungalow is a , corruption of the native word bangla, "Bengalese," and probably refers to the first distriet where the form of building was noticed by Europeans. Dak-bungalows are houses for travelers, constructed at intervals of from 12 to 15 miles on the highroads in many parts of India and maintained by government. A rupee (about 40 cents) a day is charged for the use of these bungalows.

BUNGAY, an English market town, situated on the Waverney, six miles west of Beceles. It grew up around the 12th-century castle of the Bigods, Earls of Noriolk, some ruins of which still remain; but the town is mostly of later date, having been rebuilt sinee the gieat fire of 1688 . It has a large printing establishment, and considerable trade in corn, malt, flour, coals, and lime. lopulation, 3,579.

BUNGENER, Louls Felix, a Protestant writer, born of German family at Marseilles, France, in 1814, died June 14, 1874. IIe studied theology at Geneva, and beeame director of the gymnasium there in 1843, Jut wats removed by the new radieal government. Engaging in literature, be published a series of writings on theolorical and historical sobjects, but is most widely known for several works, in the form of romancts, in which the principles of Protestantism are sot forth and defended.

BUNIAS, a small genus of r'rurifror. The leaves of Fomias orientnlis are eaten in Russia, and are used in Western Earope as fotdor. The leaves and root of Fumias erucrge are eaten in Greece.

BUNION, Buxwos, a term applied on enlarged burse, or synovial sacs, sitated on any part of the foot; but most eommon over the meta-tarsophalangea] joint of the first or the fifth toe, and accompanied by more or less distortion of the joint.

BUNKER 1111. . Seo Britamiea, Vol. IV, p. 5:1. BUNKUM, Buncombe, a phrase used in the Thited States for more bombastic spereh-making, intended for the nowspapers withont regart to the
audience present. There is a counts named Buncombe in North Carolina, to which the word seems originally to have been due. Bartlett quotes from Wheeler's Mistory of North Carolina: "Several years ago, in Congress, the member for this district arose to address the House, without any extraordinary powers, in manner or matter, to interest the audrence. Nany members left the hall. Very naively he told those who remained that they might go, too. he should speak for some time, but he was onl; "talking for Buncombe."
BUNSEN, Robert Whlielay, a distinguished German chemist, born at Gottingen, March 31.1811. He studied zoülogy, ehemistry, and physies at the Cniversity of his native town, and at Paris, Berlin, and Vienna. He filled the chair of chemistry in suecession at Marburg, at Breslau, and from 185* at Heidelberg. He invented the charcoal pile and the burner which bear his name; diseovered that the hydrate of oxide of iron is an antidote to arsenie; was the first to produce magnesium in large quantities, and in 1864 invented the magnesinm light, which has proved so important to photography. The greatest discovery with which his name is associated is that of the spectrum analysis, made in eonjunetion with Kirehoff, which has been the means of working wonders in ehemistry and revealing mueh to astronomers. Besides his original work in chemistry, Bunsen proved himself a most successful teacher, and his laborators is still a favorite resort for Americans studying chemistry in Europe. His writings on physics and geology, as well as on chemistry, are numerous.
BUNSEN BCRNER, a gas-burner named for its inventor, the distinguished German chemist. Prior to its introduction, the heating by gas or oil was unsatisfactory, owing to the imperfeet combustion of the carbon eansing the deposit of soot on ans body in contact with the flame. By this invention the gas, just previous to burning, is largely diluted with air, thus produeing a non-luminous and vers hot flame. I'robably no other invention has done so mueh to facilitate work in the ehemical laboratory, and it has been adapted for use in connection with a rariety of small furnaces, and in many forms of gas-stores.

BUNT, a parasitic disease of cereals, due in Europe to Tilltia cariss, a mold belonging to the Astilaginer. The eommon smut of wheat and corn in the United States is Litilago carbo, and is not called bunt.

BUNTER SANDETEIN, or "variegated sandstone," the German name for the New Red Sandstone. It is the lowest member of the Triassic system. See Geolociy, Britamiea, Vol. X", p. 3j̈:

BUNTING, a thin woolen material, of whieh flage of all kinds are usually made. Also a soit, warin fabrie in use for women's dresses.

BUOL-sCILAUENSTEIN, Karl fermisasi, Count, an Austrian statesman, born Mar 17, 1797, died Oet. 28. 1865. . le was minister in succession at Farlsruhe, Stuttgart, Turin, and St. Petersburg. He Tas second Austrian plempotentiary at the Dresden Conference (1850), after which he was minister at London, until the death of Schwarzenberg recalled him to Vienna, to hold the portfolio of foreign affairs. IIe presided at the Vienna Conferenee in 1s55, and represented Austria at the Congress of Paris
BI'ONONCDNI, the name of three Italian composers. The elder, Giovanni Maria (1640-78) wrote instrmental fieces, songs, and chureh music. Mis sons, Mare Antonio (l6ito-tzer) and Gioranni Battista ($166 ; 1750$), were known as composers of operas. The latter settled in London in 17203 , and for some sears was very famous and popular.

BUPRESTIS, a genus of beetles, typical of the iarge family Buprestidx. Those occurring in warmer countries are conspicuous for bright cotor and metallic sheen. Some of them are popularly known as golden beetles. Buprestis gigas, fonnd in Cayenne, is about two inches long. Some small species occur in England. Buprestis rufipes is a North American species. See Britannica, Yol. III, p. 507; and Coieoptera, Vol. Vi.
BUR, in engraving, a slight ridge of metal raised on the edges of a line by the burin, the rocker, or the dry-point. It produces an effect like a smear, and is therefore usually regarded as a defect, and scraped off. Some etchers, however, take advantage of it to deepen their shadows; in mezzotint engraving the whole effect comes from the bur, which is untouched in the deep shades and more or less burnished away in the light. As the bur soon wears off, in valuable old proofs its presence is strong evidence of the early date of an impression.
bUtrano, an island and town of Northern Itals. five miles northeast of Venice. There is here a school for the designing and making of fine laces; this mannfacture, once famous, then nearly extinct, has latterly been revived. Population of town, 4,492; of commune, 6,800 .
bURBAGE, Riciand (1567-1618), an English actor, born about 1567, the son of James Burbage, himself an actor, and the builder oi the Shorediteh and Blackfriars theaters (see Fritannica, Vol. XXI, pp. $760-61$; Vol. XXIII, p. 224). Richard, who commenced acting while wery young, had by 15 s earned considerable reputation, and during the next 10 years outstripped all competitors. On the death of his father in 1597, he became part owner of the Blackfriars Theater; and two years !ater, in conjunction with his brother, pulled down the Shorediteh honse, replacing it wilh the famons Globe Theater as a summer play-house, while Blackfriars became exclusively a winter-house. To cover the expense liurbage took as partuers in his ondertaking Shakespeare, Hemming, Condella and others. At one or other of these two theaters Burbage gained his greatest triumphs, and took the leading part in new plays until his death in 1618.

BURBOT, a fresh-water fish of the genus Luta, family Gadide. It has an elongated form, depressed head, two small barlmels on the nose and a larger one on the clin, a short low anterior dorsal and a long posterior one. Lota migaris is found in various parts of Middle Europe, in Asia, and in several rivers of Lingland, where it is called conyfish and ef-pout. An American species (Lota matutosa) is found in New England, the Great Lakes, and farther north. In the United States it is commonly known as ect-pont, ling, and fresh-w oter owd. and is regarded as inferior for fond. In the fur countries it is generally known as losh or tor he and marthy or methy, and its flesh is esteemed.
bURCHARD, Smuma Dickisoox, born in Steuben, N. Y... Sept. 6,1812 . He became mastor of a Presbyterian church in New York city in 1839. At a ministers' meeting during the P'residential campaign of 1884, he referred to the Democratic party as the party of "Rnm, Romanism and Relellion." The alliterative sentence was quickly picked up \quad ly the press, and is thought to have turned the tide which resulted in the election of the Democratic candidate. He died in 1891 .

BJRDEKIN, a river of Queensland, Australia, draining the district of North Kennedy. It rises not far from the coast, and after an irregular course forms a delta emptying into Bowling Green and Upstart bays. It was discovered is letichard
in 1845, and explored by Dalrymple and Smith, 1859-60. See Britannica, Vol. XX, p. 171.
BURDEN, HENRy, inventor, born in Dumblane, Scotland, April 20, 1791, died in Troy N. Y'., Jan 19, 1871. While a lad on his father's farm lie showed his inventive genius by making lalor-saving machimery. A thrasling-machine was his fist successinl invention. He pursued a course of seientific studies in Edinburgh, and in 1819 came to America. In 1822 he was conneeted with the Troy iron and nail factory as agent, but ultimately became sole proprietor of the works. He invented agricultural implements. He made an improved plow, the first cultivator, then a machine for making horse-shoes, and one for the manufacture of hook-headed spikes, such as are now used by nearly all the American railrads. Previous to this these spikes had to lie made liy hand, and his invention gave a new impulse to ruilroad buiding.
BURDEX OF PROOF, in legal procedure, signifies the obligation to establish by evidence certain disputed facts: and, as a general rule, this hurden lies on the party asserting the affirmative of the issue to lee tried or question in dispute, or on the party against whon judgment would be given, according to the presumption recognized by the law of evidence if no prool were adduced on either side. Accordingly it almost always rests on the plaintiff or pursuer in an action, or on the party asserting the facts on which the result of the litigation must depend. There may, however, le such a legal presumption in favor of the pursner that the furden falls on the defender. The burden of proof is said to lee shifted when the party upon whom it lay has produced sufficient evidence to turn the presumption in his favor.
bi'RDETT-COUTts. Avagh Gembimata, the Right Honorable barones. English philanthropist, danghter of sir Francis Burdett, lorn April 21 , 1st.t. In $19: 37$ she inherited mueh of the property of her grandfather, Thomas couts, the banker. and the liberal and philantloropie use she made of this wealth has rendered ther name deservedly popular. Among her numerome public charitiex may be mentioned the erection and endownent of seteral churches and sehools, and the endowment of the three colonial bishoprics of Cape Town, Adelaide, and British Columbia; the extaldixhment of a helter and reformatory for fallen women; and the eroction of Columbias square, consisting of motel dwellings at low rents for about 300 families. Her private charities have loen on a correspomding seale, and she is also a liberal patroness of art. In 1×71 she accepted a peerage from Govermment. In 1872 the freedom of the city of London was comferred upon ber; in 1sit that also of Edinhmegh. In 1881 she was married to Mr. William AshmeadBartlett, who in 1842 ohtamed the royal liense to assume her name, and whe in 1885 was elected to Parliament as Conservative member for Westminster.
BCRDETTE, Robent Jones, humorist and leeturer, horn in Greensborongh, l'a., July : $80,1 \times-4$. lle was educated in the pulfic school of poria, 111 , and in 1862 enkisted as a private in the tith Illinois wolunteers, and sersed through the war. He was connected with the "Teoria Transcript" in 1869, afterwards with the "Review," and later he started with friends a new paper, which was unsuecessful. He hecame associate editor of the "Burlington Hawkeye," of Jowa, and his humorons sketches in this paper were widely copied, and made him known to the newspaper-reading world. His fun was neyer coarse or vulcar. In 18, he began to deliver lectures, which were only moter-
ately successful, and most of which have since been compiled with fugitive pieces and published in book form; as, The Rise and Fall of the Mustarke. and Other IIankeye Torms, Burkeyes, Life of Hillinm Pran. He has recently been licensed by the Bap-ti-t denomination to preach, and during vacation trips has supplied destitute country churches.

BURDOUK, the common name of a genus of the natural order composita, familiarly eharacterized by the bracts of the involuere, which are hooked inwards at the tip. By means of these hooks the flower-head, popularly called a bur, leadily adheres to clothing, the wool of sheep, or the like, and in this way the seeds are transported from one place to another. The common burdock, Arctium lappa, is a native of the Old World, but is widely naturalized in America. The root is a diaphoretic and diuretic, and is used as a remedy for rheumatism, cutaneous diseases, etc. The young shoots are eultivated in Japan for culinary purposes. See Britannica, Yol. XX111, p. 307.
BUREAU, a French word signifying a writingtable or desk with drawers for papers. In the United States it is applied to a chest of drawers for hobling elothing and other articles. Bureau is also an office, a department of government, or the ofticials that carry it on. In England the term is confined to subordinate departments, and in the United States to certain sub-divisions of some of the expeutive departments.
BUREAUCRAOY, a name often given to signify a government where the administration is centralized in regularly graded series of government othicials, who are responsible only to their chiefs, and who interfere with and eontrol every detail of public and private life.
EURGAS, a port of Eastern Roumelia, situated on the Gulf of Burgas, if miles northeast uf Adrianople. It has a trade in agricultural produce, and sends large quantities of clay to the Turkish pipe-makers. Population, 5,000.

HURGESS. Enwamb, naval architect, born at West Sandwich, Mass., Jme 30, 1848. Ile was a Harvard graduate and afterwards instructor at that college in the entomological department. He spent some time trareling in Europe, began the study of naval architecture, and engaged in building boats. He was the builder of the yachts Puritoul and Maylompr, which in the international races of 1855 and 1886 won, respectively, the races with the English ripnestio and rialutern.

BURGLAEY. (See Dritamica, Vol. IV, p. 584.) In the United States, the common-law ingredients of burglary have been somewhat modified by statute. In some of these the definition is extended so as to include lreaking and entry in the daytime; in others, huidings other than dwelling-houses are included. some laws peren include in their definition the breating out of a building, as well as into it. The laws of the different States adhere in general to the prineiples of the common law, but vary widely in detail, both as to the crime itself and its penality.

1: ${ }^{-}$líalleN, a village of Switzerland, situated in the canton of Uri, about a mile from Altorf. It is the traditional birthplace of William Tell. The supposed site of the patrints house is now oceupied hy a chapel, erected in 152.2 , upon the malls of Which are represented eertain well-known scenes from his history.

HEClionldster, the Anglieferd form of the
 title of the ehief magistrate of a manicipal fown in the Setherlamds, Germany. and othor Teutonic dountries. It is analogens to the fremel mation. English monem, athel scotch promest. The berman
governments usually retain the right to eonfirm or rejeet the elected burgomaster.

BURGUNDY l'ITCH, a resinous substance prepared from common irankincense (the spontaneous exudation of the Norway spruce-fir, Abies excelsa) by melting it in hot mater, by which means it is freed from a eonsiderable part of the volatile oil which it contains. See Britannica, Vol. IX, pp. 223. 711.

BURGCNDY WINES, a class of wines produced in Lurgundy, in France, chiefly the produce of vinevards cultivated on the hills lands forming the U'ite-d'Or (see Eritaunica, Vol. XIV', p. 606). They share with the bordeaux wines the reputation of including the finest wines made.

BURIN, the principal instrument used in engraving. It is made of tempered steel, and is of prismatic form, the graving end being ground off obliquely to a sharp point. The distinetise style of a master is frequently deseribed by such expressions as a soft burin, a graphic burin, or a brilliant burin. See Britannica, Vol. VIII, p. 439.

BLTION, the house-fineh, Carpodacus frontalis, a fringilline bird common in the southwestern parts of the United States. The name is of uncertain origin, but is supposed to be a eorruption of the Spanish-Mexican gorrion, a sparrow.

BLEITI PALAI (Mauritia rinifera), one of the largest of the south American palms, often attaining a height of 125 feet. It grows in the swamps from Southern Brazil to the West Indies. Cords are made of the tibers from the young leaves, and the pith of the leaf-stem is utilized as cork. The abundant sweet sap is drunk fresh or is fermented into palm wine ly the natires. Hence the name rine palm, commonly given to the tree. A single bmeh of the sago-like fruit frequently weighs over a hundred pounds. The pulp and seed of this fruit are eaten and made into sweetmeats. Mauritia flecuosa, the monti or sea pulm of Trinidad and Brazil, is of similar appearance and nses; but its leaves yield better fiber, and its stem a useful wood.

BURIE, W゙IIMM (1792-1829), born in 1792, became notorious through his partnership with William Hare in a series of infamous murders com. mitted in Edinhurgh. Toward the close of 1827 they sold fur dissection to Dr. Robert Knox, the body of an old pensioner who had died in the house, and the ease and safety with which they had carned this mones tempted them to commit murder to procure more hodies. They inveigled unknown travelers into the lodging-house, made them drunk, and then suffoated them in sueh a way as to leave no marks of violence, receiving for the hodies sums of money varying from sto to $: 70$. They had murdered 15 persons in this way when they were discosered ly the police. Hare. the more exeerable wroteh of the two, was admitted king's evidenee, while Burke was hanged Jan. 25 , 1829. Il is ahorred name hats added a word to the English tongue: burke, to smother; to get rid of by indireet means.

PURLEIGII, Wilmam IExiri, horn in Woodstock, Conn., Feh. $2,181 \cong$, died in Brooklyn, N. X. Darch 1s, 187]. He early entered a printing oflice where he learned typesetting and wrote for the press. From 1832 to 1535 he was in charge of newspapers whieh adrocated reforms. Il is prineiples were in favor of peace and temperance, and against slayery. He was more than onee the ob ject of moh ribience. Ho was editor of the "Prohibitionist." In 1sin he beame harbor-master of the New York port, which othee lie held for 15 yosurs. A collection of his poems which had apfreared in his newspapers was published in book form. Ilis wife, celie, was born in Cazenovia,
N. Y., in fS25, died in Syracuse, July 26, 1875. Mr. Burleigh was her third husband, she having been divoreed from C. B. Kellum and later from Charles Chauncy Burr. After Mr. Burleigh's death she studied theology, entered the Unitarian ministry, and was pastor of a church in Brooklyn, Comn., till her health failed
burlifgalie, Avsox, born in New Berlin, N. Y., Nov. 14, 1820, died in St. Petersburg, Russia, Feb. 23,18 sion 2. He graduated at Harrard law-school in 1846, practiced law in Boston, and was elected to the legislature. In $185+$ he was sent to Congress, where he became known as an able dobater and an apponent of slavery. For his serere denunciation of Prooks's assault on Sumner he was challenged to fight a duel (see Bruors, Prestux S., in these Revisions and ddditions). President Lincoln sent him to China in 1861 as United States minister, and at the expiration of his term Prince King, regent of the empire, appointed him special enroy to the United States and the principal European powers to make an amicable treaty with those nations-an honor never before conferred upon a foreigher. In 1868 the "Burlingame Treaty" was signed at Whas ington, being the first ollicial acceptance, on the part of China, of the principles of intermational law. Mr. Burlingame then risiled England. Denmark, Sweden, Holland and lrussia on diphomatic missions, and in 1870 reached St. J'etershurs, where he died before transacting the olkciat business which he had in hand.
BURLINGTON, a city of lowa, lenated on the west bank of the Mississippi Liver, and on the main line of the Chicago, burtington \& Quincy railroad, and on six otlier railroads. The mamufacturing and jobbing business is compactly gathered in the valley adjacent to the railroads and river, while for the most part the residences are spread over three hills that rise above the valley. The Mississippi is crossed bere by a railruad bridge. The streets are paved with brick, granite and magadam pavement, and are lighted with gas and electricits. There are twenty-tive miles of street railway operated by electricity. The mains of a steam-heating company, extending through the business portion, supply stean heat abundantly. The sity is well supplied with water from the river $h y$ the Holly system. Among the principal haildings are a government bnilding costing $\$ 100,000$, and an opera house costing $\$ 0,000$. Their is also a charity hospital, a free circulating library of 10,000 volumes, numerons public and denominational schools, and a business college. The city has a frec-delivery post-ollice, a telephone exchange, and an excellent fire department. The advantages of river and railroad transportation have aidet in buildiug up an extensive manufacturing business. Population in $1880,19,+50$; in 1890, 22,528 . See Britamica, Vol. [x. p. 551.
BURLINGTON, a city of Kansas, county-seat of Colfey county. It is situated on the Neoslio River, about sixty miles south of Topeka. The river furnishes an abundant water-power, and the city contains several mills and factories.
BURLINGTON, a city of Vermont, the largest, in respect of population, in the State. It is a port of entry, and has a good harbor, well protected by a breakwater constructed by the United States Govermment. The Vermont Central Railroad connects this city with Rutland, Montpelier, and Ogdensburg. N. Y. That portion of the city lying near the lake is not much above the water. but the largest part is on ground elevated about 300 feet ahove the lake, thins affording fine views of the surrounding country and of the Adirondack Mountains begond. In the center of the city is a handsome syuare, bor-
dering which are the post-office, court-house, and large hotels. Among the institutions of learning are the Vermont Episcopal Institute, the state Agricultural College, founded in 1805, and the University of Vermont. This latter institution, founded in 18(u), is not sectarian, and is open to both sexes. It orcupies four large buidings on an elevated site, and has connected with it a medical college. The city contains a free fibrary, with over 12000 volumes. Hlereatso is an orphan isylum and a hospital founded hy Miss Mary Fletcher, and costing \$1zomo. Rurlington abounds in manufactories, and is one of the most evtensive lumber marketsin the United states. Populat ion in $1850,11,36 \overline{3}$; in 1890, 14, 566 . See Britanniea, Yol. IV. p. 5 5!.

BUT:-_1ARIGULD (Eidens), the book-name of a coarse worthless weed commonly called brygu'sticks. Ir bequmers-lice.

LCRMEINTER. HERMAX, zoülogist born in stralsmad, Germany, Jan. 15, Jsth. fle occupied the chair of zoilogy at Halle; was depaty to the national assembly of Prussia; traveled in Razal for two years and was made director of the Nusemm of Natural Ilistory af Bumos Ayres, and heat of the Academy of Sciences in the National University of Corduhat Argentine Regublic. He has published many scientitic Wurks. among which are: Trutise on Xintural Mistor!!; Memunl of Entumoloyn; The Mistory of 'romation; and The Ahimols of Brizell.
BLRNABY. Fhemetck (irstrics (1842-s5), a darine traveler and dashing suthor, born at Bedford, Fingland, March 3, 1st?. Ite was educated at hediord, "llarow, and in Cormany, and early became an acomplished hinguist. He jonnet the Royal Ilorse Guards in 1sas, leceame captain in the
 colonel in !ss1. His travels in Central and south America: his experiences in the Carlist camp in 1sit, and with Gurdom in the soulan in ista, fitted him for his most notable exploit, the ride to khiva, in the winter of 1sta, across the stenpes of Partary. Ihis Ride (o, Khiru (1säb). written in a h,right and pleasing style, made him famons; and intent his tine physique, reckless courage, and outspoken framkness of manner admirahly titted him to be a hero of the English prople. In $18 \pi i 6$ he traveled in Asia Minor and Armenia, publishing on his return, On Itorswherk Thoweqh isim Minur. which was no less popular than his first venture. He was attached to the Intelligence Deparment inciraham's expedition to Eastern Soudan, and was wounded at El Teb. In $188+$ the juined sir Herbert stewart's columi in the Nile expedition, and was killed ly an Arat) spear-thrusi in the battle of Abn-klea Jan. 17. 1885. Burnaly was a daring aëronaut, and erosed the Channel to Sormandy in 1sse in the balleon Eelipse.
bulindin, Frases Cowiey, English author and dramatist, hurn Nor e?, 183t. Ile wat educated at Eton and Trinity College, Cambridge (1554-5w), and afterwards went to Culdestom Theological college with a view.to becoming a clergyman of the Church of England. In December, 155s, he joined the Roman Cathotic Church, and for four months continued his studies at the house of the Ohate Fathers at Dayswater. He was called to the har in 186i, but the suchess of some early dramatic ventures altered his plans. He joined II. J. Byron in starting "loun." hat left that paper for "Punch." then "dited by Mark lemon. His first contribution to "Puncli" was Mokerome, a burlesque on sensational romance writing; soon after appeared Hor, Hipn cul Hhope followed by the now well-known Ityp! form soon ran throngh over sisteen editions. Later, hecontinned the Happy Thoughts series, and wrote
a serios of burdesques of popmiar movelists-that on Onida's style, Simpmom, being perhajs the happiest. Burnand has leen editor of " l'mach" since 18sio.

BURNE-JONEA, Enwain, A. R. A., born at Birmingham, England, of Welsh descent, Aug. 르․ 18.3. He was destined for the ehureh, and elucated at Exeter College, Oxford, but his love of art asserted itself, and he received from liossetti encouragement and guidance in his attrmpts a patater. From the first he was a fine colorist, and his earlier works attain in water-color greater brilliancy and purity of hue than is usual even in wil. It was not until 1870 that he began to be known as an oilpainter. Among his pictures are The Da!s uf Greation and The Miron of Vemes (1827); Le 'hunt d'smone (18-S); The (roblen stairs (Isco); The Tree of Forgitencss (18S2); King Eophthme (1854), and The Brazen Tuner (18is). In his later works his coloring tends to become less splendid, inclining to restrict itself to curiously varied tones of bluish purple and ruddy bronze. Ile has furnished many striking desigus for stained glass.

BURNET, Jonn, painter, engraver and author, lorn at Fisherrow, near Edinburgh, Scotland, in 1744, died at Stoke Newington, April 29, 1868. Ile first hecame known throngh his admirable engravings of Wilkies works. Of his paintings the best known is the Germurich Pensioners (1837). He was author of several books on art, the most important being a Prarticul Treutise on Paintiny; he was also author of litmoromit and Mis J'orks (1849), and, in conjunction with Cunningham, of Life and Horks of Twiner (1852).
BURNET, the common name of species of I'otroinm, natural order Fiosacea. Great burnet. lotcrimm officincle, is common in meadons in atl parts of Europe2, and is coltivated in Germany for fodder. The root-stalk is astringent, and was formerly used in medicine. Common burnet, Poterinm samguisorba, grows on chalky soils, and has also been cultivated as a fodder plant. It grows wild in the United States.

BURNET-SAXIFRAGE (Pimpinella saxifruga), an umbelliferous plant, which, on account of its simiar foliage, habit, use as fodder, and (more distinctly) astringent root-stalk, has been assoeiated or confused with burnet from the earliest times.
dURNETT, Fraves IIomosos, author, born in Manchester, England, Noy. 24 , 1st9. Her parents emigrated to dmerica and settled in Knosville. Tenn. Two years afterward the daughtop began to write short stories for magazines ant in lkTe a story from her pen was published in "scribner's Monthly." Ifter her marriage to Dr. Luan M. Burnett, of Knoxville, she visited Europe, and, on har return tonk up residence in W'akington, D. C. dinnig her stories are That

 thon: Latle Lord Fanultoroy; Sum Crawe; and Little -', Elizaloth.
 introluced ly Sir William limmot (1779-1siif) for the purpase of onsintorting ships, haspitals, ete. It
 in the llissectorg rown, and in jars containing anatomical specimens. Whan addeal to hilge or
 "omplang the wflensive sulphide of ammonimm.
 -revation of tanber lrom the ravages on dry-rat
 mllにな!.
 ton, Comn., Mareh 20, 1N03, died m New lork dity,

March 1s, 1smo. Hes became interested in the man. nfacturing industries of Waterbury. Conn.. and was member , i the firm of Benedict ic Co., which made brass gonds. Ifter earning a large formue the firm dis-olved, and he became successively the wesident oi the Waterbury Clock Co., the Waterhury Watch Co., the Waterbury Brass Co., and the American lin (\%. Mr. Burnham presented to New York city a statue of Daniel Weloster, erected a statue to his father-in-law, Bishop Brownell. and his own monument, erected some time before his cleath, is annong the finest in Greenwood Cemetery.
LURNIIAM LEECIIES, the remains of an ancient forest in Fuckinghamshire, England, miles northeast of London. The London Corporition purchased the surrounding 374 aeres in 1879 , and set them apart for public use Oct. $3,1 \leqslant s 3$. Many of these beeches are of immense size.

BERRNISG PESH (Euonymus atro-purpurens). a small ornamental shrub of North America, with oblong leaves, and bright crimson, pendulous, fourlobed, smooth capsules; its congener, Euonymus Americana, has searlet, prickly capsules. The French Buisson ardent is a red hawthorne (Crutirgus pyracantha). The plant Dictamnus frarinclla is called burning bush because its secretions render the surrounding air inflammable in ho. weather.

BURNS, Anthony, fugitive slave, born in Virginia about 1830 , died in St. Catharine's, Can., Iuly $2-1,662$. Ile escaped to Boston, where he fonnd work during the winter of $1853-54$. After the passage of the Kansas-Nebraska bill, Burns was arrested under the provisions of the fugitive slave act by United States Marshal Watson Freeman, on the warrant sworn out by Charles F. Suttle. The arrest created much excitement, as boston was the center of the anti-slavery sentiment. A massmeeting was called in Faneuil Hall. During its progress an unsnccessful raid was made on the court-house, led by Col. Thomas W. Iligginzon, to rescue Burns, and several persons were injured. The next day the court decided that Burns must be returned to his master. He was to be taken to Virginia in the revenue cutter Morris, and an immense crowd followed him to the wharf. So strong was popular feeling that a riot was feared, till Rev. Daniel Foster exclaimed, "Let us pray!" The crowd was instantly subdued and stood in silence with uncovered heads, while Burns was hastily transferred to the ship. Afterwards Burns studied at Oberlin College and became a Baptist minister He settled in Canada, where he was pastor of a colored church.

BURNS. Franct. M. E. bishop, horn of free colored parents in Jlbany, N. Y., Imee. in Baltimore, Idd., April 1s, 18tin. Whan fifteen years old he was converted and studied for the ministry, showing such ability in his work among his own people that he was sent in 1884 on the Liberian mission. Alere he remainel for ten years. In 1S44 he risited the United states, and was ordained deacon in Brooklyn and elder in Muhbers Street Church, New lork city; he roturned to his work in Arica. where he was made presiting elder of cape l'almas distriet, and openet an academy at Bonrovia. Ihe was mate superintendent of missions, and on his seeond return what I nited States was ordained missionary hishop. Iftor tive years more in Africa, he returned th the f"nited states on acemment of ill-health.
 istere and prolitic relisioue writer, lorn at Oldham, matr Xanchestor. Einctand, lem. 1s. 1805. died in ladelington. dan. s1, leit. Ile was edneated at

Chester and at Oldham Granmar－School，uniting at an early age with the Methorlist New Connec－ tion．At the age oi twenty－one he removed to London，where he published his first two works， The Chistian Sketch－book and The sypirituel Cuhiumt， both of which were popular．After exereising the functions of the ministry at Perth（ $1830-35$ ），he returned to London to take charge of a（ieneral Baptist congregation in Narylebone，and subse－ quently lectured in all parts of the United King－ dom on temperance，abolition of capital punish－ ment，etc．He received the degrees of D．D．and LL．D．from American colleges during his visits to this country in 1847 and 18ie．In 1869 he risited Egypt and Palestine．He was the author of more than thirty separate works．One of them，sketches and Skeletons of Sermons（ $1 \overline{5}$ volumes），reached a 14 th edition．

BURNS，Johs，born in Purlington，N．J．，Sept．5， 1793，died in Gettysburg，Pa．，Feb． 7,1872 ．He was one of the first volunteers of the war of 1812，and served at Plattsburg，Queenstown and Lundy＇s Lane．He was a volunteer of the Mexican war， and，when he offered his services on the ontbreak of the civil war，he was not accepted on account of his age，but was given the place of teamster，and whenever an engagement took place he would borrow a gun so as to take part．He was finally discharged from the service on account of infirm－ ities，but was chosen constable of Gettysiurg．In June，I863，when the Confederate scouts ap－ proached the town，he met them with a company of volunteers．June 26 the Confederates held possession，and John Burns was locked up for ex－ ereising his authority in opposition to the Con－ federate officials．The Southern army went on toward York，and Burns，now being at liberty， began to arrest Confederate stragglers and sconts． On the $28 t h$ the Union army came to the assist－ ance of the veteran who，almost single－handed， had been contending against the Army of Northern Virginia．When the battle of Gettyshurg was fought，Burns borrowed a gun from a wounded Union soldier ant went into the thickest of the engagement．Ite was wounded and fell into the haids of the Confederates，to whom he told a plansible story，and then managed to be taken to his own house for medical treatment．He had a narrow escape from being shot for not wear－ ing the army dress（Federal），but on the follow－ ing day the Union army drove the opposing forees from the tield，and John Burns was again in the hands of friends．The story of his patriot－ ism was appreciated in the Northern states，and visitors to the lield of Gettysburg substantially remembered him．In his last yyars his mental faculties becane clouded，and he frequently wan－ dered from home．One cold night in December， 1871，he was foumd in a destitute condition，wan－ dering about in New York cify．His wants were supplied and he was taken home．hut died soon after from pheumonia．
BUR DSIDE，Amarose Rybirett．an American general．See liritamica，Vol．XXili，p．iss．
BURXT STOXES，antique carnelians sometimes found in ancient ruins，and seeming to have hern acted upon hy fire，having a dull appearance ex－ ternally，but exhiliting a beautiful red color when held un to the liglat．When ornamented with fine engraving they bring a high price．
bURR，Aaros，slateman．horm in Newark，N． J．．Feb． 6,1756 ，died on Staten Inlind，X．Y．，Sept 11．1836．His father，Aaron burr，wats president of 1＇rinceton College，and his mother was Esther， daughter of Fonathan Edwards．Ilis parents died whon he was very young，and himself and sister

Sarah were eared for the their uncle，Rew．Timothy Edwards，of Elizabeth．犬．J．The chituren possessed an abundant fortune and were well edurated．
As a lad taron wat small and very handsome； with black eves，fascinating manner and a pre－ cueions intellect．At the ase of 11 he was sufti－ ciently adranced in his studies to enter Princeton， but was nut allowed to do so un acenunt ot his youth．Two years later he emered，and graduated in 17a… Abut the time of his leaving college a re－ ligious revival was in protress，and soung Burr went to the president Dr．Wia herspoon，for help in his mental difiticulties．The doctor called the ex－ citement fanatical，but Burr was not content，and went to live in the fimnily of Dr．Bellamy with the purpose of settling his convictions in regsard to Christianity．To the surprise of his friends he he－ came an intidel，and alopted the Lord Chestertield code of mamers and morals．
In 1i／t liurr resided with his brother－in－law， Tapping heeve，and st udied for the legal profession． The following year he entered the Revolutionary Army at Buston，accompanied Fenedict Arnold to Quebec，and returned from the expedition with the rank of major and a high reputation for military daring．Ile became for a few weeks a memher of Washington＇s family，but each came to dislike the other，and Furr witherew and attached himself to General l＇utnam as aide．Burr was promoted to the rank of lientenant－colonel and fought at Hack－ ensack and Monmouth．After four years of service he resigned his commission on account of ill health， and after a period of rest resumed the study of law．
He opened an oftice for practice in Alhany，and in the same year（17世2）married Mrs．Theodosia Prevost，widow of an English oflicer．The next year he moved to New York cily，lived in magnifi－ cent style，entertained Talleyrand，Louis Philippe and other famous guests；entered political life，and ranked among the loading lawyers of the city－ Alexander llamilton being his sile rival．
In 1791 Burr was elected to the United States Senate，and afterwards to the New York legislature． Jefferson and Burr sthod highest in the presiden－ tial empmagn of 1500 ，each candidate receiving 73 rotes．This threw the chace into the House， where，after a wrek＇s debate，defforson was chosen President and Purr Viet－l＇resident．Burr had grown unpopular with his party，as his election to the Senate and also to the Viec－l＇residency had a somewhat mysterious，not to say dishonest，look． To clear away suspieion be offered himself as can－ didate for governor of New York．In the contest he was beaten ly Morgan Lewis：for Alexandur Hamitom，whose father－in－law liure had wat－ －tripped in the senatorial race in trin．exartod his powernl inthence in the campaign，and warned the party fodistrtist lim．Jour made llamitom＇s speeches the exruse for challenging him th fight． Ifamiloon endeavored to asoid this ext remity．hat finally areppted，and＿the duel tonk phace at Wee－ hawken，N．T．Inly T， 1804 ．Mamiltun was killed． and Jurr indicted for marder．He tiod for safety In his datugher＇s home in swith（＇arolina，and after the eveitement died down，engaged in a mysterious project wheh was mothing les than the connering of Texas，and pusibly Jexico；the founding of a republie with himselit at the lwad and New or－ leame a bis capital；the Western States might aypntualy leave the l＇nim and join his republic． When events were almost rim ior texting the plan， the President domouner the scheme（1506），and it feil through．

Burr was tried the follewiny yor on a charge of treason，but was actinitted on some technicality．

His duel with llamilton had spoiled his political prosilects, and now his name was liranded as that of a traitor. He sailpd to England, but was from ther expelled; went to Sweden, Germany and France, and in ryery pace was under the watchful eyes of sovermment otficials. He was forbidden to fernarn to America. lat after living in great poverty in London. Whither he hid again returned, he came to the l'nited states in the disguise of wig, whiskers, strange gaments and the assumed name of Armot, lle ratehed Boston in 183.2. Then drifted to Nrw York, and thmelly ventured to open a law ottice on Nasentu streer. Here he lived for se years, and althongh shmmon by society. Whose favorite he had been, he huilt up a good practice.

Two great misfortunes lefell him : hisonly grandchild, a boy 11 years of age. died, and his idolized danghter. Theodosia. was lost at sea. When is years of :age (his tirst wife having died in 17(14) he married Madame Jumel, the wealthy widow of a French merchant. Ilis reckless expenditure of her fortume bronglit about at separation, and in his last days an old sentels woman, a former friend, gave him a home. Furr died at Port Richmond, Etaten Indand, and was huried, according to his own wishes. in the Princeton cemetery, near the graves of his tather end grand father.

RU"KR.'Tmeomesis, mhy daughter of Aaron lurr and hiswife, Mrs. Theodosia I'revost, burn in Now Fork city in 17s3; lost at sea in . January, 1 si3. She was a brilliant and highly accomplished woman, for her father superintended her education, earefully teveloping ler mental and hhysial qualities and training her to indepentence of thought and self-rpliance. She married Juseph Alston (1801), afterwards governor of South Carohina. She and her farther wepe passionately fond of each other, and her faith in him remained unstaken throngh all the misfortunes which he brought upon himself. Iburrs scheme to become emperor of Mexico was knom log herself and hushand, and it was even plamet that her only child, a son, would be heir-apparent to the throne. On her father's trial for treason at Richmond, she appeared in court, and her beauty and graces were not without effect. lwith on jury and spectators, in securing a favorabte verdict and modifying poputar indignation. She wrote elonuent letters to Mrs. Madison, Secretary Gallatio, and former friends of her father while he was in exife, and thus made it possible for nmm to return to the I nited states. The death of her only chitd was a terrible blow, and made her ill with a fever: but learning that her father had arrived in America, she lpit (harleston on the pilotboat Potwint, and started for New York. A storm off Cape Hattoras probally capsized the ionat. for it was mever heart of arain.

BUKEA-BURRA, the name of a famous copper mine in South Australia. 101 mites northeast of Adelade, discovered in islt. Spe Pritamica,

BUREARD INLET, a narron inlet in the southwest cormer of British Commmia, a litte north of the month of the Fraser liver. it is nime miles in length, and forms one of the finst hardors on the Pacitic coast, being easy of aropss for the largest ships. It has beconse of mush more importance since the openme of the Canata lacifie latitway, whose terminus is at Vameouver on the north shore of this inlet.

BC Li-REED, the pophar name of a species of Spmonevinm. (dosely albeet to the bulnash, and of similar habitat and datribution, sol callad from its reed-like learos and hur-bike heads of fruit. See Britannica, Vol. XX, p. 319.

BUEIIIANA, a tom of Spain, 34 miles north of Valencia, on the Mediterranean. Population, 10.005

BURRITT, ELIME, a prominent advocate of the principles of the Peace Society, and widely known "s the "Learned Black:mith," born in New Britain, Comn., Dece. s. 1810, died there March 6,1879. His father was a shomaker, and the boy learned the 1 rade of a blacksmith, which he pursued in his native phe and in Worrpster, Mass., to which town he remospal. Ill his leisure was de voted to studr, eapecially of wathematics and languages. In the bather he achieved a very wide range, but is even better known to the frorld as an earnest advocate of peace than as a scholar. At Worcester hes edited the "Christian Citizen," adrocating the peaceful settlement of international questions, and the doctrine of "unisersal brotherhood," and he traveled musth in Eurupe and America lecturing and working in other ways for the extension of his views on fuce, temperance. self-culture and the emancipation of the staves. In $18 \mathrm{~s}_{5}$ he was appointed Cnited States consul at Birmingham. England. Among his published works were: surflis from the Amill; Olien Lears: Mand-boot of the Salions; 1 I'alk from John U'Groat's to Land's End; The Missiun of Great Sufiomina; ll'alke in the Black 'oneutry; Ten Minute Talks; and Chips from Many Blows.

BURROLGHS, Joms, born in Roxbury.N. Y.. April 3, 1837. He was a farmer's son, received an academic education, hecame a New York journalist, was a treasury clerk in Washington. D. C.. from 1864 to 1833 , and afterwards examiner of national banks. In 187t he settled on a farm near Esopus. N. Y., and has devoted his time to fruit culture and literature. A close observer and enthusiastic lover of Nature, his pubtished essays make delightful reading. Among them are: loke Robin; IJinter Sunshinp; Birds and Poets: Locusts and Ifild Honey; Peparton: Firsh Fields; and Sigus and Sicasons.

BURSARY, in the universities and colleges of Scotland, the ammual proceeds of a sum permanently invested for the maintenance of a student. Elsewhere the term is applied to the treasury of a college or monastery.

BURSCHED1, a mannfacturing tom of Prussia. situated on the Wupper, 20 miles southeast of Düsseldorf. Population, b, Sos.

BURSCHENSCllAFT, the name of a famous association of Cerman students, at one time prominent in the politics of the Fatherland. It was founded at Jena in 1813, and composed of studemts who had fought in the great war of liberation. The Burschonschaft aimed to cherish the hisher ideals of patrintism, and especially of German national unity. In the time of reactionary policy, the clab was suspected of revolutionary tendencies, and in 1819 was dissolved by the I'russian and other grovernments.

BURTON, Sar Fremeric Whamm, water-color painter, hom in Comnty Clare. Iroland. in IS16, and educated at bublin. In 1856 he lueame a member of the Socioty of Painters in Water-Colors, and in 187t director of the National Gallery. In 1stit he was knighted.

BI RTON. dons Mnk, historian, loom at ther-
 It graduated at Inarischal Coblege. Aberdeen; was artiched to a lawyor, and came to the Edinburgh bar. hat sulsemuently devoted himself chiefly 10 stidy and lettors. fis was apmonted secretary to the Prison bestrd of sontand. and hevame one of the frison commissioners. He held the old office of llistoriographer lioyal for Scotland. Among his origmal works mathe mentioned Lifp of Ifume
（1846），Political and Social Economy（I849），History of Scotland from the Revolution to the Extinction of the Last Jacobite Insurrection（1853），The Mistor！！of scotland from Agricola＇s Invusion to the Revolution of 1688 （1867－70），The Book－Hunter（IS62），The Cairn－ gorm Montatains（IS64）．
BURTON，Sir Richard Francis，the son of Col－ onel J．N．Burton，and one of the most daring and successful of modern travelers，born in 1521 at Barham House，Hertfordshire，England，died at Trieste，Austria，Oct．20，J890．He was educated in France and England，and in lSte he entered the Indian service，and served in sind under Sir Charles Napier．In 1851 he published his tirst im－ portant work on Sindh．Burton acquired a very familiar acquaintance with Hindustani and Per－ sian，and learned to speak Arabic like a native．
Burton resolved to explore Arabia in the dis－ guise of an Afghan pilgrim，and after a visit to England in 1851 he set out on his journey．Mis Personal Narrative of a Pilgrimuge to El Medinah anel Mecca（1855；new edition，1879－80）records one of the most daring feats on record．

His next journey was into the country of the Somalis，in Eastern Africa．Lie was chief of the staff to General Beatson in the Crimea．In 1856 he set out in company with sueke on the journey which led to the discovery and exploration of the great lake of Tanganyiki，and aiterwards traveled in North America．
In 1861 Burton married，and was appointed consul at Fernando Po；and while holding this ap－ pointment he visited the Cameroon Nomatains，and went on a mission to the king of bahomey．ITe was subsequently consul at Santos in Brazil，and at Damascus；and in 18：\％he succeeded Charles Lever in the post of British conisul at Trieste．In 1870－78 he paid two visits to Minlian．In $18 \mathrm{~s}^{2}$ he visited the golt－producing country of the Guinea coast，atong with Captain Cameron．Ne received the gold medal of both the English and French geographical societses，and wasknighted in 1886．He was master of $3-5$ languages and dialects．

Lady Burton was the companion of his wander－ ings after list，and has written a narratice of travel，Inner Libe of Syria，Patestine，we．（1875），and Arahie，E＇gym，＇Infim（1879）．Among Burton＇s many works are：First Footsteps in Linst limect（1856），The Lake lingions of Central Ifricer（1860），H＂mderings in Hest Ifricre（18i3），The Vile Besin（1869），and works on Goa，Abbeokuta，P：araguay，Brazil，syria，lee－ land，ete．，as well as seseral transhations．

BURTON，Walday Erass，English playwright and comedian，born in London，Sept． $2 t$ ， 1 siol，died in New Lork．Feb．10，18i00，His father was a printer，and at his death the son attempted to support his mother and carry on the printing busi－ ness，although but eightren yoars of age．Failing in this he drifted into the dramatic prolession，and made his first appearance in a London theater in 1831，in The Lotter！Tirkt，and in 1833 his play Ellon Wareham was performed in five London theaters on the same niglit．He came to the United States in 1834，and spent four years in Phil－ adelphia．Subsequently he appeared in New Tork in James W．Wallack＇s theator．blayins John Jones， for the benefit of Samuel Woodworth，author of The Ohd Oaken Bucket．

Burton opened a theater of his own in New York in 1848．He had a strong fore of actors，amones whom were John Brougham，John Lester Wallack， Charles Fisher，Mrs．Skerrett，Mrs．Rhea．Mary Devlin，Fanny Wallack and Mrs．Hughes．Ilr． Burton excelled as a low comedian，although he preferred the tragic pacts．His most hrilliant hits wore in the characters oif sir Toby Belch，̇icawher，

Sam Weller，Captain Cuttle，Bottom，Mr．Toodies， Jeremiah（＇lip，Tonchstone and Falstaff．For eight years he conducted this Chamhers street theater， then for two years had the management of the Metropolitan（afterwards Winter Garlen）．

Burton＇s last performance was in December， 159. in Lamilton，Can．Ir．Burton played in ist characters；in the character of Toodle：he acted 6to times．He wrote The 1 ctor＂s Ahomuy，and＂llag－ g．ches and loutrios，edited＂Literary Sousenir，＂es－ tablished＂The Gentleman＇s Magazine．＂publislied （＂blopactit of W＇it and Humor，and collected a tine library，barticudarly rich in shakespearean litera ture．

BUFYING BEETLE（Nerrophorus），the common name of insects of the family silphidir，remarkahle for their habit of burying the bodies of mice，moles and other small animals，in which they have de－ posited their exgs．The known species are most？ natives of Europe and of North America．see Britannica，Vol．Vk．p． 130.

BUSACO，a ridge（ $1,82 t$ feet）on the north side of the rivor Mondego．in the Portuguese province of Beira．Here Wellington，with 40,000 British and Portuguese troops，repulsed the attack of Nassema with 6 ，（0）French，Sept．27，1810．

BUSLI，a military head－dress worn by hussars， horse artillerymen and engineers in the Eritish army．lt consists of a fur hat with a shome lag langiur down from the top on its right side，of the same color as the iacings of the regiment，and an upright fhme in front．The orisrin of the name is olscinre，hat seems to le Hungarian，and it is stid thet the bag is a relie of a llumgarian headederess， from which a long padded hag hang down over the right shoulder to waril off swordecuts．

BUSCHi，Jebils Nomitz，a Cerman writer，lwom in Dresden in 182l．Ilis literary works consist of numerons tranatations into his own languago of the writings of pepular American and Engrish au－ thors．of entertaining aceoments of his own extensive travels，and of political essays on his own and other countries．During the Franeo－Prussian war he was in close relationship with bismarck：and his diary kept during the eanpaign has hecot trans－ lated into English，Prench．Dutch，Swedish and liussian．

BUSll ANTELOIPE，also called Bush Buck and bush Goat，names common to a momber of sjecties of the genus Tormelnolow，natives chiedly of the southern and western parts of Ifrica．They are animals of more compact form，shortor limbs，and greater strageth，but mueh itess asility．than the true or typical antelopes．They fropuent jungles． thick forests，and bedts of reeds，and when marsued scek to escape los diving into a thicket．

HUSHEL，a dry measure contaning pirht gat－ lons or four pecks．In Great Joitain the lim－ chester hushed（so called beeause the anciant standard hushel measure was premorved in the town－hall of Winchester）was the standard moss－ we from Anglo－saxon limes motil the imperial bushel was lemally estahlished in IERG；its capacily was $2, \Gamma 0 . t 2$ cubic inches．The capacity of the im－ perial bushel is 2.918 .190 culie incles，and contains So pounds aboirdupois of distilled water，at t！e temperature of $62^{\circ} \mathrm{k}$ ．，with the barometer at 30 inches．Measures of capacity in the Vnited States are founded on the Winchester bushel．Varions weights of different commorlitios have been made bushels by law，and vary considerahly in different states．

PUSHNET，D，WM，born at Saybrook，Conn．，in 17t？，died in Warrenton．Ga．．in 1s：2．Ile was a gradutate of Yale in lize．llis mind was of an in－ ventive turn，and during his college course he was
at work constructing a torpedo for the destruetion of ships. Ile built the American Truth, an ironplate diving boat to carry one man who should guide himself to the ressel belonging to the enemy and thereto fasten the Bushnell torpedo, whieh was regulated by clockwork to explode at a given time. In 1777 he successfully tested his inyention, and witl it blew up a British schooner in New York harbor. The following year he sent a fleet of barrels down the Delaware to destroy the British ships. The scheme was not entirely successful, but the next day they exploded and hew up one boat. The Battle of the Kegs, a liumorous noem by Francis Hopkinson, deseribes the incident. Mr. Bushmell invented several destructive machines, not allof which weresuccessful. IIe sersed during the war of the Revolution, and was made eaptain of the corps of sappers and miners.

BUSHNELL, a city of IHmois, about 50 miles west of Peoria. It is finely situated in a healthy prairie region. It contains varions manufactories, and in the vicinity are found excellent coal and timber.

BUSFIRANGERS, in Australia, originally runaway convicts, who had taken to the "bush" and beeome robbers. In the early years of the century they estahlished a reign of terror in what was then the sparsely settled Van Diemen's Land. In 1815 martial lav was proelaimed in the district by the lieutenant-governor, and under Governor Arthur ($18.4-36$) stern measures were taken to repress crime. In 1830 a severe bushranging act was passed in New South Wales, where at one time a band of 50 desperadoes in the Bathurst district fought regular engagements with the settlers and police, and only surrendered to a detaehment of soldiers brought from Sydney. Subsequent outbreaks oceurred at intervals, but generally only three or four ruffians would hand themselves together, and after a more or less brief and desperate course they were brought to justice. In later years bushranging has been facilitated by the colonial land laws, which permit "free selection before survey," thus ablowing people to settle in isolated spots ontside the seope of police supervision.

BUSII-sTRIKE, the name of a South American passerine bird, of the family Fomicarieds and subsfamily Themophilina. It resembles the buteher bird or shrike in its habits; and haunts thiek trees, bushes and underwood, where it seeks for inseets, larvie, young hirds and egrs.

BUSFIN, a kind of half-boot laced to the ankle and lower part of the leg. The ancient tragedians wore a similar bot (cothurni), often with a thick sole in order to add to the artor's height. Hence the word "huskin" is uften used for tragedy as "the sock" (sorcus, "a flat-soled shoe") is for eomedy.

BUSSE:', CyRUs, born in IInhbard, Trumbull county, Ohio, Oet. 5,1833 , was the son of a Methodist preacher, and entered the mercantile lusiness. He waselected to the State lonislature as a Democrat in 1858, and was a delegate to the eonvention that nominated stephen A. loughas for the Presidency. During the war he served on the Union side. Ile eommanded the militia in sontheastern Ohio, raised and was colonel of the 3 d lowa volunteer eavalry: was in the Arkansas campaign of 1862, led the 81 brigade of Stophes rlivision, wat chief of cavalry at the siege of Vickshures, led the advance un Lihnston unter shorman, was made brigadier-ureneral in 1864 for "special gatlantry", restenced discipline at Fortsmith, whare he was given command, and in 1 stis was brewetmed majorfrom rah. He has been in business inst. Louis and Fev, orloan-sinme the war, and in lssi removed to New firnk. Il was for sis yearspresident of the New

Orleans Chamber of Commerce, and was chairman of the eommittee from that loody which seeured from Congress the appropriation for Captain Eads's jetties at the Mississipni River's mouth.

BUSSU PALA1 (Manicaria seccijera), a palm growing in the tidal swamps of the Amazon. The stem is only from 10 to 20 feet high, but the immense undivided coarsely serrate leaves are often 30 feet in length by 4 or 5 in width. These are used by the Indians for thatch. The spathes, taken off entire. are used as bags, or, when eut longitudinally and prepared, answer the purpose of coarse. strong cloth.

BUST, the seulptural representation, in the round, of the head and shoulders of a person. The term may be applied to the head and neek only, or to a renresentation of the head with the neck, lireast, shoulders and upper part of the arms, or to the head, neek, shoulders and breast. A bust is usually set upon a hase or pedestal, and may be made of marble, stueco, elay, metal, wood, or wax. It may be portrait or be purely ideal.
IUUSTAMANTE, Anastasio, a Mexiean physician. soldier and statesman, born at Jiquilpan, in the province of Michoaean, July $2-1750$, died at San Miguel de Allende, Feb. 6, 1853. He was physieian in the family of Don Felix Maria Calleja, military governor at San Luis Potosi. Presented by his eniployer with a eommission in the San Luis militia, he served in many battles, and in those of deuleo. Guanajuato and Calderon gained speeial distinction. He rose through the successive military grades to the position of general of division, the highest rank in the Mexican army, and beeame military governor of the interior provinces. In 1829 he beaded the revolution, and the following year beeame vice-president of the republie, exereising the supreme executive power. This position he held until the revolution of 1832 obliged him to resign, and the following year he was banished from Mexico. On the death of Santa Anna he was reealled and eleeted president of the republic, his term extending from 1837 to 1841. In 1846 he was appointed president of the congress, the last important othice held by him.

BUSTEED, Jichard, born in Caran, Ireland, Feb. 16, 1822. THe emigrated with his father to Canada, whenee he came to New York cits. where he worked on the "Commereial Adverisiar," and was a lieensed local Methodist preacher. Admitted to the bar in 1846 , he made a reputation in extradition eases, and for three years was eorporate counsel for New York eity. He was a Democrat and a supporter of Douglas, but after the outbreak of the civil war he strongly supported the Union eause. He was made brigadier-general of volunteers, and was assigned to service at Washington and New York. He commanded a brigade at Yorktown in Virginia, but resigned on acount of the jealousy of his enemies in the Democratic party. In $186 t^{\prime}$ he was apminted hy the President as L'nited States district judge of dlabama, and while oceupying this position rendered the decision that the test-oath preseribed by the Fnited states was unnecessary and uneonstitutional as applied to lawyers prateticing before the I'nited states courts. This opinion was afterwards contirmed by the supreme Court. Busted resigned his othee in 15 it. and returned to his law practice in New lork city.

BLTCHER-BIRD, the Shrike. See liritamica, Yol. XXI, pp. 8to-46,
BUTC1LER's BROOM (htsmen), a genus of evergreen, usually dixecines. shruls of the asparagus
 Gutcher's broom, wo-ealled hedatuse used hy lutehers to sweep their bloeks. It grows more commonly
and luxuriantly in the south of Europe. The fruit is a red, one-seeded, sweetish herry. It grows well under trees or shrubs, and can often be advantageously introduced for ornamental purpoes. The root was formerly used as an aperient and diuretic.
butler, Benjamin Franklis, an American lawrer, statesman and soldier, was lorn in Deerfield, X. H., Nov. 5,1818 . He graduated at Waterville College (now Colby University, Me.); began the practice of law in Lowell, Mass., in 1840, and attained a high reputation in criminal cases. He was elected to the Massachusetts legislature (1853 and 185:9. serving in the lower and afterward the upper house ; was delegated to the Charleston Democratic national convention, and on the re-assembling of some of the delegates at Balimore he resigned his seat on account of the slavery question. In 1861 (being already a commissioned brigadier-generat) he responded to the President's call ior troops, and marehed his Sth Mass. regiment to Amapolis; moved forward to Baltimore; was made a majorgeneral, and assigned to the command of Fortress Monroe. At this time some slaves escaped into his lines, and he refused to give them up to their masters on the ground that they were "contraband of war." Feb. 23, 1862, he was placed in command of troops forming part of the expedition against New Orleans, Captain Farragut commasdisg the naval force. Gen. Buther took possession of the rity May 1, 1sibe, and remained there until the millte of December following, when he was relieved by MajorGeneral X. P. Banks. Darine his administ mion of the Department of the ciult her compullad the rich citizens to contribute to the suppart wis bee rendered destitute by the war, armed the fremel colored men, and enforceti strict samitary remulations. In the hatere part of 1 sti:3 he wats sivan eome mand of the Department of Yirginia and North Carolina. In latit he was ordered to Xew York daring plection, as trombe was feared. The following month he wals sent against Fort fisher in North Carolina but the experfition was ineffecthat. Gen. Grant relineel him of commant, and the returned to Matsombusets. The Republicans olectod him to Congress in 18it, and ha served there until 1879, with the exception of the term lsis.-at. Ih took part in the impeachment of lresident Jomson, as one oi the managers of the case. In Lse2 the Demoerats united umon himas cantiate for governor of his sitate, and he was mected th that office. He was defeated in his candidature for the same office in 18×3, and was also an unsnecersfal Greenback candidate for the Presidency in 15 s .
BUTLER, Bewnmix Frweine, born at Kinderhook landing, N. Y., Dlee 17, 195, died in laris, France, Nor \&, 1sis. He stadied law with Martin Van Buren in hudion, N. Y̌., and become his partner. In 1821 he was chosen district attorney of Allany counts. He was one of three commisioners appointed by the legislature to revise the Niow York statutes, and in 1828 was elected to the legislature to assist in the detiberations on the work of this committee. He was appointed atturney-general by President Jackson.
butlek, Elizabeth Soltherdex Thempson, a noted English artist, born in switzerland in 184, and in 157 married Major-General lutler. she was brought into prominence by her painting, The Roll Cull, which was exhibited at the Royal A cademy in 1833, and which hecame the property of dueen Victoria. Her works are mostly military suljects.
BUtLer, Fwiy Kemble. Spe Kembie.
BUTLER, dons, born in Commecticut. died ia Niagara, 1794. lle esponsed the british cause at the commencement of the Revolution, and, placed
in command of a force of Indians and Tories, took part in the Niagara and Montreal campaigns, and was present at the battle of Oriskany, the If yoming massacre, and the raids on the schohaie and Mohawk settlements. He was guilty of great barbarities, but some of the worst deedsattributed to him were due to his som Walter. Colonel John Rutler was rewarded liy the British government for his military services by being made Indian agent with a satary of $\$ 3.500: 2$ year and the gift of 5,000 acres of land in Canada.
butler, Pierce Mason, colonel, born in Edgefield district, S. C., April 11, 1798, killed in the lattle of Churnbusco, Mexico, Ang. 20, 18ta. He received a military education. and after four years' service in the army he resigned and went to Columbia, S. C. where he was president of a bank. 1n 1836 he went as lientenant-colonel of a regiment to put down the seminole Indians; in 18.38 he was elected governor of South Carolina, and at the expiration of his term was appointed Indian agent. In 1846 he resigned this office to enter the Mexican war. He served with great hravery, and won distinction at Cerro Gordo. In the battle of Churubusco he led his men after being womded, but was again shot, and this time instantly killed.
BUTLER, WhlinM AleEx, author and lanyer, son of B. F. Butler, of New York, born in Albany, N. Y.. Feh. 20,1525 , graduated from New York Cniversity, traveled in Europe, practiced law in Nem Fork city, and published hooks, magazine articles and faneiful poems. tmong his writings are: ont-
 Citites of Irt und the Panly - Irtists: Burmums litimessus: Vothing to Hotr, a satirical poem; Taro Millions: Gemeril Imerege: The Bible by Itsolf; Ifartin Iom Buren; Laryer anid Client: Mes. Limber's Rafle: :abl himosticus.
licTlele, Made-Gremal Whifra Francis, K. ('. 13., born in comty Tipperary, Ireland in 1838 . He was oducated at bublin, and joining the army served on the Red kiver expedition; was sent on a special mission to the saskat chewan (189t-71); served on tha Ashanti expertition (1si3). as staff orticer in Yatal (1575), and took a prominent fart under hord Wolseley in the soudan (mmpaign (1884-85): He has published The foret Lone Land (18T2): 1Hild North Lamd (1833);
 Miss Flizabeth southerden Thomson, a distinguished painter of halthe sepnes.

 1ss0. It wes a graduate of Transylvania University, studied haw, but on the outhreak of the war oif 1 sle went into military sorvice. Lo was at Fort Waye, the two hattles (Jan. is and 2e, 1818) on Rasisin River, and at the seemod was wonded and (aptured, eseaping to his native state whly after great hardships the raised a company of vohuntpers, whieh did good service at lemsacola and New Orleans. He was promoted to be major, and soon after sureeded his hrother as aid-de-camp to General Jackson. He left tho army in 1817 , and resumed his law practice. He served thee years in the legishature and was unsumespoll candidate for governor in leth. Ine sorved in the Mexican war, and was wounded at Monterey. In ists he succeeded Generah soott as chief commenter, and held the place till the war elowed. He was unsuecessinl candidate for the yen-presidency in 18ts, when Cass was at the head of the ticket.
BUTLER, a fremerons thwn of Missouri.countyseat of hates comaty. It is pleasantly situated in a fertile prairie, ahmit in miles southeast of Kansas Cits. It is an important shipping point for coal,
which is extensively mined in the vicinity. It contains also manufactories of wool, and is the seat of an academy.

BUTLEL, a thriving town of Pennsylvania, county-seat of Intler county, situated on the Conerguenessing Creek, about 2tmiles north of Pittsburgh. It contains extensive ghass manufactories, in which natural gas is used : a mumber of planingmills, flouring-mills, and worten mills, and several establishments for the mannfacture of machinery for the numerous oil-wells in the vicinity.

BUTEERAGE, otherwise called the prisage of wines, was a right exeroised by the crown in England to take fwo tons of wine from every ship (English or foreign) importing into England twenty tons or more, which, liy charter of Etward I, wat exchanged into a duty of two shillings for every ton imported by merehant stramers, and called butlerage, becanse paid to the king's butler.

BUTOMUS, a genus of Irimbia, an order of aquatic monoeotyledons, sometimes called marshtilies, of which one species, Butomus umbellatus, is freciuent in diteloss and ponds in England, Ireland and many parts of Europe, but rare in scotland. It is considered one of the most beautiful plants in the British flora. The leaves are all radical. 2 to 3 feet long, linear and triangular. The flowering stem bears a large numbel of rose-colored flowers.
BUTT, Issic, Irish patriut, born in County Donegal in 1513, died May 5, 189. He was educated at Faphoe and at Trinity College, Dublin, where he gained a brilliant reputation for accomplished schalarship. The edited the "Dublin University Magazine" from $183+$ to 1838 , and filled the chair of Politieal Economy in his University from 18:6 to $1 \mathrm{~s} t \mathrm{l}$. Called to the Irish har in Is:S, he soon lecame a ehampion of the Conservative eause. actively opposing O'Conmell's Repeal Association in 184\%. Ilis political conversion occurred early, for in lser he was returned as a "Liberal Conservative" for Youghal, for which eonstituency he sat until 1865. lle defended smith O'Brien ant others in the state trials of 1848 , and all the Femian prisoners between the years 1565 antl 1869 . Butt was the tirst to make political use of the phrase "home rule," and in $1 s i \mathbf{1}$ he was returned for the eity of Limerick to take the lead of the Immo-Imate party in the lIonse of Commons, but was umale to control the fircers he hat formeth.

BLTPE CPTY, a city of Montana, eapital of Silver Bow county, lowated is miles sunth "f Itelena. It derived its mome from its proximity to a lofy monntain peak, called Big Butte, half a mile west of the present eity limits. It is premanmently a mining town, the output of wold, silver and erppry
 part of the city is regularly latid wat, the strects cronsing at right anglos. The prineipal puhbic buildings are the tompthense, opera-honse, high selan, St. James's Hospital, and St. Jamess parochial schond. The coity is well suppliod with water, has
 seworater, and three linos of st met railways. one Hsing a cable and another elocetricity ats its motive poner. Therearedaily and semi-wedy newspapers. atat both National and state banks. The growth of the wity is sery rapid, tha ammant expmeded for tho
 and for rexideneres douhterthis amomat. The Perpulat-

 ter of antimmor, bismuth zinc and ting. If is often applaid enmerablig to any sutstanco of the monsist-
ence of butter, and is therefore used to designate palm, cocoa-nut, shea, and nutmeg oils, called " regetalie butters."
LeTTER ROCK, or MAlotrichite, a mineral which may be regarded as a variety of alum-an iron alum, appearing as a pasty exudation from rocks that contain alum or its constituents particularly alam-slate and other sehistuse rocks. liock lutter necurs at Ifurlet alum-works near Paisley, scotland. and in a number of places on the cuntinent of Europe. It is not unlike butter in color, is silky-fibrous, and has an astringent taste.

BUTTER-ISTL (PAtasites rulyuris). a perenniad composite, common in wet meadurs and beside streams. The small sub-diweious whitish-purple thuwer-heads are born in exulerant racenose masses, which come up like those of its ally, coltsfoot (Tussilugo), in carly spring, before the leaves.

BUTTERCUP, a name given to one or more of the common species of fiammeulus, having hright yellow cup-shaped flowers. See Britannica, Yol. XX, p. 22
BUTTERFIELD, D.siael, born in Ctiea, N. Y., Oct. :31, 1831, graduated at ['nion College, and then became a merchant in New York ciry. When the civil war began, as colonel of the leth New York regiment he aceompanied it to Washington (July, 1861), and led the advance into Virginia, joining General Patterson on the Upper Potomac. He fought in the divisions of Fitz-John Porter, Dope, and McClernand, and was in the battles of Hanover Court llouse, Mechaniesville. Gaines's Mills, Fredericksburg, Chancellurswille Gettrshurg. where he was wounded, Mission Ridge. Buzzard's Ioost. Dallas, New Ilope Chureh. Kenesaw and Lost Monntains, and others. His rank was frequently raised, amt he was hrevetted brigadier and major-general for meritorious conduct. After the war he was zaperintendent of the general recruiting service in New Jork eity, and commanded the New York harbor forces from 1865 to 1s6\%. Resigning from the army, he was placed at the head of the Cnited states subtreasury in that city. lle has since been connected with the American Express Compmay, which his father organized.

BUTTERFIELD, Joms, born in Itelderberg.N. Y., in 17s3, died in Ctiea, Nov. 15, 1s60. He was a selfmheated man, who in his youth was the driver of a stage-roath. ITe remoned to l"tica in 1saz, and did much for the prosierity of that eity. Ihe assisted in the management of the Alhany and Muffalo stage line. ownod many stage routes in Western Xew Tork, was part owner of a line of steamer: on the St. Lawrenee River and Lake Ontario, founded the Butterfield, Wesson \& Co. Express Company.ame was the orisimator of the Ameriean Exprese Comp:aty, in which a number of firms were consolidated. Ite also lailt the Jorse telegraph connecting Jew jorle ated lutixalo, ant was president (185s) of the Oerland Dail Company, which was employed ly the Governmont foc carry the mail hetween san framelise ond the Nissmari laver one a month, and afterwarels mare a lay.
IBTTTERELIEA. Soe Iritamien. Vol. IV. pp. $502-98$

 the root has considerable modicinal repute, the infusion heing used at a diaphoretio and exper torant.
 of tho walnat family : alsu the fruit socealled from the wil it contans. That mut is longe pointed. and furrowed. The wool in und in cathinet-work.
 sub-tropical trees of the natural order sapotaces,
remarkable for the abundance of oil or butyraceons fat which the seeds contain, and which is used for many purposes by the inhabitants of the countries where they are indigenous. The butter-tree deseribed by Mungo Park as growing in the interior of Africa, in the country of Bambarra, belongs to this or a nearly allied genus. It produces the galam butter also called shea butter, which is highly valned, and forms an important article of commerce in the interior of Africa. The Mahwa-tree of India, Bassia latifolia, attains a height of 40 to 60 feet, and is a valuable timber tree. Its flowers are eaten raw; and have a luscious taste when fresh; when dry,they resemble figs in flavor. One tree sometimes produces as much as 800 pounds of flowers. The Indian butter-tree, or Fulwa tree, Bassia butyracea, a native of Nepaul, attains a height of 50 feet. Its timber is light and of no value. The fruit is of the size of a pigeon's egg, and, although eaten, is not much esteemed; but from the seed a concrete oil or butter is obtained, much valued for medicinal uses. Bassia longifolia, a native of Coromandel, yields a large quantity of oil; the dowers are much esteemed for eating, and the wood is almost as hard and durable as teak. The name butter-tree is also given to other tropical trees, belonging to tuite dilferent orders, the fruits of which yield fixed oils.

BUTTERWORT, a name common to the several species of l'mquicula, small plants with a characteristic bunch of apparently stempess leaves, growing in wet ground. The common batterwort, Pinguiculd rulguris, is abundant in the northern parts of Britain and Europe, and grows also in Canada. Its leaves are covered with stalked ghamels, whieh yield a viseous, insect-catching seeretion. The edges of the leaf roll over on the insect and retain it, and it is supmsel that inserts so eaught sorve as foud for the plant. This secretion contains acid and pepsin, and las active digestive propertien. Hence it has the power of coagulating milk, and is used for this purpose by the haphandors. Some species pussess flowers of much beaty, "specially linguinto yrandifturn. North and south America have several species of butterwort. See Jritanniea, Vol. Xhil, p1. 1:31-37.

BUTTERWOHTA. HEZEKIAI, author and editor, born in Warren, R. I., Dee. 22, 1839. As an author he is best known for his' juvenile stories of travel. In the series of "Ziy-Zaty Journeys," duscriptions are given of his tours in many lands. Among his other writings are: Storios of the IIymens; The Proyers of History; Poms jom 'hristmas, Bester, and Niee Feur'; Great Composens, written for the Chautaurua course of reading; Wouldrinl Christmests of ohd : and the three cantatas, Uniler the Polms, Faith, and Fuith Triumphant. In 1871 he became assistant pelitor of the "'outh's Companion."
BUTTS, Is.ac, jomrnalist, born in Washimgton, Dutchess county, X. XV., dan, 11, 1813, died in Finelhester. N. Y., Nov. 00 , 187 t. He wat educated at the common school and at Rochester high selom, engaged in varions pursuits, and in 1sts, issumed editorship of the Rochester "Advertiser," the oldest daily newspaper in the Uniterl states west of Albany. The paper was bemocratie in polities, and as the question came up in Congress at this time whether slavery should be allowed in the territory newty acquired from Mexico, Mr. Rutts towk the ground that the people of the territory should settle the matter themseives. "Popular sovereignty" or "Squatter Sovereignty" was the prineiple, and the phrase originated in Mr. Butte's paper (Feb. \&, 1847), although Daniel S. Diekinson, Lewis Cass, and Stephen A. Doughas respectively chamed the homor. Mr. Butts sold the "Advertiser" in 1 kts , and for four years was engaged in the entert rise of honse
printing telegraph and in the construction of lines which converged at St. Louis. In the latter part of 1852 he ,purchased an interest in the Rochester "Union." Five gears later the "Advertiser" was incorporated with it, and Mr. Butts continued as editor till 1864, when he permanently retired. He was an organizer and for years one of the managers of the Western Union Telegraph Company. His volume on Protction and Frie Trade, with a memoir, was published after his death.
BUTYRIC AClD, rolatile fatty aeid, first prepared by Cherreul, by treating butter with an alkaii. It has a strong rancid smell and acrid taste. Butyric acid may be prepared from butter, or by fermenting sugar with putrid cheese. It cecurs also in the frice of meat in various fats, and in perspiration. It is readily soluble in water and aleohol, and forms a whole series of salts.
butiric Etlier, or Artifichal Pine-apple Onl, a fragrant oil obtained by distilling butgric aeid, alcohol, and sulphurie acid. The material which passes over is the butyric ether, which is usually prepared for commerce by being mixed with alechol. It possesses the flavor of pine-apples, and is extensively used for flatoring confections, for sophisticating bad rum, and for flavoring ices, creams. ete.

BUCLIAUMIA, a small genus of mosses.
BUYS-BALLUT, CHRETMM, meteorologist, born at Kloet ingen in Zealand, Oct. 10, 1817. He studied at Utrecht, where lee subsequently became professor of Hathematics (1547) and of Experimental Plysies (1si0), and in 145t director of the Royal Meteorologieal mastimte. Lhe was one of the initiators of the mew system under whieh, by daily synoptical weather reports, and by simultaneons obserrations by land and ly seit, materials are collected fur foremisting changes ; his own olservations have resulted in the determination of a general law of storms, known as the Buys-lallot law (see lirit-
 klinoscope, and of a ystem of weather signals, he has bem largely instrumental in bringing about an intermational minformity in meteorelogical observations. His work sinclude chang monts Poriontingers el, le Temperuthow (Treelt. 1817), and in Engiish Suggestions on al Lifiform system of Meteroloyical Obstrrutions (157:-73).
BEYIKDEREA, a village beatifully sitnated on the Bosprus, 10 miles northeast of Constantinople. It forms the summer residenee of many of the amanassators of the ('liristian powers, some of whom have splendid mansims here.
 the so-ealled "turkey-huzard" of the l'nited States sed under Asemuct Ytartre, Britanice, Vol XX14, p. 302 .
BYBLOS, an ancient eity of Phemicia, at present a village of fiow inhabitants, ealled Jehail. It is situated on a shallow hay at the hase of the lower range of the Libaus about haftway betweren Tripuli and Beyrmat. Bybhes was fammens as the birthplate of Adonis or Tammuz, of whese worship it heeame the (enter, and many dewtees were also attracted to the splendid temple of Astarte erected here. The name siven to the town ly the dews was Gebal, and its inhabitants are noticed in the seriptures as stoue-spuarers and catkers of ships. A rumed wall belonging apparently to the cra of the Crusades surrounds the town, and homan and parlier remains are still visible.
BY-LAWS, the private regulations which are made by a hegislative hody a conporation, or a soriety for its sowrmment. Thay differ fromprovisions of its constitution in that they are more particular and more readily altered. By-laws are bind-
ing unless eontrary to the laws of the land, or to the charter or act of incorporation, or unless they are manifestly unreasonahle.

BYRD, Whalam, l. R. S., born in Westover, Va, March 16,1674 , died there Aug. $-4,1744$. He was educated in England, and there studied law, but returned to reside on his A merican estates, and long held important olfices in Virginia. Ile collected a yaluable library, was the founder of lichmond and Petershorg, and was one of the commissioners appointed to settle the houndary line between Virginia and North Carolina. Lle was author of valuable papers relative to the boundary line set llement and his travels in Virginia. A part of his writings were published as The Hestover Monuscripts (1841).

Byidgifes, drstis, or Inst Burga, the inventor of various astronomical instruments, born at Lichtensteig, in theswiss canton of St. Gall in 1550, died in $163: 3$. In 1504 he enterot the sorvice of the learned Landgrave of Hesse, Wilhehm IV, and in 1604 that of the Emperor Rudolf II. His first work was a celestial erfobe, in which the stars were placed according to his own ohservations.
byklall (also limlaw or Burlaw), a sort of popular jurisprudence formerly in use in Scotland. Sir John skene, writing in 15:7, when the system was in full force, defines byrlaw as "loges rustiromm de re mestica lutel-laws made by hushandmen, concerning neighborhood to be kept ameng themselves." As the hyrlaw was enacted by the common consent of the villagers or meighors, so it wad administered hy judges chosen hy them from their own ranks. 'lhese judges were commonly calleri "byrlaw men." Byrlaw seems to be an interesting survisal of the system of the ancient Aryan village community, or at least an illustration of the frinciple of risnet, voisinage, or neighbomood, on which many early institutions were founded
IYRXE, Axnmew, Rom:n Catholic hishop, born in Nayan, Ireland, in 1802, died at Litle Fock, Ark., 186\%. TIe was educated at the college of his native town, and came to America in 1800 with Jishop England, who visited Ireland for the purpose of secuting Catholic miseionaries for the work in Amarica. Ilaving eompleted his studios under the prelate's direction, liyrne was ordained in 182T, and assigned to duty in North and South C'arolina. In lsishe was appointed to pastoral work
in New York city, and in 1844 was made first bishop of the diocese of Little Rock. He made three visits to lreland, on the last two of which he secured the services of priests and sisters of merey to assist in his work. Through his efforts the Catholic schonls and churches increased in numbers and prosperits, and immigration was greatly promoted.

BYilion, Heniy Jasies, dramatist, born in Manchester. England, in 1834, died in London, April 11. 188t. He ontered the Middle Temple in 1558, and was lor many years a prolitic and popular writer of burlesque and extravaganzas. He also wrote extensirely for periodicals, was the first editor of "Fun," and occasionally himself appeared in the presentation of his ulays. Of his plays the best was Cyrit's suceres. (li*is), and the most successful, Our hoys, which had in unprecedented run in London from Jan. 16. 1875. to April 18. 1879.

BYSSUS, a genus of plants estahlished ly Linnous to inchude some of the lowest and most obsuure forms of vegetation, and defined as having a substance like tine down or velvet. Botanists have sometimes ranked it among . Ilgx, sometimes among Fungi, and others have rejected the genus as altogether spurious. It is still retained hy sone systematists, hut as a mere provisional limbo to include a mumber of forms of moulds which aplear in damp places and disappear withont showing ans simns hy which their true nature and athinities may he determined. The progress of researeh has greatly reluced this sague alliance. some ioms having been recognized as algal, others as fungial in nature; and its disappearance from our lists may be regarded as a mere question of time.

BYssCs, in conchology, a name for silk-like threads secreted bor the "foot" or muscular ventral protrusion of many bivalre mollusks. The secretion, manufactured by a gland opening in a median posterior furrow, is at first fluid, but soon hardons into a tuft of silky, spreading threads, which serve to anchor the mollusk temporarily or permanently to its base of attachment. It is devoloped by specios of the families Mytilide, Pimidar, IVirulida, Limidx, treida, etc. That of the Pinno is capable of being woren, and in early times was made into small articles of dress for royal personages.

DYTTNERIACE.E, a natural order of plants of whicy the typical senus is Butheria. The species are chiefly tropical or subtropical.

CAAING WHALE-CABLE

CAAING WHALE (Globicephalus melas), one of the Cetacea, in the dolphin family. belonging to a genus common in all seas, and oftener stranded than any other "whale." The length varies from 16 to $2+$ feet; the maximum girth is about 10 feet. It feeds chiefly on cuttle-fish. The caaing whale is gregarious, and rast shoals of 50 to 100 sometimes impetuously follow their leader ashore, when alarmed. Jany names are given to these common cetaceans; among the most popular are pilot$w^{\text {? ale, black-fish, social whule, and grindhoul. See }}$ Britannica, Vol. XXIN, p. 5
CAAMISO, José MI. Plicido, horn in Guayaquil, Eeuador, Oet. 5 , 1838. He studied law and theology in his native eity and at Quito. He was mayor of Guayaquil, was leader of a successfil revolutionary expedition, became president adinterim, and then president of the government in 189%. He has advanced the prosperity of Eeuador ly eneouraging the building of railroads, telegraphs, colleges and schools.

CAB, a carriage with either $t w$ or four wheels, and drawn by one horse. The name is derived from the calriolet-deplace, introduced into England from Franee at the beginning of the present century (see Britannica, Yol. V, 1, 13(i). In Paris the cabriolet-de-pluce was introunced ahont the middle of the 17th century by Nichohas samare, whose residence in the Rue st. Martin at the hotel St. Fiacre has given the name of tiacres to the public carriages of that eity. The cabs of foreign sountries and of our own elief towns have their peculiar features, and are governed by police or municipal regulations.
CABANEL, Ahexnver, a moted French historical and portrait painter. born at Montpelier in 1823. Among his principal works are The Lost Paradise, John the baptist, Jowns, and Jucretia anal Turquin.

CABAL, a term now emphocl to denote a small, intriguing, factious party, united for political or personal ends. It had heen previously used to denote a secret committee or calbinet when. during l66i-73, it was especialty applicd to Charkes Il's infamous ministry (see Britannica, Yol. I. p. IP1). The derivation goes luack to the llebrew hullbinlah.
CABBAGE B1 TTERFi, $\mathrm{C}_{\text {, a }}$ name applied to several species of huttertly, thas larra of which devour the leaves of plants of the calbage tribe. The femate lays her egge, which are ernical and of a bright yellow color, in chaters of 20 or 30 on the under sides of the leaves of plants which are the destined food of the caterpillars. When fully grown these are about one inch and a half long, and excessively voracions. They suspent themselves by their tails, and are tramsformed into shining pale-green chrysalids, spotted with hack, from which the perfect insect emerges, wither the same season or after the lapse of a winter, no longer to devour cabbage leares, hut to subsist delicately upon honer.
CABBAGE-FLY. a fly of the same family as the house-fly, whose larree often do great injury to the roots of cabbages and similar plants. Watering with lime-water will kill the maggots, which are on the lower stems.

CABEAGE-MOTH, a species of moth, whose citerpillar feeds on cablage and turnip leaves. The eaterpillar is greenish-black, and changes to a brown pupa in autumn. The perfect insect is of a rich mottled-brown color, the upper wings clonded and waved with darker brown, and having pale and white spots, a yellowish line near the fringe, the fringe dotted with black and ochre, the under wings hrown and white.

CabBage-Palit, or Cabbage-Tree, a nam given to a species of palm, whose great terninal bud is eaten like cabbage. The ircea oleracea is the cabbage-palm of the West Indies. The Sabal palmetto, otherwise called the palmetto, is the cab-bage-palm of the Sonthern States. See l’am, Vol. XYIII. B . 189.

CADER, Tossng me, a Scottish athletie exereise or feat, in which a long peeled sapling or undressed stem of a young tree, heavier at one cnd than the other, is held perpendienlarly balanced against the chest, small end downward. and tossed so as to fall on the heary end and turn over, the farthest tuss and straightest fall winning. The thin end, held in the hand, should le not more than three inches in diameter ; the average length of a good larch calier is almut 21 feet.

CABES, or Khaps, GCle of, an inlet of the Mediterranean Sea, lying between the islands of Kerkema and Jerha, on the northeast coast of lfrica. in latitude $3 t^{\circ}$ north, and longitude from 100 to 11° east. The town of Cabes stands at the head of the gulf.

CLIBEOON DE J.A SAl, a town of Spain, in the province of Yalladolid. It is situated on the Trisuerga, and is celelerated as the seene of one of the tirst hattles of the leninsular carupaign, in which the spuiards were defated by the French I'opulation, 2,000.
(ABANDA, a small Portuguese territory on the west coast oi Airica, delimited in 158, , bounded on tlee cast ly the Congo state, which on the south separates it from the month of the Congo. The capital, Cabinda, was furmerly a noted slave port.

CLBLDET, a small chamber set apart for some special purpee. ath as the conservation of works of art, antiquitus, specmens of natural objects, models, etc. It often moans smply a small room appended to one larger. From signifying the chamber in which such collections are contained, the term lias mare recently come to he applied to the collections themstles. (abinet also :ignities an ornamental pisece of furniture having shelves or drawers, or hoth, or simply enplwards closed with doors.

CAble, Genree Wanmsaron. author. horn in New Orkems. La., Oct. 12, 14.4. Ohliged by the death of his father, in is59, to leave school, he became a clerk, and in sitis enlisted in the Confederate army. fought gallantly, was wounded, and. at the end of the war finding himself destitate. became an errand-boy. Ile studied civil enginerrug, and was for a lime attached th a wheying expedition. During a period of ill-hwith he lucan writing poems and humorous sketches for the S iw Orleans "Picayune." and soon after was regal - iy attached to the editorial staff. On severing, is
connection with this paper, be became a contribntor to "Scribuer's Monthly." Hisslories deal with Cpoole life as found in the city of his birth. Ilis published books are: old ('reole Imena, The Grandis-
 Iomisiamo, The Silent south. This author has introduced a new tield to the attention of readers. His stories are gracefully told, the characters are delicately drawn, and a sunny humor traces its way through them all, He is a popular lecturer, and gives most enjoyable readings from his own works. Ho is greatly interested in Sunday-school work, and is a favorite writer and lecturer on the International Lessons.

CABLING, the monlding by which the hollow parts in the thutes ol columns and pilasters in classical architecture are often partially filled. The cabling seldom extrnds beyond the third part of the shaft from the ground.

CABOCHED, or Cafossen, a term in heralehry, from the old French word raborhe, the head. When the head oi an amimal is borne, without any part of the reck. and cxhibited full in the face, it is said to bo caboched.

C $\$ BOOSE, or Camboose, the name of a kitchen or cook-room in a merchant-ship. In coastingressth the term is applied to a portable cast-iron stove on the deck, where food is cooked. In the Cuitel States a car for the use of the conductor, brakemen, etc., on a freight train.

Cabot, (ienrge, statesman, horm in salem, Mass. Dec, 3, 1701, died in Boston, April 18, 1828. At the age of 25 he was a member of the Xassachusptta Provincial Congress, and in $17!0$ was elected to the U'nited Natess Senate. He was an assistant of Nexanter Hamilton in his financial schemes, and an authority on political eronomy.
c ABRERA, Ios Ramon, Carlist leader, born at Tortosa, Catalonia, in 1810, died at Wentworth, near Staines, May 24,1877 . Ile was intended for the ehurch, and had already recoived the minor orbers when the civil war broke ont at the death of Herdinand in 1833. He at mee joined the partisuns of Don (arlos, and ly his prergy and pitiless crutly made his name a houselond worl thronghont Aragon and Valencia, It feated and wounded at lancon, he aseaped with dilliculty, hot soon reapperared at the head of a formidable foree. defrated the roval army in two engagements, and for a lime threatomed Madrid itself. ln 1883 Don Carlos created him Comen of Horella and governorgenoral of dragon, Valencia and Dareia. Dlo stongly oppreed bon Carlas's alrlication in $15 \operatorname{ta}$, anc! in lats ranmed the struggle for absatutism in Spain: int the allompt proved an utter taiture, and he was whliged to take refuge in France.
(ACAO BETT"LER, a tixed oil pxpressel from the fruit of Th ohbomu comen, and largaly used in pharmacy and in the preparation of cometies.
(didedilo, a town in the provine of Palemo, Sitily about six miles southwest of 'lermini. lopulation, b.394.
 born in Iluanta, April $-=$, 1431. Ho joinet the army as socond-limutenant in 18, Il. In assisted in the abolition of shavery under ('astilh: won tho rank of rolonel, distinguished himself in the war with Chili, was mate brigadier-genemal, and was instrumontal in the oserthrow of the lernvian demeral Iglesius, who hat established a govermment of his own at Cajamare. Ceicerespatered the capital in Mareh, lsise, was "heded presithent in beember, and intururated in Iuly, ssis.

CDOERES, Núva, a lown of the Philippines in the provine of sonth Camarines, on the istand of Inzon. It is situatel on the river Naga, or katat

Cruz, letween the Bay of San Miguel and the Gulf of Rogay, about 175 miles southeast of Dlanilla. Population, $12,500$.

CACHE, a mame given by travelers in Canada and the western part of the Cnited States to places for cuncealing provisions and other articles for present conremience or future use. Usially the place of concealment is in the ground or under a cairn.

CICHEXIA, a name applied hy physicians sometimes to a group of diseases, and sometimes to the constitutional state accompanying a particular disbasc, as the cancrons cache:in, gouty cachexia, ete. Cachexia has come to be chiefly employed with reference to diseases in which tho general nutrition of the bodry is at fault, and in which the local disorders are supposed to be the result of a constitutional cause.
CACHOLONイr, a mineral, regarded as a variety of opal, and sometimes called pearl-opal, or mother-of-pearl opal. It is generally of a milkwhite color, rarely with a rellowish or reddish tings. opaque and doll, or pearly and shining, and has a 1lat, conchoidal fracture. It is often foind united with common chalcedony.

CACIOUE, or Chziecte, the designation given to the chicfs of Tadian tribes in the central and southern parts of Imerica. The title was first anplied by Spanish discoverers to the native princes whom they found reigaingin Mexico. Peru, Ilayti and cuba.

UACOUN-1, a village of ?uchec, heantifully situated on the right bank of the sit. Lawrence, about $1: 30$ miles below the city of ruebec. It is a favorite summer rosort for fishing ant hunting and for saltwater bathing.
CIDAIIS.1, or Kídrmba, the wood of several species of Joutem, an Indian genus of Cinchonncer. The wood is deep yellow in color, and is used for furniture, ilooring, etc.
C.LILSTINIL, MIDE, maps on a large and comnlole scale, having reference to the extent. value and ownership of landed property, and used for the purpose of apportioninu taxps.
('ADE, SAME, leader of the insurrection of 1450 , was hy birth an Irishman. For a violation oi law he was ohliged to dlee to France, and served for a time against England. hot shlmenuestly poturned and settled in Kent as a physicim. In dune $1+5$ asstming the name of Shortimer, and the title of Captain of Kent. he placed himsolf at the head of about 16,000 followers and marched on London. encamping on Jilacheath, from which place he sent a paper to the king demanding redress of coltain sriewances. and change of eomenchors. This demand was mot by an army hefore which Cate retreated to sevemathe; thare lio defeated a dotachment, and killod its two haders. He antered Lonclon on July ${ }^{2}$ d, and for two days mantaned strict preder, though he foreed the hord layor to pass juderment on Lurd say, one of the king's detested favorites, and he was prompty "xamothe Cade's men. On the third tay sombe humes were plumthered, and that night the citizons hele Lomelon liridge agranst the insurgents. Dissensions arose among Chuns men; they disporem, ant a price was siet upon his hoad. lle attemptod to escape, but was overtaken and killed on duly 12 , near lleathfield, Sussex.

GiDELLE, a name given in France to the larva of a beerle of the family Toonsitida. It commits great ravages in eramarias, and is often imported with gran into commtros whare it is not indigenous. When full grown il is alhut three-puarters of an inch lomg, that temed, theshy, romeh with seattered hairs, whitish, and has a hack horny head, furnished with twornom jows.

CADENCE, the finish of a phrase of which there are three principal species, namely: the whole, the half, and the interrupted cadence. The whole cadence, which finishes on the harmony of the tonic, is always used at the end of a composition, and is frequently called the final cadence. In its most perfect use it consists of three chords, the one before the final being alrays dominant. The half cadence is used to mark the termination of an idea or phrase, like the colon and semicolon, showing a considerable division, but at the same time that a continuation is necessary. The harmony of the half cadence is the reverse of the whole eadence, as it falls from the tonic to the dominant. In the interrupted cadence another harmony quite strange is introduced, so that the ear is deceived. The more partieular the preparation for the usual cadence is made, the more strange and unexpected is the interruption, which can be made in so many ways that Reicha, in his Traité de Haute Composition Musicule, gives 129 interrupted cadences.
CADENZA, in music, an ornamental suecession of notes introduced by the performer at the finishing of a phrase.
CADER IDRIS ("Chair of Idris,", a reputed giant), a picturesque mountain in Merionethshire, Wales, five miles southwest of Dolgelly. It eonsists of an immense ridge of broken precipices, 10 miles long and one to three miles broad, the highest peak reaching an elevation of $2.91+$ feet. It is composed of basalt, porphyry and other trap rocks, with beds of slag and pumice. The riew from the summit is very extensive, ineluding the Wrekin in Shropshire, and St. George's Chamed almost to the Irish coast.
Cadet, Militari. Cadet is a term applied in a general sense to the younger son of a nolle house as distinguished iron the elder. The military use of the word arose from the practice of providing for younger sons, or cadets. be making them otheers of the army. In the United States a military eadet is one who is reeeiving instruction and military discipline at the West Point Military Academy or at the Naval Academy at Ammpolis. Cadetsare nominated for admission, atter examination, by the President or a member of Congress. Of British military cadets, those destined for the Koyal Artillery or Royal Engineers study at the lioyal Military Academy at Woolwich, and those for other branches of the service at the Royal Military Academy at Sandhurst.
CADI, an Arabic word signifying a judge or person learned in the law. The title of an inferior judge among the Mohammedan nations, who, like the mollah, or superior judge, must be chosen from the higher ranks of the priesthood, as all law is founded upon the koran.
CadilLac, Actomine la Motie, born in Gascony, France, alout 16ito, died about 171%. IJe was a descendant of a nolle family, and was ordered by Louis XIV to examine the coast defenses of the Freneh territory in America. He founded Detroit, Mieh., in 1701 (calling it Fort l'ontchartrain), established trading forts, discovered a silver mine, which was named "La Mothe," and in Jill became governor of Louisiana. A fine hotel in Detroit has been named in honor of this Frencliman.
CADILLAC, a city of Michigan, countr-seat of Wexford connty, situated on Clam River, about 100 miles north of Grand Rapids. It is the seat of an extensive trade in lumber, and contains numerous lumber mills, machine shops and foundries. and manufaetories of bricks, cigars, earriages and wagons.

CADIZ, a town of Ohio, county-seat of Harrison csunty, pleasantly situated in a fertile, hilly dis-
trict, about 20 miles northwest of Wheeling. It is the cenier of an important wool-growing incustry. In the vicinity are valuable mines of bituminous coal.
CADMIA, the term applied to the erust formed in zine furnaees, and whiel contains from 10 to 20 per cent. oi cadmium.
CADWLLADER, George, soldier, born in Philadelphia, Pa., in 1804, died there Feb. 3. 1879. He practiced law; served in the Mexican war as brigadier-general oi volunteers; rose to be majorgeneral on accomnt of gallantry at Chapultepec. served as major-general of voluntcers in 18 did 2, and was a member of a ctmmission appointed to revise the United States military laws and regutations.
CADWALADER. Jons, an American gemeral. born in Phila, Pa..Jan. 1才, 1 an Ame in Slrewslury, Pa., Feb. 11, 1sis. He was intere:ced in qublic allairs prior to the Revolutionary war; was captain of a military company, and when the city battalions were formed was placed in command of one of them. Promoted lrigadier-reneral, he was phaced in command of the Pemsslvania militia, assisted in the capture of the Hessians at Trenton, and was present at the battles of lirandy wine, Gemantown and Monmouth. Aiter the close of the war he remored to Maryland, and was elected to the State legislature.
CADY, Albermarle, American officer, born in New Hampshire ahout 1809, and graduated from West Point in 182?. Ile served chiefly at frontier posts until latti, fought in the Mexican war from $18+6$ to 1848 , and during the carly part of the civil war was on lacific const duty. In 1964 he was appointed to the command of the dratting rendezyous in New llaven, Comn.. wals brewetted hriga-dier-general, and was soom :ifter retired from service.
ClicillA, a genus of serpent-like amphihians (see lifitamica, Yol. 1, p. 251), the typieal genus of the fanily C"acilider, in which the body is without tail or limle, with transcersely furrowed skin, and usually with small hidden scales. They inhabit warm countries and damp places, burrow like earthworms, and eat worms and insects. About 30 species are known and are very widely distributed. Ctreilin itselt is a south American genus, about 20 inches in length, and the thickness of a large worm.
C.AEN STONE, a tine oulite stone, for which the meighborhood of Caen, in Normandy, France, bas lung been celebrated. The quarries are subterranean, and the stone is lrought up in loocks eight or nine feet long and two Thick, through vertical shafts.
C.LSALPINLA, a gemus of trees of the natural order Leguminosar, the type of the sub-order c'asalpiniex. This sub-order contains alnot 1,510 known species, among which many are notable for their purgative properties, as sema; some produce catable fruits, as the tamarind; some yield resinous and balsamic products, some produce important dye-woods, and some are trees of great size and very valuable for their timber. They are natires of the warm parts of Asia and America.
CESAR, the title of the Romath pmperors, and of the heirs to the throne, was originally the name of a patrician family of the Julice (ims, one of the oldest in the Roman state, claiming to lie descended from Iulus, the son of Eneas. Octarian bore the name as the adopted son of the great Julius Cesar, and handed it down to his own adopted son, Tiberius, after whom it was horne ly Caligula, Claudius, and Nero. Although the Cesarian family proper became extinet with Nero, the word Cæsar was part of the style of the succeeding em-
perors, usually hetween imperator and the personal name, as "Imperator Cissar Vespanianus Angustus." When the Emperor lladrian adonted Elius Verns (136), the latter was permitted to take the title of Cosar; and from this time in the western, and afterwards also in the tastern empire, it was borne by the heir-apparent to the throne, while Augustus continued to be the exchusive name of the reigning emperor. The name reappears in the Czar (or Tsar) of Russia, in the K'tu r of the "Holy Roman Empire", and the modern tr pire of Germany, and the K"uism-i-IImel or empress of Mindustan.

CESAREAN OPERATION: in midwifery, the operation by which the foetus is removed from the uterus by an incision through the walls of the athdomen and uterus, when delivery is impossible by the natural channel. The risk to the child's life, if it be alive when the operation is begun. is slight; but to the mother's very great. Practitioners are not yhitio agred as to the eirenmstances which justify the performance of such a severe operation on the living female, hut all are unanimous as to the propriety of at once removing by it the child of a recently dead woman. The operation has beem less often and less suceessfuily resorted to in Great Britian than on the continent of Europe and in America. The ('asarean operation was so called from the report that Julias Ciesar was brought into the world in this way.
C.EsCRA, or Cesira, in prosody, a pause or break occurring in the middle of a foot-a sense pause-on the variations in the prosition of which much of the effect of the rhythm of verse depends.
Caffeine, or Theine, the alkaloid or active principle of coffee and tea. When isolated it forms beantiful white erystals, with a silky luster, which are suluble in water, alcotol, and ether. It is present in coffee to the extent of about one per cent., and in ordinary tea, from two and a half to six per cent., and is also found in Pariguay and Guiana teas.

CAli.JYAN SULU, an island of the Asiatic archipelago, lying in latitude $6^{\circ} 58^{\prime}$ north, and longitude 1180 east. It is about 20 miles in circumference. well wonded and elevated.

ChbiNA, a fown near the southern extremity of the ishand of Lazon, Philippines, with a popalation of 12.25 .5

CAllAWIB. a maviable river of Alabama. It risps in the nothern conat ral part of the State, fows siduthard about - mon miles, and enters the Alabama at the ol f village of 1 ahawha, 10 miles helow solmat.
C.MDIl: a town in the county of Tipperary, Ireland.on the suir, hantifully situated on the east end of the vallay batwatn the falteres and Kinockmeablow Momatains, daide datle, an ancient irregular Xoman strmeture of considerable axtent, is sitnated on a ronk on the laft hask uf the suit. It has exponsive flour mills. Fopulation, $\because, 0$ ono.
 Indians, is a cuaint village of lllinosis, sifuated on the Mississippi, marar East Et. Lonis. It was setthend
 ants. desemblants of the origimal sullors, preserve miny of the constoms and traditions of thair ancestore: lathe neightorhood are funtat mamoroms remarkahm prehistoric momals.
 lomering generaphically to the bablamas, hut all-
 1slambs thay have an area of 2×3 square minos. Popsnation in Lssl, 4.75 s . See Eritamiea, Vol. Ill, p. 2:6; Vol. X111, p. 544.

UAllLIAND. Fremerte (1757-1869), a French traveler. horn at Nantes, June 9, 1787, died there day 1. Istig. He liecame a goldsmith and traveled over Europe, and in 1815 went to Alexandria. In examining the mineral resources of Egypt he rediscovred the ancient emerald mines of Jebal Zo-- bationear the Red sea; and his report of a journey to Siwah led to its annexation loy Egypt in 1sㅇㅇ. In 18:I-22 he accompanied Ibrahim Pasha's expedition to the White Nile, and his Joyage a Mirne (four volomes, Paris, $1823-26$) contained the tirst trustworthy account of that district. In 182 he tecame conservator of the Natural History Museum at Nantes. He puhbished a Toyage d S'youah. and tro volumes of researches on the life of the ancient Egyptians, Nubians, and Ethiopians.
C.INOZOLC ("recent life"), a geological term. symonymous with tertiary, introduced to avoid the confusion which attended the use of the terms primary, secondary, and tertiary, owing to the rarions meanings attached to them by geologists.
©'A IRA ("It will go on!"), a popular song which arose in the fever of the French Revolution of 1789 , so called from its refrain:
*Ah 1 ça ira, caira, "aira, !
Les aristocrats â la lunterne:
It became a French national song, and was styled the 'rurillon National. The original words (afterwards much ehanged) were due to a street singer named Ladre; the metody to Becourt, a drumner of the Grand Opera. The song was prohibited by the Directory in 1797.

CAIRD, Johs, D. D., an eminent Scottish preacher, was born at Greenock in 1820. IIe studied at the University of Glasgow, and was locally well known as an able preacher, when a sermon de. livered lefore the gueen in Crathie in 1855 and published under the title of The Religion of Common Life, quickly carried his fame into all parts of the Protestant world. It was pronounced by Dean Stanley to lie the greatest single sermon of the eentury. In 1858 Dr. Caird published a volume of sermons, marked hy heauty of language. strong thought. and intense sympathy with the spiritual aspirations of mankind. He received the degree of I. D. in lxtio, was appointed Professor of Divinity in 1sise, and in 18:3 Principal of Glasgow Eniversity. In 1880 he pullished il work of great impor. tince, In Introdartion to the Philosophat of latigion.
rAlkD, Enwabd, a brother of the foregoing. forn in 1835, and educated at the University of flasgow. From Glasgow he passed as a snell exhilitioner to Balliol College, Oxford, and hecame in 1stit Fitlow and tutor at Merton. In latit he was appointed professor of Moral Philosophy at Glaswn tniversity, where he has since exercised an unasial persunal influence over the students. IIf worksarea Critical Arcount of the Philosophy of Kant (15:T), an excellent little book on I agel in Phack. wood's "lhilosophical Classics," and an examination of The Sorial Philosophy and lieligion of Comte (1siō).

CADLNS, Hugh MscGamost, Lomb, am eminent Irish statesman and lawer, bum near Belfast in 1sis. dind in 1885. He was appointed attorneygeneral in 186t. He became a lader of the Comsorvative party in the llouse of Lords, and was twinn lord ehanceltor of England.
('JIIAO, a city of Illimois, and comnty-seat of Alexabder county, situated on a low point of land at the jumetion of the λ lississippi and Ohio livers. It was formerly subjeet to mundations, which retarded it- growth; but extensive levees that have repontly been erected at grat expense afford amplo protection arainst the encroachments of the rivers, and the city is now rapidly increasing in
numbers and wealth. Population in 1880, 9,011; in 1890, 10,044. See Britannica, Vol. IV, p. 647.
CAITHNESS FLAGSTONES, dark-colored bituminous schists, slightly micaceous and calcareous. valuable on account of their great toughness and durability for pavements, and various other purposes. They belong to the Old Red Sandstone, and contain abundant remains of fossil fishes.
CAIVANO, a town of Southern Italy, four miles north of Naples. Population, 10,832.
C.AJABAMBA, capital of the province of Chimborazo. in Eeuador, situated 102 miles south of Quito, on the arid platean of Topi, at an elevation of 9,480 feet. Population, 16,000 . The former town of Riobamba, founded on this site in 1533 was in 1797 orerwhelmed by an earthquake, in which 30,000 lives were lost.

CALABASH, or Gourd-Tree, a tree of the West Indies and the tropical parts of America, of the natural order Bigmoniacex, sub-order riescontiacez. In height and size it resembles an apple-tree; it has wedge-shaped leaves, large whitish fleshy flowers, and a gourd-like fruit, some times a foot in diameter. The wood of the tree is tough and flexible and is well adapted for coach-making, but the most useful part is the hard shell of the fruit, which is used instead of bottles, goblets, cups, water-cans, etc. The calabashes are sometimes polished, carved, dyed and otherwise ornamented.

CALAIS, a city of Maine, county-seat of Washington county, situated at the head of mavigation on St. Croix River, opposite St. Stephen's, New Brunswick. Its chief industry is ship-building, and there is an extensive export trade in lumber, which is sawn in the vicinity. There are also a number of machine-shops and foundries. Calais is the seat of Calais Academy and of a high school.
CALAMANDER WOOD, a cabinet wood of great value, resembling rosewood, hut surpassing it in beauty and durability. The tree which prodnces it is Diospuros hirsuta. See Ebosr, Pritannica, Vol. V11. p. 619.
CALAMARY, or SQ*ID, a name applied to numerous forms of cuttle-tish or Ciphalopodu. Sce
 SXl. 1 , 609.
CALAMBUCO, a very durable timber tree of Luzon, somewhat resembling the teak, and much used in ship-building and in the manufacture of furniture and agricultural implements.
C.ALAMLANES, a group of islands in the Eastern Archipelago, in latitude about 11° 25' to $1 \geq 0^{\circ} \quad 20^{\prime}$ north, and longitude $1: 0^{\circ}$ east. See Britamica, Vol. XVill. pis.
CALANINE, an ore consisting essentially of silicate of zinc. It occurs in small obtuse edred erystals. also compact and massive ; it is white, brown, green, gray, and yellowish-white; is sometimes opaque and somotimes translucent. It is found in beds and veins in rocks of varions kinds, but most commonly in limestone. See Britamica,

CALAMIXT (Culamintho), a genns of plants of the natural order Labiutic. (alaminthe uphicinalis. is not unfrequent in England. It has whorls of thewers on mans-thowered stalks. and serrated leares, with an agreeable aromatie odor. It is used to make herb tea. and as a pectoral medicine.

CALADITES, a group of fossil plants, which make their first appearance in the Devonian. ocrur abundantly in the Carboniferous, and seem to die out in the Permian strata. They are among the commonest and most eharacteristic fossil plants of the coal-measures. There is some doubt as to the affinities of these plants; but they are generally admitted to be allied to the recent Equisetaces or
horsetails, from which, however, they differ in certain points. It has not yet been fully decided whether they should be considered as a peculiar form of Equisetacex, or classed as a distinct but allied order. The gigantic decorticated stem is longitudinally ribbed and transversely jointed; in some stems long narrow branchlets proceed irom the transverse joints, and in others branches bearing whorls of sinall branchlets or long narrow pointed leaves. Some of the species were provided with thick and others with thin hark. Calamites seem to have grown in dense brakes on low alluvial flats, and perhaps even in water.

CALAMUS, the reed pen which the ancients used in writing. It was made of the stem of a reed growing in marshy places, of which the best were obtained from Egypt. The stem was first softened, then dried, and cut and split with a knife, as quill pens are made. Even now the Orientals write with a reed, which the Arabs cali Kalim. See Britannica, Yol. XVIII, p. 483.

CALAMCS AROMATICUS, one of the sweetscented grasses of India, and one of the substances available for incense. The calamus of the Greeks and Romans came from the East, and to it the ancientsascribed important medicinal virtues. The calamus of America is the creeping root-stalk of the t corus calamus, or sweet flag. See Britannica, Vol. XII, p. 718.

CALASAS, a town of Andalusia. Spain, situated about twenty-seven miles north of Huelva, and thirteen miles northeast of Tharsis, with which it was conmected by rail in 1887 . There is a large copper mine in the vicinity. I'opmation, 3,991 .
C.ILANDO, in music, an Italian expression, meaning diminishing hy degrees from forte to piano. It differs from decrescendo or diminuendo, as the tempo at the same time is slightly retarded, hut not so mueh as in ritardando. The proper performance of the calando is purely a matter of good taste and feeling. depending on the performer.

CALANDRONF, a wind instrument on which Italian peasauts pay simple meloclies. and also sometimes accompany their hational songs. It has the holes of the eommon thinte, but the intonation is produced as in the common pijee.

CALASPARLA, a town of spain, in the province of Murcia, forty miles northwest of the city of that name. The inhaloitants, numbering abost 3,000 , are chiedly engared in agricultural pursuits.
C.di.dTASidZOR, a town of Aragon, spain, ahout ten miles southwest of soria. Population, 1.5 HO.

CALATRAVA-LA-V゙IEGA, a ruined city of spain. situated on the Guadiana, twelve miles northwest of Ciudad Real. In the Niddle Aues it was a strongly fortitied place, hut nothing now remains except a single tower.

CdLACRGA, a town of the Xizam's dominions in limdenstan. It is situated on a tributary of the lhemah. It has been successively the capital of llindon and Johammedan sovereignties. P'opulation, i, 000 .

CALCAIEOES TUFA, or TEFA, a mineral which in its chemical composition is nearly idmatieal with limestone and narble, but is distingushed hy its spongy and cellular structure. It is generahy soft, brittle, and friable, but sometimes it is sufficiently hard to he used in building (see Iritamica, Vol. AX, p . sos). Sometimes it inerusts anmal and vegetable remains, as in "petrifying springs" (see Britannica, Vol. X, p. 270), and it is sometimes used as a filtering stone. The stalactites and stalagmites found in carerus are varieties of calcareous tufa.

CALCislEU, a river of Louisiana, about 230 miles long and navigable for 300 miles. It rises in the western part of the State, bows south through Lake Caleasien, and enters the (initi of Mexico near the village of Cameron, ninety miles from Galveston.

CALCEOLAKIA, a Sonth American genus of plants of the natural order somphloricese. The calyx in this gems is thartite, corolla "-hipped, the lower lip remarkably inflated so as to form a bag, and the shape of the whole in some species resembles that of a slipher. The art of the gardener has succeedol in producing varieties and hybrids which exhibit many rich and delicate tints. Some of the spories are used in sonth America for dyeing. See Mritamica, Mol. Nll, po 2 .

CARCIFEROUS EJOClI, an epoch in the Lower Silurian system of North America. The division is characterized by the presence of calcareons sandstones and limestones, portions of which are very hard and silicoons, aml contain seodes of qualz crystals. The Calaiferous epoch immediately succeeds the Camhrian perion.

CALCINATION, or CAbCisinct, the process of heating or roasting in furnates or in heafs the varions metallic ures. It is resorted to as the first stage in the extraction of the majority of the common metals from their ores, and is essentially it process of oxidation.
CALCICME, the metal present in chalk, stucco, and other compounds of lime. It is rellowishwhite. can be rofled into sheets and hammered into leares, and is intermediatr between lead and gold in hardness. To retain its brimhtness it inast he kept under the surface of maphtha. At a red heat it melts and burns with a dazaling, white light, accompaniad by scintillations.
 lish artis, horn at Chester, harch -2?, 1846. tle was for sometime employed as clerk in a bank, first at Whitchurch and afterwards at Manchester. The suecoss of his work in the London ilhstrated papers encouraged him to remove to the netropolis, where hes son froved himself without an equal in depicting the humors of animal life and the jogs of the comotry-house abd hmongfiekl. Ite eontribured fremently t" "unch" and the "traphic." and occasionally exhilind at the Royal Academy, the Dubley, and the Grusvenor Gahleries. In 1 ste he became a member of the institute of lainters in Water-Colors. His health, however, som save away, and, after vain attempts to restore it by trips abroal, he died at st. Iugustine, in Florida. Jeh. $1: 2$, 1 ski. Ramdolph Calaecott will he remembered chiefly by the admirable colverott" Piature-boks, whicli began in 1s7o with John Ciluin and The House That Jack Ruitt. He also illustrated

 Itmint foll: (1s-s , and several other well-known works.
CALDEA, a river of Yorkshire, West Riding. It rises in a marsh on the iorders of Lancashire, near Burnley, and aftar a course of forty miles joins the dire near lonlefrat. It forms a considerable portion of the canal ronte through Yorkshire and Lancashire, befweet the eatst and west cuasts of Englame.
 bom of spanish parentame at lobtiors. in 1san Ihe stadied in lamdon and laris, and regularly dontributed to the tayal Academy from 1-ith his shbjects being chichy historical or imamimative. Ite exhilited at the laris International Exhibilions of 1 sitiond fsis. recorving at the former the first medal awarded to linglish art, and at the latter a first elasm medal and the Legion of IIonor.

In 145 he was appointed keeper of the Royal Acarlemy.

ChbilfBO, a decaged town of North Italy, about nine miles east of Verona. Its thermal springs were in repute as early as the first century oi the Christian era, and continued to enjoy popubarity until the sixteenth century, after which they gradiailly became neglected, and are now little risited.

Cildivell, Charles Henry Bromedge, naval otheer, born in Hingham, Dass., Jone 11. 1sz3. died in Wralt!am, Mass, Zov, 30, 1s:. He entered the nayy as mithohipman in 1s5is and became lieutenant in 150%. The commanded the Itaxces in Jo6 2, , when an attack was made on Forts Jackion and St. Philip, and led a party of men who cleared away the chain olstruction which prevented the Union gumboats from passing the forts. Lieutenant Caldwrll was in the action at Grand Gulf in 1862, and was swom afterwards made commander. He subsequently commander the Essex, the Giaucus, and the R. L_{2}. Comples, and in $187 \pm$ was promoted to the rank of commodore.

CALDWELL, Jimes, American patriot and clergyman, bom in Charlote county, Sia. in Aprii, 1734 , shot hy a sentry near Elizaluethtown, N. J., Nov. 24, 1781. He was a gracuate of I'rinceton in 1753, atd beeame pastor of a Preshyterian church in Elizabeth three years later. Durine the agitations preceding the Revolution he was active in arousing the spirit of rebellion, and was subsequently chaplain in the American Arms. A monument commemorating his life and service was erected at Elizabethtown in 1846.

CHLDUELL, Josern, D. D.. educator. born in lamington, N. J.. April 21, 173, died at Chapel Hill, N. C., Jan. $=4,1835$. He graduated at Princeton in Jan, taught school in his native place and in Flizabethtown, and in 1796 was appointed to the chan of mathematice in the Tiniversits of North ('arolina. He henceforth devoted his energies to the uphudding of this institutiom. and to him is due the merit of having saved it from ruin. In 1sut Dr. Caldwell hecame president of the Cniversity, which position lie occuried until his death, with the exception of the years 1812-5.

CALDUELA, Merehtt, educator, born in Hebron; Oxford comenty, Ne., Nov. 29, 1s06, died in Fortland, Jame 6,1848 . He graduated at Bowdoin in is 2 ? and in the same year became principal of the Haine W"esleyan Seminary. In 1834 he was elected profeseor of mathematies at Dickinson College, I'enmsylvana, and in $1,8: 7$ was transforred to the chair of metalphysics and Fnglish literature. which position he secupied umil his death. Among his published works are: Thi Doctrine of the English V'rob; Fhhosophy, if Christien Perfectiom; and Christiant! Tested ly Fimiment Men.

CNLIMELL, Simee Lixt, D. D., edncator, born in Newhuryport, Mass., Nov. 13. 1820. He was educated at Colby Ĺniversits, Waterville, Me. : be subsedumity graduated at the Nowton Theological Institute, and hecame pastor of a liaptist church at bangor, Mo., and afterwards at lrovidence, R. I. The held a profussorship in Newton Theological Thstitute, and in 1siswas calied to the presideney of lassar Collegr, this position he resigned in tssin. lur. coldwell has pmblished sermons, orations and bectures, and edited Sols. III and IV of Publi-

O. LIJIVELL, a city of Kinsas, atont twenty miles south of Wedlington. it is the trade-center of a fertile agricultural dionfet, and contains a momber of arain- levators and douring-mills.
 York, coanty-seat of TVarren county, situated near
the head of Lake George, about sixty miles from Albany. It is a very popular summer resort. Its surroundings are picturesque and romantic; the lake is studded with numerous beautiful islets; and in the ricinity are several places of historic interest, including Fort George and Fort William Henrs. The name Horicon, commonly supposed to be the original Indian name of the Lake, was a fanciful invention of Cooper, the novelist.
CALDWELL, a town of Ohio, county-seat of Noble countr, situated about thirty miles east of Zanesville and thirty-five miles north of Marietta. It has a sash and door factory, and in the vicinits are found coal, iron, oil, and salt.

CALEDONIA, a village of Minnesota, countsseat of Houston county, situated about thirty-two miles south of Winona. It contains mannfactories of wagons and sleighs, and is the center of an important local trade and the seat of Caledonia Academy.

CALEDONIA, a village of North Dakota, and countr-seat of Traill county, situated at the confluence of Goose River with the Red River of the North. It is an important shipping-point for grain.

CALEDONIA SPRINGS, a village of Ontario, about ten miles south of L'Original. It contains a number of alkaline medicinal springs noted for their eflicacy in the cure of rhemmatic and cutaneous diseases.

CALEDONIA CANAL. See Pritamica, Vol. IV, p. 787.

CALENDER, or Kılmomer, a Persian word (meaning "greater") applied to memhers of an order of dervishes fonnded in the fourteentl century. The Calenders are wandering preachers, who bold that sin defiles the body only, and can be removed by ablutions. The members of the order, even during the life-time of its fombler, were remarkable for licentionsness and demanchery.

CALENDA, the first day of each Roman month. See Calexpha, Britannica, Vol. IV, p. 605.

CALENTURE, a Spanish term for a species of temporary delirimm or fever occurring on hoard a ship in hot climates, and probably due to the effect of exposure to the direct rays of the sun.

CALGARY, a town of the Northwest Territory of Canada, with station on the Canadian Pacitic

Railway, 2,262 miles rest of Montreal. It stands 3,380 feet above the sea-level, in a broad valley between the Bow and Elbow livers, and is a trad-ing-center for a wide district. It dates from 1884.

UALHOUN, Willam Bahion, LL. D., born in Boston Mass., Dec. 29, 1796, died in Springfield, Mass., Nov. S, 1865. He graduated at Yale, entered the legal profession, and attained much popular favor. In 1825 he was sent to the legislature, where he served for ten years; was in Congress from 1835 to 1843 ; was Secretary of State (Mass.) from 1848 to 1851 ; bank commissioner from 1853 to 1855 ; presidential elector in 1844, and in 1859 was elected mayor of springfield.
CALI, swriligo de, a town of Colombia. situated on a tributary of the Rio Cauca, 3,300 feet above the sea. It is connected with Buenaventura by rail, and has considerable trade with that port. Population, 13,000.

CALAANO, a small town of the Austrian Tyrol, on the leit bank of the Adige, about nine miles south of Trent. It figures in history as the place where the Austrian Archduke Sigismund won a single victory over the Venetians in 1487. Being a place of considerable military importance, it was also contested in the campaigns of 1797 and 1809.

CALIBRE, or Caliber, a technical name for the diameter of the bore of a fire-arm, whether a piece of ordnance or a small-arm. If the weapon is rifled its calibre is measured, not from the bottom of the grooves, but from the smooth surface between them, teclinically called the "lands." In the United States the calibre of a fire-arm is expressed in decimal parts of an inch: thus, what is commonly called a 4 -calibre rifle is one of 44 -inch; the calibre of a cannon is expressed either by the diameter of its bore or by the weight of a solid round shot which it will carry. In Great Britain calibre is expressed as in the United States, with the exception of the heayy guns, which are denominated from their weight; as, a 38-ton gun or a 100 -ton gun.
CAIIFORNIA, a village of Missouri, county-seat of Moniteau county, sitnated in the center of the state, in the midst of a rich agricultural and mineral-producing district. It contains a number of mills for the manufacture of flour, paper, and woulen groods.

CALIFORNIA, State or. Area (oflicial 1800), 158, 360 syware miles. Population (18.00), $1,205,130$. Capital, Sacramento, with a population in 1840 of $26,202$. For the carly history, physical geography, climate, mines, and productions of California, sce Britannica, Vol. IV', pp. 694-70t.

California is rapidly advancing not only in population, but also in respect of numerous indusities. In its gold products it is the firststate in the Union. Since 1848 , and up to Jan. 1,1891, its gold and silver reached a total of $\$ 1,367,450,000$. Its mineral products ia 1890 were salued at $\$ 2.3,550,000$. Its manuiacturing products in 1880 were ralued at $\$ 116,218,000$; in 1590 , at $\$ 165,000,000$. The deposits in its banks in 1890 reached the large total of $\$ 171,209.581$; and the assessed value of propert y, a total of $\$ 1,060,500,296-$ an amount nearly doulle the total valuation in 18S0. Its wealth por copita is the largest of any State in the Union.
On Jan. 1, 1590, California reported 4,500 miles of railway, with an assessed ralnation of $\$ 40,248,000$. Its chief city, san Francisco, clains to be the third largest commercial city in the United States, and to be practically out of debt.

In 1800 the estimated area of arable land in California embraced $38,000,000$ acres; cultivatod, $9,500,-$ 000 ; forests, $20,000,000$ acres. Its hay, cereal, and root crops in 1890 were valued at $\$ 70,000,000$; its bean crop reached a total of $1,000,000$ centals; its barle5, $16,000,000$ bushels; its hops, 40,000 bales; its wheat crops, $27,000,000$ centals, of which there were exported $13,206,109$ centals, valued at $\$ 17,600,000$; its flour exported at $1,201,304$ barrels, valued at $\$ 4,000,000$.

The fruit crops of the State have increased with extraordinary rapidity. The raisin output of 1890 was reported at $2,000,000$ boxes, or $400,000,000$ pounds ; its prune crop at $15,000,000$ ponnds ; its dried fruits shipped East, at $66,318,000$ pounds-more than ten times the quantity shipped East in 1880; oranges shipped East in 1890-01, at 4,000 car-loads, in 1859 at 3,187 car-loads; total green fruits shipped east in 1890 at $105,000,000$; in 1880 the amount was $5,180,000$. Not only do the orange and grape thrive in California, but also the olive, fig, almond, and walnut; the State is also a very large producer of honey.

The grape districts of California have an area of about 225,000 acres.

The United States Census of 1590 showed an in－ crease in the population，during the last decade，of $3+3,436$ ，the net increase being about 34.33 per cent． The subjoined table shows the population of the State and its comparative increase by counties：

Counties．	1830.	1×50.	Increase．
Alamtda．	93，564	62，976	30.85
Alpine．	867	589	120
Amador	10，324	11，384	d．1，04t
Butte	17，939	18，201	1．752
Calaveras	8，452	9，091	d．212
Colusa	14．640	13.118	1，522
Contra Costa	13，515	12.585	990
Del Norte．	2，592	$\cdots, 584$	¢ ${ }^{5}$
El Dorado	9，232	10，483	d．1，451
Fresno．．．	32，0：3	9，478	22，548
Humboldt	23，419	15，512	7，957
Info	3，544	2.928	610
helu．	9，808	5,601	4.207
Lake	7，101	6，596	505
Lassen	4.239	3,340	893
Lua Augeles．	01，154	33，481	68.073
Marin．．．．．．．	13,110	11.324	1，2x
Mariposa	3，त入	4，884	d．59］
Mendocino	17，1910	12，（x）	4．81］
Nerced	8，085	5.40	2， 2×2
Modoc	4，94t；	4.399	38
Mono	2，002	7.494	d． 5.497
Monterey	$18.13: 7$	11.302	7，0in
Napa．	11.411	13，2\％	\％
Nevada	17，${ }^{\text {ch }}$	20.823	c1． $3.4 \overline{3} 4$
Orange．	1\％．589		13，559
Placer．	15， 101	14，20	809
Plumas	4，9\％3	6.180	d． 1.247
Sacramento．	40,329	31：390	5，349
San Benito．	6,412	5，584	828
San Bernardino．	2 2 .497	7，580	17，711
San Diego．．．．．	84，947	8.618	24，369
San Francisco	298,997	833.939	6．303
San Joaruln．	28.629		＋，250
San Luis Ohlspo．	15，072	9，142	6.930
San Mateo．	10，087	8.669	1，418
Santa Barbar	15，\％\％t	9，513	6，941
Santa Clara．	4×105	20，039	12，960
Santa Cruz．	19，2\％ 0	12，502	6，468
Bhasta．	12，1\％；	9，492	2.641
Sierra	5，051	6，693	d．1，572
Siskiyon	12．163	8,610	3，53，
Solano	20.916	18．475	2，431
Somoma	32，721	25， 20	6，75
Stanislaus．	10， 1440	8，751	1，289
Sutter．	5，469	5，159	810
Teharma	9.1116	9.301	
Trinit ${ }^{\text {c }}$	3.719	4.499	d．1，280
Tulare．．	21.57	11，291	13，293
Tuolumae	6，0×2	7.818	d． 1.806
Yentura	10，9，1	5.178	$4.90{ }^{\circ}$
Yolo．．	12，率	11，72	91．
Yuba	9，Hivill	$11,2 \cdots$	d． 1.0 do

Of the $5 t$ comaties in Californin，nearly all produce grapus， the larger portion of then yichling wine ior home con－ sumption or for export．Thereis ancenablished demand for this wine to the rmonnt of ，whe 000 gallons fur month from this
 exportation to forcign countries of ：11，wan gallons in 18w，val－ ned at $\$ 217,033$ ．The state may be divided into three grafe－ growing districts：the coast，which melmates somoma，lake． growng districts：the comst，math sumta Crum connties：the Sierra Nevalit Foothill mutheramento valley dist rict，which
 Butte，saermento．Tehman counties and the sonthera dis－ trict，which includes san Jomufn．Bureet．Fresno．Tulare， hern，Yentura，Santa Barmara，min Bernardino，bos Angeles． and san Diego comtirs．
Sn the liret listrict the finer grates of whte and red dry winea atemate．The choice varicty oi the French and Ger－
 there than in ans ather detrict．In that distrint are sureess fully grown the finest varicties of Fremeh champunge grapes Which flel，a bandsome profit to the producers．There fon ond cellar fo the district having a capacity of su0，000 bottles，pro－
ducing champagne by natural fermentation iu the bottle． The chanpugue industry in Callornia is constantly growing， whth the pronise of a bright future．While wine is the lead Ing vitichltural product，the district producesalso fine table grapes．Grapus for table nse and raisinsare also extensively grown in the stcont district，a large fortion oi the new plant－ ings being for raisins．
In Nayn connty，iu the first＊istrict，there was in 1830 a grape acreage of 20,76 acres．There were 142 wine cellars in grape acreage of them of recent construction，and containing all the appliumesior the manufacture and handling of wines． There were z，undutu gallons of wine made in that county dur－ ing the year 1059.
Sonona county，in this district，had In 155921,683 acres of bearing vineyarils．The same conditions exist there relative to the duality of grapes and wines produced as in Napa．The ravames of phelloxera were felt in Sonoma and Naja in 1sty． and agreat muny vimeyards were destroged．It is now gen－ erally believed that the clestructioncuused by the phylloxera can le staved by growing the native resistantstock and graft－ ing upon that the foreign vinifera．In sonoma countr in 1 s 89 there were 1 roduced abont $1,700,300$ gallons of wine and 250, oro gallous of trandy．
Savta Clara county．in this district，contains some 12,500 neres of bearing vineyurds，and should enjoy a reputation for fine white and red wines equal to sonomanand Najra．This and Santa Cruz countr in 1 te9 I Iroduced 2 ät 4,000 gallons of wine．As yet the blylloxera has tronbled the vineyards hut little in comparison with the connties before mentioned There is sald to be a deep gravellybed underlring this whole surface，In which t
worl with success．
work with success．
Alaneda connty，in the first district．has 6.500 acres of hearing vines，and froduces a type of wine resembling the white and red wines of France；and in this part of the dis－ trict，known as the＂Jivermoite district，＂a high grade of Santerneand claret is produced．The qeological formation of the valleys and slopes of the Mount Liablo range nore nearly reproduce the soil conditions that characterize the tepartment of the Girende in France than ans other section on the const．In this district there wereproduced in lsw eome on，000 gallons of wime，noted more for the quality than for the quantity which it produces．This is comparatively a new wine district，and has grown wip within the last decade．The firat systemmic flanting of high grade grafes began in ins．
There is in the second district agreat iticultural interest， embracing table grapes raisins，sweet and dry wines，and hrandies，excelling in the latter．Sacramento．Placer，El boralo，Tehama，liba，Butte，and lolo counties prodnce large quantities of table grapes，and quite a quantity of ral－ singe quanipued from sonie of these counties．Tehama has the sins is shipped from sonie of these counties．Tehama has the gargest vinevardin the word（3，movacres），to which the mana－ ger says $\begin{aligned} & \text { ，hhe acres of new yines are to he added within } \\ & \text { a year．There were in the distillers on this riuerard in April，}\end{aligned}$ 1sio，when visited by the special aqeat of the Ceusus oftice $300,000 \mathrm{gallons}$ of brandy uad $1,040,000$ gallons of wine．An－ other large vineyart，the second largest in the State，contains 1,500 acres，and is situnted at Folsom，Sacramento connty． The winery belonging to the vinevard has a eapacity of coo， OW callons．Many table grapes are shifped from this vine－ yard to the bastern markets．
ln the third district，near Stockton，in San Joaquin county， is located one of the largest vinerards and wineries．Fine brandies aremade in that district；also sherries．forts，and some excellent clarets．Fresno connts contained in 1891 about 25,000 acres of bearing vines and 15,000 acres of new plantings，the larger portion of which were grown for raisins． band me，The wines were mostls sweat amel oí excellent quality．Tle raisin pack in 1太9 was 6ito 595 hoses：the wine prodnced，1．2ndum gallous．The Calfornia ＂Wines and Wine y，speakine of the Muscatel de Gordo Blanco． ＂the true rasin yrape，savs：＂The soil seems to impart a vigor to the rines that is nuknown elswhere in the world．The sec－ ond crop i＝often very nearly equal to the first．and the third eomes before the leares fall off．＂More than half the raislu grapeserown in Californiaure produced in Frezno countr． Sin liernarilimo county，in the same district，is also privel－ pully devoten to the growing oi rasin grapes．There were Contatres of bearing and 4.125 geres of now－bearing vines．
 and the rumble pack for
 1．Th tons of table errupes．
There were produced in isse in l．os Angeles connty 25,800 tous．or 51.16 ． 140 pourts of grapus for wine．and 1.000 tous or
 that connty are justly eclebrated amb were the first shipped from Califormia io the linstern markets．That connty excels in its sherries，jerts．and hranties．There were 20000 boxes of rasins purked in fis？the dew disease having reduced tho froduct about ohe－hali．The product of Orange，a county froduct abont ond inmitions of Los Angeles county，is includ． ell in the above figures．
In San Dlegocounty there in an acerage of fi，000 bearing and
 into berring in k sis and dit lot ant mueh to the product． While this shows a fule inerease in the growth of the industry laring the last four Foars，the increase is acconuted for by the fact that the new divenze that was so injurious in los Angeles did not affect San Diego county．It is in the El Cajon
*alley of San Diego county that the most progress has been made in viticulture. There are 27,000 acres adupted to frult growing, and 8,000 acres of bearing raisin vineyards in El Cajon. The raisins from this valley are anong the finest produced in California. The prodnct of the El Cajon valley in 1889 was 75,000 boxes; in the balance of San Diego county the pack was 75,000 boxes: iu all. 150,000 toxes. Another stlecessful branch of viticultnre in this district is the shipment of table grapes to the Eastern markets. Many of the elevated localities are so free from frost that grape's can be left on the vines until January.

As it has been noted that California has the largest vineyard in the world, it may be well to state that she has also the znallest. It is a vineyard consisting of a single vine, in santa Barbara county. It was planted by a Mexican woman about sixty-eight years ago, and has a diameter one foot from the gromnd of 12 inches, its hranches covering au area of 12,000 feet, and it prodnces annually from 10,000 to 12,000 pounds of grapes of the Mission variety (nany bunches weighing six grapes of the Mission variety (many bunches weighing six
and seven pounds), the crop being generally made into wine. and seven pounds, the crop being genernyy made in to wine. at the age of 107.*
In harmony with itsgenial climate, fully described in Britannica, Vol. IV, California possesses many scores of mineral springs of great variety in respeet of temperature and chemical analpsis. Over 200 of such springs have already been opened, located chieftr in the coast range, though therc are apso many mineralized springs in the Sierra and in the desert regions in the southeastern part of the State. Dr. W'inslow Anderson, of San Franciseo, nudertook not lone since the task of collecting descriptive notes, with verituhk and practheal analyses of the most prominent springs of the state, ant has given to the public, in a highly interesting volume, the results of his investigations. Hepronomines the California mineral springs to be equal in attractiveness and vatue, to those of any European or other health requrta. sue Amenican Hfalitif and Pheascre Resonts, iu these lievisions and Additions.

CALISTOGA, a picturestue town of California, situated near the Petrified Forest, about sixty-five miles north of San Franciseo. It is noted for its mineral springs, and is a popular summer resort.

CALIVER, a matehloek or firearm about midway in size and character hetween an arquebus and a musket. It was small enough to be fired withont a rest or support.
C.II.INTINES, the more moderate section of the Hussites in Bohemia. They took their mame from the leading article of their confession (published in $1+2 t$), which was a demand for the riviner of the ent (calix) in eommonion to the laty. Their tenetswere conceded hy the articles of Basel in 1433, and they were for a time quite a prominent party; but they gradually hecame less strict in principle, and hail ceased to be of importance by the begiming of the sixteenth century.
CALKING, the operation of driving oakum or untwisted rope into the seams of a ship to render them water-tight.
CALL, a military musical term meaning a signal on the drum, pipe or bugle. The metal whishle used by a boatswain and his mate on ship-board is also a " call."

CALLA, an aquatie or marsh-loving genns of Aracter of a single species, 'alla pulustris, the water-arum. It has white spathes, eurdate heartshaped leaves, flowers crowded up to the ext remity of the spadix, and red berries. It is widely distrib)uted through the cold marshes of Europe and North America, and aequires some poonomic importane in Lapland and parts of Lussia, from the fact that its root-stock when deprived of its acrid pronerties by conking, is a source of starcly matter used in bread-making. The well-known and heautifnl Richardia, the calla of house cultivation, was formerly included in this genms. See Britamica, Vol. XII, p. 264.

CALLANDER, a village in Perthshire, on the left bank of the Teith. It lies in a beantiful and romantic situation surrounded lis high mountains and Highland lakes. Population, 1.921.

CALLENDER, Joms, historian, horn in Boston, Mass., in 1706, died in Newport, I:. I., Jan. 26, 1748.

[^90]He graduated at Harvard and became pastor successively of a Baptist ehureh in Boston, in Swansea. Mass., and in Newport, I. I. At the latter place he was a member of a society called "Company of the Redwood Library." He delivered an address in 1788 entitled, In IVistorical Discourse on the Cirii and Religious . Iflairs of the Colon!! of hihode Island and Pro:ddence Plantations, from the First Settlement to the End of the First Century. This was, for one hundred years, the sole history of Rhode Island. Mr. Callender published a series of papers relative to the history of the Baptists in America.

CALLERNISH, a district on the west coast of the island of Lewis, 16 miles from Stornoway, remarkable for its pre-historic stone cireles, of which there are four at no great distance from one another. See Britamnica, Vol. XIV, p. 492.

CALLICHTHIS, a gemus of physostomatous bony fishes of the family siluride, having the body almost entirely covered by four rows of large, hard, narrow, scaly plates. The head is also protected by bony plates. The twelse species of this freshwater gemms are natives of South America. See Britannica, Vol. NXII, p. 6is.

CALIIGONCM, a genus of phants of the natural order Polygoner, laving a quadrangular fruit winged at angles. The best known speeies is a sucenlent shrul) found on the sandy steppes near the Caspian sea, where its acid shoots and fruit often serve to allay thirst. The roots afford a nutritious gum.

CALLÂNGER, one of the hill forts of Bundelcund, elevated 1:200 feet alowe the adjacent plain. From its position and size it must at one time have been a place of great st rengih. It the hase of the rock stands a town of the same name, which, though much deeayed, still hears testimony of its ancient grandeur.

CALLIMERS, compasses with curved legs, used by turners and other workmen for measuring the diameters of cylindrical, spherical, and other curred work.

CALLOY゙AN, a division of the Jurassie system, represented in England ly then Kellaways Rock.
(ADLUS, a term employed in old surgical work and still used, popubarly, toindicate the new growth of ossedus tissue abont the extremities of fracturd hones, which serves to mate them.

CALAS, or Cum Latitrones, these parts of the ocean bear the equater which are sulject to total allsenee of wind for long jeriods together.

CALOPlly Lid'Al, a genus of trees of the natural order finlliforr, natives of warm climates. Sonme of the spertos yeld yaluable timber and also sumply valuable resins, while the seeds of other varieties prodnce a fixed oil used in lamps and for other purposes.
C.DAORIC, a term given to a supposed imponderable fluid to which was formerly aserihed the phenomenon of heat, and hence used loosely for heat.
C.iJORIMETER, an instrumpnt for measuring the speedic heat of a hery; the determination heing effected by aseertaining the fuantity of ice at zero which is turned into water hy the transference to it of heat from the boty under examination. See Britanniea, Fol. XX, p. 13\%.
CALOTTISTS (Le, lequiment de lu ('alotte), a society of witty and satirical men, in the times of Iouls MIV, who were headed by two officers in the king's body-guard named Torsac and Aimon. Their name wastaken from the eap which formed the symbol of the society. Their ammsement consisted in sending to any public character who had made himself ridiculous a "patent" authorizing him to wear the calotte as a covering for the weak part of his head.
is the society became audacious, and did not spare eren royalty itself, it was suppressed.

CAlotyi'e, the name given to a photographic process devised about Isto by Dr. Fox Talbot. It is not now in use.
CALOVIUS, Abranam, the chjef representative oi controversial Lutheran orthodoxy in the 1ith eentury ; born at Mohrungen, in East Prussia, April 1ri, 161 , died at Wittenberg Foh. 25, 1686; he was anceessively professor at kinnigsberg, preaclier at Lanzig, and professor at Wittenberg. De waged war incessantly on Arminian, Socinian, Reformed, and Catholic doctrines, and was very bitter against Calixtus. He was six times married, the last time in his seventy-second year to a young daughter of his celleague, Quenstedt. Calovius's chief writings are his Silstrma Lororum Theologicorum (12 volumes,

CALOYERS ("good old men"), a general name for the monks of the Greek Chureh.

CALPE, one of the pillars of llercules, identified with Gibraltar. See Rritannica, Vol. A. p. 585.

CALPESTYN, a long and narrow peninsula on the west side of Ceslon. The neck is so low as to be overflowed during the northeast monsoon, su that it is transformed into an island.

Caltabelotta, or Calata hellota, a lown of Sicily, 10 miles northeast of heiacea, most picturesquely sitnated around an ancient castle, which crowns a steep rock overlanging a stream. Caltabelotta was long a Saraten town, and its name is said to be derived from Kalat-el-Ballat ("the eastle of the cork-trees"). Iopulation, 6,17s.

CALTROP, or CAltuorf, in military warfare, was a piece of iron with four prongs, each prong abont four inches in length. When it was wished to check the approach of the enemy's cavalry or besiegers in the ditch of a fortification callerops were thrown around. Owing to their shape one prong was sure to stand upright, and horses or menstepping upon them leecame disabled. See Britannica, Yol. N1, p. 703.

CALUIIIE-ET-CU1FE, a town of France, in the department of the Fhome, on the left bank of the Saone, about three miles from Lyons. Population, 9,1s?.

CALCABBA, or Colombo, used in medicine, is the root of Jutionhizt pelmata, a menispermaceous climber of Eastern Afica. Its hitterness and other properties are ascribed to the presente of columbin, berberin, and columbie acid. It is a useful, mild tonie and stomaehic. Imerican ealomma ront is ohtained from Frostru llulteri, a gentianaceous biennial, and has properties like those of gentian.

CALUXET, a village of Michigan, situated in the copper region, near the northernmost puint of the Epper Peninsula. it contains a edebrated copper mine, often spokin of as the richest in the world. See Britannica, Vol. XVI, p. 2s!; Vol. XXIII, 1. 416.

CALUSO, a town of Pierlnemt, ltaty, 11 milos south © Irea, and commeded with Turin by railway. Fopulation, 6,161.

CALSARY, the serne of our Saviour's erncifixion, an monenee which lay just outside the ancient .ferasalem. The name is a transation intu Latin of the Helrew word Golgolha, simnifying a " wall," berlaps given becanse the mannt was a place for public execution, or hecause it was sloped like a himman skult.
 resentation of the varions seentes of the passion and crneifixion of our lord. lt ennsists of three crosses with the figures of Christ and the thinvers, usually dife-size, surroundod ley figures reprenenting the persunages who took part in the crucilixion.

CALVELLO, a town in the province of lasilicata. lialy, pleasantly situated on a hill-slope abont 13 miles south of Potenza. It hastwo convents. I'onulation, $5, n 00$.

Calderley, Cmarles Stcart, English parondist. born Uec. 2:-, 1831, died at Folkestone, Fel,. 17, 14.4. lie was mlucated at Harrow, Oxford and ('ambridge and in 1 sigs was called to the bar, and settled in Londen, but a fall on the ice in the wimer. of 1 siffrit pat an end to what promised to be an axreptimally brilliant career. One of the most gifted and scholarly men of his time, and unrivaled as a lmmorist, Calverley will be remembered by his two little volumes, Verses and Translations (lisbe), and Fiy Lrates (190).

CALDElST. Fur an account of George Calvert, first Lord Baltimore, see Lritannica, Vol. IV, p. 71:3. ('ecil Calvert, second Lord Laltimore. was hom-about 1603, and succeeded to his father's title in 16,2. In lo3; he sent an expedition to his dmerican territhry, under the charge of his brother Leonard, ind thus became the real founder of the colony of Maryland. Leonard Calvert, the first covernor of the colony, was born about 1606, and diod in 164. The title became extinet upon the death of Frederick Calvert, the seventh Lord Baltimore in 1731.
(tldyelit, Geonge Hevry, author, bort in l'rince fiporge cuunty, Ild., Jan. 2, 1803, died in Newprt, R. 1., May 24,1859 . ile was a great-grandson of the lirst Lord Baltimore. Having graduated at llarvard he studied at Güttingen, Germany, and on his return resided in the neighborhood of Lattimore, edited the "Daltimore imerican," and then remored to Newport, li. I., and in 1S53 became mayor of that city. lle wrote for periodicals and published several books.
CILLEERT, a prosperous town of Texas, about 85 miles northeast of Austin. It contains mannfactories of cotton-seed oil, and is the business center of a fertile agricultural district.

CALA, a Latin term for quicklime. As quicklime is produced by burning limestone, the alchemists applied the term calx to the substance of a metal or mineral that remains after being sul)jecterd to extreme heat and calcination to the process.

CDLYCANTHUE, a genus of Cobmenthaces; a small order, of which only a few species are known, natives of North America and Japan. They are syuarestemmed, aromatic shrubs, with purple flowers, which have the odor of strawberites. The most common surecies in the Cnited States is 1 'alychuthas flubiben, Corolina allspice.

CDLXCIFLORE, a term introduced by De Candolle to include those natural orders of dieotyledons in which the sepals and petats are separate, as in Thakemintura, but in which the stamens, instead of being hypogynous, are perigynous or -pigymons. It includes the Leguminesa, Rosucer, Sherifragterta, and uther related orders.

CAlidnoNl.AN LOAR: in Grecian mythology, a frightinl animal sent by the goddess Artemis to lay waste the firlds of Rneus, king of Calydon, because he hatd onitted a saterifice to her. The king being ahsent on the Argonantic expedition, no one dared to faete the monster, antil lleleager, the son of (Fineus, with a hand of hernes. porsued and slew him.

Cilly MENE, a genus of the fossil order Trilobites, foum in the silurian rocks.

CMADPTLEES, a senus of mollusks sometimes popularly known as chambered, cup-and-sancer, fommet or slipper limpets. it is the typical genus of the family ' 'theftraind. The slapes vary consithrably. Some ten living species are known,
mostly from warmer waters. See Britannica, Vol. XV1, p. 650.

CALYX, in botany, the external envelope of the fower. See Botany, Britamica, Vol. IV, p. 131.

CaM, or Granta, a river of England, which rises in Essex and flows northeast through Cambridge. It gives its name to the town of Cambridge, which stands upon it, and below which it is navigable.

CAMARILLA, a Spanish mord, literally "a little chamber," signifies throughout Enrope the inflnence exercised on the state hy the favorites of a monarch in opposition to the advice of his legitimate ministers. It first ohtained this meaning in the time of Fcrdinand VII of Spain.

CAMAYEU and Monochnove, terms by which painting in one color is designated. The ancients painted hoth in gray and in red pictures of sereral tints, but where the natural colors of the objects are not copied, are said to be en camaycu. As - one color generally prevails we speak of blae, red, yellow, green camayeu.

CAMLERWELL BEAUTY (Janessa Antiopa), a butterfly very common in the central and southern , parts of Europe. The wings are of a deep purplishbrown color, with a band of black containing a row of blue spots a round the brown and a pale yellow margin dappled with black specks. The colors are rich and velvety. The margin of the wings exhibits tooth-like angularitics. The caterpillar is black with white dols and a row of red spots down the back, and is rough with soft spines. It feeds on the willow.
CAMBIST, an Italian word for money-changer, or one who is versed in the operation of exchange. The word is also used figuratively as the tithe of a book in which moneys, weights, measures, ate., of various nations are given in the equiralents of some particular one.

CASMBRlA, the ancient name of Wales, the liritannia Secunda of the Romans. The name is derised from that of Cimbri or Cymri, loy which the Welsh have always called themsolyes.

CAMBRIC, a general term applied to the finest and thimest of linen fabrics. It is sad to be derived from Cambray, a city of Framee, formerly of limders, where the goods wore first manufactured. sentch cambric is really a muslin, hoing made of cottow with the fiber twisted very hard, to imilate real or linen cambric. See Cumansy, Dritambien, bol. 15. 10. 96.
 of borchester commy, situated on the Chopiank River, about 50 miles southeast of Anmapolis. It is an important shipping-point ior oysters, horring and shad; contains several canning factories amb estahlishments for the manufacture of tubacco. tlour and stares, and is the seat of wo excellent academies.
C.AMBRIDGE, a village of New York, about 3is miles northeast of Albany. It contains manufactories of machinery, thour, leather and lumber, and is the seat of Cambridge Washingtom Leademy.

CAMBRIDGE, a village of Ohio, connty-scat of Guernsey county, situated in an agriculturat and mining region, about 60 miles north of larietta. Goal is found in the vicinity, and the town contains important manufactories of flour, iron, pettery and salt.

CAIIBRIDGE, an important and r:ipidly growing city of Massachusetts, and one of the countyseats of Iiddlesex county. See liritannica. Vol. IV, p. 732. The city compirises fout distinct sections, each still bearing its original tith-namely, Old Cambridge, Norh Cambridge, Cambridgeport, and East Cambridge. Old Cambridge, as its name implies, marks the spot where the city began its
growth. Harvard square is nearly in the center of this portion of the city. At the east end of this square still stands the tamons Wadsworth House, built in 1726, in which the successive presidents of Harvard College lived for 120 years. Near this central spot is the old village cemeters, in which were buried many of the most eminent men in the early days of Cambridge. Cambridge Common contains about 20 acres. It the western end still stands a venerable eln, surrounded by an iron fence, with a plain granite slab, which records that "Under this tree Washington first took command of the American Army, July 3, 1775. " North Camluridge extends in a northerly direction from Harvard University, and. lying on the Charles River, is a point of much commercial importance. Cambridgeport lies between the end of West Boston Bridge and Old Cambridge, and ahounds with manufacturing industries. East Cambridge, that section formerly known as Lechmere's Point, is opposite the northwestern portion of Boston. It is the most recently settled portion of the city, and contains the court-house, jail, house of correction, and ot her public huildings. The first printing office in Ameriea north of Nexiog was estallishod at Cambridge in 1689. Population in 1880, 52,669; in in $1590,69,837$.

CAMIBHISCGE CTTY゙, a village of Indiana, situated on the Whitewater liver, 15 miles west of Richmond. It contains extensive manufactories of railroad cars, machinery, furniture, sash and Hinds, flour, lumber, and malt-products.
 certain "coprolite beds" met with in Cambridgeshire, which were at one time supposed to represent the Upper Greensand. The beds in question are now ascertained to occur on the hori\%on of the hase of the Chalk larl. See Combolimes, Britannica, Vol. VI, 1. 3053.

CAMBLSLASG, a large mining village of Lanarkshire, four miles suntheast oi Clasgohr. IIcre a revival, known as the "Cambslang Wirk" was held under Whitefield in 1äth. Popmlation, ens.

CAMDEN, a city of New Jersey, on the Delaware liver, opposite Philadelphin. It is an important railway city, seven milobads having their termini here-hamely, Camalen and Ambog, Camden and Barlington Connty, Camann and Athatic, lhiladelphia and Athatice (ity, West Jersey, and Camden, - lourestor and Mt. Fphram. The city has increased rapially during the last so pars. both in popalat ion and hexiness; in part. however, hy anmexation of a portion of Newtun. The water works which supbly the city with water iron the Delaware liwar re at lawonia almot ome mile north oi Camelen.
 amnica, Vol. IV, f, 73.
GLMbES, a thriving town of Arkansas, comatyseat oi Onachita comety, situated at the head of low-waler navigation on the Guachita River. It is a shipping pint for cotton, and an important centur of trade. Jt contans several estahishments fur the manimature of fome, iron and woolen goods.
C.DllyEN, a fourishing villase of lelaware, three miles sobth of Pover. It is the seat of an academy. The chief industry is the camming of iruits.

CADIDES, a village of Thane, sitnated on the west share of memolncot laty. abont nine miles noutly of Rockland. Jt contailns nomerous manufactories of railroad cars. car-wheels, pumps, spikes, ancloor: anel wowlen goods, and is extensively ensaged in eommerce, ship-bulding, and the exportation oil lime.

CAMDEN, a village of Spw York, alont 15 miles northwest if lione. It contains important manu-
factories of leather, furniture, woolen goods, rakes and iron.
CAMDEN, an old historical town of South Carolina, county-seat of kershaw county. It is an important educational and trade-center. See Britannica, Yol. IV, p. 734.
CAMEL, a caisson-like apparatus for rendering a ressel narigable in shoal water. It was invented by the Russian engineer De Witte (1500-185t), and is often used between Krunstadt and St. Petersburgh.
CAMELFORD, a village in the northwest of Cornwall, near the sonrce of the Camel, 14 miles from Launceston. It lies in a high and hilly tract, and is said to have been the scene of a battle between King Arthur and his nephew Mordred. A. 1). 542 , in which hoth were slain. Population, 800.
CAMELOT, a steep hiil of Somersetshire, England, near Ilchester, in the parish of Queen's Camel, identified ly tradition wifl one of the capitals of the legendary King Arthur. There are some remains of rempte anfinuity in the vicinity.
OAMEL'S THOLN (Aľqgi), a genus of plants of the natural order Legmminose, containing a number of herbacpons or half-shrublyy species. These plants are of wreat importance on account of the fnod which they afford for camels, as they are notives chiefly of the deserts of the East. Fee llitt-

UMERLEXGO ("chamberlin"), the cardinal having charge of the secular interests of the papacy.
CAMERON. JAMEs, soldier, born in Maytown, Lancaster comety, P'a, March' 1, 1501, killed at the battle of Bull Jim, July 21,1 stic. Die entered his hrother simon's printing office in llarrishure in 1820; edited the Lancaster "Political Sentinel" in 1823 ; studied law ; served as sutler in the Mexican war, and became colonel of the foth Sew York regiment at the outbreak of the eivil war.
CAMERON, James Domilis Senator and son of Simon Cameron, born in Middletown, Dauphin county, Pa., May 14, 1833. After graduating at Princeton he became successively clerk, cashier and president of the Middletown hank. From 1863 to $15 i t$ he was president of the lemmylyania railroad, and was influential in extending this road to Elmira. N. Y.. after the war, thus making steam connection bet ween the lakes and Clhesapeake Bay. Mr. Cameron is also interested in coal, iron and manufacturing industries. Under l'resident Grant he held the partfolio of war in 1876 ; in 1877 he resigned to take his father's place in the United States Senate. IIe was reelected Senator in I879, 1885 and 1891.
Cameron, Joms Hilifam, Canadian sfatesman. Joru in Beaucaire, Languedoc, France, April 14, 1817, lied in Toronto, Nov. 14, 1876. He was eeducated at Kilkenny, College, Ireland, and in Toronto; entered the legal profession; was elected to the Canadian parliament in 1846, and appointed solicitor-general in the samo year. Ile served for 16 years in the legislative body, and during that time was a prominent moyer in a number of important bills, one of which secured letter postal facilities between Canada, Great liritain and the United States. IIe was the author of several legal vorks, and was one of the commissioners appointed for the revision of the Statutes of Upper Camada in 1s40, and the comsolidation of the statutes in 1856 . C.MERON. Macolm, Canadian statesman, born at Three Rivers, Canada East, April 25.1 180S, died in Ottawa, June 1, 1876 . He was entirely self-educated, and rose hy hi-wwefforts from the position of stable-boy to positions of honor and profit under the Canadian govermment. II hegan his pelitical careur in isate as reuresontaive in ane :uner

Canada Assembly and was successively inspector of revenue, cabinet otticer. president of the council. commissioner of public works, postmaster-general and member of llouse of Commons from South Ontario.
CAMERON, Smon, statesman, born in Lancaster county, Pa., March 8, 1799, died there June 26. 1. He learned the printer's trade when only nine years of age, and in 1820 had risen to be editor of a newspaper in Doylestown, Pa. Two years later he edited another paper in llarrisburg. He held the office of adjutant-general for his State, and in 18.5 was elected ly the Ilemocratic party as their representative in the Cnited States senate. In 1swi, haring become a member of the liepublican partr, he was sent to the United States Senate. When Abraham Lincoln was nominated for the Presidency, Senator Cameron was a favorite candicate for the tirst place on the ticket, and also for the second; but lie Pemsylvania delegation was not agreed, and he failed of nomination. l'resident Lincoln called him to his Calhinet as Secretary of War. When he served his second term in the Senate his loyalty was questioned on account of his advocacy of perce; but in the Calinet he urgod more aggressive measures thinn the l'resident was prepared to sanction. Ile was in favor of arming fugitive slayes, and instructa. 1 Gen. Butler to this ffect. In January, 1402, le rosigned his position and was sent as minister to Inssia, where he helped in securing the friend liju. If that nation at this trying period. He resigned in November, 186:, and fonir years later was returned tu the United States senate. He was elected to a fourth term, but resigned in his son's faror in 18%. Huring lis political career he was practically the Jepmbican dictator in his state, and was called the "Czar of P'ennsylvania politics."
Chiefion, Veraey Lotett, C. B., Lfícan explorer. born at Ladipole, near Weymouth, Julr 1 , 1st4. He entered the nayy in 1807, and serred in the Mediterranean, the West Indies, and the Red Sea, and on the East Coast of Africa, taling part in the Alyssinian expedition and in the suppression of the siave trade. In 1872 (see Pritannica, Vol. I. 1. 2-19), he was appointed to the command of an EastCoast expedition to relieve Livingstone ; and, starting from Bagamoyo in March, 1873 , in August, at Unyanyembe, he met Livingstone's followers bearing his remains to the coast (see liritamica, Vol. X , p. 194). After making arrangements for their safe arriral he proceeded to Ujiji, where he found some of Livingstone's papers and amap, which he forwarded to Zanzibar. Me then made a surver of Lake Tanganyika, which he found to be disconnected with the Xile system. Taking a southerly route, he reached the Portuguese settlement of Benguela on the West Coast, Nov. 7, 1 185, whence he returned to England. (reated a C.B. and raised to the naval rank of commander in 1858, he traveled orerland to India; and in 188?, with Sir Richard Jurton, he visited the Gold Coast. Among his works are 1 crose tifica (1877), and Our Future Mighuray to India (18s0).

CADIERON, a village of Missmuri, about forts miles west of chillicothe. It is an important railroad and trade-center, and has exeellent educational facilities.
CAMERONLAN REGLMENT, a mame given to the *ith regiment of liritish infantry, which had its origin in adody of Cameronians. In 1659 the Comrention at Edinlurgh, taking advantage of the zeal and ecurage of the members of this religions body, induced a number of them to ansist in the revoli:tion, on the understanding that the special object of the corps was to recover and establish the work of lioformation in Scotland. The regiment, with the youthful Lord Angus as colonel and Willian

Cleland, the poet, as lieutenant-colonel and actual commander, was sent northwards to quell the insurrection. On Aug. 21, 1659, the Cameronians, 1,200 strong, defended themselves against 5,000 Highlanders, and although Cleland fell early in the fight, his work was accomplished; for, in Macaulay's words. "the Cameronians had finished the war." See Cameron. Richard, Britannica, Vol. IV, p. 742.
CAMERONIANS, a religious body in Scotland, followers of Richard Cameron, ofïcially called Reformed Presbyterians. In 1681 societies were organized bearing the names of the districts to which they belonged, for the purpose of defense against the oppression of the government and for the maintenance of worship. They refused to accept the indulgence granted to the Presbyterian clergy in the times of Charles Il (see Britannica, Vol. NIX. p. 516), lest by accepting they should be understood to recognize his ecclesiastical authority. The political position of the Cameronians was very peculiar, since, declining to recognize any laws or institutions which they conceived to be inimical to those of the kingdom of Christ, they refused to take the oath of allegiance. In 1860 there was an attempt to present the members exercising the franchise, but in 1863 it was decided not to exercise discipline to the extent of suspension and expulsion on such questions. In consequence of this decision, to which the majority adhered, ten or twelve congregations seceded. In 1876 the larger bolly formally united with the Free Church. The principles of the Cameronians are now, therefore distinctively represented by the few congragations which seceded in listis. See kelighors Dexomstions in the United States.

CAMEROON, a German colony on the Wrant Const of Africa, extending along $9^{\circ} 8^{\prime}$ east longit ude from the Cross River to the month of the lin del liser, below 3° north latitude; the limits in the interior, which is almost unexplored, have not been fixed. The name is derived from the Camaroon River, which enters the Bight of Biafra opposite Fernando Po by an estuary over 20 miles wide; the stream is for a considerable distance nearly a mile broad, has at some seasons a current of 5 miles an hour, and its yellow waters may be traced far out at sea. The country is very fertile, abounding in ehons, redwood, and palm trees, and a variety of tropical fruits, while the production of cotton and ivory is very considerable. The climate is very trying to Europeans, and traders generally live in hulks and only store their goods on shore. The natives belong to the Bantugroup. Their kings, Bell and Akway, practically wholesale merchants, made considerable tronble by their refusal to permit the natives of the interior to trade directly with Europeans. As England declined to assume the protectorate, the Germans were appeated to. and on July 14, 1884, the German flag was hoisted at Cameroon and a governor appointed.
CAMETA, a town of Brazil, on the left bank of the Tocantins, which joins the estuary of the Amazon from the south. It is 85 miles to the southwest of Para or Belem. It has a fertile district attached to it, which contains 20,500 inhabitants.
CAMLET, properly a fabric made from the hair of the Angora goat. It is also made wholly of wool, or of wool mixed with cotton or linen, and spun hard.
CAMOGLIA, a town of Northern Italy, on the Gulf of Genoa, about 13 miles southeast of the city of that name. It has about 6,000 inhabitants, chiefly engaged in fishing.
CAMORRA, the name of a secret society in the former kingdom of Naples under the Bourbon gorernment, the members of which were called Camorristi. It was first publicly known about 1820. It
had a central rendezvous in every large provincial town, and twelve such in the city of Naples; and for each of these sections there was a chief, with powers of absolute command, and a treasurer with charge of the common fund. This organization, partly political and partly of the nature of a standing vigilance committee, plundered and terrorized the country for many years. It was tolerated under King Ferdinand II for political reasons, but the goverument of Francis 11 endeavored to put down flue society, and the police received instructions to seize and transport all known members of it. Those who remained entered into alliance with the Garibaldian committee, and essentially aided in the expulsion of the Bourbons. The organization still retains a nominal existence, but is of no importance.

CAIIPANA. Li, a town of Andalusia, spain, situated on the Madre-Viega, ahout 37 miles nortlieast of Seville. It has ahout $\overline{5} .500$ inhabitants, chiefly engaged in agricultural pursuits, and in weaving and brick-making.
CAMPANARIO, a town of Estremadura, spain, 62 miles southeast of Batajos. It has manufactories of linen and ropes and a trade in the agricultural produce of the nejighlorhood. Population, 5.410 .
CAMP:iNHA. a town in the Brazilian province of Minas Geraes, 1 an miles morthwest of Rio de Janiero. It is surrounded ly hare hills, in which there has been much mining fir gold, and large herds of catte are reared on the lew lands. I'opulation, b, 000
CAMMNCLA ("a little letl") a genus of plants including the lilue-hell or hare-bell, the Canterhury-

CAMPAN"IAlidA, a commen genus of hydroils and type of a family, 'ampumburida (see Britannica, Yol. XII, p. Etii). The delicate stem hearing the colony of polyps may be simple or hratoled; the nutritive individuals are surreunded by transparent, hell-shaped sheaths, within which they may be retracted. The genus is common in Xorih Europeanseas and in the Mediterranean.
CAMPliELLA, an ancient and illustrims Scot ins family, to which genealogists have chosen to assign an Aiglo- Xorman origin, deriving its surname from the Latin D be (ammon bello. According, however, to the Duke of Argyll, it is purely Celtic, of Scoto-lrish origin; and Comlol, as the name was always formerly written, is just the Celtic cam beul, "curved moulh." Sir Duncan Camplell; of Lochow, created Lord Camplell in 14t5, and his descendants, the ducal house of Argyll, are noticed in Britannica under Argyllsliire. From his younger son, Sir Colin Camphell of (ilenorehy, are descended the earls and marquises of Breadalhane; and from the younger son of the second Earl of Argyll, who fell at Flodden in 1513, the carls of Cawdor (created 1827)
CAMiPBELL, Alexinoer, theologian, son of the preceding, born at Shane's Casile, county Antrim. Ireland, in Iune, 1786, died in Bethany, W. Va., March t, 1stif. Fle was educated at the Glasgow Cniversity; emigrated to the L'nited States, and became pastor of a Presbyterian clurch in Washington eounty, Pa. The father and son became dissatistied with Calvinistic ductrines, and in 1×10 organizel a elureh at Brush liun, l'a., whose erted was the Bible, and whose form of haptism was immersion. Alexander Campleell in 1827 organized the church which is variously called "Iiseiples of of Christ," "Christians," "(bureh of (hrist," and "Camphellites." The sect increased, in numbers, and in 1850 had a membership of 500,000 . Its fonnder was in 1823 the editor of "The Christian Baptist," :atterwards called "The Millennial Harbinger." Mr. Campbell believed slavery permissible to Christians. and according to Scriptural
authorits: He wrote much for the religious press, and published many religious looks. lle was a scholarly man, and the founder, and first president of Jethany College.

CAMPBELL, ANDREW, inventor, horn near Trenton, N. J., June 14. 1821, died in Brooklyn. N. Y., 1890. Ile received only a common-school education, and was early olliged to eare for himself. He learned carriage-making, invented a brush-drawer's vise, built the first omnibus of St. Lomis; built the "Great Western" omnilus in 1 sti -1he largest vehicle of the kind ever constructed; built the wooden bridge over Cedar River, lowa, which was the longest single-span luridge of wood ever made (558 ft . between abutments), and in 1851 lie turned his attention to the improvement of 1 rinting-presses. His first successful press was built by A. B. Taylor $\&$ Co. He went into their employ, heame a practical printer, familiarized himself with the business, and invented many little devices; the endless bandfly used in the Bullock press was his invention. Ho built presses for Frank Leslie, Harper \& Brothers, and J. C. Aser \& Co.; for the latter the machine built was the first super-imposing press, and with it 120 almanacs conld le printed in a minnte. He built for Frank Leslie the first automatic press. He also invented a yery fine country-newspaper press. He was the originator of the first press which, in one continuons operation, printed, inserted, pasted, and folded a paper. He took out nearly fifts patents.
Cinipbell, Bartley, dramatist, loorn in Allegheny City, Pa., Aug. 12, 1543 , died in Middletown, T. Y., Jaly 30, 1845. He began the stude of law, Which he relinquished and became a "Leader" reporter. He founded the "Evening llail" of Pittsburgh in 1868 , the "Sonthern llagazine" of New Orleans in 1867, and three years later was othicial repirter of the Lonisiana House of Representatives. He took up the writing of dramatie pieces in 1871, and among his plays are the following: Through Fite; Perif; Fute; The Yirginian; On the Rhine: an a dajtation of the German comedy Ctimo, which he named The Biy Boncnza; Itroome in liagy; How Homen Lowe;1y Partner: The Thite Slume; My Geratdine; and Paquita. The Bi'y Bonanze netted a San Franciseo theater $\$ 16,000$ in a month. Ify Purtur achiered surcess in New York, being the first of Mr. Camphell's plays which gave satisfaction in that city. In 18 wh the author became insane.
Chmibell, (Heome WhimegTov, statesman, born in Tennessee, in 1768 , died in Nashville, Feb. 17, 1sts. He graduated at l'rinceton in 1994; served in Congress from 1503 to 1s0! and irom 1811 to 1514 ; becane secretary of the treasury in 181t, and was appointed minister th Kussia in 1818. He Was a member in 1831 of the Fench claims commission.
ChMPbeld, Mehex stuar, athor, born in Lockport, N. Y., Iuly 4, 1839. She was educated in Warren, R. I., and at Mrs.tomk's Seminary in Bloomfield, N.J. She began at an early age to contribute sk+tches to the newspapers, and made a study of the hansekeeping problam, tmployments for women, and the emmition of the poor in cities. She has written raluahle articles on these sutjeects. Amonr her publishet books are: The finslie sirties; His (i, mumumers: Sir Nimurs; L'uto the Thien and Fourth (rimuration; The Easipest Heng in Honstrketping and Conking; The Problem of the Poor; The Ameriem

 Inrome; and Miss Mrlinhlu's Gppertunith. She wis literary editor of "The Continent" from 1841 to 1851 , and in 1 ssid contributed a series of articles for the New York "Tribunc" on the working-women of that city.

CAMPBELL ISLAND, a lonely spot of voleanic origin to the sonth of New Zealand, discovered in 1810. It was used as an observatory during the transit of Yenus in 1874. Though it is monntainous and measnres only 36 miles round, it has valuable harbors and a rich and rare flora.

Cilupbell, Jayes, statesman, born in Philadelphia, Pa., in 1813 ; became a lawyer; was judge of the conrt of common pleas from 1841 to 1850 ; attornesgeneral of the State in 1859, and appointed post-master-general ly President Tieree in 1853.
Chipbell, Johy drchibald, jurist, born in Washington, Ga., Iune 24 , 1s11. He graduated at the state University when in his sixteenth year, and was admitted to the bar by special act of legislature, as, at the time he passed his legal examination. he was not twenty-ome years old. Cpon removing to Alontgomery, Ala., he practiced law, and frequently sat in the legislatnre. President Pierce gave him the appointment of associate justice of the United States Supreme Court, and this office he held from 1853 to 1861. He believed in the right of secession, but opposed the civil war. Under the Confederacy he was assistant secretary of war. The peace commission of February, 1565, which met at Fortress Nonroe, numbered him as one of the southern representatives. After the Confederacy had been abolished, Mr. Camphell was arrested and detained in Fort Pulaski; when discharged on parole he resumed the uractice of law in Sew Orleans

CaMpbell, John Francis, of Islay, Scottish folk-lorist, bom Dec. $29,15 \%$, died at Cannes, Feb. 17. 1885. Edueated at Eton and the University of Edinburgh; he held offices at court, and was titter wards seeretary to the light-house and coat commissions. Much of his life was spent in travel. He vas an enthusiastic Highander. a profound Gaelic scholar and a man ot singularly lovable natire. An obelisk was raised to his memory in 1857 on the summit of Cnoc-na-Hab, a hill in Islay, near his birthplace. Camplelisgreat work is his lopultr Tules of the ilest IIighlanfis (four volnmes, Edinlurgh, 1860-62), a very inportant contribution to the scientifie sludy of folk-tales. He gave murh attention also to scientitic studies, and published several scientific works.

Canle Bell, Jomy Mcleon. D. D... Seottish theologian, bornat kiminver, in Argyill, in 1v00, disd at Roseneath, Feh. 2-, 1s 2 . Sent to Glasgor Tniversity at the age of elerm, he was licensed to preach by the presytere of 1 arne in 1×21 and $\begin{gathered}\text { an }\end{gathered}$ ordained minister of Rew, near Helensburs, in 1820. His views on the persinal assurance of salvation, and on the universality of the atonemen: brought upon hima charge of beress which led to his deposition by the general assemply in 1831. See Britannica, Vol. XN1. p. 538. Camplell bore this hearytrial with the greatest eharity and patience. Refusing to form a new sect, he for two years labored in the llighlands as an erangelist, and for twenty-six years areached quietly without re muneration to a regular congresat ion that gathered round him in Clasgow. His health failing, the re mainder of his life was spent in rotiremont. In levis his University gave him the degree of D. D., and in 1511 a testimonial and addrese were presented to him ly men of nearly every religions denomination in seotland. He was the anther of three of the most valuable of motern English theological hooks: Cherist the Bread of Liffe (15:5)), The Nature of the Itonemont (1556). and Thonqhis on Revelation (isie). CAMPBELA, Thmas. clergyman, born in Ireland, Feb. 1, Ithe, died in lemhany, W. Va., Jan. 4. 1s54. The Camplell's of Argy le were his ancestors. Fle studied al Chascow 1 nisersif and was trained for the ministry muler thesottioh wstablishment.

Soon after becoming a minister he joined the "seceders." and soon sailed for the United States. He identified himself with the associate synod of North America and assumed the care of destitute churebes in Western Pennsylvania. His sonjoined him in 1809, and thereafter the two were united in church work. The elder Campbell labored to assist his son until blindness and the infirmities of age obliged him to give up work.
CAMPBELL, TMothy J., of New York eity, a lawyer, born in County Cavan, Ireland, in 1840. He came to America in 1845; received a common school education; became a printer, and was employed by several daily newspapers. In politics a Democrat, he was elected a member of the assembly from New York eity in 1868, 1869, 1870, 1871, 1872,1873, and 1575 ; studied law during his first term, and entered the profession in November, 1869. He was elected justice of the Fifth District civil court in New York city in [870, and served six years. He was again elected a member of the assembly in 1883, and afterward a State Senator. He was elected a representative from the Eighth Congressional District of New York to the Fortyninth Congress, to fill the racancy caused by the resignation of S. S. Cox, and was rec̈lected to the Fiftieth Congress. In 1890 he was elected from the same district to the Fifty-second Congress.

CAMP EQUIPAGE, a general name for all the tents, furniture, fitings, and utensils earried with an army, applicable to the domestic rather than to the war like wants of the soldier.
C.AMPER, Peter ($172=89$), anatomist, born at Leyden, May 15, 1720; studied there and in 1750 became professor of medicine at Francker; in 17 az at Amsterdam, and in 1765 at Groningen. In 17T3 he resigned his post, and, on being eleeted a member of the State council in 15 17 , removed to The IIague, where he died, April $7,17 s!$. Camper was distinguished, not only for the services he rendered to anatomy, surgery, olstetrics, amd medieal jurisprudence, but also as a promoler of fine arts. His work on the connection of anatomy with the art of drawing was an important contribution to the theory of art.

CAMPHILENE Can ardifial variety of eamphor obtained from turpentines, by acting therem wilh the elry rapor of hydrochloric aciel. and kenpines the whole at a bow temperature hy immersing the ressel in a freezing misture i solid substaner is produced which separates in white ceystalline prisms, and has tho taste and agreeable aromatic smell of common natural camphar.

CIIIPIINE, a torm aphlied in commere for purified oil of turpentines, ohtained ly caretally distilling the oil oror quicklime, or by rectiving it orer drechloride of lime to rember it quite free from rosin.

CAMPIS.AS, Six Cublus pe, a town of Prazi], situated on a fertile platin, 4.4 miles nom thwost of sito Panlo. There are large eofere and surar phantations in the surrounding distriet. I'opulation, 12.0no.

CAMPION, the comurn mane of phants helonging to the genera Lychmis and dileme, as moss-campinn, meadow-eampion, ete.
CAMP-MEETINGS, gatherings of derout persons held usually in thinly populated distriets, amel generally continued for a week or more, with a view of securing prolonged and bainterrunted religious evercises. Assemblies of like kind have been more or less usual at rarious periods in the history of the Christian Chareh: but it was in connection with Nothonism in America that sucf meotings hecame especially promiment. The practice of holding such meesings originated in 1-9.9, and is still common.

CAMPOBELLO, an island helonging to New Brunswick. It is situated otf the coast of Maine, about two miles irom Eastport. It is a popular summer resort. Lead and coal are found in the island. The chief industry is fishing.

CAIPO DE CRIPTANIA, a town of Spain in the province of, and about 50 miles northeast of the eity of Ciudad Real. It has manufactories of coarse cloths, and some trade in corn and fruits. Population, $5,0.0 \overline{0}$.

ClMPOS, sio Silvidon dos,a lown in the Prazilian protince of Nio de Janciro, situated on the Paralyba, which is navigable for small eraft to this point, 30 miles from its mouth. It has fine wharves, and considerable trade in coffee, sugar, brandy, and timber. Population, 15,000 .

CAIPO SANTO, IIoly Fremi, the Italian and Spanish name for a cemetery or burving-ground, especially for one inclosed by an arcade.

CAMPO-FORMIO, a village of Northern Italy, six miles southwest of Udine, celebrated for the treaty of peace here coneluled, Oct. 17, 1797. between Austria and the French Republic. See Britannica, Vol. III, p. 131 ; Vol. X, p. 610 ; Vol. XIIT, n. 4, ; Vol. XVII, p. •OO.
C.DMPVERA, a fortified town of the Netherlands, in the province of Zoaland, in Walcheren Island, 4 miles northeast of Middleburg. It has a port on the Veersche diat, a tract of water separating Walcheren from North beveland. The town is now in a state of dephoralhe decay, but it still possesses remmants of itsearly prosperity. It has one calico factory. lopulation, tho.

CAMTOOS or Gintome a river of the east division of Cape Colony, Difica, two hundred miles in length. It rises in the Nieuwred mountains, and flows through the inland district of litaufort. falling into the inlet of thesea which is immediately to the west of Algoa hay.
C.AMES, Anman (invos, a prominent character in the Fronch lievolution, horn at laris in 17to, died in 1sol. On acoount of his superior know]edge in ecelesiasifal law he was elected advocategeneral of the Freneh clergy. Ne was a zealous and asedie Jansenist, and possersed of extraordinary firmmess of charawter. In lisol he was elected to the States-ficmerall. Ihe whated pusesesion of and pullished the sereallerl Sivel fomb, giving accounts of court axpondisure, whinh was highty disarliantageons to the court and its ministers. In $17!3$, When hewas commissioned to mak prisoners of bamouriozamed other acomerals shelected of theason, he was tahen prismer with his colleacues and delivered to the Austrims. - Ifter an imprisumment of two years and an hatf, he was exchanged for the daughter of Lonis x ${ }^{-11}$, On his return to Paris he was elected to tho (ondoril of Five llumdred. beeame its presifent in bah, maismed abear later, and devored his timentoliterature.
CAMWOOD, or R.arwoob, a dye-wond which yields a hrilliant hut not permanent red sue Britanniea, Vol. VII, f. 5 (i). It is the wood of Buphiti
 order (onsalpinites, a medve of diggolal and sierra Leone.
C.SN.lld. Ihomajos ar, a colonial govermment under the sownefenty of tho british Empire. For its history, gregr: ${ }^{\text {ghy }}$, eromemment, productions, commerce and arlier statistics, see Britamica,

A portion of the North-western Territories were, in 1 sse, dividar! into fonr distriets-Issinibuin, $95,000 \mathrm{sq} . \mathrm{m}$. Saskatchewan, 114,000 sq. m.: A1berta. 100,000 s.4. m.: and Athabasca, $120,000 \mathrm{sq}$. m . The district of Kerwatin, between Manitola and Ontario, and stretching north to Hudson Bay;
was created in 1876 out of the Territories, and erected into a separate government under the Lientenant-Governor of Manitolat; it has an area as at first defined of about 450,000 siquare miles, but part of it at least is now incluted in the territory recently awarded to Ontario.

The ofticial census of A prii 3 , lesl (the lacest raken of the whole Dominion to the date of this uriting), gave area and population of the severa! prownees as follows:

Yohtical Divis.on',	$\begin{aligned} & \text { Sumare } \\ & \text { miles } \end{aligned}$	Total Pol.	$\begin{aligned} & \text { Density } \\ & \text { per sid. } \\ & \text { mile. } \end{aligned}$
Priuce Edward Island	9.13: ${ }^{\text {a }}$	103.41	5
Nova Scotia	20. 2107	+40.58	2
New Brunswick	27,174	\%20 $2 \times$	19
Quebee.	1sis, ink		\%
Ontario	291:	1, 51, 恕	$1!$
Manitobat	13:304		$0 \cdot$
	\% 41,263	49.49	$0 \cdot 14$
Territories and Aretic Islands.		26.416	$0 \cdot 102$
Total.	8,5714:40	4.81240	$1 \cdot 3$

To the above area should be added 140,000 square miles for hakes, rivers, etc., giving a total area of $3,610,257$ suluare miles. In estimate for 1840 makes a total population of over tive millions.

A censns of llanitoba taken in 1 ses showed that the population was 105,640 . If atbowance is made for the territory which was taken from Manitoba and added to Kepwatin and Ontario in 1883 (the area in list was 129.00 square miles). the rate of increase since that year has been it.4! par cent.

The district of kepwatin, haspen Manituba and Ontario, and stretchiner north to Dhadson Day, was created in 1969 out of the Territories, and erected into a seprate govermment under the LieutenantGovernor of llanitobal ; a portion of llanitoba was added in 143 . and it has now an area of about t00,000 square miles.
The number of immigrants who arrived in Canada in 1sis was 105,0410 ; in $188 t i, 120,581$; in 1887 , 175,574; in 1858, 174,474; and in 1859, 176,46. These mumbers are inelusive ol those who arrived from the United States.

Except in British Columbia, aft the provinces of the Dominom have one or more universities and several colloges, which prepare for university degrees. There are in all about 16 degree-granting bodies in the Dominion, with about -4 colleges attended by about $\overline{6} .000$ students. In 1858 there were 15,139 public schools, and 869 high and superior schools, attended ly over a million of papils.

The total actnal receipts for the financial year ending June 30 , $1 \times s:$, were $\$ 1,14,5,964$, and the total expenditures the samm. The total pubtic debt of the bominion July $1,18: \%$ was wese 64,751 , and the net debt $\$ 233,375,15+1$.

The aetive militia includes the volmenteer and the marine militia. The reserve militia eonsists of all the men betwen the asue of is and to not serving in the active militia of the timelwing, with eertan exemptions. The number of ment to be drilled annually is limited to theno, and the prome of alrill to 16 daysurery year. On dan. 1. 1sto, the active militia consisted of 36 bonsolicore and mon, comprising 43 troops of cavalry, 18 hat twries of fied artillery, 43 of garrison ariflory. 3 (omplanios of angineers, abd ditheompanies of infantry and ritles. Therewere arso nine promanent corpe athd whome of instrue tion, the strength of which is limited 1013000 men ,

since which time it cadets have reeeived eommissions in the imperial army. A smablarms amunition factory is in operation in Quebec. There is at present notctive marimemilitia, the naval defenses of the country being under the care of the imperiat authorities.

The trade of the Dominion is chiefly with the United Eiates and Great Britain. The total wheat erop in liss was estimated at $33,000,000$ bushels, of which $1,0 \$ 1,169$ bushels were exported. In 1689 the tutal wheat crop of Manitoba was, owing to the dry season, nut mueh over $7,000,000$ bushels, The mily eomplete agricultural returns are from the province of Untario, and the average produce per acre from 1543 to lss9 inclusive was: lall wheat, 19.4 ; spring wheat, 15.5; harley, 26.1; oats, 35.3; rye, 16.4 ; perts, 20.4 ; corn, 64.9 ; potatoes, 118.2 . Cheese is becoming an important farm production, the export benig nearly 20 per cent. more in lses than in 187t. In 18ss there were in the Northwest Territuries 115 ranches, comprising 3.113 .58 acres.

In 1sss, according to government returns, the lumber production in Canada reached a total of 1,45s.4.53,7n' feet board measure, the dues on which were

The total value of the produce of the fisheries in

 Jubsters, $\$ 1.40+4 \times 5$; zalman, $\$ 3,141,025$; whitefish \$5s.0nn. of the total yield in the same vear,
 New lirunswich; $\$ 1,876,194$ to Quelree: 4×88.431 to Prince Edward Filand; $\$ 3,340,068$ to Pritish Cohumbia : $\$ 1.963,1 \because 3$ 10 Ontario; and $\$ 167,679$ to Manitoba and the Northwest Territories.

The chief mining districts of Canada are Nova Scotia, British Columbia, Quebec. Ontario, and the Northwest Territories. The total value of the mineral products in 180 was $\$ 16.500$ (mo. The principal product is cast, of which $2,6 \overline{5} 8,134$ tons. valued at家, 25,432 , we mined in 1858 . Among the other minerats irendeed were gold, $\$ 1,098,1610$; iron, \$1, 512931 ; 3ntrolemm, $\$ 755.571$; bricks $\$ 1,036.746$; building stone, $\$ 141,71 \%$; eopper, $\$ 667,543$; silver, $\$ 39,37 \%$

The railway returns in Jamary, 1×01, chowed a total or 12.62 s miles of railway in ofreration and aboblit miles of telegraphs. Ghipming cleared during the previous bear, lis, 0 - 4,221 ton - with

 was 1,002dit2 tons. The postal service iueluded osish fost ollices.
Among enterprising frojecta engaging publice nttention in Canada ior reveral yeats was that of revolutioniziug the earrying trade betwent the old and new worki. The woject was to build a ralway from Winnipeg in Nanitota to Fort Churchill, on the westera coast of Hindson Buy, and to couneet there with stembers which would havisata Hudzou
 than the jarmblels ointiade away to the ramth. atobreviate very greatly the length of the ocean sogate. The frojeet was sabitioned five yemra aso by the havishiture oi manitoba, und with the aid of il lineral provincmal subsidy the work was be-
 the morthward till the shore of the ereat inland sea was
 fertile country, whielt would yith wome loral trathe. but the

 stored in clevatorant Fort (hamehall, and thencetran=ferred to Europa. The lonmaiongoterament was apmuated to for aid. It decoded, befole erantang the ait asked for. 10 send an
 tha properad ronte throber Hubloon strait and the Bay and the haftimg oi suort at fort churehill were

Fort Churchill was reached; isut the report of the commander on hisfinal retnrn wes so discouraging to the hopes of the projectars of the new liue that the whole project for the present seems to be abandoned.
The chief public events during the year 1890 were the elections in six proviuces, resulting as follows (Jno. 20): New Brunswick, 22 Governmeat, 16 Opposition, 3 Independents, sustaining Blair coalition ministry; (30), Prince Edward. Island, 18 Conservatives, 12 Liberals, sustaining the McLeod ministry; (May 21), Nova Scotia, 27 Iiberals, 17 Conservatives, ministry; (May 21), Nova cotia, 27 iiberals, 17 Conservatives,
sustaining the Fielding ministry; (June 5), Ontario, $5 \overline{5}$ Liberals. 36 Conservatives, snstaining'the Nowat ministry; (13), British Columbia, the Robson ministry receiving 8 majority; (17), Quebec, 73 Liherals, 27 Conservatives, sustaining the Mercier ministry. In Oatario the Equal Rights Association, which favored the abolition of Roman Catholic schools, opposed the government. In Manitoba the governmentstopped printing official reports in French, and the legislature passed a hill abolishing Roman Catholic separate schools and setting up a uniform public school system. In the Dominion parliament at Ottawa, in February, several days' debate on a motion to abolish French as the official language ia the N. W. Territories resulted in adoptiou, by 149 votes to 50 , of the motion of Sir John Thompson, leaving the matter to be settled by the people of the territories.
Early io 1891 the Dominion government dissolved urliameat, aud the new elections, held March 5 , resulted in the success of the goveroment parte (the Conservatives) by a decreased majority. The members of the new parliameat were classified as follows: Conservatives, or Government, Were classifed as follows: Canservatives, or Government,
117 ; Liberals, or Opposition, 95 ; reejections to be held, 8 ; total seats, 215.
During the last few years two important international questions of grave iaterest eagaged the attention of the Domiaion government-one of them beiag the right of Canada to participate in the seal fisheries of Bering sea. The United States clamed to have secured, 11 the purchase of Alaska from Russia, the exclusive right to those fisheries, a right which Kussia had previonsly elamed and had effectively maintained. In 1ss7, the British schooner Sayurard, immediately hailing from Cnoadinn ports, was seized by a United States vessel for senl fishing íu Bering Sea. 59 miles from land, tuld was condemacd to confiscation by the District Court of Alaska. The motlon of its owner for an appeal to the United States Supreme Conrt was deuled on the ground of adefect in the daska statute, which failed to give the supreme Court jurisdiction over appeals from the Alaski District. Later, however, the Alaska court consented to the apreal. In January, 1891, the case was withdrawa from the supreme court at the request of the owners of the schooner, nud application for a writ was made prohibiting thansile of the vessel. This application was presented by the Attorney-General of Canada, acting in the name of the gaseroment of Canada and the govermment of Great Britain. Considieruhle fceling was the result of the effort to take the cascout of the hands of the Executive and treaty-making department of the Washington government, espechally as the British government had not cousented to be bound by the decision of the U. S. supreme Court. Subseruently however, a friendly correspondence between the thterested gavernments resulted ln an agreement to submit the question at issue to arbitratloa.
The other question of speciallaterest in Canada aadiu the United States is that growigg out of the fishery trentles between the two countrles, A Hew treaty recently formulated by the executive govermments of Great Britain and the United States, relating to the fishery question, filled through the nan-approyal of the United States Semate. See Treaties in these Revisloas and Additlons.

The following is the official census of the population of Canada taken in 1891. The report bears date Aug. 31, 1891:

POPULATION OF CITIES.

	18.81.	1891.	Increase.
Montreal	* 155,237	216,650	61,413
Turonto.	* 96,196	181,230	85,024
Queber	62,446	63,090	6.4
Hamiltoa,	- 35,960	48,980	13,020
Ottawa	- 31,307	$4+1.54$	12,847
St. John.	- 41.353	39,179	
Halifax.	- 36,100	38,5,i5	2,456
London	- 26,266	81.977	5,711
Wiunlpeg	7,985	25,642	17,1537
Kingston	14,091	19,264	5,173
Vietoria, B.C.	5,925	16,841	10,916
Vancauver...		13,6,85	13,655

*The population in the $18 s 1$ column inclules the same boundaries as in the 1891 column, and consequently differs in those cases where annexations lave taken place siace 1881 from the popalation as given by the census of 1851.

	1881.	1591.	Iucrease.
St. Henri.	6.415	13,415	7,000
Brantford.	9,616	12,758	3,137
Charlottetow	11,485	11,374	
Hull.	6,890	11,263	4,375
Guelph.	9,890	10,539	649
St . Thomas	8,367	10,370	2,003
Windsor.	6,561	10,322	3,761
Sherbrook	7,227	10,110	2,583
Bellerille	9,516	9,114	5998
Peterborough	6,812	9,717	2,905
Stratiord	8,239	9,501	1,2132
Ste. Cunégonde	4,849	9,243	4,444
St. Catharines.	9.631	9.170	
Chatham, Ont	7.873	9.052	1,179
Brockrille	7.609	8.513	1,154
Moncton.	5,032	8,765	3,733
Woodstock, Ont	5,373	8.612	3,239
Trois-Riveres.	8,670	8,334	
Galt..	5,187	7,535	2,315
Owen Sound	4,426	7,497	3,071
Berlin.	4,054	7,425	3,371
Lévis.	7.597	7,301	
St. Hyacio the	5,321	7,016	1,605
Cornwall	4.4038	6,505	2,387
Sarala	3.874	6,693	2,819
Sorel	5,791	6,4699	878
New Westmlaster	1,500	6.641	5,141
Frederictoa \ldots	6.218	6,502	2 st
Dartmonth, \therefore S	3,786	6:249	2,463
Yarmouth, N.S.	8,455	6,049	2,604
Liadsay	5,080	6,081	1,001
Barrie	4.N4t	5,550	696
Valleyfied	3,906	5,516	1,610
Truro	3,461	5.102	1,641
Port Hope.	5.581	5,042	
Total.	731,510	1,030,250	298,740

POPULATION OF TOW'NS FROM 3,000 TO 5,000 .

POPVLATION OF VILLAGES FYOM 1.500 TO 3,000 ．

	1×81.	1×191.	1 ncrease．
I＇icton．	8．40\％	2．94，	
Corterst．Lonis	1.571	2.172	1，101
Oramgeville	ごい 4	2，he	115
Wieterlor	$\underline{2}$ ．14i\％	2.941	875
Prescott	？ 2 ！ 49	2．91：1	
st J Tonne	2，1032	\％，win	\＄36
Fambiams	1.40	－20	342
Whitloy	8.110	2.74	io．${ }^{-}$
Longuenil．		2．7．7	102
Walluchorg．	1，52\％	20， 29	1，201
lort Arthur．	1.27%	2． 3 S\％	1，423
Et．atephers	＂，ins	2 listor	$3+2$
Simeoe	2，615 5	0.614	24
ceaforth	2， 2×14	2， 6.11	161
Clinton．：	2,606	2，	29
Kibsardine	2， 20	\＃，13：	
lienfrew	1．405	2．111	1.006
Lintowe］	2 dis8	2.57	
Sirolet	1.80	2.58	1388
Aorth Sydney	1.500	2， 513	9 m
Suluey	1．140	2.426	946
Thorold	2．1．96	2，27：	
Camprelliord	1．118	2，121	1.004
Notre Ibame de Grice	1．3：4	2.345	781
Amherstlurg ．．．．．．．．．	2．472	2， 279	
Chicoutimi．	1.9385	2.257	312
Rielgetown．	1.58 K	2.254	71.
Buckingham．	1.479	2.239	76.0
Mount Forest．	2.170	2.214	4
Aylmer，（int	1.540	2.167	68
Winchan，	1．61\％	2.1197	249
Nilltown，N．B	1，161	2.116	4×2
Tilsonbirrg	1.439	2.163	224
Newmarket．	$\underline{2.16 \%)}$	2.13	137
Pentancuishene．	1，464	2.110	1.021
Mitehell	2，28	2.161	
Mryog．	76 tis	$\because 100$	1.392
Millind．	1.148	3.11 .88	993
Ereaterl．	1，97）	3.115%	79
Forest	1， 1611	0.0 .37	113
Ritelmoud，Que．	1，571	2.1056	4 4
Itawkesloury	1，120	2.1112	$12 \cdot$
Welland	1.570	$\because .4135$	165
Cxbridge	1，－21	2，13：3	194
Palmerston	1．54	2.0147	179
Meajorel．．	1， 616	1．414，	133
Wiurton．	796	1，94t	1.180
Portsmonth．${ }_{\text {Prame }}$	1.734	1,474	240
Drammondville	961	1．45．	1，055
Aymber，che	1．262	1.95	1 1．3
London，West	1．401	1.915	314
Leamington．．	1.111	1.411	494
Pursbora＇．	1.210	1.909	703
Puint Edward	1.298	1．xi2	58.7
Gravenlmast．	1.115	1，nix	88.3
1＇restorn．．	$1.11!1$	1，nti：	424
Oakrilla	1.7111	1．23．	115
Meritton	1．5！	1，413	－ 15
Excter	1．25	1． 6101	\％1
Lachate．	76i	1．75］	9×1
Dumville	1．40－	1．7\％	
Aurora	1.510	1，24：；	$20: 3$
Lenisville．	1，	1．710	：515
Waterlam．	1．617	1．7．	114i
Iherville．	1.517	1，21！	
Essex Centre	Sthr	1，818	M19
trambey	1.010	1.511	13，
Bhornciar	1．21：	1.810	495
Piort Pray	1.90	1．0\％	．．．．
Whatmaghy	1，7im	1.1647	41
	1.20 .7	1，lions	401 141
Ashbartatam	1．2eil	$1,16 \%$	141 405
Hurristar	1．172	1．lis7	
lourt kigin．	1．106	1．16）	259
Nusandria．．	1．200	1.611	41.
Firrens	1．2\％3	1.399	
Windsor Mills	589	1．501	719
Reithharmus	1．144	1．501	91
Pualors	1.17 h	1，51	413
t．Mmifice	1．203	I． 6 \％	20
Morthior．	$\frac{2}{2,1.9 \%}$	1．5：3	
deorretarna	1．17\％	1.509	36
Toutal	113．6in\％	175，6iv	31．97\％

Censis by Provineqe and Elentoril Mifisions．
The aceompanying．with the exception uf Nipissinge and the C＂norganized Territuries，is a stapment of the population of Canada loy electoral districts．

The figures in the column of 1881 for the Provinces of Ontario and Manitoba differ in mans districts from those which appear in the Census volumes of 1s81，owing to the changes of boundary which were made by the Redistribution Act and the additions of territory．In evers district in which the popula－ t ion of $18:+1$ is compared with that of 1881 the cir－ cumseription is the same．

BEITISH COLCNMBIA．

Districts．	1681	1691
Cariboo	7，550	＊10．000
Sew Westminster	15，417	＊3．3000
Ganconter	4，4．41	15．2099
＇ictoria．	\％ 001	1． 5 S\％
1 the．	9.2100	＊12．060

＊Partial estimated．

MANITOBA．

Lisgar．	12， 16	22.105
Marquette．	15．44！	3 man
lrorenches	12.446	15．469
clkirk	13.651	5 Sc 158
Winnipeg．	7，985	25.642

NEW BRUNSWICK．

Alvert	12.329	10.471
Carletou	23．6年	2．2，523
Charlotte	26，087	23，751
frourester	21.614	24.901
hent．	20．${ }^{2} 10$	23.35
King＇s	25.117	20．1094
Northumberland．	2.109	25，715
＇20een＇s．．．	14.017	12，1，\％
Restigonche．	7.14 K	\times＊．11
－t．John（city）	26，124	24.1 － 4
st．Jolin（Connty）．	26.89	09.20
munjory ．．．．．．．．	$6,6 i n 1$	5.863
\ictorin．	15.8045	14．215
Weatmoreland	37.319	41．404
York	30.387	30，9：9

NOVA SCOTIA．

Ammanolia	80.519	19.359
Intironish	12．ain）	16.117
Cuterereton	31.25	3．223
Coldtestar．	26．70）	27．140
fimmerland	：2，	34． 29
birloy．	120．41	13－918
diumbutongh	1－20	17．198
Maluma（ ${ }^{\text {city }}$ ）	3 3tict	3－${ }^{\text {an}}$
Malifax（Comity）．	31.47	20．945
Hant＊ ．	20，	20．${ }^{2}$
	？	\％as
Kinrs．	20， 11.4	
Lationthorg		
1＊ictar，	10，	38.284
リ1k－91k＇＊	10，	10， $1+1814$
Lichrnond	14．21：91：	14．413
chelmmue	14．93\％	17\％
Sictoria		
carmouth．	－1，	－， 315

OニTABIO．

didington	23.40	24.151
\leoma	24.014	11． 6.0
130thwell	20．17	\＄5，505
kralli．Xorth	17.615	16，093
lbrant，Eluth．	20.42	88．309
	15．10\％	15.05
	22． 23	21.065
Frucer Nurth．	1s．6．4	
1 Hee．West	21.215	20，718

ostario.

PRINCE EDWARD' ISIAND.

King's	26,4\%	26,6i34
Prince	24, 317	31.40 t
Queen's	4*,111	45.93

QUEBEC.

Districts.	1881.	1891.
Argenteail.	14,947	15,163
Bagot	21,199	21,696
Beauce	32.020	37.221
Beauharnois	16,005	16,666
Bellechasse	16.914	18.369
Berthier	21.838	19,839
Bonaventare	18.418	20,834
Brome	15.827	14,711
Cbambis	10,855	11,704
Champlaiu	26, 415	29,005
Charlevoix	17,941	19,037
Chateauguay	14,325	13, 865
Chicoutimi and sagueu	82.469	* 34. 1100
Compton.	19.501	22,782
Deux-Montagues	15, 9 94	15.127
Forchester.	18.710	19.042
Drummond and Artbaba	37.31%	43.127
Gasié	25,001	* 27.500
Hochelaga	40.175	81.1111
lluutinedon	15.145	14.38
Iberville	14.409	11.645
Jacques Crartier	12.85	18,432
3oliette	21.63	12, 8.808
Kamouraska	20,181	20.455
Laprairie	11.4* 3	10,498
L'Assomptiou	15.2×2	13,744
Laval.....	9.462	9.434
Leerls	97.4680	24,995
L'Islet	14,917	13.8.3
L.othinicre	$20 . \sim 57$	210,109
Maskimonge	17,493	17, 530
Mégantic.	141006	$2 \cdot 2.23$
Missisymoi	17, ${ }^{\text {a }}$	14.519
Montealm.	12.946	12.131
Monthagny	15.422	11.724
Montmorelicy	12.32	12.311
Montreal Centre	25.008	24.122
10. Fait		92, 079
10. West	4×163	69.244
Napicrville	10.511	10.102
Xicolet	26,0111	2s,713
Ottawn Connty	49.42	62.1697
Pontinc	1909:3	$21, n 1$
Portheni	25.175	25.414
Quebee City, Centre	17, min	17.649
Do. East	$31.9(n)$	36.200
Do. West	10,64	9.841
Quehee county	-0.3\%	19.50
Sichethell	20,189	21, 31.4
Richurond nud Wolfe	26,989 33,791	31.371
Rourdle	18,547	16,019
st. llyacinthe	20.631	21.433
St. Jenn.....	12.262	12,252
St. Manrice.	12,096	12,142
shefford	23.233	24.263
cherhrooke	12.221	16,104
Soulanges	10.220	9.612
Stanstend	15.505	18.074
Temincounta	25,4 4	25, 14
Terrehonle	22.954	23.128
Trois-linvier	3,299	8,334
Vmudrenil	11.455	10,803
Vercheres	12.449	12.257
lamaska	17.091	16.0.58

* Parbly estimated.

TIIE TERRITORIES.

* lartly estimated. + Wholly estimated.

Complete returns from the district of dhertagive its popalation at 20.123 instend oi 20 , min, ns rontainued in the partially extimated statement furuished to larliament on Aug. tially estimated statement furusbedion therefore for the froviciosal dictriek in the Northwest Territorics, from the returns so far recoived, is 42.099 . in-fead of 85.972 . The per-

 of 49,531 , the perceutage of total incrense heing 11.66, instead of 11.52 .

$=$

PLEASE DO NOT REMOVE

CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

```
AE
The encyclopecdie britannica
5 9th ed.
E363
78?%
v.4
For use in
the Library ONLY
```

Robarts

[^0]: 1 See Montfaucon, Pal Orac p 34 There are several spectmens in the British Museum

 F For more on this sulject see Cancparius. De Atramentus cujus. cumgre geners, Lomton, 1650 . Beckinaun's \langle istory of Tnvention:. and Bucker's Churicles and Gullus

[^1]: 1 Origines de l'inprimerie de Parn. p. 370.

 - Soles and Quenes, sd serices Ix. 83

[^2]: ' Morison, Praludia Botanica, 1672 ; Plantanum Historia Universalis, 1680.
 ${ }^{2}$ Rivinus (Augustus Quirinas) paterno nomine Bachmann, Introductio generalis in Rem Herbariam, Lipsiæ, 1690.

 - Tournefort, Elemens de Botanique, 1694 ; Instilutiones Red Derbarice, 1700.
 - Linnxus, Systema Natura, 1735; Genera Plantarum, 1797; Philosophia Botanica, 1751 ; Species Planlarum, 1763.

[^3]:

[^4]: 'Assuraed to be at 210 gaver for 100 gold .

[^5]: 1 Many of the facts and arguments contsibed in the present artucle are taken from Dir Darwin's work, The Vancion of Animats and Plants unier Domestication, 1568 , and 23. ed. 18.0°; smol in most instances it has not been considered necessary to give the references.

[^6]: 1 Principles of Biology, London, 1863, p. 181.
 ${ }^{2}$ Cp. eil., vol. ii. p. 4.

[^7]: ${ }_{8}^{1}$ Prixciples of Biology, 1864, No. 10, p. 242.
 ${ }^{5}$ Proc. Roy. Soc., Ño. 297 ; Erit. Asoo., 1870 ; Lancet, Jsin 1875.

[^8]: ${ }^{3}$ Jowf. Roy. Agri. Soc., xiv 1853, p. 214, translated iy Mir Pusey.

 - The Poulity Bede, by W. Tegctmeier, 1866, p. 245.
 ${ }^{-}$Thie Pigem Bock, p. 46.
 ${ }^{6}$ Prosper Lucav, S'Hérfid. Nat., tom. ii 1. 1. ch. i., and Gërtoer. Bastardcreugurg, צ. 264-260.

[^9]: ' J. Cenfroy St Bilaira and Moquin Tandon.
 ${ }^{2}$ Quoted in bar under Domes., ii. p. 257.
 Bee Bur. inder llonns, wol h ch. ssiii, on "The Definite Action of the Cuadrious of Lafe."

[^10]: ${ }^{2}$ Low, p. 304. ${ }^{2}$ Jour. Roy. Agri. Soci, xiv., 1853, p. 214.
 "s See Mr Spooner's ercelleat piper on "iross-Brueding" in the Jowr. Roy. Agri Nom., w.l. Ax. hi. ho

[^11]: ${ }^{\prime}$ Bull. de la Soc. d'Acclimul., tom. vii., 1850, p. 457,

[^12]: "It is not very hard to conceive how the kingdom was maintained by pecuniary mucts only; for in those daya every man was put in the Decerna (tything); and if found wandering three days out of the Decennary, he was taken up and imprisoned, and he was pre. sently to atjure the kingdom, or else he lay at the mercy of every ore that could lay bands on him. And if any offence was committed in any of the Decennaries, if the paity was brought to answer, he was obliged to pay his fine for his offence, or he was imprisoned for ever; and, if be fled, the tytheng was answerable for his fine or mulct to the king. So that by this discipline men were put under a necessity of being innocent, or paying a grierous fine, or being totally deprived of the conversation of mankind. And the laying of the fine on the tything, in case the offender fled, made it the interest of every man to bring the offender to light, and mouls it esceeding dificult to conreal a theft or a murther."

[^13]: being a decrease on 1873 of $11,626 \mathrm{cwt}$.

 - Hops are grown with success in Tasmsnis, upwards of 4-12

[^14]: 1 "About the year 1176 the stone bridge over tha river Thamea st London was beguo to he founder by the foresaid Peter of Colechurch (called priest and chaplain befora, "near unto the oridge of timber, bot more towards tho west, for I rand that Botolph's wharf was in the Conqueror's tima at the hear of Loadon Bridge. Tha king assisted this work, s cardinaf then being legato bere; and Richarl, arcbbishop o? Canterbury, gave one thousand marks towarls the fonadation. The course of the riser for the time was turned aopiber "ay aboat by a treach cast for that purpase, begionine, as is sop-

[^15]: pased, east about Rotherhithe, and eoding in the west about Patrick. sey, now termed Battersea. This work, to mit the arches, chapel, and stone bridga over tho Thames at Londoa, baving been thity. threa years in building, was, in tho year 1909. finished by tho wortby merchants of Loadon-Serle Mercer, Willism Almaine. and Beoedick Botewrite, priocipal masters of work; for Peter of Calechorch deceased four years before the wark was Liaisbed, and was buried it the chapel builded on tho sarue briago in the yess j2ar"

[^16]: ${ }^{1}$ These amportant dates have not (at least the two latter) till now been ${ }^{\text {rublished. They are from an ancient hamusenpt for severst }}$ generations in possession of the Fust fam:'r of 111ll Court. Glowces'er-
 \because, "-m Gcorge, bookselker, Bnstol.

[^17]: ${ }^{\text {: }}$ Mr Greville records in bis Journal a conversation with Lord Melbourne of the 23d September in this year, from which it is clear that Melbourne was perfectly aware of the state the chancellor was in, and that be bardly thought hitu of sound mind. Eo added, "The king can't bear thesa exhibitions in Scotind

[^18]: 1 Thus the judpment on the case of Escott r. Martin, wich estsblished the validity of baptum administered by a Wealeyan minister of a Layman, was prepared add Lelirered by Lond Broughara

[^19]: " Is not the leaf turned down
 Where I left reading?"
 SBABESP. Jul. Cescat. Aet ir. sc. \&

[^20]: 1 The number of kulthists is new probally atoal $450,000,000$.

[^21]: ${ }^{1}$ The date is someribat uncertain. For the date of Buldba's death, ulich occurred in his erglitieth year, see below, p. 432. The title Fanja, now familiar to English ears, is uset, since that of king would be misleading. The resemblances which may be found between the position of these rajas and those of the German and Italian dukes of the Middle Ages form not the only roincidence between the age of Lather

[^22]: - They all agree in mating the for vi-igus jhations, suyng tiat
 to Buduha nal hic chariotear, who was specmily in pired in sey what he did. Some mako nll four vi , appear no bup same day, oticen ou

[^23]: ${ }^{2}$ The word used was milbata, ble past participle passwe of a verb, fran the root of wimbli is terwed the word narixha; to l'sh, nildina. Tüatiar, p. in.

[^24]: ${ }^{1}$ The wond Buddha is slways used in the Palt texts as a title, not as a oame. The histoncal Buddha, the Grutama of this article, taught that he was one of a long series of Buddbas, who appear at intervala in the world, and all teach the samo doctno. After the death of each Buddhe his religion flourishes for a titue and thea decays, and is at last completely forgotten: vatil a new Buddha appears, who agan preaches the lost rath (or Dharmma). The next Buddha will be Maitreys Buddha, the Buddha of kindness. A short aceosot of each of tho twenty-four legeodary Boddhes who immeduately preceded Gaatama will be found in the Jataka, pp. 2-44. See also Mahēraoss, p. 1 ; Hsardy, M. R., p. 49, et seg.

 - The questioo of the relation betweeo Buddhism and Hudu philesophy is ooe o! extreme interest, but also of extreme difficulty. Except in its elementary priociples Buddhist pbilosophy ss at present very little understood; nad our konwledge of the Hybdu systems 18 derived from text books, all of which are probably post-Budhbistic, aad are ascribed to authors of whom ahsolutely nothing is known, It secms clear that before the tume of Buddha there was much philosophical activisy 10 Northern India, and that has systeal and that of the six orthodnx Hindu sects grew up side by Eide. Many of the techoical terms are commo to Buddhism smd to one or more of the other systems, of which the Sankbya and the Yigsa. ascrined to Knplo and Patanjali respectively, come the gearest to Buddhism in their general vieva. A popular acconat of the six systems will be found 10 Professor Monier Williams's Indian Wisdom, pp. 48-154, and the atadent who wishes for forther information is referred to the authorities there quoted. Beal has oome intereating notices of Puddta's discussions with Hindo ascetics, pro. 152-161 sad 169-177

 2 Bigandet, p. 49 ; ead compare Jabiek, p. 67, line 27.

[^25]: ${ }^{1}$ Beal, p. 245. Mr Beal translates the first clause, "to tum tho wheel of the excellent law;" but the chakra is no ordinary wheel, it is the royal chariot wheel, and the expression rendered "turn," from tho root vrit, is more exactly "to set rolling onward." A chakravarti is s universal monarch, the whoels of whoso chariot roll on unresisted over the known world, and tho figuro employod in the gatha undoubtedly means that Buddis wes aboat to sot rolling tho royal chariot wheel of a nalversal kingdom of ight, or, in other roods, to start or found snch a kingdom. Comparo Boal, p. 244, note, and p. 242; and Childers's Pī/i Jictionary, s.v., Dhaminacakiniol.

[^26]: ${ }^{2}$ Mctia Sutta, as translated by Sir Coomara Swāms. Sutla Nipuita, p. 39, verse 7.

 3 For the four Truths and tho four Paths seo Mardy, Nanual of Euddhism, p. 496 ; Eastern Monachism, p. 283; Csams Korüsi Asictic Researches, vol. xx. p. 294 ; Burnouf, introduction, p. 629, and Lotus de la Bonne Loi, p. 517 ; Fausholl, Dhammapada, pp. 35, 198, 346 ; Childers, Pali Dictionary, p. 269, s.v. Nibbina; Gogerly io the, ..I. K.A.S., Ceywn Br., 1315, IP. 9 1, 25 .

[^27]: ${ }^{1}$ Jataka, p. 82, tines 11-19.
 ${ }_{3}$ See on this point below, p. 435.
 3 Compare Bigandet Pp. 85, 86, with Gogery, J. R.A.S., Ceylon

[^28]: - Comp. Big., p. 99, with Hardy, M. B., p. 191, who gives the Pāli asme adilla-pariyaya-sutla, The sermon on the lessons to bs dram from buzaing.

[^29]: ${ }^{1}$ Jataka, 91, 9. These Jataka atomes ste most idteresting, contaoIng as they to the oldest known versions of many of tne nursery sodga, and fary taies, and comic atomes, and fatiles, whach are the commen property of Europe in the present day. See Faustoll's papers enumerstad in the report of the Philological Society for 1875. p. 64.

[^30]: ${ }^{1}$ These houses were at first siraple hats, built for the mendicants in some grove of patm trees as a retreat during the rainy seasou; bat they gradually increased ln splendour and magrificence till the decay of Boddhism set in. See the autborities quoted in the Journal of the fiosel A siatic Sociely for 1875, p. 22 of the article $3 n$ "Two Sinhalese Inacriptions.

[^31]: ${ }^{2}$ These are perhaps the teachers of the six systems of orthodox Hindo philosophy referred to above (note 2, p. 427); bot the meaning of this expression, and of that in Buddba's reply abont the "twelva, greet disciples," ls not clear.

[^32]: 1 "When Malunka asked Buddha whether tho existence of the world is eternal or not cternal bo mado him no reply; but the resson of this was, that it was considered by Budihe as an inquiry that tended to no profit."-Hanty, M.B., 375. Only e Buddha can comprehend how offects are produced by karuis, or how the universe wso broughty Into existenco.-Thid., P. 8, дота

[^33]: 1 On the Buddhist cosmogony, see Hardy, Manual of Buddhism, chap. 1 ; Bumouf, Lotus, Sc., pp. 842, et seq.; Beat, Catena of Buddhist Scriptures from the Chinest, Part 1.; nud Childers's Päli Dict., under the names given by Hardy.
 ${ }^{9}$ Paticec-samuppdida, the twelve nidāas. Soo Childers in Cole. rookes Essays (1873), vol. ii. p. 453 ; Gogeris in the Journal of the di. A.S., Ceylon Br. 1846, p. 18,.1867, pe, 127.

[^34]: s From the thind book of the Mahā Vagga, which is the third pist of the first Pitaka. Gogerly, in the Journal of the Royal Asatic som ciecy, Ceylon Branch, 1845, p. 24; this summary is constautly quntrí

[^35]: ${ }^{1}$ On Nipwana, see Cogerly, Journal of the R. A. S., Cryion Branch, 1867-1870, Part i.p. 130; Alvis, Budh ist Vimana, Colombo, 1871; Childers, I'äld Dict., sub. v., Nırvana; Burnouf, Intr., 18-20, 78, 83, 155, 516-522, nut esp. 589 et seq. and Lotus, 355 ; Harily's Eastern Monachism, 250-309; Bigandet. p. 320-323; Wassılief, Der Butaubismus, p. 101. On the othor side, Prof. Max Muller, Bradihaghosha's Parables, Ixxix-xly: Moh, Joumal Asiatique, 1856, 5. 01 ; aul Obry, Ihe Vimana Bouddigue, Varis, 1863.

[^36]: 'For Dina chariyñwa, aee Harly, Eastern Monachim, 24-28; for be flyo meditations, thid. pp 243. el seq.

[^37]: 2 Hardy, Manual of Buddhism. p. 460.
 3 The above is from the Pali text of the Khuddakn Fatha, edited by Cbilders, in the Journal of the Royal As. Soc., new series, vol. iv. part if Translations bare been published by Prof. Cbilders, ta at. a by Sir Coomáre Swamy in bis Sutta Nijuиta, p. 72; and by Gogerly, iu the Ceyton Friend for June 1889.

[^38]: See Grande Dietionnaire Unitersel du XIXe siecle: Pierer's Cnz-versal-Lexikon, Altenberg, 1868 ; Encycloptdie des Gens du Monde; Bemrose's Buhl-wori and Marquetry, a very useful manual: Pollen's Furniture and Wood-work.

[^39]: : 10 Ficmoin bond abroas:

[^40]: The best publications on this trate are the makers' price books ant lists of articles made and sold by them. See algo the artinle AHTALIUPGE.

[^41]: ${ }^{1}$ Mr W. C. Astor, "tha laadlond of New York," as ba bas been calied. diar is Novamber 1875.

[^42]: 'One of these, and a rery valued correspindent of IMnsen, "as Lord Clifford, nell known as a cevont Roman Catholic. lle tad made tho struagle between Berin and the Votican the sutuect of eamest study. atd was ewabled by has hagh social pustion to whan from documents a more dispassionate verv of t than, perbaps, any contemporary wituess of the events. His lestimany, therefore, expreased in a letter to Funsen of 31st Marcls 1838 , may clam a place in Sus sketch. Lord Clifford writes.-" Your public career bere has beed of i, enefit to the deate of Europe."

[^43]: ${ }^{2}$ It may be meotioned that Buosen contributed the article Letaer, sne of the finest biograpbies of the great Fofrmer to the eighth editiod of the nreeant work, 1857

[^44]: * A copy has been discovered in very racent times, and a tac-amile roontit of it was published in 1875.

[^45]: 'An article on the Burman fiora, by S. Kurtz, will be found in the Ionurnal of the Asiatic Society of Eengal for 1874.

 - See Appodilix to Iula'r Narratior.

[^46]: ${ }^{3}$ Journal As. Soc. of Bengal, 1833.

 - The specimens that are most highly prized are of an emeruld green; but red and pale pink are also favourte colcurs.
 - An important addition to the natural history of the conotry bas just been made by the representatives of the late Ms E. SIsth wh the shape of a "Catalugue of the Mammals and Pirds of Barmah," Foblished as an extra numbers of tha Jormat ef the As. Soce of Borght, 1575.

[^47]: ${ }^{2}$ See for details tegarding the Shans and Kakbyeus Anderson's $E X$ pedition to Eastern Yunan, ch v. Appeudir B contans a list of 500 Forda in the Sban, Kakbyen, Paloung, and Leessm languapar.

[^48]: , A minsation has beer mode into Eugluth by Richardson

[^49]: ${ }^{1}$ AD interesting survey of the various trade-routes from Burmah to China is given by Jr J. Coryton in the Jour. of he R. Geogr. Soc. for 1876.

[^50]: ${ }^{1}$ The frequent change of capital is quite remarkable in Burmese bistory. In tbe earlier periods, it is probable that the chronicles have made it seem more frequent than it is, by running the histary of minor contemporaneous kingdoms into thst of one great monarchy. But in ratre recent times the capital has been shifted from Prome to Payin, from Pagan to Panya, from Panya to Ava, and from Ava to Amarapura; and since the present monarch was visited by the English embassy i 1555 , he has caused Amarapura to be abandoned, and bas built a uet city at Mandalay, which is at present the chief city in the *upire.

[^51]: 1 "Which," aays Dr Johnson, "the eritick ought to read for its Alcgance, the philosopher for its argumente, and the saint for ite piety" (Lives of Engtish Poels, vol. i. p. 303).

[^52]: 1 The shells are brought from rarious parts of the world, and rary considerally in price. The white-edged Macassar are the best: the yellowedged Manilla the next. Those frem the Persian Gulf and Reat Sers vary much in value, which depends upoo the purposes to whick they can be applied. Those from the ractic are beauthful, but, being Leverally dark in colour, their value is much affected by the turn of fashion. The "Panama shells" are the least valuable, and are gevef. ally ouly used for inforior sorts of butions.

 2 Vegetable ivory is uot very sutable for buttons; it is too soft, aod

[^53]: ${ }^{1}$ Re kad proviously printed a volume for privats circuletion, and is is charactoristic of his docility, onder fentle infnences, that ha bums the first impression when Mr Becher rebuted him for the too warm coloring of on of the poems.

[^54]: 1 Thus. onoer Charies il in 1671, the kings confidential advisers were Clifford Arhngton Buckiogham, Ashley. and Lauderdale The ratial letters of their names apell the word "Cabal and hord Macaulay aftrms that the wora cabsl was popularly used as synonymous with cabinet But the word cabal certsinly never was appled to any other cabioet, and the cabsl itself pas oot in truth a cabinet at all.

[^55]: ${ }^{1}$ The dimensions marked in the figure are those for one-inch chains and signify en many diameters of the iron of the common links,- thut forming a ecale for all sizes.

[^56]: 1 Gabotm, Patent of 1498; Eabotto. Patent of 1498 ; Cebote. Fden; Gaboto, Gomara -Stow.

[^57]: 13, writiag about two conturies before Geoffrey of Monmouth,
 L. \because. tur.

[^58]: Sec the article "Calculnting Machines" in Wolford's Insuranea Cuclopodiu, where many references will be found, and a translation of General Menambrea's article on Babbege's Analytical Engine in Tsylar's Scientific Dempors, will iii

[^59]: ${ }^{1}$ If Saturdar, aubetitute Susday immediately following.
 ${ }^{2}$ If Saturday, sulustitute 'Thuraday immediately precediag

[^60]: 1 The family name of Calvin seems to bave been written indiferently Canvin, Chauve, Chauvia, Calvus, Calvinus. In the contemporary notices of Gerard and his family, in the capitular registers of the cathodral at Noyon, the name is always spelt Caunin. The anngram of Calvin is Alcuin, and this in its Latintzed form Alcuinus appears in two oditions of his Institution ns that of the author (Audin, lie de Calcin, 1. 520). The syndics of Geneva address him in a letter written in 2540, and still preserved, as "Docteur Cauivin." In his letters written in French he usually signg himself "Jean Calvin." He affected the title of "Maitre," for what reason 4 not known.

[^61]: ${ }^{3}$ Calv., Praf. ad Commert. in Psolmos.

 - Pruef. ad Psalmos.

 4 Jo. Calvini J'ís, sud inil.

[^62]: ${ }^{1}$ Kpist. Ded., Comment. in Eip. II. ad Corinthios prafix.
 ${ }^{2}$ Praf. ad Psalmas.

 - Hist. Eccles., t. i. pp. 6, 7; Lille. 1841. \&Praf. ad Psamos.
 - Hist. Eceles. ubi. sup. Galv., Contr. Libertinus, c. 4

[^63]: ${ }^{2}$ This edition formes a emali $\mathbf{5 r o}$ of 514 pages, and 6 pages of index. It appeared at Basel from the press of Thewas Platter and Ealtiasar. I.asins in March 1536.

 - Prafi ad Psalmas.

 Nid

[^64]: ' Beis, Iit. Colv. an. 1536.

[^65]: 'A digest of Servelug's wews is given by Domer, Entracikiungso geschichteder Lehte von d. Persun Chrith, ii. Yp. 649-656, Epg. trans.er div. ii, vol, ii. Fp. 1t1-163.

 Si mibi placeas hus se verturcm recipit. Sed nolo fidem mesm
 patian:-Colvin to Fatel, 1gen Feh 15 w.

[^66]: ${ }_{2}^{1}$ Fidelis Expositio Errorum Serveti, mbinit. Calvini Opp. t. ix.
 ${ }^{2}$ Calvin to Farel, 20 th Aug. 1553.
 ${ }^{3}$ Tuo judicio prorsus assentior. Affirmo etiam vestros magistratas juste focisse guod homanem blasphemum, re ordine jucicata, wisorfece. runt. - Melanchthon to C'alrin, 14th Oct. 1554.
 : Field On the.Church, bk, iit. c. 27, vol. i. p. 293, ed. Csmb. 1847.
 is Notes on Enghish Divines, Fol. i. p. 49. See also Table Talk. Fol. i4 p. 232, 64. 1335.

[^67]: 1 Ve. Calv sub fin thas is the princtpal nource for the facts of Calna's life. Beza's narrative has heen expanded and illustrated frinn. other sources l.y Dr Heary un bis Lehen Calonns, of wbicb an Enolash trauslation has appeared in 2 vols fon, by the Rev. P Stelbing Aurna has writteo a life of Calvin in Fronch. full of misp presentations end bunders A bighly respectable work has appeared on the same subject from the pren of M Dver.in 1 vni 8 so . At Buggener has also racently sent tortha Lyfo of Calrin. whicb bas been transiated into Englist, Edic., isî3. Of Calnns aorks, two editions sppeared at Gebeva, ne in 12 vols fol in 1578, the other in 7 vols. fol in 1617 An edition, bitherto reputed the bast. Was published at Amsterdam in 9 vols. fol in 1631 A vew edilinn in tin is at present in course of publicatina, carefully edited by G Baum, E. Lunitz, a ad E. Peuss, at Brunamek AD Eaglist translation has beed issued at Edinburch in 53 vals. 8 vo.

[^68]: ${ }^{1}$ The syllables of Famboja have-been tortured by the later natives Bomean "born of the waters," "race of Kam (Khmer)," nul what not. the molern Chinese have corruptex Famboja through lian-p hu-che
 io Tung po-chai, probably to met some fancy of a similar kind.
 ${ }^{2}$ The occurrence of the bame Canthin on one of the rentiche of the lescriptions of Asoka, in connection with the names of regtions in the axtretne south of India, las lately raised a question whelder the IndoChinese Camboja did not even then exist.

[^69]: - Cavalier afterwards entered the British army, fought at the battle D' Almanza, and died goveroor of Jerscy in 1740. He told Voltaire that the discipline of his troaps was maintained by a prophetess, La Grande Marie, who condement in death sll insuhorinstes. Siecle de Louis IJV..c. 36. Seo also Memoirs of the Wars of the Cervennes, by Jean davalier, London, 1726 ; and the docnments in Jean Cavalier, ou les Funatimues des Ciuenres, Taris. 1840,4 vole

[^70]: 3 Voltaire procured the release of aeveral Huguenot galley slares, among others Chaumont, tho shoemaker. After the treaty of Uirech Queen Anne persuaded the French Government to free abont 110 , the total namber was about 1500.
 ${ }_{3}$ Thero was an indecisive Edict of Tolcration by Lonis XVI, fin 1:87.

[^71]: 1 No recond has been discorered of the death of Sitmả Voz, fathef of the poet, but it is cmuectured that he died of the placie during thy sutum of 1565

[^72]: ${ }^{1}$ A terminsble estate in land, vested or continned in trustoes, for convenience in giving security without exhibiting a title vo the complete estate.
 ${ }^{2}$ If we may trust the scandalons chronicle of Greville, Carepbell Got this post on condition that ho ehould not expect the ordinary promotion to the bench, a condition which he immediately volated by clatmin the vice-chazcellorship on the death of Sir John Leach. Pepys (Lond Cottonhan) aud Bickersteth (Lond Lamgale) wero both prowoted to the bench in preference to Canpbell.
 3 "Thero can be no cloubt that old Wyntor was at the bottom of It all, and porsuaded Lord Grantley' to urge it on for mero political purposios -Greyime, iii. 3in.

[^73]: ${ }^{4}$ In 1842 ho published the specines oi Lord Campbell at the bur and in the House of Conmors, with az Aduress to the Jrish Bur ne Lord Chuncellor of Ireiund. (Edan., Dlack.).

[^74]: ${ }^{1}$ It was of this bnok that Sir Charles Wetherell asid, referricg to its author, "and then there is my noble aud biograplical friend who his added a new terror to death." See Mistepresentations in Camplelts "Lives of Lyndhurst and Brougham" corrected by St Legnards, Lon. cisa, 1869.

[^75]: \$This arplies particalarly to his conduct of the case of G. Achull v. Dr Newman for libel contained in the Lertures on the Diffoulties of Protestantiom. See special Piemort iy W. F. Fialason, Iondun, 18.52.

[^76]: ${ }^{1}$ Quarterly Reriete, No. cxlri p 281

 - Ftisi On Canals, p. 154.

[^77]: 1 Travels of Marco Polo, by Col. Yule, C.B.

 - Emeaton's Reports, voL i. p. 55, London, 1812.

[^78]: ${ }^{3}$ Smeaton's Reports, vol. i. p. 74, London. 1812.

 - History of Inlend Navigation, particularly those of the Duke of Bridjewater, London, 1768 ; Hugheg's 1 femoir of Brindley ; Weale 9 Quarterly Papers, London, 1843.
 ${ }^{8}$ Smiles's Lives of the Enginecrs.

[^79]: Canad dianation.

[^80]: ${ }^{1}$ Minutes of Proceedings of Instifution of Civil Rngineers, vol. v. p. 340 .
 P. Stevenson's. Mrsth of Civil Kingineering in Noth America, Lopdut, Jobn Weala.

[^81]: ${ }^{2}$ Mixules of Proceuding. of Instilution of Civil Enginects, rol. xith p. 205.

[^82]: ${ }^{1}$ Minutes of Procedings of.Institution of Civil Enginecrs, $:$
 <gni.p. 25. sha. pl.

[^83]: Presot pra the Culedonian Canal to the Admiralty, 1312, by James

[^84]: ${ }^{1}$ Mfemoires du Baron de Tolt, sur les Turcs et les Tartares, Amater dam, 1785, vol. ii. D. 271.

[^85]: 2 Sruccatings of the Fioyal Society, 1870, p. 132.

[^86]: " 11. That the canal will berome a stapmant ditch.
 "2. That the canal mill silt up, or that the moring sands of the Desert will fill it up.
 "3. That the Bitter Laves through which the canst is tn pass will ho filled up with calt.
 "4. That the parigation of the Fud Ses is dangerons and diff. cult.
 "'5. That shipping will not approach Port Said, because of the differultics that will be met with, and the danger of that port on a lee shore.
 "6. That it will be difficult, if not impracticable, to kcep opes the Mediterranean eutrance to the canal."

[^87]: ' Acport on the Maritime Canal connecting the Meditorationn a! Por: Naid with the Red Smat Suee. February 1370.

[^88]: ${ }^{1}$ The History of the Suez Canal, by F? do Lesseps, translated by太if II. D. Wu: IT. 1876.

[^89]: * Brazil wat the last American country to abolish slavery. The number of slaves had graty decreased since the year 1No, when they were estimated at 2 nonn, 010 . On March 30 , isw 7 , the offelat return gave the namber of slases in Brazil as zos,
 Crown Princess, as requt, gave thir rowal ascut io a for measure of two clanses, the first declifing that surery with abolishend in Brazil from the day of the pronalgation of the law, and the second repaling all former acts on the subject. Both Chambers refused to consider the claim for compensation made by the slave-owners.

[^90]: * See U. S. Census Bulletin of Viticulture of 1×90.

